human/dist/tfjs.esm.js

4342 lines
1.0 MiB

/*
Human library
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
var SB=Object.create,Lh=Object.defineProperty,TB=Object.getPrototypeOf,AB=Object.prototype.hasOwnProperty,EB=Object.getOwnPropertyNames,DB=Object.getOwnPropertyDescriptor;var $B=r=>Lh(r,"__esModule",{value:!0});var dt=(r,e)=>()=>(e||(e={exports:{}},r(e.exports,e)),e.exports),Ke=(r,e)=>{for(var t in e)Lh(r,t,{get:e[t],enumerable:!0})},RB=(r,e,t)=>{if(e&&typeof e=="object"||typeof e=="function")for(let n of EB(e))!AB.call(r,n)&&n!=="default"&&Lh(r,n,{get:()=>e[n],enumerable:!(t=DB(e,n))||t.enumerable});return r},Ec=r=>RB($B(Lh(r!=null?SB(TB(r)):{},"default",r&&r.__esModule&&"default"in r?{get:()=>r.default,enumerable:!0}:{value:r,enumerable:!0})),r);var lN=dt(()=>{});var GN=dt((VN,Gw)=>{(function(r,e,t){function n(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function o(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new n(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&o(c,u),p.state=function(){return o(u,{})}),p}function a(){var i=4022871197,l=function(u){u=u.toString();for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(VN,typeof Gw=="object"&&Gw,typeof define=="function"&&define)});var jN=dt((WN,Ww)=>{(function(r,e,t){function n(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(WN,typeof Ww=="object"&&Ww,typeof define=="function"&&define)});var HN=dt((UN,jw)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(UN,typeof jw=="object"&&jw,typeof define=="function"&&define)});var KN=dt((qN,Uw)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function o(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(qN,typeof Uw=="object"&&Uw,typeof define=="function"&&define)});var YN=dt((XN,Hw)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d<x;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function o(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(XN,typeof Hw=="object"&&Hw,typeof define=="function"&&define)});var JN=dt((ZN,qw)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(ZN,typeof qw=="object"&&qw,typeof define=="function"&&define)});var ag=dt(()=>{});var QN=dt((obe,lg)=>{(function(r,e){var t=this,n=256,o=6,s=52,a="random",i=e.pow(n,o),l=e.pow(2,s),u=l*2,c=n-1,p;function m(b,k,_){var A=[];k=k==!0?{entropy:!0}:k||{};var N=g(h(k.entropy?[b,w(r)]:b==null?x():b,3),A),$=new f(A),F=function(){for(var M=$.g(o),V=i,W=0;M<l;)M=(M+W)*n,V*=n,W=$.g(1);for(;M>=u;)M/=2,V/=2,W>>>=1;return(M+W)/V};return F.int32=function(){return $.g(4)|0},F.quick=function(){return $.g(4)/4294967296},F.double=F,g(w($.S),r),(k.pass||_||function(M,V,W,U){return U&&(U.S&&d(U,$),M.state=function(){return d($,{})}),W?(e[a]=M,V):M})(F,N,"global"in k?k.global:this==e,k.state)}e["seed"+a]=m;function f(b){var k,_=b.length,A=this,N=0,$=A.i=A.j=0,F=A.S=[];for(_||(b=[_++]);N<n;)F[N]=N++;for(N=0;N<n;N++)F[N]=F[$=c&$+b[N%_]+(k=F[N])],F[$]=k;(A.g=function(M){for(var V,W=0,U=A.i,H=A.j,q=A.S;M--;)V=q[U=c&U+1],W=W*n+q[c&(q[U]=q[H=c&H+V])+(q[H]=V)];return A.i=U,A.j=H,W})(n)}function d(b,k){return k.i=b.i,k.j=b.j,k.S=b.S.slice(),k}function h(b,k){var _=[],A=typeof b,N;if(k&&A=="object")for(N in b)try{_.push(h(b[N],k-1))}catch($){}return _.length?_:A=="string"?b:b+"\0"}function g(b,k){for(var _=b+"",A,N=0;N<_.length;)k[c&N]=c&(A^=k[c&N]*19)+_.charCodeAt(N++);return w(k)}function x(){try{var b;return p&&(b=p.randomBytes)?b=b(n):(b=new Uint8Array(n),(t.crypto||t.msCrypto).getRandomValues(b)),w(b)}catch(A){var k=t.navigator,_=k&&k.plugins;return[+new Date,t,_,t.screen,w(r)]}}function w(b){return String.fromCharCode.apply(0,b)}if(g(e.random(),r),typeof lg=="object"&&lg.exports){lg.exports=m;try{p=ag()}catch(b){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)});var tS=dt((sbe,eS)=>{var l4=GN(),u4=jN(),c4=HN(),p4=KN(),m4=YN(),f4=JN(),$u=QN();$u.alea=l4;$u.xor128=u4;$u.xorwow=c4;$u.xorshift7=p4;$u.xor4096=m4;$u.tychei=f4;eS.exports=$u});var eA=dt((Q1,Dk)=>{(function(r,e,t){function n(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function o(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new n(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&o(c,u),p.state=function(){return o(u,{})}),p}function a(){var i=4022871197,l=function(u){u=u.toString();for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(Q1,typeof Dk=="object"&&Dk,typeof define=="function"&&define)});var rA=dt((tA,$k)=>{(function(r,e,t){function n(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(tA,typeof $k=="object"&&$k,typeof define=="function"&&define)});var oA=dt((nA,Rk)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(nA,typeof Rk=="object"&&Rk,typeof define=="function"&&define)});var iA=dt((sA,Fk)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function o(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(sA,typeof Fk=="object"&&Fk,typeof define=="function"&&define)});var lA=dt((aA,Ok)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d<x;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function o(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(aA,typeof Ok=="object"&&Ok,typeof define=="function"&&define)});var cA=dt((uA,Pk)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(uA,typeof Pk=="object"&&Pk,typeof define=="function"&&define)});var pA=dt((u3e,Cg)=>{(function(r,e){var t=this,n=256,o=6,s=52,a="random",i=e.pow(n,o),l=e.pow(2,s),u=l*2,c=n-1,p;function m(b,k,_){var A=[];k=k==!0?{entropy:!0}:k||{};var N=g(h(k.entropy?[b,w(r)]:b==null?x():b,3),A),$=new f(A),F=function(){for(var M=$.g(o),V=i,W=0;M<l;)M=(M+W)*n,V*=n,W=$.g(1);for(;M>=u;)M/=2,V/=2,W>>>=1;return(M+W)/V};return F.int32=function(){return $.g(4)|0},F.quick=function(){return $.g(4)/4294967296},F.double=F,g(w($.S),r),(k.pass||_||function(M,V,W,U){return U&&(U.S&&d(U,$),M.state=function(){return d($,{})}),W?(e[a]=M,V):M})(F,N,"global"in k?k.global:this==e,k.state)}e["seed"+a]=m;function f(b){var k,_=b.length,A=this,N=0,$=A.i=A.j=0,F=A.S=[];for(_||(b=[_++]);N<n;)F[N]=N++;for(N=0;N<n;N++)F[N]=F[$=c&$+b[N%_]+(k=F[N])],F[$]=k;(A.g=function(M){for(var V,W=0,U=A.i,H=A.j,q=A.S;M--;)V=q[U=c&U+1],W=W*n+q[c&(q[U]=q[H=c&H+V])+(q[H]=V)];return A.i=U,A.j=H,W})(n)}function d(b,k){return k.i=b.i,k.j=b.j,k.S=b.S.slice(),k}function h(b,k){var _=[],A=typeof b,N;if(k&&A=="object")for(N in b)try{_.push(h(b[N],k-1))}catch($){}return _.length?_:A=="string"?b:b+"\0"}function g(b,k){for(var _=b+"",A,N=0;N<_.length;)k[c&N]=c&(A^=k[c&N]*19)+_.charCodeAt(N++);return w(k)}function x(){try{var b;return p&&(b=p.randomBytes)?b=b(n):(b=new Uint8Array(n),(t.crypto||t.msCrypto).getRandomValues(b)),w(b)}catch(A){var k=t.navigator,_=k&&k.plugins;return[+new Date,t,_,t.screen,w(r)]}}function w(b){return String.fromCharCode.apply(0,b)}if(g(e.random(),r),typeof Cg=="object"&&Cg.exports){Cg.exports=m;try{p=ag()}catch(b){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)});var fA=dt((c3e,mA)=>{var GK=eA(),WK=rA(),jK=oA(),UK=iA(),HK=lA(),qK=cA(),Ku=pA();Ku.alea=GK;Ku.xor128=WK;Ku.xorwow=jK;Ku.xorshift7=UK;Ku.xor4096=HK;Ku.tychei=qK;mA.exports=Ku});var Ip=dt(()=>{});var jO=dt(()=>{});var UO=dt(()=>{});var HO=dt((nx,pC)=>{var mC=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};function t(){return J.buffer!=je&&nr(J.buffer),ut}function n(){return J.buffer!=je&&nr(J.buffer),mt}function o(){return J.buffer!=je&&nr(J.buffer),Xt}function s(){return J.buffer!=je&&nr(J.buffer),tn}function a(){return J.buffer!=je&&nr(J.buffer),jn}var i=typeof e!="undefined"?e:{},l,u;i.ready=new Promise(function(I,R){l=I,u=R});var c={},p;for(p in i)i.hasOwnProperty(p)&&(c[p]=i[p]);var m=[],f="./this.program",d=function(I,R){throw R},h=!1,g=!1,x=!1,w=!1;h=typeof window=="object",g=typeof importScripts=="function",x=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",w=!h&&!x&&!g;var b=i.ENVIRONMENT_IS_PTHREAD||!1;b&&(je=i.buffer);var k="";function _(I){return i.locateFile?i.locateFile(I,k):k+I}var A,N,$,F,M,V;if(x){g?k=Ip().dirname(k)+"/":k=__dirname+"/",A=function(R,B){return M||(M=require("fs")),V||(V=Ip()),R=V.normalize(R),M.readFileSync(R,B?null:"utf8")},$=function(R){var B=A(R,!0);return B.buffer||(B=new Uint8Array(B)),fe(B.buffer),B},process.argv.length>1&&(f=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(I){if(!(I instanceof cm))throw I}),process.on("unhandledRejection",Zi),d=function(I){process.exit(I)},i.inspect=function(){return"[Emscripten Module object]"};var W;try{W=jO()}catch(I){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),I}global.Worker=W.Worker}else w?(typeof read!="undefined"&&(A=function(R){return read(R)}),$=function(R){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer(R)):(B=read(R,"binary"),fe(typeof B=="object"),B)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(d=function(I){quit(I)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||g)&&(g?k=self.location.href:typeof document!="undefined"&&document.currentScript&&(k=document.currentScript.src),typeof r!="undefined"&&r&&(k=r),k.indexOf("blob:")!==0?k=k.substr(0,k.lastIndexOf("/")+1):k="",x?(A=function(R,B){return M||(M=require("fs")),V||(V=Ip()),R=V.normalize(R),M.readFileSync(R,B?null:"utf8")},$=function(R){var B=A(R,!0);return B.buffer||(B=new Uint8Array(B)),fe(B.buffer),B}):(A=function(I){var R=new XMLHttpRequest;return R.open("GET",I,!1),R.send(null),R.responseText},g&&($=function(I){var R=new XMLHttpRequest;return R.open("GET",I,!1),R.responseType="arraybuffer",R.send(null),new Uint8Array(R.response)}),N=function(I,R,B){var K=new XMLHttpRequest;K.open("GET",I,!0),K.responseType="arraybuffer",K.onload=function(){if(K.status==200||K.status==0&&K.response){R(K.response);return}B()},K.onerror=B,K.send(null)}),F=function(I){document.title=I});x&&typeof performance=="undefined"&&(global.performance=UO().performance);var U=i.print||console.log.bind(console),H=i.printErr||console.warn.bind(console);for(p in c)c.hasOwnProperty(p)&&(i[p]=c[p]);c=null,i.arguments&&(m=i.arguments),i.thisProgram&&(f=i.thisProgram),i.quit&&(d=i.quit);var q=Atomics.load,X=Atomics.store,ne=Atomics.compareExchange,Y;i.wasmBinary&&(Y=i.wasmBinary);var re=i.noExitRuntime||!0;typeof WebAssembly!="object"&&Zi("no native wasm support detected");var J,ie,ue=!1,ae;function fe(I,R){I||Zi("Assertion failed: "+R)}function de(I){var R=i["_"+I];return fe(R,"Cannot call unknown function "+I+", make sure it is exported"),R}function xe(I,R,B,K,be){var he={string:function(Wr){var Ac=0;if(Wr!=null&&Wr!==0){var yI=(Wr.length<<2)+1;Ac=Nc(yI),qe(Wr,Ac,yI)}return Ac},array:function(Wr){var Ac=Nc(Wr.length);return At(Wr,Ac),Ac}};function ye(Wr){return R==="string"?Ne(Wr):R==="boolean"?Boolean(Wr):Wr}var Te=de(I),kt=[],wr=0;if(K)for(var fr=0;fr<K.length;fr++){var Ya=he[B[fr]];Ya?(wr===0&&(wr=um()),kt[fr]=Ya(K[fr])):kt[fr]=K[fr]}var Tc=Te.apply(null,kt);return Tc=ye(Tc),wr!==0&&Ic(wr),Tc}function we(I,R,B,K){B=B||[];var be=B.every(function(ye){return ye==="number"}),he=R!=="string";return he&&be&&!K?de(I):function(){return xe(I,R,B,arguments,K)}}function De(I,R,B){for(var K=R+B,be="";!(R>=K);){var he=I[R++];if(!he)return be;if(!(he&128)){be+=String.fromCharCode(he);continue}var ye=I[R++]&63;if((he&224)==192){be+=String.fromCharCode((he&31)<<6|ye);continue}var Te=I[R++]&63;if((he&240)==224?he=(he&15)<<12|ye<<6|Te:he=(he&7)<<18|ye<<12|Te<<6|I[R++]&63,he<65536)be+=String.fromCharCode(he);else{var kt=he-65536;be+=String.fromCharCode(55296|kt>>10,56320|kt&1023)}}return be}function Ne(I,R){return I?De(n(),I,R):""}function ze(I,R,B,K){if(!(K>0))return 0;for(var be=B,he=B+K-1,ye=0;ye<I.length;++ye){var Te=I.charCodeAt(ye);if(Te>=55296&&Te<=57343){var kt=I.charCodeAt(++ye);Te=65536+((Te&1023)<<10)|kt&1023}if(Te<=127){if(B>=he)break;R[B++]=Te}else if(Te<=2047){if(B+1>=he)break;R[B++]=192|Te>>6,R[B++]=128|Te&63}else if(Te<=65535){if(B+2>=he)break;R[B++]=224|Te>>12,R[B++]=128|Te>>6&63,R[B++]=128|Te&63}else{if(B+3>=he)break;R[B++]=240|Te>>18,R[B++]=128|Te>>12&63,R[B++]=128|Te>>6&63,R[B++]=128|Te&63}}return R[B]=0,B-be}function qe(I,R,B){return ze(I,n(),R,B)}function it(I){for(var R=0,B=0;B<I.length;++B){var K=I.charCodeAt(B);K>=55296&&K<=57343&&(K=65536+((K&1023)<<10)|I.charCodeAt(++B)&1023),K<=127?++R:K<=2047?R+=2:K<=65535?R+=3:R+=4}return R}function At(I,R){t().set(I,R)}function Et(I,R){return I%R>0&&(I+=R-I%R),I}var je,ut,mt,Mt,xn,Xt,tn,$r,jn;function nr(I){je=I,i.HEAP8=ut=new Int8Array(I),i.HEAP16=Mt=new Int16Array(I),i.HEAP32=Xt=new Int32Array(I),i.HEAPU8=mt=new Uint8Array(I),i.HEAPU16=xn=new Uint16Array(I),i.HEAPU32=tn=new Uint32Array(I),i.HEAPF32=$r=new Float32Array(I),i.HEAPF64=jn=new Float64Array(I)}var yn=i.INITIAL_MEMORY||16777216;if(b)J=i.wasmMemory,je=i.buffer;else if(i.wasmMemory)J=i.wasmMemory;else if(J=new WebAssembly.Memory({initial:yn/65536,maximum:2147483648/65536,shared:!0}),!(J.buffer instanceof SharedArrayBuffer))throw H("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),x&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");J&&(je=J.buffer),yn=je.byteLength,nr(je);var Gr,br=[],rn=[],En=[],Dl=[],Ua=[],os=!1,Xi=!1;b||rn.push({func:function(){Dh()}}),b&&(os=!0);function tm(){if(!b){if(i.preRun)for(typeof i.preRun=="function"&&(i.preRun=[i.preRun]);i.preRun.length;)yh(i.preRun.shift());wc(br)}}function yc(){os=!0,wc(rn)}function my(){b||wc(En)}function xh(){b||(Xi=!0)}function nn(){if(!b){if(i.postRun)for(typeof i.postRun=="function"&&(i.postRun=[i.postRun]);i.postRun.length;)fy(i.postRun.shift());wc(Ua)}}function yh(I){br.unshift(I)}function fy(I){Ua.unshift(I)}var Yi=0,Ha=null,$l=null;function dy(I){fe(!b,"addRunDependency cannot be used in a pthread worker"),Yi++,i.monitorRunDependencies&&i.monitorRunDependencies(Yi)}function hy(I){if(Yi--,i.monitorRunDependencies&&i.monitorRunDependencies(Yi),Yi==0&&(Ha!==null&&(clearInterval(Ha),Ha=null),$l)){var R=$l;$l=null,R()}}i.preloadedImages={},i.preloadedAudios={};function Zi(I){i.onAbort&&i.onAbort(I),b&&console.error("Pthread aborting at "+new Error().stack),I+="",H(I),ue=!0,ae=1,I="abort("+I+"). Build with -s ASSERTIONS=1 for more info.";var R=new WebAssembly.RuntimeError(I);throw u(R),R}function bh(I,R){return String.prototype.startsWith?I.startsWith(R):I.indexOf(R)===0}var bc="data:application/octet-stream;base64,";function wh(I){return bh(I,bc)}var gy="file://";function kh(I){return bh(I,gy)}var on="tfjs-backend-wasm-threaded-simd.wasm";wh(on)||(on=_(on));function xy(I){try{if(I==on&&Y)return new Uint8Array(Y);if($)return $(I);throw"both async and sync fetching of the wasm failed"}catch(R){Zi(R)}}function _h(){if(!Y&&(h||g)){if(typeof fetch=="function"&&!kh(on))return fetch(on,{credentials:"same-origin"}).then(function(I){if(!I.ok)throw"failed to load wasm binary file at '"+on+"'";return I.arrayBuffer()}).catch(function(){return xy(on)});if(N)return new Promise(function(I,R){N(on,function(B){I(new Uint8Array(B))},R)})}return Promise.resolve().then(function(){return xy(on)})}function yy(){var I={a:lb};function R(ye,Te){var kt=ye.exports;if(i.asm=kt,Gr=i.asm.F,ie=Te,!b){var wr=Ee.unusedWorkers.length;Ee.unusedWorkers.forEach(function(fr){Ee.loadWasmModuleToWorker(fr,function(){--wr||hy("wasm-instantiate")})})}}b||dy("wasm-instantiate");function B(ye){R(ye.instance,ye.module)}function K(ye){return _h().then(function(Te){return WebAssembly.instantiate(Te,I)}).then(ye,function(Te){H("failed to asynchronously prepare wasm: "+Te),Zi(Te)})}function be(){return!Y&&typeof WebAssembly.instantiateStreaming=="function"&&!wh(on)&&!kh(on)&&typeof fetch=="function"?fetch(on,{credentials:"same-origin"}).then(function(ye){var Te=WebAssembly.instantiateStreaming(ye,I);return Te.then(B,function(kt){return H("wasm streaming compile failed: "+kt),H("falling back to ArrayBuffer instantiation"),K(B)})}):K(B)}if(i.instantiateWasm)try{var he=i.instantiateWasm(I,R);return he}catch(ye){return H("Module.instantiateWasm callback failed with error: "+ye),!1}return be().catch(u),{}}var vh={8991:function(I,R){setTimeout(function(){mI(I,R)},0)}};function by(){Ee.initRuntime()}function wc(I){for(;I.length>0;){var R=I.shift();if(typeof R=="function"){R(i);continue}var B=R.func;typeof B=="number"?R.arg===void 0?Gr.get(B)():Gr.get(B)(R.arg):B(R.arg===void 0?null:R.arg)}}function kc(I,R){if(I<=0||I>t().length||I&!0||R<0)return-28;if(R==0)return 0;R>=2147483647&&(R=Infinity);var B=Atomics.load(o(),Sc>>2),K=0;if(B==I){var be=Atomics.compareExchange(o(),Sc>>2,B,0);if(be==B&&(--R,K=1,R<=0))return 1}var he=Atomics.notify(o(),I>>2,R);if(he>=0)return he+K;throw"Atomics.notify returned an unexpected value "+he}i._emscripten_futex_wake=kc;function wy(I){if(b)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in killThread!";o()[I+12>>2]=0;var R=Ee.pthreads[I];R.worker.terminate(),Ee.freeThreadData(R),Ee.runningWorkers.splice(Ee.runningWorkers.indexOf(R.worker),1),R.worker.pthread=void 0}function ky(I){if(b)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cancelThread!";var R=Ee.pthreads[I];R.worker.postMessage({cmd:"cancel"})}function _y(I){if(b)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cleanupThread!";o()[I+12>>2]=0;var R=Ee.pthreads[I];if(R){var B=R.worker;Ee.returnWorkerToPool(B)}}var Ee={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var I=8,R=0;R<I;++R)Ee.allocateUnusedWorker()},initRuntime:function(){for(var I=Fl(228),R=0;R<228/4;++R)s()[I/4+R]=0;o()[I+12>>2]=I;var B=I+152;o()[B>>2]=B;for(var K=Fl(512),R=0;R<128;++R)s()[K/4+R]=0;Atomics.store(s(),I+100>>2,K),Atomics.store(s(),I+40>>2,I),Ph(I,!g,1),pI(I)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Ee.threadExitHandlers.length>0;)Ee.threadExitHandlers.pop()();b&&Cc()&&cI()},threadExit:function(I){var R=Cc();R&&(Atomics.store(s(),R+4>>2,I),Atomics.store(s(),R+0>>2,1),Atomics.store(s(),R+56>>2,1),Atomics.store(s(),R+60>>2,0),Ee.runExitHandlers(),kc(R+0,2147483647),Ph(0,0,0),b&&postMessage({cmd:"exit"}))},threadCancel:function(){Ee.runExitHandlers();var I=Cc();Atomics.store(s(),I+4>>2,-1),Atomics.store(s(),I+0>>2,1),kc(I+0,2147483647),Ph(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var I in Ee.pthreads){var R=Ee.pthreads[I];R&&R.worker&&Ee.returnWorkerToPool(R.worker)}Ee.pthreads={};for(var B=0;B<Ee.unusedWorkers.length;++B){var K=Ee.unusedWorkers[B];K.terminate()}Ee.unusedWorkers=[];for(var B=0;B<Ee.runningWorkers.length;++B){var K=Ee.runningWorkers[B],R=K.pthread;Ee.freeThreadData(R),K.terminate()}Ee.runningWorkers=[]},freeThreadData:function(I){if(!!I){if(I.threadInfoStruct){var R=o()[I.threadInfoStruct+100>>2];o()[I.threadInfoStruct+100>>2]=0,lm(R),lm(I.threadInfoStruct)}I.threadInfoStruct=0,I.allocatedOwnStack&&I.stackBase&&lm(I.stackBase),I.stackBase=0,I.worker&&(I.worker.pthread=null)}},returnWorkerToPool:function(I){Ee.runWithoutMainThreadQueuedCalls(function(){delete Ee.pthreads[I.pthread.threadInfoStruct],Ee.unusedWorkers.push(I),Ee.runningWorkers.splice(Ee.runningWorkers.indexOf(I),1),Ee.freeThreadData(I.pthread),I.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(I){o()[xI>>2]=0;try{I()}finally{o()[xI>>2]=1}},receiveObjectTransfer:function(I){},loadWasmModuleToWorker:function(I,R){I.onmessage=function(B){var K=B.data,be=K.cmd;if(I.pthread&&(Ee.currentProxiedOperationCallerThread=I.pthread.threadInfoStruct),K.targetThread&&K.targetThread!=Cc()){var he=Ee.pthreads[K.targetThread];he?he.worker.postMessage(B.data,K.transferList):console.error('Internal error! Worker sent a message "'+be+'" to target pthread '+K.targetThread+", but that thread no longer exists!"),Ee.currentProxiedOperationCallerThread=void 0;return}if(be==="processQueuedMainThreadWork")vb();else if(be==="spawnThread")Ah(B.data);else if(be==="cleanupThread")_y(K.thread);else if(be==="killThread")wy(K.thread);else if(be==="cancelThread")ky(K.thread);else if(be==="loaded")I.loaded=!0,R&&R(I),I.runPthread&&(I.runPthread(),delete I.runPthread);else if(be==="print")U("Thread "+K.threadId+": "+K.text);else if(be==="printErr")H("Thread "+K.threadId+": "+K.text);else if(be==="alert")alert("Thread "+K.threadId+": "+K.text);else if(be==="exit"){var ye=I.pthread&&Atomics.load(s(),I.pthread.threadInfoStruct+64>>2);ye&&Ee.returnWorkerToPool(I)}else if(be==="exitProcess")try{NB(K.returnCode)}catch(Te){if(Te instanceof cm)return;throw Te}else be==="cancelDone"?Ee.returnWorkerToPool(I):be==="objectTransfer"?Ee.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?I.postMessage(B.data):H("worker sent an unknown command "+be);Ee.currentProxiedOperationCallerThread=void 0},I.onerror=function(B){H("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},x&&(I.on("message",function(B){I.onmessage({data:B})}),I.on("error",function(B){I.onerror(B)}),I.on("exit",function(B){})),I.postMessage({cmd:"load",urlOrBlob:i.mainScriptUrlOrBlob||r,wasmMemory:J,wasmModule:ie})},allocateUnusedWorker:function(){var I=_("tfjs-backend-wasm-threaded-simd.worker.js");Ee.unusedWorkers.push(new Worker(I))},getNewWorker:function(){return Ee.unusedWorkers.length==0&&(Ee.allocateUnusedWorker(),Ee.loadWasmModuleToWorker(Ee.unusedWorkers[0])),Ee.unusedWorkers.length>0?Ee.unusedWorkers.pop():null},busySpinWait:function(I){for(var R=performance.now()+I;performance.now()<R;);}};function vy(I,R){hI(I,R),Ic(I)}i.establishStackSpace=vy;function Cy(){return re}i.getNoExitRuntime=Cy;function Iy(I,R){return Gr.get(I)(R)}i.invokeEntryPoint=Iy;function Ny(I,R,B,K){Zi("Assertion failed: "+Ne(I)+", at: "+[R?Ne(R):"unknown filename",B,K?Ne(K):"unknown function"])}function Sy(I,R){var B=_main(I,R)}var Rl;x?Rl=function(){var I=process.hrtime();return I[0]*1e3+I[1]/1e6}:b?Rl=function(){return performance.now()-i.__performance_now_clock_drift}:typeof dateNow!="undefined"?Rl=dateNow:Rl=function(){return performance.now()};function Ty(I){return o()[lI()>>2]=I,I}function Ay(I,R){if(b)return qa(1,1,I,R)}function Ey(I,R){if(I==R)postMessage({cmd:"processQueuedMainThreadWork"});else if(b)postMessage({targetThread:I,cmd:"processThreadQueue"});else{var B=Ee.pthreads[I],K=B&&B.worker;if(!K)return;K.postMessage({cmd:"processThreadQueue"})}return 1}function Dy(){Zi()}function $y(I,R,B){var K=My(R,B);return vh[I].apply(null,K)}function Ry(I,R){}function Fy(I,R,B){if(I<=0||I>t().length||I&!0)return-28;if(h){if(Atomics.load(o(),I>>2)!=R)return-6;for(var be=performance.now(),he=be+B,ye=Atomics.exchange(o(),Sc>>2,I);;){if(be=performance.now(),be>he)return ye=Atomics.exchange(o(),Sc>>2,0),-73;if(ye=Atomics.exchange(o(),Sc>>2,0),ye==0)break;if(vb(),Atomics.load(o(),I>>2)!=R)return-6;ye=Atomics.exchange(o(),Sc>>2,I)}return 0}else{var K=Atomics.wait(o(),I>>2,R,B);if(K==="timed-out")return-73;if(K==="not-equal")return-6;if(K==="ok")return 0;throw"Atomics.wait returned an unexpected value "+K}}function Oy(I,R,B){n().copyWithin(I,R,R+B)}function Py(){return x?require("os").cpus().length:navigator.hardwareConcurrency}function qa(I,R){for(var B=arguments.length-2,K=um(),be=B,he=Nc(be*8),ye=he>>3,Te=0;Te<B;Te++){var kt=arguments[2+Te];a()[ye+Te]=kt}var wr=dI(I,be,he,R);return Ic(K),wr}var rm=[],nm=[];function My(I,R){nm.length=0;var B;for(R>>=2;B=n()[I++];){var K=B<105;K&&R&1&&R++,nm.push(K?a()[R++>>1]:o()[R]),++R}return nm}function Ly(I,R,B){rm.length=R;for(var K=B>>3,be=0;be<R;be++)rm[be]=a()[K+be];var he=I<0,ye=he?vh[-I-1]:ab[I];return ye.apply(null,rm)}function zy(){return n().length}function By(I){try{return J.grow(I-je.byteLength+65535>>>16),nr(J.buffer),1}catch(R){}}function Vy(I){var R=zy();if(I<=R)return!1;var B=2147483648;if(I>B)return!1;for(var K=1;K<=4;K*=2){var be=R*(1+.2/K);be=Math.min(be,I+100663296);var he=Math.min(B,Et(Math.max(I,be),65536)),ye=By(he);if(ye)return!0}return!1}var Ye={inEventHandler:0,removeAllEventListeners:function(){for(var I=Ye.eventHandlers.length-1;I>=0;--I)Ye._removeHandler(I);Ye.eventHandlers=[],Ye.deferredCalls=[]},registerRemoveEventListeners:function(){Ye.removeEventListenersRegistered||(Dl.push(Ye.removeAllEventListeners),Ye.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(I,R,B){function K(ye,Te){if(ye.length!=Te.length)return!1;for(var kt in ye)if(ye[kt]!=Te[kt])return!1;return!0}for(var be in Ye.deferredCalls){var he=Ye.deferredCalls[be];if(he.targetFunction==I&&K(he.argsList,B))return}Ye.deferredCalls.push({targetFunction:I,precedence:R,argsList:B}),Ye.deferredCalls.sort(function(ye,Te){return ye.precedence<Te.precedence})},removeDeferredCalls:function(I){for(var R=0;R<Ye.deferredCalls.length;++R)Ye.deferredCalls[R].targetFunction==I&&(Ye.deferredCalls.splice(R,1),--R)},canPerformEventHandlerRequests:function(){return Ye.inEventHandler&&Ye.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Ye.canPerformEventHandlerRequests())for(var I=0;I<Ye.deferredCalls.length;++I){var R=Ye.deferredCalls[I];Ye.deferredCalls.splice(I,1),--I,R.targetFunction.apply(null,R.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(I,R){for(var B=0;B<Ye.eventHandlers.length;++B)Ye.eventHandlers[B].target==I&&(!R||R==Ye.eventHandlers[B].eventTypeString)&&Ye._removeHandler(B--)},_removeHandler:function(I){var R=Ye.eventHandlers[I];R.target.removeEventListener(R.eventTypeString,R.eventListenerFunc,R.useCapture),Ye.eventHandlers.splice(I,1)},registerOrRemoveHandler:function(I){var R=function(be){++Ye.inEventHandler,Ye.currentEventHandler=I,Ye.runDeferredCalls(),I.handlerFunc(be),Ye.runDeferredCalls(),--Ye.inEventHandler};if(I.callbackfunc)I.eventListenerFunc=R,I.target.addEventListener(I.eventTypeString,R,I.useCapture),Ye.eventHandlers.push(I),Ye.registerRemoveEventListeners();else for(var B=0;B<Ye.eventHandlers.length;++B)Ye.eventHandlers[B].target==I.target&&Ye.eventHandlers[B].eventTypeString==I.eventTypeString&&Ye._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(I,R,B,K,be){var he=um(),ye=Nc(12);o()[ye>>2]=B,o()[ye+4>>2]=K,o()[ye+8>>2]=be,Cb(0,I,637534208,R,K,ye),Ic(he)},getTargetThreadForEventCallback:function(I){switch(I){case 1:return 0;case 2:return Ee.currentProxiedOperationCallerThread;default:return I}},getNodeNameForTarget:function(I){return I?I==window?"#window":I==screen?"#screen":I&&I.nodeName?I.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Gy(I){var R=it(I)+1,B=Fl(R);return qe(I,B,R),B}function Wy(I,R,B,K){var be=um(),he=Nc(12),ye=0;R&&(ye=Gy(R)),o()[he>>2]=ye,o()[he+4>>2]=B,o()[he+8>>2]=K,Cb(0,I,657457152,0,ye,he),Ic(be)}function jy(I,R,B,K){R=R?Ne(R):"",Wy(I,R,B,K)}function Uy(I){return I>2?Ne(I):I}var Hy=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function qy(I){I=Uy(I);var R=Hy[I]||(typeof document!="undefined"?document.querySelector(I):void 0);return R}function om(I){return qy(I)}function Ch(I,R,B){var K=om(I);if(!K)return-4;if(K.canvasSharedPtr&&(o()[K.canvasSharedPtr>>2]=R,o()[K.canvasSharedPtr+4>>2]=B),K.offscreenCanvas||!K.controlTransferredOffscreen){K.offscreenCanvas&&(K=K.offscreenCanvas);var be=!1;if(K.GLctxObject&&K.GLctxObject.GLctx){var he=K.GLctxObject.GLctx.getParameter(2978);be=he[0]===0&&he[1]===0&&he[2]===K.width&&he[3]===K.height}K.width=R,K.height=B,be&&K.GLctxObject.GLctx.viewport(0,0,R,B)}else if(K.canvasSharedPtr){var ye=o()[K.canvasSharedPtr+8>>2];return jy(ye,I,R,B),1}else return-4;return 0}function Ih(I,R,B){return b?qa(2,1,I,R,B):Ch(I,R,B)}function Ky(I,R,B){var K=om(I);return K?Ch(I,R,B):Ih(I,R,B)}function Xy(I){}function Yy(I,R){}function Zy(I){var R=I.getExtension("ANGLE_instanced_arrays");if(R)return I.vertexAttribDivisor=function(B,K){R.vertexAttribDivisorANGLE(B,K)},I.drawArraysInstanced=function(B,K,be,he){R.drawArraysInstancedANGLE(B,K,be,he)},I.drawElementsInstanced=function(B,K,be,he,ye){R.drawElementsInstancedANGLE(B,K,be,he,ye)},1}function Jy(I){var R=I.getExtension("OES_vertex_array_object");if(R)return I.createVertexArray=function(){return R.createVertexArrayOES()},I.deleteVertexArray=function(B){R.deleteVertexArrayOES(B)},I.bindVertexArray=function(B){R.bindVertexArrayOES(B)},I.isVertexArray=function(B){return R.isVertexArrayOES(B)},1}function Qy(I){var R=I.getExtension("WEBGL_draw_buffers");if(R)return I.drawBuffers=function(B,K){R.drawBuffersWEBGL(B,K)},1}function eb(I){return!!(I.multiDrawWebgl=I.getExtension("WEBGL_multi_draw"))}var ft={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(R){ft.lastError||(ft.lastError=R)},getNewId:function(I){for(var R=ft.counter++,B=I.length;B<R;B++)I[B]=null;return R},getSource:function(I,R,B,K){for(var be="",he=0;he<R;++he){var ye=K?o()[K+he*4>>2]:-1;be+=Ne(o()[B+he*4>>2],ye<0?void 0:ye)}return be},createContext:function(I,R){var B=I.getContext("webgl",R);if(!B)return 0;var K=ft.registerContext(B,R);return K},registerContext:function(I,R){var B=Fl(8);o()[B+4>>2]=Cc();var K={handle:B,attributes:R,version:R.majorVersion,GLctx:I};return I.canvas&&(I.canvas.GLctxObject=K),ft.contexts[B]=K,(typeof R.enableExtensionsByDefault=="undefined"||R.enableExtensionsByDefault)&&ft.initExtensions(K),B},makeContextCurrent:function(I){return ft.currentContext=ft.contexts[I],i.ctx=Ka=ft.currentContext&&ft.currentContext.GLctx,!(I&&!Ka)},getContext:function(I){return ft.contexts[I]},deleteContext:function(I){ft.currentContext===ft.contexts[I]&&(ft.currentContext=null),typeof Ye=="object"&&Ye.removeAllHandlersOnTarget(ft.contexts[I].GLctx.canvas),ft.contexts[I]&&ft.contexts[I].GLctx.canvas&&(ft.contexts[I].GLctx.canvas.GLctxObject=void 0),lm(ft.contexts[I].handle),ft.contexts[I]=null},initExtensions:function(I){if(I||(I=ft.currentContext),!I.initExtensionsDone){I.initExtensionsDone=!0;var R=I.GLctx;Zy(R),Jy(R),Qy(R),R.disjointTimerQueryExt=R.getExtension("EXT_disjoint_timer_query"),eb(R);var B=R.getSupportedExtensions()||[];B.forEach(function(K){K.indexOf("lose_context")<0&&K.indexOf("debug")<0&&R.getExtension(K)})}},populateUniformTable:function(I){for(var R=ft.programs[I],B=ft.programInfos[I]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},K=B.uniforms,be=Ka.getProgramParameter(R,35718),he=0;he<be;++he){var ye=Ka.getActiveUniform(R,he),Te=ye.name;B.maxUniformLength=Math.max(B.maxUniformLength,Te.length+1),Te.slice(-1)=="]"&&(Te=Te.slice(0,Te.lastIndexOf("[")));var kt=Ka.getUniformLocation(R,Te);if(kt){var wr=ft.getNewId(ft.uniforms);K[Te]=[ye.size,wr],ft.uniforms[wr]=kt;for(var fr=1;fr<ye.size;++fr){var Ya=Te+"["+fr+"]";kt=Ka.getUniformLocation(R,Ya),wr=ft.getNewId(ft.uniforms),ft.uniforms[wr]=kt}}}}},tb=["default","low-power","high-performance"];function rb(I,R){var B=R>>2,K=o()[B+(24>>2)],be={alpha:!!o()[B+(0>>2)],depth:!!o()[B+(4>>2)],stencil:!!o()[B+(8>>2)],antialias:!!o()[B+(12>>2)],premultipliedAlpha:!!o()[B+(16>>2)],preserveDrawingBuffer:!!o()[B+(20>>2)],powerPreference:tb[K],failIfMajorPerformanceCaveat:!!o()[B+(28>>2)],majorVersion:o()[B+(32>>2)],minorVersion:o()[B+(36>>2)],enableExtensionsByDefault:o()[B+(40>>2)],explicitSwapControl:o()[B+(44>>2)],proxyContextToMainThread:o()[B+(48>>2)],renderViaOffscreenBackBuffer:o()[B+(52>>2)]},he=om(I);if(!he||be.explicitSwapControl)return 0;var ye=ft.createContext(he,be);return ye}function nb(I,R){return rb(I,R)}var _c={mappings:{},buffers:[null,[],[]],printChar:function(I,R){var B=_c.buffers[I];R===0||R===10?((I===1?U:H)(De(B,0)),B.length=0):B.push(R)},varargs:void 0,get:function(){_c.varargs+=4;var I=o()[_c.varargs-4>>2];return I},getStr:function(I){var R=Ne(I);return R},get64:function(I,R){return I}};function Nh(I){return b?qa(3,1,I):0}function Sh(I,R,B,K,be){if(b)return qa(4,1,I,R,B,K,be)}function Th(I,R,B,K){if(b)return qa(5,1,I,R,B,K);for(var be=0,he=0;he<B;he++){for(var ye=o()[R+he*8>>2],Te=o()[R+(he*8+4)>>2],kt=0;kt<Te;kt++)_c.printChar(I,n()[ye+kt]);be+=Te}return o()[K>>2]=be,0}function ob(I){var R=Ee.threadExitHandlers.pop();I&&R()}function sb(I,R){Ee.threadExitHandlers.push(function(){Gr.get(I)(R)})}function Ah(I){if(b)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var R=Ee.getNewWorker();if(R.pthread!==void 0)throw"Internal error!";if(!I.pthread_ptr)throw"Internal error, no pthread ptr!";Ee.runningWorkers.push(R);for(var B=Fl(128*4),K=0;K<128;++K)o()[B+K*4>>2]=0;var be=I.stackBase+I.stackSize,he=Ee.pthreads[I.pthread_ptr]={worker:R,stackBase:I.stackBase,stackSize:I.stackSize,allocatedOwnStack:I.allocatedOwnStack,threadInfoStruct:I.pthread_ptr},ye=he.threadInfoStruct>>2;Atomics.store(s(),ye+(64>>2),I.detached),Atomics.store(s(),ye+(100>>2),B),Atomics.store(s(),ye+(40>>2),he.threadInfoStruct),Atomics.store(s(),ye+(80>>2),I.stackSize),Atomics.store(s(),ye+(76>>2),be),Atomics.store(s(),ye+(104>>2),I.stackSize),Atomics.store(s(),ye+(104+8>>2),be),Atomics.store(s(),ye+(104+12>>2),I.detached);var Te=uI(),kt=Te+40;Atomics.store(s(),ye+(172>>2),kt),R.pthread=he;var wr={cmd:"run",start_routine:I.startRoutine,arg:I.arg,threadInfoStruct:I.pthread_ptr,stackBase:I.stackBase,stackSize:I.stackSize};R.runPthread=function(){wr.time=performance.now(),R.postMessage(wr,I.transferList)},R.loaded&&(R.runPthread(),delete R.runPthread)}function ib(I,R,B,K){if(typeof SharedArrayBuffer=="undefined")return H("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!I)return H("pthread_create called with a null thread pointer!"),28;var be=[],he=0;if(b&&(be.length===0||he))return fI(687865856,I,R,B,K);if(he)return he;var ye=0,Te=0,kt=0;R&&R!=-1?(ye=o()[R>>2],ye+=81920,Te=o()[R+8>>2],kt=o()[R+12>>2]!==0):ye=2097152;var wr=Te==0;wr?Te=gI(16,ye):(Te-=ye,fe(Te>0));for(var fr=Fl(228),Ya=0;Ya<228>>2;++Ya)s()[(fr>>2)+Ya]=0;o()[I>>2]=fr,o()[fr+12>>2]=fr;var Tc=fr+152;o()[Tc>>2]=Tc;var Wr={stackBase:Te,stackSize:ye,allocatedOwnStack:wr,detached:kt,startRoutine:B,pthread_ptr:fr,arg:K,transferList:be};return b?(Wr.cmd="spawnThread",postMessage(Wr,be)):Ah(Wr),0}function Eh(I){if(b)return qa(6,1,I);switch(I){case 30:return 16384;case 85:var R=2147483648;return R/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Ty(28),-1}b||Ee.initMainThreadBlock();var Ka,ab=[null,Ay,Ih,Nh,Sh,Th,Eh],lb={e:Ny,r:Sy,x:Ey,b:Dy,y:$y,j:Ry,c:Fy,d:kc,f:Rl,p:Oy,z:Py,u:Ly,q:Vy,v:Ky,i:Xy,t:Yy,w:nb,m:Nh,n:Sh,g:Th,o:by,a:J||i.wasmMemory,k:ob,l:sb,h:ib,s:Eh},aI=yy(),Dh=i.___wasm_call_ctors=function(){return(Dh=i.___wasm_call_ctors=i.asm.A).apply(null,arguments)},ub=i._init=function(){return(ub=i._init=i.asm.B).apply(null,arguments)},cb=i._register_tensor=function(){return(cb=i._register_tensor=i.asm.C).apply(null,arguments)},pb=i._dispose_data=function(){return(pb=i._dispose_data=i.asm.D).apply(null,arguments)},mb=i._dispose=function(){return(mb=i._dispose=i.asm.E).apply(null,arguments)},fb=i._Abs=function(){return(fb=i._Abs=i.asm.G).apply(null,arguments)},db=i._Add=function(){return(db=i._Add=i.asm.H).apply(null,arguments)},hb=i._AddN=function(){return(hb=i._AddN=i.asm.I).apply(null,arguments)},gb=i._ArgMax=function(){return(gb=i._ArgMax=i.asm.J).apply(null,arguments)},xb=i._AvgPool=function(){return(xb=i._AvgPool=i.asm.K).apply(null,arguments)},yb=i._BatchMatMul=function(){return(yb=i._BatchMatMul=i.asm.L).apply(null,arguments)},bb=i._Ceil=function(){return(bb=i._Ceil=i.asm.M).apply(null,arguments)},wb=i._ClipByValue=function(){return(wb=i._ClipByValue=i.asm.N).apply(null,arguments)},kb=i._Conv2D=function(){return(kb=i._Conv2D=i.asm.O).apply(null,arguments)},$h=i._Conv2DBackpropInput=function(){return($h=i._Conv2DBackpropInput=i.asm.P).apply(null,arguments)},Rh=i._Cos=function(){return(Rh=i._Cos=i.asm.Q).apply(null,arguments)},sm=i._CropAndResize=function(){return(sm=i._CropAndResize=i.asm.R).apply(null,arguments)},vc=i._Cumsum=function(){return(vc=i._Cumsum=i.asm.S).apply(null,arguments)},_b=i._DepthToSpace=function(){return(_b=i._DepthToSpace=i.asm.T).apply(null,arguments)},im=i._DepthwiseConv2dNative=function(){return(im=i._DepthwiseConv2dNative=i.asm.U).apply(null,arguments)},Z=i._Equal=function(){return(Z=i._Equal=i.asm.V).apply(null,arguments)},se=i._Exp=function(){return(se=i._Exp=i.asm.W).apply(null,arguments)},_e=i._FlipLeftRight=function(){return(_e=i._FlipLeftRight=i.asm.X).apply(null,arguments)},at=i._Floor=function(){return(at=i._Floor=i.asm.Y).apply(null,arguments)},Yt=i._FloorDiv=function(){return(Yt=i._FloorDiv=i.asm.Z).apply(null,arguments)},Bt=i._FusedBatchNorm=function(){return(Bt=i._FusedBatchNorm=i.asm._).apply(null,arguments)},tt=i._FusedConv2D=function(){return(tt=i._FusedConv2D=i.asm.$).apply(null,arguments)},rt=i._FusedDepthwiseConv2D=function(){return(rt=i._FusedDepthwiseConv2D=i.asm.aa).apply(null,arguments)},vr=i._Gather=function(){return(vr=i._Gather=i.asm.ba).apply(null,arguments)},Ji=i._GatherNd=function(){return(Ji=i._GatherNd=i.asm.ca).apply(null,arguments)},Qi=i._Greater=function(){return(Qi=i._Greater=i.asm.da).apply(null,arguments)},Fh=i._GreaterEqual=function(){return(Fh=i._GreaterEqual=i.asm.ea).apply(null,arguments)},am=i._LeakyRelu=function(){return(am=i._LeakyRelu=i.asm.fa).apply(null,arguments)},bn=i._Less=function(){return(bn=i._Less=i.asm.ga).apply(null,arguments)},Xa=i._LessEqual=function(){return(Xa=i._LessEqual=i.asm.ha).apply(null,arguments)},Oh=i._Log=function(){return(Oh=i._Log=i.asm.ia).apply(null,arguments)},O3=i._LogicalAnd=function(){return(O3=i._LogicalAnd=i.asm.ja).apply(null,arguments)},P3=i._Max=function(){return(P3=i._Max=i.asm.ka).apply(null,arguments)},M3=i._MaxPool=function(){return(M3=i._MaxPool=i.asm.la).apply(null,arguments)},L3=i._Maximum=function(){return(L3=i._Maximum=i.asm.ma).apply(null,arguments)},z3=i._Mean=function(){return(z3=i._Mean=i.asm.na).apply(null,arguments)},B3=i._Min=function(){return(B3=i._Min=i.asm.oa).apply(null,arguments)},V3=i._Minimum=function(){return(V3=i._Minimum=i.asm.pa).apply(null,arguments)},G3=i._Multiply=function(){return(G3=i._Multiply=i.asm.qa).apply(null,arguments)},W3=i._Neg=function(){return(W3=i._Neg=i.asm.ra).apply(null,arguments)},j3=i._NonMaxSuppressionV3=function(){return(j3=i._NonMaxSuppressionV3=i.asm.sa).apply(null,arguments)},U3=i._NonMaxSuppressionV4=function(){return(U3=i._NonMaxSuppressionV4=i.asm.ta).apply(null,arguments)},H3=i._NonMaxSuppressionV5=function(){return(H3=i._NonMaxSuppressionV5=i.asm.ua).apply(null,arguments)},q3=i._NotEqual=function(){return(q3=i._NotEqual=i.asm.va).apply(null,arguments)},K3=i._OneHot=function(){return(K3=i._OneHot=i.asm.wa).apply(null,arguments)},X3=i._PadV2=function(){return(X3=i._PadV2=i.asm.xa).apply(null,arguments)},Y3=i._Pow=function(){return(Y3=i._Pow=i.asm.ya).apply(null,arguments)},Z3=i._Prelu=function(){return(Z3=i._Prelu=i.asm.za).apply(null,arguments)},J3=i._Prod=function(){return(J3=i._Prod=i.asm.Aa).apply(null,arguments)},Q3=i._RealDiv=function(){return(Q3=i._RealDiv=i.asm.Ba).apply(null,arguments)},eB=i._Relu=function(){return(eB=i._Relu=i.asm.Ca).apply(null,arguments)},tB=i._Relu6=function(){return(tB=i._Relu6=i.asm.Da).apply(null,arguments)},rB=i._ResizeBilinear=function(){return(rB=i._ResizeBilinear=i.asm.Ea).apply(null,arguments)},nB=i._Reverse=function(){return(nB=i._Reverse=i.asm.Fa).apply(null,arguments)},oB=i._RotateWithOffset=function(){return(oB=i._RotateWithOffset=i.asm.Ga).apply(null,arguments)},sB=i._Round=function(){return(sB=i._Round=i.asm.Ha).apply(null,arguments)},iB=i._Rsqrt=function(){return(iB=i._Rsqrt=i.asm.Ia).apply(null,arguments)},aB=i._ScatterNd=function(){return(aB=i._ScatterNd=i.asm.Ja).apply(null,arguments)},lB=i._SelectV2=function(){return(lB=i._SelectV2=i.asm.Ka).apply(null,arguments)},uB=i._Sigmoid=function(){return(uB=i._Sigmoid=i.asm.La).apply(null,arguments)},cB=i._Sin=function(){return(cB=i._Sin=i.asm.Ma).apply(null,arguments)},pB=i._Softmax=function(){return(pB=i._Softmax=i.asm.Na).apply(null,arguments)},mB=i._Sqrt=function(){return(mB=i._Sqrt=i.asm.Oa).apply(null,arguments)},fB=i._Square=function(){return(fB=i._Square=i.asm.Pa).apply(null,arguments)},dB=i._SquaredDifference=function(){return(dB=i._SquaredDifference=i.asm.Qa).apply(null,arguments)},hB=i._Step=function(){return(hB=i._Step=i.asm.Ra).apply(null,arguments)},gB=i._StridedSlice=function(){return(gB=i._StridedSlice=i.asm.Sa).apply(null,arguments)},xB=i._Sub=function(){return(xB=i._Sub=i.asm.Ta).apply(null,arguments)},yB=i._Sum=function(){return(yB=i._Sum=i.asm.Ua).apply(null,arguments)},bB=i._Tanh=function(){return(bB=i._Tanh=i.asm.Va).apply(null,arguments)},wB=i._Tile=function(){return(wB=i._Tile=i.asm.Wa).apply(null,arguments)},kB=i._TopK=function(){return(kB=i._TopK=i.asm.Xa).apply(null,arguments)},_B=i._Transpose=function(){return(_B=i._Transpose=i.asm.Ya).apply(null,arguments)},vB=i.__FusedMatMul=function(){return(vB=i.__FusedMatMul=i.asm.Za).apply(null,arguments)},Fl=i._malloc=function(){return(Fl=i._malloc=i.asm._a).apply(null,arguments)},lm=i._free=function(){return(lm=i._free=i.asm.$a).apply(null,arguments)},lI=i.___errno_location=function(){return(lI=i.___errno_location=i.asm.ab).apply(null,arguments)},uI=i._emscripten_get_global_libc=function(){return(uI=i._emscripten_get_global_libc=i.asm.bb).apply(null,arguments)},Cc=i._pthread_self=function(){return(Cc=i._pthread_self=i.asm.cb).apply(null,arguments)},cI=i.___pthread_tsd_run_dtors=function(){return(cI=i.___pthread_tsd_run_dtors=i.asm.db).apply(null,arguments)},vb=i._emscripten_main_thread_process_queued_calls=function(){return(vb=i._emscripten_main_thread_process_queued_calls=i.asm.eb).apply(null,arguments)},CB=i._emscripten_current_thread_process_queued_calls=function(){return(CB=i._emscripten_current_thread_process_queued_calls=i.asm.fb).apply(null,arguments)},pI=i._emscripten_register_main_browser_thread_id=function(){return(pI=i._emscripten_register_main_browser_thread_id=i.asm.gb).apply(null,arguments)},mI=i.__emscripten_do_dispatch_to_thread=function(){return(mI=i.__emscripten_do_dispatch_to_thread=i.asm.hb).apply(null,arguments)},fI=i._emscripten_sync_run_in_main_thread_4=function(){return(fI=i._emscripten_sync_run_in_main_thread_4=i.asm.ib).apply(null,arguments)},dI=i._emscripten_run_in_main_runtime_thread_js=function(){return(dI=i._emscripten_run_in_main_runtime_thread_js=i.asm.jb).apply(null,arguments)},Cb=i.__emscripten_call_on_thread=function(){return(Cb=i.__emscripten_call_on_thread=i.asm.kb).apply(null,arguments)},IB=i._emscripten_tls_init=function(){return(IB=i._emscripten_tls_init=i.asm.lb).apply(null,arguments)},Ph=i.__emscripten_thread_init=function(){return(Ph=i.__emscripten_thread_init=i.asm.mb).apply(null,arguments)},um=i.stackSave=function(){return(um=i.stackSave=i.asm.nb).apply(null,arguments)},Ic=i.stackRestore=function(){return(Ic=i.stackRestore=i.asm.ob).apply(null,arguments)},Nc=i.stackAlloc=function(){return(Nc=i.stackAlloc=i.asm.pb).apply(null,arguments)},hI=i._emscripten_stack_set_limits=function(){return(hI=i._emscripten_stack_set_limits=i.asm.qb).apply(null,arguments)},gI=i._memalign=function(){return(gI=i._memalign=i.asm.rb).apply(null,arguments)},xI=i.__emscripten_allow_main_runtime_queued_calls=9880,Sc=i.__emscripten_main_thread_futex=11368;i.cwrap=we,i.PThread=Ee,i.PThread=Ee,i.wasmMemory=J,i.ExitStatus=cm;var Mh;function cm(I){this.name="ExitStatus",this.message="Program terminated with exit("+I+")",this.status=I}$l=function I(){Mh||Ib(),Mh||($l=I)};function Ib(I){if(I=I||m,Yi>0)return;if(b){l(i),postMessage({cmd:"loaded"});return}if(tm(),Yi>0)return;function R(){Mh||(Mh=!0,i.calledRun=!0,!ue&&(yc(),my(),l(i),i.onRuntimeInitialized&&i.onRuntimeInitialized(),nn()))}i.setStatus?(i.setStatus("Running..."),setTimeout(function(){setTimeout(function(){i.setStatus("")},1),R()},1)):R()}i.run=Ib;function NB(I,R){if(!(R&&re&&I===0)){if(!R&&b)throw postMessage({cmd:"exitProcess",returnCode:I}),new cm(I);re||(Ee.terminateAllThreads(),ae=I,xh(),i.onExit&&i.onExit(I),ue=!0),d(I,new cm(I))}}if(i.preInit)for(typeof i.preInit=="function"&&(i.preInit=[i.preInit]);i.preInit.length>0;)i.preInit.pop()();return b&&(re=!1,Ee.initWorker()),Ib(),e.ready}}();typeof nx=="object"&&typeof pC=="object"?pC.exports=mC:typeof define=="function"&&define.amd?define([],function(){return mC}):typeof nx=="object"&&(nx.WasmBackendModuleThreadedSimd=mC)});var KO=dt((ox,fC)=>{var dC=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};var t=typeof e!="undefined"?e:{},n,o;t.ready=new Promise(function(Z,se){n=Z,o=se});var s={},a;for(a in t)t.hasOwnProperty(a)&&(s[a]=t[a]);var i=[],l="./this.program",u=function(Z,se){throw se},c=!1,p=!1,m=!1,f=!1;c=typeof window=="object",p=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",f=!c&&!m&&!p;var d="";function h(Z){return t.locateFile?t.locateFile(Z,d):d+Z}var g,x,w,b,k,_;m?(p?d=Ip().dirname(d)+"/":d=__dirname+"/",g=function(se,_e){return k||(k=require("fs")),_||(_=Ip()),se=_.normalize(se),k.readFileSync(se,_e?null:"utf8")},w=function(se){var _e=g(se,!0);return _e.buffer||(_e=new Uint8Array(_e)),U(_e.buffer),_e},process.argv.length>1&&(l=process.argv[1].replace(/\\/g,"/")),i=process.argv.slice(2),process.on("uncaughtException",function(Z){if(!(Z instanceof _b))throw Z}),process.on("unhandledRejection",os),u=function(Z){process.exit(Z)},t.inspect=function(){return"[Emscripten Module object]"}):f?(typeof read!="undefined"&&(g=function(se){return read(se)}),w=function(se){var _e;return typeof readbuffer=="function"?new Uint8Array(readbuffer(se)):(_e=read(se,"binary"),U(typeof _e=="object"),_e)},typeof scriptArgs!="undefined"?i=scriptArgs:typeof arguments!="undefined"&&(i=arguments),typeof quit=="function"&&(u=function(Z){quit(Z)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(c||p)&&(p?d=self.location.href:typeof document!="undefined"&&document.currentScript&&(d=document.currentScript.src),r&&(d=r),d.indexOf("blob:")!==0?d=d.substr(0,d.lastIndexOf("/")+1):d="",g=function(Z){var se=new XMLHttpRequest;return se.open("GET",Z,!1),se.send(null),se.responseText},p&&(w=function(Z){var se=new XMLHttpRequest;return se.open("GET",Z,!1),se.responseType="arraybuffer",se.send(null),new Uint8Array(se.response)}),x=function(Z,se,_e){var at=new XMLHttpRequest;at.open("GET",Z,!0),at.responseType="arraybuffer",at.onload=function(){if(at.status==200||at.status==0&&at.response){se(at.response);return}_e()},at.onerror=_e,at.send(null)},b=function(Z){document.title=Z});var A=t.print||console.log.bind(console),N=t.printErr||console.warn.bind(console);for(a in s)s.hasOwnProperty(a)&&(t[a]=s[a]);s=null,t.arguments&&(i=t.arguments),t.thisProgram&&(l=t.thisProgram),t.quit&&(u=t.quit);var $;t.wasmBinary&&($=t.wasmBinary);var F=t.noExitRuntime||!0;typeof WebAssembly!="object"&&os("no native wasm support detected");var M,V=!1,W;function U(Z,se){Z||os("Assertion failed: "+se)}function H(Z){var se=t["_"+Z];return U(se,"Cannot call unknown function "+Z+", make sure it is exported"),se}function q(Z,se,_e,at,Yt){var Bt={string:function(bn){var Xa=0;if(bn!=null&&bn!==0){var Oh=(bn.length<<2)+1;Xa=sm(Oh),ie(bn,Xa,Oh)}return Xa},array:function(bn){var Xa=sm(bn.length);return ue(bn,Xa),Xa}};function tt(bn){return se==="string"?re(bn):se==="boolean"?Boolean(bn):bn}var rt=H(Z),vr=[],Ji=0;if(at)for(var Qi=0;Qi<at.length;Qi++){var Fh=Bt[_e[Qi]];Fh?(Ji===0&&(Ji=$h()),vr[Qi]=Fh(at[Qi])):vr[Qi]=at[Qi]}var am=rt.apply(null,vr);return am=tt(am),Ji!==0&&Rh(Ji),am}function X(Z,se,_e,at){_e=_e||[];var Yt=_e.every(function(tt){return tt==="number"}),Bt=se!=="string";return Bt&&Yt&&!at?H(Z):function(){return q(Z,se,_e,arguments,at)}}var ne=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Y(Z,se,_e){for(var at=se+_e,Yt=se;Z[Yt]&&!(Yt>=at);)++Yt;if(Yt-se>16&&Z.subarray&&ne)return ne.decode(Z.subarray(se,Yt));for(var Bt="";se<Yt;){var tt=Z[se++];if(!(tt&128)){Bt+=String.fromCharCode(tt);continue}var rt=Z[se++]&63;if((tt&224)==192){Bt+=String.fromCharCode((tt&31)<<6|rt);continue}var vr=Z[se++]&63;if((tt&240)==224?tt=(tt&15)<<12|rt<<6|vr:tt=(tt&7)<<18|rt<<12|vr<<6|Z[se++]&63,tt<65536)Bt+=String.fromCharCode(tt);else{var Ji=tt-65536;Bt+=String.fromCharCode(55296|Ji>>10,56320|Ji&1023)}}return Bt}function re(Z,se){return Z?Y(xe,Z,se):""}function J(Z,se,_e,at){if(!(at>0))return 0;for(var Yt=_e,Bt=_e+at-1,tt=0;tt<Z.length;++tt){var rt=Z.charCodeAt(tt);if(rt>=55296&&rt<=57343){var vr=Z.charCodeAt(++tt);rt=65536+((rt&1023)<<10)|vr&1023}if(rt<=127){if(_e>=Bt)break;se[_e++]=rt}else if(rt<=2047){if(_e+1>=Bt)break;se[_e++]=192|rt>>6,se[_e++]=128|rt&63}else if(rt<=65535){if(_e+2>=Bt)break;se[_e++]=224|rt>>12,se[_e++]=128|rt>>6&63,se[_e++]=128|rt&63}else{if(_e+3>=Bt)break;se[_e++]=240|rt>>18,se[_e++]=128|rt>>12&63,se[_e++]=128|rt>>6&63,se[_e++]=128|rt&63}}return se[_e]=0,_e-Yt}function ie(Z,se,_e){return J(Z,xe,se,_e)}function ue(Z,se){de.set(Z,se)}function ae(Z,se){return Z%se>0&&(Z+=se-Z%se),Z}var fe,de,xe,we,De,Ne,ze,qe,it;function At(Z){fe=Z,t.HEAP8=de=new Int8Array(Z),t.HEAP16=we=new Int16Array(Z),t.HEAP32=Ne=new Int32Array(Z),t.HEAPU8=xe=new Uint8Array(Z),t.HEAPU16=De=new Uint16Array(Z),t.HEAPU32=ze=new Uint32Array(Z),t.HEAPF32=qe=new Float32Array(Z),t.HEAPF64=it=new Float64Array(Z)}var Et=t.INITIAL_MEMORY||16777216,je,ut=[],mt=[],Mt=[],xn=[],Xt=!1;mt.push({func:function(){_h()}});function tn(){if(t.preRun)for(typeof t.preRun=="function"&&(t.preRun=[t.preRun]);t.preRun.length;)yn(t.preRun.shift());Ha(ut)}function $r(){Xt=!0,Ha(mt)}function jn(){Ha(Mt)}function nr(){if(t.postRun)for(typeof t.postRun=="function"&&(t.postRun=[t.postRun]);t.postRun.length;)Gr(t.postRun.shift());Ha(xn)}function yn(Z){ut.unshift(Z)}function Gr(Z){xn.unshift(Z)}var br=0,rn=null,En=null;function Dl(Z){br++,t.monitorRunDependencies&&t.monitorRunDependencies(br)}function Ua(Z){if(br--,t.monitorRunDependencies&&t.monitorRunDependencies(br),br==0&&(rn!==null&&(clearInterval(rn),rn=null),En)){var se=En;En=null,se()}}t.preloadedImages={},t.preloadedAudios={};function os(Z){t.onAbort&&t.onAbort(Z),Z+="",N(Z),V=!0,W=1,Z="abort("+Z+"). Build with -s ASSERTIONS=1 for more info.";var se=new WebAssembly.RuntimeError(Z);throw o(se),se}function Xi(Z,se){return String.prototype.startsWith?Z.startsWith(se):Z.indexOf(se)===0}var tm="data:application/octet-stream;base64,";function yc(Z){return Xi(Z,tm)}var my="file://";function xh(Z){return Xi(Z,my)}var nn="tfjs-backend-wasm.wasm";yc(nn)||(nn=h(nn));function yh(Z){try{if(Z==nn&&$)return new Uint8Array($);if(w)return w(Z);throw"both async and sync fetching of the wasm failed"}catch(se){os(se)}}function fy(){if(!$&&(c||p)){if(typeof fetch=="function"&&!xh(nn))return fetch(nn,{credentials:"same-origin"}).then(function(Z){if(!Z.ok)throw"failed to load wasm binary file at '"+nn+"'";return Z.arrayBuffer()}).catch(function(){return yh(nn)});if(x)return new Promise(function(Z,se){x(nn,function(_e){Z(new Uint8Array(_e))},se)})}return Promise.resolve().then(function(){return yh(nn)})}function Yi(){var Z={a:on};function se(tt,rt){var vr=tt.exports;t.asm=vr,M=t.asm.g,At(M.buffer),je=t.asm.m,Ua("wasm-instantiate")}Dl("wasm-instantiate");function _e(tt){se(tt.instance)}function at(tt){return fy().then(function(rt){return WebAssembly.instantiate(rt,Z)}).then(tt,function(rt){N("failed to asynchronously prepare wasm: "+rt),os(rt)})}function Yt(){return!$&&typeof WebAssembly.instantiateStreaming=="function"&&!yc(nn)&&!xh(nn)&&typeof fetch=="function"?fetch(nn,{credentials:"same-origin"}).then(function(tt){var rt=WebAssembly.instantiateStreaming(tt,Z);return rt.then(_e,function(vr){return N("wasm streaming compile failed: "+vr),N("falling back to ArrayBuffer instantiation"),at(_e)})}):at(_e)}if(t.instantiateWasm)try{var Bt=t.instantiateWasm(Z,se);return Bt}catch(tt){return N("Module.instantiateWasm callback failed with error: "+tt),!1}return Yt().catch(o),{}}function Ha(Z){for(;Z.length>0;){var se=Z.shift();if(typeof se=="function"){se(t);continue}var _e=se.func;typeof _e=="number"?se.arg===void 0?je.get(_e)():je.get(_e)(se.arg):_e(se.arg===void 0?null:se.arg)}}function $l(){os()}function dy(Z,se,_e){xe.copyWithin(Z,se,se+_e)}function hy(){return xe.length}function Zi(Z){try{return M.grow(Z-fe.byteLength+65535>>>16),At(M.buffer),1}catch(se){}}function bh(Z){var se=hy(),_e=2147483648;if(Z>_e)return!1;for(var at=1;at<=4;at*=2){var Yt=se*(1+.2/at);Yt=Math.min(Yt,Z+100663296);var Bt=Math.min(_e,ae(Math.max(Z,Yt),65536)),tt=Zi(Bt);if(tt)return!0}return!1}var bc={mappings:{},buffers:[null,[],[]],printChar:function(Z,se){var _e=bc.buffers[Z];se===0||se===10?((Z===1?A:N)(Y(_e,0)),_e.length=0):_e.push(se)},varargs:void 0,get:function(){bc.varargs+=4;var Z=Ne[bc.varargs-4>>2];return Z},getStr:function(Z){var se=re(Z);return se},get64:function(Z,se){return Z}};function wh(Z){return 0}function gy(Z,se,_e,at,Yt){}function kh(Z,se,_e,at){for(var Yt=0,Bt=0;Bt<_e;Bt++){for(var tt=Ne[se+Bt*8>>2],rt=Ne[se+(Bt*8+4)>>2],vr=0;vr<rt;vr++)bc.printChar(Z,xe[tt+vr]);Yt+=rt}return Ne[at>>2]=Yt,0}var on={a:$l,d:dy,e:bh,f:wh,c:gy,b:kh},xy=Yi(),_h=t.___wasm_call_ctors=function(){return(_h=t.___wasm_call_ctors=t.asm.h).apply(null,arguments)},yy=t._init=function(){return(yy=t._init=t.asm.i).apply(null,arguments)},vh=t._register_tensor=function(){return(vh=t._register_tensor=t.asm.j).apply(null,arguments)},by=t._dispose_data=function(){return(by=t._dispose_data=t.asm.k).apply(null,arguments)},wc=t._dispose=function(){return(wc=t._dispose=t.asm.l).apply(null,arguments)},kc=t._Abs=function(){return(kc=t._Abs=t.asm.n).apply(null,arguments)},wy=t._Add=function(){return(wy=t._Add=t.asm.o).apply(null,arguments)},ky=t._AddN=function(){return(ky=t._AddN=t.asm.p).apply(null,arguments)},_y=t._ArgMax=function(){return(_y=t._ArgMax=t.asm.q).apply(null,arguments)},Ee=t._AvgPool=function(){return(Ee=t._AvgPool=t.asm.r).apply(null,arguments)},vy=t._BatchMatMul=function(){return(vy=t._BatchMatMul=t.asm.s).apply(null,arguments)},Cy=t._Ceil=function(){return(Cy=t._Ceil=t.asm.t).apply(null,arguments)},Iy=t._ClipByValue=function(){return(Iy=t._ClipByValue=t.asm.u).apply(null,arguments)},Ny=t._Conv2D=function(){return(Ny=t._Conv2D=t.asm.v).apply(null,arguments)},Sy=t._Conv2DBackpropInput=function(){return(Sy=t._Conv2DBackpropInput=t.asm.w).apply(null,arguments)},Rl=t._Cos=function(){return(Rl=t._Cos=t.asm.x).apply(null,arguments)},Ty=t._CropAndResize=function(){return(Ty=t._CropAndResize=t.asm.y).apply(null,arguments)},Ay=t._Cumsum=function(){return(Ay=t._Cumsum=t.asm.z).apply(null,arguments)},Ey=t._DepthToSpace=function(){return(Ey=t._DepthToSpace=t.asm.A).apply(null,arguments)},Dy=t._DepthwiseConv2dNative=function(){return(Dy=t._DepthwiseConv2dNative=t.asm.B).apply(null,arguments)},$y=t._Equal=function(){return($y=t._Equal=t.asm.C).apply(null,arguments)},Ry=t._Exp=function(){return(Ry=t._Exp=t.asm.D).apply(null,arguments)},Fy=t._FlipLeftRight=function(){return(Fy=t._FlipLeftRight=t.asm.E).apply(null,arguments)},Oy=t._Floor=function(){return(Oy=t._Floor=t.asm.F).apply(null,arguments)},Py=t._FloorDiv=function(){return(Py=t._FloorDiv=t.asm.G).apply(null,arguments)},qa=t._FusedBatchNorm=function(){return(qa=t._FusedBatchNorm=t.asm.H).apply(null,arguments)},rm=t._FusedConv2D=function(){return(rm=t._FusedConv2D=t.asm.I).apply(null,arguments)},nm=t._FusedDepthwiseConv2D=function(){return(nm=t._FusedDepthwiseConv2D=t.asm.J).apply(null,arguments)},My=t._Gather=function(){return(My=t._Gather=t.asm.K).apply(null,arguments)},Ly=t._GatherNd=function(){return(Ly=t._GatherNd=t.asm.L).apply(null,arguments)},zy=t._Greater=function(){return(zy=t._Greater=t.asm.M).apply(null,arguments)},By=t._GreaterEqual=function(){return(By=t._GreaterEqual=t.asm.N).apply(null,arguments)},Vy=t._LeakyRelu=function(){return(Vy=t._LeakyRelu=t.asm.O).apply(null,arguments)},Ye=t._Less=function(){return(Ye=t._Less=t.asm.P).apply(null,arguments)},Gy=t._LessEqual=function(){return(Gy=t._LessEqual=t.asm.Q).apply(null,arguments)},Wy=t._Log=function(){return(Wy=t._Log=t.asm.R).apply(null,arguments)},jy=t._LogicalAnd=function(){return(jy=t._LogicalAnd=t.asm.S).apply(null,arguments)},Uy=t._Max=function(){return(Uy=t._Max=t.asm.T).apply(null,arguments)},Hy=t._MaxPool=function(){return(Hy=t._MaxPool=t.asm.U).apply(null,arguments)},qy=t._Maximum=function(){return(qy=t._Maximum=t.asm.V).apply(null,arguments)},om=t._Mean=function(){return(om=t._Mean=t.asm.W).apply(null,arguments)},Ch=t._Min=function(){return(Ch=t._Min=t.asm.X).apply(null,arguments)},Ih=t._Minimum=function(){return(Ih=t._Minimum=t.asm.Y).apply(null,arguments)},Ky=t._Multiply=function(){return(Ky=t._Multiply=t.asm.Z).apply(null,arguments)},Xy=t._Neg=function(){return(Xy=t._Neg=t.asm._).apply(null,arguments)},Yy=t._NonMaxSuppressionV3=function(){return(Yy=t._NonMaxSuppressionV3=t.asm.$).apply(null,arguments)},Zy=t._NonMaxSuppressionV4=function(){return(Zy=t._NonMaxSuppressionV4=t.asm.aa).apply(null,arguments)},Jy=t._NonMaxSuppressionV5=function(){return(Jy=t._NonMaxSuppressionV5=t.asm.ba).apply(null,arguments)},Qy=t._NotEqual=function(){return(Qy=t._NotEqual=t.asm.ca).apply(null,arguments)},eb=t._OneHot=function(){return(eb=t._OneHot=t.asm.da).apply(null,arguments)},ft=t._PadV2=function(){return(ft=t._PadV2=t.asm.ea).apply(null,arguments)},tb=t._Pow=function(){return(tb=t._Pow=t.asm.fa).apply(null,arguments)},rb=t._Prelu=function(){return(rb=t._Prelu=t.asm.ga).apply(null,arguments)},nb=t._Prod=function(){return(nb=t._Prod=t.asm.ha).apply(null,arguments)},_c=t._RealDiv=function(){return(_c=t._RealDiv=t.asm.ia).apply(null,arguments)},Nh=t._Relu=function(){return(Nh=t._Relu=t.asm.ja).apply(null,arguments)},Sh=t._Relu6=function(){return(Sh=t._Relu6=t.asm.ka).apply(null,arguments)},Th=t._ResizeBilinear=function(){return(Th=t._ResizeBilinear=t.asm.la).apply(null,arguments)},ob=t._Reverse=function(){return(ob=t._Reverse=t.asm.ma).apply(null,arguments)},sb=t._RotateWithOffset=function(){return(sb=t._RotateWithOffset=t.asm.na).apply(null,arguments)},Ah=t._Round=function(){return(Ah=t._Round=t.asm.oa).apply(null,arguments)},ib=t._Rsqrt=function(){return(ib=t._Rsqrt=t.asm.pa).apply(null,arguments)},Eh=t._ScatterNd=function(){return(Eh=t._ScatterNd=t.asm.qa).apply(null,arguments)},Ka=t._SelectV2=function(){return(Ka=t._SelectV2=t.asm.ra).apply(null,arguments)},ab=t._Sigmoid=function(){return(ab=t._Sigmoid=t.asm.sa).apply(null,arguments)},lb=t._Sin=function(){return(lb=t._Sin=t.asm.ta).apply(null,arguments)},aI=t._Softmax=function(){return(aI=t._Softmax=t.asm.ua).apply(null,arguments)},Dh=t._Sqrt=function(){return(Dh=t._Sqrt=t.asm.va).apply(null,arguments)},ub=t._Square=function(){return(ub=t._Square=t.asm.wa).apply(null,arguments)},cb=t._SquaredDifference=function(){return(cb=t._SquaredDifference=t.asm.xa).apply(null,arguments)},pb=t._Step=function(){return(pb=t._Step=t.asm.ya).apply(null,arguments)},mb=t._StridedSlice=function(){return(mb=t._StridedSlice=t.asm.za).apply(null,arguments)},fb=t._Sub=function(){return(fb=t._Sub=t.asm.Aa).apply(null,arguments)},db=t._Sum=function(){return(db=t._Sum=t.asm.Ba).apply(null,arguments)},hb=t._Tanh=function(){return(hb=t._Tanh=t.asm.Ca).apply(null,arguments)},gb=t._Tile=function(){return(gb=t._Tile=t.asm.Da).apply(null,arguments)},xb=t._TopK=function(){return(xb=t._TopK=t.asm.Ea).apply(null,arguments)},yb=t._Transpose=function(){return(yb=t._Transpose=t.asm.Fa).apply(null,arguments)},bb=t.__FusedMatMul=function(){return(bb=t.__FusedMatMul=t.asm.Ga).apply(null,arguments)},wb=t._malloc=function(){return(wb=t._malloc=t.asm.Ha).apply(null,arguments)},kb=t._free=function(){return(kb=t._free=t.asm.Ia).apply(null,arguments)},$h=t.stackSave=function(){return($h=t.stackSave=t.asm.Ja).apply(null,arguments)},Rh=t.stackRestore=function(){return(Rh=t.stackRestore=t.asm.Ka).apply(null,arguments)},sm=t.stackAlloc=function(){return(sm=t.stackAlloc=t.asm.La).apply(null,arguments)};t.cwrap=X;var vc;function _b(Z){this.name="ExitStatus",this.message="Program terminated with exit("+Z+")",this.status=Z}En=function Z(){vc||im(),vc||(En=Z)};function im(Z){if(Z=Z||i,br>0||(tn(),br>0))return;function se(){vc||(vc=!0,t.calledRun=!0,!V&&($r(),jn(),n(t),t.onRuntimeInitialized&&t.onRuntimeInitialized(),nr()))}t.setStatus?(t.setStatus("Running..."),setTimeout(function(){setTimeout(function(){t.setStatus("")},1),se()},1)):se()}if(t.run=im,t.preInit)for(typeof t.preInit=="function"&&(t.preInit=[t.preInit]);t.preInit.length>0;)t.preInit.pop()();return im(),e.ready}}();typeof ox=="object"&&typeof fC=="object"?fC.exports=dC:typeof define=="function"&&define.amd?define([],function(){return dC}):typeof ox=="object"&&(ox.WasmBackendModule=dC)});var Lz=dt((Mz,q0)=>{(function(r,e,t){function n(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function o(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new n(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&o(c,u),p.state=function(){return o(u,{})}),p}function a(){var i=4022871197,l=function(u){u=String(u);for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(Mz,typeof q0=="object"&&q0,typeof define=="function"&&define)});var Bz=dt((zz,K0)=>{(function(r,e,t){function n(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(zz,typeof K0=="object"&&K0,typeof define=="function"&&define)});var Gz=dt((Vz,X0)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function o(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(Vz,typeof X0=="object"&&X0,typeof define=="function"&&define)});var jz=dt((Wz,Y0)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function o(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(Wz,typeof Y0=="object"&&Y0,typeof define=="function"&&define)});var Hz=dt((Uz,Z0)=>{(function(r,e,t){function n(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d<x;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function o(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(Uz,typeof Z0=="object"&&Z0,typeof define=="function"&&define)});var Kz=dt((qz,J0)=>{(function(r,e,t){function n(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function o(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new n(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&o(u,l),c.state=function(){return o(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(qz,typeof J0=="object"&&J0,typeof define=="function"&&define)});var Yz=dt((Xz,oy)=>{(function(r,e,t){var n=256,o=6,s=52,a="random",i=t.pow(n,o),l=t.pow(2,s),u=l*2,c=n-1,p;function m(b,k,_){var A=[];k=k==!0?{entropy:!0}:k||{};var N=g(h(k.entropy?[b,w(e)]:b==null?x():b,3),A),$=new f(A),F=function(){for(var M=$.g(o),V=i,W=0;M<l;)M=(M+W)*n,V*=n,W=$.g(1);for(;M>=u;)M/=2,V/=2,W>>>=1;return(M+W)/V};return F.int32=function(){return $.g(4)|0},F.quick=function(){return $.g(4)/4294967296},F.double=F,g(w($.S),e),(k.pass||_||function(M,V,W,U){return U&&(U.S&&d(U,$),M.state=function(){return d($,{})}),W?(t[a]=M,V):M})(F,N,"global"in k?k.global:this==t,k.state)}function f(b){var k,_=b.length,A=this,N=0,$=A.i=A.j=0,F=A.S=[];for(_||(b=[_++]);N<n;)F[N]=N++;for(N=0;N<n;N++)F[N]=F[$=c&$+b[N%_]+(k=F[N])],F[$]=k;(A.g=function(M){for(var V,W=0,U=A.i,H=A.j,q=A.S;M--;)V=q[U=c&U+1],W=W*n+q[c&(q[U]=q[H=c&H+V])+(q[H]=V)];return A.i=U,A.j=H,W})(n)}function d(b,k){return k.i=b.i,k.j=b.j,k.S=b.S.slice(),k}function h(b,k){var _=[],A=typeof b,N;if(k&&A=="object")for(N in b)try{_.push(h(b[N],k-1))}catch($){}return _.length?_:A=="string"?b:b+"\0"}function g(b,k){for(var _=b+"",A,N=0;N<_.length;)k[c&N]=c&(A^=k[c&N]*19)+_.charCodeAt(N++);return w(k)}function x(){try{var b;return p&&(b=p.randomBytes)?b=b(n):(b=new Uint8Array(n),(r.crypto||r.msCrypto).getRandomValues(b)),w(b)}catch(A){var k=r.navigator,_=k&&k.plugins;return[+new Date,r,_,r.screen,w(e)]}}function w(b){return String.fromCharCode.apply(0,b)}if(g(t.random(),e),typeof oy=="object"&&oy.exports){oy.exports=m;try{p=ag()}catch(b){}}else typeof define=="function"&&define.amd?define(function(){return m}):t["seed"+a]=m})(typeof self!="undefined"?self:Xz,[],Math)});var Q0=dt((bPt,Zz)=>{var Fte=Lz(),Ote=Bz(),Pte=Gz(),Mte=jz(),Lte=Hz(),zte=Kz(),xc=Yz();xc.alea=Fte;xc.xor128=Ote;xc.xorwow=Pte;xc.xorshift7=Mte;xc.xor4096=Lte;xc.tychei=zte;Zz.exports=xc});var I3=dt(()=>{});var bI="3.3.0";var wI="3.3.0";var kI="3.3.0";var _I="3.3.0";var vI="3.3.0";var FB=1e-7,OB=1e-4,Za=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},js=class{refCount(e){return Un("refCount")}incRef(e){return Un("incRef")}timerAvailable(){return!0}time(e){return Un("time")}read(e){return Un("read")}readSync(e){return Un("readSync")}numDataIds(){return Un("numDataIds")}disposeData(e,t){return Un("disposeData")}write(e,t,n){return Un("write")}move(e,t,n,o,s){return Un("move")}memory(){return Un("memory")}floatPrecision(){return Un("floatPrecision")}epsilon(){return this.floatPrecision()===32?FB:OB}dispose(){return Un("dispose")}};function Un(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function CI(r){let e=r.length,t=0,n=0;for(;e>0;)n=Math.random()*e|0,e--,t=r[e],r[e]=r[n],r[n]=t}function PB(r,e){if(r.length!==e.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${r.length}Second array length was ${e.length}`);let t=r.length,n,o,s=0;for(;t>0;)s=Math.random()*t|0,t--,n=r[t],o=e[t],r[t]=r[s],e[t]=e[s],r[s]=n,e[s]=o}function Dc(r,e,t){return Math.max(r,Math.min(e,t))}function MB(r){return r%2==0?r:r+1}function LB(r){let e=0;for(let t=0;t<r.length;t++)e+=r[t];return e}function zB(r,e){let t=Math.random();return e*t+(1-t)*r}function BB(r,e){let t=0;for(let n=0;n<r.length;n++){let o=Number(r[n])-Number(e[n]);t+=o*o}return t}function E(r,e){if(!r)throw new Error(typeof e=="string"?e:e())}function Ct(r,e,t=""){E(jr(r,e),()=>t+` Shapes ${r} and ${e} must match`)}function Dn(r){E(r!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ss(r,e=[],t=!1){if(e==null&&(e=[]),Array.isArray(r)||or(r)&&!t)for(let n=0;n<r.length;++n)ss(r[n],e,t);else e.push(r);return e}function ct(r){if(r.length===0)return 1;let e=r[0];for(let t=1;t<r.length;t++)e*=r[t];return e}function VB(r){return r.length===0}function jr(r,e){if(r===e)return!0;if(r==null||e==null||r.length!==e.length)return!1;for(let t=0;t<r.length;t++)if(r[t]!==e[t])return!1;return!0}function nt(r){return r%1==0}function GB(r){if(Math.tanh!=null)return Math.tanh(r);if(r===Infinity)return 1;if(r===-Infinity)return-1;{let e=Math.exp(2*r);return(e-1)/(e+1)}}function WB(r){let e=Math.ceil(Math.sqrt(r));return[e,Math.ceil(r/e)]}function jB(r){let e=new Uint32Array(r);for(let t=0;t<r;++t)e[t]=t;return CI(e),e}function Ol(r,e){return e<=r.length?r:r+" ".repeat(e-r.length)}function UB(r,e=n=>0,t){return new Promise((n,o)=>{let s=0,a=()=>{if(r()){n();return}s++;let i=e(s);if(t!=null&&s>=t){o();return}setTimeout(a,i)};a()})}function HB(r,e){let t=1,n=-1;for(let s=0;s<r.length;++s)if(r[s]>=0)t*=r[s];else if(r[s]===-1){if(n!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${n} and dim ${s}`);n=s}else if(r[s]<0)throw Error(`Shapes can not be < 0. Found ${r[s]} at dim ${s}`);if(n===-1){if(e>0&&e!==t)throw Error(`Size(${e}) must match the product of shape ${r}`);return r}if(t===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(e%t!=0)throw Error(`The implicit shape can't be a fractional number. Got ${e} / ${t}`);let o=r.slice();return o[n]=e/t,o}function Qt(r,e){let t=e.length;return r=r==null?e.map((n,o)=>o):[].concat(r),E(r.every(n=>n>=-t&&n<t),()=>`All values in axis param must be in range [-${t}, ${t}) but got axis ${r}`),E(r.every(n=>nt(n)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(n=>n<0?t+n:n)}function Nb(r,e){let t=[],n=[],o=e!=null&&Array.isArray(e)&&e.length===0,s=e==null||o?null:Qt(e,r).sort(),a=0;for(let i=0;i<r.length;++i){if(s!=null){if(s[a]===i&&r[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${r[i]}' is not 1`);(s[a]==null||s[a]>i)&&r[i]===1&&(t.push(r[i]),n.push(i)),s[a]<=i&&a++}r[i]!==1&&(t.push(r[i]),n.push(i))}return{newShape:t,keptDims:n}}function Sb(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else throw new Error(`Unknown data type ${r}`);return t}function Tb(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else if(r==="string")t=new Array(e);else throw new Error(`Unknown data type ${r}`);return t}function Ab(r,e){for(let t=0;t<r.length;t++){let n=r[t];if(isNaN(n)||!isFinite(n))throw Error(`A tensor of type ${e} being uploaded contains ${n}.`)}}function Eb(r){return r==="bool"||r==="complex64"||r==="float32"||r==="int32"||r==="string"}function qB(r,e){return!(e==="complex64"||e==="float32"&&r!=="complex64"||e==="int32"&&r!=="float32"&&r!=="complex64"||e==="bool"&&r==="bool")}function or(r){return r instanceof Float32Array||r instanceof Int32Array||r instanceof Uint8Array}function zh(r){if(r==="float32"||r==="int32")return 4;if(r==="complex64")return 8;if(r==="bool")return 1;throw new Error(`Unknown dtype ${r}`)}function Db(r){if(r==null)return 0;let e=0;return r.forEach(t=>e+=t.length),e}function is(r){return typeof r=="string"||r instanceof String}function II(r){return typeof r=="boolean"}function NI(r){return typeof r=="number"}function $c(r){return Array.isArray(r)?$c(r[0]):r instanceof Float32Array?"float32":r instanceof Int32Array||r instanceof Uint8Array?"int32":NI(r)?"float32":is(r)?"string":II(r)?"bool":"float32"}function Us(r){return!!(r&&r.constructor&&r.call&&r.apply)}function Rc(r,e){for(let t=e;t<r;++t)if(r%t==0)return t;return r}function Hs(r){let e=r.length;if(e<2)return[];let t=new Array(e-1);t[e-2]=r[e-1];for(let n=e-3;n>=0;--n)t[n]=t[n+1]*r[n+1];return t}function SI(r,e,t){let n=new Array;if(e.length===1){let o=e[0];for(let s=0;s<o;s++)n[s]=t[r+s]}else{let o=e[0],s=e.slice(1),a=s.reduce((i,l)=>i*l);for(let i=0;i<o;i++)n[i]=SI(r+i*a,s,t)}return n}function Pl(r,e){if(r.length===0)return e[0];let t=r.reduce((n,o)=>n*o);if(t===0)return[];if(t!==e.length)throw new Error(`[${r}] does not match the input size ${e.length}.`);return SI(0,r,e)}function pm(r,e){let t=Fc(r,e);for(let n=0;n<t.length;n++)t[n]=1;return t}function Fc(r,e){if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool")return new Uint8Array(r);throw new Error(`Unknown data type ${e}`)}function KB(r,e){let t=r.reduce((n,o)=>n*o,1);if(e==null||e==="float32")return Pl(r,new Float32Array(t));if(e==="int32")return Pl(r,new Int32Array(t));if(e==="bool")return Pl(r,new Uint8Array(t));throw new Error(`Unknown data type ${e}`)}function mm(r){r.forEach(e=>{E(Number.isInteger(e)&&e>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function XB(r,e,t){if(e===0)return 0;if(e===1)return r[0];let n=r[r.length-1];for(let o=0;o<r.length-1;++o)n+=t[o]*r[o];return n}function YB(r,e,t){if(e===0)return[];if(e===1)return[r];let n=new Array(e);for(let o=0;o<n.length-1;++o)n[o]=Math.floor(r/t[o]),r-=n[o]*t[o];return n[n.length-1]=r,n}function fm(r){return r&&r.then&&typeof r.then=="function"}var TI="tfjsflags",Bh=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let o=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${o}.`),this.set(e,o)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(fm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=ZB(this.global.location.search);TI in e&&e[TI].split(",").forEach(n=>{let[o,s]=n.split(":");this.urlFlags[o]=JB(o,s)})}};function ZB(r){let e={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(t,...n)=>(QB(e,n[0],n[1]),n.join("="))),e}function QB(r,e,t){r[decodeURIComponent(e)]=decodeURIComponent(t||"")}function JB(r,e){if(e=e.toLowerCase(),e==="true"||e==="false")return e==="true";if(`${+e}`===e)return+e;throw new Error(`Could not parse value flag value ${e} for flag ${r}.`)}function j(){return $b}var $b=null;function AI(r){$b=r}var Rb;function Fb(){if(Rb==null){let r;if(typeof window!="undefined")r=window;else if(typeof global!="undefined")r=global;else if(typeof process!="undefined")r=process;else if(typeof self!="undefined")r=self;else throw new Error("Could not find a global object");Rb=r}return Rb}function eV(){let r=Fb();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function dm(r,e){let t=eV();if(t.has(r))return t.get(r);{let n=e();return t.set(r,n),t.get(r)}}var as="Abs",qs="Acos",Ks="Acosh",wn="Add",Hn="AddN",Ml="All",Ll="Any",qn="ArgMax",ea="ArgMin",Xs="Asin",Ys="Asinh",Zs="Atan",Js="Atanh",Qs="Atan2",Kn="AvgPool",zl="AvgPoolGrad",ta="AvgPool3D",Bl="AvgPool3DGrad",Xn="BatchMatMul",ra="BatchToSpaceND",Vl="Bincount",Ob="BroadcastTo",$n="Cast",Yn="Ceil",Rn="ClipByValue",Gl="Complex",na="ComplexAbs",ls="Concat",Zn="Conv2D",Wl="Conv2DBackpropFilter",Jn="Conv2DBackpropInput",oa="Conv3D",jl="Conv3DBackpropFilterV2",Ul="Conv3DBackpropInputV2",Qn="Cos",ei="Cosh",eo="Cumsum",ti="CropAndResize",Hl="DenseBincount",ri="DepthToSpace",to="DepthwiseConv2dNative",ql="DepthwiseConv2dNativeBackpropFilter",Kl="DepthwiseConv2dNativeBackpropInput",Xl="Diag",sa="Dilation2D",Oc="Dilation2DBackpropInput",Pc="Dilation2DBackpropFilter",ro="RealDiv",ni="Elu",Yl="EluGrad",oi="Erf",si="Equal",no="Exp",us="ExpandDims",ii="Expm1",Zl="FFT",ia="Fill",ai="FlipLeftRight",oo="Floor",so="FloorDiv",io="FusedBatchNorm",cs="GatherV2",li="GatherNd",ui="Greater",ao="GreaterEqual",Fn="Identity",Jl="IFFT",Ql="Imag",ci="IsFinite",pi="IsInf",mi="IsNan",lo="LeakyRelu",fi="Less",di="LessEqual",eu="LinSpace",uo="Log",hi="Log1p",gi="LogicalAnd",Ja="LogicalNot",Qa="LogicalOr",Pb="LogSoftmax",aa="LRN",tu="LRNGrad",co="Max",po="Maximum",mo="MaxPool",ru="MaxPoolGrad",la="MaxPool3D",nu="MaxPool3DGrad",ou="MaxPoolWithArgmax",fo="Mean",ho="Min",go="Minimum",ua="MirrorPad",xi="Mod",su="Multinomial",xo="Multiply",ps="Neg",yi="NotEqual",bi="NonMaxSuppressionV3",wi="NonMaxSuppressionV4",ki="NonMaxSuppressionV5",ms="OnesLike",yo="OneHot",fs="Pack",bo="PadV2",tV="Pool",wo="Pow",ko="Prelu",_i="Prod",ca="Range",iu="Real",vi="Reciprocal",_o="Relu",ds="Reshape",pa="ResizeNearestNeighbor",au="ResizeNearestNeighborGrad",vo="ResizeBilinear",lu="ResizeBilinearGrad",Co="Relu6",Io="Reverse",No="Round",So="Rsqrt",Ci="ScatterNd",hs="Select",Ii="Selu",gs="Slice",To="Sin",Ni="Sinh",Si="Sign",Ao="Sigmoid",Ti="Softplus",Eo="Sqrt",Do="Sum",ma="SpaceToBatchND",xs="SplitV",$o="Softmax",Ro="SquaredDifference",fa="Square",Fo="Sub",uu="SparseToDense",Ai="StridedSlice",Ei="Tan",Oo="Tanh",kn="Tile",Di="TopK",cu="Transform",Po="Transpose",pu="Unique",ys="Unpack",da="UnsortedSegmentSum",bs="ZerosLike",On="Step",Mc="FromPixels",$i="RotateWithOffset",ws="_FusedMatMul",ks="FusedConv2D",_s="FusedDepthwiseConv2D";var Lc=dm("kernelRegistry",()=>new Map),hm=dm("gradRegistry",()=>new Map);function zc(r,e){let t=Mb(r,e);return Lc.get(t)}function Vh(r){return hm.get(r)}function gm(r){let e=Lc.entries(),t=[];for(;;){let{done:n,value:o}=e.next();if(n)break;let[s,a]=o,[i]=s.split("_");i===r&&t.push(a)}return t}function el(r){let{kernelName:e,backendName:t}=r,n=Mb(e,t);Lc.has(n)&&console.warn(`The kernel '${e}' for backend '${t}' is already registered`),Lc.set(n,r)}function Lb(r){let{kernelName:e}=r;hm.has(e)&&j().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${e}'`),hm.set(e,r)}function rV(r,e){let t=Mb(r,e);if(!Lc.has(t))throw new Error(`The kernel '${r}' for backend '${e}' is not registered`);Lc.delete(t)}function nV(r){if(!hm.has(r))throw new Error(`The gradient '${r}' for backend is not registered`);hm.delete(r)}function oV(r,e){gm(r).forEach(n=>{let o=Object.assign({},n,{backendName:e});el(o)})}function Mb(r,e){return`${e}_${r}`}var y={};Ke(y,{arraysEqual:()=>jr,assert:()=>E,assertNonNegativeIntegerDimensions:()=>mm,assertNonNull:()=>Dn,assertShapesMatch:()=>Ct,bytesFromStringArray:()=>Db,bytesPerElement:()=>zh,checkConversionForErrors:()=>Ab,clamp:()=>Dc,computeStrides:()=>Hs,createScalarValue:()=>sV,createShuffledIndices:()=>jB,decodeString:()=>Vc,distSquared:()=>BB,encodeString:()=>tl,fetch:()=>aV,flatten:()=>ss,getArrayFromDType:()=>Tb,getTypedArrayFromDType:()=>Sb,hasEncodingLoss:()=>qB,indexToLoc:()=>YB,inferDtype:()=>$c,inferFromImplicitShape:()=>HB,isBoolean:()=>II,isFunction:()=>Us,isInt:()=>nt,isNumber:()=>NI,isPromise:()=>fm,isScalarShape:()=>VB,isString:()=>is,isTypedArray:()=>or,isValidDtype:()=>Eb,locToIndex:()=>XB,makeOnesTypedArray:()=>pm,makeZerosNestedTypedArray:()=>KB,makeZerosTypedArray:()=>Fc,nearestDivisor:()=>Rc,nearestLargerEven:()=>MB,now:()=>mu,parseAxisParam:()=>Qt,randUniform:()=>zB,repeatedTry:()=>UB,rightPad:()=>Ol,shuffle:()=>CI,shuffleCombo:()=>PB,sizeFromShape:()=>ct,sizeToSquarishShape:()=>WB,squeezeShape:()=>Nb,sum:()=>LB,tanh:()=>GB,toNestedArray:()=>Pl,toTypedArray:()=>Bc});function sV(r,e){return e==="string"?tl(r):Bc([r],e)}function iV(r,e){return r instanceof Float32Array&&e==="float32"||r instanceof Int32Array&&e==="int32"||r instanceof Uint8Array&&e==="bool"}function Bc(r,e){if(e==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(r)&&(r=ss(r)),j().getBool("DEBUG")&&Ab(r,e),iV(r,e))return r;if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool"){let t=new Uint8Array(r.length);for(let n=0;n<t.length;++n)Math.round(r[n])!==0&&(t[n]=1);return t}else throw new Error(`Unknown data type ${e}`)}function mu(){return j().platform.now()}function aV(r,e){return j().platform.fetch(r,e)}function tl(r,e="utf-8"){return e=e||"utf-8",j().platform.encode(r,e)}function Vc(r,e="utf-8"){return e=e||"utf-8",j().platform.decode(r,e)}var zb=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new EI)}profileKernel(e,t,n){let o,s=()=>{o=n()},a,i=mu();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(s);else{s();for(let u of o)u.dataSync();a=Promise.resolve({kernelMs:mu()-i})}if(j().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let u=0;u<o.length;u++){let c=o[u];c.data().then(p=>{lV(p,c.dtype,e)})}return{kernelName:e,outputs:o,inputs:t,timeMs:a.then(u=>u.kernelMs),extraInfo:a.then(u=>u.getExtraProfileInfo!=null?u.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:o,inputs:s,extraInfo:a}=e;n.forEach(i=>{Promise.all([i.data(),o,a]).then(l=>{this.logger.logKernelProfile(t,i,l[0],l[1],s,l[2])})})}};function lV(r,e,t){if(e!=="float32")return!1;for(let n=0;n<r.length;n++){let o=r[n];if(isNaN(o)||!isFinite(o))return console.warn(`Found ${o} in the result of '${t}'`),!0}return!1}var EI=class{logKernelProfile(e,t,n,o,s,a){let i=typeof o=="number"?Ol(`${o}ms`,9):o.error,l=Ol(e,25),u=t.rank,c=t.size,p=Ol(t.shape.toString(),14),m="";for(let f in s){let d=s[f];if(d!=null){let h=d.shape||t.shape,g=h.length;m+=`${f}: ${g}D ${g>0?h:""} `}}console.log(`%c${l} %c${i} %c${u}D ${p} %c${c} %c${m} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function DI(r,e,t){let n={},o={};for(let l=0;l<e.length;l++)n[e[l].id]=!0;for(let l=0;l<r.length;l++){let u=r[l],c=u.inputs;for(let p in c){let m=c[p],f=!1;for(let d=0;d<e.length;d++)if(n[m.id]){u.outputs.forEach(h=>n[h.id]=!0),f=!0,o[u.id]=!0;break}if(f)break}}let s={};s[t.id]=!0;let a={};for(let l=r.length-1;l>=0;l--){let u=r[l],c=u.inputs;for(let p=0;p<u.outputs.length;p++)if(s[u.outputs[p].id]){for(let m in c)s[c[m].id]=!0,a[u.id]=!0;break}}let i=[];for(let l=0;l<r.length;l++){let u=r[l];if(o[u.id]&&a[u.id]){let c={};for(let m in u.inputs){let f=u.inputs[m];n[f.id]&&(c[m]=f)}let p=Object.assign({},u);p.inputs=c,p.outputs=u.outputs,i.push(p)}}return i}function $I(r,e,t,n){for(let o=e.length-1;o>=0;o--){let s=e[o],a=[];if(s.outputs.forEach(l=>{let u=r[l.id];u!=null?a.push(u):a.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let i=s.gradient(a);for(let l in s.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=t(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!jr(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(r[c.id]==null)r[c.id]=u;else{let p=r[c.id];r[c.id]=n(p,u),p.dispose()}}}}var RI=20,xm=3,Bb=7;function FI(r,e,t,n){let o=Hs(e),s=uV(r,e,t,o),a=e.length,i=Gh(r,e,t,o,s),l=["Tensor"];return n&&(l.push(` dtype: ${t}`),l.push(` rank: ${a}`),l.push(` shape: [${e}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
`)),l.join(`
`)}function uV(r,e,t,n){let o=ct(e),s=n[n.length-1],a=new Array(s).fill(0),i=e.length,l=t==="complex64"?bm(r):r;if(i>1)for(let u=0;u<o/s;u++){let c=u*s;for(let p=0;p<s;p++)a[p]=Math.max(a[p],ym(l[c+p],0,t).length)}return a}function ym(r,e,t){let n;return Array.isArray(r)?n=`${parseFloat(r[0].toFixed(Bb))} + ${parseFloat(r[1].toFixed(Bb))}j`:is(r)?n=`'${r}'`:t==="bool"?n=OI(r):n=parseFloat(r.toFixed(Bb)).toString(),Ol(n,e)}function OI(r){return r===0?"false":"true"}function Gh(r,e,t,n,o,s=!0){let a=t==="complex64"?2:1,i=e[0],l=e.length;if(l===0){if(t==="complex64"){let h=bm(r);return[ym(h[0],0,t)]}return t==="bool"?[OI(r[0])]:[r[0].toString()]}if(l===1){if(i>RI){let g=xm*a,x=Array.from(r.slice(0,g)),w=Array.from(r.slice((i-xm)*a,i*a));return t==="complex64"&&(x=bm(x),w=bm(w)),["["+x.map((b,k)=>ym(b,o[k],t)).join(", ")+", ..., "+w.map((b,k)=>ym(b,o[i-xm+k],t)).join(", ")+"]"]}let h=t==="complex64"?bm(r):Array.from(r);return["["+h.map((g,x)=>ym(g,o[x],t)).join(", ")+"]"]}let u=e.slice(1),c=n.slice(1),p=n[0]*a,m=[];if(i>RI){for(let h=0;h<xm;h++){let g=h*p,x=g+p;m.push(...Gh(r.slice(g,x),u,t,c,o,!1))}m.push("...");for(let h=i-xm;h<i;h++){let g=h*p,x=g+p;m.push(...Gh(r.slice(g,x),u,t,c,o,h===i-1))}}else for(let h=0;h<i;h++){let g=h*p,x=g+p;m.push(...Gh(r.slice(g,x),u,t,c,o,h===i-1))}let f=l===2?",":"";m[0]="["+m[0]+f;for(let h=1;h<m.length-1;h++)m[h]=" "+m[h]+f;let d=`,
`;for(let h=2;h<l;h++)d+=`
`;return m[m.length-1]=" "+m[m.length-1]+"]"+(s?"":d),m}function bm(r){let e=[];for(let t=0;t<r.length;t+=2)e.push([r[t],r[t+1]]);return e}var lt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=ct(e),n!=null){let o=n.length;E(o===this.size,()=>`Length of values '${o}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Tb(t,this.size),this.strides=Hs(e)}set(e,...t){t.length===0&&(t=[0]),E(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let o of e){if(o<0||o>=this.shape[t]){let s=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(s)}t++}let n=e[e.length-1];for(let o=0;o<e.length-1;++o)n+=this.strides[o]*e[o];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Ri().makeTensor(this.values,this.shape,this.dtype)}},Ri=null,Gc=null,cV=null;function PI(r){Ri=r}function MI(r){Gc=r}function LI(r){cV=r}var Ve=class{constructor(e,t,n,o){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=ct(e),this.strides=Hs(e),this.dataId=n,this.id=o,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Gc.buffer(this.shape,this.dtype,e)}bufferSync(){return Gc.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Pl(this.shape,e)}arraySync(){return Pl(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=Ri().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Vc(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Ri().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Vc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Ri().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Ri().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Gc.print(this,e)}clone(){return this.throwIfDisposed(),Gc.clone(this)}toString(e=!1){let t=this.dataSync();return FI(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Gc.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Ri().makeVariable(this,e,t,n)}};Object.defineProperty(Ve,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});function O(){return dm("Tensor",()=>Ve)}O();var rl=class extends Ve{constructor(e,t,n,o){super(e.shape,e.dtype,e.dataId,o);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!jr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Ri().disposeTensor(this),this.dataId=e.dataId,Ri().incRef(this,null)}dispose(){Ri().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(rl,Symbol.hasInstance,{value:r=>r instanceof Ve&&r.assign!=null&&r.assign instanceof Function});var Mo={};Ke(Mo,{assertTypesMatch:()=>Hb,getTensorsInContainer:()=>wm,isTensorInList:()=>mV,makeTypesMatch:()=>Ge});var Vb;(function(r){r.R0="R0",r.R1="R1",r.R2="R2",r.R3="R3",r.R4="R4",r.R5="R5",r.R6="R6"})(Vb||(Vb={}));var Gb;(function(r){r.float32="float32",r.int32="int32",r.bool="int32",r.complex64="complex64"})(Gb||(Gb={}));var Wb;(function(r){r.float32="float32",r.int32="int32",r.bool="bool",r.complex64="complex64"})(Wb||(Wb={}));var jb;(function(r){r.float32="float32",r.int32="float32",r.bool="float32",r.complex64="complex64"})(jb||(jb={}));var Ub;(function(r){r.float32="complex64",r.int32="complex64",r.bool="complex64",r.complex64="complex64"})(Ub||(Ub={}));var pV={float32:jb,int32:Gb,bool:Wb,complex64:Ub};function dr(r,e){if(r==="string"||e==="string"){if(r==="string"&&e==="string")return"string";throw new Error(`Can not upcast ${r} with ${e}`)}return pV[r][e]}function fu(r){return dr(r,"int32")}function Ge(r,e){if(r.dtype===e.dtype)return[r,e];let t=dr(r.dtype,e.dtype);return[r.cast(t),e.cast(t)]}function Hb(r,e){E(r.dtype===e.dtype,()=>`The dtypes of the first(${r.dtype}) and second(${e.dtype}) input must match`)}function mV(r,e){return e.some(t=>t.id===r.id)}function wm(r){let e=[],t=new Set;return zI(r,e,t),e}function zI(r,e,t){if(r==null)return;if(r instanceof Ve){e.push(r);return}if(!fV(r))return;let n=r;for(let o in n){let s=n[o];t.has(s)||(t.add(s),zI(s,e,t))}}function fV(r){return Array.isArray(r)||typeof r=="object"}function qb(r){return r.kernelName!=null}var Kb=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},du=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Kb}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new zb(this.backendInstance),!0}setupRegisteredKernels(){gm(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){gm(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof js)&&typeof n.then=="function"){let o=++this.pendingBackendInitId,s=n.then(a=>o<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(o<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(a.stack||a.message)),!1));return this.pendingBackendInit=s,{success:s,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:o,asyncInit:s}=this.initializeBackend(n);if(s||o)return{name:n,asyncInit:s}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),o=n.backend,s=this.readSync(t),a=o.refCount(t);o.disposeData(t,!0),n.backend=e,e.move(t,s,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let o;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(o),()=>(o=t(),o instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),o))}scopedRun(e,t,n){e();try{let o=n();return t(),o}catch(o){throw t(),o}}nextTensorId(){return du.nextTensorId++}nextVariableId(){return du.nextVariableId++}clone(e){let t=D.runKernel(Fn,{x:e}),n={x:e},o=a=>({x:()=>{let i="float32",l={x:a},u={dtype:i};return D.runKernel($n,l,u)}}),s=[];return this.addTapeNode(this.state.activeScope.name,n,[t],o,s,{}),t}runKernel(e,t,n){if(!(zc(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let o=this.backend.numDataIds(),s=0;n.forEach(l=>{s+=l.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=o-t-s-a;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],o=this.isTapeOn(),s=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let l,u=qb(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(qb(e)){let{kernelName:d,inputs:h,attrs:g}=e;this.backendName==null&&this.backend;let x=zc(d,this.backendName);E(x!=null,()=>`Cannot find registered kernel '${d}' for backend '${this.backendName}'`),i=()=>{let w=this.backend.numDataIds();l=x.kernelFunc({inputs:h,attrs:g,backend:this.backend});let b=Array.isArray(l)?l:[l];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(d,w,b);let k=b.map(_=>{if(_.rank!=null)return _;let{dataId:A,shape:N,dtype:$}=_;return this.makeTensorFromDataId(A,N,$)});if(o){let _=this.getTensorsForGradient(d,h,k);n=this.saveTensorsForBackwardMode(_)}return k}}else{let{forwardFunc:d}=e,h=g=>{!o||(n=g.map(x=>this.keep(this.clone(x))))};i=()=>{let g=this.backend.numDataIds();l=this.tidy(()=>d(this.backend,h));let x=Array.isArray(l)?l:[l];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(u,g,x),x}}let{inputs:c,attrs:p}=e,m=qb(e)?null:e.backwardsFunc,f;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(f=this.profiler.profileKernel(u,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(f),t=f.outputs)}),o&&this.addTapeNode(u,c,t,m,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:u,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(d=>c[d]!=null?c[d].shape:null),outputShapes:t.map(d=>d.shape),kernelTimeMs:f.timeMs,extraInfo:f.extraInfo}),Array.isArray(l)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let o=Vh(e);if(o!=null){let s=o.inputsToSave||[],a=o.outputsToSave||[],i;o.saveAllInputs?(E(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(u=>t[u])):i=s.map(u=>t[u]);let l=n.filter((u,c)=>a[c]);return i.concat(l)}return[]}makeTensor(e,t,n,o){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",o=o||this.backend;let s=e;n==="string"&&is(e[0])&&(s=e.map(l=>tl(l)));let a=o.write(s,t,n),i=new Ve(t,n,a,this.nextTensorId());if(this.trackTensor(i,o),n==="string"){let l=this.state.tensorInfo.get(a),u=Db(s);this.state.numBytes+=u-l.bytes,l.bytes=u}return i}makeTensorFromDataId(e,t,n,o){n=n||"float32";let s=new Ve(t,n,e,this.nextTensorId());return this.trackTensor(s,o),s}makeVariable(e,t=!0,n,o){n=n||this.nextVariableId().toString(),o!=null&&o!==e.dtype&&(e=e.cast(o));let s=new rl(e,t,n,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*zh(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof rl||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*zh(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(o=>o.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let o of this.state.activeProfile.kernels)o.kernelTimeMs=await o.kernelTimeMs,o.extraInfo=await o.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,o,s,a){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:s},l=Vh(e);l!=null&&(o=l.gradFunc),o!=null&&(i.gradient=u=>(u=u.map((c,p)=>{if(c==null){let m=n[p],f=Fc(m.size,m.dtype);return this.makeTensor(f,m.shape,m.dtype)}return c}),o(u.length>1?u:u[0],s,a))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=wm(e),n=new Set(t.map(s=>s.id));for(let s=0;s<this.state.activeScope.track.length;s++){let a=this.state.activeScope.track[s];!a.kept&&!n.has(a.id)&&a.dispose()}let o=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(s=>{!s.kept&&s.scopeId===o.id&&this.track(s)})}gradients(e,t,n,o=!1){if(E(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));E(s instanceof Ve,()=>"The result y returned by f() must be a tensor.");let a=DI(this.state.activeTape,t,s);if(!o&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[s.id]=n==null?dV(s.shape):n,$I(i,a,u=>this.tidy(u),hV);let l=t.map(u=>i[u.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(u=>{for(let c of u.saved)c.dispose()}),this.state.activeTape=null),{value:s,grads:l}})}customGrad(e){return E(Us(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{E(t.every(i=>i instanceof Ve),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,o={};t.forEach((i,l)=>{o[l]=i});let s=(i,l)=>(n=e(...t,l),E(n.value instanceof Ve,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),E(Us(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(i,l)=>{let u=n.gradFunc(i,l),c=Array.isArray(u)?u:[u];E(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),E(c.every(m=>m instanceof Ve),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return c.forEach((m,f)=>{p[f]=()=>m}),p};return this.runKernelFunc({forwardFunc:s,backwardsFunc:a,inputs:o})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=mu(),n=await this.backend.time(e);return n.wallMs=mu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Kb;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};du.nextTensorId=0;du.nextVariableId=0;function dV(r){let e=pm(ct(r),"float32");return D.makeTensor(e,r,"float32")}function Xb(){let r=Fb();if(r._tfengine==null){let e=new Bh(r);r._tfengine=new du(e)}return AI(r._tfengine.ENV),PI(()=>r._tfengine),r._tfengine}var D=Xb();function hV(r,e){let t={a:r,b:e};return D.runKernel(wn,t)}var hu={};Ke(hu,{isBrowser:()=>Yb,isMobile:()=>xV});function gV(){return typeof navigator!="undefined"&&navigator!=null}function xV(){if(gV()){let r=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(r)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(r.substr(0,4))}return!1}function Yb(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var vs=j();vs.registerFlag("DEBUG",()=>!1,r=>{r&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});vs.registerFlag("IS_BROWSER",()=>Yb());vs.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");vs.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));vs.registerFlag("PROD",()=>!1);vs.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>vs.getBool("DEBUG"));vs.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);vs.registerFlag("IS_TEST",()=>!1);vs.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);vs.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Cr(r,e){let t=r;if(or(r))return e==="string"?[]:[r.length];if(!Array.isArray(r))return[];let n=[];for(;Array.isArray(t)||or(t)&&e!=="string";)n.push(t.length),t=t[0];return Array.isArray(r)&&j().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&BI(r,n,[]),n}function BI(r,e,t){if(t=t||[],!Array.isArray(r)&&!or(r)){E(e.length===0,()=>`Element arr[${t.join("][")}] is a primitive, but should be an array/TypedArray of ${e[0]} elements`);return}E(e.length>0,()=>`Element arr[${t.join("][")}] should be a primitive, but is an array of ${r.length} elements`),E(r.length===e[0],()=>`Element arr[${t.join("][")}] should have ${e[0]} elements, but has ${r.length} elements`);let n=e.slice(1);for(let o=0;o<r.length;++o)BI(r[o],n,t.concat(o))}function VI(r,e,t,n){if(r!=="string_or_numeric"){if(r==null)throw new Error("Expected dtype cannot be null.");if(r!=="numeric"&&r!==e||r==="numeric"&&e==="string")throw new Error(`Argument '${t}' passed to '${n}' must be ${r} tensor, but got ${e} tensor`)}}function v(r,e,t,n="numeric"){if(r instanceof Ve)return VI(n,r.dtype,e,t),r;let o=$c(r);if(o!=="string"&&["bool","int32","float32"].indexOf(n)>=0&&(o=n),VI(n,o,e,t),r==null||!or(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string"){let l=r==null?"null":r.constructor.name;throw new Error(`Argument '${e}' passed to '${t}' must be a Tensor or TensorLike, but got '${l}'`)}let s=Cr(r,o);!or(r)&&!Array.isArray(r)&&(r=[r]);let i=o!=="string"?Bc(r,o):ss(r,[],!0);return D.makeTensor(i,s,o)}function ha(r,e,t,n="numeric"){if(!Array.isArray(r))throw new Error(`Argument ${e} passed to ${t} must be a \`Tensor[]\` or \`TensorLike[]\``);return r.map((s,a)=>v(s,`${e}[${a}]`,t,n))}var GI="__op";function T(r){let e=Object.keys(r);if(e.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${e.length} keys.`);let t=e[0],n=r[t];t.endsWith("_")&&(t=t.substring(0,t.length-1)),t=t+GI;let o=(...s)=>{D.startScope(t);try{let a=n(...s);return fm(a)&&console.error("Cannot return a Promise inside of tidy."),D.endScope(a),a}catch(a){throw D.endScope(null),a}};return Object.defineProperty(o,"name",{value:t,configurable:!0}),o}function yV(r,e){let t=v(r,"real","complex"),n=v(e,"imag","complex");Ct(t.shape,n.shape,`real and imag shapes, ${t.shape} and ${n.shape}, must match in call to tf.complex().`);let o={real:t,imag:n};return D.runKernel(Gl,o)}var _n=T({complex_:yV});function Ur(r,e,t,n){if(n==null&&(n=$c(r)),n==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!or(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(e!=null){mm(e);let o=ct(e),s=ct(t);E(o===s,()=>`Based on the provided shape, [${e}], the tensor should have ${o} values but has ${s}`);for(let a=0;a<t.length;++a){let i=t[a],l=a===t.length-1?i!==ct(e.slice(a)):!0;E(t[a]===e[a]||!l,()=>`Error creating a new Tensor. Inferred shape (${t}) does not match the provided shape (${e}). `)}}return!or(r)&&!Array.isArray(r)&&(r=[r]),e=e||t,r=n!=="string"?Bc(r,n):ss(r,[],!0),D.makeTensor(r,e,n)}function Rr(r,e,t){let n=Cr(r,t);return Ur(r,e,n,t)}var km={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};var Wh=4;async function WI(r,e){let t=[],n=[],o=Array.isArray(r)?r.map(a=>a.name):Object.keys(r);for(let a=0;a<o.length;++a){let i=o[a],l=Array.isArray(r)?r[a].tensor:r[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async p=>{let m=await l.bytes(),f=m.reduce((g,x)=>g+x.length,0)+Wh*m.length,d=new Uint8Array(f),h=0;for(let g=0;g<m.length;g++){let x=m[g],w=new Uint8Array(new Uint32Array([x.length]).buffer);d.set(w,h),h+=Wh,d.set(x,h),h+=x.length}p(d)});n.push(c)}else n.push(l.data());e!=null&&(u.group=e),t.push(u)}let s=await Promise.all(n);return{data:bV(s),specs:t}}function jh(r,e){let t={},n,o=0;for(let s of e){let a=s.name,i=s.dtype,l=s.shape,u=ct(l),c;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let m=km[p.dtype],f=r.slice(o,o+u*m),d=p.dtype==="uint8"?new Uint8Array(f):new Uint16Array(f);if(i==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=g*p.scale+p.min}}else if(p.dtype==="float16")n===void 0&&(n=wV()),c=n(d);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(i==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${a}': ${i}`);o+=u*m}else if(i==="string"){let p=ct(s.shape);c=[];for(let m=0;m<p;m++){let f=new Uint32Array(r.slice(o,o+Wh))[0];o+=Wh;let d=new Uint8Array(r.slice(o,o+f));c.push(d),o+=f}}else{let p=km[i],m=r.slice(o,o+u*p);if(i==="float32")c=new Float32Array(m);else if(i==="int32")c=new Int32Array(m);else if(i==="bool")c=new Uint8Array(m);else if(i==="complex64"){c=new Float32Array(m);let f=new Float32Array(c.length/2),d=new Float32Array(c.length/2);for(let x=0;x<f.length;x++)f[x]=c[x*2],d[x]=c[x*2+1];let h=Rr(f,l,"float32"),g=Rr(d,l,"float32");t[a]=_n(h,g),h.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${a}': ${i}`);o+=u*p}i!=="complex64"&&(t[a]=Rr(c,l,i))}return t}function bV(r){if(r===null)throw new Error(`Invalid input value: ${JSON.stringify(r)}`);let e=0,t=[];r.forEach(s=>{if(e+=s.byteLength,t.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let n=new Uint8Array(e),o=0;return t.forEach(s=>{n.set(new Uint8Array(s.buffer),o),o+=s.byteLength}),n.buffer}var Zb=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function jI(r){return Zb?Buffer.byteLength(r):new Blob([r]).size}function UI(r){if(Zb)return Buffer.from(r).toString("base64");let e=new Uint8Array(r),t="";for(let n=0,o=e.length;n<o;n++)t+=String.fromCharCode(e[n]);return btoa(t)}function HI(r){if(Zb){let n=Buffer.from(r,"base64");return n.buffer.slice(n.byteOffset,n.byteOffset+n.byteLength)}let e=atob(r),t=new Uint8Array(e.length);for(let n=0;n<e.length;++n)t.set([e.charCodeAt(n)],n);return t.buffer}function Wc(r){if(r.length===1)return r[0];let e=0;r.forEach(o=>{e+=o.byteLength});let t=new Uint8Array(e),n=0;return r.forEach(o=>{t.set(new Uint8Array(o),n),n+=o.byteLength}),t.buffer}function Jb(r){let e="/";for(r=r.trim();r.endsWith(e);)r=r.slice(0,r.length-1);let t=r.split(e);return t[t.length-1]}function Fi(r){if(r.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:r.modelTopology==null?0:jI(JSON.stringify(r.modelTopology)),weightSpecsBytes:r.weightSpecs==null?0:jI(JSON.stringify(r.weightSpecs)),weightDataBytes:r.weightData==null?0:r.weightData.byteLength}}function kV(){let r=t=>{let n=t<<13,o=0;for(;(n&8388608)==0;)o-=8388608,n<<=1;return n&=~8388608,o+=947912704,n|o},e=new Uint32Array(2048);e[0]=0;for(let t=1;t<1024;t++)e[t]=r(t);for(let t=1024;t<2048;t++)e[t]=939524096+(t-1024<<13);return e}function _V(){let r=new Uint32Array(64);r[0]=0,r[31]=1199570944,r[32]=2147483648,r[63]=3347054592;for(let e=1;e<31;e++)r[e]=e<<23;for(let e=33;e<63;e++)r[e]=2147483648+(e-32<<23);return r}function vV(){let r=new Uint32Array(64);for(let e=0;e<64;e++)r[e]=1024;return r[0]=r[32]=0,r}function wV(){let r=kV(),e=_V(),t=vV();return n=>{let o=new ArrayBuffer(4*n.length),s=new Uint32Array(o);for(let a=0;a<n.length;a++){let i=n[a],l=r[t[i>>10]+(i&1023)]+e[i>>10];s[a]=l}return new Float32Array(o)}}var It=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return It.instance==null&&(It.instance=new It),It.instance}static registerSaveRouter(e){It.getInstance().saveRouters.push(e)}static registerLoadRouter(e){It.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return It.getHandlers(e,"save")}static getLoadHandlers(e,t){return It.getHandlers(e,"load",t)}static getHandlers(e,t,n){let o=[];return(t==="load"?It.getInstance().loadRouters:It.getInstance().saveRouters).forEach(a=>{let i=a(e,n);i!==null&&o.push(i)}),o}},qI=r=>It.registerSaveRouter(r),KI=r=>It.registerLoadRouter(r),XI=r=>It.getSaveHandlers(r),YI=(r,e)=>It.getLoadHandlers(r,e);var Qb="tensorflowjs",ew=1,gu="models_store",nl="model_info_store";function ZI(){if(!j().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let r=typeof window=="undefined"?self:window,e=r.indexedDB||r.mozIndexedDB||r.webkitIndexedDB||r.msIndexedDB||r.shimIndexedDB;if(e==null)throw new Error("The current browser does not appear to support IndexedDB.");return e}function tw(r){let e=r.result;e.createObjectStore(gu,{keyPath:"modelPath"}),e.createObjectStore(nl,{keyPath:"modelPath"})}var ga=class{constructor(e){if(this.indexedDB=ZI(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,o)=>{let s=this.indexedDB.open(Qb,ew);s.onupgradeneeded=()=>tw(s),s.onsuccess=()=>{let a=s.result;if(t==null){let i=a.transaction(gu,"readonly"),u=i.objectStore(gu).get(this.modelPath);u.onsuccess=()=>{if(u.result==null)return a.close(),o(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(u.result.modelArtifacts)},u.onerror=c=>(a.close(),o(u.error)),i.oncomplete=()=>a.close()}else{let i=Fi(t),l=a.transaction(nl,"readwrite"),u=l.objectStore(nl),c=u.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;c.onsuccess=()=>{p=a.transaction(gu,"readwrite");let f=p.objectStore(gu).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});f.onsuccess=()=>n({modelArtifactsInfo:i}),f.onerror=d=>{u=l.objectStore(nl);let h=u.delete(this.modelPath);h.onsuccess=()=>(a.close(),o(f.error)),h.onerror=g=>(a.close(),o(f.error))}},c.onerror=m=>(a.close(),o(c.error)),l.oncomplete=()=>{p==null?a.close():p.oncomplete=()=>a.close()}}},s.onerror=a=>o(s.error)})}};ga.URL_SCHEME="indexeddb://";var JI=r=>j().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(ga.URL_SCHEME)?CV(r.slice(ga.URL_SCHEME.length)):null;It.registerSaveRouter(JI);It.registerLoadRouter(JI);function CV(r){return new ga(r)}function IV(r){return r.startsWith(ga.URL_SCHEME)?r.slice(ga.URL_SCHEME.length):r}var rw=class{constructor(){this.indexedDB=ZI()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Qb,ew);n.onupgradeneeded=()=>tw(n),n.onsuccess=()=>{let o=n.result,s=o.transaction(nl,"readonly"),i=s.objectStore(nl).getAll();i.onsuccess=()=>{let l={};for(let u of i.result)l[u.modelPath]=u.modelArtifactsInfo;e(l)},i.onerror=l=>(o.close(),t(i.error)),s.oncomplete=()=>o.close()},n.onerror=o=>t(n.error)})}async removeModel(e){return e=IV(e),new Promise((t,n)=>{let o=this.indexedDB.open(Qb,ew);o.onupgradeneeded=()=>tw(o),o.onsuccess=()=>{let s=o.result,a=s.transaction(nl,"readwrite"),i=a.objectStore(nl),l=i.get(e),u;l.onsuccess=()=>{if(l.result==null)return s.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),p=()=>{u=s.transaction(gu,"readwrite");let f=u.objectStore(gu).delete(e);f.onsuccess=()=>t(l.result.modelArtifactsInfo),f.onerror=d=>n(l.error)};c.onsuccess=p,c.onerror=m=>(p(),s.close(),n(l.error))}},l.onerror=c=>(s.close(),n(l.error)),a.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}},o.onerror=s=>n(o.error)})}};var xa="/",jc="tensorflowjs_models",QI="info",NV="model_topology",SV="weight_specs",TV="weight_data",AV="model_metadata";function eN(r){return{info:[jc,r,QI].join(xa),topology:[jc,r,NV].join(xa),weightSpecs:[jc,r,SV].join(xa),weightData:[jc,r,TV].join(xa),modelMetadata:[jc,r,AV].join(xa)}}function EV(r){let e=r.split(xa);if(e.length<3)throw new Error(`Invalid key format: ${r}`);return e.slice(1,e.length-1).join(xa)}function DV(r){return r.startsWith(ya.URL_SCHEME)?r.slice(ya.URL_SCHEME.length):r}var ya=class{constructor(e){if(!j().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=eN(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),o=Fi(e);try{this.LS.setItem(this.keys.info,JSON.stringify(o)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,UI(e.weightData));let s={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(s.signature=e.signature),e.userDefinedMetadata!=null&&(s.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(s.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:o}}catch(s){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${o.modelTopologyBytes}, weightSpecsBytes=${o.weightSpecsBytes}, weightDataBytes=${o.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let o=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(o==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=o;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let i=JSON.parse(s);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=HI(a),t}};ya.URL_SCHEME="localstorage://";var tN=r=>j().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(ya.URL_SCHEME)?$V(r.slice(ya.URL_SCHEME.length)):null;It.registerSaveRouter(tN);It.registerLoadRouter(tN);function $V(r){return new ya(r)}var nw=class{constructor(){E(j().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),E(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=jc+xa,n=xa+QI;for(let o=0;o<this.LS.length;++o){let s=this.LS.key(o);if(s.startsWith(t)&&s.endsWith(n)){let a=EV(s);e[a]=JSON.parse(this.LS.getItem(s))}}return e}async removeModel(e){e=DV(e);let t=eN(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}};var Uc="://",Hr=class{constructor(){this.managers={}}static getInstance(){return Hr.instance==null&&(Hr.instance=new Hr),Hr.instance}static registerManager(e,t){E(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Uc)&&(e=e.slice(0,e.indexOf(Uc))),E(e.length>0,()=>"scheme must not be an empty string.");let n=Hr.getInstance();E(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Uh(r){if(r.indexOf(Uc)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Hr.getSchemes().join(",")}`);return{scheme:r.split(Uc)[0],path:r.split(Uc)[1]}}async function rN(r,e,t=!1){E(r!==e,()=>`Old path and new path are the same: '${r}'`);let n=It.getLoadHandlers(r);E(n.length>0,()=>`Copying failed because no load handler is found for source URL ${r}.`),E(n.length<2,()=>`Copying failed because more than one (${n.length}) load handlers for source URL ${r}.`);let o=n[0],s=It.getSaveHandlers(e);E(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${e}.`),E(s.length<2,()=>`Copying failed because more than one (${n.length}) save handlers for destination URL ${e}.`);let a=s[0],i=Uh(r).scheme,l=Uh(r).path,u=i===Uh(r).scheme,c=await o.load();t&&u&&await Hr.getManager(i).removeModel(l);let p=await a.save(c);return t&&!u&&await Hr.getManager(i).removeModel(l),p.modelArtifactsInfo}async function nN(){let r=Hr.getSchemes(),e={};for(let t of r){let n=await Hr.getManager(t).listModels();for(let o in n){let s=t+Uc+o;e[s]=n[o]}}return e}async function oN(r){let e=Uh(r);return Hr.getManager(e.scheme).removeModel(e.path)}async function sN(r,e){return rN(r,e,!1)}async function iN(r,e){return rN(r,e,!0)}var aN=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(j().get("IS_BROWSER")){j().setPlatform("browser",new aN);try{Hr.registerManager(ya.URL_SCHEME,new nw)}catch(r){}try{Hr.registerManager(ga.URL_SCHEME,new rw)}catch(r){}}var RV={importFetch:()=>lN()},ow;var uN=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return j().global.fetch!=null?j().global.fetch(e,t):(ow==null&&(ow=RV.importFetch()),ow(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};j().get("IS_NODE")&&j().setPlatform("node",new uN);function ve(r,e="float32",t){return e=e||"float32",mm(r),new lt(r,e,t)}function FV(r,e){let t=v(r,"x","cast");if(!Eb(e))throw new Error(`Failed to cast to unknown dtype ${e}`);if(e==="string"&&t.dtype!=="string"||e!=="string"&&t.dtype==="string")throw new Error("Only strings can be casted to strings");let n={x:t},o={dtype:e};return D.runKernel($n,n,o)}var oe=T({cast_:FV});function OV(r){let t={x:v(r,"x","clone","string_or_numeric")};return D.runKernel(Fn,t)}var Pn=T({clone_:OV});function sw(r,e=!1){console.log(r.toString(e))}Xb();var PV={buffer:ve,cast:oe,clone:Pn,print:sw};MI(PV);var Ir={};Ke(Ir,{browserFiles:()=>mN,browserHTTPRequest:()=>hN,concatenateArrayBuffers:()=>Wc,copyModel:()=>sN,decodeWeights:()=>jh,encodeWeights:()=>WI,fromMemory:()=>xN,getLoadHandlers:()=>YI,getModelArtifactsInfoForJSON:()=>Fi,getSaveHandlers:()=>XI,http:()=>Kh,isHTTPScheme:()=>qh,listModels:()=>nN,loadWeights:()=>fN,moveModel:()=>iN,registerLoadRouter:()=>KI,registerSaveRouter:()=>qI,removeModel:()=>oN,weightsLoaderFactory:()=>lw,withSaveHandler:()=>yN});var MV="model",LV=".json",zV=".weights.bin";function cN(r){return new Promise(e=>setTimeout(e)).then(r)}var ol=class{constructor(e){if(!j().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(ol.URL_SCHEME)&&(e=e.slice(ol.URL_SCHEME.length)),(e==null||e.length===0)&&(e=MV),this.modelTopologyFileName=e+LV,this.weightDataFileName=e+zV}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],o={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(o.signature=e.signature),e.userDefinedMetadata!=null&&(o.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(o.modelInitializer=e.modelInitializer);let s=window.URL.createObjectURL(new Blob([JSON.stringify(o)],{type:"application/json"})),a=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(a.download=this.modelTopologyFileName,a.href=s,await cN(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await cN(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Fi(e)}}}};ol.URL_SCHEME="downloads://";var pN=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,o)=>{let s=new FileReader;s.onload=a=>{let i=JSON.parse(a.target.result),l=i.modelTopology;if(l==null){o(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:l});let u=i.weightsManifest;if(u==null){o(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(u,t)}catch(d){o(d);return}let p=[],m=[],f=[];u.forEach(d=>{d.paths.forEach(h=>{m.push(h),f.push(null)}),p.push(...d.weights)}),u.forEach(d=>{d.paths.forEach(h=>{let g=new FileReader;g.onload=x=>{let w=x.target.result,b=m.indexOf(h);if(f[b]=w,f.indexOf(null)===-1){let k={modelTopology:l,weightSpecs:p,weightData:Wc(f),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(k.signature=i.signature),i.userDefinedMetadata!=null&&(k.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(k.modelInitializer=i.modelInitializer),n(k)}},g.onerror=x=>o(`Failed to weights data from file of path '${h}'.`),g.readAsArrayBuffer(c[h])})})},s.onerror=a=>o(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),s.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],o=t.map(a=>Jb(a.name)),s={};for(let a of e)a.paths.forEach(i=>{let l=Jb(i);if(n.indexOf(l)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${l}'`);if(n.push(l),o.indexOf(l)===-1)throw new Error(`Weight file with basename '${l}' is not provided.`);s[i]=t[o.indexOf(l)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return s}},VV=r=>j().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(ol.URL_SCHEME)?BV(r.slice(ol.URL_SCHEME.length)):null;It.registerSaveRouter(VV);function BV(r="model"){return new ol(r)}function mN(r){return new pN(r)}function iw(r,e,t,n){a(r),t=t==null?0:t,n=n==null?1:n,i(t,n);let o=0,s=l=>(l.then(u=>{let c=t+ ++o/r.length*(n-t);return e(c),u}),l);function a(l){E(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){E(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),E(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),E(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(r.map(s))}async function aw(r,e){e==null&&(e={});let t=e.fetchFunc==null?j().platform.fetch:e.fetchFunc,n=r.map(p=>t(p,e.requestInit,{isBinary:!0})),o=0,s=.5,i=(e.onProgress==null?await Promise.all(n):await iw(n,e.onProgress,o,s)).map(p=>p.arrayBuffer()),l=.5,u=1;return e.onProgress==null?await Promise.all(i):await iw(i,e.onProgress,l,u)}async function fN(r,e="",t,n){return lw(a=>aw(a,{requestInit:n}))(r,e,t)}function lw(r){return async(e,t="",n)=>{let o=e.map(()=>!1),s={},a=n!=null?n.map(()=>!1):[],i=[];if(e.forEach((f,d)=>{let h=0;f.weights.forEach(g=>{let x="quantization"in g?g.quantization.dtype:g.dtype,w=km[x]*ct(g.shape),b=()=>{o[d]=!0,s[d]==null&&(s[d]=[]),s[d].push({manifestEntry:g,groupOffset:h,sizeBytes:w})};n!=null?n.forEach((k,_)=>{k===g.name&&(b(),a[_]=!0)}):b(),i.push(g.name),h+=w})}),!a.every(f=>f)){let f=n.filter((d,h)=>!a[h]);throw new Error(`Could not find weights in manifest with names: ${f.join(", ")}.
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=o.reduce((f,d,h)=>(d&&f.push(h),f),[]),u=[];l.forEach(f=>{e[f].paths.forEach(d=>{let h=t+(t.endsWith("/")?"":"/")+d;u.push(h)})});let c=await r(u),p={},m=0;return l.forEach(f=>{let d=e[f].paths.length,h=0;for(let k=0;k<d;k++)h+=c[m+k].byteLength;let g=new ArrayBuffer(h),x=new Uint8Array(g),w=0;for(let k=0;k<d;k++){let _=new Uint8Array(c[m+k]);x.set(_,w),w+=_.byteLength}s[f].forEach(k=>{let _=g.slice(k.groupOffset,k.groupOffset+k.sizeBytes),A=jh(_,[k.manifestEntry]);for(let N in A)p[N]=A[N]}),m+=d}),p}}var GV="application/octet-stream",WV="application/json",Hh=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(E(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=j().platform.fetch,E(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&E(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],o={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(o.signature=e.signature),e.userDefinedMetadata!=null&&(o.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(o.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(o)],{type:WV}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:GV}),"model.weights.bin");let s=await this.fetch(this.path,t);if(s.ok)return{modelArtifactsInfo:Fi(e),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(d){let h=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?h+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":h+=" Please make sure the server is serving valid JSON for this request.",new Error(h)}let n=t.modelTopology,o=t.weightsManifest,s=t.generatedBy,a=t.convertedBy,i=t.format,l=t.signature,u=t.userDefinedMetadata;if(n==null&&o==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,p;o!=null&&([c,p]=await this.loadWeights(o));let m={modelTopology:n,weightSpecs:c,weightData:p,generatedBy:s,convertedBy:a,format:i};l!=null&&(m.signature=l),u!=null&&(m.userDefinedMetadata=u);let f=t.modelInitializer;return f&&(m.modelInitializer=f),m}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,o]=jV(t),s=this.weightPathPrefix||n,a=[];for(let c of e)a.push(...c.weights);let i=[],l=[];for(let c of e)for(let p of c.paths)this.weightUrlConverter!=null?l.push(this.weightUrlConverter(p)):i.push(s+p+o);this.weightUrlConverter&&i.push(...await Promise.all(l));let u=await aw(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Wc(u)]}};Hh.URL_SCHEME_REGEX=/^https?:\/\//;function jV(r){let e=r.lastIndexOf("/"),t=r.lastIndexOf("?"),n=r.substring(0,e),o=t>e?r.substring(t):"";return[n+"/",o]}function qh(r){return r.match(Hh.URL_SCHEME_REGEX)!=null}var dN=(r,e)=>{if(typeof fetch=="undefined"&&(e==null||e.fetchFunc==null))return null;{let t=!0;if(Array.isArray(r)?t=r.every(n=>qh(n)):t=qh(r),t)return Kh(r,e)}return null};It.registerSaveRouter(dN);It.registerLoadRouter(dN);function Kh(r,e){return new Hh(r,e)}function hN(r,e){return Kh(r,e)}var Xh=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},gN=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function xN(r,e,t,n){return arguments.length===1?r.modelTopology!=null||r.weightSpecs!=null?new Xh(r):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Xh({modelTopology:r})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Xh({modelTopology:r,weightSpecs:e,weightData:t,trainingConfig:n}))}function yN(r){return new gN(r)}var bN={};Ke(bN,{confusionMatrix:()=>XV});function UV(r,e,t=!1,n=!1){let o=v(r,"a","matMul"),s=v(e,"b","matMul");[o,s]=Ge(o,s);let a={a:o,b:s},i={transposeA:t,transposeB:n};return D.runKernel(Xn,a,i)}var We=T({matMul_:UV});function HV(r,e,t=1,n=0){if(e<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${e}`);let s={indices:v(r,"indices","oneHot","int32")},a={depth:e,onValue:t,offValue:n};return D.runKernel(yo,s,a)}var Cs=T({oneHot_:HV});function qV(r,e){let t=v(r,"x","transpose");if(e==null&&(e=t.shape.map((s,a)=>a).reverse()),E(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of perm ${e}.`),e.forEach(s=>{E(s>=0&&s<t.rank,()=>`All entries in 'perm' must be between 0 and ${t.rank-1} but got ${e}`)}),t.rank<=1)return t.clone();let n={x:t},o={perm:e};return D.runKernel(Po,n,o)}var Ue=T({transpose_:qV});function KV(r,e,t){let n=v(r,"labels","confusionMatrix"),o=v(e,"predictions","confusionMatrix");E(t==null||t>0&&Number.isInteger(t),()=>`If provided, numClasses must be a positive integer, but got ${t}`),E(n.rank===1,()=>`Expected the rank of labels to be 1, but got ${n.rank}`),E(o.rank===1,()=>`Expected the rank of predictions to be 1, but got ${o.rank}`),E(n.shape[0]===o.shape[0],()=>`Mismatch in the number of examples: ${n.shape[0]} vs. ${o.shape[0]}. Labels and predictions should have the same number of elements.`),E(t>0&&Number.isInteger(t),()=>`numClasses is required to be a positive integer, but got ${t}`);let s=Cs(oe(n,"int32"),t),a=Cs(oe(o,"int32"),t),i=Ue(s),l=We(i,a);return oe(l,"int32")}var XV=T({confusionMatrix_:KV});var Yh={};Ke(Yh,{fromPixels:()=>rG,fromPixelsAsync:()=>eG,toPixels:()=>tG});function uw(r,e,t){if(Dn(r),e!=null&&e.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let n=Cr(r,t);if(n.length!==3&&n.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Ur(r,e,n,t)}var Hc;function wN(r,e=3){if(e>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let t=!1,n=!1,o=!1,s=!1,a=!1,i=!1;if(r.data instanceof Uint8Array)t=!0;else if(typeof ImageData!="undefined"&&r instanceof ImageData)n=!0;else if(typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement)o=!0;else if(typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement)s=!0;else if(r.getContext!=null)a=!0;else if(typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(o){let d=2;if(o&&r.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(zc(Mc,D.backendName)!=null){let d={pixels:r},h={numChannels:e};return D.runKernel(Mc,d,h)}let[u,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],p;a?p=r.getContext("2d").getImageData(0,0,u,c).data:n||t?p=r.data:(s||o||i)&&(Hc==null&&(Hc=document.createElement("canvas").getContext("2d")),Hc.canvas.width=u,Hc.canvas.height=c,Hc.drawImage(r,0,0,u,c),p=Hc.getImageData(0,0,u,c).data);let m;if(e===4)m=new Int32Array(p);else{let d=u*c;m=new Int32Array(d*e);for(let h=0;h<d;h++)for(let g=0;g<e;++g)m[h*e+g]=p[h*4+g]}return uw(m,[c,u,e],"int32")}function YV(r){return r!=null&&r.data instanceof Uint8Array}function ZV(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function JV(r){return r!=null&&r.width!==0&&r.height!==0}function QV(r){return ZV()&&!(r instanceof ImageBitmap)&&JV(r)&&!YV(r)}async function eG(r,e=3){let t=null;if(j().getBool("WRAP_TO_IMAGEBITMAP")&&QV(r)){let n;try{n=await createImageBitmap(r,{premultiplyAlpha:"none"})}catch(o){n=null}n!=null&&n.width===r.width&&n.height===r.height?t=n:t=r}else t=r;return wN(t,e)}async function tG(r,e){let t=v(r,"img","toPixels");if(!(r instanceof Ve)){let u=t;t=oe(u,"int32"),u.dispose()}if(t.rank!==2&&t.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${t.rank}.`);let[n,o]=t.shape.slice(0,2),s=t.rank===2?1:t.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(t.dtype!=="float32"&&t.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${t.dtype}. Please use float32 or int32 tensors.`);let a=await t.data(),i=t.dtype==="float32"?255:1,l=new Uint8ClampedArray(o*n*4);for(let u=0;u<n*o;++u){let c=[0,0,0,255];for(let m=0;m<s;m++){let f=a[u*s+m];if(t.dtype==="float32"){if(f<0||f>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${f}.`)}else if(t.dtype==="int32"&&(f<0||f>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${f}.`);s===1?(c[0]=f*i,c[1]=f*i,c[2]=f*i):c[m]=f*i}let p=u*4;l[p+0]=Math.round(c[0]),l[p+1]=Math.round(c[1]),l[p+2]=Math.round(c[2]),l[p+3]=Math.round(c[3])}if(e!=null){e.width=o,e.height=n;let u=e.getContext("2d"),c=new ImageData(l,o,n);u.putImageData(c,0,0)}return t!==r&&t.dispose(),l}var rG=T({fromPixels_:wN});var Zh={};Ke(Zh,{prepareAndValidate:()=>kN});function kN(r,e){let t=r.shape.length,n=e.shape.length;if(t<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${t}.`);if(n<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${n}.`);if(e.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.shape[n-1]>t)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${e.shape[n-1]} vs. ${t}`);if(ct(r.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${r.shape}.`);let o=e.shape,s=o[o.length-1],a=1;for(let p=0;p<o.length-1;++p)a*=o[p];let i=r.shape,l=o.slice();l.pop();let u=1;for(let p=s;p<t;++p)u*=i[p],l.push(i[p]);let c=[...Hs(r.shape).map(p=>p/u),1].slice(0,s);return[l,a,u,c]}var Jh={};Ke(Jh,{calculateShapes:()=>_N,validateInput:()=>Qh,validateUpdateShape:()=>cw});function cw(r,e,t){let n=e.rank>1?e.shape[e.rank-1]:1,o=e.rank>1?e.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${t.shape}, indices.shape: ${e.shape}, shape: ${r}, sliceDim: ${n}, and batchDim: ${o}.`;if(t.rank<o)throw new Error(s+` update.rank < ${o}. `);if(r.length<n+(t.rank-o))throw new Error(s+` Output shape length < ${n+(t.rank-o)}`);if(t.rank!==o+r.length-n)throw new Error(s+` update.rank != ${o+r.length-n}`);for(let a=0;a<o;++a)if(t.shape[a]!==e.shape[a])throw new Error(s+` updates.shape[${a}] (${t.shape[a]}) != indices.shape[${a}] (${e.shape[a]}).`);for(let a=0;a<t.rank-o;++a)if(t.shape[a+o]!==r[a+n])throw new Error(s+` updates.shape[${a+o}] (${t.shape[a+o]}) != shape[${a+o}] (${r[a+o]})`)}function Qh(r,e,t){if(e.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${e.rank}.`);if(r.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${r.rank}.`);if(e.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${e.dtype}`);if(t.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${t}`);if(t.length===0){if(e.size===0)throw new Error(`Indices specified for empty output. indices shape: ${e.shape}`);if(r.size===0)throw new Error(`Updates specified for empty output. updates shape: ${r.shape}`)}cw(t,e,r)}function _N(r,e,t){let n=e.shape.length,o=n>1?e.shape[n-1]:1,s=t.length,a=1;for(let p=o;p<s;++p)a*=t[p];let i=o<1?1:o,l=ct(e.shape)/i,u=[...Hs(t.slice(0,o)),1],c=ct(t);return{sliceRank:o,numUpdates:l,sliceSize:a,strides:u,outputSize:c}}var sr={};Ke(sr,{assertParamsValid:()=>nG,computeFlatOffset:()=>sG,computeOutShape:()=>vN,getNormalizedAxes:()=>$N,isSliceContinous:()=>oG,maskToAxes:()=>eg,parseSliceParams:()=>pw,sliceInfo:()=>iG,startForAxis:()=>EN,startIndicesWithElidedDims:()=>SN,stopForAxis:()=>DN,stopIndicesWithElidedDims:()=>TN,stridesForAxis:()=>AN,stridesWithElidedDims:()=>CN});function nG(r,e,t){let n=r.shape.length;E(n===e.length,()=>`Error in slice${n}D: Length of begin ${e} must match the rank of the array (${n}).`),E(n===t.length,()=>`Error in slice${n}D: Length of size ${t} must match the rank of the array (${n}).`);for(let o=0;o<n;++o)E(e[o]+t[o]<=r.shape[o],()=>`Error in slice${n}D: begin[${o}] + size[${o}] (${e[o]+t[o]}) would overflow input.shape[${o}] (${r.shape[o]})`)}function eg(r){let e=[],t=0;for(;r>0;)r&1&&e.push(t),r/=2,t++;return e}function vN(r,e,t){let n=[];for(let o=0;o<r.length;o++)n[o]=Math.ceil((e[o]-r[o])/t[o]);return n}function CN(r,e,t,n){let o=[...r];for(let s=o.length;s<n.length;s++)o.push(1);for(let s=0;s<t;s++)s===0?o[e]=1:(o.splice(e,0,1),o.pop());return o}function IN(r,e,t){return t<=r?t:t-(e-1)}function NN(r,e){let t=[];for(let n=0;n<r;n++)t.push(e+n);return t}function $N(r,e,t,n,o,s,a,i,l){let u=r.length,c=new Array(u),p=new Array(u),m=new Array(u);if(e.length&&t>0){let f=e[0],d=t+1;c=SN(a,f,d,n,r),p=TN(i,f,d,o,r),m=CN(s,f,d,r)}else for(let f=0;f<u;f++)c[f]=EN(a,n,s,r,f,l),p[f]=DN(i,o,s,r,f,l),m[f]=AN(s,f,l);return{begin:c,end:p,strides:m}}function SN(r,e,t,n,o){let s=[...o],a=NN(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=0;else{let l=IN(e,t,i),u=n[l];r&1<<l&&(u=0),s[i]=u}return s}function TN(r,e,t,n,o){let s=[...o],a=NN(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=Number.MAX_SAFE_INTEGER;else{let l=IN(e,t,i),u=n[l];r&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[i]=u}for(let i=0;i<s.length;i++){let l=o[i];s[i]<0&&(s[i]+=l),s[i]=Dc(0,s[i],o[i])}return s}function AN(r,e,t){let n=r[e];return(t&1<<e||n==null)&&(n=1),n}function EN(r,e,t,n,o,s){let a=e[o],i=t[o]||1;(r&1<<o||s&1<<o||a==null)&&(i>0?a=Number.MIN_SAFE_INTEGER:a=Number.MAX_SAFE_INTEGER);let l=n[o];return a<0&&(a+=l),a=Dc(0,a,l-1),a}function DN(r,e,t,n,o,s){let a=e[o],i=t[o]||1;(r&1<<o||s&1<<o||a==null)&&(i>0?a=Number.MAX_SAFE_INTEGER:a=Number.MIN_SAFE_INTEGER);let l=n[o];return a<0&&(a+=l),i>0?a=Dc(0,a,l):a=Dc(-1,a,l-1),a}function oG(r,e,t){let n=t.length;for(let o=0;o<t.length;o++)if(t[o]>1){n=o;break}for(let o=n+1;o<t.length;o++)if(e[o]>0||t[o]!==r[o])return!1;return!0}function sG(r,e){let t=r.length>0?r[r.length-1]:1;for(let n=0;n<r.length-1;n++)t+=r[n]*e[n];return t}function pw(r,e,t){let n,o=r.shape.length;typeof e=="number"?n=[e,...new Array(o-1).fill(0)]:e.length<o?n=e.concat(new Array(o-e.length).fill(0)):n=e.slice(),n.forEach(a=>{E(a!==-1,()=>"slice() does not support negative begin indexing.")});let s;return t==null?s=new Array(o).fill(-1):typeof t=="number"?s=[t,...new Array(o-1).fill(-1)]:t.length<o?s=t.concat(new Array(o-t.length).fill(-1)):s=t,s=s.map((a,i)=>a>=0?a:(E(a===-1,()=>`Negative size values should be exactly -1 but got ${a} for the slice() size at index ${i}.`),r.shape[i]-n[i])),[n,s]}function iG(r,e,t,n,o,s,a,i,l){let u=e.slice(),c=t.slice(),p=n;n==null&&(p=new Array(u.length));let m=eg(a);if(m.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(a!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(a!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.length-u.length,d=eg(i),h=r.slice();d.forEach(N=>{u[N]=0,c[N]=1,h.splice(N,0,1)});let{begin:g,end:x,strides:w}=$N(h,m,f,u,c,p,o,s,a);u=g,c=x,p=w;let b=eg(l);b.forEach(N=>{c[N]=u[N]+1,p[N]=1});let k=vN(u,c,p),_=k.filter((N,$)=>b.indexOf($)===-1);return{nonStrided:p.every(N=>N===1),$begin:u,$end:c,$strides:p,size:k,newShape:h,outShape:_}}var Q={};Ke(Q,{Serializable:()=>tg,SerializationMap:()=>ba,registerClass:()=>sn});var tg=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},ba=class{constructor(){this.classNameMap={}}static getMap(){return ba.instance==null&&(ba.instance=new ba),ba.instance}static register(e){ba.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function sn(r){E(r.className!=null,()=>"Class being registered does not have the static className property defined."),E(typeof r.className=="string",()=>"className is required to be a string, but got type "+typeof r.className),E(r.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),ba.register(r)}var RN={};Ke(RN,{TEST_EPSILON_FLOAT16:()=>FN,encodeStrings:()=>ON,expectArrayBuffersEqual:()=>fG,expectArraysClose:()=>lG,expectArraysEqual:()=>cG,expectNumbersClose:()=>pG,expectPromiseToFail:()=>uG,expectValuesInRange:()=>mG,testEpsilon:()=>mw});var aG=.001,FN=.1;function lG(r,e,t){return t==null&&(t=mw()),fw(r,e,(n,o)=>dw(n,o,t))}function mw(){return D.backend.floatPrecision()===32?aG:FN}function fw(r,e,t){let n=!0;if((or(r)||or(e))&&(n=!1),or(r)&&or(e)&&(n=!0),n){let a=r.constructor.name,i=e.constructor.name;if(a!==i)throw new Error(`Arrays are of different type. Actual: ${a}. Expected: ${i}`)}if(Array.isArray(r)&&Array.isArray(e)){let a=Cr(r),i=Cr(e);if(!jr(a,i))throw new Error(`Arrays have different shapes. Actual: [${a}]. Expected: [${i}]`)}let o=or(r)?r:ss(r),s=or(e)?e:ss(e);if(o.length!==s.length)throw new Error(`Arrays have different lengths actual: ${o.length} vs expected: ${s.length}.
Actual: ${o}.
Expected: ${s}.`);for(let a=0;a<s.length;++a){let i=o[a],l=s[a];if(!t(i,l))throw new Error(`Arrays differ: actual[${a}] = ${i}, expected[${a}] = ${l}.
Actual: ${o}.
Expected: ${s}.`)}}function uG(r,e){r().then(()=>e.fail(),()=>e())}function cG(r,e){let t=typeof e=="string"||typeof e=="number"||typeof e=="boolean"?[e]:e;return is(r)||is(r[0])||is(e)||is(e[0])?fw(r,t,(n,o)=>n==o):fw(r,e,(n,o)=>dw(n,o,0))}function pG(r,e,t){if(t==null&&(t=mw()),!dw(r,e,t))throw new Error(`Numbers differ: actual === ${r}, expected === ${e}`)}function dw(r,e,t){return!isFinite(r)&&!isFinite(e)?!0:!(isNaN(r)||isNaN(e)||Math.abs(r-e)>t)}function mG(r,e,t){for(let n=0;n<r.length;n++)if(r[n]<e||r[n]>t)throw new Error(`Value out of range:${r[n]} low: ${e}, high: ${t}`)}function fG(r,e){expect(new Float32Array(r)).toEqual(new Float32Array(e))}function ON(r){for(let e=0;e<r.length;e++){let t=r[e];Array.isArray(t)?ON(t):r[e]=tl(t)}return r}var dG="3.3.0";function hG(){j().set("PROD",!0)}function gG(){j().set("DEBUG",!0)}function xG(){j().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function rg(r){j().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(r+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}LI(rg);function yG(){D.disposeVariables()}function Mn(){return D}function qc(){return D.memory()}function bG(r){return D.profile(r)}function G(r,e){return D.tidy(r,e)}function Ae(r){wm(r).forEach(t=>t.dispose())}function Dt(r){return D.keep(r)}function wG(r){return D.time(r)}function PN(r){return D.setBackend(r)}function kG(){return D.ready()}function _G(){return D.backendName}function vG(r){D.removeBackend(r)}function CG(r){return D.findBackend(r)}function IG(r){return D.findBackendFactory(r)}function xu(r,e,t=1){return D.registerBackend(r,e,t)}function hw(){return D.backend}function NG(r,e){j().setPlatform(r,e)}function SG(r,e){let t=v(r,"a","add"),n=v(e,"b","add");[t,n]=Ge(t,n);let o={a:t,b:n};return D.runKernel(wn,o)}var ee=T({add_:SG});function TG(r,e){let t=v(r,"a","floorDiv"),n=v(e,"b","floorDiv");[t,n]=Ge(t,n);let o={a:t,b:n};return D.runKernel(so,o)}var yu=T({floorDiv_:TG});function AG(r,e){let t=v(r,"a","div"),n=v(e,"b","div");if([t,n]=Ge(t,n),t.dtype==="int32"&&n.dtype==="int32")return yu(t,n);let o={a:t,b:n},s={};return D.runKernel(ro,o,s)}var me=T({div_:AG});function EG(r,e){let t=v(r,"a","mul"),n=v(e,"b","mul");[t,n]=Ge(t,n);let o={a:t,b:n};return D.runKernel(xo,o)}var P=T({mul_:EG});function DG(r){let e=v(r,"x","abs");if(e.dtype==="complex64"){let t={x:e};return D.runKernel(na,t)}else{let t={x:e};return D.runKernel(as,t)}}var Nt=T({abs_:DG});function $G(r){let t={x:v(r,"x","acos")};return D.runKernel(qs,t)}var _m=T({acos_:$G});function RG(r){let t={x:v(r,"x","acosh")};return D.runKernel(Ks,t)}var vm=T({acosh_:RG});function FG(r){E(Array.isArray(r),()=>"The argument passed to tf.addN() must be a list of tensors"),E(r.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${r.length}`);let e=r.map((o,s)=>v(o,`tensors${s}`,"addN")),t=e[0];e.forEach(o=>{if(o.dtype!==t.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),e.forEach(o=>{if(!jr(o.shape,t.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let n=e;return D.runKernel(Hn,n)}var gw=T({addN_:FG});function OG(r,e=null,t=!1){let o={x:v(r,"x","all","bool")},s={axis:e,keepDims:t};return D.runKernel(Ml,o,s)}var bu=T({all_:OG});function PG(r,e=null,t=!1){let o={x:v(r,"x","any","bool")},s={axis:e,keepDims:t};return D.runKernel(Ll,o,s)}var sl=T({any_:PG});function MG(r,e=0){let n={x:v(r,"x","argMax")},o={axis:e};return D.runKernel(qn,n,o)}var il=T({argMax_:MG});function LG(r,e=0){let n={x:v(r,"x","argMin")},o={axis:e};return D.runKernel(ea,n,o)}var Cm=T({argMin_:LG});function zG(r){let t={x:v(r,"x","asin")};return D.runKernel(Xs,t)}var Im=T({asin_:zG});function BG(r){let t={x:v(r,"x","asinh")};return D.runKernel(Ys,t)}var Nm=T({asinh_:BG});function VG(r){let t={x:v(r,"x","atan")};return D.runKernel(Zs,t)}var Sm=T({atan_:VG});function GG(r,e){let t=v(r,"a","atan2"),n=v(e,"b","atan2");[t,n]=Ge(t,n);let o={a:t,b:n};return D.runKernel(Qs,o)}var Tm=T({atan2_:GG});function WG(r){let t={x:v(r,"x","atanh")};return D.runKernel(Js,t)}var Am=T({atanh_:WG});function jG(r,e,t,n,o="NHWC",s){let a=r[3],i=[...e,a],l=MN(o);return wu(r,i,t,s,n,null,null,l)}function xw(r,e,t,n,o,s,a="channelsLast"){let[i,l]=ng(e),u;if(a==="channelsLast")u=[i,l,r[3],r[3]];else if(a==="channelsFirst")u=[i,l,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return wu(r,u,t,n,o,s,!1,a)}function UG(r,e,t,n,o,s,a="NDHWC"){let[i,l,u]=yw(e),c,p;if(a==="NDHWC")p="channelsLast",c=[i,l,u,r[4],r[4]];else if(a==="NCDHW")p="channelsFirst",c=[i,l,u,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return LN(r,c,t,n,o,!1,p,s)}function wu(r,e,t,n,o,s,a=!1,i="channelsLast"){let[l,u,c,p]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,p]=r;else if(i==="channelsFirst")[l,p,u,c]=r;else throw new Error(`Unknown dataFormat ${i}`);let[m,f,,d]=e,[h,g]=ng(t),[x,w]=ng(n),b=Kc(m,x),k=Kc(f,w),{padInfo:_,outHeight:A,outWidth:N}=HG(o,u,c,h,g,b,k,s,i),$=a?d*p:d,F;return i==="channelsFirst"?F=[l,$,A,N]:i==="channelsLast"&&(F=[l,A,N,$]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:p,outHeight:A,outWidth:N,outChannels:$,padInfo:_,strideHeight:h,strideWidth:g,filterHeight:m,filterWidth:f,effectiveFilterHeight:b,effectiveFilterWidth:k,dilationHeight:x,dilationWidth:w,inShape:r,outShape:F,filterShape:e}}function LN(r,e,t,n,o,s=!1,a="channelsLast",i){let[l,u,c,p,m]=[-1,-1,-1,-1,-1];if(a==="channelsLast")[l,u,c,p,m]=r;else if(a==="channelsFirst")[l,m,u,c,p]=r;else throw new Error(`Unknown dataFormat ${a}`);let[f,d,h,,g]=e,[x,w,b]=yw(t),[k,_,A]=yw(n),N=Kc(f,k),$=Kc(d,_),F=Kc(h,A),{padInfo:M,outDepth:V,outHeight:W,outWidth:U}=qG(o,u,c,p,x,w,b,N,$,F,i),H=s?g*m:g,q;return a==="channelsFirst"?q=[l,H,V,W,U]:a==="channelsLast"&&(q=[l,V,W,U,H]),{batchSize:l,dataFormat:a,inDepth:u,inHeight:c,inWidth:p,inChannels:m,outDepth:V,outHeight:W,outWidth:U,outChannels:H,padInfo:M,strideDepth:x,strideHeight:w,strideWidth:b,filterDepth:f,filterHeight:d,filterWidth:h,effectiveFilterDepth:N,effectiveFilterHeight:$,effectiveFilterWidth:F,dilationDepth:k,dilationHeight:_,dilationWidth:A,inShape:r,outShape:q,filterShape:e}}function KG(r,e,t,n,o){n==null&&(n=bw(r,e,t));let s=r[0],a=r[1],i=ku((s-e+2*n)/t+1,o),l=ku((a-e+2*n)/t+1,o);return[i,l]}function XG(r,e,t,n,o,s){o==null&&(o=bw(r,e,n));let a=r[0],i=r[1],l=r[2],u=ku((a-e+2*o)/n+1,s),c=ku((i-e+2*o)/n+1,s),p=ku((l-e+2*o)/n+1,s);return[u,c,p,t]}function bw(r,e,t,n=1){let o=Kc(e,n);return Math.floor((r[0]*(t-1)-t+o)/2)}function ng(r){return typeof r=="number"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function yw(r){return typeof r=="number"?[r,r,r]:r}function Kc(r,e){return e<=1?r:r+(r-1)*(e-1)}function HG(r,e,t,n,o,s,a,i,l){let u,c,p;if(typeof r=="number"){u={top:r,bottom:r,left:r,right:r,type:r===0?"VALID":"NUMBER"};let f=KG([e,t],s,n,r,i);c=f[0],p=f[1]}else if(r==="same"){c=Math.ceil(e/n),p=Math.ceil(t/o);let m=Math.max(0,(c-1)*n+s-e),f=Math.max(0,(p-1)*o+a-t),d=Math.floor(m/2),h=m-d,g=Math.floor(f/2),x=f-g;u={top:d,bottom:h,left:g,right:x,type:"SAME"}}else if(r==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((e-s+1)/n),p=Math.ceil((t-a+1)/o);else if(typeof r=="object"){let m=l==="channelsLast"?r[1][0]:r[2][0],f=l==="channelsLast"?r[1][1]:r[2][1],d=l==="channelsLast"?r[2][0]:r[3][0],h=l==="channelsLast"?r[2][1]:r[3][1];u={top:m,bottom:f,left:d,right:h,type:m===0&&f===0&&d===0&&h===0?"VALID":"EXPLICIT"},c=ku((e-s+m+f)/n+1,i),p=ku((t-a+d+h)/o+1,i)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:u,outHeight:c,outWidth:p}}function qG(r,e,t,n,o,s,a,i,l,u,c){let p,m,f,d;if(typeof r=="number"){p={top:r,bottom:r,left:r,right:r,front:r,back:r,type:r===0?"VALID":"NUMBER"};let g=XG([e,t,n,1],i,1,o,r,c);m=g[0],f=g[1],d=g[2]}else if(r==="same"){m=Math.ceil(e/o),f=Math.ceil(t/s),d=Math.ceil(n/a);let h=(m-1)*o+i-e,g=(f-1)*s+l-t,x=(d-1)*a+u-n,w=Math.floor(h/2),b=h-w,k=Math.floor(g/2),_=g-k,A=Math.floor(x/2),N=x-A;p={top:k,bottom:_,left:A,right:N,front:w,back:b,type:"SAME"}}else if(r==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},m=Math.ceil((e-i+1)/o),f=Math.ceil((t-l+1)/s),d=Math.ceil((n-u+1)/a);else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:p,outDepth:m,outHeight:f,outWidth:d}}function ku(r,e){if(!e)return Math.trunc(r);switch(e){case"round":return Math.round(r);case"ceil":return Math.ceil(r);case"floor":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${e}`)}}function Ln(r){let[e,t,n]=ng(r);return e===1&&t===1&&n===1}function kr(r,e){return Ln(r)||Ln(e)}function MN(r){if(r==="NHWC")return"channelsLast";if(r==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${r}`)}function YG(r,e){let n={x:v(r,"x","reshape","string_or_numeric")},o={shape:e};return D.runKernel(ds,n,o)}var L=T({reshape_:YG});function ZG(r,e,t,n,o){let s=v(r,"x","avgPool","float32"),a=1;E(kr(t,a),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`);let i=s,l=!1;s.rank===3&&(l=!0,i=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),E(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),o!=null&&E(nt(n),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`);let u={x:i},c={filterSize:e,strides:t,pad:n,dimRoundingMode:o},p=D.runKernel(Kn,u,c);return p=oe(p,s.dtype),l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var wa=T({avgPool_:ZG});function JG(r,e,t,n,o,s="NDHWC"){let a=v(r,"x","avgPool3d","float32"),i=a,l=!1;a.rank===4&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),E(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),E(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),o!=null&&E(nt(n),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`);let u={x:i},c={filterSize:e,strides:t,pad:n,dimRoundingMode:o,dataFormat:s},p=D.runKernel(ta,u,c);return p=oe(p,i.dtype),l?L(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Em=T({avgPool3d_:JG});function QG(r,e=0){E(r.length>=1,()=>"Pass at least one tensor to concat");let t=ha(r,"tensors","concat","string_or_numeric");if(t[0].dtype==="complex64"&&t.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),t.length===1)return Pn(t[0]);let n=t,o={axis:e};return D.runKernel(ls,n,o)}var Ze=T({concat_:QG});function eW(r){let t={x:v(r,"x","sigmoid")};return D.runKernel(Ao,t)}var qr=T({sigmoid_:eW});function tW(r,e,t){let n=v(r,"x","slice","string_or_numeric");if(n.rank===0)throw new Error("Slicing scalar is not possible");let o={x:n},s={begin:e,size:t};return D.runKernel(gs,o,s)}var Re=T({slice_:tW});function rW(r){let t={x:v(r,"x","tanh")};return D.runKernel(Oo,t)}var Oi=T({tanh_:rW});function nW(r,e,t,n,o,s){let a=v(r,"forgetBias","basicLSTMCell"),i=v(e,"lstmKernel","basicLSTMCell"),l=v(t,"lstmBias","basicLSTMCell"),u=v(n,"data","basicLSTMCell"),c=v(o,"c","basicLSTMCell"),p=v(s,"h","basicLSTMCell"),m=Ze([u,p],1),f=We(m,i),d=ee(f,l),h=d.shape[0],g=d.shape[1]/4,x=[h,g],w=Re(d,[0,0],x),b=Re(d,[0,g],x),k=Re(d,[0,g*2],x),_=Re(d,[0,g*3],x),A=ee(P(qr(w),Oi(b)),P(c,qr(ee(a,k)))),N=P(Oi(A),qr(_));return[A,N]}var oW=T({basicLSTMCell_:nW});function sW(r,e,t){let n=v(r,"x","batchToSpaceND"),o=e.reduce((i,l)=>i*l);E(n.rank>=1+e.length,()=>`input rank is ${n.rank} but should be > than blockShape.length ${e.length}`),E(t.length===e.length,()=>`crops.length is ${t.length} but should be equal to blockShape.length ${e.length}`),E(n.shape[0]%o==0,()=>`input tensor batch is ${n.shape[0]} but is not divisible by the product of the elements of blockShape ${e.join(" * ")} === ${o}`);let s={x:n},a={blockShape:e,crops:t};return D.runKernel(ra,s,a)}var ka=T({batchToSpaceND_:sW});function zN(r){let e;return r.rank===0||r.rank===1?e=L(r,[1,1,1,r.size]):r.rank===2?e=L(r,[1,1,r.shape[0],r.shape[1]]):r.rank===3?e=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]):e=r,e}function iW(r,e,t,n,o,s){s==null&&(s=.001);let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;o!=null&&(u=v(o,"scale","batchNorm"));let c;n!=null&&(c=v(n,"offset","batchNorm")),E(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),E(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),E(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let m={x:zN(a),scale:u,offset:c,mean:i,variance:l},f={varianceEpsilon:s},d=D.runKernel(io,m,f);return L(d,a.shape)}var Lo=T({batchNorm_:iW});function aW(r,e,t,n,o,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;o!=null&&(u=v(o,"scale","batchNorm"));let c;return n!=null&&(c=v(n,"offset","batchNorm")),E(a.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${a.rank}.`),E(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),E(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&E(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&E(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Lo(a,i,l,c,u,s)}var ww=T({batchNorm2d_:aW});function lW(r,e,t,n,o,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;o!=null&&(u=v(o,"scale","batchNorm"));let c;return n!=null&&(c=v(n,"offset","batchNorm")),E(a.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${a.rank}.`),E(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),E(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&E(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&E(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Lo(a,i,l,c,u,s)}var kw=T({batchNorm3d_:lW});function uW(r,e,t,n,o,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;o!=null&&(u=v(o,"scale","batchNorm"));let c;return n!=null&&(c=v(n,"offset","batchNorm")),E(a.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${a.rank}.`),E(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),E(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&E(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&E(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Lo(a,i,l,c,u,s)}var _w=T({batchNorm4d_:uW});function cW(r,e,t){let n=v(r,"x","bincount"),o=v(e,"weights","bincount");E(n.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${n.dtype}`),E(t>=0,()=>`size must be non-negative, but got ${t}.`),E(o.size===n.size||o.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${n.shape}, weights shape: ${o.shape}.`);let s={x:n,weights:o},a={size:t};return D.runKernel(Vl,s,a)}var vw=T({bincount_:cW});function pW(r,e){let t=v(r,"broadcastTo","x"),n=t.shape;if(e.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${e}].`);if(e.length<t.rank)throw new Error(`broadcastTo(): shape.length=${e.length} < input.rank=${t.rank}.`);if(e.length>t.rank){let u=t.shape.slice();for(;u.length<e.length;)u.unshift(1);t=L(t,u)}let o=t.shape,s=Array.from(e);for(let u=e.length-1;u>=0;u--)if(o[u]===e[u])s[u]=1;else if(t.shape[u]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${e}].`);if(s.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Pn(t);let i={x:t},l={reps:s};return D.runKernel(kn,i,l)}var al=T({broadcastTo_:pW});function mW(r){let t={x:v(r,"x","ceil")};return D.runKernel(Yn,t)}var Dm=T({ceil_:mW});function fW(r,e,t){let n=v(r,"x","clipByValue");E(e<=t,()=>`Error in clip: min (${e}) must be less than or equal to max (${t}).`);let o={x:n},s={clipValueMin:e,clipValueMax:t};return D.runKernel(Rn,o,s)}var ir=T({clipByValue_:fW});function dW(r){return Ze(r,0)}var Cw=T({concat1d_:dW});function hW(r,e){return Ze(r,e)}var Iw=T({concat2d_:hW});function gW(r,e){return Ze(r,e)}var Nw=T({concat3d_:gW});function xW(r,e){return Ze(r,e)}var Sw=T({concat4d_:xW});function yW(r,e,t,n,o="NHWC",s=[1,1],a){let i=v(r,"x","conv2d"),l=v(e,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),E(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),E(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),a!=null&&E(nt(n),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let p=o==="NHWC"?u.shape[3]:u.shape[1];E(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),E(kr(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`);let m={x:u,filter:l},f={strides:t,pad:n,dataFormat:o,dilations:s,dimRoundingMode:a},d=D.runKernel(Zn,m,f);return c?L(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Kr=T({conv2d_:yW});function bW(r,e,t,n,o="NWC",s=1,a){let i=v(r,"x","conv1d"),l=v(e,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1]])),E(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),E(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),a!=null&&E(nt(n),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`),E(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),E(kr(t,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${t} and dilation '${s}'`),E(o==="NWC",()=>`Error in conv1d: got dataFormat of ${o} but only NWC is currently supported.`);let p=L(l,[1,l.shape[0],l.shape[1],l.shape[2]]),m=L(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=Kr(m,p,[1,t],n,"NHWC",[1,s],a);return c?L(g,[g.shape[2],g.shape[3]]):L(g,[g.shape[0],g.shape[2],g.shape[3]])}var _u=T({conv1d_:bW});function wW(r,e,t,n,o,s="NHWC",a){E(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let i=r,l=e,u=!1;e.rank===3&&(u=!0,l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]),i=[1,r[0],r[1],r[2]]),E(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),E(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),E(t.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${t.rank}`);let c=s==="NHWC"?i[3]:i[1],p=s==="NHWC"?l.shape[3]:l.shape[1];E(c===t.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${t.shape[2]}.`),E(p===t.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${t.shape[3]}.`),a!=null&&E(nt(o),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let m={dy:l,filter:t},f={strides:n,pad:o,dataFormat:s,dimRoundingMode:a,inputShape:i},d=D.runKernel(Jn,m,f);return u?L(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Xc=T({conv2DBackpropInput_:wW});function kW(r,e,t,n,o,s){let a=v(r,"x","conv2dTranspose"),i=v(e,"filter","conv2dTranspose");return Xc(t,a,i,n,o,"NHWC",s)}var vu=T({conv2dTranspose_:kW});function _W(r,e,t,n,o="NDHWC",s=[1,1,1]){let a=v(r,"x","conv3d"),i=v(e,"filter","conv3d"),l=a,u=!1;a.rank===4&&(u=!0,l=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),E(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),E(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),E(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),E(kr(t,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),E(o==="NDHWC",()=>`Error in conv3d: got dataFormat of ${o} but only NDHWC is currently supported.`);let c={x:l,filter:i},p={strides:t,pad:n,dataFormat:o,dilations:s},m=D.runKernel(oa,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var $m=T({conv3d_:_W});function vW(r,e,t,n,o){E(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let s=r,a=e,i=!1;e.rank===4&&(i=!0,a=L(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]),s=[1,r[0],r[1],r[2],r[3]]);let l=s[4],u=a.shape[4];E(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),E(a.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${a.rank}`),E(t.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${t.rank}`),E(l===t.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${t.shape[3]}.`),E(u===t.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${t.shape[4]}.`);let c={dy:a,filter:t},p={pad:o,strides:n,inputShape:s},m=D.runKernel(Ul,c,p);return i?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var og=T({conv3DBackpropInput_:vW});function CW(r,e,t,n,o){let s=v(r,"x","conv3dTranspose"),a=v(e,"filter","conv3dTranspose");return og(t,s,a,n,o)}var IW=T({conv3dTranspose_:CW});function NW(r){let t={x:v(r,"x","cos")};return D.runKernel(Qn,t)}var _a=T({cos_:NW});function SW(r){let t={x:v(r,"x","cosh")};return D.runKernel(ei,t)}var Cu=T({cosh_:SW});function TW(r,e=0,t=!1,n=!1){let s={x:v(r,"x","cumsum")},a={axis:e,exclusive:t,reverse:n};return D.runKernel(eo,s,a)}var Iu=T({cumsum_:TW});function AW(r,e,t,n=!1){let o=v(r,"x","denseBincount"),s=v(e,"weights","denseBincount");E(o.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${o.dtype}`),E(o.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${o.rank}.`),E(t>=0,()=>`size must be non-negative, but got ${t}.`),E(s.size===o.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${o.shape}, weights shape: ${s.shape}.`);let a={x:o,weights:s},i={size:t,binaryOutput:n};return D.runKernel(Hl,a,i)}var Tw=T({denseBincount_:AW});function EW(r,e,t="NHWC"){let n=v(r,"x","depthToSpace"),o=t==="NHWC"?n.shape[1]:n.shape[2],s=t==="NHWC"?n.shape[2]:n.shape[3],a=t==="NHWC"?n.shape[3]:n.shape[1];E(o*e>=0,()=>`Negative dimension size caused by overflow when multiplying
${o} and ${e} for depthToSpace with input shape
${n.shape}`),E(s*e>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${e} for depthToSpace with input shape
${n.shape}`),E(a%(e*e)==0,()=>`Dimension size must be evenly divisible by ${e*e} but is ${a} for depthToSpace with input shape ${n.shape}`);let i={x:n},l={blockSize:e,dataFormat:t};return D.runKernel(ri,i,l)}var Rm=T({depthToSpace_:EW});function DW(r,e,t,n,o="NHWC",s=[1,1],a){let i=v(r,"x","depthwiseConv2d"),l=v(e,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),E(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),E(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),E(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),a!=null&&E(nt(n),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let p={x:u,filter:l},m={strides:t,pad:n,dataFormat:o,dilations:s,dimRoundingMode:a},f=D.runKernel(to,p,m);return c?L(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Is=T({depthwiseConv2d_:DW});function $W(r){let t={x:v(r,"x","diag")};return D.runKernel(Xl,t)}var RW=T({diag_:$W});function FW(r,e,t,n,o=[1,1],s="NHWC"){let a=v(r,"x","dilation2d"),i=v(e,"filter","dilation2d");E(a.rank===3||a.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${a.rank}.`),E(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),E(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=a,u=!1;a.rank===3&&(l=L(a,[1,a.shape[0],a.shape[1],a.shape[2]]),u=!0);let c={x:l,filter:i},p={strides:t,pad:n,dilations:o},m=D.runKernel(sa,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Fm=T({dilation2d_:FW});function OW(r,e){let t=r.length,n=[];for(let o=0;o<t;o++){let s=t-1-o,a=r[s]||1;(e[e.length-1-o]||1)>1&&a===1&&n.unshift(s)}return n}function _t(r,e){let t=[];for(let n=0;n<e.length;n++){let o=r[r.length-n-1],s=e.length-n-1,a=e[s];(o==null||o===1&&a>1)&&t.unshift(s)}return t}function Be(r,e){let t=[],n=Math.max(r.length,e.length);for(let o=0;o<n;o++){let s=r[r.length-o-1];s==null&&(s=1);let a=e[e.length-o-1];if(a==null&&(a=1),s===1)t.unshift(a);else if(a===1)t.unshift(s);else if(s!==a){let i=`Operands could not be broadcast together with shapes ${r} and ${e}.`;throw Error(i)}else t.unshift(s)}return t}function PW(r,e){let t=v(r,"a","equal"),n=v(e,"b","equal");[t,n]=Ge(t,n),Be(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(si,o)}var vn=T({equal_:PW});function MW(r,e,t){let n=v(e,"a","where"),o=v(t,"b","where"),s=v(r,"condition","where","bool"),a=Be(n.shape,o.shape),i=al(n,a),l=al(o,a);s.rank===1&&E(s.shape[0]===n.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&Ct(s.shape,l.shape,"Error in where: ");let u={condition:s,t:i,e:l};return D.runKernel(hs,u)}var $t=T({where_:MW});function LW(r){let t={x:v(r,"x","zerosLike")};return D.runKernel(bs,t)}var Ce=T({zerosLike_:LW});function zW(r,e){let t=v(r,"a","div"),n=v(e,"b","div");[t,n]=Ge(t,n);let o=me(t,n),s=Ce(o),a=vn(n,s);return $t(a,s,o)}var Om=T({divNoNan_:zW});function BW(r,e){let t=v(r,"t1","dot"),n=v(e,"t2","dot");E((t.rank===1||t.rank===2)&&(n.rank===1||n.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${t.rank} and ${n.rank}.`);let o=t.rank===1?t.size:t.shape[1],s=n.rank===1?n.size:n.shape[0];if(E(o===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${o} and ${s}.`),t.rank===1&&n.rank===1){let a=L(t,[1,-1]),i=L(n,[-1,1]),l=We(a,i);return L(l,[])}else if(t.rank===1&&n.rank===2){let a=L(t,[1,-1]),i=L(n,[n.shape[0],n.shape[1]]),l=We(a,i);return L(l,[l.size])}else if(t.rank===2&&n.rank===1){let a=L(n,[-1,1]),i=We(t,a);return L(i,[i.size])}else{let a=L(n,[n.shape[0],n.shape[1]]);return We(t,a)}}var Aw=T({dot_:BW});function VW(r){let t={x:v(r,"x","elu")};return D.runKernel(ni,t)}var Ns=T({elu_:VW});function GW(r){let e=v(r,"x","erf");E(e.dtype==="int32"||e.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),e.dtype==="int32"&&(e=oe(e,"float32"));let t={x:e};return D.runKernel(oi,t)}var Pm=T({erf_:GW});function WW(r){let t={x:v(r,"x","exp")};return D.runKernel(no,t)}var Zt=T({exp_:WW});function jW(r,e=0){let t=v(r,"x","expandDims","string_or_numeric");E(e<=t.rank,()=>"Axis must be <= rank of the tensor");let n={input:t},o={dim:e};return D.runKernel(us,n,o)}var ar=T({expandDims_:jW});function UW(r){let t={x:v(r,"x","expm1")};return D.runKernel(ii,t)}var Mm=T({expm1_:UW});function HW(r,e){let t=v(r,"x","tile","string_or_numeric");E(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of reps ${e}.`);let n={x:t},o={reps:e};return D.runKernel(kn,n,o)}var zn=T({tile_:HW});function qW(r,e,t,n="float32"){e==null&&(e=r);let o=ve([r,e],n),s=r<=e?r:e;for(let i=0;i<s;++i)o.set(1,i,i);let a=L(o.toTensor(),[r,e]);if(t==null)return a;if(t.length===1)return zn(ar(a,0),[t[0],1,1]);if(t.length===2)return zn(ar(ar(a,0),0),[t[0],t[1],1,1]);if(t.length===3)return zn(ar(ar(ar(a,0),0),0),[t[0],t[1],t[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${t.length}D.`)}var Yc=T({eye_:qW});function va(r,e,t){let n={shape:r,value:e,dtype:t};return D.runKernel(ia,{},n)}function KW(r){let t={x:v(r,"x","floor")};return D.runKernel(oo,t)}var Ss=T({floor_:KW});function XW(r,e,t=0,n=0){let o=v(r,"x","gather"),s=v(e,"indices","gather","int32"),a={x:o,indices:s},i={axis:t,batchDims:n};return D.runKernel(cs,a,i)}var zo=T({gather_:XW});function YW(r,e){let t=v(r,"a","greater"),n=v(e,"b","greater");[t,n]=Ge(t,n),Be(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(ui,o)}var er=T({greater_:YW});function ZW(r,e){let t=v(r,"a","greaterEqual"),n=v(e,"b","greaterEqual");[t,n]=Ge(t,n),Be(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(ao,o)}var an=T({greaterEqual_:ZW});function JW(r){let t={input:v(r,"input","imag")};return D.runKernel(Ql,t)}var Nu=T({imag_:JW});function QW(r){let t={x:v(r,"x","isFinite")};return D.runKernel(ci,t)}var Ew=T({isFinite_:QW});function ej(r){let t={x:v(r,"x","isInf")};return D.runKernel(pi,t)}var Dw=T({isInf_:ej});function tj(r){let t={x:v(r,"x","isNaN")};return D.runKernel(mi,t)}var $w=T({isNaN_:tj});function rj(r,e=.2){let n={x:v(r,"x","leakyRelu")},o={alpha:e};return D.runKernel(lo,n,o)}var Ca=T({leakyRelu_:rj});function nj(r,e){let t=v(r,"a","less"),n=v(e,"b","less");[t,n]=Ge(t,n),Be(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(fi,o)}var Su=T({less_:nj});function oj(r,e){let t=v(r,"a","lessEqual"),n=v(e,"b","lessEqual");[t,n]=Ge(t,n),Be(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(di,o)}var Bn=T({lessEqual_:oj});function Rw(r,e,t){if(t<=0)throw new Error("The number of values should be positive.");let n={start:r,stop:e,num:t};return D.runKernel(eu,{},n)}function sj(r,e=5,t=1,n=1,o=.5){let s=v(r,"x","localResponseNormalization");E(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),E(nt(e),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${e}.`);let a=s,i=!1;s.rank===3&&(i=!0,a=L(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:a},u={depthRadius:e,bias:t,alpha:n,beta:o},c=D.runKernel(aa,l,u);return i?L(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Lm=T({localResponseNormalization_:sj});function ij(r){let t={x:v(r,"x","log")};return D.runKernel(uo,t)}var lr=T({log_:ij});function aj(r){let t={x:v(r,"x","log1p")};return D.runKernel(hi,t)}var Tu=T({log1p_:aj});function lj(r){return E(Us(r),()=>"The f passed in grad(f) must be a function"),(e,t)=>{let n=v(e,"x","tf.grad","string_or_numeric"),o=t!=null?v(t,"dy","tf.grad"):null;return D.tidy(()=>{let{value:s,grads:a}=D.gradients(()=>r(n),[n],o);return o!=null&&Ct(s.shape,o.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),sg(a),a[0]})}}function uj(r){return E(Us(r),()=>"The f passed in grads(f) must be a function"),(e,t)=>{E(Array.isArray(e),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let n=ha(e,"args","tf.grads","string_or_numeric"),o=t!=null?v(t,"dy","tf.grads"):null;return D.tidy(()=>{let{value:s,grads:a}=D.gradients(()=>r(...n),n,o);return o!=null&&Ct(s.shape,o.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),sg(a),a})}}function cj(r){return E(Us(r),()=>"The f passed in valueAndGrad(f) must be a function"),(e,t)=>{E(e instanceof Ve,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),E(t==null||t instanceof Ve,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:n,value:o}=D.gradients(()=>r(e),[e],t);return sg(n),{grad:n[0],value:o}}}function pj(r){return E(Us(r),()=>"The f passed in valueAndGrads(f) must be a function"),(e,t)=>{E(Array.isArray(e)&&e.every(o=>o instanceof Ve),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),E(t==null||t instanceof Ve,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let n=D.gradients(()=>r(...e),e,t);return t!=null&&Ct(n.value.shape,t.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),sg(n.grads),n}}function ig(r,e){E(Us(r),()=>"The f passed in variableGrads(f) must be a function"),E(e==null||Array.isArray(e)&&e.every(u=>u instanceof rl),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let t=e!=null;if(!t){e=[];for(let u in D.registeredVariables)e.push(D.registeredVariables[u])}let n=t?e.filter(u=>!u.trainable):null,o=e.length;e=e.filter(u=>u.trainable),E(e.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${o} variables is trainable.`);let s=!0,{value:a,grads:i}=D.gradients(r,e,null,s);E(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),E(a.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${a.rank} tensor`);let l={};return e.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),n!=null&&n.forEach(u=>l[u.name]=null),{value:a,grads:l}}function Xr(r){return D.customGrad(r)}function sg(r){if(r.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function mj(r){let t={x:v(r,"x","neg")};return D.runKernel(ps,t)}var He=T({neg_:mj});function fj(r){let t={x:v(r,"x","softplus")};return D.runKernel(Ti,t)}var Ts=T({softplus_:fj});function dj(r){let e=v(r,"x","logSigmoid");return Xr(n=>({value:He(Ts(He(n))),gradFunc:a=>P(a,qr(He(n)))}))(e)}var Fw=T({logSigmoid_:dj});function hj(r,e=null,t=!1){let o={x:v(r,"x","max")},s={reductionIndices:e,keepDims:t};return D.runKernel(co,o,s)}var ur=T({max_:hj});function gj(r,e){let t=v(r,"a","sub"),n=v(e,"b","sub");[t,n]=Ge(t,n);let o={a:t,b:n};return D.runKernel(Fo,o)}var ce=T({sub_:gj});function xj(r,e=null,t=!1){let n=v(r,"x","sum");n.dtype==="bool"&&(n=oe(n,"int32"));let o={x:n},s={axis:e,keepDims:t};return D.runKernel(Do,o,s)}var ge=T({sum_:xj});function yj(r,e=-1){let t=v(r,"logits","logSoftmax");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and axis was ${e}`);return Xr((o,s)=>{let a=!0,i=ur(o,e,!0),l=ce(o,i),u=ce(oe(l,"float32"),lr(ge(Zt(l),e,a)));return s([u]),{value:u,gradFunc:(p,m)=>{let[f]=m,d=!0,h=Zt(f);return ce(p,P(ge(p,e,d),h))}}})(t)}var Au=T({logSoftmax_:yj});function Ow(r,e){for(let t=0;t<r.length;++t)if(r[r.length-t-1]!==e-1-t)return!1;return!0}function BN(r,e,t){let n=r.length+e.length,o=[],s=0,a=0;for(let i=0;i<n;i++)t.indexOf(i)===-1?o.push(r[s++]):o.push(e[a++]);return o}function Pw(r,e){let t=[],n=r.length;for(let s=0;s<n;s++)e.indexOf(s)===-1&&t.push(r[s]);let o=e.map(s=>r[s]);return[t,o]}function Bo(r,e){let t=e.map(n=>1);return BN(r,t,e)}function bj(r,e,t){E(Ow(e,t),()=>`${r} supports only inner-most axes for now. Got axes ${e} and rank-${t} input.`)}function Mw(r,e){if(Ow(r,e))return null;let t=[];for(let n=0;n<e;++n)r.indexOf(n)===-1&&t.push(n);return r.forEach(n=>t.push(n)),t}function zm(r){return r.map((e,t)=>[t,e]).sort((e,t)=>e[1]-t[1]).map(e=>e[0])}function wj(r,e){let t=[];for(let n=e-r;n<e;++n)t.push(n);return t}function kj(r,e=null,t=!1){let n=v(r,"x","logSumExp"),o=Qt(e,n.shape),s=ur(n,o,!0),a=ce(n,s),i=Zt(a),l=ge(i,o),u=lr(l),c=ee(L(s,u.shape),u);if(t){let p=Bo(c.shape,o);return L(c,p)}return c}var Bm=T({logSumExp_:kj});function _j(r,e){let t=v(r,"a","logicalAnd","bool"),n=v(e,"b","logicalAnd","bool");Be(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(gi,o)}var hr=T({logicalAnd_:_j});function vj(r){let t={x:v(r,"x","logicalNot","bool")};return D.runKernel(Ja,t)}var Ia=T({logicalNot_:vj});function Cj(r,e){let t=v(r,"a","logicalOr","bool"),n=v(e,"b","logicalOr","bool");Be(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(Qa,o)}var Eu=T({logicalOr_:Cj});function Ij(r,e){let t=v(r,"a","logicalXor","bool"),n=v(e,"b","logicalXor","bool");return Be(t.shape,n.shape),hr(Eu(r,e),Ia(hr(r,e)))}var Lw=T({logicalXor_:Ij});function Nj(r,e,t,n,o){let s=v(r,"x","maxPool"),a=1,i=s,l=!1;s.rank===3&&(l=!0,i=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),E(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),E(kr(t,a),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`),o!=null&&E(nt(n),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`);let u={x:i},c={filterSize:e,strides:t,pad:n,dimRoundingMode:o},p=D.runKernel(mo,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Na=T({maxPool_:Nj});function Sj(r,e=[1,1,1],t,n,o,s="NDHWC"){let a=v(r,"x","maxPool3d"),i=a,l=!1;a.rank===4&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),E(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),E(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),o!=null&&E(nt(n),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${n}.`);let u={x:i},c={filterSize:e,strides:t,pad:n,dimRoundingMode:o,dataFormat:s},p=D.runKernel(la,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Vm=T({maxPool3d_:Sj});function Tj(r,e,t,n,o=!1){let a={x:v(r,"x","maxPoolWithArgmax")},i={filterSize:e,strides:t,pad:n,includeBatchInIndex:o},l=D.runKernel(ou,a,i);return{result:l[0],indexes:l[1]}}var zw=T({maxPoolWithArgmax_:Tj});function Aj(r,e){let t=v(r,"a","maximum"),n=v(e,"b","maximum");[t,n]=Ge(t,n),t.dtype==="bool"&&(t=oe(t,"int32"),n=oe(n,"int32")),Be(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(po,o)}var Yr=T({maximum_:Aj});function Ej(r,e=null,t=!1){let o={x:v(r,"x","mean")},s={axis:e,keepDims:t};return D.runKernel(fo,o,s)}var ht=T({mean_:Ej});function Dj(r,e=null,t=!1){let o={x:v(r,"x","min")},s={axis:e,keepDims:t};return D.runKernel(ho,o,s)}var Pi=T({min_:Dj});function $j(r,e){let t=v(r,"a","minimum"),n=v(e,"b","minimum");[t,n]=Ge(t,n),t.dtype==="bool"&&(t=oe(t,"int32"),n=oe(n,"int32")),Be(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(go,o)}var As=T({minimum_:$j});function Rj(r,e,t){E(t==="reflect"||t==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${t}.`);let n=v(r,"x","mirrorPad");if(n.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");E(e.length===n.rank,()=>`Padding doesn't match input. Must be ${n.rank}. Got ${e.length}.`);let o=t==="reflect"?1:0;for(let i=0;i<n.rank;i++)E(e[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),E(e[i][0]>=0&&e[i][0]<=n.shape[i]-o&&e[i][1]>=0&&e[i][1]<=n.shape[i]-o,()=>`Padding in dimension ${i} cannot be greater than or equal to ${n.shape[i]-o} or less than 0 for input of shape ${n.shape}`);let s={paddings:e,mode:t},a={x:n};return D.runKernel(ua,a,s)}var Gm=T({mirrorPad_:Rj});function Fj(r,e){let t=v(r,"a","mod"),n=v(e,"b","mod");[t,n]=Ge(t,n);let o={a:t,b:n};return D.runKernel(xi,o)}var Wm=T({mod_:Fj});function Oj(r){let e=v(r,"x","square"),t={};return D.runKernel("Square",{x:e},t)}var Oe=T({square_:Oj});function Pj(r,e=null,t=!1){r=v(r,"x","moments");let n=Qt(e,r.shape),o=ht(r,n,t),s=o.shape;t||(s=Bo(o.shape,n));let a=Oe(ce(oe(r,"float32"),L(o,s))),i=ht(a,n,t);return{mean:o,variance:i}}var Zc=T({moments_:Pj});function Mj(r,e,t,n){let o=v(e,"data","multiRNNCell"),s=ha(t,"c","multiRNNCell"),a=ha(n,"h","multiRNNCell"),i=o,l=[];for(let p=0;p<r.length;p++){let m=r[p](i,s[p],a[p]);l.push(m[0]),l.push(m[1]),i=m[1]}let u=[],c=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),c.push(l[p+1]);return[u,c]}var Lj=T({multiRNNCell_:Mj});function zj(r,e,t,n=!1){let o=v(r,"logits","multinomial"),s=o.size,a=o.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(a>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${a}`);t=t||Math.random();let l={logits:a===1?L(o,[1,-1]):o},u={numSamples:e,seed:t,normalized:n},c=D.runKernel(su,l,u);return a===1?L(c,[c.size]):c}var Bw=T({multinomial_:zj});function Bj(r,e){let t=v(r,"a","notEqual"),n=v(e,"b","notEqual");[t,n]=Ge(t,n),Be(t.shape,n.shape);let o={a:t,b:n};return D.runKernel(yi,o)}var Vo=T({notEqual_:Bj});function gt(r,e="float32"){if(e==="complex64"){let n=gt(r,"float32"),o=gt(r,"float32");return _n(n,o)}let t=Fc(ct(r),e);return D.makeTensor(t,r,e)}function Nr(r,e="float32"){if(e==="complex64"){let n=Nr(r,"float32"),o=gt(r,"float32");return _n(n,o)}let t=pm(ct(r),e);return D.makeTensor(t,r,e)}function Vj(r){let t={x:v(r,"x","onesLike")};return D.runKernel(ms,t)}var tr=T({onesLike_:Vj});function Gj(r,e){let t=v(r,"v1","outerProduct"),n=v(e,"v2","outerProduct");E(t.rank===1&&n.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${t.rank} and ${n.rank}.`);let o=L(t,[-1,1]),s=L(n,[1,-1]);return We(o,s)}var Wj=T({outerProduct_:Gj});function jj(r,e,t=0){let n=v(r,"x","pad");if(n.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let o={paddings:e,constantValue:t},s={x:n};return D.runKernel(bo,s,o)}var Fr=T({pad_:jj});function Uj(r,e,t=0){return E(e.length===2,()=>"Invalid number of paddings. Must be length of 2."),Fr(r,[e],t)}var Hj=T({pad1d_:Uj});function qj(r,e,t=0){return E(e.length===2&&e[0].length===2&&e[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Fr(r,e,t)}var Kj=T({pad2d_:qj});function Xj(r,e,t=0){return E(e.length===3&&e[0].length===2&&e[1].length===2&&e[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Fr(r,e,t)}var Yj=T({pad3d_:Xj});function Zj(r,e,t=0){return E(e.length===4&&e[0].length===2&&e[1].length===2&&e[2].length===2&&e[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Fr(r,e,t)}var Jj=T({pad4d_:Zj});function Qj(r,e,t){let n=v(r,"x","spaceToBatchND");E(n.rank>=1+e.length,()=>`input rank ${n.rank} should be > than [blockShape] ${e.length}`),E(t.length===e.length,()=>`paddings.shape[0] ${t.length} must be equal to [blockShape] ${e.length}`),E(n.shape.reduce((a,i,l)=>l>0&&l<=e.length?a&&(i+t[l-1][0]+t[l-1][1])%e[l-1]==0:a,!0),()=>`input spatial dimensions ${n.shape.slice(1)} with paddings ${t.toString()} must be divisible by blockShapes ${e.toString()}`);let o={x:n},s={blockShape:e,paddings:t};return D.runKernel(ma,o,s)}var Sa=T({spaceToBatchND_:Qj});function r4(r,e,t,n,o,s){o==null&&(o=[1,1]),s==null&&(s=1),n===0&&(n="valid");let a=v(r,"x","maxPool"),i=a,l=!1;a.rank===3&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2]])),E(kr(s,o),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${o}'`);let u=xw(i.shape,e,s,o,n),c=[u.dilationHeight,u.dilationWidth],p;n==="same"?p=t4([u.filterHeight,u.filterWidth],c):p=[[0,0],[0,0]];let m=c[0]===1&&c[1]===1,[f,d]=e4([u.inHeight,u.inWidth],c,p),h=m?n:"valid",g=m?i:Sa(i,c,f),w=(t==="avg"?()=>wa(g,e,s,h):()=>Na(g,e,s,h))(),b=m?w:ka(w,c,d);return l?L(b,[b.shape[1],b.shape[2],b.shape[3]]):b}function e4(r,e,t){let n=t.map(c=>c[0]),o=t.map(c=>c[1]),s=r.concat(n,o),a=e.map((c,p)=>(c-s[p]%c)%c),i=o.map((c,p)=>c+a[p]),l=e.map((c,p)=>[n[p],i[p]]),u=e.map((c,p)=>[0,a[p]]);return[l,u]}function t4(r,e){let n=r.map((a,i)=>a+(a-1)*(e[i]-1)).map(a=>a-1),o=n.map(a=>Math.floor(a/2)),s=n.map((a,i)=>a-o[i]);return n.map((a,i)=>[o[i],s[i]])}var Vw=T({pool_:r4});function n4(r,e){let t=v(r,"base","pow"),n=v(e,"exp","pow");[t,n]=Ge(t,n);let o={a:t,b:n};return D.runKernel(wo,o)}var Or=T({pow_:n4});function o4(r,e){let t=v(r,"x","prelu"),n=v(e,"alpha","prelu"),o={x:t,alpha:n};return D.runKernel(ko,o)}var Ta=T({prelu_:o4});function s4(r,e=null,t=!1){let n=v(r,"x","prod");n.dtype==="bool"&&(n=oe(n,"int32"));let o={x:n},s={axis:e,keepDims:t};return D.runKernel(_i,o,s)}var Du=T({prod_:s4});function i4(r,e,t){let n=ct(r),o=null;if(t==null||t==="float32")o=new Float32Array(n);else if(t==="int32")o=new Int32Array(n);else if(t==="bool")o=new Uint8Array(n);else throw new Error(`Unknown data type ${t}`);for(let s=0;s<n;s++)o[s]=e();return D.makeTensor(o,r,t)}var a4=T({rand_:i4});var ug=Ec(tS());var Jc=class{constructor(e,t,n,o,s){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=o,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=s||Math.random();this.random=ug.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let o=this.nextVal;return this.nextVal=NaN,o}let e,t,n=!1;for(;!n;){let o,s,a;do o=2*this.random()-1,s=2*this.random()-1,a=o*o+s*s;while(a>=1||a===0);let i=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*o*i,t=this.mean+this.stdDev*s*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},Kw=class{constructor(e,t,n,o){this.alpha=e,this.beta=1/t,this.dtype=n;let s=o||Math.random();this.randu=ug.alea(s.toString()),this.randn=new Jc(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,o,s,a;for(;;){do o=this.randn.nextValue(),a=1+this.c*o;while(a<=0);if(a*=a*a,e=o*o,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),s=this.randu(),s<t||Math.log(s)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},Xw=class{constructor(e=0,t=1,n,o){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,o==null&&(o=Math.random()),typeof o=="number"&&(o=o.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=ug.alea(o)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function d4(r,e,t=1,n="float32",o){if(t==null&&(t=1),n==null&&(n="float32"),n!=="float32"&&n!=="int32")throw new Error(`Unsupported data type ${n}`);let s=new Kw(e,t,n,o),a=ve(r,n);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var h4=T({randomGamma_:d4});function g4(r,e=0,t=1,n,o){if(n!=null&&n==="bool")throw new Error(`Unsupported data type ${n}`);let s=new Jc(e,t,n,!1,o),a=ve(r,n);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var cg=T({randomNormal_:g4});function x4(r,e=0,t=1,n="float32",o){let s=ve(r,n),a=new Xw(e,t,null,o);for(let i=0;i<s.values.length;i++)s.values[i]=a.nextValue();return s.toTensor()}var Es=T({randomUniform_:x4});function Qc(r,e,t=1,n="float32"){if(t===0)throw new Error("Cannot have a step of zero");let o={start:r,stop:e,step:t,dtype:n};return D.runKernel(ca,{},o)}function y4(r){let t={input:v(r,"input","real")};return D.runKernel(iu,t)}var ll=T({real_:y4});function b4(r){let t={x:v(r,"x","reciprocal")};return D.runKernel(vi,t)}var jm=T({reciprocal_:b4});function w4(r){let t={x:v(r,"x","relu")};return D.runKernel(_o,t)}var Sr=T({relu_:w4});function k4(r){let t={x:v(r,"x","relu6")};return D.runKernel(Co,t)}var Ru=T({relu6_:k4});function _4(r,e){let n={x:v(r,"x","reverse")},o={dims:e};return D.runKernel(Io,n,o)}var qt=T({reverse_:_4});function v4(r){let e=v(r,"x","reverse");return E(e.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${e.rank}.`),qt(e,0)}var C4=T({reverse1d_:v4});function I4(r,e){let t=v(r,"x","reverse");return E(t.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${t.rank}.`),qt(t,e)}var N4=T({reverse2d_:I4});function S4(r,e){let t=v(r,"x","reverse");return E(t.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${t.rank}.`),qt(t,e)}var T4=T({reverse3d_:S4});function A4(r,e){let t=v(r,"x","reverse");return E(t.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${t.rank}.`),qt(t,e)}var E4=T({reverse4d_:A4});function D4(r){let t={x:v(r,"x","round")};return D.runKernel(No,t)}var Um=T({round_:D4});function $4(r){let t={x:v(r,"x","rsqrt")};return D.runKernel(So,t)}var Fu=T({rsqrt_:$4});function le(r,e){if((or(r)&&e!=="string"||Array.isArray(r))&&e!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(e==="string"&&or(r)&&!(r instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Ur(r,[],[],e)}function R4(r){let t={x:v(r,"x","selu")};return D.runKernel(Ii,t)}var Ou=T({selu_:R4});function F4(r,e,t,n,o,s=[1,1],a="NHWC"){let i=v(r,"x","separableConv2d"),l=v(e,"depthwiseFilter","separableConv2d"),u=v(t,"pointwiseFilter","separableConv2d"),c=i,p=!1;if(i.rank===3&&(p=!0,c=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),a==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");E(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),E(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),E(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),E(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),E(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let m=l.shape[2],f=l.shape[3];E(u.shape[2]===m*f,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${m*f}, but got ${u.shape[2]}.`);let d=Is(c,l,n,o,a,s),g=Kr(d,u,1,"valid",a);return p?L(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var Hm=T({separableConv2d_:F4});async function O4(r,e){let t=v(r,"x","setdiff1d"),n=v(e,"y","setdiff1d");E(t.dtype===n.dtype,()=>`x and y should have the same dtype, but got x (${t.dtype}) and y (${n.dtype}).`),E(t.rank===1,()=>`x should be 1D tensor, but got x (${t.shape}).`),E(n.rank===1,()=>`y should be 1D tensor, but got y (${n.shape}).`);let o=await t.data(),s=await n.data(),a=new Set(s),i=0;for(let c=0;c<o.length;c++)a.has(o[c])||i++;let l=new lt([i],t.dtype),u=new lt([i],"int32");for(let c=0,p=0;c<o.length;c++)a.has(o[c])||(l.values[p]=o[c],u.values[p]=c,p++);return[l.toTensor(),u.toTensor()]}var Yw=O4;function P4(r){let t={x:v(r,"x","sign")};return D.runKernel(Si,t)}var qm=T({sign_:P4});function M4(r){let t={x:v(r,"x","sin")};return D.runKernel(To,t)}var Pu=T({sin_:M4});function L4(r){let t={x:v(r,"x","sinh")};return D.runKernel(Ni,t)}var Mu=T({sinh_:L4});function z4(r,e,t){let n=v(r,"x","slice1d");return E(n.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${n.rank} tensor`),Re(n,[e],[t])}var Km=T({slice1d_:z4});function B4(r,e,t){let n=v(r,"x","slice2d");return E(n.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${n.rank} tensor`),Re(n,e,t)}var pg=T({slice2d_:B4});function V4(r,e,t){let n=v(r,"x","slice3d");return E(n.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${n.rank} tensor`),Re(n,e,t)}var Xm=T({slice3d_:V4});function G4(r,e,t){let n=v(r,"x","slice4d");return E(n.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${n.rank} tensor`),Re(n,e,t)}var ep=T({slice4d_:G4});function W4(r,e=-1){let t=v(r,"logits","softmax","float32");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and dim was ${e}`);let n={logits:t},o={dim:e};return D.runKernel($o,n,o)}var Aa=T({softmax_:W4});function j4(r){E(r.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);let e={input:r};return D.runKernel(Zl,e)}var Ea=T({fft_:j4});function U4(r){E(r.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);let e={input:r};return D.runKernel(Jl,e)}var Mi=T({ifft_:U4});function H4(r){let e=r.shape[r.shape.length-1],t=r.size/e,n;if(e<=2){let o=L(r,[t,e]);n=Mi(o)}else{let o=[t,2*(e-1)],s=L(ll(r),[t,e]),a=L(Nu(r),[t,e]),i=qt(Re(s,[0,1],[t,e-2]),1),l=P(qt(Re(a,[0,1],[t,e-2]),1),le(-1)),u=Ze([s,i],1),c=Ze([a,l],1),p=L(_n(u,c),[o[0],o[1]]);n=Mi(p)}if(n=ll(n),r.rank===3&&r.shape[0]!==0){let o=n,s=r.shape[0];n=L(n,[s,n.shape[0]/s,n.shape[1]]),o.dispose()}return n}var Lu=T({irfft_:H4});function q4(r,e,t=0){let o={x:v(r,"x","split")},s={numOrSizeSplits:e,axis:t};return D.runKernel(xs,o,s)}var cr=T({split_:q4});function K4(r,e){E(r.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let t=r.shape[r.shape.length-1],n=r.size/t,o;if(e!=null&&e<t){let d=r.shape.map(g=>0),h=r.shape.map(g=>g);h[r.shape.length-1]=e,o=Re(r,d,h),t=e}else if(e!=null&&e>t){let d=r.shape.map(h=>h);d[r.shape.length-1]=e-t,o=Ze([r,gt(d)],r.shape.length-1),t=e}else o=r;let s=Ce(o),a=L(_n(o,s),[n,t]),i=Ea(a),l=Math.floor(t/2)+1,u=ll(i),c=Nu(i),p=cr(u,[l,t-l],u.shape.length-1),m=cr(c,[l,t-l],c.shape.length-1),f=o.shape.slice();return f[o.shape.length-1]=l,L(_n(p[0],m[0]),f)}var Da=T({rfft_:K4});function X4(r){let t={x:v(r,"x","sqrt")};return D.runKernel(Eo,t)}var xt=T({sqrt_:X4});function Y4(r,e){let t=v(r,"a","squaredDifference"),n=v(e,"b","squaredDifference");[t,n]=Ge(t,n),Be(t.shape,n.shape);let o={a:t,b:n},s={};return D.runKernel(Ro,o,s)}var zu=T({squaredDifference_:Y4});function Z4(r,e){let t=v(r,"x","squeeze");return L(t,Nb(t.shape,e).newShape)}var Cn=T({squeeze_:Z4});function J4(r,e=0){let t=ha(r,"tensors","stack","string_or_numeric");E(t.length>=1,()=>"Pass at least one tensor to tf.stack"),t.length>0&&E(e<=t[0].rank,()=>"Axis must be <= rank of the tensor");let n=t,o={axis:e};return D.runKernel(fs,n,o)}var Vt=T({stack_:J4});function Q4(r,e=0){let n={x:v(r,"x","step")},o={alpha:e};return D.runKernel(On,n,o)}var Ds=T({step_:Q4});function eU(r,e,t,n,o=0,s=0,a=0,i=0,l=0){let c={x:v(r,"x","stridedSlice")},p={begin:e,end:t,strides:n,beginMask:o,endMask:s,ellipsisMask:a,newAxisMask:i,shrinkAxisMask:l};return D.runKernel(Ai,c,p)}var Ym=T({stridedSlice_:eU});function tU(r){let t={x:v(r,"x","tan")};return D.runKernel(Ei,t)}var Zm=T({tan_:tU});function Gt(r,e){Dn(r);let t=Cr(r,e);if(t.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Ur(r,null,t,e)}function Li(r,e,t){if(Dn(r),e!=null&&e.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let n=Cr(r,t);if(n.length!==2&&n.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Ur(r,e,n,t)}function rU(r,e,t){if(Dn(r),e!=null&&e.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let n=Cr(r,t);if(n.length!==4&&n.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Ur(r,e,n,t)}function nU(r,e,t){if(Dn(r),e!=null&&e.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let n=Cr(r,t);if(n.length!==5&&n.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Ur(r,e,n,t)}function oU(r,e,t){if(Dn(r),e!=null&&e.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let n=Cr(r,t);if(n.length!==6&&n.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(n.length===1&&e==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return e=e||n,Ur(r,e,n,t)}function sU(r,e=1,t=!0){let n=v(r,"x","topk");if(n.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let o=n.shape[n.shape.length-1];if(e>o)throw new Error(`'k' passed to topk() must be <= the last dimension (${o}) but got ${e}`);let s={x:n},a={k:e,sorted:t},[i,l]=D.runKernel(Di,s,a);return{values:i,indices:l}}var Jm=T({topk_:sU});function iU(r,e=0,t=1,n,o){if(n!=null&&n==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Jc(e,t,n,!0,o),a=ve(r,n);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var Bu=T({truncatedNormal_:iU});function aU(r,e=0){let t=v(r,"x","unique","string_or_numeric");E(t.rank>0,()=>"The input tensor must be at least 1D");let n={x:t},o={axis:e},[s,a]=D.runKernel(pu,n,o);return{values:s,indices:a}}var tp=T({unique_:aU});function lU(r,e,t){let n=v(r,"x","unsortedSegmentSum"),o=v(e,"segmentIds","unsortedSegmentSum","int32");E(nt(t),()=>"numSegments must be of dtype int");let s={x:n,segmentIds:o},a={numSegments:t};return D.runKernel(da,s,a)}var Qm=T({unsortedSegmentSum_:lU});function uU(r,e=0){let t=v(r,"x","unstack","string_or_numeric");E(e>=-t.shape.length&&e<t.shape.length,()=>`Axis = ${e} is not in [-${t.shape.length}, ${t.shape.length})`);let n={value:t},o={axis:e};return D.runKernel(ys,n,o)}var pr=T({unstack_:uU});function Zw(r,e=!0,t,n){return D.makeVariable(r,e,t,n)}function Jw(r,e){let t=[];for(let s=0;s<e.length;s++)e[s]&&t.push(s);let n=ve(r,"int32"),o=ve([t.length,r.length],"int32");for(let s=0;s<t.length;s++){let a=n.indexToLoc(t[s]),i=s*r.length;o.values.set(a,i)}return o.toTensor()}async function cU(r){let e=v(r,"condition","whereAsync","bool"),t=await e.data(),n=Jw(e.shape,t);return r!==e&&e.dispose(),n}var ef=cU;async function pU(r,e,t){let n=v(r,"tensor","boolMask"),o=v(e,"mask","boolMask","bool"),s=t==null?0:t,a=o.rank,i=n.shape;E(a>0,()=>"mask cannot be scalar"),Ct(i.slice(s,s+a),o.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let h=s;h<s+a;h++)l*=i[h];let u=i.slice(0,s).concat([l],i.slice(s+a)),c=L(n,u),p=L(o,[-1]),m=await ef(p),f=Cn(m,[1]),d=zo(c,f,s);return r!==n&&n.dispose(),e!==o&&o.dispose(),f.dispose(),c.dispose(),p.dispose(),m.dispose(),d}var mU=pU;function fU(r,e="euclidean",t=null,n=!1){r=v(r,"x","norm");let o=rS(r,e,t),s=o.shape;if(n){let a=Qt(t,r.shape);s=Bo(o.shape,a)}return L(o,s)}function rS(r,e,t=null){if(r.rank===0)return Nt(r);if(r.rank!==1&&t===null)return rS(L(r,[-1]),e,t);if(r.rank===1||typeof t=="number"||Array.isArray(t)&&t.length===1){if(e===1)return ge(Nt(r),t);if(e===Infinity)return ur(Nt(r),t);if(e===-Infinity)return Pi(Nt(r),t);if(e==="euclidean"||e===2)return xt(ge(Or(Nt(r),le(2,"int32")),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}if(Array.isArray(t)&&t.length===2){if(e===1)return ur(ge(Nt(r),t[0]),t[1]-1);if(e===Infinity)return ur(ge(Nt(r),t[1]),t[0]);if(e===-Infinity)return Pi(ge(Nt(r),t[1]),t[0]);if(e==="fro"||e==="euclidean")return xt(ge(Oe(r),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}throw new Error(`Error in norm: invalid axis: ${t}`)}var Vu=T({norm_:fU});function dU(r,e,t,n,o=!0){let s=v(r,"v","movingAverage"),a=v(e,"x","movingAverage"),i=v(t,"decay","movingAverage");Hb(s,a),E(jr(s.shape,a.shape),()=>"Shape mismatch in v and x");let l=le(1),u=ce(l,i),c=P(ce(a,s),u);if(o){E(n!=null,()=>"When using zeroDebias: true, step is required.");let p=v(n,"step","movingAverage");c=me(c,ce(l,Or(i,p)))}return ee(s,c)}var hU=T({movingAverage_:dU});function gU(r,e,t){let n=v(r,"indices","scatterND","int32"),o=v(e,"updates","scatterND");Qh(o,n,t);let s={indices:n,updates:o},a={shape:t};return D.runKernel(Ci,s,a)}var Qw=T({scatterND_:gU});function nS(r,e,t,n){if(r.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${r.dtype}.`);if(r.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${r.shape}.`);let o=r.rank>0?r.shape[0]:1,s=r.rank>1?r.shape[1]:1;if(t.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${t.length}, should be: ${s}.`);let a=e.size;if(!(e.rank===0||e.rank===1&&a===o))throw new Error(`sparseValues has incorrect shape ${e.shape}, should be [] or [${o}]`);if(e.dtype!==n.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function xU(r,e,t,n=0){let o=v(r,"sparseIndices","sparseToDense","int32"),s=v(e,"sparseValues","sparseToDense"),a=v(n,"defaultValue","sparseToDense",s.dtype);nS(o,s,t,a);let i={sparseIndices:o,sparseValues:s,defaultValue:a},l={outputShape:t};return D.runKernel(uu,i,l)}var tf=T({sparseToDense_:xU});function yU(r,e){let t=v(e,"indices","gatherND","int32"),o={params:v(r,"x","gatherND"),indices:t};return D.runKernel(li,o)}var ek=T({gatherND_:yU});function oS(r,e){if(e==null)return r.shape.slice();if(jr(r.shape,e))return e;if(r.shape.length===e.length){let t=[];for(let n=0;n<r.shape.length;n++)e[n]==null&&r.shape[n]!=null?t.push(r.shape[n]):t.push(e[n]);return t}return e}function bU(r,e,t,n){let o=v(r,"x","dropout");if(E(o.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${o.dtype} tensor instead.`),E(e>=0&&e<1,()=>`rate must be a float in the range [0, 1), but got ${e}.`),e===0)return r instanceof Ve?o.clone():o;let s=oS(o,t),a=1-e,i=me(Ss(ee(Es(s,0,1,"float32",n),a)),a);return P(o,i)}var tk=T({dropout_:bU});function rk(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function rf(r,e,t){let n=1-r%2,o=new Float32Array(r);for(let s=0;s<r;++s){let a=2*Math.PI*s/(r+n-1);o[s]=e-t*Math.cos(a)}return Gt(o,"float32")}async function wU(r,e,t=1){let n=v(r,"predictions","inTopK"),o=v(e,"targets","inTopK");E(n.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${n.rank}`),E(n.rank-1===o.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${n.rank} and targets rank ${o.rank}`),Ct(n.shape.slice(0,n.shape.length-1),o.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=n.shape[n.shape.length-1];E(t>0&&t<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${t}`);let a=await n.data(),i=await o.data(),[l,u]=[a.length/s,s],c=Sb("bool",l);for(let p=0;p<l;p++){let m=p*u,f=a.subarray(m,m+u),d=[];for(let h=0;h<f.length;h++)d.push({value:f[h],index:h});d.sort((h,g)=>g.value-h.value),c[p]=0;for(let h=0;h<t;h++)if(d[h].index===i[p]){c[p]=1;break}}return r!==n&&n.dispose(),e!==o&&o.dispose(),Rr(c,o.shape,"bool")}var kU=wU;var Go={};Ke(Go,{conv2d:()=>CU,depthwiseConv2d:()=>TU,matMul:()=>EU});function _U(r,e,t,n,o,s="NHWC",a){let i=r;r.rank===3&&(i=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]])),E(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),E(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),E(t.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${t}.`);let u=s==="NHWC"?i.shape[3]:i.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];E(u===t[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${t[2]}.`),E(c===t[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${t[3]}).`),a!=null&&E(nt(o),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let p={x:i,dy:l},m={strides:n,pad:o,dataFormat:s,dimRoundingMode:a,filterShape:t};return D.runKernel(Wl,p,m)}var rp=T({conv2DBackpropFilter_:_U});function Gu(r,e,t){if(t==null||t==="linear")return r;if(t==="relu")return P(r,Ds(e));throw new Error(`Cannot compute gradient for fused activation ${t}.`)}function Wu(r,e){let t=e,n=_t(r.shape,e.shape);return n.length>0&&(t=ge(t,n)),L(t,r.shape)}function ju(r,e,t,n){if(e==="linear")return r;if(e==="relu")return Sr(r);if(e==="elu")return Ns(r);if(e==="relu6")return Ru(r);if(e==="prelu")return Ta(r,t);if(e==="leakyrelu")return Ca(r,n);throw new Error(`Unknown fused activation ${e}.`)}var Uu=(r,e)=>!(r>0)||e==="linear";function vU({x:r,filter:e,strides:t,pad:n,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",Uu(D.state.gradientDepth,l)===!1){let _=Kr(r,e,t,n,o,s,a);return i!=null&&(_=ee(_,i)),ju(_,l,u,c)}let p=v(r,"x","conv2d"),m=v(e,"filter","conv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=L(p,[1,p.shape[0],p.shape[1],p.shape[2]])),E(f.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${f.rank}.`),E(m.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${m.rank}.`),a!=null&&E(nt(n),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`),E(f.shape[3]===m.shape[2],()=>`Error in conv2d: depth of input (${f.shape[3]}) must match input depth for filter ${m.shape[2]}.`),E(kr(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),E(o==="NHWC",()=>`Error in conv2d: got dataFormat of ${o} but only NHWC is currently supported.`);let h=wu(f.shape,m.shape,t,s,n,a),g;i!=null&&(g=v(i,"bias","fused conv2d"),[g]=Ge(g,p),Be(h.outShape,g.shape));let x;u!=null&&(x=v(u,"prelu weights","fused conv2d"));let w=(_,A)=>{let[N,$,F,M]=A,V=Gu(_,F,l);E(Ln(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let W=Xc($.shape,V,N,t,n),U=rp($,V,N.shape,t,n),H=[W,U];if(M!=null){let q=Wu(M,V);H.push(q)}return H},b={x:f,filter:m,bias:g,preluActivationWeights:x},k={strides:t,pad:n,dataFormat:o,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?Xr((A,N,$)=>{let F=D.runKernel(ks,b,k);return $([N,A,F]),d&&(F=L(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:w}})(f,m):Xr((A,N,$,F)=>{let M=D.runKernel(ks,b,k);return F([N,A,M,$]),d&&(M=L(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:w}})(f,m,g)}var CU=T({fusedConv2d_:vU});function IU(r,e,t,n,o,s=[1,1],a){let i=r;r.rank===3&&(i=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={x:i,dy:l},c={strides:n,pad:o,dimRoundingMode:a,dilations:s,filterShape:t};return D.runKernel(ql,u,c)}var mg=T({depthwiseConv2dNativeBackpropFilter_:IU});function NU(r,e,t,n,o,s=[1,1],a){let i=e,l=!1;e.rank===3&&(l=!0,i=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={dy:i,filter:t},c={strides:n,pad:o,dimRoundingMode:a,dilations:s,inputShape:r},p=D.runKernel(Kl,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var fg=T({depthwiseConv2dNativeBackpropInput_:NU});function SU({x:r,filter:e,strides:t,pad:n,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Uu(D.state.gradientDepth,l)===!1){let _=Is(r,e,t,n,o,s,a);return i!=null&&(_=ee(_,i)),ju(_,l,u,c)}let p=v(r,"x","depthwiseConv2d"),m=v(e,"filter","depthwiseConv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=L(p,[1,p.shape[0],p.shape[1],p.shape[2]])),E(f.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${f.rank}.`),E(m.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${m.rank}.`),E(f.shape[3]===m.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${f.shape[3]}) must match the inChannels dimension in filter ${m.shape[2]}.`),s==null&&(s=[1,1]),E(kr(t,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),a!=null&&E(nt(n),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${a} but got pad ${n}.`);let h=wu(f.shape,m.shape,t,s,n,a,!0),g;i!=null&&(g=v(i,"bias","fused conv2d"),[g]=Ge(g,p),Be(h.outShape,g.shape));let x;u!=null&&(x=v(u,"prelu weights","fused depthwiseConv2d"));let w=(_,A)=>{E(Ln(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,$,F,M]=A,V=Gu(_,F,l),W=fg($.shape,V,N,t,n,s,a),U=mg($,V,N.shape,t,n,s,a);if(M!=null){let H=Wu(g,V);return[W,U,H]}return[W,U]},b={x:f,filter:m,bias:g,preluActivationWeights:x},k={strides:t,pad:n,dataFormat:o,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?Xr((A,N,$)=>{let F=D.runKernel(_s,b,k);return $([N,A,F]),d&&(F=L(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:w}})(f,m):Xr((A,N,$,F)=>{let M=D.runKernel(_s,b,k);return F([N,A,M,$]),d&&(M=L(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:w}})(f,m,g)}var TU=T({fusedDepthwiseConv2d_:SU});function AU({a:r,b:e,transposeA:t=!1,transposeB:n=!1,bias:o,activation:s="linear",preluActivationWeights:a,leakyreluAlpha:i}){if(Uu(D.state.gradientDepth,s)===!1){let M=We(r,e,t,n);return o!=null&&(M=ee(M,o)),ju(M,s,a,i)}let l=v(r,"a","fused matMul"),u=v(e,"b","fused matMul");[l,u]=Ge(l,u);let c=t?l.shape[l.rank-2]:l.shape[l.rank-1],p=n?u.shape[u.rank-1]:u.shape[u.rank-2],m=t?l.shape[l.rank-1]:l.shape[l.rank-2],f=n?u.shape[u.rank-2]:u.shape[u.rank-1],d=l.shape.slice(0,-2),h=u.shape.slice(0,-2),g=ct(d),x=ct(h);E(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),E(jr(d,h),()=>`Error in fused matMul: outer dimensions (${d}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),E(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${t} and transposeB=${n} must match.`);let w=l.shape.slice(0,-2).concat([m,f]),b=t?L(l,[g,c,m]):L(l,[g,m,c]),k=n?L(u,[x,f,p]):L(u,[x,p,f]),_;o!=null&&(_=v(o,"bias","fused matMul"),[_]=Ge(_,l),Be(w,_.shape));let A;a!=null&&(A=v(a,"prelu weights","fused matMul"));let N=(M,V)=>{let[W,U,H,q]=V,X=Gu(L(M,H.shape),H,s),ne,Y;if(!t&&!n?(ne=We(X,U,!1,!0),Y=We(W,X,!0,!1)):!t&&n?(ne=We(X,U,!1,!1),Y=We(X,W,!0,!1)):t&&!n?(ne=We(U,X,!1,!0),Y=We(W,X,!1,!1)):(ne=We(U,X,!0,!0),Y=We(X,W,!0,!0)),o!=null){let re=Wu(q,X);return[ne,Y,re]}else return[ne,Y]},$={a:b,b:k,bias:_,preluActivationWeights:A},F={transposeA:t,transposeB:n,activation:s,leakyreluAlpha:i};return o==null?Xr((V,W,U)=>{let H=D.runKernel(ws,$,F);return U([V,W,H]),{value:L(H,w),gradFunc:N}})(b,k):Xr((V,W,U,H)=>{let q=D.runKernel(ws,$,F);return H([V,W,q,U]),{value:L(q,w),gradFunc:N}})(b,k,_)}var EU=T({fusedMatMul_:AU});function DU(r){return rf(r,.54,.46)}var sS=T({hammingWindow_:DU});function $U(r){return rf(r,.5,.5)}var dg=T({hannWindow_:$U});function RU(r,e,t,n=!1,o=0){let s=0,a=[];for(;s+e<=r.size;)a.push(Re(r,s,e)),s+=t;if(n)for(;s<r.size;){let i=s+e-r.size,l=Ze([Re(r,s,e-i),va([i],o)]);a.push(l),s+=t}return a.length===0?Li([],[0,e]):L(Ze(a),[a.length,e])}var hg=T({frame_:RU});function FU(r,e,t,n,o=dg){n==null&&(n=rk(e));let s=hg(r,e,t),a=P(s,o(e)),i=[];for(let l=0;l<s.shape[0];l++)i.push(Da(Re(a,[l,0],[1,e]),n));return Ze(i)}var iS=T({stft_:FU});function OU(r,e,t,n,o="bilinear",s=0){let a=v(r,"image","cropAndResize"),i=v(e,"boxes","cropAndResize","float32"),l=v(t,"boxInd","cropAndResize","int32"),u=i.shape[0];E(a.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${a.rank}.`),E(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),E(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),E(n.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${n.length}.`),E(n[0]>=1&&n[1]>=1,()=>`cropSize must be atleast [1,1], but was ${n}`),E(o==="bilinear"||o==="nearest",()=>`method must be bilinear or nearest, but was ${o}`);let c={image:a,boxes:i,boxInd:l},p={method:o,extrapolationValue:s,cropSize:n};return D.runKernel(ti,c,p)}var aS=T({cropAndResize_:OU});function PU(r){let e=v(r,"image","flipLeftRight","float32");E(e.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${e.rank}.`);let t={image:e};return D.runKernel(ai,t,{})}var lS=T({flipLeftRight_:PU});function MU(r,e,t=0,n=.5){let o=v(r,"image","rotateWithOffset","float32");E(o.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${o.rank}.`);let s={image:o},a={radians:e,fillValue:t,center:n};return D.runKernel($i,s,a)}var uS=T({rotateWithOffset_:MU});function Wo(r,e,t,n,o,s){n==null&&(n=.5),o==null&&(o=Number.NEGATIVE_INFINITY),s==null&&(s=0);let a=r.shape[0];return t=Math.min(t,a),E(0<=n&&n<=1,()=>`iouThreshold must be in [0, 1], but was '${n}'`),E(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),E(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),E(e.rank===1,()=>"scores must be a 1D tensor"),E(e.shape[0]===a,()=>`scores has incompatible shape with boxes. Expected ${a}, but was ${e.shape[0]}`),E(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:t,iouThreshold:n,scoreThreshold:o,softNmsSigma:s}}function LU(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppression"),a=v(e,"scores","nonMaxSuppression"),i=Wo(s,a,t,n,o);t=i.maxOutputSize,n=i.iouThreshold,o=i.scoreThreshold;let l={maxOutputSize:t,iouThreshold:n,scoreThreshold:o};return D.runKernel(bi,{boxes:s,scores:a},l)}var cS=T({nonMaxSuppression_:LU});function pS(r,e,t){let n=zU(r,e,t),o=n<0?-(n+1):n;r.splice(o,0,e)}function zU(r,e,t){return VU(r,e,t||BU)}function BU(r,e){return r>e?1:r<e?-1:0}function VU(r,e,t){let n=0,o=r.length,s=0,a=!1;for(;n<o;){s=n+(o-n>>>1);let i=t(e,r[s]);i>0?n=s+1:(o=s,a=!i)}return a?n:-n-1}function ok(r,e,t,n,o){return nk(r,e,t,n,o,0)}function sk(r,e,t,n,o,s){return nk(r,e,t,n,o,0,!1,s,!0)}function ik(r,e,t,n,o,s){return nk(r,e,t,n,o,s,!0)}function nk(r,e,t,n,o,s,a=!1,i=!1,l=!1){let u=[];for(let g=0;g<e.length;g++)e[g]>o&&u.push({score:e[g],boxIndex:g,suppressBeginIndex:0});u.sort(mS);let c=s>0?-.5/s:0,p=[],m=[];for(;p.length<t&&u.length>0;){let g=u.pop(),{score:x,boxIndex:w,suppressBeginIndex:b}=g;if(x<o)break;let k=!1;for(let _=p.length-1;_>=b;--_){let A=GU(r,w,p[_]);if(A>=n){k=!0;break}if(g.score=g.score*WU(n,c,A),g.score<=o)break}g.suppressBeginIndex=p.length,k||(g.score===x?(p.push(w),m.push(g.score)):g.score>o&&pS(u,g,mS))}let f=p.length,d=t-f;i&&d>0&&(p.push(...new Array(d).fill(0)),m.push(...new Array(d).fill(0)));let h={selectedIndices:p};return a&&(h.selectedScores=m),l&&(h.validOutputs=f),h}function GU(r,e,t){let n=r.subarray(e*4,e*4+4),o=r.subarray(t*4,t*4+4),s=Math.min(n[0],n[2]),a=Math.min(n[1],n[3]),i=Math.max(n[0],n[2]),l=Math.max(n[1],n[3]),u=Math.min(o[0],o[2]),c=Math.min(o[1],o[3]),p=Math.max(o[0],o[2]),m=Math.max(o[1],o[3]),f=(i-s)*(l-a),d=(p-u)*(m-c);if(f<=0||d<=0)return 0;let h=Math.max(s,u),g=Math.max(a,c),x=Math.min(i,p),w=Math.min(l,m),b=Math.max(x-h,0)*Math.max(w-g,0);return b/(f+d-b)}function WU(r,e,t){let n=Math.exp(e*t*t);return t<=r?n:0}function mS(r,e){return r.score-e.score||r.score===e.score&&e.boxIndex-r.boxIndex}async function jU(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppressionAsync"),a=v(e,"scores","nonMaxSuppressionAsync"),i=Wo(s,a,t,n,o);t=i.maxOutputSize,n=i.iouThreshold,o=i.scoreThreshold;let l=await Promise.all([s.data(),a.data()]),u=l[0],c=l[1],{selectedIndices:p}=ok(u,c,t,n,o);return s!==r&&s.dispose(),a!==e&&a.dispose(),Gt(p,"int32")}var fS=jU;function UU(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let a=v(r,"boxes","nonMaxSuppression"),i=v(e,"scores","nonMaxSuppression"),l=Wo(a,i,t,n,o,s);t=l.maxOutputSize,n=l.iouThreshold,o=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:a,scores:i},c={maxOutputSize:t,iouThreshold:n,scoreThreshold:o,softNmsSigma:s},p=D.runKernel(ki,u,c);return{selectedIndices:p[0],selectedScores:p[1]}}var dS=T({nonMaxSuppressionWithScore_:UU});async function HU(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let a=v(r,"boxes","nonMaxSuppressionAsync"),i=v(e,"scores","nonMaxSuppressionAsync"),l=Wo(a,i,t,n,o,s);t=l.maxOutputSize,n=l.iouThreshold,o=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([a.data(),i.data()]),c=u[0],p=u[1],{selectedIndices:m,selectedScores:f}=ik(c,p,t,n,o,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Gt(m,"int32"),selectedScores:Gt(f)}}var hS=HU;function qU(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let a=v(r,"boxes","nonMaxSuppression"),i=v(e,"scores","nonMaxSuppression"),l=Wo(a,i,t,n,o,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,m={boxes:a,scores:i},f={maxOutputSize:u,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:s},d=D.runKernel(wi,m,f);return{selectedIndices:d[0],validOutputs:d[1]}}var gS=T({nonMaxSuppressionPadded_:qU});async function KU(r,e,t,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let a=v(r,"boxes","nonMaxSuppressionAsync"),i=v(e,"scores","nonMaxSuppressionAsync"),l=Wo(a,i,t,n,o,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,[m,f]=await Promise.all([a.data(),i.data()]),{selectedIndices:d,validOutputs:h}=sk(m,f,u,c,p,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Gt(d,"int32"),validOutputs:le(h,"int32")}}var xS=KU;function XU(r,e,t=!1,n=!1){let o=v(r,"images","resizeBilinear");E(o.rank===3||o.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${o.rank}.`),E(e.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${e}.`),E(n===!1||t===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=o,a=!1;o.rank===3&&(a=!0,s=L(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:n,size:e},u=D.runKernel(vo,i,l);return a?L(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var gg=T({resizeBilinear_:XU});function YU(r,e,t=!1,n=!1){let o=v(r,"images","resizeNearestNeighbor");E(o.rank===3||o.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${o.rank}.`),E(e.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${e}.`),E(o.dtype==="float32"||o.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),E(n===!1||t===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=o,a=!1;o.rank===3&&(a=!0,s=L(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:n,size:e},u=D.runKernel(pa,i,l);return a?L(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var xg=T({resizeNearestNeighbor_:YU});function ZU(r,e,t="nearest",n="constant",o=0,s){let a=v(r,"image","transform","float32"),i=v(e,"transforms","transform","float32");E(a.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${a.rank}.`),E(i.rank===2&&(i.shape[0]===a.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),E(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:a,transforms:i},u={interpolation:t,fillMode:n,fillValue:o,outputShape:s};return D.runKernel(cu,l,u)}var yS=T({transform_:ZU});function JU(r,e,t){E(e%1==0,()=>`bandPart(): numLower must be an integer, got ${e}.`),E(t%1==0,()=>`bandPart(): numUpper must be an integer, got ${t}.`);let n=v(r,"a","bandPart");E(n.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${n.rank}.`);let o=n.shape,[s,a]=n.shape.slice(-2);if(!(e<=s))throw new Error(`bandPart(): numLower (${e}) must not be greater than the number of rows (${s}).`);if(!(t<=a))throw new Error(`bandPart(): numUpper (${t}) must not be greater than the number of columns (${a}).`);e<0&&(e=s),t<0&&(t=a);let i=L(Qc(0,s,1,"int32"),[-1,1]),l=Qc(0,a,1,"int32"),u=ce(i,l),c=hr(Bn(u,le(+e,"int32")),an(u,le(-t,"int32"))),p=gt([s,a],n.dtype);return L(Vt(pr(L(n,[-1,s,a])).map(m=>$t(c,m,p))),o)}var bS=T({bandPart_:JU});function QU(r){let e;if(Array.isArray(r)){e=!1,E(r!=null&&r.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let o=r[0].shape[0];for(let s=1;s<r.length;++s)E(r[s].shape[0]===o,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[s].shape[0]} vs. ${o})`)}else e=!0,r=cr(r,r.shape[0],0).map(o=>Cn(o,[0]));E(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);let t=[],n=r;for(let o=0;o<r.length;++o)t.push(D.tidy(()=>{let s=n[o];if(o>0)for(let a=0;a<o;++a){let i=P(ge(P(t[a],s)),t[a]);s=ce(s,i)}return me(s,Vu(s,"euclidean"))}));return e?Vt(t,0):t}var wS=T({gramSchmidt_:QU});function eH(r,e=!1){if(E(r.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return kS(r,e);{let t=r.shape.slice(0,r.shape.length-2).reduce((l,u)=>l*u),n=pr(L(r,[t,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),o=[],s=[];n.forEach(l=>{let[u,c]=kS(l,e);o.push(u),s.push(c)});let a=L(Vt(o,0),r.shape),i=L(Vt(s,0),r.shape);return[a,i]}}function kS(r,e=!1){return D.tidy(()=>{E(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);let t=r.shape[0],n=r.shape[1],o=Yc(t),s=Pn(r),a=Li([[1]],[1,1]),i=Pn(a),l=t>=n?n:t;for(let u=0;u<l;++u){let c=s,p=i,m=o;[i,s,o]=D.tidy(()=>{let f=Re(s,[u,u],[t-u,1]),d=Vu(f),h=Re(s,[u,u],[1,1]),g=$t(er(h,0),Li([[-1]]),Li([[1]])),x=ce(h,P(g,d)),w=me(f,x);w.shape[0]===1?i=Pn(a):i=Ze([a,Re(w,[1,0],[w.shape[0]-1,w.shape[1]])],0);let b=He(me(We(g,x),d)),k=Re(s,[u,0],[t-u,n]),_=P(b,i),A=Ue(i);if(u===0)s=ce(k,We(_,We(A,k)));else{let F=ce(k,We(_,We(A,k)));s=Ze([Re(s,[0,0],[u,n]),F],0)}let N=Ue(_),$=Re(o,[0,u],[t,o.shape[1]-u]);if(u===0)o=ce($,We(We($,i),N));else{let F=ce($,We(We($,i),N));o=Ze([Re(o,[0,0],[t,u]),F],1)}return[i,s,o]}),Ae([c,p,m])}return!e&&t>n&&(o=Re(o,[0,0],[t,n]),s=Re(s,[0,0],[n,n])),[o,s]})}var _S=T({qr_:eH});var Wt;(function(r){r[r.NONE=0]="NONE",r[r.MEAN=1]="MEAN",r[r.SUM=2]="SUM",r[r.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Wt||(Wt={}));function tH(r,e,t=Wt.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"losses","computeWeightedLoss"),o=null;e!=null&&(o=v(e,"weights","computeWeightedLoss"));let s=o==null?n:P(n,o);if(t===Wt.NONE)return s;if(t===Wt.SUM)return ge(s);if(t===Wt.MEAN){if(o==null)return ht(s);{let a=n.size/o.size,i=me(ge(s),ge(o));return a>1?me(i,le(a)):i}}if(t===Wt.SUM_BY_NONZERO_WEIGHTS){if(o==null)return me(ge(s),le(n.size));{let a=P(o,Nr(n.shape)),i=oe(ge(Vo(a,le(0))),"float32");return me(ge(s),i)}}throw Error(`Unknown reduction: ${t}`)}var Tr=T({computeWeightedLoss_:tH});function rH(r,e,t,n=Wt.SUM_BY_NONZERO_WEIGHTS){let o=v(r,"labels","absoluteDifference"),s=v(e,"predictions","absoluteDifference"),a=null;t!=null&&(a=v(t,"weights","absoluteDifference")),Ct(o.shape,s.shape,"Error in absoluteDifference: ");let i=Nt(ce(o,s));return Tr(i,a,n)}var vS=T({absoluteDifference_:rH});function nH(r,e,t,n,o=Wt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","cosineDistance"),a=v(e,"predictions","cosineDistance"),i=null;n!=null&&(i=v(n,"weights","cosineDistance")),Ct(s.shape,a.shape,"Error in cosineDistance: ");let l=le(1),u=ce(l,ge(P(s,a),t,!0));return Tr(u,i,o)}var CS=T({cosineDistance_:nH});function oH(r,e,t,n=Wt.SUM_BY_NONZERO_WEIGHTS){let o=v(r,"labels","hingeLoss"),s=v(e,"predictions","hingeLoss"),a=null;t!=null&&(a=v(t,"weights","hingeLoss")),Ct(o.shape,s.shape,"Error in hingeLoss: ");let i=le(1);o=ce(P(le(2),o),i);let l=Sr(ce(i,P(o,s)));return Tr(l,a,n)}var IS=T({hingeLoss_:oH});function sH(r,e,t,n=1,o=Wt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","huberLoss"),a=v(e,"predictions","huberLoss"),i=null;t!=null&&(i=v(t,"weights","huberLoss")),Ct(s.shape,a.shape,"Error in huberLoss: ");let l=le(n),u=Nt(ce(a,s)),c=As(u,l),p=ce(u,c),m=ee(P(le(.5),Oe(c)),P(l,p));return Tr(m,i,o)}var NS=T({huberLoss_:sH});function iH(r,e,t,n=1e-7,o=Wt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","logLoss"),a=v(e,"predictions","logLoss"),i=null;t!=null&&(i=v(t,"weights","logLoss")),Ct(s.shape,a.shape,"Error in logLoss: ");let l=le(1),u=le(n),c=He(P(s,lr(ee(a,u)))),p=P(ce(l,s),lr(ee(ce(l,a),u))),m=ce(c,p);return Tr(m,i,o)}var SS=T({logLoss_:iH});function aH(r,e,t,n=Wt.SUM_BY_NONZERO_WEIGHTS){let o=v(r,"labels","meanSquaredError"),s=v(e,"predictions","meanSquaredError"),a=null;t!=null&&(a=v(t,"weights","meanSquaredError")),Ct(o.shape,s.shape,"Error in meanSquaredError: ");let i=zu(o,s);return Tr(i,a,n)}var TS=T({meanSquaredError_:aH});function lH(r,e){let t=v(r,"labels","sigmoidCrossEntropyWithLogits"),n=v(e,"logits","sigmoidCrossEntropyWithLogits");Ct(t.shape,n.shape,"Error in sigmoidCrossEntropyWithLogits: ");let o=Sr(n),s=P(n,t),a=Tu(Zt(He(Nt(n))));return ee(ce(o,s),a)}function uH(r,e,t,n=0,o=Wt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"multiClassLabels","sigmoidCrossEntropy"),a=v(e,"logits","sigmoidCrossEntropy"),i=null;if(t!=null&&(i=v(t,"weights","sigmoidCrossEntropy")),Ct(s.shape,a.shape,"Error in sigmoidCrossEntropy: "),n>0){let u=le(n),c=le(1),p=le(.5);s=ee(P(s,ce(c,u)),P(p,u))}let l=lH(s,a);return Tr(l,i,o)}var AS=T({sigmoidCrossEntropy_:uH});function cH(r,e,t=-1){if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${e.rank} and dim was ${t}`);return Xr((o,s,a)=>{let l=Bm(s,[t],!0),u=ce(oe(s,"float32"),l);a([o,u]);let c=He(P(u,o));return{value:ge(c,[t]),gradFunc:(f,d)=>{let[h,g]=d,x=Bo(f.shape,[t]);return[P(L(f,x),ce(oe(h,"float32"),Zt(g))),P(L(f,x),ce(Zt(g),oe(h,"float32")))]}}})(r,e)}function pH(r,e,t,n=0,o=Wt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"onehotLabels","softmaxCrossEntropy"),a=v(e,"logits","softmaxCrossEntropy"),i=null;if(t!=null&&(i=v(t,"weights","softmaxCrossEntropy")),Ct(s.shape,a.shape,"Error in softmaxCrossEntropy: "),n>0){let u=le(n),c=le(1),p=le(s.shape[1]);s=ee(P(s,ce(c,u)),me(u,p))}let l=cH(s,a);return Tr(l,i,o)}var ES=T({softmaxCrossEntropy_:pH});var mH={fft:Ea,ifft:Mi,rfft:Da,irfft:Lu},fH={hammingWindow:sS,hannWindow:dg,frame:hg,stft:iS},$s={flipLeftRight:lS,resizeNearestNeighbor:xg,resizeBilinear:gg,rotateWithOffset:uS,cropAndResize:aS,nonMaxSuppression:cS,nonMaxSuppressionAsync:fS,nonMaxSuppressionWithScore:dS,nonMaxSuppressionWithScoreAsync:hS,nonMaxSuppressionPadded:gS,nonMaxSuppressionPaddedAsync:xS,transform:yS},ak={bandPart:bS,gramSchmidt:wS,qr:_S},dH={absoluteDifference:vS,computeWeightedLoss:Tr,cosineDistance:CS,hingeLoss:IS,huberLoss:NS,logLoss:SS,meanSquaredError:TS,sigmoidCrossEntropy:AS,softmaxCrossEntropy:ES};var Pr=class extends tg{minimize(e,t=!1,n){let{value:o,grads:s}=this.computeGradients(e,n);if(n!=null){let a=n.map(i=>({name:i.name,tensor:s[i.name]}));this.applyGradients(a)}else this.applyGradients(s);return Ae(s),t?o:(o.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return ig(e,t)}dispose(){this.iterations_!=null&&Ae(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:le(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Pr,Symbol.hasInstance,{value:r=>r.minimize!=null&&r.computeGradients!=null&&r.applyGradients!=null});var np=class extends Pr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=D.registeredVariables[n],a=!1;this.accumulatedGrads[o]==null&&(this.accumulatedGrads[o]={originalName:`${n}/accum_grad`,variable:G(()=>Ce(s).variable(a))}),this.accumulatedUpdates[o]==null&&(this.accumulatedUpdates[o]={originalName:`${n}/accum_var`,variable:G(()=>Ce(s).variable(a))});let i=Array.isArray(e)?e[o].tensor:e[n];if(i==null)return;let l=this.accumulatedGrads[o].variable,u=this.accumulatedUpdates[o].variable;G(()=>{let c=ee(P(l,this.rho),P(Oe(i),1-this.rho)),p=P(me(xt(ee(u,this.epsilon)),xt(ee(l,this.epsilon))),i),m=ee(P(u,this.rho),P(Oe(p),1-this.rho));l.assign(c),u.assign(m);let f=ee(P(p,-this.learningRate),s);s.assign(f)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ae(this.accumulatedGrads.map(e=>e.variable)),Ae(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};np.className="Adadelta";sn(np);var op=class extends Pr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=D.registeredVariables[n];if(this.accumulatedGrads[o]==null){let l=!1;this.accumulatedGrads[o]={originalName:`${n}/accumulator`,variable:G(()=>va(s.shape,this.initialAccumulatorValue).variable(l))}}let a=Array.isArray(e)?e[o].tensor:e[n];if(a==null)return;let i=this.accumulatedGrads[o].variable;G(()=>{let l=ee(i,Oe(a));i.assign(l);let u=ee(P(me(a,xt(ee(l,D.backend.epsilon()))),-this.learningRate),s);s.assign(u)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ae(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};op.className="Adagrad";sn(op);var sp=class extends Pr{constructor(e,t,n,o=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=o,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],G(()=>{this.accBeta1=le(t).variable(),this.accBeta2=le(n).variable()}),o==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);G(()=>{let n=ce(1,this.accBeta1),o=ce(1,this.accBeta2);t.forEach((s,a)=>{let i=D.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:G(()=>Ce(i).variable(l))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${s}/v`,variable:G(()=>Ce(i).variable(l))});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedSecondMoment[a].variable,m=ee(P(c,this.beta1),P(u,1-this.beta1)),f=ee(P(p,this.beta2),P(Oe(u),1-this.beta2)),d=me(m,n),h=me(f,o);c.assign(m),p.assign(f);let g=ee(P(me(d,ee(xt(h),this.epsilon)),-this.learningRate),i);i.assign(g)}),this.accBeta1.assign(P(this.accBeta1,this.beta1)),this.accBeta2.assign(P(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ae(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),G(()=>{this.accBeta1.assign(Or(this.beta1,this.iterations_+1)),this.accBeta2.assign(Or(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};sp.className="Adam";sn(sp);var ip=class extends Pr{constructor(e,t,n,o=null,s=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=o,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],G(()=>{this.iteration=le(0).variable(),this.accBeta1=le(t).variable()}),o==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);G(()=>{let n=ce(1,this.accBeta1),o=me(-this.learningRate,ee(P(this.iteration,this.decay),1));t.forEach((s,a)=>{let i=D.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:Ce(i).variable(l)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${s}/v`,variable:Ce(i).variable(l)});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedWeightedInfNorm[a].variable,m=ee(P(c,this.beta1),P(u,1-this.beta1)),f=P(p,this.beta2),d=Nt(u),h=Yr(f,d);c.assign(m),p.assign(h);let g=ee(P(me(o,n),me(m,ee(h,this.epsilon))),i);i.assign(g)}),this.iteration.assign(ee(this.iteration,1)),this.accBeta1.assign(P(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ae(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};ip.className="Adamax";sn(ip);var ul=class extends Pr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=Array.isArray(e)?e[o].tensor:e[n];if(s==null)return;let a=D.registeredVariables[n];G(()=>{let i=ee(P(this.c,s),a);a.assign(i)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Dt(le(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};ul.className="SGD";sn(ul);var ap=class extends ul{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=le(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=D.registeredVariables[n];if(this.accumulations[o]==null){let l=!1;this.accumulations[o]={originalName:`${n}/momentum`,variable:G(()=>Ce(s).variable(l))}}let a=this.accumulations[o].variable,i=Array.isArray(e)?e[o].tensor:e[n];i!=null&&G(()=>{let l,u=ee(P(this.m,a),i);this.useNesterov?l=ee(P(this.c,ee(i,P(u,this.m))),s):l=ee(P(this.c,u),s),a.assign(u),s.assign(l)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ae(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};ap.className="Momentum";sn(ap);var lp=class extends Pr{constructor(e,t=.9,n=0,o=null,s=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=o,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,o==null&&(this.epsilon=D.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,o)=>{let s=D.registeredVariables[n],a=!1;this.accumulatedMeanSquares[o]==null&&(this.accumulatedMeanSquares[o]={originalName:`${n}/rms`,variable:G(()=>Ce(s).variable(a))}),this.accumulatedMoments[o]==null&&(this.accumulatedMoments[o]={originalName:`${n}/momentum`,variable:G(()=>Ce(s).variable(a))}),this.accumulatedMeanGrads[o]==null&&this.centered&&(this.accumulatedMeanGrads[o]={originalName:`${n}/mg`,variable:G(()=>Ce(s).variable(a))});let i=Array.isArray(e)?e[o].tensor:e[n];if(i==null)return;let l=this.accumulatedMeanSquares[o].variable,u=this.accumulatedMoments[o].variable;G(()=>{let c=ee(P(l,this.decay),P(Oe(i),1-this.decay));if(this.centered){let p=this.accumulatedMeanGrads[o].variable,m=ee(P(p,this.decay),P(i,1-this.decay)),f=me(P(i,this.learningRate),xt(ce(c,ee(Oe(m),this.epsilon)))),d=ee(P(u,this.momentum),f);l.assign(c),p.assign(m),u.assign(d);let h=ce(s,d);s.assign(h)}else{let p=ee(P(l,this.decay),P(Oe(i),1-this.decay)),m=ee(P(u,this.momentum),me(P(i,this.learningRate),xt(ee(p,this.epsilon))));l.assign(p),u.assign(m);let f=ce(s,m);s.assign(f)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ae(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ae(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ae(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};lp.className="RMSProp";sn(lp);var $a=class{static sgd(e){return new ul(e)}static momentum(e,t,n=!1){return new ap(e,t,n)}static rmsprop(e,t=.9,n=0,o=null,s=!1){return new lp(e,t,n,o,s)}static adam(e=.001,t=.9,n=.999,o=null){return new sp(e,t,n,o)}static adadelta(e=.001,t=.95,n=null){return new np(e,t,n)}static adamax(e=.002,t=.9,n=.999,o=null,s=0){return new ip(e,t,n,o,s)}static adagrad(e,t=.1){return new op(e,t)}};var cl={sgd:$a.sgd,momentum:$a.momentum,adadelta:$a.adadelta,adagrad:$a.adagrad,rmsprop:$a.rmsprop,adamax:$a.adamax,adam:$a.adam};var hH=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:r=>r())();function nf(){return new Promise(r=>hH(()=>r()))}var S={};Ke(S,{ERF_A1:()=>NH,ERF_A2:()=>SH,ERF_A3:()=>TH,ERF_A4:()=>AH,ERF_A5:()=>EH,ERF_P:()=>IH,PARALLELIZE_THRESHOLD:()=>yg,SELU_SCALE:()=>uk,SELU_SCALEALPHA:()=>lk,applyActivation:()=>ju,assertAndGetBroadcastShape:()=>Be,assertAxesAreInnerMostDims:()=>bj,assertParamsConsistent:()=>gH,assignToTypedArray:()=>LH,axesAreInnerMostDims:()=>Ow,calculateShapes:()=>_N,combineLocations:()=>BN,complexWithEvenIndex:()=>OH,complexWithOddIndex:()=>PH,computeConv2DInfo:()=>wu,computeConv3DInfo:()=>LN,computeDefaultPad:()=>bw,computeDilation2DInfo:()=>jG,computeOptimalWindowSize:()=>yH,computeOutAndReduceShapes:()=>Pw,computeOutShape:()=>xH,computePool2DInfo:()=>xw,computePool3DInfo:()=>UG,convertConv2DDataFormat:()=>MN,eitherStridesOrDilationsAreOne:()=>kr,expandShapeToKeepDim:()=>Bo,exponent:()=>BH,exponents:()=>zH,fromStringArrayToUint8:()=>HH,fromUint8ToStringArray:()=>UH,getAxesPermutation:()=>Mw,getBroadcastDims:()=>OW,getComplexWithIndex:()=>MH,getFusedBiasGradient:()=>Wu,getFusedDyActivation:()=>Gu,getImageCenter:()=>bH,getInnerMostAxes:()=>wj,getPermuted:()=>kH,getReductionAxes:()=>_t,getReshaped:()=>wH,getReshapedPermuted:()=>_H,getSliceBeginCoords:()=>vH,getSliceSize:()=>CH,getUndoAxesPermutation:()=>zm,log:()=>$H,mergeRealAndImagArrays:()=>RH,prepareAndValidate:()=>kN,prepareSplitSize:()=>VH,segment_util:()=>DS,shouldFuse:()=>Uu,slice_util:()=>sr,splitRealAndImagArrays:()=>FH,tupleValuesAreOne:()=>Ln,upcastType:()=>dr,validateInput:()=>Qh,validateUpdateShape:()=>cw,warn:()=>DH});function gH(r,e){let t=r[0].length;r.forEach((o,s)=>{E(o.length===t,()=>`Error in concat${t}D: rank of tensors[${s}] must be the same as the rank of the rest (${t})`)}),E(e>=0&&e<t,()=>`Error in concat${t}D: axis must be between 0 and ${t-1}.`);let n=r[0];r.forEach((o,s)=>{for(let a=0;a<t;a++)E(a===e||o[a]===n[a],()=>`Error in concat${t}D: Shape of tensors[${s}] (${o}) does not match the shape of the rest (${n}) along the non-concatenated axis ${s}.`)})}function xH(r,e){let t=r[0].slice();for(let n=1;n<r.length;n++)t[e]+=r[n][e];return t}var yg=30;function yH(r){return r<=yg?r:Rc(r,Math.floor(Math.sqrt(r)))}function bH(r,e,t){let n=t*(typeof r=="number"?r:r[0]),o=e*(typeof r=="number"?r:r[1]);return[n,o]}function wH(r,e,t,n=!0){let o=[];if(n)o=o.concat(e.slice(0)),o.push(r[0]/t),o=o.concat(r.slice(1));else{o=o.concat(r[0]);let s=e.length;for(let a=0;a<s;++a)o=o.concat([r[a+1]/e[a],e[a]]);o=o.concat(r.slice(s+1))}return o}function kH(r,e,t=!0){let n=[];if(t){n.push(e);for(let o=e+1;o<r;++o)o<=2*e?(n.push(o),n.push(o-(e+1))):n.push(o)}else{let o=[],s=[];for(let a=1;a<r;++a)a>=e*2+1||a%2==1?s.push(a):o.push(a);n.push(...o),n.push(0),n.push(...s)}return n}function _H(r,e,t,n=!0){let o=[];n?o.push(r[0]/t):o.push(r[0]*t);for(let s=1;s<r.length;++s)s<=e.length?n?o.push(e[s-1]*r[s]):o.push(r[s]/e[s-1]):o.push(r[s]);return o}function vH(r,e){let t=[0];for(let n=0;n<e;++n)t.push(r[n][0]);return t}function CH(r,e,t){let n=r.slice(0,1);for(let o=0;o<t;++o)n.push(r[o+1]-e[o][0]-e[o][1]);return n}var lk=1.7580993408473768,uk=1.0507009873554805;var IH=.3275911,NH=.254829592,SH=-.284496736,TH=1.421413741,AH=-1.453152027,EH=1.061405429;function DH(...r){j().getBool("IS_TEST")||console.warn(...r)}function $H(...r){j().getBool("IS_TEST")||console.log(...r)}function RH(r,e){if(r.length!==e.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${r.length}, imag: ${e.length}.`);let t=new Float32Array(r.length*2);for(let n=0;n<t.length;n+=2)t[n]=r[n/2],t[n+1]=e[n/2];return t}function FH(r){let e=new Float32Array(r.length/2),t=new Float32Array(r.length/2);for(let n=0;n<r.length;n+=2)e[n/2]=r[n],t[n/2]=r[n+1];return{real:e,imag:t}}function OH(r){let e=Math.ceil(r.length/4),t=new Float32Array(e),n=new Float32Array(e);for(let o=0;o<r.length;o+=4)t[Math.floor(o/4)]=r[o],n[Math.floor(o/4)]=r[o+1];return{real:t,imag:n}}function PH(r){let e=Math.floor(r.length/4),t=new Float32Array(e),n=new Float32Array(e);for(let o=2;o<r.length;o+=4)t[Math.floor(o/4)]=r[o],n[Math.floor(o/4)]=r[o+1];return{real:t,imag:n}}function MH(r,e){let t=r[e*2],n=r[e*2+1];return{real:t,imag:n}}function LH(r,e,t,n){r[n*2]=e,r[n*2+1]=t}function zH(r,e){let t=new Float32Array(r/2),n=new Float32Array(r/2);for(let o=0;o<Math.ceil(r/2);o++){let s=(e?2:-2)*Math.PI*(o/r);t[o]=Math.cos(s),n[o]=Math.sin(s)}return{real:t,imag:n}}function BH(r,e,t){let n=(t?2:-2)*Math.PI*(r/e),o=Math.cos(n),s=Math.sin(n);return{real:o,imag:s}}function VH(r,e,t=0){let n=[];if(typeof e=="number")E(r.shape[t]%e==0,()=>"Number of splits must evenly divide the axis."),n=new Array(e).fill(r.shape[t]/e);else{let o=e.reduce((a,i)=>(i===-1&&(a+=1),a),0);E(o<=1,()=>"There should be only one negative value in split array.");let s=e.indexOf(-1);if(s!==-1){let a=e.reduce((i,l)=>l>0?i+l:i);e[s]=r.shape[t]-a}E(r.shape[t]===e.reduce((a,i)=>a+i),()=>"The sum of sizes must match the size of the axis dimension."),n=e}return n}var DS={};Ke(DS,{collectGatherOpShapeInfo:()=>jH,computeOutShape:()=>WH,segOpComputeOptimalWindowSize:()=>GH});function GH(r,e){let t=!1,n;for(r<=yg?(n=r,t=!0):n=Rc(r,Math.floor(Math.sqrt(r)));!t;)n>e||n===r?t=!0:n=Rc(r,n+1);return n}function WH(r,e,t){let n=[],o=r.length;for(let s=0;s<o;s++)s!==e?n.push(r[s]):n.push(t);return n}function jH(r,e,t,n){let o=e.shape.length,s=r.shape.length;if(n!==0&&(n<-o||n>o))throw new Error(`Expect batchDims in the range of [-${o}, ${o}], but got ${n}`);if(n<0&&(n+=o),n>s)throw new Error(`batchDims (${n}) must be less than rank(x) (
${s}).`);if(t<n)throw new Error(`batchDims (${n}) must be less than or equal to axis (${t}).`);for(let p=0;p<n;++p)if(r.shape[p]!==e.shape[p])throw new Error(`x.shape[${p}]: ${r.shape[p]} should be equal to indices.shape[${p}]: ${e.shape[p]}.`);let a=r.shape[t],i=[],l=1,u=1,c=1;for(let p=0;p<n;++p)i.push(r.shape[p]),l*=r.shape[p];for(let p=n;p<t;p++)i.push(r.shape[p]),u*=r.shape[p];for(let p=n;p<o;p++)i.push(e.shape[p]);for(let p=t+1;p<s;p++)i.push(r.shape[p]),c*=r.shape[p];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:a,outputShape:i}}function UH(r){try{return r.map(e=>Vc(e))}catch(e){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${e}`)}}function HH(r){return r.map(e=>tl(e))}var Ar={};Ke(Ar,{nonMaxSuppressionV3Impl:()=>ok,nonMaxSuppressionV4Impl:()=>sk,nonMaxSuppressionV5Impl:()=>ik,whereImpl:()=>Jw});function te(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&y.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the CPU backend.`)})}var qH=Ar.whereImpl,Hu=class extends js{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Za(this,Mn())}nextDataId(){return Hu.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,j().get("IS_NODE")&&S.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let o={id:this.nextDataId()};return this.data.set(o,{values:e,dtype:n,refCount:1}),o}makeTensorInfo(e,t,n){let o;if(t==="string"&&n!=null&&n.length>0&&y.isString(n[0])){let s=n.map(a=>y.encodeString(a));o=this.write(s,e,t)}else o=this.write(n,e,t);return{dataId:o,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,o,s){this.data.set(e,{values:t,dtype:o,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let o=this.readSync(n.real.dataId),s=this.readSync(n.imag.dataId);return S.mergeRealAndImagArrays(o,s)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(o=>y.decodeString(o))}catch(o){throw new Error("Failed to decode encoded string bytes into utf-8")}return ve(e.shape,e.dtype,n)}makeOutput(e,t,n){let o=this.write(e,t,n);return Mn().makeTensorFromDataId(o,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=y.now();return e(),{kernelMs:y.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){te([e],"where");let t=this.readSync(e.dataId);return qH(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Hu.nextDataId=0;var wg={};Ke(wg,{addImpl:()=>LS,bincountImpl:()=>of,bincountReduceImpl:()=>ck,ceilImpl:()=>BS,concatImpl:()=>sf,expImpl:()=>GS,expm1Impl:()=>jS,floorImpl:()=>HS,gatherV2Impl:()=>mk,greaterImpl:()=>KS,lessImpl:()=>YS,linSpaceImpl:()=>fk,logImpl:()=>JS,maxImpl:()=>dk,maximumImpl:()=>eT,minimumImpl:()=>rT,multiplyImpl:()=>bg,negImpl:()=>sT,notEqualImpl:()=>aT,prodImpl:()=>cT,rangeImpl:()=>uf,rsqrtImpl:()=>mT,simpleAbsImpl:()=>$S,sliceImpl:()=>cf,squaredDifferenceImpl:()=>hT,stridedSliceImpl:()=>hk,subImpl:()=>xT,tileImpl:()=>gk,topKImpl:()=>xk,transposeImpl:()=>lf,uniqueImpl:()=>yk});function $S(r){let e=new Float32Array(r.length);for(let t=0;t<r.length;++t)e[t]=Math.abs(r[t]);return e}var KH=r=>{let{x:e}=r.inputs,t=r.backend;te(e,"abs");let n=new Float32Array(y.sizeFromShape(e.shape)),o=t.data.get(e.dataId).values;return n=$S(o),t.makeOutput(n,e.shape,"float32")},RS={kernelName:as,backendName:"cpu",kernelFunc:KH};function Xe(r){return(e,t,n,o,s)=>{let a=S.assertAndGetBroadcastShape(e,t),i=a.length,l=y.computeStrides(a),u=y.sizeFromShape(a),c=y.getTypedArrayFromDType(s,u),p=e.length,m=t.length,f=y.computeStrides(e),d=y.computeStrides(t),h=S.getBroadcastDims(e,a),g=S.getBroadcastDims(t,a);if(h.length+g.length===0)for(let x=0;x<c.length;++x)c[x]=r(n[x%n.length],o[x%o.length]);else for(let x=0;x<c.length;++x){let w=y.indexToLoc(x,i,l),b=w.slice(-p);h.forEach(N=>b[N]=0);let k=y.locToIndex(b,p,f),_=w.slice(-m);g.forEach(N=>_[N]=0);let A=y.locToIndex(_,m,d);c[x]=r(n[k],o[A])}return[c,a]}}function mr(r){let{inputs:e,backend:t}=r,{real:n,imag:o}=e,s=t.data.get(n.dataId).values,a=t.data.get(o.dataId).values,i=t.makeTensorInfo(n.shape,"complex64"),l=t.data.get(i.dataId);return l.complexTensorInfos={real:t.makeTensorInfo(n.shape,"float32",s),imag:t.makeTensorInfo(o.shape,"float32",a)},i}var FS={kernelName:Gl,backendName:"cpu",kernelFunc:mr};function up(r,e,t="float32"){if(t==="complex64"){let o=up(r,e,"float32"),s=up(r,e,"float32");return mr({inputs:{real:o,imag:s},backend:r})}let n=y.makeZerosTypedArray(y.sizeFromShape(e),t);return r.makeTensorInfo(e,t,n)}function Er(r){let{inputs:e,backend:t}=r,{x:n}=e;return t.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var OS={kernelName:Fn,backendName:"cpu",kernelFunc:Er};function jo(r){let{inputs:e,backend:t}=r,{input:n}=e,o=t.data.get(n.dataId).complexTensorInfos.real,s=t.data.get(o.dataId).values;return t.makeTensorInfo(o.shape,o.dtype,s)}var PS={kernelName:iu,backendName:"cpu",kernelFunc:jo};function Uo(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dtype:s}=n;if(s==="complex64"){if(o.dtype==="complex64")return Er({inputs:{x:o},backend:t});let a=up(t,o.shape,o.dtype),i=Uo({inputs:{x:o},backend:t,attrs:{dtype:"float32"}}),l=mr({inputs:{real:i,imag:a},backend:t});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}if(o.dtype==="complex64"){let a=jo({inputs:{input:o},backend:t}),i=Uo({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!y.hasEncodingLoss(o.dtype,s)){let a=Er({inputs:{x:o},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32"){let a=t.data.get(o.dataId).values,i=Int32Array.from(a);return t.makeTensorInfo(o.shape,"int32",i)}if(s==="bool"){let a=t.data.get(o.dataId).values,i=y.toTypedArray([0],o.dtype),[l,u]=Xe((c,p)=>c!==p?1:0)(o.shape,[],a,i,"bool");return t.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${o.dtype} to ${s}`)}var MS={kernelName:$n,backendName:"cpu",kernelFunc:Uo};function et(r,e,t,n){return t==null?({inputs:o,backend:s})=>{let{a,b:i}=o,l=s;te([a,i],r);let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=n||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}:({inputs:o,backend:s})=>{let{a,b:i}=o,l=s;if(a.dtype==="complex64"||i.dtype==="complex64"){let u=Uo({inputs:{x:a},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,m=c.complexTensorInfos.imag,f=l.data.get(p.dataId).values,d=l.data.get(m.dataId).values,h=Uo({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(h.dataId),x=g.complexTensorInfos.real,w=g.complexTensorInfos.imag,b=l.data.get(x.dataId).values,k=l.data.get(w.dataId).values,[_,A,N]=t(a.shape,i.shape,f,d,b,k),$=l.makeTensorInfo(N,"float32",_),F=l.makeTensorInfo(N,"float32",A),M=mr({inputs:{real:$,imag:F},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(h),l.disposeIntermediateTensorInfo($),l.disposeIntermediateTensorInfo(F),M}else{let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=n||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}}}function cp(r){return(e,t,n,o,s,a)=>{let i=S.assertAndGetBroadcastShape(e,t),l=y.sizeFromShape(i),u=i.length,c=y.computeStrides(i),p=y.getTypedArrayFromDType("float32",l),m=y.getTypedArrayFromDType("float32",l),f=S.getBroadcastDims(e,i),d=S.getBroadcastDims(t,i),h=S.mergeRealAndImagArrays(n,o),g=S.mergeRealAndImagArrays(s,a),x=e.length,w=y.computeStrides(e),b=t.length,k=y.computeStrides(t);if(f.length+d.length===0)for(let _=0;_<p.length;_++){let A=_%h.length,N=_%g.length,$=r(h[A*2],h[A*2+1],g[N*2],g[N*2+1]);p[_]=$.real,m[_]=$.imag}else for(let _=0;_<p.length;_++){let A=y.indexToLoc(_,u,c),N=A.slice(-x);f.forEach(W=>N[W]=0);let $=y.locToIndex(N,x,w),F=A.slice(-b);d.forEach(W=>F[W]=0);let M=y.locToIndex(F,b,k),V=r(h[$*2],h[$*2+1],g[M*2],g[M*2+1]);p[_]=V.real,m[_]=V.imag}return[p,m,i]}}var LS=Xe((r,e)=>r+e),XH=cp((r,e,t,n)=>({real:r+t,imag:e+n})),Ra=et(wn,LS,XH),zS={kernelName:wn,backendName:"cpu",kernelFunc:Ra};function of(r,e,t,n,o){let s=y.sizeFromShape(n),a=y.makeZerosTypedArray(o,t);for(let i=0;i<r.length;i++){let l=r[i];if(l<0)throw new Error("Input x must be non-negative!");l>=o||(s>0?a[l]+=e[i]:a[l]+=1)}return a}function ck(r,e,t,n=!1){let o=r.shape[0],s=r.shape[1],a=ve([o,t],e.dtype);for(let i=0;i<o;i++)for(let l=0;l<s;l++){let u=r.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=t||(n?a.set(1,i,u):e.size>0?a.set(a.get(i,u)+e.get(i,l),i,u):a.set(a.get(i,u)+1,i,u))}return a}function Ho(r){return(e,t,n)=>{let o=y.getTypedArrayFromDType(t,e.length);for(let s=0;s<e.length;++s)o[s]=r(e[s],n);return o}}function $e(r,e,t){return({inputs:n,attrs:o,backend:s})=>{let{x:a}=n;if(te(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=y.sizeFromShape(a.shape),c=t||a.dtype,p=y.getArrayFromDType(c,u);for(let m=0;m<u;++m)p[m]=e(l[m],o);return i.makeTensorInfo(a.shape,c,p)}}function qo(r,e,t){return({inputs:n,attrs:o,backend:s})=>{let{x:a}=n;if(te(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=t||a.dtype,c=e(l,u,o);return i.makeTensorInfo(a.shape,u,c)}}var BS=Ho(r=>Math.ceil(r)),YH=qo(Yn,BS),VS={kernelName:Yn,backendName:"cpu",kernelFunc:YH};function sf(r,e,t,n){let o=y.getArrayFromDType(t,y.sizeFromShape(e));if(n&&t!=="string"){let s=0;r.forEach(a=>{let i=y.sizeFromShape(a.shape);o.set(a.vals,s),s+=i})}else{let s=0;r.forEach(a=>{let i=t==="string"?S.fromUint8ToStringArray(a.vals):a.vals,l=0;for(let u=0;u<a.shape[0];++u){let c=u*e[1]+s;for(let p=0;p<a.shape[1];++p)o[c+p]=i[l++]}s+=a.shape[1]})}return o}var GS=Ho(r=>Math.exp(r)),pk=qo(no,GS),WS={kernelName:no,backendName:"cpu",kernelFunc:pk};var jS=Ho(r=>Math.expm1(r)),ZH=qo(ii,jS),US={kernelName:ii,backendName:"cpu",kernelFunc:ZH};var HS=Ho(r=>Math.floor(r)),JH=qo(oo,HS),qS={kernelName:oo,backendName:"cpu",kernelFunc:JH};function mk(r,e,t){let n=ve(t,r.dtype);for(let o=0;o<n.size;++o){let a=n.indexToLoc(o).slice(),i=a[0],l=a[2],u=e.locToIndex([i,l]);a[2]=e.values[u];let c=r.locToIndex(a);n.values[o]=r.values[c]}return n}var KS=Xe((r,e)=>r>e?1:0),QH=et(ui,KS,null,"bool"),XS={kernelName:ui,backendName:"cpu",kernelFunc:QH};var YS=Xe((r,e)=>r<e?1:0),eq=et(fi,YS,null,"bool"),ZS={kernelName:fi,backendName:"cpu",kernelFunc:eq};function fk(r,e,t){let n=(e-r)/(t-1),o=y.makeZerosTypedArray(t,"float32");o[0]=r;for(let s=1;s<o.length;s++)o[s]=o[s-1]+n;return o}var JS=Ho(r=>Math.log(r)),tq=qo(uo,JS),QS={kernelName:uo,backendName:"cpu",kernelFunc:tq};function dk(r,e,t,n){let o=y.getTypedArrayFromDType(n,y.sizeFromShape(t));for(let s=0;s<o.length;++s){let a=s*e,i=r[a];for(let l=0;l<e;++l){let u=r[a+l];u>i&&(i=u)}o[s]=i}return o}var eT=Xe((r,e)=>Math.max(r,e)),rq=et(po,eT),tT={kernelName:po,backendName:"cpu",kernelFunc:rq};var rT=Xe((r,e)=>Math.min(r,e)),nq=et(go,rT),nT={kernelName:go,backendName:"cpu",kernelFunc:nq};var bg=Xe((r,e)=>r*e),oq=cp((r,e,t,n)=>({real:r*t-e*n,imag:r*n+e*t})),af=et(xo,bg,oq),oT={kernelName:xo,backendName:"cpu",kernelFunc:af};function sT(r,e,t){let n=y.createScalarValue(-1,t);return bg([],e,n,r,t)}function sq(r){let{inputs:e,backend:t}=r,{x:n}=e;te(n,"neg");let o=t.data.get(n.dataId).values,[s,a]=sT(o,n.shape,n.dtype);return t.makeTensorInfo(a,n.dtype,s)}var iT={kernelName:ps,backendName:"cpu",kernelFunc:sq};var aT=Xe((r,e)=>r!==e?1:0),iq=et(yi,aT,null,"bool"),lT={kernelName:yi,backendName:"cpu",kernelFunc:iq};function lf(r,e,t,n,o){let s=e.length,a=y.sizeFromShape(e),i=y.computeStrides(e),l=y.computeStrides(o),u=y.getTypedArrayFromDType(t,y.sizeFromShape(o));for(let c=0;c<a;++c){let p=y.indexToLoc(c,s,i),m=new Array(p.length);for(let d=0;d<m.length;d++)m[d]=p[n[d]];let f=y.locToIndex(m,s,l);u[f]=r[c]}return u}function rr(r){let{inputs:e,attrs:t,backend:n}=r,{x:o}=e,{perm:s}=t;te(o,"transpose");let a=o.shape.length,i=new Array(a);for(let p=0;p<i.length;p++)i[p]=o.shape[s[p]];let l=n.data.get(o.dataId).values,u=lf(l,o.shape,o.dtype,s,i);return{dataId:n.write(u,i,o.dtype),shape:i,dtype:o.dtype}}var uT={kernelName:Po,backendName:"cpu",kernelFunc:rr};function cT(r,e,t,n){let[o,s]=S.computeOutAndReduceShapes(r,n),a=dr(e,"int32"),i=y.makeZerosTypedArray(y.sizeFromShape(o),a),l=y.sizeFromShape(s);for(let u=0;u<i.length;++u){let c=u*l,p=1;for(let m=0;m<l;++m)p*=t[c+m];i[u]=p}return{outVals:i,outShape:o,outDtype:a}}function aq(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;te(o,"prod");let i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=S.getAxesPermutation(l,i),c=l,p=o,m=[];u!=null&&(p=rr({inputs:{x:o},backend:t,attrs:{perm:u}}),m.push(p),c=S.getInnerMostAxes(c.length,i));let f=t.data.get(p.dataId).values,{outVals:d,outShape:h,outDtype:g}=cT(p.shape,p.dtype,f,c),x=h;return a&&(x=S.expandShapeToKeepDim(h,l)),m.forEach(w=>t.disposeIntermediateTensorInfo(w)),t.makeTensorInfo(x,g,d)}var pT={kernelName:_i,backendName:"cpu",kernelFunc:aq};function uf(r,e,t,n){let o=r===e,s=r<e&&t<0,a=e<r&&t>1;if(o||s||a)return y.makeZerosTypedArray(0,n);let i=Math.abs(Math.ceil((e-r)/t)),l=y.makeZerosTypedArray(i,n);e<r&&t===1&&(t=-1),l[0]=r;for(let u=1;u<l.length;u++)l[u]=l[u-1]+t;return l}var mT=Ho(r=>1/Math.sqrt(r)),lq=qo(So,mT),fT={kernelName:So,backendName:"cpu",kernelFunc:lq};function cf(r,e,t,n,o){let s=sr.isSliceContinous(n,e,t),a=y.sizeFromShape(t),i=y.computeStrides(n);if(s){let p=sr.computeFlatOffset(e,i);return o==="string"?r.slice(p,p+a):r.subarray(p,p+a)}let l=o==="string"?S.fromUint8ToStringArray(r):r,u=ve(n,o,l),c=ve(t,o);for(let p=0;p<c.size;++p){let m=c.indexToLoc(p),f=m.map((d,h)=>d+e[h]);c.set(u.get(...f),...m)}return o==="string"?S.fromStringArrayToUint8(c.values):c.values}function Ko(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{begin:s,size:a}=n;te(o,"slice");let[i,l]=sr.parseSliceParams(o,s,a);sr.assertParamsValid(o,i,l);let u=t.data.get(o.dataId).values,c=cf(u,i,l,o.shape,o.dtype);return t.makeTensorInfo(l,o.dtype,c)}var dT={kernelName:gs,backendName:"cpu",kernelFunc:Ko};var hT=Xe((r,e)=>{let t=r-e;return t*t}),uq=et(Ro,hT),gT={kernelName:Ro,backendName:"cpu",kernelFunc:uq};function hk(r,e,t,n){let o=ve(r,e.dtype);for(let s=0;s<o.size;s++){let a=o.indexToLoc(s),i=new Array(a.length);for(let l=0;l<i.length;l++)i[l]=a[l]*t[l]+n[l];o.set(e.get(...i),...a)}return o}var xT=Xe((r,e)=>r-e),cq=cp((r,e,t,n)=>({real:r-t,imag:e-n})),pf=et(Fo,xT,cq),yT={kernelName:Fo,backendName:"cpu",kernelFunc:pf};function gk(r,e){let t=new Array(r.rank);for(let o=0;o<t.length;o++)t[o]=r.shape[o]*e[o];let n=ve(t,r.dtype);for(let o=0;o<n.values.length;++o){let s=n.indexToLoc(o),a=new Array(r.rank);for(let l=0;l<a.length;l++)a[l]=s[l]%r.shape[l];let i=r.locToIndex(a);n.values[o]=r.values[i]}return n}function xk(r,e,t,n,o){let s=e[e.length-1],[a,i]=[r.length/s,s],l=y.getTypedArrayFromDType(t,a*n),u=y.getTypedArrayFromDType("int32",a*n);for(let p=0;p<a;p++){let m=p*i,f=r.subarray(m,m+i),d=[];for(let w=0;w<f.length;w++)d.push({value:f[w],index:w});d.sort((w,b)=>b.value-w.value);let h=p*n,g=l.subarray(h,h+n),x=u.subarray(h,h+n);for(let w=0;w<n;w++)g[w]=d[w].value,x[w]=d[w].index}let c=e.slice();return c[c.length-1]=n,[ve(c,t,l),ve(c,"int32",u)]}function yk(r,e,t,n){let o=y.parseAxisParam(e,t)[0],s=[1,t[0],1];for(let d=0;d<o;d++)s[0]*=t[d];s[1]=t[o];for(let d=o+1;d<t.length;d++)s[2]*=t[d];let a={},i=new Int32Array(t[o]),l=new lt(s,n,r),u=[],c=s[0]===1&&s[2]===1;for(let d=0;d<t[o];d++){let h;if(c)h=r[d].toString();else{let g=[];for(let x=0;x<s[0];x++)for(let w=0;w<s[2];w++)g.push(l.get(x,d,w));h=g.join(",")}if(a[h]!==void 0)i[d]=a[h];else{let g=Object.keys(a).length;a[h]=g,i[d]=g,u.push(d)}}let p=s.slice();p[1]=Object.keys(a).length;let m=new lt(p,n);u.forEach((d,h)=>{for(let g=0;g<s[0];g++)for(let x=0;x<s[2];x++)m.set(l.get(g,d,x),g,h,x)});let f=t.slice();return f[o]=p[1],{outputValues:m.values,outputShape:f,indices:i}}var bk="3.3.0";xu("cpu",()=>new Hu,1);var wk=$e(ni,r=>r>=0?r:Math.exp(r)-1),bT={kernelName:ni,backendName:"cpu",kernelFunc:wk};function kk(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{alpha:s}=n;te([o],"leakyRelu");let a=y.sizeFromShape(o.shape),i=t.data.get(o.dataId).values,l=y.getTypedArrayFromDType("float32",a);for(let u=0;u<i.length;u++)l[u]=i[u]<0?s*i[u]:i[u];return t.makeTensorInfo(o.shape,"float32",l)}var wT={kernelName:lo,backendName:"cpu",kernelFunc:kk};var pq=Xe((r,e)=>r<0?e*r:r);function _k(r){let{inputs:e,backend:t}=r,{x:n,alpha:o}=e;te([n,o],"prelu");let s=t.data.get(n.dataId).values,a=t.data.get(o.dataId).values,[i,l]=pq(n.shape,o.shape,s,a,n.dtype);return t.makeTensorInfo(l,n.dtype,i)}var kT={kernelName:ko,backendName:"cpu",kernelFunc:_k};var vk=$e(_o,r=>Math.max(0,r)),_T={kernelName:_o,backendName:"cpu",kernelFunc:vk};var Ck=$e(Co,r=>Math.min(Math.max(0,r),6)),vT={kernelName:Co,backendName:"cpu",kernelFunc:Ck};function pp(r,e,t,n,o){if(t==="linear")return Er({inputs:{x:e},backend:r});if(t==="relu")return vk({inputs:{x:e},backend:r});if(t==="elu")return wk({inputs:{x:e},backend:r});if(t==="relu6")return Ck({inputs:{x:e},backend:r});if(t==="prelu")return _k({inputs:{x:e,alpha:n},backend:r});if(t==="leakyrelu")return kk({inputs:{x:e},backend:r,attrs:{alpha:o}});throw new Error(`Activation ${t} has not been implemented for the CPU backend.`)}function Qe(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{shape:s}=n,a=y.sizeFromShape(o.shape),i=y.inferFromImplicitShape(s,a),l=y.sizeFromShape(i);y.assert(a===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${o.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),t.incRef(o.dataId);let u=t.data.get(o.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;c.shape=i,p.shape=i}return{dataId:o.dataId,shape:i,dtype:o.dtype}}var CT={kernelName:ds,backendName:"cpu",kernelFunc:Qe};function Ik(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s}=e,{transposeA:a,transposeB:i}=n;te([o,s],"matMul");let l=o.shape.length,u=s.shape.length,c=a?o.shape[l-2]:o.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?o.shape[l-1]:o.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),w=g===x||g===1||x===1;y.assert(l>=2&&u>=2&&w,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let k=(g>x?o.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let _=a?[g,c,m]:[g,m,c],A=i?[x,f,p]:[x,p,f],N=Qe({inputs:{x:o},backend:t,attrs:{shape:_}}),$=Qe({inputs:{x:s},backend:t,attrs:{shape:A}}),F=a?N.shape[1]:N.shape[2],M=a?N.shape[2]:N.shape[1],V=i?$.shape[1]:$.shape[2],W=Math.max(g,x),U=t.data.get(N.dataId).values,H=t.data.get($.dataId).values,q=y.computeStrides(N.shape),X=y.computeStrides($.shape),[ne,Y,re]=a?[q[0],1,q[1]]:[q[0],q[1],1],[J,ie,ue]=i?[1,X[1],X[0]]:[X[1],1,X[0]],ae=M*V,fe=ve([W,M,V],N.dtype),de=fe.values,xe=t.blockSize;for(let we=0;we<W;we++)for(let De=0;De<M;De+=xe)for(let Ne=0;Ne<V;Ne+=xe)for(let ze=0;ze<F;ze+=xe){let qe=Math.min(De+xe,M),it=Math.min(Ne+xe,V),At=Math.min(ze+xe,F);for(let Et=De;Et<qe;Et++)for(let je=Ne;je<it;je++){let ut=0;for(let mt=ze;mt<At;mt++){let Mt=Math.min(we,g-1)*ne,xn=Math.min(we,x-1)*ue,Xt=U[Mt+Et*Y+mt*re],tn=H[mt*J+je*ie+xn];ut+=Xt*tn}de[we*ae+(Et*V+je)]+=ut}}return t.disposeIntermediateTensorInfo(N),t.disposeIntermediateTensorInfo($),t.makeTensorInfo(k,fe.dtype,fe.values)}var IT={kernelName:Xn,backendName:"cpu",kernelFunc:Ik};function mq(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=n,m,f,d,h=[];m=Ik({inputs:{a:o,b:s},attrs:{transposeA:l,transposeB:u},backend:t}),a&&(f=Ra({inputs:{a:m,b:a},backend:t}),h.push(m),m=f),c&&(d=pp(t,m,c,i,p),h.push(m),m=d);for(let x of h)t.disposeIntermediateTensorInfo(x);return m}var NT={kernelName:ws,backendName:"cpu",kernelFunc:mq};var fq=$e(qs,r=>Math.acos(r)),ST={kernelName:qs,backendName:"cpu",kernelFunc:fq};var dq=$e(Ks,r=>Math.acosh(r)),TT={kernelName:Ks,backendName:"cpu",kernelFunc:dq};function hq(r){let{inputs:e,backend:t}=r,n=e;te(e,"addN");let o=n.map(i=>t.data.get(i.dataId).values),s=ve(n[0].shape,n[0].dtype),a=s.values;for(let i=0;i<n.length;i++){let l=o[i];for(let u=0;u<a.length;u++)a[u]+=l[u]}return t.makeTensorInfo(s.shape,s.dtype,s.values)}var AT={kernelName:Hn,backendName:"cpu",kernelFunc:hq};function gq(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;te(o,"all");let i=y.parseAxisParam(s,o.shape),l=i,u=S.getAxesPermutation(l,o.shape.length),c=o;u!=null&&(c=rr({inputs:{x:o},backend:t,attrs:{perm:u}}),l=S.getInnerMostAxes(l.length,o.shape.length)),S.assertAxesAreInnerMostDims("all",l,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let w=x*f,b=h[w];for(let k=0;k<f;++k){let _=h[w+k];b=b&&_}d[x]=b}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=S.expandShapeToKeepDim(p,i),w=Qe({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),w}return g}var ET={kernelName:Ml,backendName:"cpu",kernelFunc:gq};function xq(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;te(o,"any");let i=y.parseAxisParam(s,o.shape),l=i,u=S.getAxesPermutation(l,o.shape.length),c=o;u!=null&&(c=rr({inputs:{x:o},backend:t,attrs:{perm:u}}),l=S.getInnerMostAxes(l.length,o.shape.length)),S.assertAxesAreInnerMostDims("any",l,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let w=x*f,b=h[w];for(let k=0;k<f;++k){let _=h[w+k];b=b||_}d[x]=b}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=S.expandShapeToKeepDim(p,i),w=Qe({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),w}return g}var DT={kernelName:Ll,backendName:"cpu",kernelFunc:xq};function yq(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s}=n;te(o,"argMax");let a=y.parseAxisParam(s,o.shape),i=S.getAxesPermutation(a,o.shape.length),l=o,u=[];i!=null&&(l=rr({inputs:{x:o},backend:t,attrs:{perm:i}}),u.push(l),a=S.getInnerMostAxes(a.length,l.shape.length)),a=[a[0]],S.assertAxesAreInnerMostDims("argMax",a,l.shape.length);let[c,p]=S.computeOutAndReduceShapes(l.shape,a),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=t.data.get(l.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,w=h[x],b=0;for(let k=0;k<d;++k){let _=h[x+k];_>w&&(w=_,b=k)}f[g]=b}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var $T={kernelName:qn,backendName:"cpu",kernelFunc:yq};function bq(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s}=n;te(o,"argMin");let a=y.parseAxisParam(s,o.shape),i=S.getAxesPermutation(a,o.shape.length),l=o,u=[];i!=null&&(l=rr({inputs:{x:o},backend:t,attrs:{perm:i}}),u.push(l),a=S.getInnerMostAxes(a.length,l.shape.length)),a=[a[0]],S.assertAxesAreInnerMostDims("argMin",a,l.shape.length);let[c,p]=S.computeOutAndReduceShapes(l.shape,a),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=t.data.get(l.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,w=h[x],b=0;for(let k=0;k<d;++k){let _=h[x+k];_<w&&(w=_,b=k)}f[g]=b}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var RT={kernelName:ea,backendName:"cpu",kernelFunc:bq};var wq=$e(Xs,r=>Math.asin(r)),FT={kernelName:Xs,backendName:"cpu",kernelFunc:wq};var kq=$e(Ys,r=>Math.asinh(r)),OT={kernelName:Ys,backendName:"cpu",kernelFunc:kq};var _q=$e(Zs,r=>Math.atan(r)),PT={kernelName:Zs,backendName:"cpu",kernelFunc:_q};var vq=Xe((r,e)=>Math.atan2(r,e)),Cq=et(Qs,vq),MT={kernelName:Qs,backendName:"cpu",kernelFunc:Cq};var Iq=$e(Js,r=>Math.atanh(r)),LT={kernelName:Js,backendName:"cpu",kernelFunc:Iq};function mp(r,e,t,n,o,s){let a=o.strideHeight,i=o.strideWidth,l=o.dilationHeight,u=o.dilationWidth,c=o.effectiveFilterHeight,p=o.effectiveFilterWidth,m=o.padInfo.top,f=o.padInfo.left,d=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,h=ve(o.outShape,t),g=h.values,x=o.outShape[1]*o.outShape[2]*o.outShape[3],w=o.outShape[2]*o.outShape[3],b=o.outShape[3];for(let k=0;k<o.batchSize;++k){let _=k*x,A=k*n[0];for(let N=0;N<o.inChannels;++N)for(let $=0;$<o.outHeight;++$){let F=$*a-m,M=Math.max(0,F),V=Math.min(o.inHeight,c+F),W=_+$*w;for(let U=0;U<o.outWidth;++U){let H=U*i-f,q=Math.max(0,H),X=Math.min(o.inWidth,p+H),ne=d,Y=0,re=0;for(let ie=M;ie<V;ie+=l){let ue=A+ie*n[1];for(let ae=q;ae<X;ae+=u){let fe=ue+ae*n[2],de=r[fe+N];s==="max"&&de>ne?ne=de:s==="avg"&&(Y+=de,re++)}if(isNaN(ne))break}let J=W+U*b+N;g[J]=s==="avg"?Y/re:ne}}}return h}function kg(r,e,t,n,o=!1,s=!1){let a=ve(n.outShape,"int32"),i=n.strideHeight,l=n.strideWidth,u=n.dilationHeight,c=n.dilationWidth,p=n.effectiveFilterHeight,m=n.effectiveFilterWidth,f=n.padInfo.top,d=n.padInfo.left,h=ve(e,t,r);for(let g=0;g<n.batchSize;++g)for(let x=0;x<n.inChannels;++x)for(let w=0;w<n.outHeight;++w){let b=w*i-f,k=b;for(;k<0;)k+=u;let _=Math.min(n.inHeight,p+b);for(let A=0;A<n.outWidth;++A){let N=A*l-d,$=N;for(;$<0;)$+=c;let F=Math.min(n.inWidth,m+N),M=Number.NEGATIVE_INFINITY,V=-1;for(let W=k;W<_;W+=u){let U=W-b;for(let H=$;H<F;H+=c){let q=H-N,X=h.get(g,W,H,x);X>M&&(M=X,o?V=s?((g*n.inHeight+W)*n.inWidth+H)*n.inChannels+x:(W*n.inWidth+H)*n.inChannels+x:V=U*m+q)}}a.set(V,g,w,A,x)}}return a}function _g(r,e,t,n,o,s){let a=o.strideDepth,i=o.strideHeight,l=o.strideWidth,u=o.dilationDepth,c=o.dilationHeight,p=o.dilationWidth,m=o.effectiveFilterDepth,f=o.effectiveFilterHeight,d=o.effectiveFilterWidth,h=o.padInfo.front,g=o.padInfo.top,x=o.padInfo.left,w=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,b=ve(o.outShape,t),k=b.values,_=o.outShape[1]*o.outShape[2]*o.outShape[3]*o.outShape[4],A=o.outShape[2]*o.outShape[3]*o.outShape[4],N=o.outShape[3]*o.outShape[4],$=o.outShape[4];for(let F=0;F<o.batchSize;++F){let M=F*_,V=F*n[0];for(let W=0;W<o.inChannels;++W)for(let U=0;U<o.outDepth;++U){let H=U*a-h,q=H;for(;q<0;)q+=u;let X=Math.min(o.inDepth,m+H),ne=M+U*A;for(let Y=0;Y<o.outHeight;++Y){let re=Y*i-g,J=re;for(;J<0;)J+=c;let ie=Math.min(o.inHeight,f+re),ue=ne+Y*N;for(let ae=0;ae<o.outWidth;++ae){let fe=ae*l-x,de=fe;for(;de<0;)de+=p;let xe=Math.min(o.inWidth,d+fe),we=ue+ae*$,De=w,Ne=0,ze=0;for(let it=q;it<X;it+=u){let At=V+it*n[1];for(let Et=J;Et<ie;Et+=c){let je=At+Et*n[2];for(let ut=de;ut<xe;ut+=p){let mt=je+ut*n[3],Mt=r[mt+W];if(s==="max"&&Mt>De?De=Mt:s==="avg"&&(Ne+=Mt,ze++),isNaN(De))break}if(isNaN(De))break}if(isNaN(De))break}let qe=we+W;k[qe]=s==="avg"?Ne/ze:De}}}}return b}function zT(r,e){let t=ve(e.outShape,"int32"),n=e.strideDepth,o=e.strideHeight,s=e.strideWidth,a=e.dilationDepth,i=e.dilationHeight,l=e.dilationWidth,u=e.effectiveFilterDepth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,m=e.padInfo.front,f=e.padInfo.top,d=e.padInfo.left;for(let h=0;h<e.batchSize;++h)for(let g=0;g<e.inChannels;++g)for(let x=0;x<e.outDepth;++x){let w=x*n-m,b=w;for(;b<0;)b+=a;let k=Math.min(e.inDepth,u+w);for(let _=0;_<e.outHeight;++_){let A=_*o-f,N=A;for(;N<0;)N+=i;let $=Math.min(e.inHeight,c+A);for(let F=0;F<e.outWidth;++F){let M=F*s-d,V=M;for(;V<0;)V+=l;let W=Math.min(e.inWidth,p+M),U=Number.NEGATIVE_INFINITY,H=-1;for(let q=b;q<k;q+=a){let X=q-w;for(let ne=N;ne<$;ne+=i){let Y=ne-A;for(let re=V;re<W;re+=l){let J=re-M,ie=r.get(h,q,ne,re,g);ie>=U&&(U=ie,H=X*c*p+Y*c+J)}}}t.set(H,h,x,_,F,g)}}}return t}function Nq(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e;te(o,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=n,u=1;y.assert(S.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=S.computePool2DInfo(o.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Er({inputs:{x:o},backend:t});else{let m=t.data.get(o.dataId).values,f=y.computeStrides(o.shape),d=mp(m,o.shape,o.dtype,f,c,"avg");p=t.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var BT={kernelName:Kn,backendName:"cpu",kernelFunc:Nq};function Sq(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=n;te(o,"avgPool3d");let c=S.computePool3DInfo(o.shape,s,a,1,i,l,u),p=t.data.get(o.dataId).values,m=_g(p,o.shape,o.dtype,y.computeStrides(o.shape),c,"avg");return t.makeTensorInfo(m.shape,"float32",m.values)}var VT={kernelName:ta,backendName:"cpu",kernelFunc:Sq};function Tq(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=n;te([o,s],"avgPool3DGrad");let c=S.computePool3DInfo(s.shape,a,i,1,l,u),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,d=c.filterDepth,h=c.filterHeight,g=c.filterWidth,x=c.dilationDepth,w=c.dilationHeight,b=c.dilationWidth,k=c.effectiveFilterDepth,_=c.effectiveFilterHeight,A=c.effectiveFilterWidth,N=k-1-c.padInfo.front,$=A-1-c.padInfo.left,F=_-1-c.padInfo.top,M=ve(s.shape,"float32"),V=1/(d*h*g),W=t.bufferSync(o);for(let U=0;U<c.batchSize;++U)for(let H=0;H<c.inChannels;++H)for(let q=0;q<c.inDepth;++q)for(let X=0;X<c.inHeight;++X)for(let ne=0;ne<c.inWidth;++ne){let Y=q-N,re=X-F,J=ne-$,ie=0;for(let ue=0;ue<k;ue+=x){let ae=(Y+ue)/p;if(!(ae<0||ae>=c.outDepth||Math.floor(ae)!==ae))for(let fe=0;fe<_;fe+=w){let de=(re+fe)/m;if(!(de<0||de>=c.outHeight||Math.floor(de)!==de))for(let xe=0;xe<A;xe+=b){let we=(J+xe)/f;if(we<0||we>=c.outWidth||Math.floor(we)!==we)continue;ie+=W.get(U,ae,de,we,H)}}}M.set(ie*V,U,q,X,ne,H)}return t.makeTensorInfo(M.shape,M.dtype,M.values)}var GT={kernelName:Bl,backendName:"cpu",kernelFunc:Tq};function Aq(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,a=s;te([o,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=n,c=S.computePool2DInfo(a.shape,i,l,1,u),p=c.strideHeight,m=c.strideWidth,f=c.filterHeight,d=c.filterWidth,h=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,w=c.effectiveFilterWidth,b=w-1-c.padInfo.left,k=x-1-c.padInfo.top,_=ve(a.shape,"float32"),A=1/(f*d),N=t.data.get(o.dataId).values,$=ve(o.shape,"float32",N);for(let F=0;F<c.batchSize;++F)for(let M=0;M<c.inChannels;++M)for(let V=0;V<c.inHeight;++V)for(let W=0;W<c.inWidth;++W){let U=V-k,H=W-b,q=0;for(let X=0;X<x;X+=h){let ne=(U+X)/p;if(!(ne<0||ne>=c.outHeight||Math.floor(ne)!==ne))for(let Y=0;Y<w;Y+=g){let re=(H+Y)/m;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;q+=$.get(F,ne,re,M)}}_.set(q*A,F,V,W,M)}return t.makeTensorInfo(_.shape,_.dtype,_.values)}var WT={kernelName:zl,backendName:"cpu",kernelFunc:Aq};function Eq(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,scale:s,offset:a,mean:i,variance:l}=e;y.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(s==null||i.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),te([o,i,l,s,a],"batchNorm");let{varianceEpsilon:u}=n;u==null&&(u=.001);let c=t.data.get(o.dataId).values,p=t.data.get(i.dataId).values,m=t.data.get(l.dataId).values,f=s?t.data.get(s.dataId).values:new Float32Array([1]),d=a?t.data.get(a.dataId).values:new Float32Array([0]),h=new Float32Array(c.length),g=d.length,x=f.length,w=m.length,b=p.length,k=0,_=0,A=0,N=0;for(let $=0;$<c.length;++$)h[$]=d[k++]+(c[$]-p[_++])*f[A++]/Math.sqrt(m[N++]+u),k>=g&&(k=0),_>=b&&(_=0),A>=x&&(A=0),N>=w&&(N=0);return t.makeTensorInfo(o.shape,o.dtype,h)}var jT={kernelName:io,backendName:"cpu",kernelFunc:Eq};function Dq(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockShape:s,crops:a}=n;te([o],"batchToSpaceND");let i=s.reduce((x,w)=>x*w),l=S.getReshaped(o.shape,s,i),u=S.getPermuted(l.length,s.length),c=S.getReshapedPermuted(o.shape,s,i),p=S.getSliceBeginCoords(a,s.length),m=S.getSliceSize(c,a,s.length),f=Qe({inputs:{x:o},backend:t,attrs:{shape:l}}),d=rr({inputs:{x:f},backend:t,attrs:{perm:u}}),h=Qe({inputs:{x:d},backend:t,attrs:{shape:c}}),g=Ko({inputs:{x:h},backend:t,attrs:{begin:p,size:m}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var UT={kernelName:ra,backendName:"cpu",kernelFunc:Dq};function $q(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,weights:s}=e,{size:a}=n,i=t.data.get(o.dataId).values,l=t.data.get(s.dataId).values,u=of(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var HT={kernelName:Vl,backendName:"cpu",kernelFunc:$q};var Rq=$e(Rn,(r,e)=>{let t=e;return r>t.clipValueMax?t.clipValueMax:r<t.clipValueMin?t.clipValueMin:r}),qT={kernelName:Rn,backendName:"cpu",kernelFunc:Rq};var Fq=r=>{let{x:e}=r.inputs,t=r.backend,n=new Float32Array(y.sizeFromShape(e.shape)),o=t.data.get(e.dataId),s=o.complexTensorInfos.real,a=o.complexTensorInfos.imag,i=t.data.get(s.dataId).values,l=t.data.get(a.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],p=l[u];n[u]=Math.hypot(c,p)}return t.makeOutput(n,e.shape,"float32")},KT={kernelName:na,backendName:"cpu",kernelFunc:Fq};function zi(r){let{inputs:e,backend:t}=r,{input:n}=e,o=t.data.get(n.dataId).complexTensorInfos.imag,s=t.data.get(o.dataId).values;return t.makeTensorInfo(o.shape,o.dtype,s)}var XT={kernelName:Ql,backendName:"cpu",kernelFunc:zi};function pl(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n,s=y.parseAxisParam(o,e[0].shape)[0],a=S.computeOutShape(e.map(h=>h.shape),s);if(y.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(h=>y.sizeFromShape(h.shape)>0);if(i.length===1)return Er({inputs:{x:i[0]},backend:t});let l=i.map(h=>h.shape);if(S.assertParamsConsistent(l,s),i[0].dtype==="complex64"){let h=i.map(k=>jo({inputs:{input:k},backend:t})),g=i.map(k=>zi({inputs:{input:k},backend:t})),x=pl({inputs:h,backend:t,attrs:{axis:s}}),w=pl({inputs:g,backend:t,attrs:{axis:s}}),b=mr({inputs:{real:x,imag:w},backend:t});return h.forEach(k=>t.disposeIntermediateTensorInfo(k)),g.forEach(k=>t.disposeIntermediateTensorInfo(k)),t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(w),b}let u=i.map(h=>{let g=y.sizeFromShape(h.shape.slice(s));return Qe({inputs:{x:h},backend:t,attrs:{shape:[-1,g]}})}),c=u.map(h=>({vals:t.data.get(h.dataId).values,shape:h.shape}));a=S.computeOutShape(u.map(h=>h.shape),1);let p=u[0].shape[0]===1,m=sf(c,a,e[0].dtype,p),f=S.computeOutShape(i.map(h=>h.shape),s),d=t.makeTensorInfo(f,e[0].dtype,m);return u.forEach(h=>t.disposeIntermediateTensorInfo(h)),d}var YT={kernelName:ls,backendName:"cpu",kernelFunc:pl};function Nk(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=n;te([o,s],"conv2d");let p=S.convertConv2DDataFormat(l),m=S.computeConv2DInfo(o.shape,s.shape,a,u,i,c,!1,p),f=m.filterHeight,d=m.filterWidth,h=m.dilationHeight,g=m.dilationWidth,x=m.padInfo.left,w=m.padInfo.top,b=m.dataFormat==="channelsLast",k=new lt(m.outShape,o.dtype),_=y.computeStrides(o.shape),A=y.computeStrides(s.shape),N=_[0],$=b?_[1]:_[2],F=b?_[2]:1,M=b?1:_[1],V=k.strides[0],W=b?k.strides[1]:k.strides[2],U=b?k.strides[2]:1,H=b?1:k.strides[1],q=t.data.get(o.dataId).values,X=t.data.get(s.dataId).values,ne=k.values;for(let Y=0;Y<m.batchSize;++Y){let re=Y*N,J=Y*V;for(let ie=0;ie<m.outHeight;++ie){let ue=J+ie*W,ae=ie*m.strideHeight-w;for(let fe=0;fe<f;++fe){let de=ae+fe*h;if(de<0||de>=m.inHeight)continue;let xe=fe*A[0],we=re+de*$;for(let De=0;De<m.outWidth;++De){let Ne=ue+De*U,ze=De*m.strideWidth-x;for(let qe=0;qe<d;++qe){let it=ze+qe*g;if(it<0||it>=m.inWidth)continue;let At=xe+qe*A[1],Et=we+it*F,je=At;for(let ut=0;ut<m.inChannels;++ut){let mt=q[Et+ut*M];for(let Mt=0;Mt<m.outChannels;++Mt)ne[Ne+Mt*H]+=mt*X[je+Mt];je+=m.outChannels}}}}}}return t.makeTensorInfo(k.shape,k.dtype,ne)}var ZT={kernelName:Zn,backendName:"cpu",kernelFunc:Nk};function Oq(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=n;te([o,s],"conv2dBackpropFilter");let p=S.convertConv2DDataFormat(l),m=S.computeConv2DInfo(o.shape,c,a,1,i,u,!1,p),{strideHeight:f,strideWidth:d,filterHeight:h,filterWidth:g}=m,x=m.dataFormat==="channelsLast",w=new lt(m.filterShape,"float32"),b=m.padInfo.left,k=m.padInfo.top,_=t.data.get(o.dataId).values,A=t.data.get(s.dataId).values,N=new lt(o.shape,o.dtype,_),$=new lt(s.shape,s.dtype,A);for(let F=0;F<h;++F){let M=Math.max(0,Math.ceil((k-F)/f)),V=Math.min(m.outHeight,(m.inHeight+k-F)/f);for(let W=0;W<g;++W){let U=Math.max(0,Math.ceil((b-W)/d)),H=Math.min(m.outWidth,(m.inWidth+b-W)/d);for(let q=0;q<m.inChannels;++q)for(let X=0;X<m.outChannels;++X){let ne=0;for(let Y=0;Y<m.batchSize;++Y)for(let re=M;re<V;++re){let J=F+re*f-k;for(let ie=U;ie<H;++ie){let ue=W+ie*d-b;x?ne+=N.get(Y,J,ue,q)*$.get(Y,re,ie,X):ne+=N.get(Y,q,J,ue)*$.get(Y,X,re,ie)}}w.set(ne,F,W,q,X)}}}return t.makeTensorInfo(w.shape,w.dtype,w.values)}var JT={kernelName:Wl,backendName:"cpu",kernelFunc:Oq};function Pq(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{inputShape:a,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=n;te([o,s],"conv2dBackpropInput");let p=y.computeStrides(s.shape),m=y.computeStrides(o.shape),f=S.convertConv2DDataFormat(u),d=S.computeConv2DInfo(a,s.shape,i,1,l,c,!1,f),h=new lt(d.inShape,"float32"),g=h.values,x=t.data.get(o.dataId).values,w=t.data.get(s.dataId).values,[b,k,_]=p,{batchSize:A,filterHeight:N,filterWidth:$,inChannels:F,inHeight:M,inWidth:V,outChannels:W,outHeight:U,outWidth:H,strideHeight:q,strideWidth:X}=d;f=d.dataFormat;let ne=N-1-d.padInfo.top,Y=$-1-d.padInfo.left,re=f==="channelsLast",J=h.strides[0],ie=re?h.strides[1]:h.strides[2],ue=re?h.strides[2]:1,ae=re?1:h.strides[1],fe=m[0],de=re?m[1]:m[2],xe=re?m[2]:1,we=re?1:m[1];for(let De=0;De<A;++De)for(let Ne=0;Ne<F;++Ne)for(let ze=0;ze<M;++ze){let qe=ze-ne,it=Math.max(0,Math.ceil(qe/q)),At=Math.min(U,(N+qe)/q);for(let Et=0;Et<V;++Et){let je=Et-Y,ut=Math.max(0,Math.ceil(je/X)),mt=Math.min(H,($+je)/X),Mt=0;for(let Xt=it;Xt<At;++Xt){let tn=Xt*q-qe;for(let $r=ut;$r<mt;++$r){let jn=$r*X-je,nr=fe*De+de*Xt+xe*$r,yn=b*(N-1-tn)+k*($-1-jn)+_*Ne;for(let Gr=0;Gr<W;++Gr){let br=x[nr+we*Gr],rn=w[yn+Gr];Mt+=br*rn}}}let xn=J*De+ie*ze+ue*Et+ae*Ne;g[xn]=Mt}}return t.makeTensorInfo(h.shape,h.dtype,h.values)}var QT={kernelName:Jn,backendName:"cpu",kernelFunc:Pq};function Mq(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l}=n;te([o,s],"conv3d");let u=S.computeConv3DInfo(o.shape,s.shape,a,l,i),{filterDepth:c,filterHeight:p,filterWidth:m,dilationDepth:f,dilationHeight:d,dilationWidth:h,padInfo:g}=u,x=g.front,w=g.left,b=g.top,k=new lt(u.outShape,o.dtype),_=t.data.get(o.dataId).values,A=t.data.get(s.dataId).values,N=k.values,$=y.computeStrides(o.shape),F=y.computeStrides(s.shape);for(let M=0;M<u.batchSize;++M){let V=M*$[0],W=M*k.strides[0];for(let U=0;U<u.outDepth;++U){let H=W+U*k.strides[1],q=U*u.strideDepth-x;for(let X=0;X<c;++X){let ne=q+X*f;if(ne<0||ne>=u.inDepth)continue;let Y=X*F[0],re=V+ne*$[1];for(let J=0;J<u.outHeight;++J){let ie=H+J*k.strides[2],ue=J*u.strideHeight-b;for(let ae=0;ae<p;++ae){let fe=ue+ae*d;if(fe<0||fe>=u.inHeight)continue;let de=Y+ae*F[1],xe=re+fe*$[2];for(let we=0;we<u.outWidth;++we){let De=ie+we*u.outChannels,Ne=we*u.strideWidth-w;for(let ze=0;ze<m;++ze){let qe=Ne+ze*h;if(qe<0||qe>=u.inWidth)continue;let it=de+ze*F[2],At=xe+qe*u.inChannels,Et=it;for(let je=0;je<u.inChannels;++je){let ut=_[At+je];for(let mt=0;mt<u.outChannels;++mt)N[De+mt]+=ut*A[Et+mt];Et+=u.outChannels}}}}}}}}return t.makeTensorInfo(k.shape,k.dtype,k.values)}var e1={kernelName:oa,backendName:"cpu",kernelFunc:Mq};function Lq(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,pad:i,filterShape:l}=n;te([o,s],"conv3dBackpropFilterV2");let u=y.computeStrides(o.shape),c=y.computeStrides(s.shape),p=S.computeConv3DInfo(o.shape,l,a,1,i),m=p.strideDepth,f=p.strideHeight,d=p.strideWidth,h=p.filterDepth,g=p.filterHeight,x=p.filterWidth,w=new lt(p.filterShape,"float32"),b=w.values,[k,_,A,N]=w.strides,$=t.data.get(s.dataId).values,[F,M,V,W]=c,U=t.data.get(o.dataId).values,[H,q,X,ne]=u,Y=p.padInfo.front,re=p.padInfo.left,J=p.padInfo.top;for(let ie=0;ie<h;++ie){let ue=Math.max(0,Math.ceil((Y-ie)/m)),ae=Math.min(p.outDepth,(p.inDepth+Y-ie)/m),fe=ie*k;for(let de=0;de<g;++de){let xe=Math.max(0,Math.ceil((J-de)/f)),we=Math.min(p.outHeight,(p.inHeight+J-de)/f),De=de*_+fe;for(let Ne=0;Ne<x;++Ne){let ze=Math.max(0,Math.ceil((re-Ne)/d)),qe=Math.min(p.outWidth,(p.inWidth+re-Ne)/d),it=Ne*A+De;for(let At=0;At<p.inChannels;++At){let Et=At*N+it;for(let je=0;je<p.outChannels;++je){let ut=0;for(let mt=0;mt<p.batchSize;++mt){let Mt=mt*H,xn=mt*F;for(let Xt=ue;Xt<ae;++Xt){let $r=(ie+Xt*m-Y)*q+Mt,jn=Xt*M+xn;for(let nr=xe;nr<we;++nr){let Gr=(de+nr*f-J)*X+$r,br=nr*V+jn;for(let rn=ze;rn<qe;++rn){let Dl=(Ne+rn*d-re)*ne+Gr,Ua=rn*W+br;ut+=U[Dl+At]*$[Ua+je]}}}}b[Et+je]=ut}}}}}return t.makeTensorInfo(w.shape,w.dtype,w.values)}var t1={kernelName:jl,backendName:"cpu",kernelFunc:Lq};function zq(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{pad:a,strides:i,inputShape:l}=n;te([o],"conv3dBackpropInputV2");let u=y.computeStrides(o.shape),c=y.computeStrides(s.shape),p=S.computeConv3DInfo(l,s.shape,i,1,a),m=new lt(p.inShape,"float32"),f=m.values,[d,h,g,x]=m.strides,w=t.data.get(o.dataId).values,[b,k,_,A]=u,N=t.data.get(s.dataId).values,[$,F,M,V]=c,{batchSize:W,filterDepth:U,filterHeight:H,filterWidth:q,inChannels:X,inDepth:ne,inHeight:Y,inWidth:re,outChannels:J,outDepth:ie,outHeight:ue,outWidth:ae,strideDepth:fe,strideHeight:de,strideWidth:xe}=p,we=U-1-p.padInfo.front,De=H-1-p.padInfo.top,Ne=q-1-p.padInfo.left;for(let ze=0;ze<W;++ze)for(let qe=0;qe<X;++qe)for(let it=0;it<ne;++it){let At=it-we,Et=Math.max(0,Math.ceil(At/fe)),je=Math.min(ie,(U+At)/fe);for(let ut=0;ut<Y;++ut){let mt=ut-De,Mt=Math.max(0,Math.ceil(mt/de)),xn=Math.min(ue,(H+mt)/de);for(let Xt=0;Xt<re;++Xt){let tn=Xt-Ne,$r=Math.max(0,Math.ceil(tn/xe)),jn=Math.min(ae,(q+tn)/xe),nr=0;for(let yn=Et;yn<je;++yn){let Gr=yn*fe-At;for(let br=Mt;br<xn;++br){let rn=br*de-mt;for(let En=$r;En<jn;++En){let Dl=En*xe-tn,Ua=b*ze+k*yn+_*br+A*En,os=$*(U-1-Gr)+F*(H-1-rn)+M*(q-1-Dl)+V*qe;for(let Xi=0;Xi<J;++Xi){let tm=w[Ua+Xi],yc=N[os+Xi];nr+=tm*yc}}}}f[d*ze+h*it+g*ut+x*Xt+qe]=nr}}}return t.makeTensorInfo(m.shape,m.dtype,m.values)}var r1={kernelName:Ul,backendName:"cpu",kernelFunc:zq};var Bq=$e(Qn,r=>Math.cos(r)),n1={kernelName:Qn,backendName:"cpu",kernelFunc:Bq};var Vq=$e(ei,r=>Math.cosh(r)),o1={kernelName:ei,backendName:"cpu",kernelFunc:Vq};function Gq(r){let{inputs:e,backend:t,attrs:n}=r,{image:o,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=n,[c,p,m,f]=o.shape,d=s.shape[0],[h,g]=i,x=ve([d,h,g,f],"float32"),w=t.data.get(s.dataId).values,b=t.data.get(a.dataId).values,k=t.data.get(o.dataId).values,_=y.computeStrides(o.shape),A=y.computeStrides(x.shape);for(let N=0;N<d;N++){let $=N*4,F=w[$],M=w[$+1],V=w[$+2],W=w[$+3],U=b[N];if(U>=c)continue;let H=h>1?(V-F)*(p-1)/(h-1):0,q=g>1?(W-M)*(m-1)/(g-1):0;for(let X=0;X<h;X++){let ne=h>1?F*(p-1)+X*H:.5*(F+V)*(p-1);if(ne<0||ne>p-1){for(let Y=0;Y<g;Y++)for(let re=0;re<f;re++){let J=re+Y*A[2]+X*A[1]+N*A[0];x.values[J]=u}continue}if(l==="bilinear"){let Y=Math.floor(ne),re=Math.ceil(ne),J=ne-Y;for(let ie=0;ie<g;ie++){let ue=g>1?M*(m-1)+ie*q:.5*(M+W)*(m-1);if(ue<0||ue>m-1){for(let xe=0;xe<f;xe++){let we=xe+ie*A[2]+X*A[1]+N*A[0];x.values[we]=u}continue}let ae=Math.floor(ue),fe=Math.ceil(ue),de=ue-ae;for(let xe=0;xe<f;xe++){let we=xe+ae*_[2]+Y*_[1]+U*_[0],De=k[we];we=xe+fe*_[2]+Y*_[1]+U*_[0];let Ne=k[we];we=xe+ae*_[2]+re*_[1]+U*_[0];let ze=k[we];we=xe+fe*_[2]+re*_[1]+U*_[0];let qe=k[we],it=De+(Ne-De)*de,At=ze+(qe-ze)*de;we=xe+ie*A[2]+X*A[1]+N*A[0],x.values[we]=it+(At-it)*J}}}else for(let Y=0;Y<g;++Y){let re=g>1?M*(m-1)+Y*q:.5*(M+W)*(m-1);if(re<0||re>m-1){for(let ue=0;ue<f;ue++){let ae=ue+Y*A[2]+X*A[1]+N*A[0];x.values[ae]=u}continue}let J=Math.round(re),ie=Math.round(ne);for(let ue=0;ue<f;ue++){let ae=ue+J*_[2]+ie*_[1]+U*_[0],fe=ue+Y*A[2]+X*A[1]+N*A[0];x.values[fe]=k[ae]}}}}return t.makeTensorInfo(x.shape,x.dtype,x.values)}var s1={kernelName:ti,backendName:"cpu",kernelFunc:Gq};function Wq(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,exclusive:a,reverse:i}=n;te(o,"cumsum");let l=S.getAxesPermutation([s],o.shape.length),u=o;l!=null&&(u=rr({inputs:{x:o},backend:t,attrs:{perm:l}}));let c=S.getInnerMostAxes(1,o.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=dr(u.dtype,"int32"),m=y.makeZerosTypedArray(y.sizeFromShape(u.shape),p),f=t.data.get(u.dataId).values,d=u.shape[u.shape.length-1],h=i?(x,w)=>x+d-w-1:(x,w)=>x+w;for(let x=0;x<f.length;x+=d)for(let w=0;w<d;w++){let b=h(x,w);if(w===0)m[b]=a?0:f[b];else{let k=h(x,w-1);m[b]=a?f[k]+m[k]:f[b]+m[k]}}let g=t.makeTensorInfo(u.shape,p,m);if(l!=null){let x=S.getUndoAxesPermutation(l),w=rr({inputs:{x:g},backend:t,attrs:{perm:x}});return t.disposeIntermediateTensorInfo(g),t.disposeIntermediateTensorInfo(u),w}return g}var i1={kernelName:eo,backendName:"cpu",kernelFunc:Wq};function jq(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,weights:s}=e,{size:a,binaryOutput:i}=n;if(o.shape.length===1){let l=t.data.get(o.dataId).values,u=t.data.get(s.dataId).values,c=of(l,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(o.shape.length===2){let l=t.bufferSync(o),u=t.bufferSync(s),c=ck(l,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var a1={kernelName:Hl,backendName:"cpu",kernelFunc:jq};function Uq(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockSize:s,dataFormat:a}=n;y.assert(a==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${a}`),y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=o.shape[0],l=o.shape[1],u=o.shape[2],c=o.shape[3],p=l*s,m=u*s,f=c/(s*s),d=t.data.get(o.dataId).values,h=new Float32Array(i*p*m*f),g=0;for(let x=0;x<i;++x)for(let w=0;w<p;++w){let b=Math.floor(w/s),k=w%s;for(let _=0;_<m;++_){let A=Math.floor(_/s),N=_%s,$=(k*s+N)*f;for(let F=0;F<f;++F){let V=F+$+c*(A+u*(b+l*x));h[g++]=d[V]}}}return t.makeTensorInfo([i,p,m,f],o.dtype,h)}var l1={kernelName:ri,backendName:"cpu",kernelFunc:Uq};function Sk(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l,dimRoundingMode:u}=n;te([o,s],"depthwiseConv2DNative");let c=y.computeStrides(o.shape),p=y.computeStrides(s.shape),m=l;m==null&&(m=[1,1]),y.assert(S.eitherStridesOrDilationsAreOne(a,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${m}'`);let f=S.computeConv2DInfo(o.shape,s.shape,a,m,i,u,!0),{filterHeight:d,filterWidth:h,dilationHeight:g,dilationWidth:x,padInfo:w}=f,b=w.left,k=w.top,_=f.outChannels/f.inChannels,A=new lt(f.outShape,o.dtype),N=t.data.get(o.dataId).values,$=t.data.get(s.dataId).values,F=A.values;for(let M=0;M<f.batchSize;++M){let V=M*c[0],W=M*A.strides[0];for(let U=0;U<f.outHeight;++U){let H=W+U*A.strides[1],q=U*f.strideHeight-b;for(let X=0;X<d;++X){let ne=q+X*g;if(ne<0||ne>=f.inHeight)continue;let Y=X*p[0],re=V+ne*c[1];for(let J=0;J<f.outWidth;++J){let ie=H+J*A.strides[2],ue=J*f.strideWidth-k;for(let ae=0;ae<h;++ae){let fe=ue+ae*x;if(fe<0||fe>=f.inWidth)continue;let de=Y+ae*p[1],xe=re+fe*f.inChannels,we=ie,De=de;for(let Ne=0;Ne<f.inChannels;++Ne){let ze=N[xe+Ne];for(let qe=0;qe<_;++qe)F[we+qe]+=ze*$[De+qe];we+=_,De+=_}}}}}}return t.makeTensorInfo(A.shape,A.dtype,A.values)}var u1={kernelName:to,backendName:"cpu",kernelFunc:Sk};function Hq(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=n;te([o,s],"depthwiseConv2dNativeBackpropFilter");let p=S.computeConv2DInfo(o.shape,c,a,i,l,u,!0),{strideHeight:m,strideWidth:f,filterHeight:d,filterWidth:h}=p,g=new lt(p.filterShape,"float32"),x=p.padInfo.left,w=p.padInfo.top,b=p.outChannels/p.inChannels,k=t.data.get(o.dataId).values,_=new lt(o.shape,o.dtype,k),A=t.data.get(s.dataId).values,N=new lt(s.shape,s.dtype,A);for(let $=0;$<d;++$){let F=Math.max(0,Math.ceil((w-$)/m)),M=Math.min(p.outHeight,(p.inHeight+w-$)/m);for(let V=0;V<h;++V){let W=Math.max(0,Math.ceil((x-V)/f)),U=Math.min(p.outWidth,(p.inWidth+x-V)/f);for(let H=0;H<p.outChannels;++H){let q=Math.trunc(H/b),X=H%b,ne=0;for(let Y=0;Y<p.batchSize;++Y)for(let re=F;re<M;++re){let J=$+re*m-w;for(let ie=W;ie<U;++ie){let ue=V+ie*f-x;ne+=_.get(Y,J,ue,q)*N.get(Y,re,ie,H)}}g.set(ne,$,V,q,X)}}}return t.makeTensorInfo(g.shape,g.dtype,g.values)}var c1={kernelName:ql,backendName:"cpu",kernelFunc:Hq};function qq(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=n;te([o,s],"depthwiseConv2DNativeBackpropInput");let p=y.computeStrides(o.shape),m=y.computeStrides(s.shape),f=S.computeConv2DInfo(c,s.shape,a,i,l,u,!0),d=new lt(f.inShape,"float32"),h=d.values,[g,x,w]=d.strides,b=t.data.get(o.dataId).values,[k,_,A]=p,N=t.data.get(s.dataId).values,[$,F,M]=m,{batchSize:V,filterHeight:W,filterWidth:U,inChannels:H,inHeight:q,inWidth:X,outChannels:ne,outHeight:Y,outWidth:re,strideHeight:J,strideWidth:ie}=f,ue=W-1-f.padInfo.top,ae=U-1-f.padInfo.left,fe=ne/H;for(let de=0;de<V;++de)for(let xe=0;xe<H;++xe)for(let we=0;we<q;++we){let De=we-ue,Ne=Math.max(0,Math.ceil(De/J)),ze=Math.min(Y,(W+De)/J);for(let qe=0;qe<X;++qe){let it=qe-ae,At=Math.max(0,Math.ceil(it/ie)),Et=Math.min(re,(U+it)/ie),je=0;for(let ut=Ne;ut<ze;++ut){let mt=ut*J-De;for(let Mt=At;Mt<Et;++Mt){let xn=Mt*ie-it,Xt=k*de+_*ut+A*Mt,tn=$*(W-1-mt)+F*(U-1-xn)+M*xe;for(let $r=0;$r<fe;++$r){let jn=xe*fe+$r,nr=b[Xt+jn],yn=N[tn+$r];je+=nr*yn}}}h[g*de+x*we+w*qe+xe]=je}}return t.makeTensorInfo(d.shape,d.dtype,d.values)}var p1={kernelName:Kl,backendName:"cpu",kernelFunc:qq};function Kq(r){let{inputs:e,backend:t}=r,{x:n}=e,o=y.sizeFromShape(n.shape),s=t.data.get(n.dataId).values,a=ve([o,o],n.dtype),i=a.values;for(let u=0;u<s.length;u++)i[u*o+u]=s[u];let l=[...n.shape,...n.shape];return t.makeTensorInfo(l,a.dtype,a.values)}var m1={kernelName:Xl,backendName:"cpu",kernelFunc:Kq};var f1={kernelName:sa,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:n,filter:o}=r,{strides:s,pad:a,dilations:i}=t,l=e,u=l.data.get(n.dataId).values,c=n.shape.length,p=l.data.get(o.dataId).values,m=o.shape.length,{batchSize:f,inHeight:d,inWidth:h,inChannels:g,outHeight:x,outWidth:w,padInfo:b,strideHeight:k,strideWidth:_,filterHeight:A,filterWidth:N,dilationHeight:$,dilationWidth:F,outShape:M}=S.computeDilation2DInfo(n.shape,o.shape,s,a,"NHWC",i),V=y.sizeFromShape(M),W=M.length,U=y.getArrayFromDType(n.dtype,V);for(let q=0;q<f;++q)for(let X=0;X<x;++X){let ne=X*k-b.top;for(let Y=0;Y<w;++Y){let re=Y*_-b.left;for(let J=0;J<g;++J){let ie=Number.MIN_SAFE_INTEGER;for(let ae=0;ae<A;++ae){let fe=ne+ae*$;if(fe>=0&&fe<d)for(let de=0;de<N;++de){let xe=re+de*F;if(xe>=0&&xe<h){let we=y.locToIndex([q,fe,xe,J],c,y.computeStrides(n.shape)),De=y.locToIndex([ae,de,J],m,y.computeStrides(o.shape)),Ne=u[we]+p[De];Ne>ie&&(ie=Ne)}}}let ue=y.locToIndex([q,X,Y,J],W,y.computeStrides(M));U[ue]=ie}}}return{dataId:l.write(y.toTypedArray(U,n.dtype),M,n.dtype),shape:M,dtype:n.dtype}}};var d1={kernelName:Pc,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:n,filter:o,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=y.toNestedArray(n.shape,u.data.get(n.dataId).values),p=y.toNestedArray(o.shape,u.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:w,strideHeight:b,strideWidth:k,filterHeight:_,filterWidth:A,dilationHeight:N,dilationWidth:$,outShape:F}=S.computeDilation2DInfo(n.shape,o.shape,a,i,"NHWC",l);y.assert(s.rank===F.length,()=>`Error in ${Pc}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let M=y.toNestedArray(F,u.data.get(s.dataId).values),V=y.makeZerosNestedTypedArray(o.shape,o.dtype);for(let U=0;U<m;++U)for(let H=0;H<g;++H){let q=H*b-w.top;for(let X=0;X<x;++X){let ne=X*k-w.left;for(let Y=0;Y<h;++Y){let re=Number.MIN_SAFE_INTEGER,J=0,ie=0;for(let ue=0;ue<_;++ue){let ae=q+ue*N;if(ae>=0&&ae<f)for(let fe=0;fe<A;++fe){let de=ne+fe*$;if(de>=0&&de<d){let xe=c[U][ae][de][Y]+p[ue][fe][Y];xe>re&&(re=xe,J=ue,ie=fe)}}}V[J][ie][Y]+=M[U][H][X][Y]}}}return{dataId:u.write(y.toTypedArray(V,n.dtype),o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var h1={kernelName:Oc,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:n,filter:o,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=y.toNestedArray(n.shape,u.data.get(n.dataId).values),p=y.toNestedArray(o.shape,u.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:w,strideHeight:b,strideWidth:k,filterHeight:_,filterWidth:A,dilationHeight:N,dilationWidth:$,outShape:F}=S.computeDilation2DInfo(n.shape,o.shape,a,i,"NHWC",l);y.assert(s.rank===F.length,()=>`Error in ${Oc}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let M=y.toNestedArray(F,u.data.get(s.dataId).values),V=y.makeZerosNestedTypedArray(n.shape,n.dtype);for(let U=0;U<m;++U)for(let H=0;H<g;++H){let q=H*b-w.top;for(let X=0;X<x;++X){let ne=X*k-w.left;for(let Y=0;Y<h;++Y){let re=Number.MIN_SAFE_INTEGER,J=q<0?0:q,ie=ne<0?0:ne;for(let ue=0;ue<_;++ue){let ae=q+ue*N;if(ae>=0&&ae<f)for(let fe=0;fe<A;++fe){let de=ne+fe*$;if(de>=0&&de<d){let xe=c[U][ae][de][Y]+p[ue][fe][Y];xe>re&&(re=xe,J=ae,ie=de)}}}V[U][J][ie][Y]+=M[U][H][X][Y]}}}return{dataId:u.write(y.toTypedArray(V,n.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function Xq(r){let{inputs:e,backend:t}=r,{dy:n,y:o}=e;te([n,o],"eluGrad");let s=new Float32Array(y.sizeFromShape(o.shape)),a=t.data.get(o.dataId).values,i=t.data.get(n.dataId).values;for(let l=0;l<a.length;++l){let u=a[l];u>=1?s[l]=i[l]:s[l]=i[l]*(u+1)}return t.makeTensorInfo(o.shape,"float32",s)}var g1={kernelName:Yl,backendName:"cpu",kernelFunc:Xq};var Yq=Xe((r,e)=>r===e?1:0),Tk=et(si,Yq,null,"bool"),x1={kernelName:si,backendName:"cpu",kernelFunc:Tk};var Zq=S.ERF_P,Jq=S.ERF_A1,Qq=S.ERF_A2,eK=S.ERF_A3,tK=S.ERF_A4,rK=S.ERF_A5,nK=$e(oi,r=>{let e=Math.sign(r),t=Math.abs(r),n=1/(1+Zq*t);return e*(1-((((rK*n+tK)*n+eK)*n+Qq)*n+Jq)*n*Math.exp(-t*t))}),y1={kernelName:oi,backendName:"cpu",kernelFunc:nK};function fp(r){let{inputs:e,backend:t,attrs:n}=r,{input:o}=e,{dim:s}=n,a=o.shape.length,i=o.shape.slice(),l=s;return s<0&&(y.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),Qe({inputs:{x:o},backend:t,attrs:{shape:i}})}var b1={kernelName:us,backendName:"cpu",kernelFunc:fp};var oK=Xe((r,e)=>r/e),mf=et(ro,oK),ff={kernelName:ro,backendName:"cpu",kernelFunc:mf};function vg(r,e,t){let n=r.shape,o=n[0],s=n[1],a=t.data.get(r.dataId),i=a.complexTensorInfos.real,l=a.complexTensorInfos.imag,u=[o,s],c=y.sizeFromShape(u),p=y.getTypedArrayFromDType("float32",c),m=y.getTypedArrayFromDType("float32",c);for(let g=0;g<o;g++){let x=Ko({inputs:{x:i},backend:t,attrs:{begin:[g,0],size:[1,s]}}),w=Ko({inputs:{x:l},backend:t,attrs:{begin:[g,0],size:[1,s]}}),b=mr({inputs:{real:x,imag:w},backend:t}),{real:k,imag:_}=sK(b,e,t),A=S.mergeRealAndImagArrays(k,_);for(let N=0;N<s;N++){let $=S.getComplexWithIndex(A,N);p[g*s+N]=$.real,m[g*s+N]=$.imag}t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(w),t.disposeIntermediateTensorInfo(b)}let f=t.makeTensorInfo(u,"float32",p),d=t.makeTensorInfo(u,"float32",m),h=mr({inputs:{real:f,imag:d},backend:t});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),h}function sK(r,e,t){let n=y.sizeFromShape(r.shape),o=t.data.get(r.dataId),s=t.data.get(o.complexTensorInfos.real.dataId).values,a=t.data.get(o.complexTensorInfos.imag.dataId).values;if(iK(n)){let i=Ak(s,a,n,e,t),l=[r.shape[0],r.shape[1]];if(e){let u=t.makeTensorInfo(l,"float32",i.real),c=t.makeTensorInfo(l,"float32",i.imag),p=t.makeTensorInfo([],"float32",y.createScalarValue(n,"float32")),m=Er({inputs:{x:p},backend:t}),f=ff.kernelFunc({inputs:{a:u,b:p},backend:t}),d=ff.kernelFunc({inputs:{a:c,b:m},backend:t}),h=t.data.get(f.dataId).values,g=t.data.get(d.dataId).values;return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),{real:h,imag:g}}return i}else{let i=S.mergeRealAndImagArrays(s,a),l=aK(i,n,e);return S.splitRealAndImagArrays(l)}}function iK(r){return(r&r-1)==0}function Ak(r,e,t,n,o){if(t===1)return{real:r,imag:e};let s=S.mergeRealAndImagArrays(r,e),a=t/2,i=S.complexWithEvenIndex(s),l=i.real,u=i.imag,c=[l.length],p=o.makeTensorInfo(c,"float32",l),m=o.makeTensorInfo(c,"float32",u),f=mr({inputs:{real:p,imag:m},backend:o}),d=S.complexWithOddIndex(s),h=d.real,g=d.imag,x=[h.length],w=o.makeTensorInfo(x,"float32",h),b=o.makeTensorInfo(x,"float32",g),k=mr({inputs:{real:w,imag:b},backend:o}),_=Ak(l,u,a,n,o),A=_.real,N=_.imag,$=[A.length],F=o.makeTensorInfo($,"float32",A),M=o.makeTensorInfo($,"float32",N),V=mr({inputs:{real:F,imag:M},backend:o}),W=Ak(h,g,a,n,o),U=W.real,H=W.imag,q=[U.length],X=o.makeTensorInfo(q,"float32",U),ne=o.makeTensorInfo(q,"float32",H),Y=mr({inputs:{real:X,imag:ne},backend:o}),re=S.exponents(t,n),J=[re.real.length],ie=o.makeTensorInfo(J,"float32",re.real),ue=o.makeTensorInfo(J,"float32",re.imag),ae=mr({inputs:{real:ie,imag:ue},backend:o}),fe=af({inputs:{a:ae,b:Y},backend:o}),de=Ra({inputs:{a:V,b:fe},backend:o}),xe=pf({inputs:{a:V,b:fe},backend:o}),we=jo({inputs:{input:de},backend:o}),De=jo({inputs:{input:xe},backend:o}),Ne=zi({inputs:{input:de},backend:o}),ze=zi({inputs:{input:xe},backend:o}),qe=pl({inputs:[we,De],backend:o,attrs:{axis:0}}),it=pl({inputs:[Ne,ze],backend:o,attrs:{axis:0}}),At=o.data.get(qe.dataId).values,Et=o.data.get(it.dataId).values;return o.disposeIntermediateTensorInfo(p),o.disposeIntermediateTensorInfo(m),o.disposeIntermediateTensorInfo(f),o.disposeIntermediateTensorInfo(w),o.disposeIntermediateTensorInfo(b),o.disposeIntermediateTensorInfo(k),o.disposeIntermediateTensorInfo(F),o.disposeIntermediateTensorInfo(M),o.disposeIntermediateTensorInfo(V),o.disposeIntermediateTensorInfo(X),o.disposeIntermediateTensorInfo(ne),o.disposeIntermediateTensorInfo(Y),o.disposeIntermediateTensorInfo(ie),o.disposeIntermediateTensorInfo(ue),o.disposeIntermediateTensorInfo(ae),o.disposeIntermediateTensorInfo(fe),o.disposeIntermediateTensorInfo(de),o.disposeIntermediateTensorInfo(xe),o.disposeIntermediateTensorInfo(we),o.disposeIntermediateTensorInfo(Ne),o.disposeIntermediateTensorInfo(De),o.disposeIntermediateTensorInfo(ze),o.disposeIntermediateTensorInfo(qe),o.disposeIntermediateTensorInfo(it),{real:At,imag:Et}}function aK(r,e,t){let n=new Float32Array(e*2);for(let o=0;o<e;o++){let s=0,a=0;for(let i=0;i<e;i++){let l=S.exponent(o*i,e,t),u=S.getComplexWithIndex(r,i);s+=u.real*l.real-u.imag*l.imag,a+=u.real*l.imag+u.imag*l.real}t&&(s/=e,a/=e),S.assignToTypedArray(n,s,a,o)}return n}function lK(r){let{inputs:e,backend:t}=r,{input:n}=e,o=y.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],a=o/s,i=Qe({inputs:{x:n},backend:t,attrs:{shape:[a,s]}}),l=vg(i,!1,t),u=Qe({inputs:{x:l},backend:t,attrs:{shape:n.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(l),u}var w1={kernelName:Zl,backendName:"cpu",kernelFunc:lK};function df(r){let{backend:e,attrs:t}=r,{shape:n,value:o,dtype:s}=t,a=s||y.inferDtype(o),i=y.getArrayFromDType(a,y.sizeFromShape(n));return uK(i,o,a),e.makeTensorInfo(n,a,i)}var k1={kernelName:ia,backendName:"cpu",kernelFunc:df};function uK(r,e,t){r.fill(e)}var _1={kernelName:ai,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:n}=r,o=t,s=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(n.shape)),[a,i,l,u]=n.shape,c=o.data.get(n.dataId).values;for(let m=0;m<a;m++){let f=m*l*i*u;for(let d=0;d<i;d++){let h=d*(l*u);for(let g=0;g<l;g++){let x=g*u;for(let w=0;w<u;w++){let k=[a,d,g,w][2],_=Math.round(l-k),A=f+h+x+w,N=c[A];if(_>=0&&_<l){let $=_*u,F=f+h+$+w;N=c[F]}s[A]=N}}}}return{dataId:o.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var cK=Xe((r,e)=>Math.floor(r/e)),pK=et(so,cK,null,"int32"),v1={kernelName:so,backendName:"cpu",kernelFunc:pK};function mK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=Nk({inputs:{x:o,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=Ra({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=pp(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var C1={kernelName:ks,backendName:"cpu",kernelFunc:mK};function fK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=Sk({inputs:{x:o,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=Ra({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=pp(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var I1={kernelName:_s,backendName:"cpu",kernelFunc:fK};function dK(r){let{inputs:e,backend:t}=r,{params:n,indices:o}=e,s=y.sizeFromShape(n.shape),a=o.shape,i=a[a.length-1],[l,u,c,p]=S.prepareAndValidate(n,o);if(u===0)return t.makeTensorInfo(l,n.dtype,[]);let m=ve([u,c],n.dtype),f=t.data.get(o.dataId).values,d=t.data.get(n.dataId).values;for(let h=0;h<u;h++){let g=[],x=0;for(let w=0;w<i;w++){let b=f[h*i+w];x+=b*p[w],g.push(b)}if(x<0||x>=s/c)throw new Error(`Invalid indices: ${g} does not index into ${n.shape}`);for(let w=0;w<c;w++)m.values[h*c+w]=d[x*c+w]}return t.makeTensorInfo(l,m.dtype,m.values)}var N1={kernelName:li,backendName:"cpu",kernelFunc:dK};function hK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,indices:s}=e,{axis:a,batchDims:i}=n;te([o,s],"gatherV2");let l=i;i==null&&(l=0);let u=y.sizeFromShape(s.shape),c=y.parseAxisParam(a,o.shape)[0],p=S.segment_util.collectGatherOpShapeInfo(o,s,c,l),m=Qe({inputs:{x:o},backend:t,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),f=Qe({inputs:{x:s},backend:t,attrs:{shape:[p.batchSize,u/p.batchSize]}}),d=[p.batchSize,p.outerSize,u/p.batchSize,p.sliceSize],h=t.bufferSync(f),g=t.bufferSync(m),x=mk(g,h,d);return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.makeTensorInfo(p.outputShape,x.dtype,x.values)}var S1={kernelName:cs,backendName:"cpu",kernelFunc:hK};var gK=Xe((r,e)=>r>=e?1:0),xK=et(ao,gK,null,"bool"),T1={kernelName:ao,backendName:"cpu",kernelFunc:xK};function yK(r){let{inputs:e,backend:t}=r,{input:n}=e,o=y.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],a=o/s,i=Qe({inputs:{x:n},backend:t,attrs:{shape:[a,s]}}),l=vg(i,!0,t),u=Qe({inputs:{x:l},backend:t,attrs:{shape:n.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(l),u}var A1={kernelName:Jl,backendName:"cpu",kernelFunc:yK};var bK=$e(ci,r=>Number.isFinite(r)?1:0,"bool"),E1={kernelName:ci,backendName:"cpu",kernelFunc:bK};var wK=$e(pi,r=>Math.abs(r)===Infinity?1:0,"bool"),D1={kernelName:pi,backendName:"cpu",kernelFunc:wK};var kK=$e(mi,r=>Number.isNaN(r)?1:0,"bool"),$1={kernelName:mi,backendName:"cpu",kernelFunc:kK};var _K=Xe((r,e)=>r<=e?1:0),vK=et(di,_K,null,"bool"),R1={kernelName:di,backendName:"cpu",kernelFunc:vK};function CK(r){let{backend:e,attrs:t}=r,{start:n,stop:o,num:s}=t,a=fk(n,o,s);return e.makeTensorInfo([a.length],"float32",a)}var F1={kernelName:eu,backendName:"cpu",kernelFunc:CK};var IK=$e(hi,r=>Math.log1p(r)),O1={kernelName:hi,backendName:"cpu",kernelFunc:IK};var NK=Xe((r,e)=>r&&e),SK=et(gi,NK,null,"bool"),P1={kernelName:gi,backendName:"cpu",kernelFunc:SK};var TK=$e(Ja,r=>r?0:1,"bool"),M1={kernelName:Ja,backendName:"cpu",kernelFunc:TK};var AK=Xe((r,e)=>r||e),EK=et(Qa,AK,null,"bool"),L1={kernelName:Qa,backendName:"cpu",kernelFunc:EK};function DK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=n;te(o,"LRN");let u=o.shape[3],c=u-1,p=t.data.get(o.dataId).values,m=y.sizeFromShape(o.shape),f=new Float32Array(m);function d(h){let g=h%u,x=h-g+Math.max(0,g-s),w=h-g+Math.min(g+s,c),b=0;for(;x<=w;x++){let k=p[x];b+=k*k}return b}for(let h=0;h<m;h++){let g=d(h),x=p[h]*Math.pow(a+i*g,-l);f[h]=x}return t.makeTensorInfo(o.shape,o.dtype,f)}var z1={kernelName:aa,backendName:"cpu",kernelFunc:DK};function $K(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,y:s,dy:a}=e,{depthRadius:i,bias:l,alpha:u,beta:c}=n;te(a,"LRNGrad");let p=y.sizeFromShape(a.shape),m=a.shape[3],f=t.data.get(a.dataId).values,d=t.data.get(o.dataId).values,h=t.data.get(s.dataId).values,g=new Float32Array(p),x=p;for(let w=0;w<x;w++){let b=w%m,k=w-b+Math.max(0,b-i),_=w-b+Math.min(m,b+i+1),A=0;for(let N=k;N<_;N++)A+=Math.pow(d[N],2);A=u*A+l;for(let N=k;N<_;N++){let $=-2*u*c*d[N]*h[w]/A;w===N&&($+=Math.pow(A,-c)),$*=f[w],g[N]+=$}}return t.makeTensorInfo(a.shape,o.dtype,g)}var B1={kernelName:tu,backendName:"cpu",kernelFunc:$K};function Ek(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{reductionIndices:s,keepDims:a}=n,i=t,l=o.shape,u=l.length,c=y.parseAxisParam(s,l),p=c,m=S.getAxesPermutation(p,u),f=i.data.get(o.dataId).values;if(m!=null){let k=new Array(u);for(let _=0;_<k.length;_++)k[_]=l[m[_]];f=lf(f,l,o.dtype,m,k),p=S.getInnerMostAxes(p.length,u),l=k}te(o,"max"),S.assertAxesAreInnerMostDims("max",p,u);let[d,h]=S.computeOutAndReduceShapes(l,p),g=y.sizeFromShape(h),x=dk(f,g,d,o.dtype),w=i.write(x,d,o.dtype),b=d;return a&&(b=S.expandShapeToKeepDim(d,c)),{dataId:w,shape:b,dtype:o.dtype}}var V1={kernelName:co,backendName:"cpu",kernelFunc:Ek};function RK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e;te(o,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=n,u=1;y.assert(S.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=S.computePool2DInfo(o.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Er({inputs:{x:o},backend:t});else{let m=t.data.get(o.dataId).values,f=y.computeStrides(o.shape),d=mp(m,o.shape,o.dtype,f,c,"max");p=t.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var G1={kernelName:mo,backendName:"cpu",kernelFunc:RK};function FK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=n;te(o,"maxPool3d");let c=S.computePool3DInfo(o.shape,s,a,1,i,l,u),p=t.data.get(o.dataId).values,m=_g(p,o.shape,o.dtype,y.computeStrides(o.shape),c,"max");return t.makeTensorInfo(m.shape,"float32",m.values)}var W1={kernelName:la,backendName:"cpu",kernelFunc:FK};function OK(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=n;te([o,s],"maxPool3DGrad");let c=S.computePool3DInfo(s.shape,a,i,1,l,u),p=t.bufferSync(s),m=zT(p,c),f=c.strideDepth,d=c.strideHeight,h=c.strideWidth,g=c.dilationDepth,x=c.dilationHeight,w=c.dilationWidth,b=c.effectiveFilterDepth,k=c.effectiveFilterHeight,_=c.effectiveFilterWidth,A=b-1-c.padInfo.front,N=_-1-c.padInfo.left,$=k-1-c.padInfo.top,F=ve(s.shape,"float32"),M=t.bufferSync(o);for(let V=0;V<c.batchSize;++V)for(let W=0;W<c.inChannels;++W)for(let U=0;U<c.inDepth;++U)for(let H=0;H<c.inHeight;++H)for(let q=0;q<c.inWidth;++q){let X=U-A,ne=H-$,Y=q-N,re=0;for(let J=0;J<b;J+=g){let ie=(X+J)/f;if(!(ie<0||ie>=c.outDepth||Math.floor(ie)!==ie))for(let ue=0;ue<k;ue+=x){let ae=(ne+ue)/d;if(!(ae<0||ae>=c.outHeight||Math.floor(ae)!==ae))for(let fe=0;fe<_;fe+=w){let de=(Y+fe)/h;if(de<0||de>=c.outWidth||Math.floor(de)!==de)continue;let xe=b*k*_-1-m.get(V,ie,ae,de,W),we=J*k*_+ue*_+fe,De=xe===we?1:0;if(De===0)continue;re+=M.get(V,ie,ae,de,W)*De}}}F.set(re,V,U,H,q,W)}return t.makeTensorInfo(F.shape,F.dtype,F.values)}var j1={kernelName:nu,backendName:"cpu",kernelFunc:OK};function PK(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s,output:a}=e,i=s;te([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=n,m=S.computePool2DInfo(i.shape,l,u,1,c,p),f=t.data.get(i.dataId).values,d=ve(m.outShape,i.dtype,kg(f,i.shape,i.dtype,m).values),h=m.strideHeight,g=m.strideWidth,x=m.dilationHeight,w=m.dilationWidth,b=m.effectiveFilterHeight,k=m.effectiveFilterWidth,_=k-1-m.padInfo.left,A=b-1-m.padInfo.top,N=ve(i.shape,"float32"),$=t.data.get(o.dataId).values,F=ve(o.shape,"float32",$);for(let M=0;M<m.batchSize;++M)for(let V=0;V<m.inChannels;++V)for(let W=0;W<m.inHeight;++W)for(let U=0;U<m.inWidth;++U){let H=W-A,q=U-_,X=0;for(let ne=0;ne<b;ne+=x){let Y=(H+ne)/h;if(!(Y<0||Y>=m.outHeight||Math.floor(Y)!==Y))for(let re=0;re<k;re+=w){let J=(q+re)/g;if(J<0||J>=m.outWidth||Math.floor(J)!==J)continue;let ie=b*k-1-d.get(M,Y,J,V),ue=ne*k+re,ae=ie===ue?1:0;if(ae===0)continue;X+=F.get(M,Y,J,V)*ae}}N.set(X,M,W,U,V)}return t.makeTensorInfo(N.shape,N.dtype,N.values)}var U1={kernelName:ru,backendName:"cpu",kernelFunc:PK};function H1(r,e,t,n,o){let s=y.computeStrides(e),a=mp(r,e,t,s,o,"max"),i=kg(r,e,t,o,!0,n);return[a.values,i.values]}var q1={kernelName:ou,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:n}=r,{filterSize:o,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;te(n,"MaxPoolWithArgmax");let u=l.data.get(n.dataId).values,c=S.computePool2DInfo(n.shape,o,s,[1,1],a),[p,m]=H1(u,n.shape,n.dtype,i,c),f=l.write(p,c.outShape,n.dtype),d=l.write(m,c.outShape,n.dtype);return[{dataId:f,shape:c.outShape,dtype:n.dtype},{dataId:d,shape:c.outShape,dtype:"int32"}]}};function qu(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;te(o,"sum");let i;o.dtype==="bool"?i=Uo({inputs:{x:o},backend:t,attrs:{dtype:"int32"}}):i=Er({inputs:{x:o},backend:t});let l=i.shape.length,u=y.parseAxisParam(s,i.shape),c=S.getAxesPermutation(u,l),p=u,m=i;c!=null&&(m=rr({inputs:{x:i},backend:t,attrs:{perm:c}}),p=S.getInnerMostAxes(p.length,l)),S.assertAxesAreInnerMostDims("sum",p,m.shape.length);let[f,d]=S.computeOutAndReduceShapes(m.shape,p),h=S.upcastType(m.dtype,"int32"),g=up(t,f,h),x=y.sizeFromShape(d),w=t.data.get(g.dataId).values,b=t.data.get(m.dataId).values;for(let k=0;k<w.length;++k){let _=k*x,A=0;for(let N=0;N<x;++N)A+=b[_+N];w[k]=A}if(a){let k=S.expandShapeToKeepDim(g.shape,u),_=g;g=Qe({inputs:{x:g},backend:t,attrs:{shape:k}}),t.disposeIntermediateTensorInfo(_)}return t.disposeIntermediateTensorInfo(i),c!=null&&t.disposeIntermediateTensorInfo(m),g}var K1={kernelName:Do,backendName:"cpu",kernelFunc:qu};function MK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=y.parseAxisParam(s,o.shape),u=S.computeOutAndReduceShapes(o.shape,i)[1],c=y.sizeFromShape(u),p=[],m=t.makeTensorInfo([],"float32",new Float32Array([c]));p.push(m);let f=Uo({inputs:{x:o},backend:t,attrs:{dtype:"float32"}});p.push(f);let d=mf({inputs:{a:f,b:m},backend:t});p.push(d);let h=qu({inputs:{x:d},backend:t,attrs:{axis:s,keepDims:a}});return p.forEach(g=>t.disposeIntermediateTensorInfo(g)),h}var X1={kernelName:fo,backendName:"cpu",kernelFunc:MK};function LK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;te(o,"min");let i=y.parseAxisParam(s,o.shape),l=i,u=S.getAxesPermutation(l,o.shape.length),c=o;u!=null&&(c=rr({inputs:{x:o},backend:t,attrs:{perm:u}}),l=S.getInnerMostAxes(l.length,o.shape.length)),S.assertAxesAreInnerMostDims("min",l,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let w=x*f,b=h[w];for(let k=0;k<f;++k){let _=h[w+k];_<b&&(b=_)}d[x]=b}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=S.expandShapeToKeepDim(p,i),w=Qe({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),w}return g}var Y1={kernelName:ho,backendName:"cpu",kernelFunc:LK};function zK(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{paddings:s,mode:a}=n;te(o,"mirrorPad");let i=s.map((b,k)=>b[0]+o.shape[k]+b[1]),l=s.map(b=>b[0]),u=s.map((b,k)=>b[0]+o.shape[k]),c=a==="reflect"?0:1,p=t.data.get(o.dataId).values,m=o.shape.length,f=y.computeStrides(o.shape),d=y.sizeFromShape(i),h=i.length,g=y.computeStrides(i),x=y.getTypedArrayFromDType(o.dtype,d);for(let b=0;b<d;b++){let k=y.indexToLoc(b,h,g);for(let A=0;A<h;A++)k[A]<l[A]?k[A]=l[A]*2-k[A]-c:k[A]>=u[A]&&(k[A]=(u[A]-1)*2-k[A]+c);k=k.map((A,N)=>A-l[N]);let _=y.locToIndex(k,m,f);x[b]=p[_]}return{dataId:t.write(x,i,o.dtype),shape:i,dtype:o.dtype}}var Z1={kernelName:ua,backendName:"cpu",kernelFunc:zK};var BK=Xe((r,e)=>{let t=r%e;return r<0&&e<0||r>=0&&e>=0?t:(t+e)%e}),VK=et(xi,BK),J1={kernelName:xi,backendName:"cpu",kernelFunc:VK};var hA=Ec(fA());function Mk(r){let{inputs:e,backend:t,attrs:n}=r,{logits:o}=e,{dim:s}=n,a=o.shape.length,i=s;if(i===-1&&(i=a-1),i!==a-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${a} and dim was ${i}`);let l=y.parseAxisParam([i],o.shape),u=Ek({inputs:{x:o},backend:t,attrs:{reductionIndices:l,keepDims:!1}}),c=S.expandShapeToKeepDim(u.shape,l),p=Qe({inputs:{x:u},backend:t,attrs:{shape:c}}),m=pf({inputs:{a:o,b:p},backend:t}),f=pk({inputs:{x:m},backend:t}),d=qu({inputs:{x:f},backend:t,attrs:{axis:l,keepDims:!1}}),h=Qe({inputs:{x:d},backend:t,attrs:{shape:c}}),g=mf({inputs:{a:f,b:h},backend:t});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var dA={kernelName:$o,backendName:"cpu",kernelFunc:Mk};function KK(r){let{inputs:e,backend:t,attrs:n}=r,{logits:o}=e,{numSamples:s,seed:a,normalized:i}=n;te(o,"multinomial");let l=i?o:Mk({inputs:{logits:o},backend:t,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],p=t.data.get(l.dataId).values,m=[u,s],f=y.makeZerosTypedArray(y.sizeFromShape(m),"int32");for(let d=0;d<u;++d){let h=d*c,g=new Float32Array(c-1);g[0]=p[h];for(let b=1;b<g.length;++b)g[b]=g[b-1]+p[h+b];let x=hA.alea(a.toString()),w=d*s;for(let b=0;b<s;++b){let k=x();f[w+b]=g.length;for(let _=0;_<g.length;_++)if(k<g[_]){f[w+b]=_;break}}}return i||t.disposeIntermediateTensorInfo(l),t.makeTensorInfo(m,"int32",f)}var gA={kernelName:su,backendName:"cpu",kernelFunc:KK};var XK=Ar.nonMaxSuppressionV3Impl;function YK(r){let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l}=n;te(o,"NonMaxSuppression");let u=t.data.get(o.dataId).values,c=t.data.get(s.dataId).values,{selectedIndices:p}=XK(u,c,a,i,l);return t.makeTensorInfo([p.length],"int32",new Int32Array(p))}var xA={kernelName:bi,backendName:"cpu",kernelFunc:YK};var ZK=Ar.nonMaxSuppressionV4Impl;function JK(r){let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=n;te(o,"NonMaxSuppressionPadded");let c=t.data.get(o.dataId).values,p=t.data.get(s.dataId).values,{selectedIndices:m,validOutputs:f}=ZK(c,p,a,i,l,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([f]))]}var yA={kernelName:wi,backendName:"cpu",kernelFunc:JK};var QK=Ar.nonMaxSuppressionV5Impl;function e6(r){let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=n;te(o,"NonMaxSuppressionWithScore");let c=t.data.get(o.dataId).values,p=t.data.get(s.dataId).values,m=a,f=i,d=l,h=u,{selectedIndices:g,selectedScores:x}=QK(c,p,m,f,d,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var bA={kernelName:ki,backendName:"cpu",kernelFunc:e6};function t6(r){let{inputs:e,backend:t,attrs:n}=r,{indices:o}=e,{depth:s,onValue:a,offValue:i}=n;te(o,"oneHot");let l=y.sizeFromShape(o.shape),u=new Float32Array(l*s);u.fill(i);let c=t.data.get(o.dataId).values;for(let p=0;p<l;++p)c[p]>=0&&c[p]<s&&(u[p*s+c[p]]=a);return t.makeTensorInfo([...o.shape,s],"int32",u)}var wA={kernelName:yo,backendName:"cpu",kernelFunc:t6};function hf(r){let{inputs:e,backend:t}=r,{x:n}=e;if(n.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(n.dtype==="complex64"){let o=jo({inputs:{input:n},backend:t}),s=hf({inputs:{x:o},backend:t}),a=zi({inputs:{input:n},backend:t}),i=hf({inputs:{x:a},backend:t}),l=mr({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(o),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return df({backend:t,attrs:{shape:n.shape,value:0,dtype:n.dtype}})}var kA={kernelName:bs,backendName:"cpu",kernelFunc:hf};function _A(r){let{inputs:e,backend:t}=r,{x:n}=e;if(n.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(n.dtype==="complex64"){let o=jo({inputs:{input:n},backend:t}),s=_A({inputs:{x:o},backend:t}),a=zi({inputs:{input:n},backend:t}),i=hf({inputs:{x:a},backend:t}),l=mr({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(o),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return df({backend:t,attrs:{shape:n.shape,value:1,dtype:n.dtype}})}var vA={kernelName:ms,backendName:"cpu",kernelFunc:_A};function Lk(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n;if(e.length===1)return fp({inputs:{input:e[0]},backend:t,attrs:{dim:o}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=fp({inputs:{input:c},backend:t,attrs:{dim:o}});return i.push(p),p}),u=pl({inputs:l,backend:t,attrs:{axis:o}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var CA={kernelName:fs,backendName:"cpu",kernelFunc:Lk};function r6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{paddings:s,constantValue:a}=n;te(o,"pad");let i=s.map((w,b)=>w[0]+o.shape[b]+w[1]),l=s.map(w=>w[0]),u=t.data.get(o.dataId).values,c=y.sizeFromShape(o.shape),p=o.shape.length,m=y.computeStrides(o.shape),f=y.sizeFromShape(i),d=i.length,h=y.computeStrides(i),g=y.getTypedArrayFromDType(o.dtype,f);a!==0&&g.fill(a);for(let w=0;w<c;w++){let k=y.indexToLoc(w,p,m).map((A,N)=>A+l[N]),_=y.locToIndex(k,d,h);g[_]=u[w]}return{dataId:t.write(g,i,o.dtype),shape:i,dtype:o.dtype}}var Ig={kernelName:bo,backendName:"cpu",kernelFunc:r6};var n6=Xe((r,e)=>Math.pow(r,e)),o6=et(wo,n6),IA={kernelName:wo,backendName:"cpu",kernelFunc:o6};function s6(r){let{backend:e,attrs:t}=r,{start:n,stop:o,dtype:s,step:a}=t,i=uf(n,o,a,s);return e.makeTensorInfo([i.length],s,i)}var NA={kernelName:ca,backendName:"cpu",kernelFunc:s6};var i6=$e(vi,r=>1/r),SA={kernelName:vi,backendName:"cpu",kernelFunc:i6};function a6(r){let{inputs:e,backend:t,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:a,size:i}=n;te(o,"resizeBilinear");let l=y.computeStrides(o.shape),[u,c]=i,[p,m,f,d]=o.shape,h=t.data.get(o.dataId).values,g=new Float32Array(y.sizeFromShape([p,u,c,d])),x=[s&&u>1?m-1:m,s&&c>1?f-1:f],w=[s&&u>1?u-1:u,s&&c>1?c-1:c],b=0,k=x[0]/w[0],_=x[1]/w[1];for(let A=0;A<p;A++)for(let N=0;N<u;N++){let $;a?$=k*(N+.5)-.5:$=k*N;let F=Math.max(0,Math.floor($)),M=$-F,V=Math.min(m-1,Math.ceil($)),W=A*l[0]+F*l[1],U=A*l[0]+V*l[1];for(let H=0;H<c;H++){let q;a?q=_*(H+.5)-.5:q=_*H;let X=Math.max(0,Math.floor(q)),ne=q-X,Y=Math.min(f-1,Math.ceil(q)),re=W+X*l[2],J=U+X*l[2],ie=W+Y*l[2],ue=U+Y*l[2];for(let ae=0;ae<d;ae++){let fe=h[re+ae],de=h[J+ae],xe=h[ie+ae],we=h[ue+ae],De=fe+(xe-fe)*ne,Ne=de+(we-de)*ne,ze=De+(Ne-De)*M;g[b++]=ze}}}return t.makeTensorInfo([p,u,c,d],"float32",g)}var TA={kernelName:vo,backendName:"cpu",kernelFunc:a6};function l6(r){let{inputs:e,backend:t,attrs:n}=r,{images:o,dy:s}=e,{alignCorners:a}=n;te([s,o],"resizeBilinearGrad");let i=y.computeStrides(o.shape),[l,u,c,p]=o.shape,[,m,f]=s.shape,d=new Float32Array(l*u*c*p),h=[a&&m>1?u-1:u,a&&f>1?c-1:c],g=[a&&m>1?m-1:m,a&&f>1?f-1:f],x=h[0]/g[0],w=h[1]/g[1],b=t.data.get(s.dataId).values,k=0;for(let _=0;_<l;_++){let A=_*i[0];for(let N=0;N<m;N++){let $=N*x,F=Math.floor($),M=Math.min(Math.ceil($),u-1),V=A+F*i[1],W=A+M*i[1],U=$-F,H=1-U;for(let q=0;q<f;q++){let X=q*w,ne=Math.floor(X),Y=Math.min(Math.ceil(X),c-1),re=X-ne,J=1-re,ie=V+ne*i[2],ue=V+Y*i[2],ae=W+ne*i[2],fe=W+Y*i[2],de=H*J,xe=H*re,we=U*J,De=U*re;for(let Ne=0;Ne<p;Ne++){let ze=b[k++];d[ie+Ne]+=ze*de,d[ue+Ne]+=ze*xe,d[ae+Ne]+=ze*we,d[fe+Ne]+=ze*De}}}}return t.makeTensorInfo([l,c,u,p],"float32",d)}var AA={kernelName:lu,backendName:"cpu",kernelFunc:l6};function u6(r){let{inputs:e,backend:t,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:a,size:i}=n;te(o,"resizeNearestNeighbor");let l=y.computeStrides(o.shape),[u,c]=i,[p,m,f,d]=o.shape,h=t.data.get(o.dataId).values,g=new Float32Array(p*u*c*d),x=[s&&u>1?m-1:m,s&&c>1?f-1:f],w=[s&&u>1?u-1:u,s&&c>1?c-1:c],b=x[0]/w[0],k=x[1]/w[1],_=0;for(let A=0;A<p;A++){let N=A*l[0];for(let $=0;$<u;$++){let F=a?b*($+.5):b*$,M=Math.min(m-1,s?Math.round(F):Math.floor(F));a&&(M=Math.max(0,M));let V=N+M*l[1];for(let W=0;W<c;W++){let U=a?k*(W+.5):k*W,H=Math.min(f-1,s?Math.round(U):Math.floor(U));a&&(H=Math.max(0,H));let q=V+H*l[2];for(let X=0;X<d;X++){let ne=h[q+X];g[_++]=ne}}}}return t.makeTensorInfo([p,u,c,d],o.dtype,g)}var EA={kernelName:pa,backendName:"cpu",kernelFunc:u6};function c6(r){let{inputs:e,backend:t,attrs:n}=r,{images:o,dy:s}=e,{alignCorners:a}=n;te([s,o],"resizeNearestNeighborGrad");let i=y.computeStrides(o.shape),l=y.computeStrides(s.shape),[u,c,p,m]=o.shape,[,f,d]=s.shape,h=new Float32Array(u*c*p*m),g=t.data.get(s.dataId).values,x=[a&&f>1?c-1:c,a&&d>1?p-1:p],w=[a&&f>1?f-1:f,a&&d>1?d-1:d],b=x[0]/w[0],k=x[1]/w[1],_=1/b,A=1/k,N=Math.ceil(_)*2+2,$=Math.ceil(A)*2+2;for(let F=0;F<u;F++){let M=F*i[0];for(let V=0;V<c;V++){let W=M+V*i[1],U=Math.floor(V*_),H=Math.floor(U-N/2);for(let q=0;q<p;q++){let X=W+q*i[2],ne=Math.floor(q*A),Y=Math.floor(ne-$/2);for(let re=0;re<m;re++){let J=0;for(let ie=0;ie<N;ie++){let ue=ie+H;if(ue<0||ue>=f)continue;let ae=M+ue*l[1],fe=ue*b,de=Math.min(c-1,a?Math.round(fe):Math.floor(fe));if(V===de)for(let xe=0;xe<$;xe++){let we=xe+Y;if(we<0||we>=d)continue;let De=ae+we*l[2],Ne=we*k,ze=Math.min(p-1,a?Math.round(Ne):Math.floor(Ne));q===ze&&(J+=g[De+re])}}h[X+re]=J}}}}return t.makeTensorInfo(o.shape,o.dtype,h)}var DA={kernelName:au,backendName:"cpu",kernelFunc:c6};function p6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dims:s}=n;te(o,"reverse");let a=o.shape.length,i=y.parseAxisParam(s,o.shape);if(a===0)return Er({inputs:{x:o},backend:t});let l=new lt(o.shape,o.dtype),u=t.bufferSync(o);for(let c=0;c<l.size;c++){let p=l.indexToLoc(c),m=p.slice();i.forEach(f=>m[f]=o.shape[f]-1-m[f]),l.set(u.get(...m),...p)}return t.makeTensorInfo(l.shape,l.dtype,l.values)}var $A={kernelName:Io,backendName:"cpu",kernelFunc:p6};var RA={kernelName:$i,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:n}=r,{radians:o,fillValue:s,center:a}=e,i=t,l=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(n.shape)),[u,c,p,m]=n.shape,[f,d]=S.getImageCenter(a,c,p),h=255,g=Math.sin(o),x=Math.cos(o),w=i.data.get(n.dataId).values;for(let k=0;k<u;k++){let _=k*p*c*m;for(let A=0;A<c;A++){let N=A*(p*m);for(let $=0;$<p;$++){let F=$*m;for(let M=0;M<m;M++){let V=[u,A,$,M],W=V[2],U=V[1],H=(W-f)*x-(U-d)*g,q=(W-f)*g+(U-d)*x;H=Math.round(H+f),q=Math.round(q+d);let X=s;if(typeof s!="number"&&(M===3?X=h:X=s[M]),H>=0&&H<p&&q>=0&&q<c){let Y=q*(p*m),re=H*m,J=_+Y+re+M;X=w[J]}let ne=_+N+F+M;l[ne]=X}}}}return{dataId:i.write(l,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var m6=$e(No,r=>{let e=Math.floor(r);return r-e<.5?Math.floor(r):r-e>.5?Math.ceil(r):e%2==0?e:e+1}),FA={kernelName:No,backendName:"cpu",kernelFunc:m6};function Ng(r,e,t,n,o,s,a,i,l,u){let c=[n/o,o],p=r.values,m=e.values;if(n===0)return ve(t,e.dtype);let f=ve(c,e.dtype);f.values.fill(l);for(let d=0;d<s;d++){let h=[],g=0;for(let x=0;x<a;x++){let w=p[d*a+x];h.push(w),g+=w*i[x]}if(g<0||g>=n/o)throw new Error(`Invalid indices: ${h} does not index into ${t}`);for(let x=0;x<o;x++)u?f.values[g*o+x]+=m[d*o+x]:f.values[g*o+x]=e.rank===0?m[0]:m[d*o+x]}return f}function f6(r){let{inputs:e,backend:t,attrs:n}=r,{indices:o,updates:s}=e,{shape:a}=n,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=S.calculateShapes(s,o,a),m=!0,f=t.bufferSync(o),d=t.bufferSync(s),h=Ng(f,d,a,p,u,l,i,c,0,m);return t.makeTensorInfo(a,h.dtype,h.values)}var OA={kernelName:Ci,backendName:"cpu",kernelFunc:f6};function d6(r){let{inputs:e,backend:t}=r,{condition:n,t:o,e:s}=e;te([n,o,s],"select");let a=n.shape.length,i=t.data.get(n.dataId).values,l=t.data.get(o.dataId).values,u=t.data.get(s.dataId).values,c=dr(o.dtype,s.dtype),p=y.makeZerosTypedArray(y.sizeFromShape(o.shape),c),m=0,f=a===0||a>1||o.shape.length===1?1:y.sizeFromShape(o.shape.slice(1));for(let d=0;d<i.length;d++)for(let h=0;h<f;h++)i[d]===1?p[m++]=l[d]:p[m++]=u[d];return t.makeTensorInfo(o.shape,c,p)}var PA={kernelName:hs,backendName:"cpu",kernelFunc:d6};var h6=S.SELU_SCALEALPHA,g6=S.SELU_SCALE,x6=$e(Ii,r=>r>=0?g6*r:h6*(Math.exp(r)-1)),MA={kernelName:Ii,backendName:"cpu",kernelFunc:x6};var y6=$e(Ao,r=>1/(1+Math.exp(-r))),LA={kernelName:Ao,backendName:"cpu",kernelFunc:y6};var b6=$e(Si,r=>r<0?-1:r>0?1:0),zA={kernelName:Si,backendName:"cpu",kernelFunc:b6};var w6=$e(To,r=>Math.sin(r)),BA={kernelName:To,backendName:"cpu",kernelFunc:w6};var k6=$e(Ni,r=>Math.sinh(r)),VA={kernelName:Ni,backendName:"cpu",kernelFunc:k6};var _6=11920928955078125e-23,GA=Math.log(_6)+2,v6=$e(Ti,r=>{let e=r>-GA,t=r<GA,n=Math.exp(r),o;return t?o=n:e?o=r:o=Math.log(1+n),o}),WA={kernelName:Ti,backendName:"cpu",kernelFunc:v6};function C6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockShape:s,paddings:a}=n;te([o],"spaceToBatchND");let i=y.sizeFromShape(s),l=[[0,0]];l.push(...a);for(let A=1+s.length;A<o.shape.length;++A)l.push([0,0]);let u=Ig.kernelFunc({inputs:{x:o},backend:t,attrs:{paddings:l,constantValue:0}}),c=S.getReshaped(u.shape,s,i,!1),p=S.getPermuted(c.length,s.length,!1),m=S.getReshapedPermuted(u.shape,s,i,!1),h=Qe({inputs:{x:u},backend:t,attrs:{shape:c}}),w=rr({inputs:{x:h},backend:t,attrs:{perm:p}}),_=Qe({inputs:{x:w},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(w),_}var jA={kernelName:ma,backendName:"cpu",kernelFunc:C6};function I6(r){let{inputs:e,backend:t,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:a}=e,{outputShape:i}=n,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:m}=S.calculateShapes(s,o,i),f=!1,d=t.bufferSync(o),h=t.bufferSync(s),g=t.data.get(a.dataId).values[0],x=Ng(d,h,i,m,c,u,l,p,g,f);return t.makeTensorInfo(i,x.dtype,x.values)}var UA={kernelName:uu,backendName:"cpu",kernelFunc:I6};function N6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{numOrSizeSplits:s,axis:a}=n,i=y.parseAxisParam(a,o.shape)[0],l=S.prepareSplitSize(o,s,i),u=new Array(o.shape.length).fill(0),c=o.shape.slice();return l.map(p=>{let m=[...c];m[i]=p;let f=Ko({inputs:{x:o},backend:t,attrs:{begin:u,size:m}});return u[i]+=p,f})}var HA={kernelName:xs,backendName:"cpu",kernelFunc:N6};var S6=$e(Eo,r=>Math.sqrt(r)),qA={kernelName:Eo,backendName:"cpu",kernelFunc:S6};var KA={kernelName:fa,backendName:"cpu",kernelFunc:({inputs:r,backend:e})=>{let{x:t}=r,n=e;te(t,"square");let o=n.data.get(t.dataId).values,s=new Float32Array(o.length);for(let i=0;i<o.length;++i){let l=o[i];s[i]=l*l}return{dataId:n.write(s,t.shape,t.dtype),shape:t.shape,dtype:t.dtype}}};var T6=$e(On,(r,e)=>{let t=e;return isNaN(r)?NaN:r>0?1:t.alpha}),XA={kernelName:On,backendName:"cpu",kernelFunc:T6};function A6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n;te(o,"stridedSlice");let{nonStrided:f,$begin:d,$strides:h,size:g,newShape:x,outShape:w}=sr.sliceInfo(o.shape,s,a,i,l,u,c,p,m),b=Qe({inputs:{x:o},backend:t,attrs:{shape:x}}),k;if(f){let A=Ko({inputs:{x:b},backend:t,attrs:{begin:d,size:g}});k=Qe({inputs:{x:A},backend:t,attrs:{shape:w}}),t.disposeIntermediateTensorInfo(A)}else if(w.some(A=>A===0))k=t.makeTensorInfo(w,o.dtype,[]);else{let A=t.bufferSync(b),N=hk(w,A,h,d);k=t.makeTensorInfo(N.shape,N.dtype,N.values)}let _=Qe({inputs:{x:k},backend:t,attrs:{shape:w}});return t.disposeIntermediateTensorInfo(b),t.disposeIntermediateTensorInfo(k),_}var YA={kernelName:Ai,backendName:"cpu",kernelFunc:A6};var E6=$e(Ei,r=>Math.tan(r)),ZA={kernelName:Ei,backendName:"cpu",kernelFunc:E6};var D6=$e(Oo,r=>Math.tanh(r)),JA={kernelName:Oo,backendName:"cpu",kernelFunc:D6};function $6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{reps:s}=n;te(o,"tile");let a=gk(t.bufferSync(o),s);return t.makeTensorInfo(a.shape,a.dtype,a.values)}var QA={kernelName:kn,backendName:"cpu",kernelFunc:$6};function R6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{k:s,sorted:a}=n;te(o,"topk");let i=t.data.get(o.dataId).values,[l,u]=xk(i,o.shape,o.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var eE={kernelName:Di,backendName:"cpu",kernelFunc:R6};function P6(r){let{inputs:e,attrs:t,backend:n}=r,{image:o,transforms:s}=e,{interpolation:a,fillMode:i,fillValue:l,outputShape:u}=t,[c,p,m,f]=o.shape,[d,h]=u!=null?u:[p,m],g=[c,d,h,f],x=y.computeStrides(o.shape),w=x[0],b=x[1],k=x[2],_=y.getTypedArrayFromDType(o.dtype,y.sizeFromShape(g));_.fill(l);let A=n.data.get(o.dataId).values,N=n.data.get(s.dataId).values;for(let F=0;F<c;++F){let M=s.shape[0]===1?N:N.subarray(F*8,F*8+8);for(let V=0;V<d;++V)for(let W=0;W<h;++W)for(let U=0;U<f;++U){let H,q=M[6]*W+M[7]*V+1;if(q===0)continue;let X=(M[0]*W+M[1]*V+M[2])/q,ne=(M[3]*W+M[4]*V+M[5])/q,Y=tE(X,m,i),re=tE(ne,p,i);switch(a){case"nearest":H=F6(A,p,m,w,b,k,F,re,Y,U,l);break;case"bilinear":H=O6(A,p,m,w,b,k,F,re,Y,U,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${a}`)}let J=F*w+V*b+W*k+U;_[J]=H}return n.makeTensorInfo(g,o.dtype,_)}return{dataId:n.write(_,g,o.dtype),shape:o.shape,dtype:o.dtype}}var rE={kernelName:cu,backendName:"cpu",kernelFunc:P6};function tE(r,e,t){switch(t){case"reflect":return M6(r,e);case"wrap":return L6(r,e);case"nearest":return B6(r,e);case"constant":default:return z6(r,e)}}function M6(r,e){let t=r;if(t<0)if(e<=1)t=0;else{let n=2*e;t<n&&(t=n*Math.trunc(-t/n)+t),t=t<-e?t+n:-t-1}else if(t>e-1)if(e<=1)t=0;else{let n=2*e;t-=n*Math.trunc(t/n),t>=e&&(t=n-t-1)}return y.clamp(0,t,e-1)}function L6(r,e){let t=r;if(t<0)if(e<=1)t=0;else{let n=e-1;t+=e*(Math.trunc(-t/n)+1)}else if(t>e-1)if(e<=1)t=0;else{let n=e-1;t-=e*Math.trunc(t/n)}return y.clamp(0,t,e-1)}function z6(r,e){return r}function B6(r,e){return y.clamp(0,r,e-1)}function gf(r,e,t,n,o,s,a,i,l,u,c){let p=a*n+i*o+l*s+u;return 0<=i&&i<e&&0<=l&&l<t?r[p]:c}function F6(r,e,t,n,o,s,a,i,l,u,c){let p=Math.round(i),m=Math.round(l);return gf(r,e,t,n,o,s,a,p,m,u,c)}function O6(r,e,t,n,o,s,a,i,l,u,c){let p=Math.floor(i),m=Math.floor(l),f=p+1,d=m+1,h=(d-l)*gf(r,e,t,n,o,s,a,p,m,u,c)+(l-m)*gf(r,e,t,n,o,s,a,p,d,u,c),g=(d-l)*gf(r,e,t,n,o,s,a,f,m,u,c)+(l-m)*gf(r,e,t,n,o,s,a,f,d,u,c);return(f-i)*h+(i-p)*g}function V6(r){let{inputs:e,attrs:t,backend:n}=r,{axis:o}=t,{x:s}=e;te(s,"unique");let a=n.data.get(s.dataId).values,{outputValues:i,outputShape:l,indices:u}=yk(a,o,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,i),n.makeTensorInfo([u.length],"int32",u)]}var nE={kernelName:pu,backendName:"cpu",kernelFunc:V6};function G6(r){let{inputs:e,backend:t,attrs:n}=r,{value:o}=e,{axis:s}=n;s<0&&(s+=o.shape.length);let a=o.shape.length,i=o.shape[s],l=new Array(a-1),u=0;for(let f=0;f<a;f++)f!==s&&(l[u++]=o.shape[f]);let c=new Array(a).fill(0),p=o.shape.slice();p[s]=1;let m=new Array(i);for(let f=0;f<m.length;f++){c[s]=f;let d=Ko({inputs:{x:o},backend:t,attrs:{begin:c,size:p}});m[f]=Qe({inputs:{x:d},backend:t,attrs:{shape:l}}),t.disposeIntermediateTensorInfo(d)}return m}var oE={kernelName:ys,backendName:"cpu",kernelFunc:G6};function W6(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,segmentIds:s}=e,{numSegments:a}=n;te(o,"unsortedSegmentSum");let i=o.shape.length,l=s.shape.length,u=[],c=[],p=i-l,m=s;for(let d=0;d<p;++d){let h=fp({inputs:{input:m},backend:t,attrs:{dim:d+1}});m=h,c.push(h)}for(let d=0;d<a;++d){let h=y.createScalarValue(d,"int32"),g=t.makeTensorInfo([],"int32",h),x=Tk({inputs:{a:g,b:m},backend:t}),w=Uo({inputs:{x},backend:t,attrs:{dtype:"float32"}}),b=af({inputs:{a:w,b:o},backend:t}),k=qu({inputs:{x:b},backend:t,attrs:{axis:0,keepDims:!1}});u.push(k),c.push(g),c.push(x),c.push(w),c.push(b),c.push(k)}let f=Lk({inputs:u,backend:t,attrs:{axis:0}});return c.forEach(d=>t.disposeIntermediateTensorInfo(d)),f}var sE={kernelName:da,backendName:"cpu",kernelFunc:W6};var j6=[NT,RS,ST,TT,zS,AT,ET,DT,$T,RT,FT,OT,PT,MT,LT,BT,VT,GT,WT,IT,jT,UT,HT,MS,VS,qT,FS,KT,YT,JT,QT,ZT,t1,r1,e1,n1,o1,s1,i1,a1,l1,u1,c1,p1,m1,f1,h1,d1,ff,bT,g1,x1,y1,WS,b1,US,w1,k1,_1,qS,v1,C1,I1,N1,S1,XS,T1,OS,A1,XT,E1,D1,$1,wT,ZS,R1,F1,QS,O1,P1,M1,L1,z1,B1,tT,G1,W1,j1,U1,q1,V1,X1,Y1,nT,Z1,J1,gA,oT,iT,xA,yA,bA,lT,wA,vA,CA,Ig,IA,kT,pT,NA,PS,SA,_T,vT,CT,TA,AA,EA,DA,$A,RA,FA,fT,OA,PA,MA,LA,zA,BA,VA,dT,dA,WA,jA,UA,HA,qA,KA,gT,XA,YA,yT,K1,ZA,JA,QA,eE,uT,rE,nE,oE,sE,kA];for(let r of j6)el(r);var lE={};Ke(lE,{assertNotComplex:()=>Rs,bindCanvasToFramebuffer:()=>e5,bindColorTextureToFramebuffer:()=>bf,bindTextureToProgramUniformSampler:()=>Qk,bindTextureUnit:()=>pE,bindVertexBufferToProgramAttribute:()=>Sg,callAndCheck:()=>Ie,canBeRepresented:()=>Vk,createFragmentShader:()=>Wk,createFramebuffer:()=>Yk,createProgram:()=>jk,createStaticIndexBuffer:()=>qk,createStaticVertexBuffer:()=>Hk,createTexture:()=>Kk,createVertexShader:()=>Gk,getBatchDim:()=>Oa,getExtensionOrThrow:()=>dp,getFramebufferErrorMessage:()=>mE,getMaxTexturesInShader:()=>r_,getNumChannels:()=>J6,getProgramUniformLocation:()=>Jk,getProgramUniformLocationOrThrow:()=>Zk,getRowsCols:()=>Pa,getShapeAs3D:()=>wf,getTextureShapeFromLogicalShape:()=>e_,getWebGLDisjointQueryTimerVersion:()=>n_,getWebGLErrorMessage:()=>uE,getWebGLMaxTextureSize:()=>t_,hasExtension:()=>In,isCapableOfRenderingToFloatTexture:()=>s_,isDownloadFloatTextureEnabled:()=>i_,isReshapeFree:()=>dl,isWebGLFenceEnabled:()=>a_,isWebGLVersionEnabled:()=>$g,linkProgram:()=>Uk,resetMaxTextureSize:()=>t5,resetMaxTexturesInShader:()=>r5,unbindColorTextureFromFramebuffer:()=>Tg,unbindTextureUnit:()=>Q6,validateFramebuffer:()=>hp,validateProgram:()=>yf,validateTextureSize:()=>Xk});var Xu={},zk={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Bk(r,e){Xu[r]=e}function Vn(r){if(!(r in Xu)){let t=U6(r);if(t!==null)Xu[r]=t;else return console.log("Could not get context for WebGL version",r),null}let e=Xu[r];return e.isContextLost()?(delete Xu[r],Vn(r)):(e.disable(e.DEPTH_TEST),e.disable(e.STENCIL_TEST),e.disable(e.BLEND),e.disable(e.DITHER),e.disable(e.POLYGON_OFFSET_FILL),e.disable(e.SAMPLE_COVERAGE),e.enable(e.SCISSOR_TEST),e.enable(e.CULL_FACE),e.cullFace(e.BACK),Xu[r])}function H6(r){if(typeof OffscreenCanvas!="undefined"&&r===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function U6(r){if(r!==1&&r!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let e=H6(r);return e.addEventListener("webglcontextlost",t=>{t.preventDefault(),delete Xu[r]},!1),r===1?e.getContext("webgl",zk)||e.getContext("experimental-webgl",zk):e.getContext("webgl2",zk)}var ml;(function(r){r[r.DENSE=0]="DENSE",r[r.SHARED_BATCH=1]="SHARED_BATCH"})(ml||(ml={}));var Dr;(function(r){r[r.RENDER=0]="RENDER",r[r.UPLOAD=1]="UPLOAD",r[r.PIXELS=2]="PIXELS",r[r.DOWNLOAD=3]="DOWNLOAD"})(Dr||(Dr={}));var _r;(function(r){r[r.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",r[r.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",r[r.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",r[r.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",r[r.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(_r||(_r={}));function Yu(r,e){return[e,r]}function iE(r,e){return r*e}function fl(r){let e=y.sizeFromShape(r),t=Math.ceil(e/4);return y.sizeToSquarishShape(t)}function Bi(r,e){return[Math.max(1,Math.ceil(e/2)),Math.max(1,Math.ceil(r/2))]}function aE(r,e){let[t,n]=Bi(r,e);return t*n*4}function xf(r,e){let t=r,n,o,s,a,i,l,u,c,p,m;return j().getNumber("WEBGL_VERSION")===2?(n=t.R32F,o=t.R16F,s=t.RGBA16F,a=t.RGBA32F,i=t.RED,u=4,c=1,p=t.HALF_FLOAT,m=t.FLOAT):(n=r.RGBA,o=r.RGBA,s=r.RGBA,a=t.RGBA,i=r.RGBA,u=4,c=4,p=e!=null?e.HALF_FLOAT_OES:null,m=r.FLOAT),l=r.RGBA,{internalFormatFloat:n,internalFormatHalfFloat:o,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:a,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:m}}function Ie(r,e){let t=e();return j().getBool("DEBUG")&&q6(r),t}function q6(r){let e=r.getError();if(e!==r.NO_ERROR)throw new Error("WebGL Error: "+uE(r,e))}var K6=596e-10,X6=65504;function Vk(r){return!!(j().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||r===0||K6<Math.abs(r)&&Math.abs(r)<X6)}function uE(r,e){switch(e){case r.NO_ERROR:return"NO_ERROR";case r.INVALID_ENUM:return"INVALID_ENUM";case r.INVALID_VALUE:return"INVALID_VALUE";case r.INVALID_OPERATION:return"INVALID_OPERATION";case r.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case r.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case r.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${e}`}}function dp(r,e){return Fa(r,()=>r.getExtension(e),'Extension "'+e+'" not supported on this browser.')}function Gk(r,e){let t=Fa(r,()=>r.createShader(r.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ie(r,()=>r.shaderSource(t,e)),Ie(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw console.log(r.getShaderInfoLog(t)),new Error("Failed to compile vertex shader.");return t}function Wk(r,e){let t=Fa(r,()=>r.createShader(r.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ie(r,()=>r.shaderSource(t,e)),Ie(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw Y6(e,r.getShaderInfoLog(t)),new Error("Failed to compile fragment shader.");return t}var Z6=/ERROR: [0-9]+:([0-9]+):/g;function Y6(r,e){let t=Z6.exec(e);if(t==null){console.log(`Couldn't parse line number in error: ${e}`),console.log(r);return}let n=+t[1],o=r.split(`
`),s=o.length.toString().length+2,a=o.map((p,m)=>y.rightPad((m+1).toString(),s)+p),i=0;for(let p=0;p<a.length;p++)i=Math.max(a[p].length,i);let l=a.slice(0,n-1),u=a.slice(n-1,n),c=a.slice(n);console.log(l.join(`
`)),console.log(e.split(`
`)[0]),console.log(`%c ${y.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
`))}function jk(r){return Fa(r,()=>r.createProgram(),"Unable to create WebGLProgram.")}function Uk(r,e){if(Ie(r,()=>r.linkProgram(e)),r.getProgramParameter(e,r.LINK_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Failed to link vertex and fragment shaders.")}function yf(r,e){if(Ie(r,()=>r.validateProgram(e)),r.getProgramParameter(e,r.VALIDATE_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Shader program validation failed.")}function Hk(r,e){let t=Fa(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return Ie(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),Ie(r,()=>r.bufferData(r.ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function qk(r,e){let t=Fa(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return Ie(r,()=>r.bindBuffer(r.ELEMENT_ARRAY_BUFFER,t)),Ie(r,()=>r.bufferData(r.ELEMENT_ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function J6(){return j().getNumber("WEBGL_VERSION")===2?1:4}function Kk(r){return Fa(r,()=>r.createTexture(),"Unable to create WebGLTexture.")}function Xk(r,e){let t=j().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(r<=0||e<=0){let n=`[${r}x${e}]`;throw new Error("Requested texture size "+n+" is invalid.")}if(r>t||e>t){let n=`[${r}x${e}]`,o=`[${t}x${t}]`;throw new Error("Requested texture size "+n+" greater than WebGL maximum on this browser / GPU "+o+".")}}function Yk(r){return Fa(r,()=>r.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Sg(r,e,t,n,o,s,a){let i=r.getAttribLocation(e,t);return i===-1?!1:(Ie(r,()=>r.bindBuffer(r.ARRAY_BUFFER,n)),Ie(r,()=>r.vertexAttribPointer(i,o,r.FLOAT,!1,s,a)),Ie(r,()=>r.enableVertexAttribArray(i)),!0)}function pE(r,e,t){cE(r,t),Ie(r,()=>r.activeTexture(r.TEXTURE0+t)),Ie(r,()=>r.bindTexture(r.TEXTURE_2D,e))}function Q6(r,e){cE(r,e),Ie(r,()=>r.activeTexture(r.TEXTURE0+e)),Ie(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function Zk(r,e,t){return Fa(r,()=>r.getUniformLocation(e,t),'uniform "'+t+'" not present in program.')}function Jk(r,e,t){return r.getUniformLocation(e,t)}function Qk(r,e,t,n){Ie(r,()=>pE(r,e,n)),Ie(r,()=>r.uniform1i(t,n))}function e5(r){Ie(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,null)),Ie(r,()=>r.viewport(0,0,r.canvas.width,r.canvas.height)),Ie(r,()=>r.scissor(0,0,r.canvas.width,r.canvas.height))}function bf(r,e,t){Ie(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,t)),Ie(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,e,0))}function Tg(r,e){Ie(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,e)),Ie(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,null,0))}function hp(r){let e=r.checkFramebufferStatus(r.FRAMEBUFFER);if(e!==r.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+mE(r,e))}function mE(r,e){switch(e){case r.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case r.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${e}`}}function Fa(r,e,t){let n=Ie(r,()=>e());if(n==null)throw new Error(t);return n}function cE(r,e){let t=r.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,n=e+r.TEXTURE0;if(n<r.TEXTURE0||n>t){let o=`[gl.TEXTURE0, gl.TEXTURE${t}]`;throw new Error(`textureUnit must be in ${o}.`)}}function Oa(r,e=2){return y.sizeFromShape(r.slice(0,r.length-e))}function Pa(r){if(r.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[r.length>1?r[r.length-2]:1,r[r.length-1]]}function wf(r){let e=[1,1,1];return r.length===0||r.length===1&&r[0]===1||(e=[Oa(r),...Pa(r)]),e}function e_(r,e=!1){let t=j().getNumber("WEBGL_MAX_TEXTURE_SIZE");e&&(t=t*2,r=r.map((o,s)=>s>=r.length-2?y.nearestLargerEven(r[s]):r[s]),r.length===1&&(r=[2,r[0]])),r.length!==2&&(r=y.squeezeShape(r).newShape);let n=y.sizeFromShape(r);if(r.length<=1&&n<=t)return[1,n];if(r.length===2&&r[0]<=t&&r[1]<=t)return r;if(r.length===3&&r[0]*r[1]<=t&&r[2]<=t)return[r[0]*r[1],r[2]];if(r.length===3&&r[0]<=t&&r[1]*r[2]<=t)return[r[0],r[1]*r[2]];if(r.length===4&&r[0]*r[1]*r[2]<=t&&r[3]<=t)return[r[0]*r[1]*r[2],r[3]];if(r.length===4&&r[0]<=t&&r[1]*r[2]*r[3]<=t)return[r[0],r[1]*r[2]*r[3]];if(e){let o=Oa(r),s=2,a=2;return r.length&&([s,a]=Pa(r)),n=o*(s/2)*(a/2),y.sizeToSquarishShape(n).map(i=>i*2)}return y.sizeToSquarishShape(n)}function Ag(r){return r%2==0}function dl(r,e){if(r=r.slice(-2),e=e.slice(-2),y.arraysEqual(r,e)||!r.length||!e.length||r[0]===0||r[1]===0||e[0]===0||e[1]===0)return!0;if(r.length!==e.length){let t=r.slice(-1)[0],n=e.slice(-1)[0];if(t===n||Ag(t)&&Ag(n)&&(r[0]===1||e[0]===1))return!0}return r[1]===e[1]&&Ag(r[0])&&Ag(e[0])}var Eg,Dg;function t_(r){if(Eg==null){let e=Vn(r);Eg=e.getParameter(e.MAX_TEXTURE_SIZE)}return Eg}function t5(){Eg=null}function r5(){Dg=null}function r_(r){if(Dg==null){let e=Vn(r);Dg=e.getParameter(e.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Dg)}function n_(r){if(r===0)return 0;let e,t=Vn(r);return In(t,"EXT_disjoint_timer_query_webgl2")&&r===2?e=2:In(t,"EXT_disjoint_timer_query")?e=1:e=0,e}function In(r,e){return r.getExtension(e)!=null}function $g(r){try{if(Vn(r)!=null)return!0}catch(e){return console.log("Error when getting WebGL context: ",e),!1}return!1}function s_(r){if(r===0)return!1;let e=Vn(r);if(r===1){if(!In(e,"OES_texture_float"))return!1}else if(!In(e,"EXT_color_buffer_float"))return!1;return o_(e)}function i_(r){if(r===0)return!1;let e=Vn(r);if(r===1){if(!In(e,"OES_texture_float")||!In(e,"WEBGL_color_buffer_float"))return!1}else{if(In(e,"EXT_color_buffer_float"))return o_(e);let n="EXT_color_buffer_half_float";if(In(e,n)){let o=e.getExtension(n);return n5(e,o)}return!1}return o_(e)}function o_(r){let e=xf(r),t=r.createTexture();r.bindTexture(r.TEXTURE_2D,t);let n=1,o=1;r.texImage2D(r.TEXTURE_2D,0,e.internalFormatFloat,n,o,0,e.textureFormatFloat,e.textureTypeFloat,null);let s=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,s),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,t,0);let a=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(t),r.deleteFramebuffer(s),a}function n5(r,e){let t=xf(r,e),n=r.createTexture();r.bindTexture(r.TEXTURE_2D,n);let o=1,s=1;r.texImage2D(r.TEXTURE_2D,0,t.internalFormatHalfFloat,o,s,0,t.textureFormatFloat,t.textureTypeHalfFloat,null);let a=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,a),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,n,0);let i=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(n),r.deleteFramebuffer(a),i}function a_(r){return r!==2?!1:Vn(r).fenceSync!=null}function Rs(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&y.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the WebGL backend.`)})}var Pe=j();Pe.registerFlag("HAS_WEBGL",()=>Pe.getNumber("WEBGL_VERSION")>0);Pe.registerFlag("WEBGL_VERSION",()=>$g(2)?2:$g(1)?1:0);Pe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Pe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Pe.get("WEBGL_VERSION")===2);Pe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Pe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Pe.registerFlag("WEBGL_PACK",()=>Pe.getBool("HAS_WEBGL"));Pe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_CLIP",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Pe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_REDUCE",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_LAZILY_UNPACK",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_CONV_IM2COL",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>t_(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>r_(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let r=Pe.getNumber("WEBGL_VERSION");return r===0?0:n_(r)});Pe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Pe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!hu.isMobile());Pe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>s_(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Pe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Pe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Pe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>i_(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>a_(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Pe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Pe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${r}.`)});Pe.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>hu.isMobile()&&Pe.getBool("IS_CHROME")?1:-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${r}.`)});function Ft(){let r,e,t,n,o,s,a,i,l,u;return j().getNumber("WEBGL_VERSION")===2?(r="#version 300 es",e="in",t="out",n="in",o="texture",s="outputColor",a="out vec4 outputColor;",i=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(r="",e="attribute",t="varying",n="varying",o="texture2D",s="gl_FragColor",a="",i=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:r,attribute:e,varyingVs:t,varyingFs:n,texture2D:o,output:s,defineOutput:a,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function Fs(r,e,t="index"){let n=y.computeStrides(e);return n.map((o,s)=>{let a=`int ${r[s]} = ${t} / ${o}`,i=s===n.length-1?`int ${r[s+1]} = ${t} - ${r[s]} * ${o}`:`index -= ${r[s]} * ${o}`;return`${a}; ${i};`}).join("")}function gp(r){let e=y.computeStrides(r).map(t=>t.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${e[0]} + coords.y * ${e[1]} + coords.z;
}
`}var Rg=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`;var l_=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=ml.DENSE;let t=fl(e),n=Ft();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Fs(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${n.output} = result;
}
`}};var u_=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=ml.DENSE;let t=fl(e),n=Ft();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Fs(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${n.output} = result;
}
`}};var c_=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Dr.DOWNLOAD;let t=Ft();this.outputShape=e,this.userCode=`
${Rg}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}};var p_=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Dr.DOWNLOAD;let t=Ft();this.outputShape=e,this.userCode=`
${Rg}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}};var m_=class{constructor(e,t,n=!1){this.variableNames=["A"];let o=Ft(),[s,a]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
${gp(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / ${a};
int c = imod(flatIndex, ${a});
vec2 uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0);
vec4 values = ${o.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${o.output} = vec4(${i}, 0., 0., 0.);
}
`}};var f_=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let o=Ft(),[s,a]=t;this.outputShape=e;let i="",l="result";n&&(l="floor(result * 255. + 0.5)");for(let u=0;u<=1;u++)for(let c=0;c<=1;c++){let p=u*2+c;i+=`
localCoords = coords;
if(localCoords[2] + ${c} < ${e[2]}) {
localCoords[2] += ${c};
if(localCoords[1] + ${u} < ${e[1]}) {
localCoords[1] += ${u};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
r = flatIndex / ${a};
c = imod(flatIndex, ${a});
uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0);
values = ${o.texture2D}(A, uv);
if(offset == 0) {
result[${p}] = values[0];
} else if(offset == 1) {
result[${p}] = values[1];
} else if(offset == 2) {
result[${p}] = values[2];
} else {
result[${p}] = values[3];
}
}
}
`}this.userCode=`
${gp(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${i}
${o.output} = ${l};
}
`}};var fE={};Ke(fE,{bindVertexProgramAttributeStreams:()=>__,createBufferFromOutputTexture:()=>I_,createFloat16MatrixTexture:()=>y_,createFloat16PackedMatrixTexture:()=>k_,createFloat32MatrixTexture:()=>x_,createIndexBuffer:()=>g_,createPackedMatrixTexture:()=>w_,createUnsignedBytesMatrixTexture:()=>b_,createVertexBuffer:()=>h_,createVertexShader:()=>d_,downloadByteEncodedFloatMatrixFromOutputTexture:()=>S_,downloadFloat32MatrixFromBuffer:()=>N_,downloadMatrixFromPackedOutputTexture:()=>A_,downloadPackedMatrixFromBuffer:()=>T_,getInternalFormatForFloat16MatrixTexture:()=>Og,getInternalFormatForFloat16PackedMatrixTexture:()=>Lg,getInternalFormatForFloat32MatrixTexture:()=>Fg,getInternalFormatForPackedMatrixTexture:()=>Mg,getInternalFormatForUnsignedBytesMatrixTexture:()=>Pg,uploadDenseMatrixToTexture:()=>v_,uploadPixelDataToTexture:()=>C_});function d_(r){let e=Ft(),t=`${e.version}
precision highp float;
${e.attribute} vec3 clipSpacePos;
${e.attribute} vec2 uv;
${e.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return Gk(r,t)}function h_(r){let e=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return Hk(r,e)}function g_(r){let e=new Uint16Array([0,1,2,2,1,3]);return qk(r,e)}function kf(r,e,t,n,o,s){Xk(e,t);let a=Kk(r),i=r.TEXTURE_2D;return Ie(r,()=>r.bindTexture(i,a)),Ie(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_S,r.CLAMP_TO_EDGE)),Ie(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_T,r.CLAMP_TO_EDGE)),Ie(r,()=>r.texParameteri(i,r.TEXTURE_MIN_FILTER,r.NEAREST)),Ie(r,()=>r.texParameteri(i,r.TEXTURE_MAG_FILTER,r.NEAREST)),Ie(r,()=>r.texImage2D(i,0,n,e,t,0,o,s,null)),Ie(r,()=>r.bindTexture(r.TEXTURE_2D,null)),a}function Fg(r){return r.internalFormatFloat}function x_(r,e,t,n){let[o,s]=Yu(e,t);return kf(r,o,s,Fg(n),n.textureFormatFloat,r.FLOAT)}function Og(r){return r.internalFormatHalfFloat}function y_(r,e,t,n){let[o,s]=Yu(e,t);return kf(r,o,s,Og(n),n.textureFormatFloat,n.textureTypeHalfFloat)}function Pg(r){return r.downloadTextureFormat}function b_(r,e,t,n){let[o,s]=Yu(e,t);return kf(r,o,s,Pg(n),r.RGBA,r.UNSIGNED_BYTE)}function Mg(r){return r.internalFormatPackedFloat}function w_(r,e,t,n){let[o,s]=Bi(e,t);return kf(r,o,s,Mg(n),r.RGBA,r.FLOAT)}function Lg(r){return r.internalFormatPackedHalfFloat}function k_(r,e,t,n){let[o,s]=Bi(e,t);return kf(r,o,s,Lg(n),r.RGBA,n.textureTypeHalfFloat)}function __(r,e,t){let n=0,o=3*4,s=3*4+2*4;return Ie(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),Sg(r,e,"clipSpacePos",t,3,s,n)&&Sg(r,e,"uv",t,2,s,o)}function v_(r,e,t,n,o,s){Ie(r,()=>r.bindTexture(r.TEXTURE_2D,e));let a,i,l;o instanceof Uint8Array?(a=new Uint8Array(t*n*4),i=r.UNSIGNED_BYTE,l=r.RGBA):(a=new Float32Array(t*n*4),i=r.FLOAT,l=s.internalFormatPackedFloat),a.set(o),Ie(r,()=>r.texImage2D(r.TEXTURE_2D,0,l,t,n,0,r.RGBA,i,a)),Ie(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function C_(r,e,t){Ie(r,()=>r.bindTexture(r.TEXTURE_2D,e)),t.data instanceof Uint8Array?Ie(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,t.width,t.height,0,r.RGBA,r.UNSIGNED_BYTE,t.data)):Ie(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,r.RGBA,r.UNSIGNED_BYTE,t)),Ie(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function I_(r,e,t,n){let o=r.createBuffer();Ie(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,o));let i=4*4*e*t;return Ie(r,()=>r.bufferData(r.PIXEL_PACK_BUFFER,i,r.STREAM_READ)),Ie(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,0)),Ie(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,null)),o}function N_(r,e,t){let n=r,o=new Float32Array(t);return n.bindBuffer(n.PIXEL_PACK_BUFFER,e),n.getBufferSubData(n.PIXEL_PACK_BUFFER,0,o),n.bindBuffer(n.PIXEL_PACK_BUFFER,null),o}function S_(r,e,t,n){let[o,s]=Yu(e,t),a=4,i=new Uint8Array(iE(e*t,a));return Ie(r,()=>r.readPixels(0,0,o,s,n.downloadTextureFormat,r.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function T_(r,e,t,n,o,s,a,i){let l=r,u=new Float32Array(aE(s,a));return l.bindBuffer(l.PIXEL_PACK_BUFFER,e),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function A_(r,e,t){let n=new Float32Array(e*t*4);return Ie(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,n)),n}var zg=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=j().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Bk(t,e)):this.gl=Vn(t);let n="WEBGL_color_buffer_float",o="EXT_color_buffer_half_float";if(j().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=dp(this.gl,s),In(this.gl,a))this.textureHalfFloatExtension=dp(this.gl,a);else if(j().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),In(this.gl,o))this.colorBufferHalfFloatExtension=dp(this.gl,o);else if(j().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",In(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(In(this.gl,o))this.colorBufferHalfFloatExtension=this.gl.getExtension(o);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=h_(this.gl),this.indexBuffer=g_(this.gl),this.framebuffer=Yk(this.gl),this.textureConfig=xf(this.gl,this.textureHalfFloatExtension)}get debug(){return j().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ie(e,()=>e.finish()),Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.deleteFramebuffer(this.framebuffer)),Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ie(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),x_(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),y_(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),b_(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),C_(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,o){this.throwIfDisposed(),v_(this.gl,e,t,n,o,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),k_(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),w_(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(Tg(this.gl,this.framebuffer),this.outputTexture=null),Ie(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>S_(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,o,s,a){return T_(this.gl,e,t,n,o,s,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return N_(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let o=I_(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),o}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(j().getBool("WEBGL_FENCE_API_ENABLED")){let o=e,s=o.fenceSync(o.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=o.clientWaitSync(s,0,0);return a===o.ALREADY_SIGNALED||a===o.CONDITION_SATISFIED},t=s}else j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>A_(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=Wk(t,e),o=d_(t),s=jk(t);return Ie(t,()=>t.attachShader(s,o)),Ie(t,()=>t.attachShader(s,n)),Uk(t,s),this.debug&&yf(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=__(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ie(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&yf(this.gl,this.program),Ie(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?Zk(this.gl,e,t):Jk(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ie(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),Qk(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[o,s]=Bi(t,n);this.setOutputMatrixTextureDriver(e,o,s)}setOutputMatrixWriteRegion(e,t,n,o){this.setOutputMatrixWriteRegionDriver(n,e,o,t)}setOutputPackedMatrixWriteRegion(e,t,n,o){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&yf(this.gl,this.program),hp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ie(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=dp(this.gl,j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.createQuery();return n.beginQuery(o.TIME_ELAPSED_EXT,s),s}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await y.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(o.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),o=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),o&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=o5(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&y.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),bf(this.gl,e,this.framebuffer),this.debug&&hp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(bf(this.gl,this.outputTexture,this.framebuffer),this.debug&&hp(this.gl)):Tg(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let o=this.gl;bf(o,e,this.framebuffer),this.debug&&hp(o),this.outputTexture=e,Ie(o,()=>o.viewport(0,0,t,n)),Ie(o,()=>o.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,o){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.scissor(e,t,n,o))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function o5(r){let e=0;for(;e<r.length&&r[e]();++e);return e-1}var{getBroadcastDims:dE}=S;function hE(r,e,t,n){let o=[];r.forEach(d=>{let h=y.sizeFromShape(d.shapeInfo.logicalShape);d.shapeInfo.isUniform?o.push(`uniform float ${d.name}${h>1?`[${h}]`:""};`):(o.push(`uniform sampler2D ${d.name};`),o.push(`uniform int offset${d.name};`))});let s=o.join(`
`),a=r.map(d=>s5(d,e,n)).join(`
`),i=e.texShape,l=Ft(),u=l5(l),c,p,m=p5(l);return e.isPacked?(c=i5(e.logicalShape,i),p=c5(l)):(c=a5(e.logicalShape,i),p=u5(l)),n&&(m+=m5),[m,u,p,s,c,a,t].join(`
`)}function xp(r){let e=r.shapeInfo.logicalShape;switch(e.length){case 0:return f5(r);case 1:return d5(r);case 2:return h5(r);case 3:return g5(r);case 4:return x5(r);case 5:return y5(r);case 6:return b5(r);default:throw new Error(`${e.length}-D input sampling is not yet supported`)}}function gE(r){switch(r.shapeInfo.logicalShape.length){case 0:return w5(r);case 1:return k5(r);case 2:return _5(r);case 3:return v5(r);default:return C5(r)}}function s5(r,e,t=!1){let n="";t?n+=gE(r):n+=xp(r);let o=r.shapeInfo.logicalShape,s=e.logicalShape;return o.length<=s.length&&(t?n+=I5(r,e):n+=N5(r,e)),n}function i5(r,e){switch(r.length){case 0:return xE();case 1:return S5(r,e);case 2:return E5(r,e);case 3:return T5(r,e);default:return A5(r,e)}}function a5(r,e){switch(r.length){case 0:return xE();case 1:return D5(r,e);case 2:return P5(r,e);case 3:return $5(r,e);case 4:return R5(r,e);case 5:return F5(r,e);case 6:return O5(r,e);default:throw new Error(`${r.length}-D output sampling is not yet supported`)}}function l5(r){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${r.texture2D}(textureSampler, uv).r;
}
`}function u5(r){return`
void setOutput(float val) {
${r.output} = vec4(val, 0, 0, 0);
}
`}function c5(r){return`
void setOutput(vec4 val) {
${r.output} = val;
}
`}function p5(r){return`${r.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${r.varyingFs} vec2 resultUV;
${r.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${r.defineSpecialNaN}
${r.defineSpecialInf}
${r.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${M5}
${L5}
${z5}
`}var M5=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,L5=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,z5=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,m5=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function xE(){return`
int getOutputCoords() {
return 0;
}
`}function S5(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];return t[0]===1?`
int getOutputCoords() {
return 2 * int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?`
int getOutputCoords() {
return 2 * int(resultUV.y * ${t[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return 2 * (resTexRC.x * ${t[1]} + resTexRC.y);
}
`}function D5(r,e){return e[0]===1?`
int getOutputCoords() {
return int(resultUV.x * ${e[1]}.0);
}
`:e[1]===1?`
int getOutputCoords() {
return int(resultUV.y * ${e[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
return resTexRC.x * ${e[1]} + resTexRC.y;
}
`}function T5(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],n=Math.ceil(r[2]/2),o=n*Math.ceil(r[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int b = index / ${o};
index -= b * ${o};
int r = 2 * (index / ${n});
int c = imod(index, ${n}) * 2;
return ivec3(b, r, c);
}
`}function $5(r,e){let t=Fs(["r","c","d"],r);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
return ivec3(r, c, d);
}
`}function A5(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],n=Math.ceil(r[r.length-1]/2),o=n*Math.ceil(r[r.length-2]/2),s=o,a="",i="b, r, c";for(let l=2;l<r.length-1;l++)s*=r[r.length-l-1],a=`
int b${l} = index / ${s};
index -= b${l} * ${s};
`+a,i=`b${l}, `+i;return`
ivec${r.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
int b = index / ${o};
index -= b * ${o};
int r = 2 * (index / ${n});
int c = imod(index, ${n}) * 2;
return ivec${r.length}(${i});
}
`}function R5(r,e){let t=Fs(["r","c","d","d2"],r);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
return ivec4(r, c, d, d2);
}
`}function F5(r,e){let t=Fs(["r","c","d","d2","d3"],r);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${e[0]},
${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function O5(r,e){let t=Fs(["r","c","d","d2","d3","d4"],r);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function E5(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];if(y.arraysEqual(r,e))return`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`;let n=Math.ceil(r[1]/2);return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = 2 * (index / ${n});
int c = imod(index, ${n}) * 2;
return ivec2(r, c);
}
`}function P5(r,e){return y.arraysEqual(r,e)?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${e[0]}, ${e[1]}));
}
`:r[1]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:r[0]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
int r = index / ${r[1]};
int c = index - r * ${r[1]};
return ivec2(r, c);
}
`}function Zu(r){return`offset${r}`}function w5(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1),n=Ft();return`
vec4 ${t}() {
return ${n.texture2D}(${e}, halfCR);
}
`}function f5(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`float ${t}() {return ${e};}`;let[n,o]=r.shapeInfo.texShape;if(n===1&&o===1)return`
float ${t}() {
return sampleTexture(${e}, halfCR);
}
`;let[s,a]=r.shapeInfo.texShape,i=Zu(e);return`
float ${t}() {
vec2 uv = uvFromFlat(${s}, ${a}, ${i});
return sampleTexture(${e}, uv);
}
`}function k5(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1),n=r.shapeInfo.texShape,o=[Math.ceil(n[0]/2),Math.ceil(n[1]/2)],s=Ft();return`
vec4 ${t}(int index) {
vec2 uv = packedUVfrom1D(
${o[0]}, ${o[1]}, index);
return ${s.texture2D}(${e}, uv);
}
`}function d5(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`
float ${t}(int index) {
${yp(r)}
}
`;let n=r.shapeInfo.texShape,o=n[0],s=n[1];if(s===1&&o===1)return`
float ${t}(int index) {
return sampleTexture(${e}, halfCR);
}
`;let a=Zu(e);return s===1?`
float ${t}(int index) {
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / ${o}.0);
return sampleTexture(${e}, uv);
}
`:o===1?`
float ${t}(int index) {
vec2 uv = vec2((float(index + ${a}) + 0.5) / ${s}.0, 0.5);
return sampleTexture(${e}, uv);
}
`:`
float ${t}(int index) {
vec2 uv = uvFromFlat(${o}, ${s}, index + ${a});
return sampleTexture(${e}, uv);
}
`}function _5(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=r.shapeInfo.texShape,s=o[0],a=o[1],i=Ft();if(o!=null&&y.arraysEqual(e,o))return`
vec4 ${n}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}.0, ${s}.0);
return ${i.texture2D}(${t}, uv);
}
`;let l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=Math.ceil(e[1]/2);return`
vec4 ${n}(int row, int col) {
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
return ${i.texture2D}(${t}, uv);
}
`}function h5(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=r.shapeInfo.texShape;if(o!=null&&y.arraysEqual(e,o)){let p=o[0],m=o[1];return`
float ${n}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${m}.0, ${p}.0);
return sampleTexture(${t}, uv);
}
`}let{newShape:s,keptDims:a}=y.squeezeShape(e),i=s;if(i.length<e.length){let p=bp(r,i),m=["row","col"];return`
${xp(p)}
float ${n}(int row, int col) {
return ${n}(${wp(m,a)});
}
`}if(r.shapeInfo.isUniform)return`
float ${n}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${e[1]}, 1)));
${yp(r)}
}
`;let l=o[0],u=o[1],c=Zu(t);return u===1?`
float ${n}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${e[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${t}, uv);
}
`:l===1?`
float ${n}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${e[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
return sampleTexture(${t}, uv);
}
`:`
float ${n}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${e[1]} + col + ${c};
vec2 uv = uvFromFlat(${l}, ${u}, index);
return sampleTexture(${t}, uv);
}
`}function v5(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=r.shapeInfo.texShape,s=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)];if(e[0]===1){let p=e.slice(1),m=[1,2],f=bp(r,p),d=["b","row","col"];return`
${gE(f)}
vec4 ${n}(int b, int row, int col) {
return ${n}(${wp(d,m)});
}
`}let a=s[0],i=s[1],l=Math.ceil(e[2]/2),u=l*Math.ceil(e[1]/2),c=Ft();return`
vec4 ${n}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${a}, ${i}, ${u}, ${l}, b, row, col);
return ${c.texture2D}(${t}, uv);
}
`}function g5(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=e[1]*e[2],s=e[2],{newShape:a,keptDims:i}=y.squeezeShape(e),l=a;if(l.length<e.length){let d=bp(r,l),h=["row","col","depth"];return`
${xp(d)}
float ${n}(int row, int col, int depth) {
return ${n}(${wp(h,i)});
}
`}if(r.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${o}, ${s}, 1)));
${yp(r)}
}
`;let u=r.shapeInfo.texShape,c=u[0],p=u[1],m=r.shapeInfo.flatOffset;if(p===o&&m==null)return`
float ${n}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${c}.0);
return sampleTexture(${t}, uv);
}
`;if(p===s&&m==null)return`
float ${n}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${e[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${c}.0);
return sampleTexture(${t}, uv);
}
`;let f=Zu(t);return`
float ${n}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${s} + depth + ${f};
vec2 uv = uvFromFlat(${c}, ${p}, index);
return sampleTexture(${t}, uv);
}
`}function C5(r){let e=r.shapeInfo.logicalShape,t=e.length,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r.shapeInfo.texShape,a=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],i=a[0],l=a[1],u=Math.ceil(e[t-1]/2),c=u*Math.ceil(e[t-2]/2),p="int b, int row, int col",m=`b * ${c} + (row / 2) * ${u} + (col / 2)`;for(let d=2;d<t-1;d++)p=`int b${d}, `+p,c*=e[t-d-1],m=`b${d} * ${c} + `+m;let f=Ft();return`
vec4 ${o}(${p}) {
int index = ${m};
int texR = index / ${l};
int texC = index - texR * ${l};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${i});
return ${f.texture2D}(${n}, uv);
}
`}function x5(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=e[3],s=e[2]*o,a=e[1]*s,{newShape:i,keptDims:l}=y.squeezeShape(e);if(i.length<e.length){let d=bp(r,i),h=["row","col","depth","depth2"];return`
${xp(d)}
float ${n}(int row, int col, int depth, int depth2) {
return ${n}(${wp(h,l)});
}
`}if(r.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${a}, ${s}, ${o}, 1)));
${yp(r)}
}
`;let u=r.shapeInfo.flatOffset,c=r.shapeInfo.texShape,p=c[0],m=c[1];if(m===a&&u==null)return`
float ${n}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${s}, ${o}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${p}.0);
return sampleTexture(${t}, uv);
}
`;if(m===o&&u==null)return`
float ${n}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${e[1]*e[2]}, ${e[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${p}.0);
return sampleTexture(${t}, uv);
}
`;let f=Zu(t);return`
float ${n}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${s} +
depth * ${o} + depth2;
vec2 uv = uvFromFlat(${p}, ${m}, index + ${f});
return sampleTexture(${t}, uv);
}
`}function y5(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),o=e[4],s=e[3]*o,a=e[2]*s,i=e[1]*a,{newShape:l,keptDims:u}=y.squeezeShape(e);if(l.length<e.length){let h=bp(r,l),g=["row","col","depth","depth2","depth3"];return`
${xp(h)}
float ${n}(int row, int col, int depth, int depth2, int depth3) {
return ${n}(${wp(g,u)});
}
`}if(r.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${i}, ${a}, ${s}, ${o})) +
depth3;
${yp(r)}
}
`;let c=r.shapeInfo.flatOffset,p=r.shapeInfo.texShape,m=p[0],f=p[1];if(f===i&&c==null)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${a}, ${s}, ${o}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${t}, uv);
}
`;if(f===o&&c==null)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${e[1]*e[2]*e[3]},
${e[2]*e[3]}, ${e[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${t}, uv);
}
`;let d=Zu(t);return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${a} + depth * ${s} +
depth2 * ${o} + depth3 + ${d};
vec2 uv = uvFromFlat(${m}, ${f}, index);
return sampleTexture(${t}, uv);
}
`}function b5(r){let e=r.shapeInfo.logicalShape,t=r.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),{newShape:o,keptDims:s}=y.squeezeShape(e);if(o.length<e.length){let g=bp(r,o),x=["row","col","depth","depth2","depth3","depth4"];return`
${xp(g)}
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${n}(${wp(x,s)});
}
`}let a=e[5],i=e[4]*a,l=e[3]*i,u=e[2]*l,c=e[1]*u;if(r.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${c}, ${u}, ${l}, ${i})) +
dot(
vec2(depth3, depth4),
vec2(${a}, 1)));
${yp(r)}
}
`;let p=r.shapeInfo.flatOffset,m=r.shapeInfo.texShape,f=m[0],d=m[1];if(d===c&&p==null)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${i}, ${a})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${f}.0);
return sampleTexture(${t}, uv);
}
`;if(d===a&&p==null)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${e[1]*e[2]*e[3]*e[4]},
${e[2]*e[3]*e[4]},
${e[3]*e[4]},
${e[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${f}.0);
return sampleTexture(${t}, uv);
}
`;let h=Zu(t);return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${c} + col * ${u} + depth * ${l} +
depth2 * ${i} + depth3 * ${a} + depth4 + ${h};
vec2 uv = uvFromFlat(${f}, ${d}, index);
return sampleTexture(${t}, uv);
}
`}function yp(r){let e=r.name,t=y.sizeFromShape(r.shapeInfo.logicalShape);return t<2?`return ${e};`:`
for (int i = 0; i < ${t}; i++) {
if (i == index) {
return ${e}[i];
}
}
`}function I5(r,e){let t=r.name,n=t.charAt(0).toUpperCase()+t.slice(1),o="get"+n+"AtOutCoords",s=r.shapeInfo.logicalShape.length,a=e.logicalShape.length,i=dE(r.shapeInfo.logicalShape,e.logicalShape),l=Le(a),u=a-s,c,p=["x","y","z","w","u","v"];s===0?c="":a<2&&i.length>=1?c="coords = 0;":c=i.map(w=>`coords.${p[w+u]} = 0;`).join(`
`);let m="";a<2&&s>0?m="coords":m=r.shapeInfo.logicalShape.map((w,b)=>`coords.${p[b+u]}`).join(", ");let f="return outputValue;",h=y.sizeFromShape(r.shapeInfo.logicalShape)===1,x=y.sizeFromShape(e.logicalShape)===1;if(s===1&&!h&&!x)f=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(h&&!x)a===1?f=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:f=`
return vec4(outputValue.x);
`;else if(i.length){let w=s-2,b=s-1;i.indexOf(w)>-1&&i.indexOf(b)>-1?f="return vec4(outputValue.x);":i.indexOf(w)>-1?f="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(b)>-1&&(f="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${o}() {
${l} coords = getOutputCoords();
${c}
vec4 outputValue = get${n}(${m});
${f}
}
`}function N5(r,e){let t=r.name,n=t.charAt(0).toUpperCase()+t.slice(1),o="get"+n+"AtOutCoords",s=e.texShape,a=r.shapeInfo.texShape,i=r.shapeInfo.logicalShape.length,l=e.logicalShape.length;if(!r.shapeInfo.isUniform&&i===l&&r.shapeInfo.flatOffset==null&&y.arraysEqual(a,s))return`
float ${o}() {
return sampleTexture(${t}, resultUV);
}
`;let u=Le(l),c=dE(r.shapeInfo.logicalShape,e.logicalShape),p=l-i,m,f=["x","y","z","w","u","v"];i===0?m="":l<2&&c.length>=1?m="coords = 0;":m=c.map(h=>`coords.${f[h+p]} = 0;`).join(`
`);let d="";return l<2&&i>0?d="coords":d=r.shapeInfo.logicalShape.map((h,g)=>`coords.${f[g+p]}`).join(", "),`
float ${o}() {
${u} coords = getOutputCoords();
${m}
return get${n}(${d});
}
`}function Le(r){if(r<=1)return"int";if(r===2)return"ivec2";if(r===3)return"ivec3";if(r===4)return"ivec4";if(r===5)return"ivec5";if(r===6)return"ivec6";throw Error(`GPU for rank ${r} is not yet supported`)}function bp(r,e){let t=JSON.parse(JSON.stringify(r));return t.shapeInfo.logicalShape=e,t}function wp(r,e){return e.map(t=>r[t]).join(", ")}function yE(r,e,t,n){let o=e.userCode,s=t.map((f,d)=>{let h={logicalShape:f.shape,texShape:f.isUniform?null:f.texData.texShape,isUniform:f.isUniform,isPacked:f.isUniform?!1:f.texData.isPacked,flatOffset:null};return f.texData!=null&&f.texData.slice!=null&&f.texData.slice.flatOffset>0&&(h.flatOffset=f.texData.slice.flatOffset),{name:e.variableNames[d],shapeInfo:h}}),a=s.map(f=>f.shapeInfo),i={logicalShape:n.shape,texShape:n.texData.texShape,isUniform:!1,isPacked:n.texData.isPacked,flatOffset:null},l=hE(s,i,o,e.packedInputs),u=r.createProgram(l),c=null,p=r.getUniformLocation(u,"NAN",!1);j().getNumber("WEBGL_VERSION")===1&&(c=r.getUniformLocation(u,"INFINITY",!1));let m={};for(let f=0;f<e.variableNames.length;f++){let d=e.variableNames[f],h=!1;m[d]=r.getUniformLocation(u,d,h),m[`offset${d}`]=r.getUniformLocation(u,`offset${d}`,h)}return{program:e,source:l,webGLProgram:u,uniformLocations:m,inShapeInfos:a,outShapeInfo:i,infLoc:c,nanLoc:p}}function bE(r,e){if(r.length!==e.length)throw Error(`Binary was compiled with ${r.length} inputs, but was executed with ${e.length} inputs`);r.forEach((t,n)=>{let o=t.logicalShape,s=e[n],a=s.shape;if(!y.arraysEqual(o,a))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${o} and ${a} must match`);if(t.isUniform&&s.isUniform)return;let i=t.texShape,l=s.isUniform?null:s.texData.texShape;if(!y.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function wE(r,e,t,n,o){bE(e.inShapeInfos,t),bE([e.outShapeInfo],[n]);let s=n.texData.texture,a=n.texData.texShape;n.texData.isPacked?r.setOutputPackedMatrixTexture(s,a[0],a[1]):r.setOutputMatrixTexture(s,a[0],a[1]),r.setProgram(e.webGLProgram),j().getNumber("WEBGL_VERSION")===1&&e.infLoc!==null&&r.gl.uniform1f(e.infLoc,Infinity),e.nanLoc!==null&&r.gl.uniform1f(e.nanLoc,NaN),t.forEach((i,l)=>{let u=e.program.variableNames[l],c=e.uniformLocations[u],p=e.uniformLocations[`offset${u}`];if(c!=null){if(i.isUniform){if(y.sizeFromShape(i.shape)<2)r.gl.uniform1f(c,i.uniformValues[0]);else{let m=i.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),r.gl.uniform1fv(c,m)}return}i.texData.slice!=null&&p!=null&&r.gl.uniform1i(p,i.texData.slice.flatOffset),r.setInputMatrixTexture(i.texData.texture,c,l)}}),o!=null&&o(r,e.webGLProgram),r.executeProgram()}function kE(r,e,t){let n="";e.concat(t).forEach(a=>{let i=a.texData!=null&&a.texData.slice!=null&&a.texData.slice.flatOffset>0,l=a.isUniform?"uniform":a.texData.texShape;n+=`${a.shape}_${l}_${i}`});let o=r.userCode,s=r.constructor.name;return s+="_"+n+"_"+o,s}var{addImpl:_E,bincountImpl:Bg,bincountReduceImpl:vE,ceilImpl:CE,concatImpl:IE,expImpl:NE,expm1Impl:SE,floorImpl:TE,gatherV2Impl:AE,greaterImpl:EE,lessImpl:DE,linSpaceImpl:$E,logImpl:RE,maxImpl:FE,maximumImpl:OE,minimumImpl:PE,multiplyImpl:ME,negImpl:LE,prodImpl:zE,rangeImpl:BE,rsqrtImpl:VE,simpleAbsImpl:Vg,sliceImpl:GE,stridedSliceImpl:WE,subImpl:jE,tileImpl:UE,topKImpl:HE,transposeImpl:kp,uniqueImpl:qE}=wg;function E_(r,e){return["x","y","z","w","u","v"].slice(0,e).map(t=>`${r}.${t}`)}function jt(r,e){return e===1?[r]:E_(r,e)}function KE(r,e){if(r===1)return"rc";let t="";for(let n=0;n<r;n++)t+=e[n],n<r-1&&(t+=",");return t}var D_=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let n=jt("rc",t),o=Le(t),s=B5(t,e,n),a=V5(t,e[e.length-1],e[e.length-2],n),i=G5(e,n);this.userCode=`
void main() {
${o} rc = getOutputCoords();
if(${s}) {
setOutput(vec4(0));
} else {
${a}
setOutput(vec4(${i}));
}
}
`}}};function W5(r,e){let t=[];for(let n=0;n<=1;n++)for(let o=0;o<=1;o++){let s=`${n===0?"r":"rp1"}, ${o===0?"c":"cp1"}`;for(let a=2;a<r;a++)s=`${e[e.length-1-a]},`+s;t.push(s)}return t}function B5(r,e,t){if(r===1)return`rc > ${e[0]}`;let n="";for(let o=r-2;o<r;o++)n+=`${t[o]} >= ${e[o]}`,o<r-1&&(n+="||");return n}function V5(r,e,t,n){if(r===1)return"";let o=n.slice(-2);return`
int r = ${o[0]};
int c = ${o[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${e};
bool rEdge = rp1 >= ${t};
`}function G5(r,e){let t=r.length,n=W5(t,e);return t===1?`getA(rc),
rc + 1 >= ${r[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${n[0]}),
cEdge ? 0. : getA(${n[1]}),
rEdge ? 0. : getA(${n[2]}),
rEdge || cEdge ? 0. : getA(${n[3]})`}var _f=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let o=0;o<4;o++){let s="thisRC = rc;";o%2==1&&(s+="thisRC.z += 1;"),o>1&&(s+="thisRC.y += 1;"),n+=`
${s}
${o>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${o}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${o>0?"}":""}
`}this.userCode=`
${j5(t)}
${gp(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${e[1]};
int cols = ${e[2]};
${n}
setOutput(result);
}
`}};function j5(r){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${Fs(["r","c","d"],r)}
return ivec3(r, c, d);
}
`}var $_=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let o=YE(t,n),s=ZE(e,o,n);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let a=XE(e,o,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let l=this.freeTextures[s].shift();return this.usedTextures[s].push(l),l}let i;return o===_r.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):o===_r.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):o===_r.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):o===_r.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):o===_r.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[s].push(i),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),i}releaseTexture(e,t,n,o){if(this.freeTextures==null)return;let s=YE(n,o),a=ZE(t,s,o);a in this.freeTextures||(this.freeTextures[a]=[]);let i=XE(t,s,this.gpgpu.gl,this.gpgpu.textureConfig,o),l=j().get("WEBGL_DELETE_TEXTURE_THRESHOLD");l!==-1&&this._numBytesAllocated>l?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let u=this.usedTextures[a],c=u.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");u.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function U5(r,e){let t=r;if(e===t.R32F)return 4;if(e===t.R16F)return 2;if(e===t.RGBA32F)return 16;if(e===r.RGBA)return 16;if(e===t.RGBA16F)return 8;throw new Error(`Unknown internal format ${e}`)}function XE(r,e,t,n,o){let s=H5(e,n),a;if(o){let[l,u]=Bi(r[0],r[1]);a=l*u}else{let[l,u]=Yu(r[0],r[1]);a=l*u}let i=U5(t,s);return a*i}function H5(r,e){switch(r){case _r.PACKED_2X2_FLOAT32:return Mg(e);case _r.PACKED_2X2_FLOAT16:return Lg(e);case _r.UNPACKED_FLOAT32:return Fg(e);case _r.UNPACKED_FLOAT16:return Og(e);case _r.PACKED_4X1_UNSIGNED_BYTE:return Pg(e);default:throw new Error(`Unknown physical texture type ${r}`)}}function q5(r){return j().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?r?_r.PACKED_2X2_FLOAT32:_r.UNPACKED_FLOAT32:r?_r.PACKED_2X2_FLOAT16:_r.UNPACKED_FLOAT16}function YE(r,e){if(r===Dr.UPLOAD)return _r.PACKED_2X2_FLOAT32;if(r===Dr.RENDER||r==null)return q5(e);if(r===Dr.DOWNLOAD||r===Dr.PIXELS)return _r.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${r}`)}function ZE(r,e,t){return`${r[0]}_${r[1]}_${e}_${t}`}var ln=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},gr="if (isnan(x)) return x;",JE="return x;",R_="return abs(x);";var QE="return (x >= 0.0) ? x : (exp(x) - 1.0);",e2=gr+`
return (x < 0.0) ? 0.0 : x;
`,t2=gr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,vf="return x;";var r2="return x;",n2=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,o2=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,s2=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Os=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}};var F_=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=jt("rc",t),o=Le(t),s=KE(t,n),a=n.slice(-2),i=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 packedInput = getA(${s});
setOutput(getChannel(packedInput, ${i}));
}
`}};var K5=Ar.whereImpl,X5=1e-7,Y5=1e-4,Gg={};function Z5(r){return r in Gg||(Gg[r]={}),Gg[r]}var J5=128,Q5=600;function e8(){return j().global.screen==null?1024:j().global.screen.height*j().global.screen.width*window.devicePixelRatio*Q5/1024/1024}var Ju=class extends js{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!j().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Vn(j().getNumber("WEBGL_VERSION"));this.binaryCache=Z5(j().getNumber("WEBGL_VERSION")),this.gpgpu=new zg(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new $_(this.gpgpu),this.numMBBeforeWarning=e8(),this.texData=new Za(this,Mn())}nextDataId(){return Ju.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((j().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||j().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let o={id:this.nextDataId()};return this.texData.set(o,{shape:t,dtype:n,values:e,usage:Dr.UPLOAD,refCount:1}),o}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,o,s){if(j().getBool("DEBUG")&&this.checkNumericalProblems(t),o==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:o,values:t,usage:Dr.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:o,complexTensorInfos:s,slice:a,shape:i,isPacked:l}=t;if(a!=null){let m;l?m=new Os(i,vf):m=new ln(i,vf);let f=this.runWebGLProgram(m,[{dataId:e,shape:i,dtype:o}],o),d=this.readSync(f.dataId);return this.disposeIntermediateTensorInfo(f),d}if(n!=null)return this.convertAndCacheOnCPU(e);if(o==="string")return n;let u=this.activeTimers!=null,c;u&&(c=y.now());let p;if(o==="complex64"){let m=this.readSync(s.real.dataId),f=this.readSync(s.imag.dataId);p=S.mergeRealAndImagArrays(m,f)}else p=this.getValuesFromTexture(e);return u&&(this.downloadWaitMs+=y.now()-c),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let d=this.pendingRead.get(e);return new Promise(h=>d.push(h))}let t=this.texData.get(e),{values:n,shape:o,slice:s,dtype:a,complexTensorInfos:i,isPacked:l}=t;if(s!=null){let d;l?d=new Os(o,vf):d=new ln(o,vf);let h=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:a}],a),g=this.read(h.dataId);return this.disposeIntermediateTensorInfo(h),g}if(n!=null)return this.convertAndCacheOnCPU(e);if(!j().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&j().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let u=null,c;if(a!=="complex64"&&j().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let d=this.texData.get(c.dataId);u=this.gpgpu.createBufferFromTexture(d.texture,...fl(o))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(a==="complex64"){let d=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),h=d[0],g=d[1];p=S.mergeRealAndImagArrays(h,g)}else if(u==null)p=this.getValuesFromTexture(e);else{let d=y.sizeFromShape(o);p=this.gpgpu.downloadFloat32MatrixFromBuffer(u,d)}c!=null&&this.disposeIntermediateTensorInfo(c);let m=this.convertAndCacheOnCPU(e,p),f=this.pendingRead.get(e);return this.pendingRead.delete(e),f.forEach(d=>d(m)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Mn().removeDataId(e,this),this.pendingDeletes--),m}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(o=>y.decodeString(o))}catch(o){throw new Error("Failed to decode encoded string bytes into utf-8")}return ve(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!Vk(n))throw j().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:o}=this.texData.get(e),s=y.sizeFromShape(t);if(j().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let m=this.decode(e),f=this.texData.get(m.dataId),d=this.gpgpu.downloadMatrixFromPackedTexture(f.texture,...fl(t)).subarray(0,s);return this.disposeIntermediateTensorInfo(m),d}let a=j().getBool("WEBGL_PACK")&&o===!0,i=a?wf(t):t,l=a?new p_(i):new c_(i),u=this.runWebGLProgram(l,[{shape:i,dtype:n,dataId:e}],"float32"),c=this.texData.get(u.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,s);return this.disposeIntermediateTensorInfo(u),p}timerAvailable(){return j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],o=!1;this.programTimersStack==null?(this.programTimersStack=n,o=!0):this.activeTimers.push(n),this.activeTimers=n,e();let s=y.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=y.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,o&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let l=await Promise.all(s);i.kernelMs=y.sum(l),i.getExtraProfileInfo=()=>l.map((u,c)=>({name:a[c],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:y.now(),endMs:null}}endTimer(e){return j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=y.now(),e)}async getQueryTime(e){if(j().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:o,usage:s,isPacked:a,slice:i}=this.texData.get(e),l=i&&i.origDataId||e,u=this.dataRefCount.get(l);u>1?this.dataRefCount.set(l,u-1):(this.dataRefCount.delete(l),t!=null&&(this.numBytesInGPU-=this.computeBytes(o,n),this.textureManager.releaseTexture(t,o,s,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return j().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Mn().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=J5){let n=this.getCPUBackend();return!j().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(o=>this.texData.get(o.dataId).texture==null&&y.sizeFromShape(o.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){S.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return K5(e.shape,t)}packedUnaryOp(e,t,n){let o=new Os(e.shape,t),s=this.compileAndRun(o,[e],n);return Mn().makeTensorFromDataId(s.dataId,s.shape,s.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let o=Vg(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,o)}if(j().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,R_,e.dtype);let t=new ln(e.shape,R_),n=this.compileAndRun(t,[e]);return Mn().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let o;if(t==="string"&&n!=null&&n.length>0&&y.isString(n[0])){let s=n.map(a=>y.encodeString(a));o=this.write(s,e,t)}else o=this.write(n,e,t);return this.texData.get(o).usage=null,{dataId:o,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:o}=this.makeTensorInfo(e,t,n);return Mn().makeTensorFromDataId(o,e,t,this)}unpackTensor(e){let t=new F_(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new D_(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Oa(e.shape),...Pa(e.shape)],o={dtype:e.dtype,shape:n,dataId:e.dataId},s=[Oa(t),...Pa(t)],a=new _f(s,n),i=!0,l=this.runWebGLProgram(a,[o],e.dtype,null,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:o,dtype:s}=t,a=wf(o),i;n?i=new u_(a):i=new l_(a);let l=!0,u=this.runWebGLProgram(i,[{shape:a,dtype:s,dataId:e}],s,null,l);return{dtype:s,shape:o,dataId:u.dataId}}runWebGLProgram(e,t,n,o,s=!1){let a=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(a.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===ml.DENSE){let g=fl(e.outputShape);i.texShape=g.map(x=>x*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),y.sizeFromShape(a.shape)===0)return i.values=y.getTypedArrayFromDType(a.dtype,0),a;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let x=this.texData.get(g.dataId);if(x.texture==null){if(!e.packedInputs&&y.sizeFromShape(g.shape)<=j().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:x.values};e.packedInputs&&(x.isPacked=!0,x.shape=g.shape)}else if(!!x.isPacked!=!!e.packedInputs)g=x.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),x=this.texData.get(g.dataId);else if(x.isPacked&&!dl(x.shape,g.shape)){let w=g,b=g.shape;g.shape=x.shape,g=this.packedReshape(g,b),l.push(g),x=this.texData.get(g.dataId),w.shape=b}return this.uploadToGPU(g.dataId),{shape:g.shape,texData:x,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:i,isUniform:!1},p=kE(e,u,c),m=this.getAndSaveBinary(p,()=>yE(this.gpgpu,e,u,c)),f=this.activeTimers!=null,d;f&&(d=this.startTimer()),wE(this.gpgpu,m,u,c,o),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),f&&(d=this.endTimer(d),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(d)}));let h=j().get("WEBGL_FLUSH_THRESHOLD");if(h>0){let g=y.now();g-this.lastGlFlushTime>h&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!j().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&s===!1){let g=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),g}return a}compileAndRun(e,t,n,o,s=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,o,s)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(j().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=G(()=>{if(!j().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=j().getBool("DEBUG");j().set("DEBUG",!1);let t=this.abs(le(1e-8)).dataSync()[0];if(j().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?X5:Y5}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:o,values:s,texture:a,usage:i,isPacked:l}=t;if(a!=null)return;let u=this.activeTimers!=null,c;u&&(c=y.now());let p=t.texShape;if(p==null&&(p=e_(n,l),t.texShape=p),s!=null){let m=wf(n),f,d=p[1],h=p[0],g=s instanceof Uint8Array;l?([d,h]=Bi(p[0],p[1]),f=new f_(m,[h,d],g)):f=new m_(m,[h,d],g);let x=this.makeTensorInfo([h,d],o);g?this.texData.get(x.dataId).usage=Dr.PIXELS:this.texData.get(x.dataId).usage=Dr.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(x.dataId),d,h,s);let w=!0,b=this.runWebGLProgram(f,[x],o,null,w),k=this.texData.get(b.dataId);t.texture=k.texture,t.texShape=k.texShape,t.isPacked=k.isPacked,t.usage=k.usage,this.disposeIntermediateTensorInfo(x),this.texData.delete(b.dataId),t.values=null,u&&(this.uploadWaitMs+=y.now()-c)}else{let m=this.acquireTexture(p,i,o,l);t.texture=m}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:o}=n;return this.releaseGPUData(e),t!=null&&(n.values=t8(t,o)),n.values}acquireTexture(e,t,n,o){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,o)}computeBytes(e,t){return e[0]*e[1]*y.bytesPerElement(t)}};Ju.nextDataId=0;function t8(r,e){if(e==="float32"||e==="complex64")return r;if(e==="int32"||e==="bool"){let t=e==="int32"?new Int32Array(r.length):new Uint8Array(r.length);for(let n=0;n<t.length;++n)t[n]=Math.round(r[n]);return t}else throw new Error(`Unknown dtype ${e}`)}var O_="3.3.0";function P_(){j().set("WEBGL_FORCE_F16_TEXTURES",!0)}hu.isBrowser()&&xu("webgl",()=>new Ju,2);var r8={forceHalfFloat:P_};var Wg=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`;var Xo=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=S.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}};var hl=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;var Ps=class{constructor(e,t,n,o=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=S.assertAndGetBroadcastShape(t,n);let s=this.outputShape.length,a="";if(o)if(s===0||y.sizeFromShape(this.outputShape)===1)a=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(a=`
${Le(s)} coords = getOutputCoords();
`,s===1)a+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let l=jt("coords",s);a+=`
bool nextRowOutOfBounds =
(${l[s-2]} + 1) >= ${this.outputShape[s-2]};
bool nextColOutOfBounds =
(${l[s-1]} + 1) >= ${this.outputShape[s-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${a}
setOutput(result);
}
`}};function Ut(r){let{inputs:e,backend:t}=r,{x:n}=e;return t.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var i2={kernelName:Fn,backendName:"webgl",kernelFunc:Ut};function un(r){let{inputs:e,backend:t}=r,{real:n,imag:o}=e,s=t.makeTensorInfo(n.shape,"complex64"),a=t.texData.get(s.dataId),i=Ut({inputs:{x:n},backend:t}),l=Ut({inputs:{x:o},backend:t});return a.complexTensorInfos={real:i,imag:l},s}var a2={kernelName:Gl,backendName:"webgl",kernelFunc:un};var M_="return (a < 0.) ? b * a : a;",L_=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function n8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{alpha:s}=n,a=t.makeTensorInfo([],"float32",y.createScalarValue(s,"float32")),i=j().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ps(L_,o.shape,a.shape):new Xo(M_,o.shape,a.shape),l=t.runWebGLProgram(i,[o,a],o.dtype);return t.disposeIntermediateTensorInfo(a),l}var l2={kernelName:lo,backendName:"webgl",kernelFunc:n8};var z_="return (a < 0.) ? b * a : a;",B_=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function o8(r){let{inputs:e,backend:t}=r,{x:n,alpha:o}=e,s=j().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ps(B_,n.shape,o.shape):new Xo(z_,n.shape,o.shape);return t.runWebGLProgram(s,[n,o],n.dtype)}var u2={kernelName:ko,backendName:"webgl",kernelFunc:o8};var jg="if (isnan(x)) return x;",c2=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,p2=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function ke({opSnippet:r,packedOpSnippet:e,cpuKernelImpl:t,dtype:n}){return({inputs:o,backend:s})=>{let{x:a}=o,i=s,l=n||a.dtype;if(i.shouldExecuteOnCPU([a])&&t!=null){let p=i.texData.get(a.dataId),m=t(p.values,l);return i.makeTensorInfo(a.shape,l,m)}let u=j().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&e!=null,c;return u?c=new Os(a.shape,e):c=new ln(a.shape,r),i.runWebGLProgram(c,[a],l)}}function ot({opSnippet:r,packedOpSnippet:e,checkOutOfBounds:t=!1,supportsComplex:n=!1,cpuKernelImpl:o,dtype:s}){return({inputs:a,backend:i})=>{let{a:l,b:u}=a,c=i;if(n&&l.dtype==="complex64"){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,x]=[[d.complexTensorInfos.real,h.complexTensorInfos.real],[d.complexTensorInfos.imag,h.complexTensorInfos.imag]].map(b=>{let[k,_]=b,A={dataId:k.dataId,dtype:k.dtype,shape:l.shape},N={dataId:_.dataId,dtype:_.dtype,shape:u.shape},$=new Xo(r,l.shape,u.shape);return c.runWebGLProgram($,[A,N],dr(k.dtype,_.dtype))}),w=un({inputs:{real:g,imag:x},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(x),w}let p=s||dr(l.dtype,u.dtype);if(c.shouldExecuteOnCPU([l,u])&&o!=null){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,x]=o(l.shape,u.shape,d.values,h.values,p),w=c.makeTensorInfo(x,p),b=c.texData.get(w.dataId);return b.values=g,w}let m=j().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&e!=null,f;return m?f=new Ps(e,l.shape,u.shape,t):f=new Xo(r,l.shape,u.shape),c.runWebGLProgram(f,[l,u],p)}}function gl(r,e=!1){if(r==="linear")return e?r2:JE;if(r==="relu")return e?o2:e2;if(r==="elu")return e?n2:QE;if(r==="relu6")return e?s2:t2;if(r==="prelu")return e?B_:z_;if(r==="leakyrelu")return e?L_:M_;throw new Error(`Activation ${r} has not been implemented for the WebGL backend.`)}var Cf=class{constructor(e,t,n,o=!1,s=!1,a=!1,i=null,l=!1,u=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=o?e[1]:e[2],p=Math.ceil(c/2),m=o?"i * 2, rc.y":"rc.y, i * 2",f=s?"rc.z, i * 2":"i * 2, rc.z",d=o?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],h=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],g="",x="";i&&(l?g=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:u?g=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:g=`vec4 activation(vec4 x) {
${i}
}`,x="result = activation(result);");let w=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),l&&this.variableNames.push("preluActivationWeights"),u&&this.variableNames.push("leakyreluAlpha");let b="rc.x",k="rc.x";e[0]<t[0]?b=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(k=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${g}
const float sharedDimension = ${p}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${p}; i++) {
int batchA = ${b};
int batchB = ${k};
vec4 a = getMatrixA(batchA, ${m});
vec4 b = getMatrixB(batchB, ${f});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${d[0]} * ${h[0]});
result += (${d[1]} * ${h[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${w}
${x}
setOutput(result);
}
`}};var V_={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Ug=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=S.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}};var m2="return a * b;";function G_(r){let{inputs:e,backend:t}=r,{a:n,b:o}=e,s=S.upcastType(n.dtype,o.dtype);if(n.dtype==="complex64"){let i=t.texData.get(n.dataId),l=t.texData.get(o.dataId),u=new Ug(V_.REAL,n.shape,o.shape),c=new Ug(V_.IMAG,n.shape,o.shape),p=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:n.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:n.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:o.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:o.shape}],m=t.runWebGLProgram(u,p,"float32"),f=t.runWebGLProgram(c,p,"float32"),d=un({inputs:{real:m,imag:f},backend:t});return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}if(t.shouldExecuteOnCPU([n,o])){let i=t.texData.get(n.dataId),l=t.texData.get(o.dataId),[u,c]=ME(n.shape,o.shape,i.values,l.values,s),p=t.makeTensorInfo(c,s),m=t.texData.get(p.dataId);return m.values=u,p}let a;return j().getBool("WEBGL_PACK_BINARY_OPERATIONS")?a=new Ps(m2,n.shape,o.shape):a=new Xo(m2,n.shape,o.shape),t.runWebGLProgram(a,[n,o],s)}var f2={kernelName:xo,backendName:"webgl",kernelFunc:G_};function d2(r,e,t){let n=[Oa(r.shape),...Pa(r.shape)],o={dtype:r.dtype,shape:n,dataId:r.dataId},s=[Oa(e),...Pa(e)],a=new _f(s,n),i=!0,l=t.runWebGLProgram(a,[o],r.dtype,null,i);return{dataId:l.dataId,shape:e,dtype:l.dtype}}function pe(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{shape:s}=n,a=t,i=y.sizeFromShape(o.shape),l=y.inferFromImplicitShape(s,i),u=y.sizeFromShape(l);y.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${o.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=a.texData.get(o.dataId);return c.isPacked&&!dl(o.shape,l)&&!(c.texture!==null&&dl(c.shape,l))?d2(o,l,a):(a.incRef(o.dataId),{dataId:o.dataId,shape:l,dtype:o.dtype})}var h2={kernelName:ds,backendName:"webgl",kernelFunc:pe};var Hg=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:o,inSize:s,outSize:a}=e;this.outputShape=[o,a];let i=Math.floor(n/4)*4,l=n%4,u="sumValue += dot(values, ones);";if(t!=null){let p=1/t;u=`sumValue += dot(values * ${y.isInt(p)?p.toPrecision(2):p}, ones);`}let c="";s%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${s}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${u}
}
int inIdx = inOffset + ${i};
if (${l===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${u}
} else if (${l===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${u}
} else if (${l===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${u}
}
setOutput(sumValue);
}
`}};var W_=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:o,inSize:s,outSize:a}=e;this.outputShape=[o,a];let i="0.0",l="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",l="min"):t==="max"&&(i="-1.0 / 1e-20",l="max");let u=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?u="sumValue":t==="prod"?u="prodValue":t==="all"?u="allValue":t==="any"&&(u="anyValue");let c=Math.floor(n/4)*4,p=n%4,m=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${l}(values, minMaxValue);
}
`,f="vec4";t==="all"?(i="1.0",m=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,f="bvec4"):t==="any"&&(i="0.0",m=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,f="bvec4");let d="";s%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${m}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
${f} values = ${f}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${m}
} else if (${p===2}) {
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${m}
} else if (${p===3}) {
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${m}
}
setOutput(${u});
}
`}};function s8(r){let e=[];for(;e.length===0||e[e.length-1].outSize!==1;){let t=e.length?e[e.length-1].outSize:r[1],n=S.computeOptimalWindowSize(t);e.push({inSize:t,windowSize:n,outSize:Math.ceil(t/n)})}return e}function Nn(r,e,t,n){let o=s8(r.shape),s=r;for(let a=0;a<o.length;a++){let{inSize:i,windowSize:l,outSize:u}=o[a],c,p;t==="mean"?c=a===0?new Hg({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u},i):new Hg({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u}):c=new W_({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u},t),p=s,s=n.runWebGLProgram(c,[s],e),p.dataId!==r.dataId&&n.disposeIntermediateTensorInfo(p)}return s}var j_=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let o=Le(this.rank),s=i8(t);this.userCode=`
void main() {
${o} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function i8(r){let e=r.length;if(e>6)throw Error(`Transpose for rank ${e} is not yet supported`);let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],n=new Array(e);for(let o=0;o<r.length;o++)n[r[o]]=t[o];return n.join()}var U_=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let o=Le(this.rank),s=E_("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=s[c];let i=`vec2(${a.slice(-2).join()})`,l=`++${s[this.rank-1]} < ${n[this.rank-1]}`,u=`getChannel(getA(${a.join()}), ${i})`;this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${u};
if(${l}) {
result[1] = ${u};
}
--${s[this.rank-1]};
if(++${s[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${u};
if(${l}) {
result[3] = ${u};
}
}
setOutput(result);
}
`}};function xl(r,e,t){let n=j().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new U_(r.shape,e):new j_(r.shape,e);return t.runWebGLProgram(n,[r],r.dtype)}function g2(r,e,t,n){let o=e,s=r.shape.length,a=y.parseAxisParam(o,r.shape),i=a,l=S.getAxesPermutation(i,s),u=l!=null,c=r;u&&(c=xl(r,l,n),i=S.getInnerMostAxes(i.length,s)),S.assertAxesAreInnerMostDims("sum",i,s);let[p,m]=S.computeOutAndReduceShapes(c.shape,i),f=p;t&&(f=S.expandShapeToKeepDim(p,a));let d=y.sizeFromShape(m),g=y.sizeFromShape(r.shape)/d,x=pe({inputs:{x:c},attrs:{shape:[g,d]},backend:n}),w=fu(r.dtype),b=Nn(x,w,"sum",n),k=pe({inputs:{x:b},attrs:{shape:f},backend:n});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),u&&n.disposeIntermediateTensorInfo(c),k}function If(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n;return g2(o,s,a,t)}var x2={kernelName:Do,backendName:"webgl",kernelFunc:If};function Lt(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{perm:s}=n,a=t,i=o.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=o.shape[s[c]];let u;if(a.shouldExecuteOnCPU([o])){let p=a.texData.get(o.dataId).values,m=kp(p,o.shape,o.dtype,s,l);u=a.makeTensorInfo(l,o.dtype);let f=a.texData.get(u.dataId);f.values=m}else u=xl(o,s,a);return u}var y2={kernelName:Po,backendName:"webgl",kernelFunc:Lt};var H_=1e3;function Qu({a:r,b:e,transposeA:t,transposeB:n,backend:o,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:l=null}){let u=r.shape.length,c=e.shape.length,p=t?r.shape[u-2]:r.shape[u-1],m=n?e.shape[c-1]:e.shape[c-2],f=t?r.shape[u-1]:r.shape[u-2],d=n?e.shape[c-2]:e.shape[c-1],h=r.shape.slice(0,-2),g=e.shape.slice(0,-2),x=y.sizeFromShape(h),w=y.sizeFromShape(g),b=x===w||x===1||w===1;y.assert(u>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${h}) and (${g}).`);let _=(x>w?r.shape.slice(0,-2):e.shape.slice(0,-2)).concat([f,d]);y.assert(p===m,()=>`Error in matMul: inner shapes (${p}) and (${m}) of Tensors with shapes ${r.shape} and ${e.shape} and transposeA=${t} and transposeB=${n} must match.`);let A=t?[x,p,f]:[x,f,p],N=n?[w,d,m]:[w,m,d],$=pe({inputs:{x:r},backend:o,attrs:{shape:A}}),F=pe({inputs:{x:e},backend:o,attrs:{shape:N}}),M=[$,F],V=Math.max(x,w),W=t?$.shape[1]:$.shape[2],U=s!=null,H=a!=null,q=l==="leakyrelu",X=l!=null?gl(l,!0):null,ne=U||H||q||X!=null,Y;if((f===1||d===1)&&W>H_&&ne===!1){let J=$,ie=F;t&&(J=Lt({inputs:{x:$},backend:o,attrs:{perm:[0,2,1]}}),M.push(J)),n&&(ie=Lt({inputs:{x:F},backend:o,attrs:{perm:[0,2,1]}}),M.push(ie));let ue=d!==1,ae=d===1,fe=J;ue&&(fe=pe({inputs:{x:J},backend:o,attrs:{shape:[V,W,1]}}),M.push(fe));let de=d===1?2:1,xe=ie;ae&&(xe=pe({inputs:{x:ie},backend:o,attrs:{shape:[V,1,W]}}),M.push(xe));let we=G_({inputs:{a:fe,b:xe},backend:o});Y=If({inputs:{x:we},backend:o,attrs:{axis:de,keepDims:!0}}),M.push(we)}else{let J=dr(r.dtype,e.dtype),ie=new Cf(A,N,[V,f,d],t,n,U,X,H,q),ue=[$,F];if(s!=null&&ue.push(s),H&&ue.push(a),q){let ae=o.makeTensorInfo([],"float32",y.createScalarValue(i,"float32"));ue.push(ae),M.push(ae)}Y=o.runWebGLProgram(ie,ue,J)}let re=pe({inputs:{x:Y},backend:o,attrs:{shape:_}});M.push(Y);for(let J of M)o.disposeIntermediateTensorInfo(J);return re}function a8(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=n;return Qu({a:o,b:s,transposeA:l,transposeB:u,backend:t,bias:a,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var b2={kernelName:ws,backendName:"webgl",kernelFunc:a8};var w2="return abs(x);";function l8(r){let{inputs:e,backend:t}=r,{x:n}=e;if(t.shouldExecuteOnCPU([n])&&n.dtype!=="complex64"){let s=t.texData.get(n.dataId),a=Vg(s.values);return t.makeTensorInfo(n.shape,n.dtype,a)}let o;return j().getBool("WEBGL_PACK_UNARY_OPERATIONS")?o=new Os(n.shape,w2):o=new ln(n.shape,w2),t.runWebGLProgram(o,[n],n.dtype)}var k2={kernelName:as,backendName:"webgl",kernelFunc:l8};var u8=gr+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,c8=ke({opSnippet:u8}),_2={kernelName:qs,backendName:"webgl",kernelFunc:c8};var p8=gr+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,m8=ke({opSnippet:p8}),v2={kernelName:Ks,backendName:"webgl",kernelFunc:m8};var C2="return a + b;",f8=ot({opSnippet:C2,packedOpSnippet:C2,supportsComplex:!0,cpuKernelImpl:_E}),I2={kernelName:wn,backendName:"webgl",kernelFunc:f8};var q_=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`float v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${o};
setOutput(result);
}
`}};var K_=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`vec4 v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${o};
setOutput(result);
}
`}};function qg(r){let{inputs:e,backend:t}=r,n=e;if(n.length===1)return Ut({inputs:{x:n[0]},backend:t});if(n.length>j().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(n.length/2),u=qg({inputs:n.slice(0,l),backend:t}),c=qg({inputs:n.slice(l),backend:t});return qg({inputs:[u,c],backend:t})}let o=n.map(l=>l.dtype).reduce((l,u)=>dr(l,u)),s=n.map(l=>l.shape),i=j().getBool("WEBGL_PACK")?new K_(n[0].shape,s):new q_(n[0].shape,s);return t.runWebGLProgram(i,n,o)}var N2={kernelName:Hn,backendName:"webgl",kernelFunc:qg};function d8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=l,c=S.getAxesPermutation(u,i),p=o;c!=null&&(p=Lt({inputs:{x:o},backend:t,attrs:{perm:c}}),u=S.getInnerMostAxes(u.length,i)),S.assertAxesAreInnerMostDims("all",u,i);let[m,f]=S.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=pe({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=Nn(h,h.dtype,"all",t),x;if(a){let w=S.expandShapeToKeepDim(m,l);x=pe({inputs:{x:g},backend:t,attrs:{shape:w}})}else x=pe({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var S2={kernelName:Ml,backendName:"webgl",kernelFunc:d8};function h8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=l,c=S.getAxesPermutation(u,i),p=o;c!=null&&(p=Lt({inputs:{x:o},backend:t,attrs:{perm:c}}),u=S.getInnerMostAxes(u.length,i)),S.assertAxesAreInnerMostDims("any",u,i);let[m,f]=S.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=pe({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=Nn(h,h.dtype,"any",t),x;if(a){let w=S.expandShapeToKeepDim(m,l);x=pe({inputs:{x:g},backend:t,attrs:{shape:w}})}else x=pe({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var T2={kernelName:Ll,backendName:"webgl",kernelFunc:h8};var X_=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:o,batchSize:s,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[s,a];let i=t==="max"?">":"<",l=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${o};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${o}; i++) {
int inIdx = ${l};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}};var Y_=class{constructor(e,t,n,o){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,y.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let s=e[e.length-1],a=Math.ceil(s/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),o||this.variableNames.push("bestIndicesA");let i=this.outputShape,l=i.length,u=Le(l),c=jt("coords",l),p,m;if(a===1){m=l+1;let $=Le(m);p=`
${$} sourceLocR = ${$}(${c.join()}, 0);
++${c[l-1]};
${$} sourceLocG = ${$}(${c.join()}, 0);
++${c[l-2]};
${$} sourceLocA = ${$}(${c.join()}, 0);
--${c[l-1]};
${$} sourceLocB = ${$}(${c.join()}, 0);
--${c[l-2]};`}else m=l,p=`
${u} sourceLocR = coords;
++${c[l-1]};
${u} sourceLocG = coords;
++${c[l-2]};
${u} sourceLocA = coords;
--${c[l-1]};
${u} sourceLocB = coords;
--${c[l-2]};`;let f=["x","y","z","w","u","v"].slice(0,m),d="."+f[m-1],h=f.map($=>"int "+$),g=jt("sourceLocR",m-1).concat("inIdx.r"),x=jt("sourceLocG",m-1).concat("inIdx.g"),w=jt("sourceLocB",m-1).concat("inIdx.b"),b=jt("sourceLocA",m-1).concat("inIdx.a"),k=n==="max"?"greaterThan":"lessThan",_=o?"":`
inIdx = round(vec4(getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${x.join()}),
getBestIndicesAChannel(${w.join()}),
getBestIndicesAChannel(${b.join()})));`,A=`vec4(
getAChannel(${g.join()}),
hasNextCol ? getAChannel(${x.join()}) : 0.,
hasNextRow ? getAChannel(${w.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${b.join()}) : 0.)`,N=o?"":`
float getBestIndicesAChannel(${h.join()}) {
return getChannel(getBestIndicesA(${f.join()}),
vec2(${f.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${h.join()}) {
return getChannel(getA(${f.join()}),
vec2(${f.slice(-2).join()}));
}
${N}
void main() {
${u} coords = getOutputCoords();
bool hasNextCol = ${c[l-1]} < ${i[l-1]-1};
bool hasNextRow = ${c[l-2]} < ${i[l-2]-1};
${p}
ivec4 srcIdx = ivec4(sourceLocR${d}, sourceLocG${d},
sourceLocB${d}, sourceLocA${d}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${A};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${_}
vec4 candidate = ${A};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${k}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function A2(r,e,t,n=null){let o=e.shape[0],s=e.shape[1];n!=null&&(o=n.shape[0],s=n.shape[1]);let a=S.computeOptimalWindowSize(s),i={windowSize:a,inSize:s,batchSize:o,outSize:Math.ceil(s/a)},l=new X_(i,t,n==null),u=[e];n!=null&&u.push(n);let c=r.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let p=A2(r,e,t,c);return r.disposeIntermediateTensorInfo(c),p}function E2(r,e,t,n=null){let o=n!=null?n.shape:e.shape,s=o[o.length-1],a=S.computeOptimalWindowSize(s),i=new Y_(o,a,t,n==null),l=n==null?[e]:[e,n],u=r.runWebGLProgram(i,l,"int32");if(u.shape.length===e.shape.length){let c=E2(r,e,t,u);return r.disposeIntermediateTensorInfo(u),c}return u}function Kg(r,e,t,n){let o=[t];if(S.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),o,e.shape.length),!j().getBool("WEBGL_PACK_REDUCE")||e.shape.length<=2){let s=[],[a,i]=S.computeOutAndReduceShapes(e.shape,o),l=y.sizeFromShape(i),u=pe({inputs:{x:e},backend:r,attrs:{shape:[-1,l]}});s.push(u);let c=A2(r,u,n);s.push(c);let p=pe({inputs:{x:c},backend:r,attrs:{shape:a}});return s.forEach(m=>r.disposeIntermediateTensorInfo(m)),p}return E2(r,e,n)}function g8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s}=n,a=y.parseAxisParam(s,o.shape),i=S.getAxesPermutation(a,o.shape.length),l=o,u=[];i!=null&&(l=Lt({inputs:{x:o},backend:t,attrs:{perm:i}}),u.push(l),a=S.getInnerMostAxes(a.length,l.shape.length)),S.assertAxesAreInnerMostDims("argMax",[a[0]],l.shape.length);let c=Kg(t,l,a[0],"max");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var D2={kernelName:qn,backendName:"webgl",kernelFunc:g8};function x8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s}=n,a=y.parseAxisParam(s,o.shape),i=S.getAxesPermutation(a,o.shape.length),l=o,u=[];i!=null&&(l=Lt({inputs:{x:o},backend:t,attrs:{perm:i}}),u.push(l),a=S.getInnerMostAxes(a.length,l.shape.length)),S.assertAxesAreInnerMostDims("argMin",[a[0]],l.shape.length);let c=Kg(t,l,a[0],"min");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var $2={kernelName:ea,backendName:"webgl",kernelFunc:x8};var y8=gr+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,b8=ke({opSnippet:y8}),R2={kernelName:Xs,backendName:"webgl",kernelFunc:b8};var w8=gr+"return log(x + sqrt(x * x + 1.0));",k8=ke({opSnippet:w8}),F2={kernelName:Ys,backendName:"webgl",kernelFunc:k8};var _8=gr+`
return atan(x);
`,v8=ke({opSnippet:_8}),O2={kernelName:Zs,backendName:"webgl",kernelFunc:v8};var C8=c2+`
return atan(a, b);
`,I8=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+p2+`
return result;
`,N8=ot({opSnippet:C8,packedOpSnippet:I8}),P2={kernelName:Qs,backendName:"webgl",kernelFunc:N8};var S8=gr+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,T8=ke({opSnippet:S8}),M2={kernelName:Js,backendName:"webgl",kernelFunc:T8};var Vi=class{constructor(e,t,n,o=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.top,d=e.padInfo.left;this.outputShape=e.outShape;let h=t==="avg",g=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,x=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,w="0.0";if(h||(w="-1.0 / 1e-20"),n){let $=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${l});
const ivec2 pads = ivec2(${f}, ${d});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${p};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${$} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${o?s?g:x:`wR * ${m} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let b="max",k=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(k="avgValue / count");let _=Math.floor(a/4)*4,A=a%4,N=`
if (${h}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${b}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${l});
const ivec2 pads = ivec2(${f}, ${d});
const float initializationValue = ${w};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${w});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${p};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${_}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${N}
}
int xC = xCCorner + ${_};
if (${A===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${N}
} else if (${A===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${N}
} else if (${A===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${N}
}
}
setOutput(${k});
}
`}},ec=class{constructor(e,t,n,o=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideDepth,l=e.strideHeight,u=e.strideWidth,c=e.dilationDepth,p=e.dilationHeight,m=e.dilationWidth,f=e.effectiveFilterDepth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,g=e.padInfo.front,x=e.padInfo.top,w=e.padInfo.left;this.outputShape=e.outShape;let b=t==="avg",k="0.0";if(b||(k="-1.0 / 1e-20"),n){let M=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${l}, ${u});
const ivec3 pads = ivec3(${g}, ${x}, ${w});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${f};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${h};
wC += ${m}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${M} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${o?s?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${d} * ${h} +
wR * ${h} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let _="max",A=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(A="avgValue / count");let N=Math.floor(a/4)*4,$=a%4,F=`
if (${b}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${_}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${l}, ${u});
const ivec3 pads = ivec3(${g}, ${x}, ${w});
const float initializationValue = ${k};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${k});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${f};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${N}; wC += 4) {
int xC = xCCorner + wC * ${m};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
getValue(batch, xD, xR, xC + 3 * ${m}, ch)
);
${F}
}
int xC = xCCorner + ${N};
if (${$===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${F}
} else if (${$===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
initializationValue,
initializationValue
);
${F}
} else if (${$===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
initializationValue
);
${F}
}
}
setOutput(${A});
}
}
`}};function A8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e;Rs(o,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=n,u=1;y.assert(S.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=S.computePool2DInfo(o.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return Ut({inputs:{x:o},backend:t});let p=new Vi(c,"avg",!1);return t.runWebGLProgram(p,[o],"float32")}var L2={kernelName:Kn,backendName:"webgl",kernelFunc:A8};function E8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=n,c=[1,1,1],p=S.computePool3DInfo(o.shape,s,a,c,i,l,u),m=new ec(p,"avg",!1);return t.runWebGLProgram(m,[o],"float32")}var z2={kernelName:ta,backendName:"webgl",kernelFunc:E8};var Z_=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,o=e.strideHeight,s=e.strideWidth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=l-1-e.padInfo.top,p=u-1-e.padInfo.left,m=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${c}, ${p});
const float avgMultiplier = float(${m});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${l};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},J_=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,o=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterDepth,m=e.effectiveFilterHeight,f=e.effectiveFilterWidth,d=p-1-e.padInfo.front,h=m-1-e.padInfo.top,g=f-1-e.padInfo.left,x=1/(t*n*o);this.userCode=`
const ivec3 pads = ivec3(${d}, ${h}, ${g});
const float avgMultiplier = float(${x});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${p};
wD += ${l}) {
float dyD = float(dyDCorner + wD) / ${s}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${m};
wR += ${u}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${f};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function D8(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=n,p=[1,1,1],m=S.computePool3DInfo(a.shape,i,l,p,u,c),f=new J_(m);return t.runWebGLProgram(f,[o],a.dtype)}var B2={kernelName:Bl,backendName:"webgl",kernelFunc:D8};function $8(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,a=s;Rs([o,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=n,c=S.computePool2DInfo(a.shape,i,l,1,u),p=new Z_(c);return t.runWebGLProgram(p,[o],a.dtype)}var V2={kernelName:zl,backendName:"webgl",kernelFunc:$8};function R8(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s}=e,{transposeA:a,transposeB:i}=n;return Qu({a:o,b:s,transposeA:a,transposeB:i,backend:t})}var G2={kernelName:Xn,backendName:"webgl",kernelFunc:R8};var Q_=class{constructor(e,t,n,o,s,a){this.outputShape=[],this.variableNames=["x","mean","variance"],S.assertAndGetBroadcastShape(e,t),S.assertAndGetBroadcastShape(e,n);let i="0.0";o!=null&&(S.assertAndGetBroadcastShape(e,o),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="1.0";s!=null&&(S.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${l};
float inv = scale * inversesqrt(variance + float(${a}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}};var ev=class{constructor(e,t,n,o,s,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],S.assertAndGetBroadcastShape(e,t),S.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";o!=null&&(S.assertAndGetBroadcastShape(e,o),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="vec4(1.0)";s!=null&&(S.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${l};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
setOutput((x - mean) * inv + offset);
}
`}};var F8=({inputs:r,backend:e,attrs:t})=>{let{x:n,mean:o,variance:s,offset:a,scale:i}=r;y.assert(o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(a==null||o.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=t;l==null&&(l=.001);let u=[n,o,s],c=null;a!=null&&(c=a.shape,u.push(a));let p=null;i!=null&&(p=i.shape,u.push(i));let m=j().getBool("WEBGL_PACK_NORMALIZATION")?new ev(n.shape,o.shape,s.shape,c,p,l):new Q_(n.shape,o.shape,s.shape,c,p,l);return e.runWebGLProgram(m,u,u[0].dtype)},W2={kernelName:io,backendName:"webgl",kernelFunc:F8};var tv=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=Le(this.rank),n=`uniform int start[${this.rank}];`,o=O8(this.rank),s,a=e.map((i,l)=>`sourceLoc.${rv[l]} = start[${l}] + coords.${rv[l]};`);s=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${a.join(`
`)}
`,this.userCode=`
${n}
void main() {
${s}
setOutput(getSource(${o}));
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},rv=["x","y","z","w","u","v"];function O8(r){if(r===1)return"sourceLoc";if(r<=6)return rv.slice(0,r).map(e=>"sourceLoc."+e).join(",");throw Error(`Slicing for rank ${r} is not yet supported`)}var nv=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=Le(this.rank),n=jt("coords",this.rank),o=jt("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${o.slice(-2).join()})`,a=`getChannel(getSource(${o.join()}), ${s})`,i=`
result.x = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${o[this.rank-1]};
result.y = ${a};
--${o[this.rank-1]};
}
`,l=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${o[this.rank-2]};
result.z = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${o[this.rank-1]};
result.w = ${a};
}
}
`,u=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((c,p)=>`start[${p}]`).join()});`:e.map((c,p)=>`${o[p]} = ${n[p]} + start[${p}];`).join(`
`);this.userCode=`
uniform int start[${this.rank}];
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${u}
vec4 result = vec4(0.);
${i}
${l}
setOutput(result);
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function P8(r,e,t,n){let o=n.texData.get(r.dataId),s=n.makeTensorInfo(t,r.dtype),a=n.texData.get(s.dataId);Object.assign(a,o),a.refCount=1,a.shape=t,a.dtype=r.dtype;let i=sr.computeFlatOffset(e,y.computeStrides(r.shape));o.slice&&(i+=o.slice.flatOffset),a.slice={flatOffset:i,origDataId:o.slice&&o.slice.origDataId||r.dataId};let l=n.dataRefCount.get(a.slice.origDataId)||1;return n.dataRefCount.set(a.slice.origDataId,l+1),s}function Ma(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{begin:s,size:a}=n,[i,l]=sr.parseSliceParams(o,s,a);if(sr.assertParamsValid(o,i,l),y.sizeFromShape(l)===0)return t.makeTensorInfo(l,o.dtype,[]);if(t.shouldExecuteOnCPU([o])||o.dtype==="string"){let p=t.texData.get(o.dataId),m=GE(p.values,i,l,o.shape,o.dtype);return t.makeTensorInfo(l,o.dtype,m)}let{isPacked:u}=t.texData.get(o.dataId),c=sr.isSliceContinous(o.shape,i,l);if(u||!c){let p=j().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new nv(l):new tv(l),m=p.getCustomSetupFunc(i);return t.runWebGLProgram(p,[o],o.dtype,m)}return t.uploadToGPU(o.dataId),P8(o,i,l,t)}var j2={kernelName:gs,backendName:"webgl",kernelFunc:Ma};var M8=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockShape:s,crops:a}=n;y.assert(o.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((w,b)=>w*b),l=S.getReshaped(o.shape,s,i),u=S.getPermuted(l.length,s.length),c=S.getReshapedPermuted(o.shape,s,i),p=S.getSliceBeginCoords(a,s.length),m=S.getSliceSize(c,a,s.length),f=[],d=pe({inputs:{x:o},backend:t,attrs:{shape:l}}),h=Lt({inputs:{x:d},backend:t,attrs:{perm:u}}),g=pe({inputs:{x:h},backend:t,attrs:{shape:c}}),x=Ma({inputs:{x:g},backend:t,attrs:{begin:p,size:m}});return f.push(d),f.push(h),f.push(g),f.forEach(w=>t.disposeIntermediateTensorInfo(w)),x},U2={kernelName:ra,backendName:"webgl",kernelFunc:M8};function L8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,weights:s}=e,{size:a}=n,i=t.readSync(o.dataId),l=t.readSync(s.dataId),u=Bg(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var H2={kernelName:Vl,backendName:"webgl",kernelFunc:L8};var z8="return float(a != b);",ov=ot({opSnippet:z8,dtype:"bool"}),q2={kernelName:yi,backendName:"webgl",kernelFunc:ov};function La(r){let{inputs:e,backend:t}=r,{input:n}=e,o=t.texData.get(n.dataId);return Ut({inputs:{x:o.complexTensorInfos.real},backend:t})}var K2={kernelName:iu,backendName:"webgl",kernelFunc:La};var B8="return float(int(x));";function X2(r,e){let t=new ln(r.shape,B8),n=e.runWebGLProgram(t,[r],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function sv(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dtype:s}=n;if(s==="complex64"){if(o.dtype==="complex64")return Ut({inputs:{x:o},backend:t});let a=gt(o.shape),i=sv({inputs:{x:o},backend:t,attrs:{dtype:"float32"}}),l=un({inputs:{real:i,imag:a},backend:t});return a.dispose(),t.disposeIntermediateTensorInfo(i),l}if(o.dtype==="complex64"){let a=La({inputs:{input:o},backend:t}),i=sv({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!y.hasEncodingLoss(o.dtype,s)){let a=Ut({inputs:{x:o},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32")return X2(o,t);if(s==="bool"){let a=t.makeTensorInfo([],"bool",y.getTypedArrayFromDType("bool",1)),l=ov({inputs:{a:o,b:a},backend:t});return t.disposeIntermediateTensorInfo(a),l}throw new Error(`Error in Cast: failed to cast ${o.dtype} to ${s}`)}var Y2={kernelName:$n,backendName:"webgl",kernelFunc:sv};var Z2="return ceil(x);",V8=ke({opSnippet:Z2,packedOpSnippet:Z2,cpuKernelImpl:CE}),J2={kernelName:Yn,backendName:"webgl",kernelFunc:V8};var iv=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}getCustomSetupFunc(e,t){return(n,o)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(o,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(o,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};var av=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}getCustomSetupFunc(e,t){return(n,o)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(o,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(o,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function G8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{clipValueMin:s,clipValueMax:a}=n,i;j().getBool("WEBGL_PACK_CLIP")?i=new av(o.shape):i=new iv(o.shape);let l=i.getCustomSetupFunc(s,a);return t.runWebGLProgram(i,[o],o.dtype,l)}var Q2={kernelName:Rn,backendName:"webgl",kernelFunc:G8};var lv=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function eD(r,e){return{dataId:e.dataId,dtype:e.dtype,shape:r.shape}}function W8(r){let{inputs:e,backend:t}=r,{x:n}=e,o=t.texData.get(n.dataId),s=new lv(n.shape),a=[eD(n,o.complexTensorInfos.real),eD(n,o.complexTensorInfos.imag)];return t.runWebGLProgram(s,a,a[0].dtype)}var tD={kernelName:na,backendName:"webgl",kernelFunc:W8};var uv=class{constructor(e){this.outputShape=[],this.outputShape=S.computeOutShape(e,1),this.variableNames=e.map((a,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let i=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${i}));`)}let o=t.length,s=t[t.length-1];n.push(`else setOutput(getT${o}(yR, yC-${s}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}};var cv=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=S.computeOutShape(e,t);let n=this.outputShape,o=n.length,s=Le(o),a=jt("coords",o),i=["x","y","z","w","u","v"].slice(0,o);this.variableNames=e.map((h,g)=>`T${g}`);let l=new Array(e.length-1);l[0]=e[0][t];for(let h=1;h<l.length;h++)l[h]=l[h-1]+e[h][t];let u=i[t],c=i.slice(-2),p=i.join(),m=`if (${u} < ${l[0]}) {
return getChannel(
getT0(${p}), vec2(${c.join()}));
}`;for(let h=1;h<l.length;h++){let g=l[h-1];m+=`
if (${u} < ${l[h]} && ${u} >= ${l[h-1]}) {
return getChannel(
getT${h}(${Xg(i,u,g)}),
vec2(${Xg(c,u,g)}));
}`}let f=l.length,d=l[l.length-1];m+=`
return getChannel(
getT${f}(${Xg(i,u,d)}),
vec2(${Xg(c,u,d)}));`,this.userCode=`
float getValue(${i.map(h=>"int "+h)}) {
${m}
}
void main() {
${s} coords = getOutputCoords();
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
${a[o-1]} = ${a[o-1]} + 1;
if (${a[o-1]} < ${n[o-1]}) {
result.g = getValue(${a});
}
${a[o-2]} = ${a[o-2]} + 1;
if (${a[o-2]} < ${n[o-2]}) {
result.a = getValue(${a});
}
${a[o-1]} = ${a[o-1]} - 1;
if (${a[o-2]} < ${n[o-2]} &&
${a[o-1]} < ${n[o-1]}) {
result.b = getValue(${a});
}
setOutput(result);
}
`}};function Xg(r,e,t){let n=r.indexOf(e);return r.map((s,a)=>a===n?`${s} - ${t}`:s).join()}function tc(r){let{inputs:e,backend:t}=r,{input:n}=e,o=t.texData.get(n.dataId);return Ut({inputs:{x:o.complexTensorInfos.imag},backend:t})}var rD={kernelName:Ql,backendName:"webgl",kernelFunc:tc};function rc(r,e,t){let n=r[0].dtype;if(n==="complex64"){let u=r.map(d=>La({inputs:{input:d},backend:t})),c=r.map(d=>tc({inputs:{input:d},backend:t})),p=rc(u,e,t),m=rc(c,e,t),f=un({inputs:{real:p,imag:m},backend:t});return u.forEach(d=>t.disposeIntermediateTensorInfo(d)),c.forEach(d=>t.disposeIntermediateTensorInfo(d)),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),f}if(n==="string"){let{tensors2D:u,outShape:c}=nD(r,e,t),p=u.map(g=>({vals:t.readSync(g.dataId),shape:g.shape})),m=u[0].shape[0]===1,f=IE(p,c,n,m),d=S.computeOutShape(r.map(g=>g.shape),e),h=t.makeTensorInfo(d,n,f);return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),h}if(r.length>j().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(r.length/2),c=rc(r.slice(0,u),e,t),p=rc(r.slice(u),e,t),m=rc([c,p],e,t);return t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),m}if(j().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&r[0].shape.length>1){let u=new cv(r.map(c=>c.shape),e);return t.runWebGLProgram(u,r,n)}let{tensors2D:o,outShape:s}=nD(r,e,t),a=new uv(o.map(u=>u.shape)),i=t.runWebGLProgram(a,o,n);o.forEach(u=>t.disposeIntermediateTensorInfo(u));let l=pe({inputs:{x:i},attrs:{shape:s},backend:t});return t.disposeIntermediateTensorInfo(i),l}function nD(r,e,t){let n=S.computeOutShape(r.map(s=>s.shape),e);return{tensors2D:r.map(s=>pe({inputs:{x:s},attrs:{shape:[-1,y.sizeFromShape(s.shape.slice(e))]},backend:t})),outShape:n}}function pv(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n,s=y.parseAxisParam(o,e[0].shape)[0],a=S.computeOutShape(e.map(u=>u.shape),s);if(y.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(u=>y.sizeFromShape(u.shape)>0);if(i.length===1)return Ut({inputs:{x:i[0]},backend:t});let l=i.map(u=>u.shape);return S.assertParamsConsistent(l,s),rc(i,s,t)}var oD={kernelName:ls,backendName:"webgl",kernelFunc:pv};var Nf=class{constructor(e,t=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,i=e.padInfo.left,l=e.strideHeight,u=e.strideWidth,c=e.dilationHeight,p=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4,g=e.dataFormat==="channelsLast",x=g?1:2,w=g?2:3,b=g?3:1,k="",_="";n&&(o?k=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?k=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:k=`
float activation(float x) {
${n}
}
`,_="result = activation(result);");let A=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${k}
const ivec2 strides = ivec2(${l}, ${u});
const ivec2 pads = ivec2(${a}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${b}];
ivec2 xRCCorner =
ivec2(coords[${x}], coords[${w}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${p};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${d}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${g}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${h===1}) {
if (${g}) {
dotProd +=
getX(batch, xR, xC, ${d}) *
getW(wR, wC, ${d}, d2);
} else {
dotProd +=
getX(batch, ${d}, xR, xC) *
getW(wR, wC, ${d}, d2);
}
} else if (${h===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${d}, d2),
getW(wR, wC, ${d} + 1, d2)
);
if (${g}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${d}),
getX(batch, xR, xC, ${d} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${d}, xR, xC),
getX(batch, ${d} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${h===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${d}, d2),
getW(wR, wC, ${d} + 1, d2),
getW(wR, wC, ${d} + 2, d2)
);
if (${g}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${d}),
getX(batch, xR, xC, ${d} + 1),
getX(batch, xR, xC, ${d} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${d}, xR, xC),
getX(batch, ${d} + 1, xR, xC),
getX(batch, ${d} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${A}
${_}
setOutput(result);
}
`}},mv=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,o=e.padInfo.left,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.filterDepth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${s}, ${a}, ${i});
const ivec3 pads = ivec3(${t}, ${n}, ${o});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${p}; wF++) {
int xF = xFCorner + wF * ${l};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${d}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${h===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${d}) *
getW(wF, wR, wC, ${d}, d2);
} else if (${h===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${h===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1),
getX(batch, xF, xR, xC, ${d} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2),
getW(wF, wR, wC, ${d} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}};var fv=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:o,inChannels:s,strideWidth:a,strideHeight:i,padInfo:l,outWidth:u,dilationWidth:c,dilationHeight:p,dataFormat:m}=n,{left:f,top:d}=l,h=s*o,g=Ft(),x=m==="channelsLast",w=x?0:1,b=x?1:2,k="";for(let _=0;_<=1;_++)for(let A=0;A<=1;A++)k+=`
blockIndex = rc.y + ${A};
pos = rc.x + ${_};
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
offsetY = int(blockIndex / (${u})) * ${i} - ${d};
d0 = offsetY + ${p} * (pos / ${h});
if(d0 < ${t[w]} && d0 >= 0) {
offsetX = int(mod(float(blockIndex), ${u}.) * ${a}. - ${f}.);
d1 = offsetX + ${c} * (int(mod(float(pos), ${h}.) / ${s}.));
if(d1 < ${t[b]} && d1 >= 0) {
ch = int(mod(float(pos), ${s}.));
if (${x}) {
innerDims = vec2(d1, ch);
result[${_*2+A}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${_*2+A}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${k}
${g.output} = result;
}
`}};function Yg({x:r,filter:e,convInfo:t,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let l=r.shape,u=n.texData.get(r.dataId),c=t.inChannels,p=l[0]*l[1]*l[2],m=t.outChannels,f=t.dataFormat==="channelsLast",d=!1,h=!1,g,x=[],w=(p===1||m===1)&&c>H_,b=l[2]%2!=0&&!!u.isPacked;if(w||!j().getBool("WEBGL_LAZILY_UNPACK")||!j().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!b){let k=f?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],_=pe({inputs:{x:r},backend:n,attrs:{shape:[1,k,t.inChannels]}}),A=pe({inputs:{x:e},backend:n,attrs:{shape:[1,t.inChannels,t.outChannels]}}),N=Qu({a:_,b:A,transposeA:d,transposeB:h,backend:n,bias:o,activation:i,preluActivationWeights:s,leakyreluAlpha:a});g=pe({inputs:{x:N},backend:n,attrs:{shape:t.outShape}}),x.push(_),x.push(A),x.push(N)}else{let k=f?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),_={dataId:r.dataId,shape:[1,k,t.inChannels],dtype:r.dtype},A=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,y.assert(dl(u.shape,_.shape),()=>`packed reshape ${u.shape} to ${_.shape} isn't free`);let N=pe({inputs:{x:e},backend:n,attrs:{shape:[1,t.inChannels,t.outChannels]}});x.push(N);let $=Qu({a:_,b:N,backend:n,transposeA:d,transposeB:h,bias:o,activation:i,preluActivationWeights:s,leakyreluAlpha:a}),F=n.texData.get($.dataId);y.assert(F.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=A,F.shape=t.outShape,g=Ut({inputs:{x:$},backend:n}),g.shape=t.outShape,x.push($)}for(let k of x)n.disposeIntermediateTensorInfo(k);return g}function Zg({x:r,filter:e,convInfo:t,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:p,outHeight:m,dataFormat:f}=t,d=f==="channelsLast",h=l*u*c,g=m*p,x=[h,g],w=!0,b=!1,k=[],_=pe({inputs:{x:r},backend:n,attrs:{shape:r.shape.slice(1)}}),A=pe({inputs:{x:e},backend:n,attrs:{shape:[1,h,y.sizeFromShape(e.shape)/h]}});k.push(_),k.push(A);let N=new fv(x,_.shape,t),$=n.runWebGLProgram(N,[_],"float32"),F=pe({inputs:{x:$},backend:n,attrs:{shape:[1,x[0],x[1]]}});k.push($),k.push(F);let M=o!=null,V=s!=null,W=i==="leakyrelu",U=i?gl(i,!0):null,H=new Cf(F.shape,A.shape,[1,g,t.outChannels],w,b,M,U,V,W),q=[F,A];if(o&&q.push(o),V&&q.push(s),W){let re=n.makeTensorInfo([],"float32",y.createScalarValue(a,"float32"));q.push(re),k.push(re)}let X=n.runWebGLProgram(H,q,"float32"),ne=d?[1,m,p,t.outChannels]:[1,t.outChannels,m,p],Y=pe({inputs:{x:X},backend:n,attrs:{shape:ne}});k.push(X);for(let re of k)n.disposeIntermediateTensorInfo(re);return Y}function j8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=n,p=S.convertConv2DDataFormat(l),m=S.computeConv2DInfo(o.shape,s.shape,a,u,i,c,!1,p),f;if(m.filterHeight===1&&m.filterWidth===1&&m.dilationHeight===1&&m.dilationWidth===1&&m.strideHeight===1&&m.strideWidth===1&&(m.padInfo.type==="SAME"||m.padInfo.type==="VALID"))f=Yg({x:o,filter:s,convInfo:m,backend:t});else if(j().getBool("WEBGL_CONV_IM2COL")&&o.shape[0]===1)f=Zg({x:o,filter:s,convInfo:m,backend:t});else{let h=new Nf(m);f=t.runWebGLProgram(h,[o,s],"float32")}let d=pe({inputs:{x:f},backend:t,attrs:{shape:m.outShape}});return t.disposeIntermediateTensorInfo(f),d}var sD={kernelName:Zn,backendName:"webgl",kernelFunc:j8};var dv=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,o=e.padInfo.top,s=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${o};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${s};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${a}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},hv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,o=e.strideHeight,s=e.strideWidth,a=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,l=n-1-e.padInfo.left,u=a?1:2,c=a?2:3,p=a?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${p}];
ivec2 dyCorner = ivec2(coords[${u}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${a}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},gv=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,o=e.strideWidth,s=e.padInfo.front,a=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${s};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${o} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},xv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,o=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=t-1-e.padInfo.front,u=n-1-e.padInfo.top,c=o-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${l}, ${u}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${s}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${o}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${o} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function U8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=n,p=S.convertConv2DDataFormat(l),m=S.computeConv2DInfo(o.shape,c,a,1,i,u,!1,p),f=new dv(m);return t.runWebGLProgram(f,[o,s],"float32")}var iD={kernelName:Wl,backendName:"webgl",kernelFunc:U8};function H8(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{inputShape:a,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=n,p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(a,s.shape,i,1,l,c,!1,p),f=new hv(m);return t.runWebGLProgram(f,[o,s],"float32")}var aD={kernelName:Jn,backendName:"webgl",kernelFunc:H8};function q8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l}=n,u=S.computeConv3DInfo(o.shape,s.shape,a,l,i),c=new mv(u);return t.runWebGLProgram(c,[o,s],"float32")}var lD={kernelName:oa,backendName:"webgl",kernelFunc:q8};function K8(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,pad:i,filterShape:l}=n,u=S.computeConv3DInfo(o.shape,l,a,1,i),c=new gv(u);return t.runWebGLProgram(c,[o,s],"float32")}var uD={kernelName:jl,backendName:"webgl",kernelFunc:K8};function X8(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{pad:a,strides:i,inputShape:l}=n,u=S.computeConv3DInfo(l,s.shape,i,1,a),c=new xv(u);return t.runWebGLProgram(c,[o,s],"float32")}var cD={kernelName:Ul,backendName:"webgl",kernelFunc:X8};var Y8=jg+`
return cos(x);
`,Z8=ke({opSnippet:Y8}),pD={kernelName:Qn,backendName:"webgl",kernelFunc:Z8};var J8=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,Q8=ke({opSnippet:J8}),mD={kernelName:ei,backendName:"webgl",kernelFunc:Q8};var yv=class{constructor(e,t,n,o,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,i,l,u]=e,[c]=t,[p,m]=n;this.outputShape=[c,p,m,u];let f=o==="bilinear"?1:0,[d,h]=[`${i-1}.0`,`${l-1}.0`],[g,x,w]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${d} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${d}`],[b,k,_]=m>1?[`${(l-1)/(m-1)}`,"(x2-x1) * width_ratio",`x1*${h} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${h}`];this.userCode=`
const float height_ratio = float(${g});
const float width_ratio = float(${b});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${a}) {
return;
}
float height_scale = ${x};
float width_scale = ${k};
float in_y = ${w};
if( in_y < 0.0 || in_y > ${d} ) {
setOutput(float(${s}));
return;
}
float in_x = ${_};
if( in_x < 0.0 || in_x > ${h} ) {
setOutput(float(${s}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${f} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}};var eX=r=>{let{inputs:e,backend:t,attrs:n}=r,{image:o,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=n,c=new yv(o.shape,s.shape,i,l,u);return t.runWebGLProgram(c,[o,s,a],"float32")},fD={kernelName:ti,backendName:"webgl",kernelFunc:eX};var Jg=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let o=e.length,s=t?"0.0":`getX(${dD(o,"coords")})`,a=e[e.length-1],i="",l="";t?(i=n?`end != ${a-1}`:"end != 0",l=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${a}`:"end >= pow2",l=n?"end + pow2":"end - pow2"),this.userCode=`
uniform float index;
void main() {
${Le(o)} coords = getOutputCoords();
int end = ${hD(o,"coords")};
float val = ${s};
int pow2 = int(pow(2.0, index));
if (${i}) {
int idx = ${l};
${hD(o,"coords")} = idx;
val += getX(${dD(o,"coords")});
}
setOutput(val);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function dD(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.x, ${e}.y`;if(r===3)return`${e}.x, ${e}.y, ${e}.z`;if(r===4)return`${e}.x, ${e}.y, ${e}.z, ${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function hD(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.y`;if(r===3)return`${e}.z`;if(r===4)return`${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function tX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,exclusive:a,reverse:i}=n,l=o.shape.length,u=S.getAxesPermutation([s],l),c=o;u!=null&&(c=Lt({inputs:{x:o},backend:t,attrs:{perm:u}}));let p=S.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${o.shape.length-1} but got axis=${s}`);let m=c.shape[p],f=Ut({inputs:{x:c},backend:t});for(let d=0;d<=Math.ceil(Math.log2(m))-1;d++){let h=new Jg(c.shape,!1,i),g=h.getCustomSetupFunc(d),x=f;f=t.runWebGLProgram(h,[f],f.dtype,g),t.disposeIntermediateTensorInfo(x)}if(a){let d=new Jg(c.shape,a,i),h=f;f=t.runWebGLProgram(d,[f],f.dtype),t.disposeIntermediateTensorInfo(h)}if(u!=null){let d=S.getUndoAxesPermutation(u),h=Lt({inputs:{x:f},backend:t,attrs:{perm:d}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(c),h}return f}var gD={kernelName:eo,backendName:"webgl",kernelFunc:tX};function rX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,weights:s}=e,{size:a,binaryOutput:i}=n;if(o.shape.length===1){let l=t.readSync(o.dataId),u=t.readSync(s.dataId),c=Bg(l,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(o.shape.length===2){let l=t.bufferSync(o),u=t.bufferSync(s),c=vE(l,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var xD={kernelName:Hl,backendName:"webgl",kernelFunc:rX};var bv=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function nX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockSize:s,dataFormat:a}=n;y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=o.shape[0],l=a==="NHWC"?o.shape[1]:o.shape[2],u=a==="NHWC"?o.shape[2]:o.shape[3],c=a==="NHWC"?o.shape[3]:o.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=new bv(d,s,a);return t.runWebGLProgram(h,[o],o.dtype)}var yD={kernelName:ri,backendName:"webgl",kernelFunc:nX};var Sf=class{constructor(e,t=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,p=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,g=e.outChannels/e.inChannels,x="",w="";n&&(o?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:x=`
float activation(float x) {
${n}
}
`,w="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${c}, ${p});
const ivec2 pads = ivec2(${l}, ${u});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${g};
int q = d2 - d1 * ${g};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${m};
if (xR < 0 || xR >= ${a}) {
continue;
}
for (int wC = 0; wC < ${h}; wC++) {
int xC = xCCorner + wC * ${f};
if (xC < 0 || xC >= ${i}) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${b}
${w}
setOutput(result);
}
`}};var Tf=class{constructor(e,t=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let a=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,p=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,g=h,x="int xR; int xC; int xCOffset;";for(let _=0;_<d;_++)for(let A=0;A<h;A++)x+=`
vec4 xTexelR${_}C${A*2} = vec4(0.);
vec4 wR${_}C${A} = vec4(0.);
vec4 xR${_}C${A} = vec4(0.);`;for(let _=0;_<d;_++)for(let A=0;A<g;A++){let N=A*2;if(x+=`
xR = xRCorner + ${_*m};
xC = xCCorner + ${N*f};
`,p===1){if(N<h&&(u%2==1?x+=`
xCOffset = xC + 1;
if(xR >= 0 && xR < ${a} && xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${_}C${N} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
xTexelR${_}C${N}.zw = vec2(0.);
}
} else {
xTexelR${_}C${N} = vec4(0.);
}
xCOffset = xC + 1 - 2;
if(xR >= 0 && xR < ${a} && xCOffset >= 0 && xCOffset < ${i}) {
vec4 previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
previous.zw = vec2(0.);
}
xR${_}C${N} = vec4(previous.zw, xTexelR${_}C${N}.xy);
} else {
xR${_}C${N} = vec4(0, 0, xTexelR${_}C${N}.xy);
}
`:x+=`
if(xR >= 0 && xR < ${a} && xC >= 0 && xC < ${i}) {
xTexelR${_}C${N} = getX(batch, xR, xC, d1);
} else {
xTexelR${_}C${N} = vec4(0.);
}
xR${_}C${N} = xTexelR${_}C${N};
`,N+1<h)){let $=u%2==0?y.nearestLargerEven(f):f;f%2==0&&u%2==1||f%2!=0&&u%2!=1?(x+=`
xCOffset = xC + ${u%2} + ${$};
if(xR >= 0 && xR < ${a} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${_}C${N+2} = getX(batch, xR, xCOffset, d1);
}
`,f>1&&(x+=`
xCOffset -= 2;
if(xR >= 0 && xR < ${a} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${_}C${N} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${_}C${N} = vec4(0.);
}
`),x+=`
xR${_}C${N+1} = vec4(
xTexelR${_}C${N}.zw, xTexelR${_}C${N+2}.xy);
`):x+=`
xCOffset = xC + ${$};
if(xR >= 0 && xR < ${a} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${_}C${N+2} = getX(batch, xR, xCOffset, d1);
}
xR${_}C${N+1} = xTexelR${_}C${N+2};
`}}else N<h&&(x+=`
if(xR >= 0 && xR < ${a}) {
`,u%2==1?(x+=`
xCOffset = xC + 1 - ${p};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${_}C${N} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${_}C${N} = vec4(0.);
}
if(xC + 1 >= 0 && xC + 1 < ${i}) {
xTexelR${_}C${N+2} = getX(batch, xR, xC + 1, d1);
} else {
xTexelR${_}C${N+2} = vec4(0.);
}
xR${_}C${N} = vec4(
xTexelR${_}C${N}.zw, xTexelR${_}C${N+2}.zw);
`,N+1<h&&(x+=`
vec4 final = vec4(0.);
xCOffset = xC + 1 + ${p};
if(xCOffset >= 0 && xCOffset < ${i}) {
final = getX(batch, xR, xCOffset, d1);
}
xR${_}C${N+1} = vec4(xTexelR${_}C${N+2}.xy, final.xy);
`)):(x+=`
if(xC >= 0 && xC < ${i}) {
xTexelR${_}C${N} = getX(batch, xR, xC, d1);
} else {
xTexelR${_}C${N} = vec4(0.);
}
xCOffset = xC + ${p};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${_}C${N+2} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${_}C${N+2} = vec4(0.);
}
xR${_}C${N} = vec4(
xTexelR${_}C${N}.xy, xTexelR${_}C${N+2}.xy);
`,N+1<h&&(x+=`
xR${_}C${N+1} = vec4(
xTexelR${_}C${N}.zw, xTexelR${_}C${N+2}.zw);
`)),x+="}");N<h&&(x+=`
vec4 wTexelR${_}C${N} = getW(${_}, ${N}, d1, q);
wR${_}C${N} = vec4(wTexelR${_}C${N}.xz, wTexelR${_}C${N}.xz);
`,N+1<h&&(x+=`
vec4 wTexelR${_}C${N+1} = getW(${_}, ${N+1}, d1, q);
wR${_}C${N+1} =
vec4(wTexelR${_}C${N+1}.xz, wTexelR${_}C${N+1}.xz);`))}for(let _=0;_<d;_++)for(let A=0;A<h;A++)x+=`dotProd += xR${_}C${A} * wR${_}C${A};`;let w="",b="";n&&(o?w=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?w=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:w=`vec4 activation(vec4 x) {
${n}
}`,b="result = activation(result);");let k=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${w}
const ivec2 strides = ivec2(${c}, ${p});
const ivec2 pads = ivec2(${l}, ${u});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2;
int q = 0;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
vec4 dotProd = vec4(0.);
${x}
vec4 result = dotProd;
${k}
${b}
setOutput(result);
}
`}};function oX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l,dimRoundingMode:u}=n,c=l;c==null&&(c=[1,1]),y.assert(S.eitherStridesOrDilationsAreOne(a,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let p=S.computeConv2DInfo(o.shape,s.shape,a,c,i,u,!0),m;return j().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?m=new Tf(p):m=new Sf(p),t.runWebGLProgram(m,[o,s],"float32")}var bD={kernelName:to,backendName:"webgl",kernelFunc:oX};var wv=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,o=e.padInfo.top,s=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${a} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${o};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${s};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},kv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,o=e.strideHeight,s=e.strideWidth,a=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${a}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${l}; dm++) {
int d2 = d1 * ${l} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function sX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,dy:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=n,p=S.computeConv2DInfo(o.shape,c,a,i,l,u,!0),m=new wv(p);return t.runWebGLProgram(m,[o,s],"float32")}var wD={kernelName:ql,backendName:"webgl",kernelFunc:sX};function iX(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,filter:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=n,p=S.computeConv2DInfo(c,s.shape,a,i,l,u,!0),m=new kv(p);return t.runWebGLProgram(m,[o,s],"float32")}var kD={kernelName:Kl,backendName:"webgl",kernelFunc:iX};var _v=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function aX(r){let{inputs:e,backend:t}=r,{x:n}=e,o=[...n.shape,...n.shape],s=y.sizeFromShape(n.shape),a=pe({inputs:{x:n},backend:t,attrs:{shape:[s]}}),i=new _v(s),l=t.runWebGLProgram(i,[a],a.dtype),u=pe({inputs:{x:l},backend:t,attrs:{shape:o}});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(l),u}var _D={kernelName:Xl,backendName:"webgl",kernelFunc:aX};var vv=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:o,strideHeight:s,strideWidth:a,filterHeight:i,filterWidth:l,dilationHeight:u,dilationWidth:c}=e,{top:p,left:m}=o;this.userCode=`
const ivec2 strides = ivec2(${s}, ${a});
const ivec2 pads = ivec2(${p}, ${m});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${u};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${l}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function lX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s}=e,{strides:a,pad:i,dilations:l}=n,u=S.computeDilation2DInfo(o.shape,s.shape,a,i,"NHWC",l),c,p=new vv(u);c=t.runWebGLProgram(p,[o,s],"float32");let m=pe({inputs:{x:c},backend:t,attrs:{shape:u.outShape}});return t.disposeIntermediateTensorInfo(c),m}var vD={kernelName:sa,backendName:"webgl",kernelFunc:lX};var uX="return (x >= 0.0) ? x : (exp(x) - 1.0);",cX=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,pX=ke({opSnippet:uX,packedOpSnippet:cX}),CD={kernelName:ni,backendName:"webgl",kernelFunc:pX};var mX="return (b >= 1.0) ? a : a * (b + 1.0);",fX=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,dX=r=>{let{inputs:e,backend:t}=r,{dy:n,y:o}=e,s=j().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ps(fX,n.shape,o.shape):new Xo(mX,n.shape,o.shape);return t.runWebGLProgram(s,[n,o],n.dtype)},ID={kernelName:Yl,backendName:"webgl",kernelFunc:dX};var hX=`
return vec4(equal(a, b));
`,gX="return float(a == b);",xX=ot({opSnippet:gX,packedOpSnippet:hX,dtype:"bool"}),ND={kernelName:si,backendName:"webgl",kernelFunc:xX};var yX=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${S.ERF_P};
float a1 = ${S.ERF_A1};
float a2 = ${S.ERF_A2};
float a3 = ${S.ERF_A3};
float a4 = ${S.ERF_A4};
float a5 = ${S.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,bX=ke({opSnippet:yX}),SD={kernelName:oi,backendName:"webgl",kernelFunc:bX};var TD="return exp(x);",Cv=ke({opSnippet:TD,packedOpSnippet:TD,cpuKernelImpl:NE}),AD={kernelName:no,backendName:"webgl",kernelFunc:Cv};function Qg(r){let{inputs:e,attrs:t,backend:n}=r,{dim:o}=t,{input:s}=e,a=s.shape.length,i=s.shape.slice(),l=o;return o<0&&(y.assert(-(a+1)<=o,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+o+1),i.splice(l,0,1),pe({inputs:{x:s},backend:n,attrs:{shape:i}})}var ED={kernelName:us,backendName:"webgl",kernelFunc:Qg};var DD="return exp(x) - 1.0;",wX=ke({opSnippet:DD,packedOpSnippet:DD,cpuKernelImpl:SE}),$D={kernelName:ii,backendName:"webgl",kernelFunc:wX};var ex=class{constructor(e,t,n){this.variableNames=["real","imag"];let o=t[1];this.outputShape=t;let s=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${o}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${s};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${o});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${o}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${a};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function tx(r,e,t){let n=t.texData.get(r.dataId),o=y.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],a=o/s,i=pe({inputs:{x:r},backend:t,attrs:{shape:[a,s]}}),l=i.shape,u=new ex("real",l,e),c=new ex("imag",l,e),p=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:l},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:l}],m=t.runWebGLProgram(u,p,"float32"),f=t.runWebGLProgram(c,p,"float32"),d=un({inputs:{real:m,imag:f},backend:t});t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f);let h=pe({inputs:{x:d},backend:t,attrs:{shape:r.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(d),h}function kX(r){let{inputs:e,backend:t}=r,{input:n}=e;return tx(n,!1,t)}var RD={kernelName:Zl,backendName:"webgl",kernelFunc:kX};var Iv=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
uniform float value;
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function Af(r){let{backend:e,attrs:t}=r,{shape:n,value:o}=t,{dtype:s}=t;if(s=s||y.inferDtype(o),s==="string"){let a=y.getArrayFromDType(s,y.sizeFromShape(n));return a.fill(o),e.makeTensorInfo(n,s,a)}else{let a=new Iv(n,o),i=a.getCustomSetupFunc(o);return e.runWebGLProgram(a,[],s,i)}}var FD={kernelName:ia,backendName:"webgl",kernelFunc:Af};var Nv=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}};var OD={kernelName:ai,backendName:"webgl",kernelFunc:({inputs:r,backend:e})=>{let{image:t}=r,n=e,o=new Nv(t.shape);return n.runWebGLProgram(o,[t],t.dtype)}};var PD="return floor(x);",_X=ke({opSnippet:PD,packedOpSnippet:PD,cpuKernelImpl:TE}),MD={kernelName:oo,backendName:"webgl",kernelFunc:_X};var vX=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,CX=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,IX=ot({opSnippet:vX,packedOpSnippet:CX,dtype:"int32"}),LD={kernelName:so,backendName:"webgl",kernelFunc:IX};var Sv=class{constructor(e){this.variableNames=["A"];let t=Ft(),[n,o]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${o}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}};var Tv=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Ft(),[n,o]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${o}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}};var zD={kernelName:Mc,backendName:"webgl",kernelFunc:NX},_p;function NX(r){let{inputs:e,backend:t,attrs:n}=r,{pixels:o}=e,{numChannels:s}=n,a=typeof HTMLVideoElement!="undefined"&&o instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&o instanceof HTMLImageElement,[l,u]=a?[o.videoWidth,o.videoHeight]:[o.width,o.height],c=[u,l],p=[u,l,s];(i||a)&&(_p==null&&(_p=document.createElement("canvas").getContext("2d")),_p.canvas.width=l,_p.canvas.height=u,_p.drawImage(o,0,0,l,u),o=_p.canvas);let m=t.makeTensorInfo(c,"int32");t.texData.get(m.dataId).usage=Dr.PIXELS,t.gpgpu.uploadPixelDataToTexture(t.getTexture(m.dataId),o);let f=j().getBool("WEBGL_PACK")?new Tv(p):new Sv(p),d=t.runWebGLProgram(f,[m],"int32");return t.disposeData(m.dataId),d}function SX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=S.convertConv2DDataFormat(c),g=S.computeConv2DInfo(o.shape,s.shape,l,p,u,m,!1,h),x,w=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))x=Yg({x:o,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else if(j().getBool("WEBGL_CONV_IM2COL")&&o.shape[0]===1)x=Zg({x:o,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else{let k=a!=null,_=i!=null,A=f==="leakyrelu",N=f?gl(f,!1):null,$=new Nf(g,k,N,_,A),F=[o,s];if(a&&F.push(a),i&&F.push(i),A){let M=t.makeTensorInfo([],"float32",y.createScalarValue(d,"float32"));F.push(M),w.push(M)}x=t.runWebGLProgram($,F,"float32")}let b=pe({inputs:{x},backend:t,attrs:{shape:g.outShape}});return w.push(x),w.forEach(k=>t.disposeIntermediateTensorInfo(k)),b}var BD={kernelName:ks,backendName:"webgl",kernelFunc:SX};function TX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:m,leakyreluAlpha:f}=n,d=[],h=c;h==null&&(h=[1,1]),y.assert(S.eitherStridesOrDilationsAreOne(l,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${h}'`);let g=S.computeConv2DInfo(o.shape,s.shape,l,h,u,p,!0),x=j().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,w=m?gl(m,x):null,b=[o,s],k=a!=null,_=i!=null,A=m==="leakyrelu";if(k&&b.push(a),_&&b.push(i),A){let F=t.makeTensorInfo([],"float32",y.createScalarValue(f,"float32"));b.push(F),d.push(F)}let N;x?N=new Tf(g,k,w,_,A):N=new Sf(g,k,w,_,A);let $=t.runWebGLProgram(N,b,"float32");return d.forEach(F=>t.disposeIntermediateTensorInfo(F)),$}var VD={kernelName:_s,backendName:"webgl",kernelFunc:TX};var Av=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let o=Le(t.length),s=Le(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${o} strides = ${o}(${this.strides});
void main() {
${s} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${a};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function AX(r){let{inputs:e,backend:t}=r,{params:n,indices:o}=e,s=o.shape,a=s[s.length-1],[i,l,u,c]=S.prepareAndValidate(n,o),p=pe({inputs:{x:o},backend:t,attrs:{shape:[l,a]}}),m=pe({inputs:{x:n},backend:t,attrs:{shape:[y.sizeFromShape(n.shape)/u,u]}}),f=new Av(a,c,[l,u]),d=t.runWebGLProgram(f,[m,p],m.dtype),h=pe({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(d),h}var GD={kernelName:li,backendName:"webgl",kernelFunc:AX};var Ev=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=Le(this.rank),o=EX(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${o}));
}
`}};function EX(r,e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let o=0;o<r.length;o++)o===2?n.push("int(getIndices(resRC.x, resRC.z))"):n.push(`${t[o]}`);return n.join()}function DX(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,indices:s}=e,{axis:a,batchDims:i}=n,l=y.parseAxisParam(a,o.shape)[0],u=S.segment_util.collectGatherOpShapeInfo(o,s,l,i),c=y.sizeFromShape(s.shape),p=[],m=pe({inputs:{x:o},backend:t,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),f=pe({inputs:{x:s},backend:t,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(m),p.push(f);let d=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(t.shouldExecuteOnCPU([o,s])||o.dtype==="string"){let w=t.bufferSync(f),b=t.bufferSync(m),k=AE(b,w,d);return p.forEach(_=>t.disposeIntermediateTensorInfo(_)),t.makeTensorInfo(u.outputShape,k.dtype,k.values)}let h=new Ev(m.shape,d),g=t.runWebGLProgram(h,[m,f],m.dtype);p.push(g);let x=pe({inputs:{x:g},backend:t,attrs:{shape:u.outputShape}});return p.forEach(w=>t.disposeIntermediateTensorInfo(w)),x}var WD={kernelName:cs,backendName:"webgl",kernelFunc:DX};var $X="return float(a > b);",RX=`
return vec4(greaterThan(a, b));
`,FX=ot({opSnippet:$X,packedOpSnippet:RX,cpuKernelImpl:EE,dtype:"bool"}),jD={kernelName:ui,backendName:"webgl",kernelFunc:FX};var OX="return float(a >= b);",PX=`
return vec4(greaterThanEqual(a, b));
`,MX=ot({opSnippet:OX,packedOpSnippet:PX,dtype:"bool"}),UD={kernelName:ao,backendName:"webgl",kernelFunc:MX};function LX(r){let{inputs:e,backend:t}=r,{input:n}=e;return tx(n,!0,t)}var HD={kernelName:Jl,backendName:"webgl",kernelFunc:LX};var zX="return float(!isnan(x) && !isinf(x));",BX=ke({opSnippet:zX,dtype:"bool"}),qD={kernelName:ci,backendName:"webgl",kernelFunc:BX};var VX="return float(isinf(x));",GX=ke({opSnippet:VX,dtype:"bool"}),KD={kernelName:pi,backendName:"webgl",kernelFunc:GX};var WX="return float(isnan(x));",jX=ke({opSnippet:WX,dtype:"bool"}),XD={kernelName:mi,backendName:"webgl",kernelFunc:jX};var UX="return float(a < b);",HX=`
return vec4(lessThan(a, b));
`,qX=ot({opSnippet:UX,packedOpSnippet:HX,cpuKernelImpl:DE,dtype:"bool"}),YD={kernelName:fi,backendName:"webgl",kernelFunc:qX};var KX="return float(a <= b);",XX=`
return vec4(lessThanEqual(a, b));
`,YX=ot({opSnippet:KX,packedOpSnippet:XX,dtype:"bool"}),ZD={kernelName:di,backendName:"webgl",kernelFunc:YX};function ZX(r){let{backend:e,attrs:t}=r,{start:n,stop:o,num:s}=t,a=$E(n,o,s);return e.makeTensorInfo([a.length],"float32",a)}var JD={kernelName:eu,backendName:"webgl",kernelFunc:ZX};var JX=`if (x < 0.0) return NAN;
return log(x);`,QX=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,e7=ke({opSnippet:JX,packedOpSnippet:QX,cpuKernelImpl:RE}),QD={kernelName:uo,backendName:"webgl",kernelFunc:e7};var t7="return log(1.0 + x);",r7=ke({opSnippet:t7}),e$={kernelName:hi,backendName:"webgl",kernelFunc:r7};var n7="return float(a >= 1.0 && b >= 1.0);",o7=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,s7=ot({opSnippet:n7,packedOpSnippet:o7,dtype:"bool"}),t$={kernelName:gi,backendName:"webgl",kernelFunc:s7};var i7="return float(!(x >= 1.0));",a7=ke({opSnippet:i7}),r$={kernelName:Ja,backendName:"webgl",kernelFunc:a7};var l7="return float(a >= 1.0 || b >= 1.0);",u7=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,c7=ot({opSnippet:l7,packedOpSnippet:u7,dtype:"bool"}),n$={kernelName:Qa,backendName:"webgl",kernelFunc:c7};var Dv=class{constructor(e,t,n,o,s){this.variableNames=["x"],this.outputShape=[];let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${n}) + float(${o}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${a}; j <= ${a}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${l};
setOutput(val);
}
`}};var $v=class{constructor(e,t,n,o,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${n}) + float(${o}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${a};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${a}; j <= ${a}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${l};
setOutput(result);
}
`}};var p7=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=n,u=j().getBool("WEBGL_PACK_NORMALIZATION")?new $v(o.shape,s,a,i,l):new Dv(o.shape,s,a,i,l);return t.runWebGLProgram(u,[o],o.dtype)},o$={kernelName:aa,backendName:"webgl",kernelFunc:p7};var Rv=class{constructor(e,t,n,o,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=o,this.beta=s,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${o}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${o})
* float(${s})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${s});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}};var m7=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o,y:s,dy:a}=e,{depthRadius:i,bias:l,alpha:u,beta:c}=n,p=new Rv(o.shape,i,l,u,c);return t.runWebGLProgram(p,[o,s,a],o.dtype)},s$={kernelName:tu,backendName:"webgl",kernelFunc:m7};function i$(r,e,t,n){let o=y.sizeFromShape(e),a=y.sizeFromShape(r.shape)/o,i=pe({inputs:{x:r},attrs:{shape:[a,o]},backend:n}),l=Nn(i,r.dtype,"max",n),u=pe({inputs:{x:l},attrs:{shape:t},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}function Fv(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{reductionIndices:s,keepDims:a}=n,i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=l,c=S.getAxesPermutation(u,i),p=c!=null,m=t.shouldExecuteOnCPU([o]),f=o;if(p){if(m){let b=t.texData.get(f.dataId).values,k=new Array(i);for(let N=0;N<k.length;N++)k[N]=o.shape[c[N]];let _=kp(b,o.shape,o.dtype,c,k);f=t.makeTensorInfo(k,o.dtype);let A=t.texData.get(f.dataId);A.values=_}else f=xl(o,c,t);u=S.getInnerMostAxes(u.length,i)}S.assertAxesAreInnerMostDims("max",u,i);let[d,h]=S.computeOutAndReduceShapes(f.shape,u),g=d;a&&(g=S.expandShapeToKeepDim(d,l));let x;if(m){let b=t.texData.get(f.dataId).values,k=FE(b,y.sizeFromShape(h),g,o.dtype);x=t.makeTensorInfo(g,o.dtype);let _=t.texData.get(x.dataId);_.values=k}else x=i$(f,h,g,t);return p&&t.disposeIntermediateTensorInfo(f),x}var a$={kernelName:co,backendName:"webgl",kernelFunc:Fv};var f7=Wg+`
return max(a, b);
`,d7=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+hl+`
return result;
`,h7=ot({opSnippet:f7,packedOpSnippet:d7,cpuKernelImpl:OE}),l$={kernelName:po,backendName:"webgl",kernelFunc:h7};function g7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e;Rs(o,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=n,u=1;y.assert(S.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=S.computePool2DInfo(o.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return Ut({inputs:{x:o},backend:t});let p=new Vi(c,"max",!1);return t.runWebGLProgram(p,[o],o.dtype)}var u$={kernelName:mo,backendName:"webgl",kernelFunc:g7};function x7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{filterSize:s,strides:a,pad:i,dataFormat:l,dimRoundingMode:u}=n,c=[1,1,1],p=S.computePool3DInfo(o.shape,s,a,c,i,u,l),m=new ec(p,"max",!1);return t.runWebGLProgram(m,[o],o.dtype)}var c$={kernelName:la,backendName:"webgl",kernelFunc:x7};var Ov=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,o=e.dilationHeight,s=e.effectiveFilterHeight,a=e.effectiveFilterWidth,i=s-1-e.padInfo.top,l=a-1-e.padInfo.left,u=s*a-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${s};
wR += ${o}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${u} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${a} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},Pv=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,o=e.strideWidth,s=e.dilationDepth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterDepth,u=e.effectiveFilterHeight,c=e.effectiveFilterWidth,p=l-1-e.padInfo.front,m=u-1-e.padInfo.top,f=c-1-e.padInfo.left,d=l*u*c-1;this.userCode=`
const ivec3 pads = ivec3(${p}, ${m}, ${f});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${l};
wD += ${s}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${u};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${d} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${u} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function y7(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=n,p=[1,1,1],m=S.computePool3DInfo(a.shape,i,l,p,u,c),f=new ec(m,"max",!0),d=t.runWebGLProgram(f,[a],a.dtype),h=new Pv(m),g=t.runWebGLProgram(h,[o,d],a.dtype);return t.disposeIntermediateTensorInfo(d),g}var p$={kernelName:nu,backendName:"webgl",kernelFunc:y7};function b7(r){let{inputs:e,backend:t,attrs:n}=r,{dy:o,input:s,output:a}=e,i=s;Rs([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=n,m=S.computePool2DInfo(i.shape,l,u,1,c,p),f=!0,d=new Vi(m,"max",f),h=t.runWebGLProgram(d,[i],i.dtype),g=new Ov(m),x=t.runWebGLProgram(g,[o,h],i.dtype);return t.disposeIntermediateTensorInfo(h),x}var m$={kernelName:ru,backendName:"webgl",kernelFunc:b7};function f$(r,e,t,n){let o=new Vi(t,"max",!1),s=n.runWebGLProgram(o,[r],"float32");o=new Vi(t,"max",!0,!0,e);let a=n.runWebGLProgram(o,[r],"float32");return[s,a]}var d$={kernelName:ou,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:n}=r,{filterSize:o,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;y.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);let u=[1,1];y.assert(S.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=S.computePool2DInfo(n.shape,o,s,u,a),[p,m]=f$(n,i,c,l);return[p,m]}};function h$(r,e,t,n){let o=y.sizeFromShape(e),a=y.sizeFromShape(r.shape)/o,i=pe({inputs:{x:r},attrs:{shape:[a,o]},backend:n}),l=Nn(i,"float32","mean",n),u=pe({inputs:{x:l},attrs:{shape:t},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var g$={kernelName:fo,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:n}=r,{keepDims:o,axis:s}=e,a=t,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=S.getAxesPermutation(u,i),p=c!=null,m=a.shouldExecuteOnCPU([n]),f=[],d=n;if(p){if(m){let k=a.texData.get(d.dataId).values,_=new Array(i);for(let $=0;$<_.length;$++)_[$]=n.shape[c[$]];let A=kp(k,n.shape,n.dtype,c,_);d=a.makeTensorInfo(_,n.dtype);let N=a.texData.get(d.dataId);N.values=A}else d=xl(n,c,a);f.push(d),u=S.getInnerMostAxes(u.length,i)}S.assertAxesAreInnerMostDims("sum",u,i);let[h,g]=S.computeOutAndReduceShapes(d.shape,u),x=h;o&&(x=S.expandShapeToKeepDim(h,l));let w=h$(d,g,x,a);for(let b of f)a.disposeIntermediateTensorInfo(b);return w}};function w7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=l,c=S.getAxesPermutation(u,i),p=o;c!=null&&(p=Lt({inputs:{x:o},backend:t,attrs:{perm:c}}),u=S.getInnerMostAxes(u.length,o.shape.length)),S.assertAxesAreInnerMostDims("min",u,i);let[m,f]=S.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=pe({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=Nn(h,h.dtype,"min",t),x;if(a){let w=S.expandShapeToKeepDim(m,l);x=pe({inputs:{x:g},backend:t,attrs:{shape:w}})}else x=pe({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var x$={kernelName:ho,backendName:"webgl",kernelFunc:w7};var k7=Wg+`
return min(a, b);
`,_7=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+hl+`
return result;
`,v7=ot({opSnippet:k7,packedOpSnippet:_7,cpuKernelImpl:PE}),y$={kernelName:go,backendName:"webgl",kernelFunc:v7};var Mv=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,p)=>c[0]+e[p]+c[1]);let o=e.length,s=Le(o),a=t.map(c=>c[0]).join(","),i=t.map((c,p)=>c[0]+e[p]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o),u=n==="reflect"?0:1;if(o===1){this.userCode=`
int start = ${a};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${u};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${u};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${s} start = ${s}(${a});
${s} end = ${s}(${i});
void main() {
${s} outC = getOutputCoords();
for (int i = 0; i < ${o}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${u};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${u};
}
}
${s} coords = outC - start;
setOutput(getX(${l}));
}
`}};var Lv=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((d,h)=>d[0]+e[h]+d[1]);let o=e.length,s=Le(o),a=t.map(d=>d[0]).join(","),i=t.map((d,h)=>d[0]+e[h]).join(","),l=jt("rc",o),u=jt("source",o),c=`${l[o-1]} < ${this.outputShape[o-1]}`,p=o===1?"source":`vec2(${u.slice(-2).join()})`,m=n==="reflect"?0:1,f="";if(o===1){let d=`
${s} source = rc;
if (source < start) {
source = start * 2 - source - ${m};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${m};
}
source -= start;
`;f=`
${s} rc = outputLoc;
${d}
result[0] = getChannel(getX(${u.join()}), ${p});
${l[o-1]} += 1;
if(${c}) {
${d}
result[1] = getChannel(getX(${u.join()}), ${p});
}
`}else{let d=`
${s} source = rc;
${s} lt = ${s}(lessThan(source, start));
${s} gte = ${s}(greaterThanEqual(source, end));
${s} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${m}) +
gte * ((end - 1) * 2 - source + ${m});
source -= start;
`;f=`
${s} rc = outputLoc;
${d}
result[0] = getChannel(getX(${u.join()}), ${p});
${l[o-1]} += 1;
if(${c}) {
${d}
result[1] = getChannel(getX(${u.join()}), ${p});
}
rc = outputLoc;
${l[o-2]} += 1;
if(${l[o-2]} < ${this.outputShape[o-2]}) {
${d}
result[2] = getChannel(getX(${u.join()}), ${p});
${l[o-1]} += 1;
if(${c}) {
${d}
result[3] = getChannel(getX(${u.join()}), ${p});
}
}
`}this.userCode=`
const ${s} start = ${s}(${a});
const ${s} end = ${s}(${i});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${f}
setOutput(result);
}
`}};var C7=({inputs:r,backend:e,attrs:t})=>{let{x:n}=r,{paddings:o,mode:s}=t,a=j().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Lv(n.shape,o,s):new Mv(n.shape,o,s);return e.runWebGLProgram(a,[n],n.dtype)},b$={kernelName:ua,backendName:"webgl",kernelFunc:C7};var I7=`if (b == 0.0) return NAN;
return mod(a, b);`,N7=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+hl+`
return result;
`,S7=ot({opSnippet:I7,packedOpSnippet:N7}),w$={kernelName:xi,backendName:"webgl",kernelFunc:S7};var zv=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
uniform float seed;
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}};var T7=`
if (a == b) {
return 1.0;
};
return a / b;`,A7=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,Bv=ot({opSnippet:T7,packedOpSnippet:A7,checkOutOfBounds:!0}),k$={kernelName:ro,backendName:"webgl",kernelFunc:Bv};var _$="return a - b;",Vv=ot({opSnippet:_$,packedOpSnippet:_$,supportsComplex:!0,cpuKernelImpl:jE}),v$={kernelName:Fo,backendName:"webgl",kernelFunc:Vv};function Gv(r){let{inputs:e,backend:t,attrs:n}=r,{logits:o}=e,{dim:s}=n,a=y.parseAxisParam([s],o.shape),i=Fv({inputs:{x:o},backend:t,attrs:{reductionIndices:a,keepDims:!1}}),l=S.expandShapeToKeepDim(i.shape,a),u=pe({inputs:{x:i},backend:t,attrs:{shape:l}}),c=Vv({inputs:{a:o,b:u},backend:t}),p=Cv({inputs:{x:c},backend:t}),m=If({inputs:{x:p},backend:t,attrs:{axis:a,keepDims:!1}}),f=pe({inputs:{x:m},backend:t,attrs:{shape:l}}),d=Bv({inputs:{a:p,b:f},backend:t});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}var C$={kernelName:$o,backendName:"webgl",kernelFunc:Gv};function E7(r){let{inputs:e,backend:t,attrs:n}=r,{logits:o}=e,{numSamples:s,seed:a,normalized:i}=n,l=i?o:Gv({inputs:{logits:o},backend:t,attrs:{dim:o.shape.length-1}}),u=l.shape[0],c=l.shape[1],p=new zv(u,c,s),m=p.getCustomSetupFunc(a),f=t.runWebGLProgram(p,[l],"int32",m);return i||t.disposeIntermediateTensorInfo(l),f}var I$={kernelName:su,backendName:"webgl",kernelFunc:E7};var N$="return -x;";function D7(r){let{inputs:e,backend:t}=r,{x:n}=e;if(t.shouldExecuteOnCPU([n])){let s=t.texData.get(n.dataId),[a,i]=LE(s.values,n.shape,n.dtype);return t.makeTensorInfo(i,n.dtype,a)}let o;return j().getBool("WEBGL_PACK_UNARY_OPERATIONS")?o=new Os(n.shape,N$):o=new ln(n.shape,N$),t.runWebGLProgram(o,[n],n.dtype)}var S$={kernelName:ps,backendName:"webgl",kernelFunc:D7};var $7=Ar.nonMaxSuppressionV3Impl;function R7(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l}=n,u=t.readSync(o.dataId),c=t.readSync(s.dataId),{selectedIndices:p}=$7(u,c,a,i,l);return t.makeTensorInfo([p.length],"int32",new Int32Array(p))}var T$={kernelName:bi,backendName:"webgl",kernelFunc:R7};var F7=Ar.nonMaxSuppressionV4Impl;function O7(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=n,c=t.readSync(o.dataId),p=t.readSync(s.dataId),{selectedIndices:m,validOutputs:f}=F7(c,p,a,i,l,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([f]))]}var A$={kernelName:wi,backendName:"webgl",kernelFunc:O7};var P7=Ar.nonMaxSuppressionV5Impl;function M7(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:n}=r,{boxes:o,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=n,c=t.readSync(o.dataId),p=t.readSync(s.dataId),m=a,f=i,d=l,h=u,{selectedIndices:g,selectedScores:x}=P7(c,p,m,f,d,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var E$={kernelName:ki,backendName:"webgl",kernelFunc:M7};var Wv=class{constructor(e,t,n,o){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${o}), float(${n}),
float(index == coords.y)));
}
`}};var L7=r=>{let{inputs:e,backend:t,attrs:n}=r,{indices:o}=e,{depth:s,onValue:a,offValue:i}=n,l=y.sizeFromShape(o.shape),u=new Wv(l,s,a,i),c=pe({inputs:{x:o},backend:t,attrs:{shape:[l]}}),p=t.runWebGLProgram(u,[c],o.dtype);t.disposeIntermediateTensorInfo(c);let m=[...o.shape,s],f=pe({inputs:{x:p},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(p),f},D$={kernelName:yo,backendName:"webgl",kernelFunc:L7};function Ef(r){let{inputs:e,backend:t}=r,{x:n}=e;if(n.dtype==="complex64"){let o=La({inputs:{input:n},backend:t}),s=Ef({inputs:{x:o},backend:t}),a=tc({inputs:{input:n},backend:t}),i=Ef({inputs:{x:a},backend:t}),l=un({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(o),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return Af({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:t})}var $$={kernelName:bs,backendName:"webgl",kernelFunc:Ef};function R$(r){let{inputs:e,backend:t}=r,{x:n}=e;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let o=La({inputs:{input:n},backend:t}),s=R$({inputs:{x:o},backend:t}),a=tc({inputs:{input:n},backend:t}),i=Ef({inputs:{x:a},backend:t}),l=un({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(o),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return Af({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:t})}var F$={kernelName:ms,backendName:"webgl",kernelFunc:R$};function z7(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n;if(e.length===1)return Qg({inputs:{input:e[0]},backend:t,attrs:{dim:o}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=Qg({inputs:{input:c},backend:t,attrs:{dim:o}});return i.push(p),p}),u=pv({inputs:l,backend:t,attrs:{axis:o}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var O$={kernelName:fs,backendName:"webgl",kernelFunc:z7};var jv=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let o=e.length,s=Le(o),a=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o);if(o===1){this.userCode=`
int start = ${a};
int end = ${i};
uniform float value;
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${s} start = ${s}(${a});
${s} end = ${s}(${i});
uniform float value;
void main() {
${s} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${s} coords = outC - start;
setOutput(getX(${l}));
}
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};var Uv=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,g)=>h[0]+e[g]+h[1]);let o=e.length,s=Le(o),a=t.map(h=>h[0]).join(","),i=t.map((h,g)=>h[0]+e[g]).join(","),l=jt("rc",o),u=jt("source",o),c=`${l[o-1]} < ${this.outputShape[o-1]}`,p=o===1?"source":`vec2(${u.slice(-2).join()})`,m=[`${s} rc = outputLoc;`,`${l[o-1]} += 1;
if(${c}) {
`,o===1?"":`}
rc = outputLoc;
${l[o-2]} += 1;
if(${l[o-2]} < ${this.outputShape[o-2]}) {`,o===1?"":` ${l[o-1]} += 1;
if(${c}) {`],f=o===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",d="";for(let h=0,g=o===1?2:4;h<g;h++)d+=`
${m[h]}
if (${f}) {
result[${h}] = float(value);
} else {
${s} source = rc - start;
result[${h}] = getChannel(getX(${u.join()}), ${p});
}
`;d+=o===1?"} ":"}}",this.userCode=`
const ${s} start = ${s}(${a});
const ${s} end = ${s}(${i});
uniform float value;
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};var Hv=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{paddings:s,constantValue:a}=n,i=j().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Uv(o.shape,s,a):new jv(o.shape,s,a),l=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[o],o.dtype,l)},P$={kernelName:bo,backendName:"webgl",kernelFunc:Hv};var B7=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,V7=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+hl+`
return result;
`,G7=ot({opSnippet:B7,packedOpSnippet:V7}),M$={kernelName:wo,backendName:"webgl",kernelFunc:G7};function W7(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,keepDims:a}=n,i=o.shape.length,l=[],u=y.parseAxisParam(s,o.shape),c=u,p=S.getAxesPermutation(c,i),m=o;p!=null&&(m=Lt({inputs:{x:o},backend:t,attrs:{perm:p}}),c=S.getInnerMostAxes(c.length,i),l.push(m)),S.assertAxesAreInnerMostDims("prod",c,i);let f;if(t.shouldExecuteOnCPU([m])){let d=t.texData.get(m.dataId).values,{outVals:h,outShape:g,outDtype:x}=zE(m.shape,m.dtype,d,c);f=t.makeTensorInfo(g,x,h)}else{let[d,h]=S.computeOutAndReduceShapes(m.shape,c),g=y.sizeFromShape(h),x=pe({inputs:{x:m},backend:t,attrs:{shape:[-1,g]}}),w=fu(o.dtype),b=Nn(x,w,"prod",t);f=pe({inputs:{x:b},backend:t,attrs:{shape:d}}),l.push(x),l.push(b)}if(a){l.push(f);let d=S.expandShapeToKeepDim(f.shape,u);f=pe({inputs:{x:f},backend:t,attrs:{shape:d}})}return l.forEach(d=>t.disposeIntermediateTensorInfo(d)),f}var L$={kernelName:_i,backendName:"webgl",kernelFunc:W7};var qv=r=>{let{backend:e,attrs:t}=r,{start:n,stop:o,step:s,dtype:a}=t,i=BE(n,o,s,a);return e.makeTensorInfo([i.length],a,i)},z$={kernelName:ca,backendName:"webgl",kernelFunc:qv};var j7="return 1.0 / x;",U7=ke({opSnippet:j7}),B$={kernelName:vi,backendName:"webgl",kernelFunc:U7};var H7=gr+`
return (x < 0.0) ? 0.0 : x;
`,q7=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,K7=ke({opSnippet:H7,packedOpSnippet:q7}),V$={kernelName:_o,backendName:"webgl",kernelFunc:K7};var X7=gr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Y7=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Z7=ke({opSnippet:X7,packedOpSnippet:Y7}),G$={kernelName:Co,backendName:"webgl",kernelFunc:Z7};var Kv=class{constructor(e,t,n,o,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,n,u];let c=[o&&t>1?i-1:i,o&&n>1?l-1:l],p=[o&&t>1?t-1:t,o&&n>1?n-1:n],m;s?m="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":m="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/p[0]},
${c[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${l}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}};var Xv=class{constructor(e,t,n,o,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,n,u];let c=[o&&t>1?i-1:i,o&&n>1?l-1:l],p=[o&&t>1?t-1:t,o&&n>1?n-1:n],m;s?m="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":m="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/p[0]},
${c[1]/p[1]},
${c[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${l}.0,
${l}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${u-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function J7(r){let{inputs:e,backend:t,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:a,size:i}=n,[l,u]=i,c=j().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Xv(o.shape,l,u,s,a):new Kv(o.shape,l,u,s,a);return t.runWebGLProgram(c,[o],"float32")}var W$={kernelName:vo,backendName:"webgl",kernelFunc:J7};var Yv=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,o,s]=t,[,a,i]=e,l=[n&&a>1?o-1:o,n&&i>1?s-1:s],u=[n&&a>1?a-1:a,n&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${m});
const float invWidthScale = float(${f});
const int winHeight = int(${d});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${o-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Q7(r){let{inputs:e,backend:t,attrs:n}=r,{images:o,dy:s}=e,{alignCorners:a}=n,i=new Yv(s.shape,o.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var j$={kernelName:lu,backendName:"webgl",kernelFunc:Q7};var Zv=class{constructor(e,t,n,o,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,n,u];let c=[o&&t>1?i-1:i,o&&n>1?l-1:l],p=[o&&t>1?t-1:t,o&&n>1?n-1:n],m=o?"0.5":"0.0",f;s?f="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":f="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/p[0]},
${c[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${l}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${f};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}};function eY(r){let{inputs:e,backend:t,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:a,size:i}=n,[l,u]=i,c=new Zv(o.shape,l,u,s,a);return t.runWebGLProgram(c,[o],o.dtype)}var U$={kernelName:pa,backendName:"webgl",kernelFunc:eY};var Jv=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,o,s]=t,[,a,i]=e,l=[n&&a>1?o-1:o,n&&i>1?s-1:s],u=[n&&a>1?a-1:a,n&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${m});
const float invWidthScale = float(${f});
const int winHeight = int(${d});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${l[0]}) *
(float(dyR) / float(${u[0]}));
float sourceFracCol =
float(${l[1]}) *
(float(dyC) / float(${u[1]}));
int sourceNearestRow = int(min(
float(int(${o}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${s}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function tY(r){let{inputs:e,backend:t,attrs:n}=r,{images:o,dy:s}=e,{alignCorners:a}=n,i=new Jv(s.shape,o.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var H$={kernelName:au,backendName:"webgl",kernelFunc:tY};var Qv=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let o=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,s=e.map((i,l)=>o(l)).join(","),a=Le(n);this.userCode=`
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${s}));
}
`}};var eC=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let o=jt("rc",n),s=`${o[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${o[n-2]} + 1 < ${this.outputShape[n-2]}`,i=Le(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${s}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${l(o.slice())};
if(${s}){
result.g = ${u(o.slice())};
}
if(${a}) {
result.b = ${c(o.slice())};
if(${s}) {
result.a = ${p(o.slice())};
}
}
setOutput(result);
}
`;function l(d){return m(d)}function u(d){return d[n-1]="("+d[n-1]+" + 1)",m(d)}function c(d){return d[n-2]="("+d[n-2]+" + 1)",m(d)}function p(d){return d[n-1]="("+d[n-1]+" + 1)",d[n-2]="("+d[n-2]+" + 1)",m(d)}function m(d){let h=e.map((w,b)=>f(b,d)),g=h.join(","),x=h.slice(-2).join(",");return`getChannel(getX(${g}), vec2(${x}))`}function f(d,h){return t.indexOf(d)!==-1&&e[d]!==1?`${e[d]} - ${h[d]} - 1`:`${h[d]}`}}};function rY(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dims:s}=n,a=o.shape.length,i=y.parseAxisParam(s,o.shape);if(a===0)return Ut({inputs:{x:o},backend:t});let l=j().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new eC(o.shape,i):new Qv(o.shape,i);return t.runWebGLProgram(l,[o],o.dtype)}var q$={kernelName:Io,backendName:"webgl",kernelFunc:rY};var tC=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],o=e[2];this.outputShape=e;let s="";typeof t=="number"?s=`float outputValue = ${t.toFixed(2)};`:s=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
uniform vec4 params;
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${s}
if(coordX >= 0 && coordX < ${o} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}getCustomSetupFunc(e,t,n,o){return(s,a)=>{this.paramsLoc==null&&(this.paramsLoc=s.getUniformLocationNoThrow(a,"params")),s.gl.uniform4f(this.paramsLoc,e,t,n,o)}}};var K$={kernelName:$i,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:n}=r,{radians:o,fillValue:s,center:a}=e,i=t,l=new tC(n.shape,s),[u,c]=S.getImageCenter(a,n.shape[1],n.shape[2]),p=l.getCustomSetupFunc(u,c,Math.sin(o),Math.cos(o));return i.runWebGLProgram(l,[n],n.dtype,p)}};var nY=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,oY=ke({opSnippet:nY}),X$={kernelName:No,backendName:"webgl",kernelFunc:oY};var sY="return inversesqrt(x);",iY=ke({opSnippet:sY,cpuKernelImpl:VE}),Y$={kernelName:So,backendName:"webgl",kernelFunc:iY};var Df=class{constructor(e,t,n,o,s,a,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let l=Le(s.length),u=Le(a.length),c="";n===1?c="i":n===2&&(c="i, j");let p=`getIndices(${c})`,m="";o===1?m="i":o===2&&(m="i, coords[1]");let f=`getUpdates(${m})`,d=t>1?"strides[j]":"strides";this.userCode=`
${l} strides = ${l}(${s});
void main() {
${u} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${p});
flattenedIndex += index * ${d};
}
if (flattenedIndex == coords[0]) {
sum += ${f};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function aY(r){let{inputs:e,backend:t,attrs:n}=r,{indices:o,updates:s}=e,{shape:a}=n,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=S.calculateShapes(s,o,a),m=[p/u,u];if(p===0)return t.makeTensorInfo(a,o.dtype);let f=pe({inputs:{x:o},backend:t,attrs:{shape:[l,i]}}),d=pe({inputs:{x:s},backend:t,attrs:{shape:[l,u]}}),h=t.makeTensorInfo([],"float32",new Float32Array([0])),g=new Df(l,i,f.shape.length,d.shape.length,c,m),x=t.runWebGLProgram(g,[d,f,h],d.dtype),w=pe({inputs:{x},backend:t,attrs:{shape:a}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(h),w}var Z$={kernelName:Ci,backendName:"webgl",kernelFunc:aY};var rC=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let o,s;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)s="resRC",o="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],l=[],u=[];for(let c=0;c<t.length;c++)u.push(`${i[c]}`),c<e&&l.push(`${i[c]}`);o=l.join(),s=u.join()}let a=Le(n);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
float cVal = getC(${o});
if (cVal >= 1.0) {
setOutput(getA(${s}));
} else {
setOutput(getB(${s}));
}
}
`}};function lY(r){let{inputs:e,backend:t}=r,{condition:n,t:o,e:s}=e,a=new rC(n.shape.length,o.shape,o.shape.length);return t.runWebGLProgram(a,[n,o,s],dr(o.dtype,s.dtype))}var J$={kernelName:hs,backendName:"webgl",kernelFunc:lY};var uY=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${S.SELU_SCALEALPHA};
float scale = ${S.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,cY=ke({opSnippet:uY}),Q$={kernelName:Ii,backendName:"webgl",kernelFunc:cY};var pY="return 1.0 / (1.0 + exp(-1.0 * x));",mY=ke({opSnippet:pY}),eR={kernelName:Ao,backendName:"webgl",kernelFunc:mY};var fY=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,dY=ke({opSnippet:fY}),tR={kernelName:Si,backendName:"webgl",kernelFunc:dY};var hY=jg+`
return sin(x);
`,gY=ke({opSnippet:hY}),rR={kernelName:To,backendName:"webgl",kernelFunc:gY};var xY=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,yY=ke({opSnippet:xY}),nR={kernelName:Ni,backendName:"webgl",kernelFunc:yY};var bY=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,wY=ke({opSnippet:bY}),oR={kernelName:Ti,backendName:"webgl",kernelFunc:wY};var kY=r=>{let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{blockShape:s,paddings:a}=n;y.assert(o.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((x,w)=>x*w),l=[[0,0]];l.push(...a);for(let x=1+s.length;x<o.shape.length;++x)l.push([0,0]);let u=[],c=Hv({inputs:{x:o},backend:t,attrs:{paddings:l,constantValue:0}}),p=S.getReshaped(c.shape,s,i,!1),m=S.getPermuted(p.length,s.length,!1),f=S.getReshapedPermuted(c.shape,s,i,!1),d=pe({inputs:{x:c},backend:t,attrs:{shape:p}}),h=Lt({inputs:{x:d},backend:t,attrs:{perm:m}}),g=pe({inputs:{x:h},backend:t,attrs:{shape:f}});return u.push(c),u.push(d),u.push(h),u.forEach(x=>t.disposeIntermediateTensorInfo(x)),g},sR={kernelName:ma,backendName:"webgl",kernelFunc:kY};function _Y(r){let{inputs:e,backend:t,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:a}=e,{outputShape:i}=n,{sliceRank:l,numUpdates:u,strides:c,outputSize:p}=S.calculateShapes(s,o,i),m=!1,f=new Df(u,l,o.shape.length,s.shape.length,c,[p,1],m),d=t.runWebGLProgram(f,[s,o,a],s.dtype),h=pe({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(d),h}var iR={kernelName:uu,backendName:"webgl",kernelFunc:_Y};function vY(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{numOrSizeSplits:s,axis:a}=n,i=y.parseAxisParam(a,o.shape)[0],l=S.prepareSplitSize(o,s,i),u=o.shape.length,c=new Array(u).fill(0),p=o.shape.slice();return l.map(m=>{let f=[...p];f[i]=m;let d=Ma({inputs:{x:o},backend:t,attrs:{begin:c,size:f}});return c[i]+=m,d})}var aR={kernelName:xs,backendName:"webgl",kernelFunc:vY};var CY="return sqrt(x);",IY=ke({opSnippet:CY}),lR={kernelName:Eo,backendName:"webgl",kernelFunc:IY};var NY="return x * x;",SY=ke({opSnippet:NY}),uR={kernelName:fa,backendName:"webgl",kernelFunc:SY};var cR="return (a - b) * (a - b);",TY=ot({opSnippet:cR,packedOpSnippet:cR}),pR={kernelName:Ro,backendName:"webgl",kernelFunc:TY};function AY({inputs:r,attrs:e,backend:t}){let{x:n}=r,o=gr+`
return x > 0.0 ? 1.0 : float(${e.alpha});
`,s=new ln(n.shape,o);return t.runWebGLProgram(s,[n],n.dtype)}var mR={kernelName:On,backendName:"webgl",kernelFunc:AY};var nC=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let o=n.length,s=Le(n.length),a=Le(n.length),i="";if(o===1)i="coords * strides + begin";else{let l=0;i=n.map((u,c)=>(l++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${l-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${s} begin = ${s}(${e});
${s} strides = ${s}(${t});
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function EY(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,{nonStrided:f,$begin:d,$strides:h,size:g,newShape:x,outShape:w}=sr.sliceInfo(o.shape,s,a,i,l,u,c,p,m),b=pe({inputs:{x:o},backend:t,attrs:{shape:x}}),k;if(f){let A=Ma({inputs:{x:b},backend:t,attrs:{begin:d,size:g}});k=pe({inputs:{x:A},backend:t,attrs:{shape:w}}),t.disposeIntermediateTensorInfo(A)}else if(w.some(A=>A===0))k=t.makeTensorInfo(w,o.dtype,[]);else if(t.shouldExecuteOnCPU([b])){let $=t.texData.get(b.dataId).values,F=ve(b.shape,b.dtype,$),M=WE(w,F,h,d);k=t.makeTensorInfo(w,b.dtype,M.values)}else{let N=new nC(d,h,w);k=t.runWebGLProgram(N,[b],b.dtype)}let _=pe({inputs:{x:k},backend:t,attrs:{shape:w}});return t.disposeIntermediateTensorInfo(b),t.disposeIntermediateTensorInfo(k),_}var fR={kernelName:Ai,backendName:"webgl",kernelFunc:EY};var DY="return tan(x);",$Y=ke({opSnippet:DY}),dR={kernelName:Ei,backendName:"webgl",kernelFunc:$Y};var RY=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,FY=ke({opSnippet:RY}),hR={kernelName:Oo,backendName:"webgl",kernelFunc:FY};var oC=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let o=Le(this.rank),s=OY(e);this.userCode=`
void main() {
${o} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function OY(r){let e=r.length;if(e>5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`imod(resRC, ${r[0]})`;let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],n=[];for(let o=0;o<r.length;o++)n.push(`imod(${t[o]}, ${r[o]})`);return n.join()}function sC(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{reps:s}=n;if(o.dtype==="string"){let u=t.readSync(o.dataId).map(m=>y.decodeString(m)),c=ve(o.shape,o.dtype,u),p=UE(c,s);return t.makeTensorInfo(p.shape,p.dtype,p.values)}let a=new oC(o.shape,s);return t.runWebGLProgram(a,[o],o.dtype)}var gR={kernelName:kn,backendName:"webgl",kernelFunc:sC};function PY(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{k:s,sorted:a}=n,i=t.readSync(o.dataId),[l,u]=HE(i,o.shape,o.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var xR={kernelName:Di,backendName:"webgl",kernelFunc:PY};var iC=class{constructor(e,t,n,o,s,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let i=n==="nearest"?1:2,l;switch(o){case"constant":l=1;break;case"reflect":l=2;break;case"wrap":l=3;break;case"nearest":l=4;break;default:l=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${l} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${l} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${l} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${s});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${s});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function MY(r){let{inputs:e,backend:t,attrs:n}=r,{image:o,transforms:s}=e,{interpolation:a,fillMode:i,fillValue:l,outputShape:u}=n,[c,p,m,f]=o.shape,[d,h]=u!=null?u:[p,m],g=[c,d,h,f],x=new iC(p,m,a,i,l,g);return t.runWebGLProgram(x,[o,s],"float32")}var yR={kernelName:cu,backendName:"webgl",kernelFunc:MY};function LY(r){let{inputs:e,attrs:t,backend:n}=r,{axis:o}=t,{x:s}=e;Rs(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let a=n.readSync(s.dataId),{outputValues:i,outputShape:l,indices:u}=qE(a,o,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,i),n.makeTensorInfo([u.length],"int32",u)]}var bR={kernelName:pu,backendName:"webgl",kernelFunc:LY};function zY(r){let{inputs:e,backend:t,attrs:n}=r,{value:o}=e,{axis:s}=n;s<0&&(s+=o.shape.length);let a=o,i=a.shape.length,l=o.shape[s],u=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==s&&(u[c++]=a.shape[h]);let p=[],m=new Array(i).fill(0),f=a.shape.slice();f[s]=1;let d=new Array(l);for(let h=0;h<d.length;h++){m[s]=h;let g=Ma({inputs:{x:a},backend:t,attrs:{begin:m,size:f}}),x=pe({inputs:{x:g},backend:t,attrs:{shape:u}});d[h]=x,p.push(g)}return p.forEach(h=>t.disposeIntermediateTensorInfo(h)),d}var wR={kernelName:ys,backendName:"webgl",kernelFunc:zY};var aC=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,o=e.batchSize,s=e.inSize,a=e.numSegments,i=a*Math.ceil(s/n);this.outputShape=[o,i];let l="0.0",u="sumValue",c=Math.floor(n/4)*4,p=n%4,m=`
sumValue += dot(values, segFilter);
`,f="";s%n>0&&(f=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`);let d="";s%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${s}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${l};
float getValue(int batch, int inIdx) {
${f}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${d}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${a})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${a})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${m}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${m}
} else if (${p===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${m}
} else if (${p===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${m}
}
setOutput(${u});
}
`}};function BY(r){let{inputs:e,backend:t,attrs:n}=r,{x:o,segmentIds:s}=e,{numSegments:a}=n,i=o.shape.length,l=[],u=0,c=S.getAxesPermutation([u],i),p=o;c!=null&&(p=Lt({inputs:{x:o},backend:t,attrs:{perm:c}}),l.push(p),u=S.getInnerMostAxes(1,i)[0]);let m=S.segment_util.computeOutShape(p.shape,u,a),f=y.sizeFromShape([p.shape[u]]),d=pe({inputs:{x:p},backend:t,attrs:{shape:[-1,f]}});l.push(d);let h=fu(o.dtype),g=(k,_,A,N,$)=>{let F=k.shape[0],M=k.shape[1],V=S.segment_util.segOpComputeOptimalWindowSize(M,$),W={windowSize:V,inSize:M,batchSize:F,numSegments:$},U=new aC(W,_),H=t.compileAndRun(U,[k,A],N);if(l.push(H),H.shape[1]===$)return H;let q=qv({backend:t,attrs:{start:0,stop:$,step:1,dtype:"float32"}}),X=sC({inputs:{x:q},backend:t,attrs:{reps:[M/V]}});return l.push(q),l.push(X),g(H,_,X,N,$)},x=g(d,"unsortedSegmentSum",s,h,a),w=pe({inputs:{x},backend:t,attrs:{shape:m}}),b=w;if(c!=null){l.push(w);let k=S.getUndoAxesPermutation(c);b=Lt({inputs:{x:b},backend:t,attrs:{perm:k}})}return l.forEach(k=>t.disposeIntermediateTensorInfo(k)),b}var kR={kernelName:da,backendName:"webgl",kernelFunc:BY};var VY=[o$,s$,b2,k2,_2,v2,I2,N2,S2,T2,D2,$2,R2,F2,P2,O2,M2,z2,L2,B2,V2,G2,W2,U2,H2,Y2,J2,Q2,tD,a2,oD,iD,aD,sD,uD,cD,lD,pD,mD,fD,gD,xD,yD,wD,kD,bD,_D,vD,CD,ID,ND,SD,AD,ED,$D,RD,FD,OD,MD,LD,zD,BD,VD,GD,WD,jD,UD,i2,HD,rD,qD,KD,XD,l2,YD,ZD,JD,e$,QD,t$,r$,n$,a$,c$,u$,p$,m$,d$,l$,g$,x$,y$,b$,w$,I$,f2,S$,T$,A$,E$,q2,D$,F$,O$,P$,M$,u2,L$,z$,K2,k$,B$,G$,V$,h2,W$,j$,U$,H$,q$,K$,X$,Y$,Z$,J$,Q$,eR,tR,rR,nR,j2,C$,oR,sR,iR,aR,lR,uR,pR,mR,fR,v$,x2,dR,hR,gR,xR,yR,y2,bR,wR,kR,$$];for(let r of VY)el(r);var zt;(function(r){r[r.float32=0]="float32",r[r.int32=1]="int32",r[r.bool=2]="bool",r[r.string=3]="string",r[r.complex64=4]="complex64"})(zt||(zt={}));var yl;(function(r){r[r.linear=0]="linear",r[r.relu=1]="relu",r[r.relu6=2]="relu6",r[r.prelu=3]="prelu",r[r.leakyrelu=4]="leakyrelu"})(yl||(yl={}));var _R;function GY(r){_R=r.wasm.cwrap(ws,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function WY(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s,bias:a,preluActivationWeights:i}=e;if(o.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=n,m=t.dataIdMap.get(o.dataId).id,f=t.dataIdMap.get(s.dataId).id,d=0;if(a!=null){let $=t.dataIdMap.get(a.dataId);if($.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${$.shape.length}.`);d=$.id}let h=i==null?0:t.dataIdMap.get(i.dataId).id,g=yl[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let x=l?o.shape[2]:o.shape[1],w=u?s.shape[1]:s.shape[2],b=o.shape[0],k=t.makeOutput([b,x,w],o.dtype),_=t.dataIdMap.get(k.dataId).id,A=new Uint8Array(new Int32Array(o.shape).buffer),N=new Uint8Array(new Int32Array(s.shape).buffer);return _R(m,A,o.shape.length,f,N,s.shape.length,l,u,g,d,h,p||0,_),k}var vR={kernelName:ws,backendName:"wasm",setupFunc:GY,kernelFunc:WY};function St(r){let e;function t(o){e=o.wasm.cwrap(r,null,["number","number"])}function n(o){let{backend:s,inputs:{x:a}}=o,i=s.dataIdMap.get(a.dataId).id,l=s.makeOutput(a.shape,a.dtype),u=s.dataIdMap.get(l.dataId).id;return y.sizeFromShape(l.shape)===0||e(i,u),l}return{kernelName:r,backendName:"wasm",setupFunc:t,kernelFunc:n}}var CR=St(as);function yt(r,e,t){let n;function o(a){n=a.wasm.cwrap(r,null,["number","array","number","number","array","number","number","number"])}function s(a){let{backend:i,inputs:l}=a,{a:u,b:c}=l,p=i.dataIdMap.get(u.dataId).id,m=i.dataIdMap.get(c.dataId).id,f=t!=null?t:u.dtype,d=S.assertAndGetBroadcastShape(u.shape,c.shape),h=i.makeOutput(d,f);if(y.sizeFromShape(d)===0)return h;let g=new Uint8Array(new Int32Array(u.shape).buffer),x=new Uint8Array(new Int32Array(c.shape).buffer),w=i.dataIdMap.get(h.dataId).id,b=()=>n(p,g,u.shape.length,m,x,c.shape.length,zt[u.dtype],w);if(e&&u.dtype==="float32")return b(),h;let k=S.getBroadcastDims(u.shape,d),_=S.getBroadcastDims(c.shape,d),A=k.every(($,F)=>$===F),N=_.every(($,F)=>$===F);if(A&&N)return b(),h;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${r}.`)}return{kernelName:r,backendName:"wasm",setupFunc:o,kernelFunc:s}}var jY=!0,IR=yt(wn,jY);var NR;function UY(r){NR=r.wasm.cwrap(Hn,null,["array","number","number","number"])}function HY(r){let{inputs:e,backend:t}=r,n=t.makeOutput(e[0].shape,e[0].dtype);if(y.sizeFromShape(n.shape)===0)return n;let o=e.map(i=>t.dataIdMap.get(i.dataId).id),s=new Uint8Array(new Int32Array(o).buffer),a=t.dataIdMap.get(n.dataId).id;return NR(s,o.length,zt[n.dtype],a),n}var SR={kernelName:Hn,backendName:"wasm",setupFunc:UY,kernelFunc:HY};function nc(r){let{inputs:{x:e},backend:t}=r,n=t.makeOutput(e.shape,e.dtype),o=t.typedArrayFromHeap(e);return t.typedArrayFromHeap(n).set(o),n}var TR={kernelName:Fn,backendName:"wasm",kernelFunc:nc};var AR;function qY(r){AR=r.wasm.cwrap(Po,null,["number","array","number","number","number","array","number"])}function vp(r){let{inputs:e,backend:t,attrs:n}=r,[o,s]=XY(e.x.shape,n.perm),a=!0;for(let d=0;d<s.length;d++)s[d]!==d&&(a=!1);let i=KY(e.x.shape,n.perm),l={dataId:e.x.dataId,shape:o,dtype:e.x.dtype};if(a){let d=nc({inputs:e,backend:t});return d.shape=i,d}let u=t.makeOutput(i,l.dtype),c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,m=new Uint8Array(new Int32Array(s).buffer),f=new Uint8Array(new Int32Array(l.shape).buffer);return AR(c,f,l.shape.length,zt[l.dtype],p,m,s.length),u}function KY(r,e){let t=new Array(r.length);for(let n=0;n<t.length;n++)t[n]=r[e[n]];return t}function XY(r,e){let t=[],n=[];for(let o=0;o<r.length;++o)r[o]!==1&&t.push(r[o]),r[e[o]]!==1&&n.push(e[o]);for(let o=0;o<n.length;++o){let s=-1;for(let a=0;a<n.length;++a)n[a]>=o&&(s===-1||n[s]>n[a])&&(s=a);n[s]=o}return[t,n]}var ER={kernelName:Po,backendName:"wasm",kernelFunc:vp,setupFunc:qY};function Yo(r,e,t){let n=r.shape,o=r.shape.length,s=y.parseAxisParam(e,n),a=s,i=S.getAxesPermutation(a,o),l=null,u=!1;if(i!=null){let c=new Array(o);for(let f=0;f<c.length;f++)c[f]=n[i[f]];a=S.getInnerMostAxes(a.length,o),l=vp({inputs:{x:r},attrs:{perm:i},backend:t});let p=t.dataIdMap.get(r.dataId).id;t.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:s,axes:a,inputWasTransposed:u}}var DR;function YY(r){DR=r.wasm.cwrap(qn,null,["number","number","number","number","number"])}function ZY(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o}=n,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=a,l=s,{transposed:u,axes:c,inputWasTransposed:p}=Yo(s,o,e);if(p){let x=e.dataIdMap.get(u.dataId).id;x!==a&&(l=u,i=x)}let m=l.shape.slice(0,-1),f=e.makeOutput(m,"int32"),d=e.dataIdMap.get(f.dataId).id,h=y.sizeFromShape(f.shape),g=l.shape[c[0]];return DR(i,zt[l.dtype],h,g,d),p&&e.disposeData(u.dataId),f}var $R={kernelName:qn,backendName:"wasm",kernelFunc:ZY,setupFunc:YY};var RR;function JY(r){RR=r.wasm.cwrap(Kn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function QY(r){let{inputs:e,attrs:t,backend:n}=r,o=e.x,s=n.dataIdMap.get(o.dataId).id,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=t,c=S.computePool2DInfo(o.shape,a,i,1,l,u),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.strideHeight,w=c.strideWidth,b=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let k=n.makeOutput(c.outShape,"float32"),_=n.dataIdMap.get(k.dataId).id;return RR(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,x,w,b,_),k}var FR={kernelName:Kn,backendName:"wasm",setupFunc:JY,kernelFunc:QY};function Mr(r){let{inputs:e,attrs:t}=r,{x:n}=e,{shape:o}=t,s=y.sizeFromShape(n.shape),a=y.inferFromImplicitShape(o,s);return y.assert(s===y.sizeFromShape(a),()=>`new shape: ${a}, old shape: ${n.shape}. New shape and old shape must have the same number of elements.`),r.backend.incRef(n.dataId),{dataId:n.dataId,shape:a,dtype:n.dtype}}var OR={kernelName:ds,backendName:"wasm",kernelFunc:Mr};var PR;function e9(r){PR=r.wasm.cwrap(Xn,null,["number","array","number","number","array","number","number","number","number"])}function t9(r){let{inputs:e,backend:t,attrs:n}=r,{a:o,b:s}=e,{transposeA:a,transposeB:i}=n;if(o.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=o.shape.length,u=s.shape.length,c=a?o.shape[l-2]:o.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?o.shape[l-1]:o.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),w=g===x||g===1||x===1;y.assert(l>=2&&u>=2&&w,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let k=(g>x?o.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let _=a?[g,c,m]:[g,m,c],A=i?[x,f,p]:[x,p,f],N=Mr({inputs:{x:o},backend:t,attrs:{shape:_}}),$=Mr({inputs:{x:s},backend:t,attrs:{shape:A}}),F=t.dataIdMap.get(N.dataId).id,M=t.dataIdMap.get($.dataId).id,V=a?N.shape[2]:N.shape[1],W=i?$.shape[1]:$.shape[2],U=Math.max(g,x),H=t.makeOutput([U,V,W],N.dtype),q=t.dataIdMap.get(H.dataId).id,X=new Uint8Array(new Int32Array(N.shape).buffer),ne=new Uint8Array(new Int32Array($.shape).buffer);return PR(F,X,N.shape.length,M,ne,$.shape.length,a,i,q),t.disposeData(N.dataId),t.disposeData($.dataId),H.shape=k,H}var MR={kernelName:Xn,backendName:"wasm",setupFunc:e9,kernelFunc:t9};function oc(r){let{inputs:{x:e},attrs:{dtype:t},backend:n}=r,o=n.makeOutput(e.shape,t),s=n.typedArrayFromHeap(e);return n.typedArrayFromHeap(o).set(s),o}var LR={kernelName:$n,backendName:"wasm",kernelFunc:oc};var zR=St(Yn);var BR;function r9(r){BR=r.wasm.cwrap(Rn,null,["number","number","number","number"])}function n9(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{clipValueMin:s,clipValueMax:a}=n,i=t.dataIdMap.get(o.dataId).id,l=t.makeOutput(o.shape,o.dtype),u=t.dataIdMap.get(l.dataId).id;return BR(i,s,a,u),l}var VR={kernelName:Rn,backendName:"wasm",setupFunc:r9,kernelFunc:n9};function lC(r){let{inputs:e,backend:t}=r,n=y.parseAxisParam(r.attrs.axis,e[0].shape)[0],o=S.computeOutShape(e.map(f=>f.shape),n),s=e.filter(f=>y.sizeFromShape(f.shape)>0);if(s.length===1)return nc({inputs:{x:s[0]},backend:t});let a=t.makeOutput(o,e[0].dtype);if(y.sizeFromShape(o)===0)return a;let i=s.map(f=>f.shape);if(S.assertParamsConsistent(i,n),s[0].dtype==="string"){let f=s.map(b=>{let k=y.sizeFromShape(b.shape.slice(n));return Mr({inputs:{x:b},backend:t,attrs:{shape:[-1,k]}})}),d=f.map(b=>({vals:t.readSync(b.dataId),shape:b.shape}));o=S.computeOutShape(f.map(b=>b.shape),1);let h=f[0].shape[0]===1,g=sf(d,o,e[0].dtype,h),x=S.computeOutShape(s.map(b=>b.shape),n);a.shape=x;let w=t.dataIdMap.get(a.dataId);return w.stringBytes=S.fromStringArrayToUint8(g),f.forEach(b=>t.disposeData(b.dataId)),a}let l=y.sizeFromShape(s[0].shape.slice(0,n)),u=0,c=s.map(f=>{let d=y.sizeFromShape(f.shape.slice(n));return u+=d,d}),p=s.map(f=>t.typedArrayFromHeap(f)),m=t.typedArrayFromHeap(a);for(let f=0;f<l;f++){let d=f*u;for(let h=0;h<p.length;h++){let g=c[h],x=f*g,w=p[h].subarray(x,x+g);m.set(w,d),d+=g}}return a}var GR={kernelName:ls,backendName:"wasm",kernelFunc:lC};var WR;function o9(r){WR=r.wasm.cwrap(Zn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function s9(r){let{inputs:e,attrs:t,backend:n}=r,{x:o,filter:s}=e,a=n.dataIdMap.get(o.dataId).id,i=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p,dataFormat:m}=t,f=S.convertConv2DDataFormat(m),d=S.computeConv2DInfo(o.shape,s.shape,l,u,c,p,!1,f),h=d.filterHeight,g=d.filterWidth,x=d.padInfo.top,w=d.padInfo.right,b=d.padInfo.bottom,k=d.padInfo.left,_=d.dilationHeight,A=d.dilationWidth,N=d.strideHeight,$=d.strideWidth,F=d.inChannels,M=d.outChannels,V=d.padInfo.type==="SAME"?1:0;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let W=n.makeOutput(d.outShape,"float32"),U=n.dataIdMap.get(W.dataId).id;return WR(a,o.shape[0],o.shape[1],o.shape[2],i,h,g,x,w,b,k,V,_,A,N,$,F,M,U),W}var jR={kernelName:Zn,backendName:"wasm",setupFunc:o9,kernelFunc:s9};var UR;function i9(r){UR=r.wasm.cwrap(Jn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function a9(r){let{backend:e,inputs:t,attrs:n}=r,{dy:o,filter:s}=t,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=n,p=1,m=S.convertConv2DDataFormat(l),f=S.computeConv2DInfo(c,s.shape,a,p,i,u,!1,m),{batchSize:d,filterHeight:h,filterWidth:g,inChannels:x,inHeight:w,inWidth:b,outChannels:k,outHeight:_,outWidth:A,strideHeight:N,strideWidth:$}=f,F=h-1-f.padInfo.top,M=g-1-f.padInfo.left,V=f.dataFormat==="channelsLast",W=y.computeStrides(f.inShape),U=y.computeStrides(o.shape),[H,q,X]=y.computeStrides(s.shape),ne=W[0],Y=V?W[1]:W[2],re=V?W[2]:1,J=V?1:W[1],ie=U[0],ue=V?U[1]:U[2],ae=V?U[2]:1,fe=V?1:U[1],de=e.makeOutput(f.inShape,"float32"),xe=e.dataIdMap.get(de.dataId).id,we=e.dataIdMap.get(o.dataId).id,De=e.dataIdMap.get(s.dataId).id;return UR(we,De,d,h,g,w,b,x,_,A,k,N,$,F,M,H,q,X,ne,Y,re,J,ie,ue,ae,fe,xe),de}var HR={kernelName:Jn,backendName:"wasm",setupFunc:i9,kernelFunc:a9};var qR=St(Qn);var uC;(function(r){r[r.bilinear=0]="bilinear",r[r.nearest=1]="nearest"})(uC||(uC={}));var KR;function l9(r){KR=r.wasm.cwrap(ti,null,["number","number","number","number","array","number","number","number","number","number"])}function u9(r){let{backend:e,inputs:t,attrs:n}=r,{method:o,extrapolationValue:s,cropSize:a}=n,{image:i,boxes:l,boxInd:u}=t,c=l.shape[0],[p,m]=a,f=[c,p,m,i.shape[3]],d=e.dataIdMap.get(i.dataId),h;i.dtype!=="float32"&&(h=oc({backend:e,inputs:{x:i},attrs:{dtype:"float32"}}),d=e.dataIdMap.get(h.dataId));let g=d.id,x=e.dataIdMap.get(l.dataId).id,w=e.dataIdMap.get(u.dataId).id,b=e.makeOutput(f,"float32"),k=e.dataIdMap.get(b.dataId).id,_=new Uint8Array(new Int32Array(i.shape).buffer);return KR(g,x,w,c,_,p,m,uC[o],s,k),h!=null&&e.disposeData(h.dataId),b}var XR={kernelName:ti,backendName:"wasm",setupFunc:l9,kernelFunc:u9};var YR;function c9(r){YR=r.wasm.cwrap(eo,null,["number","number","number","number","number","number"])}function p9(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{axis:s,exclusive:a,reverse:i}=n,l=o.shape.length;y.assert(o.dtype==="float32"||o.dtype==="int32",()=>`cumsum does not support ${o.dtype} tensors in the WASM backend`);let u=S.getAxesPermutation([s],l),c=o;u!==null&&(c=vp({inputs:{x:o},attrs:{perm:u},backend:t}));let p=S.getInnerMostAxes(1,l)[0];S.assertAxesAreInnerMostDims("cumsum",[p],l);let m=t.makeOutput(c.shape,c.dtype),f=c.shape[p],d=t.dataIdMap.get(c.dataId).id,h=t.dataIdMap.get(m.dataId).id;YR(d,a?1:0,i?1:0,f,h,zt[o.dtype]);let g=m;if(u!==null){let x=S.getUndoAxesPermutation(u);g=vp({inputs:{x:m},attrs:{perm:x},backend:t}),t.disposeData(c.dataId),t.disposeData(m.dataId)}return g}var ZR={kernelName:eo,backendName:"wasm",setupFunc:c9,kernelFunc:p9};var JR;function m9(r){JR=r.wasm.cwrap(ri,null,["number","number","number","array","number","array","array","number","number"])}function f9(r){let{backend:e,inputs:t,attrs:n}=r,{x:o}=t,{blockSize:s,dataFormat:a}=n;y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=o.shape[0],l=a==="NHWC"?o.shape[1]:o.shape[2],u=a==="NHWC"?o.shape[2]:o.shape[3],c=a==="NHWC"?o.shape[3]:o.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=e.makeOutput(d,"float32"),x=e.dataIdMap.get(o.dataId).id,w=new Uint8Array(new Int32Array(y.computeStrides(o.shape)).buffer),b=new Uint8Array(new Int32Array(d).buffer),k=new Uint8Array(new Int32Array(y.computeStrides(d)).buffer),_=e.dataIdMap.get(h.dataId).id;return JR(x,s,a==="NHWC"?1:0,w,o.shape.length-1,b,k,d.length,_),h}var QR={kernelName:ri,backendName:"wasm",setupFunc:m9,kernelFunc:f9};var eF;function d9(r){eF=r.wasm.cwrap(to,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function h9(r){let{inputs:e,attrs:t,backend:n}=r,{x:o,filter:s}=e,a=n.dataIdMap.get(o.dataId).id,i=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p}=t,m=u==null?[1,1]:u,f=S.computeConv2DInfo(o.shape,s.shape,l,m,c,p,!0),d=f.filterHeight,h=f.filterWidth,g=f.padInfo.top,x=f.padInfo.right,w=f.padInfo.bottom,b=f.padInfo.left,k=f.dilationHeight,_=f.dilationWidth,A=f.strideHeight,N=f.strideWidth,$=f.inChannels,F=f.outChannels,M=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let V=n.makeOutput(f.outShape,"float32"),W=n.dataIdMap.get(V.dataId).id;return eF(a,o.shape[0],o.shape[1],o.shape[2],i,d,h,g,x,w,b,M,k,_,A,N,$,F,W),V}var tF={kernelName:to,backendName:"wasm",setupFunc:d9,kernelFunc:h9};var g9=!1,rF=yt(si,g9,"bool");var nF=St(no);function rx(r){let{inputs:e,attrs:t,backend:n}=r,{input:o}=e,{dim:s}=t,a=o.shape.length,i=o.shape.slice(),l=s;return s<0&&(y.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),Mr({inputs:{x:o},backend:n,attrs:{shape:i}})}var oF={kernelName:us,backendName:"wasm",kernelFunc:rx};function x9(r){let{attrs:{shape:e,value:t,dtype:n},backend:o}=r,s=o.makeOutput(e,n);return o.typedArrayFromHeap(s).fill(t),s}var sF={kernelName:ia,backendName:"wasm",kernelFunc:x9};var iF;function y9(r){iF=r.wasm.cwrap(ai,null,["number","number","number","number","number","number"])}function b9(r){let{inputs:e,backend:t}=r,{image:n}=e,o=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(n.dataId).id,a=t.dataIdMap.get(o.dataId).id,[i,l,u,c]=n.shape;return iF(s,i,l,u,c,a),o}var aF={kernelName:ai,backendName:"wasm",kernelFunc:b9,setupFunc:y9};var lF=St(oo);var w9=!1,uF=yt(so,w9);var cF;function k9(r){cF=r.wasm.cwrap(io,null,["number","number","number","number","number","number","number"])}function _9(r){let{backend:e,inputs:t,attrs:n}=r,{varianceEpsilon:o}=n,{x:s,mean:a,variance:i,offset:l,scale:u}=t,c=e.dataIdMap.get(s.dataId).id,p=e.dataIdMap.get(a.dataId).id,m=e.dataIdMap.get(i.dataId).id,f=l!=null?e.dataIdMap.get(l.dataId).id:0,d=u!=null?e.dataIdMap.get(u.dataId).id:0,h=e.makeOutput(s.shape,s.dtype);if(y.sizeFromShape(s.shape)===0)return h;let g=e.dataIdMap.get(h.dataId).id;return cF(c,p,m,f,d,o,g),h}var pF={kernelName:io,backendName:"wasm",setupFunc:k9,kernelFunc:_9};var mF;function v9(r){mF=r.wasm.cwrap(ks,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function C9(r){let{inputs:e,attrs:t,backend:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=S.computeConv2DInfo(o.shape,s.shape,l,c,u,m),g=yl[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedConv2D in the wasm backend.`);let x=n.dataIdMap.get(o.dataId).id,w=n.dataIdMap.get(s.dataId).id,b=h.outChannels,k=0;if(a!=null){let ae=n.dataIdMap.get(a.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==b)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${b})`);k=ae.id}let _=h.filterHeight,A=h.filterWidth,N=h.padInfo.top,$=h.padInfo.right,F=h.padInfo.bottom,M=h.padInfo.left,V=h.dilationHeight,W=h.dilationWidth,U=h.strideHeight,H=h.strideWidth,q=h.inChannels,X=h.padInfo.type==="SAME"?1:0,ne=h.batchSize,Y=h.inHeight,re=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let J=n.makeOutput(h.outShape,"float32"),ie=n.dataIdMap.get(J.dataId).id,ue=i==null?0:n.dataIdMap.get(i.dataId).id;return mF(x,ne,Y,re,w,_,A,k,N,$,F,M,X,V,W,U,H,q,b,g,ue,d||0,ie),J}var fF={kernelName:ks,backendName:"wasm",setupFunc:v9,kernelFunc:C9};var dF;function I9(r){dF=r.wasm.cwrap(_s,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function N9(r){let{inputs:e,attrs:t,backend:n}=r,{x:o,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=S.computeConv2DInfo(o.shape,s.shape,l,c,u,m,!0),g=yl[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let x=n.dataIdMap.get(o.dataId).id,w=n.dataIdMap.get(s.dataId).id,b=h.outChannels,k=0;if(a!=null){let ae=n.dataIdMap.get(a.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==b)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${b})`);k=ae.id}let _=h.filterHeight,A=h.filterWidth,N=h.padInfo.top,$=h.padInfo.right,F=h.padInfo.bottom,M=h.padInfo.left,V=h.dilationHeight,W=h.dilationWidth,U=h.strideHeight,H=h.strideWidth,q=h.inChannels,X=h.padInfo.type==="SAME"?1:0,ne=h.batchSize,Y=h.inHeight,re=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let J=n.makeOutput(h.outShape,"float32"),ie=n.dataIdMap.get(J.dataId).id,ue=i==null?0:n.dataIdMap.get(i.dataId).id;return dF(x,ne,Y,re,w,_,A,k,N,$,F,M,X,V,W,U,H,q,b,g,ue,d||0,ie),J}var hF={kernelName:_s,backendName:"wasm",setupFunc:I9,kernelFunc:N9};var gF;function S9(r){gF=r.wasm.cwrap(li,null,["number","number","number","number","number","number","array","number"])}function T9(r){let{backend:e,inputs:t}=r,{params:n,indices:o}=t,[s,a,i,l]=Zh.prepareAndValidate(n,o),u=e.makeOutput(s,n.dtype);if(a===0)return u;let c=o.shape,p=c[c.length-1],f=e.dataIdMap.get(n.dataId).id,h=e.dataIdMap.get(o.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),x=e.dataIdMap.get(u.dataId).id;return gF(f,zt[n.dtype],h,a,p,i,g,x),u}var xF={kernelName:li,backendName:"wasm",setupFunc:S9,kernelFunc:T9};var yF;function A9(r){yF=r.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function E9(r){let{backend:e,inputs:t,attrs:n}=r,{x:o,indices:s}=t,{axis:a,batchDims:i}=n,l=y.parseAxisParam(a,o.shape)[0],u=S.segment_util.collectGatherOpShapeInfo(o,s,l,i),c=Mr({inputs:{x:o},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:e}),p=y.sizeFromShape(s.shape),m=Mr({inputs:{x:s},attrs:{shape:[u.batchSize,p/u.batchSize]},backend:e}),f=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize],d=e.makeOutput(f,o.dtype);if(y.sizeFromShape(o.shape)===0)return d;let h=c.shape.length-1,x=e.dataIdMap.get(c.dataId).id,b=e.dataIdMap.get(m.dataId).id,k=e.dataIdMap.get(d.dataId).id,_=new Uint8Array(new Int32Array(y.computeStrides(c.shape)).buffer),A=new Uint8Array(new Int32Array(y.computeStrides(f)).buffer);return yF(x,zt[o.dtype],_,h,b,u.batchSize,A,k),e.disposeData(c.dataId),e.disposeData(m.dataId),d.shape=u.outputShape,d}var bF={kernelName:cs,backendName:"wasm",setupFunc:A9,kernelFunc:E9};var D9=!1,wF=yt(ui,D9,"bool");var $9=!1,kF=yt(ao,$9,"bool");var _F;function R9(r){_F=r.wasm.cwrap(lo,null,["number","number","number"])}function F9(r){let{inputs:{x:e},attrs:{alpha:t},backend:n}=r,o=n.dataIdMap.get(e.dataId).id,s=n.makeOutput(e.shape,e.dtype);if(y.sizeFromShape(e.shape)!==0){let a=n.dataIdMap.get(s.dataId).id;_F(o,t,a)}return s}var vF={kernelName:lo,backendName:"wasm",setupFunc:R9,kernelFunc:F9};var O9=!1,CF=yt(fi,O9,"bool");var P9=!1,IF=yt(di,P9,"bool");var NF=St(uo);var M9=!1,SF=yt(gi,M9,"bool");var TF;function L9(r){TF=r.wasm.cwrap(co,null,["number, number, number"])}function z9(r){let{backend:e,inputs:t,attrs:n}=r,{reductionIndices:o,keepDims:s}=n,{x:a}=t,l=e.dataIdMap.get(a.dataId).id,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Yo(a,o,e);if(f){let b=e.dataIdMap.get(c.dataId).id;u=c,l=b}let d=u.shape.length;S.assertAxesAreInnerMostDims("max",p,d);let[h,g]=S.computeOutAndReduceShapes(u.shape,p),x=y.sizeFromShape(g),w=e.makeOutput(h,a.dtype);if(y.sizeFromShape(u.shape)!==0){let b=e.dataIdMap.get(w.dataId).id;TF(l,x,b)}if(f&&e.disposeData(c.dataId),s){let b=S.expandShapeToKeepDim(w.shape,m);w.shape=b}return w}var AF={kernelName:co,backendName:"wasm",setupFunc:L9,kernelFunc:z9};var B9=!1,EF=yt(po,B9);var DF;function V9(r){DF=r.wasm.cwrap(mo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function G9(r){let{inputs:e,attrs:t,backend:n}=r,o=e.x,s=n.dataIdMap.get(o.dataId).id,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=t,c=S.computePool2DInfo(o.shape,a,i,1,l,u),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.dilationHeight,w=c.dilationWidth,b=c.strideHeight,k=c.strideWidth,_=c.inChannels,A=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let N=n.makeOutput(c.outShape,"float32"),$=n.dataIdMap.get(N.dataId).id;return DF(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,x,w,b,k,_,A,$),N}var $F={kernelName:mo,backendName:"wasm",setupFunc:V9,kernelFunc:G9};var RF;function W9(r){RF=r.wasm.cwrap(fo,null,["number, number, number"])}function j9(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Yo(a,o,e),d=p;if(f){let k=e.dataIdMap.get(c.dataId).id;k!==i&&(u=c,l=k,d=S.getInnerMostAxes(d.length,u.shape.length))}S.assertAxesAreInnerMostDims("mean",d,u.shape.length);let[h,g]=S.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),w=u;u.dtype!=="float32"&&(w=oc({backend:e,inputs:{x:u},attrs:{dtype:"float32"}}),l=e.dataIdMap.get(w.dataId).id);let b=e.makeOutput(h,"float32");if(y.sizeFromShape(u.shape)!==0){let k=e.dataIdMap.get(b.dataId).id;RF(l,x,k)}if(f&&e.disposeData(c.dataId),s){let k=S.expandShapeToKeepDim(b.shape,m);b.shape=k}return u.dtype!=="float32"&&e.disposeData(w.dataId),b}var FF={kernelName:fo,backendName:"wasm",setupFunc:W9,kernelFunc:j9};var OF;function U9(r){OF=r.wasm.cwrap(ho,null,["number, number, number"])}function H9(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Yo(a,o,e);if(f){let b=e.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b)}let d=u.shape.length;S.assertAxesAreInnerMostDims("min",p,d);let[h,g]=S.computeOutAndReduceShapes(u.shape,p),x=y.sizeFromShape(g),w=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let b=e.dataIdMap.get(w.dataId).id;OF(l,x,b)}if(f&&e.disposeData(c.dataId),s){let b=S.expandShapeToKeepDim(w.shape,m);w.shape=b}return w}var PF={kernelName:ho,backendName:"wasm",setupFunc:U9,kernelFunc:H9};var q9=!1,MF=yt(go,q9);var K9=!0,LF=yt(xo,K9);var zF=St(ps);function Cp(r,e){let t=new Int32Array(r.wasm.HEAPU8.buffer,e,4),n=t[0],o=t[1],s=t[2],a=t[3];return r.wasm._free(e),{pSelectedIndices:n,selectedSize:o,pSelectedScores:s,pValidOutputs:a}}var BF;function X9(r){BF=r.wasm.cwrap(bi,"number",["number","number","number","number","number"])}function Y9(r){let{backend:e,inputs:t,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:a}=n,{boxes:i,scores:l}=t,u=e.dataIdMap.get(i.dataId).id,c=e.dataIdMap.get(l.dataId).id,p=BF(u,c,s,o,a),{pSelectedIndices:m,selectedSize:f,pSelectedScores:d,pValidOutputs:h}=Cp(e,p);return e.wasm._free(d),e.wasm._free(h),e.makeOutput([f],"int32",m)}var VF={kernelName:bi,backendName:"wasm",setupFunc:X9,kernelFunc:Y9};var GF;function Z9(r){GF=r.wasm.cwrap(wi,"number",["number","number","number","number","number","bool"])}function J9(r){let{backend:e,inputs:t,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:a,padToMaxOutputSize:i}=n,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=GF(c,p,s,o,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Cp(e,m);e.wasm._free(h);let x=e.makeOutput([d],"int32",f),w=e.makeOutput([],"int32",g);return[x,w]}var WF={kernelName:wi,backendName:"wasm",setupFunc:Z9,kernelFunc:J9};var jF;function Q9(r){jF=r.wasm.cwrap(ki,"number",["number","number","number","number","number","number"])}function eZ(r){let{backend:e,inputs:t,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:a,softNmsSigma:i}=n,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=jF(c,p,s,o,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Cp(e,m);e.wasm._free(g);let x=e.makeOutput([d],"int32",f),w=e.makeOutput([d],"float32",h);return[x,w]}var UF={kernelName:ki,backendName:"wasm",setupFunc:Q9,kernelFunc:eZ};var tZ=!1,HF=yt(yi,tZ,"bool");var qF;function rZ(r){qF=r.wasm.cwrap(yo,null,["number","number","number","number","number"])}function nZ(r){let{inputs:e,backend:t,attrs:n}=r,{indices:o}=e,{depth:s,onValue:a,offValue:i}=n,l=t.makeOutput([...o.shape,s],"int32"),u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(o.dataId).id;return qF(p,s,a,i,u),l}var KF={kernelName:yo,backendName:"wasm",setupFunc:rZ,kernelFunc:nZ};function oZ(r){let{inputs:{x:e},backend:t}=r,n=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(n).fill(1),n}var XF={kernelName:ms,backendName:"wasm",kernelFunc:oZ};function sZ(r){let{inputs:e,backend:t,attrs:n}=r,{axis:o}=n;if(e.length===1)return rx({inputs:{input:e[0]},backend:t,attrs:{dim:o}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=rx({inputs:{input:c},backend:t,attrs:{dim:o}});return i.push(p),p}),u=lC({inputs:l,backend:t,attrs:{axis:o}});return i.forEach(c=>t.disposeData(c.dataId)),u}var YF={kernelName:fs,backendName:"wasm",kernelFunc:sZ};var ZF;function iZ(r){ZF=r.wasm.cwrap(bo,null,["number","array","number","number","array","array","number","number"])}function aZ(r){let{inputs:{x:e},backend:t,attrs:{paddings:n,constantValue:o}}=r,s=n.map((d,h)=>d[0]+e.shape[h]+d[1]),a=t.dataIdMap.get(e.dataId).id,i=t.makeOutput(s,e.dtype),l=t.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(e.shape).buffer),c=n.map(d=>d[0]),p=n.map(d=>d[1]),m=new Uint8Array(new Int32Array(c).buffer),f=new Uint8Array(new Int32Array(p).buffer);return ZF(a,u,e.shape.length,zt[e.dtype],m,f,o,l),i}var JF={kernelName:bo,backendName:"wasm",kernelFunc:aZ,setupFunc:iZ};var lZ=!1,QF=yt(wo,lZ);var eO;function uZ(r){eO=r.wasm.cwrap(ko,null,["number","number","number"])}function cZ(r){let{inputs:e,backend:t}=r,{x:n,alpha:o}=e,s=t.dataIdMap.get(n.dataId).id,a=t.dataIdMap.get(o.dataId).id,i=t.makeOutput(n.shape,"float32"),l=t.dataIdMap.get(i.dataId).id;return eO(s,a,l),i}var tO={kernelName:ko,backendName:"wasm",setupFunc:uZ,kernelFunc:cZ};var rO;function pZ(r){rO=r.wasm.cwrap(_i,null,["number","number","number","number"])}function mZ(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Yo(a,o,e),d=p;if(f){let b=e.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,d=S.getInnerMostAxes(d.length,u.shape.length))}S.assertAxesAreInnerMostDims("prod",d,u.shape.length);let[h,g]=S.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),w=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let b=e.dataIdMap.get(w.dataId).id;rO(l,x,zt[w.dtype],b)}if(f&&e.disposeData(c.dataId),s){let b=S.expandShapeToKeepDim(w.shape,m);w.shape=b}return w}var nO={kernelName:_i,backendName:"wasm",setupFunc:pZ,kernelFunc:mZ};var fZ=r=>{let{backend:e,attrs:t}=r,{start:n,stop:o,step:s,dtype:a}=t,i=uf(n,o,s,a),l=e.makeOutput([i.length],a);return e.typedArrayFromHeap(l).set(i),l},oO={kernelName:ca,backendName:"wasm",kernelFunc:fZ};var dZ=!0,sO=yt(ro,dZ);var iO=St(_o);var aO=St(Co);var lO;function hZ(r){lO=r.wasm.cwrap(vo,null,["number","number","number","number","number","number","number","number","number","number"])}function gZ(r){let{backend:e,inputs:t,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:a,size:i}=n,[l,u]=i,[c,p,m,f]=o.shape,d=[c,l,u,f],h=e.dataIdMap.get(o.dataId),g;h.dtype!=="float32"&&(g=oc({backend:e,inputs:{x:o},attrs:{dtype:"float32"}}),h=e.dataIdMap.get(g.dataId));let x=h.id,w=e.makeOutput(d,"float32");if(y.sizeFromShape(o.shape)===0)return w;let b=e.dataIdMap.get(w.dataId).id;return lO(x,c,p,m,f,l,u,s?1:0,a?1:0,b),g!=null&&e.disposeData(g.dataId),w}var uO={kernelName:vo,backendName:"wasm",setupFunc:hZ,kernelFunc:gZ};var cO;function xZ(r){cO=r.wasm.cwrap(Io,null,["number","array","number","array","number","number"])}function yZ(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,{dims:s}=n,a=y.parseAxisParam(s,o.shape);if(o.shape.length===0)return nc({inputs:{x:o},backend:t});let i=t.makeOutput(o.shape,o.dtype),l=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(a).buffer),p=new Uint8Array(new Int32Array(o.shape).buffer);cO(l,c,a.length,p,o.shape.length,u);let m=Mr({inputs:{x:i},attrs:{shape:o.shape},backend:t});return t.disposeData(i.dataId),m}var pO={kernelName:Io,backendName:"wasm",kernelFunc:yZ,setupFunc:xZ};var mO;function bZ(r){mO=r.wasm.cwrap($i,null,["number","number","number","number","number","number","number","number","array","number","number"])}function wZ(r){let{inputs:e,backend:t,attrs:n}=r,{image:o}=e,{radians:s,fillValue:a,center:i}=n,l=t.makeOutput(o.shape,o.dtype),u=t.dataIdMap.get(o.dataId).id,c=t.dataIdMap.get(l.dataId).id,[p,m,f,d]=o.shape,[h,g]=S.getImageCenter(i,m,f),x=a===0,w=255,b=typeof a=="number"?[a,a,a,x?0:w]:[...a,w],k=new Uint8Array(new Int32Array(b).buffer);return mO(u,p,m,f,d,s,h,g,k,b.length,c),l}var fO={kernelName:$i,backendName:"wasm",kernelFunc:wZ,setupFunc:bZ};var dO=St(No);var hO=St(So);var gO;function kZ(r){gO=r.wasm.cwrap(Ci,null,["number","number","number","number","number","number","array","number","number"])}function _Z(r){let{backend:e,inputs:t,attrs:n}=r,{indices:o,updates:s}=t,{shape:a}=n,i=e.makeOutput(a,s.dtype);if(y.sizeFromShape(a)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:m}=Jh.calculateShapes(s,o,a),d=e.dataIdMap.get(o.dataId).id,g=e.dataIdMap.get(s.dataId).id,x=new Uint8Array(new Int32Array(p).buffer),w=e.dataIdMap.get(i.dataId).id;return gO(d,g,zt[s.dtype],l,u,c,x,m,w),i}var xO={kernelName:Ci,backendName:"wasm",setupFunc:kZ,kernelFunc:_Z};var yO;function vZ(r){yO=r.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function CZ(r){let{inputs:e,backend:t}=r,{condition:n,t:o,e:s}=e,a=t.dataIdMap.get(n.dataId).id,i=t.dataIdMap.get(o.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=t.makeOutput(o.shape,o.dtype),c=t.dataIdMap.get(u.dataId).id,p=n.shape.length,m=o.shape.length,f=p===0||p>1||m===1?1:y.sizeFromShape(o.shape.slice(1));return yO(a,i,l,f,c),u}var bO={kernelName:hs,backendName:"wasm",kernelFunc:CZ,setupFunc:vZ};var wO;function IZ(r){wO=r.wasm.cwrap(Ao,null,["number","number"])}function NZ(r){let{backend:e,inputs:{x:t}}=r,n=e.dataIdMap.get(t.dataId).id,o=e.makeOutput(t.shape,t.dtype),s=e.dataIdMap.get(o.dataId).id;return y.sizeFromShape(o.shape)===0||wO(n,s),o}var kO={kernelName:"Sigmoid",backendName:"wasm",setupFunc:IZ,kernelFunc:NZ};var _O=St(To);function sc(r){let{inputs:{x:e},attrs:{begin:t,size:n},backend:o}=r,[s,a]=sr.parseSliceParams(e,t,n),i=sr.isSliceContinous(e.shape,s,a),l=o.readSync(e.dataId),u=o.makeOutput(a,e.dtype),c=y.computeStrides(e.shape),p=o.dataIdMap.get(u.dataId);if(i){let d=sr.computeFlatOffset(s,c);return e.dtype==="string"?p.stringBytes=l.slice(d,d+y.sizeFromShape(a)):o.typedArrayFromHeap(u).set(l.subarray(d,d+y.sizeFromShape(a))),u}if(e.dtype==="string"){let d=cf(l,s,a,e.shape,e.dtype);return p.stringBytes=d,u}let m=o.typedArrayFromHeap(u),f=e.shape.length;if(f===2)SZ(l,c[0],m,s,a);else if(f===3)TZ(l,c[0],c[1],m,s,a);else if(f===4)AZ(l,c[0],c[1],c[2],m,s,a);else{let d=cf(l,s,a,e.shape,e.dtype);m.set(d)}return u}function SZ(r,e,t,n,o){let s=0,a=n[0],i=n[1],l=a+o[0];for(let u=a;u<l;u++){let c=u*e+i;t.set(r.subarray(c,c+o[1]),s),s+=o[1]}}function TZ(r,e,t,n,o,s){let a=0,i=o[0],l=o[1],u=o[2],c=i+s[0],p=l+s[1];for(let m=i;m<c;m++)for(let f=l;f<p;f++){let d=m*e+f*t+u;n.set(r.subarray(d,d+s[2]),a),a+=s[2]}}function AZ(r,e,t,n,o,s,a){let i=0,l=s[0],u=s[1],c=s[2],p=l+a[0],m=u+a[1],f=c+a[2],d=s[3];for(let h=l;h<p;h++)for(let g=u;g<m;g++)for(let x=c;x<f;x++){let w=h*e+g*t+x*n+d;o.set(r.subarray(w,w+a[3]),i),i+=a[3]}}var vO={kernelName:gs,backendName:"wasm",kernelFunc:sc};var CO;function EZ(r){CO=r.wasm.cwrap($o,null,["number","number","number","number"])}function DZ(r){let{backend:e,inputs:{logits:t},attrs:{dim:n}}=r,o=e.dataIdMap.get(t.dataId).id,s=e.makeOutput(t.shape,t.dtype),a=e.dataIdMap.get(s.dataId).id,i=t.shape[n],l=y.sizeFromShape(t.shape)/i;return y.sizeFromShape(s.shape)===0||CO(o,a,i,l),s}var IO={kernelName:$o,backendName:"wasm",setupFunc:EZ,kernelFunc:DZ};function $Z(r){let{inputs:e,attrs:t,backend:n}=r,{x:o}=e,{numOrSizeSplits:s,axis:a}=t,i=y.parseAxisParam(a,o.shape)[0],l=S.prepareSplitSize(o,s,i),u=new Array(o.shape.length).fill(0),c=o.shape.slice();return l.map(p=>{let m=[...c];m[i]=p;let f=sc({inputs:{x:o},attrs:{begin:u,size:m},backend:n});return u[i]+=p,f})}var NO={kernelName:xs,backendName:"wasm",kernelFunc:$Z};var SO=St(Eo);var TO=St(fa);var RZ=!0,AO=yt(Ro,RZ);var EO;function FZ(r){EO=r.wasm.cwrap(On,null,["number","number","number"])}function OZ(r){let{backend:e,inputs:t,attrs:n}=r,{alpha:o}=n,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=e.makeOutput(s.shape,s.dtype),l=e.dataIdMap.get(i.dataId).id;return EO(a,o,l),i}var DO={kernelName:On,backendName:"wasm",setupFunc:FZ,kernelFunc:OZ};var $O;function PZ(r){$O=r.wasm.cwrap(Ai,null,["number","array","number","array","array","array","array","array","number","number"])}function MZ(r){let{backend:e,inputs:t,attrs:n}=r,{x:o}=t,{begin:s,end:a,strides:i}=n;i==null&&(i=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,f=S.slice_util.maskToAxes(c);if(f.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&m!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let d=o.shape.length-s.length,h=S.slice_util.maskToAxes(p),g=o.shape.slice();h.forEach(V=>{s[V]=0,a[V]=1,g.splice(V,0,1)});let x=Mr({inputs:{x:o},attrs:{shape:g},backend:e}),{begin:w,end:b,strides:k}=S.slice_util.getNormalizedAxes(x.shape,f,d,s,a,i,l,u,c);s=w,a=b,i=k;let _=S.slice_util.maskToAxes(m);_.forEach(V=>{a[V]=s[V]+1,i[V]=1});let A=S.slice_util.computeOutShape(s,a,i),N=A.filter((V,W)=>_.indexOf(W)===-1);if(i.every(V=>V===1)){let V=sc({inputs:{x},attrs:{begin:s,size:A},backend:e});e.disposeData(x.dataId);let W=Mr({inputs:{x:V},attrs:{shape:N},backend:e});return e.disposeData(V.dataId),W}let F=e.makeOutput(N,"float32");if(!N.some(V=>V===0)){let V=e.dataIdMap.get(x.dataId).id,W=new Uint8Array(new Int32Array(y.computeStrides(x.shape)).buffer),U=new Uint8Array(new Int32Array(s).buffer),H=new Uint8Array(new Int32Array(a).buffer),q=new Uint8Array(new Int32Array(i).buffer),X=new Uint8Array(new Int32Array(N).buffer),ne=new Uint8Array(new Int32Array(y.computeStrides(N)).buffer),Y=e.dataIdMap.get(F.dataId).id;$O(V,W,x.shape.length,U,H,q,X,ne,N.length,Y)}e.disposeData(x.dataId);let M=Mr({inputs:{x:F},attrs:{shape:N},backend:e});return e.disposeData(F.dataId),M}var RO={kernelName:Ai,backendName:"wasm",setupFunc:PZ,kernelFunc:MZ};var LZ=!0,FO=yt(Fo,LZ);var OO;function zZ(r){OO=r.wasm.cwrap(Do,null,["number, number, number"])}function BZ(r){let{backend:e,inputs:t,attrs:n}=r,{axis:o,keepDims:s}=n,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=Yo(a,o,e),d=p;if(f){let b=e.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,d=S.getInnerMostAxes(d.length,u.shape.length))}S.assertAxesAreInnerMostDims("sum",d,u.shape.length);let[h,g]=S.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),w=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let b=e.dataIdMap.get(w.dataId).id;OO(l,x,b)}if(f&&e.disposeData(c.dataId),s){let b=S.expandShapeToKeepDim(w.shape,m);w.shape=b}return w}var PO={kernelName:Do,backendName:"wasm",setupFunc:zZ,kernelFunc:BZ};var MO=St(Oo);var LO;function VZ(r){LO=r.wasm.cwrap(kn,null,["number","array","number","array","number","number"])}function GZ(r){let{inputs:e,backend:t,attrs:n}=r,{x:o}=e,s=t.dataIdMap.get(o.dataId).id,{reps:a}=n,i=new Array(o.shape.length);for(let m=0;m<i.length;m++)i[m]=o.shape[m]*a[m];let l=new Uint8Array(new Int32Array(o.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=t.makeOutput(i,o.dtype),p=t.dataIdMap.get(c.dataId).id;return LO(s,l,o.shape.length,u,i.length,zt[c.dtype],p),c}var zO={kernelName:kn,backendName:"wasm",setupFunc:VZ,kernelFunc:GZ};var BO;function WZ(r){BO=r.wasm.cwrap(Di,null,["number","array","number","number","number","bool","number","number"])}var jZ=({inputs:r,backend:e,attrs:t})=>{let{x:n}=r,{k:o,sorted:s}=t,a=e.dataIdMap.get(n.dataId).id,i=new Uint8Array(new Int32Array(n.shape).buffer),l=n.shape.slice();l[l.length-1]=o;let u=e.makeOutput(l,n.dtype),c=e.dataIdMap.get(u.dataId).id,p=e.makeOutput(l,"int32"),m=e.dataIdMap.get(p.dataId).id;return BO(a,i,n.shape.length,zt[n.dtype],o,s,c,m),[u,p]},VO={kernelName:Di,backendName:"wasm",setupFunc:WZ,kernelFunc:jZ};function UZ(r){let{inputs:e,backend:t,attrs:n}=r,{value:o}=e,{axis:s}=n;s<0&&(s+=o.shape.length);let a=o.shape[s],i=o.shape.length,l=new Array(i-1),u=0;for(let f=0;f<i;f++)f!==s&&(l[u++]=o.shape[f]);let c=new Array(a),p=new Array(i).fill(0),m=o.shape.slice();m[s]=1;for(let f=0;f<c.length;f++)p[s]=f,c[f]=sc({inputs:{x:o},attrs:{begin:p,size:m},backend:t});return c.map(({dataId:f,dtype:d})=>({dataId:f,dtype:d,shape:l}))}var GO={kernelName:ys,backendName:"wasm",kernelFunc:UZ};function HZ(r){let{inputs:{x:e},backend:t}=r,n=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(n).fill(0),n}var WO={kernelName:bs,backendName:"wasm",kernelFunc:HZ};var qZ=[CR,IR,SR,$R,FR,MR,LR,zR,VR,GR,jR,HR,qR,XR,ZR,QR,tF,rF,nF,oF,sF,aF,lF,uF,vR,pF,fF,hF,xF,bF,wF,kF,TR,vF,CF,IF,NF,SF,AF,EF,$F,FF,PF,MF,LF,zF,VF,WF,UF,HF,KF,XF,YF,JF,QF,tO,nO,oO,sO,iO,aO,OR,uO,pO,fO,hO,dO,xO,bO,kO,_O,vO,IO,NO,SO,TO,AO,DO,RO,FO,PO,MO,zO,VO,ER,GO,WO];for(let r of qZ)el(r);var cC=j();cC.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));cC.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(cC.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(r){return!1}});var hC=Ec(HO());var qO='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}';var XO=Ec(KO());var sx=class extends js{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Za(this,Mn())}write(e,t,n){let o={id:this.dataIdNextNumber++};return this.move(o,e,t,n,1),o}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=y.now();return e(),{kernelMs:y.now()-t}}move(e,t,n,o,s){let a=this.dataIdNextNumber++;if(o==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:n,dtype:o,memoryOffset:null,refCount:s});return}let i=y.sizeFromShape(n),l=i*y.bytesPerElement(o),u=this.wasm._malloc(l);this.dataIdMap.set(e,{id:a,memoryOffset:u,shape:n,dtype:o,refCount:s}),this.wasm.tfjs.registerTensor(a,i,u),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,l),u)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:o,stringBytes:s}=this.dataIdMap.get(e);if(n==="string")return s;let a=this.wasm.HEAPU8.slice(t,t+y.sizeFromShape(o)*y.bytesPerElement(n));return KZ(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let o;if(n==null)o=this.write(null,e,t);else{let s=this.dataIdNextNumber++;o={id:s},this.dataIdMap.set(o,{id:s,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=y.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,a,n)}return{dataId:o,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let o=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(n),a=y.sizeFromShape(e);switch(t){case"float32":return new Float32Array(o,s,a);case"int32":return new Int32Array(o,s,a);case"bool":return new Uint8Array(o,s,a);default:throw new Error(`Unknown dtype ${t}`)}}};function XZ(r){return(e,t)=>(y.fetch(r,{credentials:"same-origin"}).then(n=>{n.ok||e.env.a(`failed to load wasm binary file at '${r}'`),n.arrayBuffer().then(o=>{WebAssembly.instantiate(o,e).then(s=>{t(s.instance)})})}),{})}function YO(r,e,t){if(ix!=null)return ix;let n="tfjs-backend-wasm.wasm";return r&&e?n="tfjs-backend-wasm-threaded-simd.wasm":r&&(n="tfjs-backend-wasm-simd.wasm"),$f!=null&&$f[n]!=null?$f[n]:t+n}async function ZO(){let[r,e]=await Promise.all([j().getAsync("WASM_HAS_SIMD_SUPPORT"),j().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((t,n)=>{let o={};o.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=qO,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?YO(r,e,Rf!=null?Rf:l):l+i},gC&&(o.instantiateWasm=XZ(YO(r,e,Rf!=null?Rf:"")));let s=!1;o.onAbort=()=>{if(s||Ff)return;Ff=!0,n({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let a;e&&r&&ix==null?(o.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+hC.default.toString()],{type:"text/javascript"}),a=(0,hC.default)(o)):a=(0,XO.default)(o),a.then(i=>{s=!0,Ff=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},t({wasm:i})})})}function KZ(r,e){switch(e){case"float32":return new Float32Array(r);case"int32":return new Int32Array(r);case"bool":return new Uint8Array(r);default:throw new Error(`Unknown dtype ${e}`)}}var YZ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],ix=null,Rf=null,$f={},Ff=!1,gC=!1;function ZZ(r,e=!1){if(rg("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Ff)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");ix=r,gC=e}function JZ(r,e=!1){if(Ff)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof r=="string")Rf=r;else{$f=r;let t=YZ.filter(n=>$f[n]==null);if(t.length>0)throw new Error(`There were no entries found for the following binaries: ${t.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}gC=e}var xC="3.3.0";var QZ=2;xu("wasm",async()=>{let{wasm:r}=await ZO();return new sx(r)},QZ);O().prototype.abs=function(){return this.throwIfDisposed(),Nt(this)};O().prototype.acos=function(){return this.throwIfDisposed(),_m(this)};O().prototype.acosh=function(){return this.throwIfDisposed(),vm(this)};O().prototype.add=function(r){return this.throwIfDisposed(),ee(this,r)};O().prototype.all=function(r,e){return this.throwIfDisposed(),bu(this,r,e)};O().prototype.any=function(r,e){return this.throwIfDisposed(),sl(this,r,e)};O().prototype.argMax=function(r){return this.throwIfDisposed(),il(this,r)};O().prototype.argMin=function(r){return this.throwIfDisposed(),Cm(this,r)};O().prototype.asScalar=function(){return this.throwIfDisposed(),E(this.size===1,()=>"The array must have only 1 element."),L(this,[])};O().prototype.asType=function(r){return this.throwIfDisposed(),oe(this,r)};O().prototype.as1D=function(){return this.throwIfDisposed(),L(this,[this.size])};O().prototype.as2D=function(r,e){return this.throwIfDisposed(),L(this,[r,e])};O().prototype.as3D=function(r,e,t){return this.throwIfDisposed(),L(this,[r,e,t])};O().prototype.as4D=function(r,e,t,n){return this.throwIfDisposed(),L(this,[r,e,t,n])};O().prototype.as5D=function(r,e,t,n,o){return this.throwIfDisposed(),L(this,[r,e,t,n,o])};O().prototype.asin=function(){return this.throwIfDisposed(),Im(this)};O().prototype.asinh=function(){return this.throwIfDisposed(),Nm(this)};O().prototype.atan=function(){return this.throwIfDisposed(),Sm(this)};O().prototype.atan2=function(r){return this.throwIfDisposed(),Tm(this,r)};O().prototype.atanh=function(){return this.throwIfDisposed(),Am(this)};O().prototype.avgPool=function(r,e,t,n){return this.throwIfDisposed(),wa(this,r,e,t,n)};O().prototype.batchToSpaceND=function(r,e){return this.throwIfDisposed(),ka(this,r,e)};O().prototype.batchNorm=function(r,e,t,n,o){return this.throwIfDisposed(),Lo(this,r,e,t,n,o)};O().prototype.broadcastTo=function(r){return this.throwIfDisposed(),al(this,r)};O().prototype.cast=function(r){return this.throwIfDisposed(),oe(this,r)};O().prototype.ceil=function(){return this.throwIfDisposed(),Dm(this)};O().prototype.clipByValue=function(r,e){return this.throwIfDisposed(),ir(this,r,e)};O().prototype.concat=function(r,e){return this.throwIfDisposed(),r instanceof Ve&&(r=[r]),Ze([this,...r],e)};O().prototype.conv1d=function(r,e,t,n,o,s){return this.throwIfDisposed(),_u(this,r,e,t,n,o,s)};O().prototype.conv2dTranspose=function(r,e,t,n,o){return this.throwIfDisposed(),vu(this,r,e,t,n,o)};O().prototype.conv2d=function(r,e,t,n,o,s){return this.throwIfDisposed(),Kr(this,r,e,t,n,o,s)};O().prototype.cos=function(){return this.throwIfDisposed(),_a(this)};O().prototype.cosh=function(){return this.throwIfDisposed(),Cu(this)};O().prototype.cumsum=function(r,e,t){return this.throwIfDisposed(),Iu(this,r,e,t)};O().prototype.depthToSpace=function(r,e){return this.throwIfDisposed(),Rm(this,r,e)};O().prototype.depthwiseConv2d=function(r,e,t,n,o,s){return this.throwIfDisposed(),Is(this,r,e,t,n,o,s)};O().prototype.dilation2d=function(r,e,t,n,o){return this.throwIfDisposed(),Fm(this,r,e,t,n,o)};O().prototype.divNoNan=function(r){return this.throwIfDisposed(),Om(this,r)};O().prototype.div=function(r){return this.throwIfDisposed(),me(this,r)};O().prototype.dot=function(r){return this.throwIfDisposed(),Aw(this,r)};O().prototype.elu=function(){return this.throwIfDisposed(),Ns(this)};O().prototype.equal=function(r){return this.throwIfDisposed(),vn(this,r)};O().prototype.erf=function(){return this.throwIfDisposed(),Pm(this)};O().prototype.exp=function(){return this.throwIfDisposed(),Zt(this)};O().prototype.expandDims=function(r){return this.throwIfDisposed(),ar(this,r)};O().prototype.expm1=function(){return this.throwIfDisposed(),Mm(this)};O().prototype.fft=function(){return this.throwIfDisposed(),Ea(this)};O().prototype.flatten=function(){return this.throwIfDisposed(),L(this,[this.size])};O().prototype.floor=function(){return this.throwIfDisposed(),Ss(this)};O().prototype.floorDiv=function(r){return this.throwIfDisposed(),yu(this,r)};O().prototype.gather=function(r,e){return this.throwIfDisposed(),zo(this,r,e)};O().prototype.greaterEqual=function(r){return this.throwIfDisposed(),an(this,r)};O().prototype.greater=function(r){return this.throwIfDisposed(),er(this,r)};O().prototype.ifft=function(){return this.throwIfDisposed(),Mi(this)};O().prototype.irfft=function(){return this.throwIfDisposed(),Lu(this)};O().prototype.isFinite=function(){return this.throwIfDisposed(),Ew(this)};O().prototype.isInf=function(){return this.throwIfDisposed(),Dw(this)};O().prototype.isNaN=function(){return this.throwIfDisposed(),$w(this)};O().prototype.leakyRelu=function(r){return this.throwIfDisposed(),Ca(this,r)};O().prototype.lessEqual=function(r){return this.throwIfDisposed(),Bn(this,r)};O().prototype.less=function(r){return this.throwIfDisposed(),Su(this,r)};O().prototype.localResponseNormalization=function(r,e,t,n){return this.throwIfDisposed(),Lm(this,r,e,t,n)};O().prototype.logSigmoid=function(){return this.throwIfDisposed(),Fw(this)};O().prototype.logSoftmax=function(r){return this.throwIfDisposed(),Au(this,r)};O().prototype.logSumExp=function(r,e){return this.throwIfDisposed(),Bm(this,r,e)};O().prototype.log=function(){return this.throwIfDisposed(),lr(this)};O().prototype.log1p=function(){return this.throwIfDisposed(),Tu(this)};O().prototype.logicalAnd=function(r){return this.throwIfDisposed(),hr(this,r)};O().prototype.logicalNot=function(){return this.throwIfDisposed(),Ia(this)};O().prototype.logicalOr=function(r){return this.throwIfDisposed(),Eu(this,r)};O().prototype.logicalXor=function(r){return this.throwIfDisposed(),Lw(this,r)};O().prototype.matMul=function(r,e,t){return this.throwIfDisposed(),We(this,r,e,t)};O().prototype.maxPool=function(r,e,t,n){return this.throwIfDisposed(),Na(this,r,e,t,n)};O().prototype.max=function(r,e){return this.throwIfDisposed(),ur(this,r,e)};O().prototype.maximum=function(r){return this.throwIfDisposed(),Yr(this,r)};O().prototype.mean=function(r,e){return this.throwIfDisposed(),ht(this,r,e)};O().prototype.min=function(r,e){return this.throwIfDisposed(),Pi(this,r,e)};O().prototype.minimum=function(r){return this.throwIfDisposed(),As(this,r)};O().prototype.mirrorPad=function(r,e){return this.throwIfDisposed(),Gm(this,r,e)};O().prototype.mod=function(r){return this.throwIfDisposed(),Wm(this,r)};O().prototype.mul=function(r){return this.throwIfDisposed(),P(this,r)};O().prototype.neg=function(){return this.throwIfDisposed(),He(this)};O().prototype.norm=function(r,e,t){return this.throwIfDisposed(),Vu(this,r,e,t)};O().prototype.notEqual=function(r){return this.throwIfDisposed(),Vo(this,r)};O().prototype.oneHot=function(r,e=1,t=0){return this.throwIfDisposed(),Cs(this,r,e,t)};O().prototype.onesLike=function(){return this.throwIfDisposed(),tr(this)};O().prototype.pad=function(r,e){return this.throwIfDisposed(),Fr(this,r,e)};O().prototype.pool=function(r,e,t,n,o){return this.throwIfDisposed(),Vw(this,r,e,t,n,o)};O().prototype.pow=function(r){return this.throwIfDisposed(),Or(this,r)};O().prototype.prelu=function(r){return this.throwIfDisposed(),Ta(this,r)};O().prototype.prod=function(r,e){return this.throwIfDisposed(),Du(this,r,e)};O().prototype.reciprocal=function(){return this.throwIfDisposed(),jm(this)};O().prototype.relu=function(){return this.throwIfDisposed(),Sr(this)};O().prototype.relu6=function(){return this.throwIfDisposed(),Ru(this)};O().prototype.reshapeAs=function(r){return this.throwIfDisposed(),L(this,r.shape)};O().prototype.reshape=function(r){return this.throwIfDisposed(),L(this,r)};O().prototype.resizeBilinear=function(r,e,t){return this.throwIfDisposed(),gg(this,r,e,t)};O().prototype.resizeNearestNeighbor=function(r,e,t){return this.throwIfDisposed(),xg(this,r,e,t)};O().prototype.reverse=function(r){return this.throwIfDisposed(),qt(this,r)};O().prototype.rfft=function(){return this.throwIfDisposed(),Da(this)};O().prototype.round=function(){return this.throwIfDisposed(),Um(this)};O().prototype.rsqrt=function(){return this.throwIfDisposed(),Fu(this)};O().prototype.selu=function(){return this.throwIfDisposed(),Ou(this)};O().prototype.separableConv2d=function(r,e,t,n,o,s){return this.throwIfDisposed(),Hm(this,r,e,t,n,o,s)};O().prototype.sigmoid=function(){return this.throwIfDisposed(),qr(this)};O().prototype.sign=function(){return this.throwIfDisposed(),qm(this)};O().prototype.sin=function(){return this.throwIfDisposed(),Pu(this)};O().prototype.sinh=function(){return this.throwIfDisposed(),Mu(this)};O().prototype.slice=function(r,e){return this.throwIfDisposed(),Re(this,r,e)};O().prototype.softmax=function(r){return this.throwIfDisposed(),Aa(this,r)};O().prototype.softplus=function(){return this.throwIfDisposed(),Ts(this)};O().prototype.spaceToBatchND=function(r,e){return this.throwIfDisposed(),Sa(this,r,e)};O().prototype.split=function(r,e){return this.throwIfDisposed(),cr(this,r,e)};O().prototype.sqrt=function(){return this.throwIfDisposed(),xt(this)};O().prototype.square=function(){return this.throwIfDisposed(),Oe(this)};O().prototype.squaredDifference=function(r){return this.throwIfDisposed(),zu(this,r)};O().prototype.squeeze=function(r){return this.throwIfDisposed(),Cn(this,r)};O().prototype.stack=function(r,e){this.throwIfDisposed();let t=r instanceof Ve?[this,r]:[this,...r];return Vt(t,e)};O().prototype.step=function(r){return this.throwIfDisposed(),Ds(this,r)};O().prototype.stridedSlice=function(r,e,t,n,o,s,a,i){return this.throwIfDisposed(),Ym(this,r,e,t,n,o,s,a,i)};O().prototype.sub=function(r){return this.throwIfDisposed(),ce(this,r)};O().prototype.sum=function(r,e){return this.throwIfDisposed(),ge(this,r,e)};O().prototype.tan=function(){return this.throwIfDisposed(),Zm(this)};O().prototype.tanh=function(){return this.throwIfDisposed(),Oi(this)};O().prototype.tile=function(r){return this.throwIfDisposed(),zn(this,r)};O().prototype.toBool=function(){return this.throwIfDisposed(),oe(this,"bool")};O().prototype.toFloat=function(){return this.throwIfDisposed(),oe(this,"float32")};O().prototype.toInt=function(){return this.throwIfDisposed(),oe(this,"int32")};O().prototype.topk=function(r,e){return this.throwIfDisposed(),Jm(this,r,e)};O().prototype.transpose=function(r){return this.throwIfDisposed(),Ue(this,r)};O().prototype.unique=function(r){return this.throwIfDisposed(),tp(this,r)};O().prototype.unsortedSegmentSum=function(r,e){return this.throwIfDisposed(),Qm(this,r,e)};O().prototype.unstack=function(r){return this.throwIfDisposed(),pr(this,r)};O().prototype.where=function(r,e){return this.throwIfDisposed(),$t(r,this,e)};O().prototype.zerosLike=function(){return this.throwIfDisposed(),Ce(this)};var ax={kernelName:as,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,Ds(oe(t,"float32"),-1))}}};var JO={kernelName:qs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let n=Oe(oe(t,"float32")),o=xt(ce(le(1),n));return He(me(r,o))}}}};var QO={kernelName:Ks,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let n=xt(ce(Oe(oe(t,"float32")),1));return me(r,n)}}}};var eP={kernelName:wn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=r,l=_t(t.shape,o);return l.length>0&&(i=ge(i,l)),L(i,t.shape)},b:()=>{let i=r,l=_t(n.shape,o);return l.length>0&&(i=ge(i,l)),L(i,n.shape)}}}};var tP={kernelName:Hn,saveAllInputs:!0,gradFunc:(r,e)=>{let t={};return e.forEach((n,o)=>{t[o]=()=>r.clone()}),t}};var rP={kernelName:qn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ce(t)}}};var nP={kernelName:ea,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ce(t)}}};var oP={kernelName:Xs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,xt(ce(le(1),Oe(oe(t,"float32")))))}}};var sP={kernelName:Ys,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let n=xt(ee(le(1),Oe(oe(t,"float32"))));return me(r,n)}}}};var iP={kernelName:Qs,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=ee(Oe(t),Oe(n)),l=P(r,me(n,i)),u=_t(t.shape,o);return u.length>0&&(l=ge(l,u)),L(l,t.shape)},b:()=>{let i=ee(Oe(t),Oe(n)),l=He(P(r,me(t,i))),u=_t(n.shape,o);return u.length>0&&(l=ge(l,u)),L(l,n.shape)}}}};var aP={kernelName:Zs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ee(Oe(oe(t,"float32")),1))}}};var lP={kernelName:Js,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ce(le(1),Oe(oe(t,"float32"))))}}};function eJ(r,e,t,n,o,s){let a=v(r,"dy","avgPool3dGrad"),i=v(e,"input","avgPool3dGrad"),l=a,u=i,c=!1;i.rank===4&&(c=!0,l=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]]),u=L(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),E(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),E(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&E(nt(o),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${o}.`);let p={dy:l,input:u},m={filterSize:t,strides:n,pad:o,dimRoundingMode:s},f=D.runKernel(Bl,p,m);return c?L(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}var uP=T({avgPool3dGrad_:eJ});var cP={kernelName:ta,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{filterSize:o,strides:s,pad:a,dimRoundingMode:i}=t;return{x:()=>uP(r,n,o,s,a,i)}}};function tJ(r,e,t,n,o){let s=v(r,"dy","avgPoolGrad"),a=v(e,"input","avgPoolGrad");E(a.rank===s.rank,()=>`Rank of input (${a.rank}) does not match rank of dy (${s.rank})`);let i=a,l=s,u=!1;a.rank===3&&(u=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2]]),l=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),E(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),E(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},p={filterSize:t,strides:n,pad:o},m=D.runKernel(zl,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var pP=T({avgPoolGrad_:tJ});var mP={kernelName:Kn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{filterSize:o,strides:s,pad:a}=t;return{x:()=>pP(r,n,o,s,a)}}};var fP={kernelName:Xn,inputsToSave:["a","b"],gradFunc:(r,e,t)=>{let[n,o]=e,{transposeA:s,transposeB:a}=t;return!s&&!a?{a:()=>We(r,o,!1,!0),b:()=>We(n,r,!0,!1)}:!s&&a?{a:()=>We(r,o,!1,!1),b:()=>We(r,n,!0,!1)}:s&&!a?{a:()=>We(o,r,!1,!0),b:()=>We(n,r,!1,!1)}:{a:()=>We(o,r,!0,!0),b:()=>We(r,n,!0,!0)}}};var dP={kernelName:ra,gradFunc:(r,e,t)=>{let{blockShape:n,crops:o}=t;return{x:()=>Sa(r,n,o)}}};var hP={kernelName:Ob,gradFunc:(r,e,t)=>{let n=t,o=n.inputShape,s=n.shape,a=Array.from(s);for(let l=o.length-1;l>=0;l--)if(o[l]===s[l])a[l]=1;else if(o[l]!==1)throw new Error(`broadcastTo(): [${o}] cannot be broadcast to [${s}].`);let i=[];for(let l=0;l<a.length;l++)a[l]>1&&i.push(l);return{x:()=>ge(r,i,!0)}}};var gP={kernelName:$n,gradFunc:r=>({x:()=>r.clone()})};var xP={kernelName:Yn,gradFunc:r=>({x:()=>Ce(r)})};var yP={kernelName:Rn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{clipValueMin:o,clipValueMax:s}=t;return{x:()=>$t(hr(an(n,o),Bn(n,s)),r,Ce(r))}}};var bP={kernelName:na,inputsToSave:["x"],gradFunc:ax.gradFunc};var wP={kernelName:ls,saveAllInputs:!0,gradFunc:(r,e,t)=>{let n=e.map(l=>l.shape),{axis:o}=t,s=Qt(o,e[0].shape)[0],a=n.map(l=>l[s]);return cr(r,a,s).map(l=>()=>l)}};var kP={kernelName:Zn,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[n,o]=e,{dilations:s,strides:a,pad:i,dataFormat:l}=t;return E(Ln(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Xc(n.shape,r,o,a,i,l),filter:()=>rp(n,r,o.shape,a,i,l)}}};var _P={kernelName:Jn,inputsToSave:["dy","filter"],gradFunc:(r,e,t)=>{let[n,o]=e,{strides:s,pad:a,dataFormat:i,dimRoundingMode:l}=t;return{dy:()=>Kr(r,o,s,a,i,1,l),filter:()=>rp(r,n,o.shape,s,a,i,l)}}};function rJ(r,e,t,n,o){let s=r;r.rank===4&&(s=L(r,[1,r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));let a=e;a.rank===4&&(a=L(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]])),E(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),E(a.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${a.shape}.`),E(t.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${t}.`),E(s.shape[4]===t[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${t[3]}.`),E(a.shape[4]===t[4],()=>`Error in conv3dDerFilter: depth of dy (${a.shape[4]}) must match output depth for filter (${t[4]}).`);let i={x:s,dy:a},l={strides:n,pad:o,filterShape:t};return D.runKernel(jl,i,l)}var vP=T({conv3DBackpropFilter_:rJ});var CP={kernelName:oa,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:n,strides:o,pad:s}=t;E(Ln(n),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${n}'`);let[a,i]=e;return{x:()=>og(a.shape,r,i,o,s),filter:()=>vP(a,r,i.shape,o,s)}}};var IP={kernelName:Qn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(He(Pu(oe(t,"float32"))),r)}}};var NP={kernelName:ei,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(Mu(oe(t,"float32")),r)}}};var SP={kernelName:eo,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{axis:o,exclusive:s,reverse:a}=t;return{x:()=>{let i=Mw([o],n.rank),l=Iu(r,o,s,!a);return i!=null&&(l=Ue(l,i)),l}}}};var TP={kernelName:to,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:n,strides:o,pad:s,dimRoundingMode:a}=t,i=n==null?[1,1]:n;E(Ln(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=e;return E(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),E(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),E(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),E(kr(o,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${i}'.`),a!=null&&E(nt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`),{x:()=>fg(l.shape,r,u,o,s,n,a),filter:()=>mg(l,r,u.shape,o,s,n,a)}}};var AP={kernelName:sa,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[n,o]=e,s={x:n,filter:o,dy:r},a={x:n,filter:o,dy:r};return{x:()=>D.runKernel(Oc,s,t),filter:()=>D.runKernel(Pc,a,t)}}};var EP={kernelName:ni,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e,n={dy:r,y:t};return{x:()=>D.runKernel(Yl,n)}}};var DP={kernelName:oi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,n=P(Zt(He(Oe(t))),2/Math.sqrt(Math.PI));return{x:()=>P(r,n)}}};var $P={kernelName:no,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,t)}}};var RP={kernelName:us,inputsToSave:["input"],gradFunc:(r,e)=>{let[t]=e;return{input:()=>L(r,t.shape)}}};var FP={kernelName:ii,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,Zt(t))}}};var OP={kernelName:oo,gradFunc:r=>({x:()=>Ce(r)})};var PP={kernelName:so,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=me(r,oe(n,"float32")),l=_t(t.shape,o);return l.length>0?L(ge(i,l),t.shape):i},b:()=>{let i=P(r,oe(t,"float32")),l=_t(n.shape,o);l.length>0&&(i=L(ge(i,l),n.shape));let u=Oe(n);return He(me(i,oe(u,"float32")))}}}};var MP={kernelName:io,inputsToSave:["x","mean","variance","scale"],gradFunc:(r,e,t)=>{let{varianceEpsilon:n}=t,[o,s,a,i]=e,l=i==null?le(1):i,u=_t(s.shape,o.shape),c=[];if(s.rank===1){for(let k=0;k<o.shape.length-1;++k)c.push(o.shape[k]);c.push(1)}let p=ce(o,s),m=P(r,l),f=Fu(ee(a,le(n))),d=P(P(P(f,f),f),le(-.5));return{x:()=>s.rank===1?L(P(P(r,zn(L(f,[1,1,1,s.shape[0]]),c)),l),o.shape):L(P(P(r,f),l),o.shape),mean:()=>{let k=P(P(f,le(-1)),m);return s.rank===1&&(k=ge(k,u)),L(k,s.shape)},variance:()=>{let k=P(P(d,p),m);return s.rank===1&&(k=ge(k,u)),L(k,s.shape)},scale:()=>{let k=P(p,f),_=P(r,k);return s.rank===1&&(_=ge(_,u)),L(_,s.shape)},offset:()=>{let k=r;return s.rank===1&&(k=ge(k,u)),L(k,s.shape)}}}};var BP={kernelName:cs,inputsToSave:["x","indices"],gradFunc:(r,e,t)=>{let[n,o]=e,{axis:s}=t,a=Qt(s,n.shape)[0];return{x:()=>{let l=n.shape,u=o.size,c=l.slice(0,a),p=c.length,m=l.slice(s,l.length).slice(1),f=m.length,d=LP(0,p),h=LP(p+1,p+1+f),g=zP([c,[u],m]),x=L(r,g),w=L(o,[u]),b=zP([[p],d,h]),k=Ue(x,b),_=Qm(k,w,n.shape[a]),A=zm(b);return _=Ue(_,A),_},indices:()=>o}}};function LP(r,e){let t=[];for(let n=r;n<e;++n)t.push(n);return t}function zP(r){let e=[];for(let t=0;t<r.length;++t)for(let n=0;n<r[t].length;++n)e.push(r[t][n]);return e}var VP={kernelName:ao,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e;return{a:()=>Ce(t),b:()=>Ce(n)}}};var GP={kernelName:Fn,gradFunc:r=>({x:()=>oe(r,"float32")})};var WP={kernelName:ci,gradFunc:r=>({x:()=>Ce(r)})};var jP={kernelName:pi,gradFunc:r=>({x:()=>Ce(r)})};var UP={kernelName:mi,gradFunc:r=>({x:()=>Ce(r)})};var HP={kernelName:lo,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{alpha:o}=t,s=er(n,0);return{x:()=>$t(s,r,P(r,o))}}};var qP={kernelName:hi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ee(t,1))}}};var KP={kernelName:uo,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,oe(t,"float32"))}}};var XP={kernelName:Pb,inputsToSave:[],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n]=e,{axis:o}=t;return{logits:()=>{let s=!0,a=Zt(n);return ce(r,P(ge(r,o,s),a))}}}};function nJ(r,e,t,n=5,o=1,s=1,a=.5){let i={x:r,y:e,dy:t},l={depthRadius:n,bias:o,alpha:s,beta:a};return D.runKernel(tu,i,l)}var YP=T({localResponseNormalizationBackprop_:nJ});var ZP={kernelName:aa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n,o]=e,{depthRadius:s,bias:a,alpha:i,beta:l}=t;return{x:()=>YP(n,o,r,s,a,i,l)}}};function lx(r,e,t,n){return e.rank<t.rank&&(e=L(e,Bo(e.shape,n))),r.rank<t.rank&&(r=L(r,Bo(r.shape,n))),{x:()=>P(r,oe(vn(t,e),r.dtype))}}var yC={kernelName:co,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let n=t,{reductionIndices:o}=n,s=e[0],a=e[1],i=Qt(o,s.shape),l=lx(r,a,s,i);return{x:()=>l.x()}}};var JP={kernelName:po,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e;return{a:()=>P(r,oe(an(t,n),"float32")),b:()=>P(r,oe(Su(t,n),"float32"))}}};function oJ(r,e,t,n,o,s,a){let i=v(r,"dy","maxPool3dGrad"),l=v(e,"input","maxPool3dGrad"),u=v(t,"output","maxPool3dGrad"),c=i,p=l,m=u,f=!1;l.rank===4&&(f=!0,c=L(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),p=L(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),m=L(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),E(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),E(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),E(m.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${m.rank}.`),a!=null&&E(nt(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let d={dy:c,input:p,output:m},h={filterSize:n,strides:o,pad:s,dimRoundingMode:a},g=D.runKernel(nu,d,h);return f?L(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var QP=T({maxPool3dGrad_:oJ});var eM={kernelName:la,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n,o]=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=t;return{x:()=>QP(r,n,o,s,a,i,l)}}};function sJ(r,e,t,n,o,s,a){let i=v(r,"dy","maxPoolGrad"),l=v(e,"input","maxPoolGrad"),u=v(t,"output","maxPoolGrad");E(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),E(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),E(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),a!=null&&E(nt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let c={dy:i,input:l,output:u},p={filterSize:n,strides:o,pad:s,dimRoundingMode:a};return D.runKernel(ru,c,p)}var tM=T({maxPoolGrad_:sJ});var rM={kernelName:mo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n,o]=e,{filterSize:s,strides:a,pad:i}=t;return{x:()=>tM(r,n,o,s,a,i)}}};var nM={kernelName:fo,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{axis:o}=t,s=Qt(o,n.shape),i=Pw(n.shape,s)[1],l=ct(i);return{x:()=>{let c=n.shape.slice();s.forEach(f=>{c[f]=1});let p=L(r,c);return me(P(p,Nr(n.shape,"float32")),l)}}}};var oM={kernelName:ho,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let n=t,{axis:o}=n,[s,a]=e,i=Qt(o,s.shape),l=lx(r,a,s,i);return{x:()=>l.x()}}};var sM={kernelName:go,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e;return{a:()=>P(r,oe(Bn(t,n),"float32")),b:()=>P(r,oe(er(t,n),"float32"))}}};var iM={kernelName:ua,inputsToSave:["x"],gradFunc:(r,e,t)=>{let n=e[0],{paddings:o}=t,s=o.map(a=>a[0]);return{x:()=>Re(r,s,n.shape)}}};var aM={kernelName:xi,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=_t(t.shape,o);return i.length>0?L(ge(r,i),t.shape):r},b:()=>{let i=P(r,He(Ss(me(t,n)))),l=_t(n.shape,o);return l.length>0?L(ge(i,l),n.shape):i}}}};var lM={kernelName:xo,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=P(r,oe(n,"float32")),l=_t(t.shape,o);return l.length>0?L(ge(i,l),t.shape):i},b:()=>{let i=P(r,oe(t,"float32")),l=_t(n.shape,o);return l.length>0?L(ge(i,l),n.shape):i}}}};var uM={kernelName:ps,gradFunc:r=>({x:()=>He(r)})};var cM={kernelName:yo,inputsToSave:["indices"],gradFunc:(r,e)=>{let t=e[0];return{indices:()=>gt(t.shape,"float32")}}};var pM={kernelName:ms,gradFunc:r=>({x:()=>Ce(r)})};var mM={kernelName:fs,saveAllInputs:!0,gradFunc:(r,e,t)=>{let{axis:n}=t;return pr(r,n).map(s=>()=>s)}};var bC={kernelName:bo,inputsToSave:["x"],gradFunc:(r,e,t)=>{let n=e[0],{paddings:o}=t,s=o.map(a=>a[0]);return{x:()=>Re(r,s,n.shape)}}};var fM={kernelName:wo,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(r,e)=>{let[t,n,o]=e,s=t,a=n,i=Be(s.shape,a.shape);return{a:()=>{let c=oe(a,"float32"),p=P(r,P(c,Or(s,ce(c,le(1))))),m=_t(s.shape,i);return m.length>0&&(p=ge(p,m)),L(p,s.shape)},b:()=>{let c=er(s,0),p=$t(c,lr(s),Ce(s)),m=P(r,P(o,p)),f=_t(a.shape,i);return f.length>0&&(m=ge(m,f)),L(m,a.shape)}}}};var dM={kernelName:ko,inputsToSave:["x","alpha"],gradFunc:(r,e)=>{let[t,n]=e,o=er(t,0);return{x:()=>$t(o,r,P(r,n)),alpha:()=>{let s=$t(o,Ce(r),P(r,t)),a=_t(n.shape,r.shape);return a.length>0&&(s=ge(s,a)),L(s,n.shape)}}}};var hM={kernelName:ro,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=me(r,oe(n,"float32")),l=_t(t.shape,o);return l.length>0?L(ge(i,l),t.shape):i},b:()=>{let i=P(r,oe(t,"float32")),l=_t(n.shape,o);l.length>0&&(i=L(ge(i,l),n.shape));let u=Oe(n);return He(me(i,oe(u,"float32")))}}}};var gM={kernelName:vi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,He(Oe(t)))}}};var xM={kernelName:Co,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,n=P(Bn(t,6),Ds(t));return{x:()=>P(r,oe(n,"float32"))}}};var yM={kernelName:_o,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,oe(Ds(t),"float32"))}}};var bM={kernelName:ds,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>L(r,t.shape)}}};var wM={kernelName:vo,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[n]=e,o={dy:r,images:n};return{images:()=>D.runKernel(lu,o,t)}}};var kM={kernelName:pa,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[n]=e,o={dy:r,images:n};return{images:()=>D.runKernel(au,o,t)}}};var _M={kernelName:Io,gradFunc:(r,e,t)=>{let{dims:n}=t,o=Qt(n,r.shape);return{x:()=>qt(r,o)}}};var vM={kernelName:No,gradFunc:r=>({x:()=>Ce(r)})};var CM={kernelName:So,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>He(me(r,P(Or(t,1.5),2)))}}};var IM={kernelName:hs,inputsToSave:["condition"],gradFunc:(r,e)=>{let[t]=e;return{condition:()=>oe(Ce(t),"float32"),t:()=>P(r,oe(t,r.dtype)),e:()=>P(r,oe(Ia(t),r.dtype))}}};var NM={kernelName:Ii,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let n=er(t,le(0)),o=le(lk),s=le(uk),a=P(r,s),i=P(P(r,o),Zt(oe(t,"float32")));return $t(n,a,i)}}}};var SM={kernelName:Ao,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,P(t,ce(le(1),t)))}}};var TM={kernelName:Si,gradFunc:r=>({x:()=>Ce(r)})};var AM={kernelName:To,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(_a(oe(t,"float32")),r)}}};var EM={kernelName:Ni,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(Cu(oe(t,"float32")),r)}}};var DM={kernelName:gs,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{begin:o,size:s}=t,a=n.shape,[i,l]=pw(n,o,s),u=[];for(let c=0;c<r.rank;c++)u.push([i[c],a[c]-i[c]-l[c]]);return{x:()=>Fr(r,u)}}};var $M={kernelName:$o,outputsToSave:[!0],gradFunc:(r,e,t)=>{let[n]=e,{dim:o}=t,s=!0,a=P(r,n);return{logits:()=>ce(a,P(ge(a,[o],s),n))}}};var RM={kernelName:Ti,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,qr(t))}}};var wC={kernelName:ma,gradFunc:(r,e,t)=>{let{blockShape:n,paddings:o}=t;return{x:()=>ka(r,n,o)}}};var kC={kernelName:xs,gradFunc:(r,e,t)=>{let{axis:n}=t;return{x:()=>Ze(r,n)}}};var FM={kernelName:Eo,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,P(xt(oe(t,"float32")),2))}}};var OM={kernelName:fa,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,P(oe(t,"float32"),2))}}};var PM={kernelName:Ro,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=le(2);return{a:()=>P(r,P(o,ce(t,n))),b:()=>P(r,P(o,ce(n,t)))}}};var MM={kernelName:On,gradFunc:r=>({x:()=>Ce(r)})};var LM={kernelName:Fo,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,n]=e,o=Be(t.shape,n.shape);return{a:()=>{let i=r,l=_t(t.shape,o);return l.length>0&&(i=ge(i,l)),L(i,t.shape)},b:()=>{let i=r,l=_t(n.shape,o);return l.length>0&&(i=ge(i,l)),L(He(i),n.shape)}}}};var zM={kernelName:Do,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,o=n.shape.slice(),{axis:s}=t;Qt(s,n.shape).forEach(u=>{o[u]=1});let i=L(r,o),l=P(i,Nr(n.shape,"float32"));return{x:()=>l}}};var BM={kernelName:Ei,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,Oe(_a(t)))}}};var VM={kernelName:Oo,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(ce(le(1),Oe(t)),r)}}};var GM={kernelName:kn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[n]=e,{reps:o}=t;return{x:()=>{let a=Ce(n);if(n.rank===1)for(let i=0;i<o[0];++i)a=ee(a,Re(r,[i*n.shape[0]],[n.shape[0]]));else if(n.rank===2)for(let i=0;i<o[0];++i)for(let l=0;l<o[1];++l)a=ee(a,Re(r,[i*n.shape[0],l*n.shape[1]],[n.shape[0],n.shape[1]]));else if(n.rank===3)for(let i=0;i<o[0];++i)for(let l=0;l<o[1];++l)for(let u=0;u<o[2];++u)a=ee(a,Re(r,[i*n.shape[0],l*n.shape[1],u*n.shape[2]],[n.shape[0],n.shape[1],n.shape[2]]));else if(n.rank===4)for(let i=0;i<o[0];++i)for(let l=0;l<o[1];++l)for(let u=0;u<o[2];++u)for(let c=0;c<o[3];++c)a=ee(a,Re(r,[i*n.shape[0],l*n.shape[1],u*n.shape[2],c*n.shape[3]],[n.shape[0],n.shape[1],n.shape[2],n.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${n.rank} tensors yet.`);return a}}}};var WM={kernelName:Po,gradFunc:(r,e,t)=>{let n=t,{perm:o}=n,s=zm(o);return{x:()=>Ue(r,s)}}};var jM={kernelName:ys,gradFunc:(r,e,t)=>{let n=t,{axis:o}=n;return{value:()=>Vt(r,o)}}};var UM={kernelName:da,inputsToSave:["segmentIds"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>iJ(r,t)}}};function iJ(r,e){let t=Yr(e,Ce(e)),n=zo(r,t),o=an(e,le(0,"int32")),s=n.rank-o.rank;for(let i=0;i<s;++i)o=ar(o,i+1);o=hr(o,Nr(n.shape,"bool"));let a=Ce(n);return $t(o,n,a)}var HM={kernelName:bs,gradFunc:r=>({x:()=>Ce(r)})};var aJ=[ax,JO,QO,eP,tP,rP,nP,oP,sP,iP,aP,lP,cP,mP,fP,dP,hP,gP,xP,yP,bP,wP,_P,kP,CP,IP,NP,SP,TP,AP,hM,EP,DP,$P,RP,FP,PP,OP,MP,BP,VP,GP,WP,jP,UP,HP,qP,KP,XP,ZP,yC,yC,JP,eM,rM,nM,oM,sM,iM,aM,lM,uM,cM,pM,mM,bC,bC,fM,dM,gM,xM,yM,bM,wM,kM,_M,vM,CM,IM,NM,SM,TM,AM,EM,DM,$M,RM,wC,wC,kC,kC,FM,PM,OM,MM,LM,zM,BM,VM,GM,WM,jM,UM,HM];for(let r of aJ)Lb(r);var NC={};Ke(NC,{maxNorm:()=>uJ,minMaxNorm:()=>mJ,nonNeg:()=>pJ,unitNorm:()=>cJ});var _C;function Jt(){return _C==null&&(_C=hw().epsilon()),_C}function Zr(){return"channelsLast"}var Sn=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Sn.prototype)}},Lr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Lr.prototype)}},z=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,z.prototype)}},Se=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Se.prototype)}},Of=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Of.prototype)}};function Zo(r,e){if(Array.isArray(r)){let t=[];for(let n=0;n<e;n++)t=t.concat(r);return t}else{let t=new Array(e);return t.fill(r),t}}function Gn(r,e){if(!r)throw new Of(e)}function vC(r,e){let t=0;for(let n of r)n===e&&t++;return t}function xr(r){return r.length===1?r[0]:r}function bt(r){return Array.isArray(r)?r:[r]}function Jo(r){let t=r.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function za(r){return r.length<=1||r.indexOf("_")===-1?r:r.replace(/[_]+(\w|$)/g,(e,t)=>t.toUpperCase())}var Qo={};function Np(r){if(r==null)return null;let e={};return e.className=r.getClassName(),e.config=r.getConfig(),e}function CC(r){if(!(r==null||typeof r!="object"))if(Array.isArray(r))r.forEach(e=>CC(e));else{let e=Object.keys(r);for(let t of e){let n=r[t];n!=null&&typeof n=="object"&&(!Array.isArray(n)&&n.type==="ndarray"&&typeof n.value=="number"?r[t]=n.value:CC(n))}}}function Gi(r,e={},t={},n="object",o=!1){if(typeof r=="string"){let s=r,a;if(s in t)a=t[s];else if(s in Qo)a=Qo[s];else if(a=e[s],a==null)throw new z(`Unknown ${n}: ${r}. This may be due to one of the following reasons:
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return a}else{let s=r;if(s.className==null||s.config==null)throw new z(`${n}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let a=s.className,i,l;if(a in t?[i,l]=t[a]:a in Qo?[i,l]=Qo.className:a in e&&([i,l]=e[a]),i==null)throw new z(`Unknown ${n}: ${a}. This may be due to one of the following reasons:
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let f of Object.keys(Qo))u[f]=Qo[f];for(let f of Object.keys(t))u[f]=t[f];let c=s.config;c.customObjects=u;let p=Object.assign({},Qo);for(let f of Object.keys(t))Qo[f]=t[f];CC(s.config);let m=l(i,s.config,t,o);return Qo=Object.assign({},p),m}else{let u=Object.assign({},Qo);for(let p of Object.keys(t))Qo[p]=t[p];let c=new i(s.config);return Qo=Object.assign({},u),c}}}function lJ(r,e){return r<e?-1:r>e?1:0}function Pf(r,e){return-1*lJ(r,e)}function es(r){if(r==null)return r;let e=[];for(let t of r)e.indexOf(t)===-1&&e.push(t);return e}function qM(r){if(r==null)throw new z(`Invalid value in obj: ${JSON.stringify(r)}`);for(let e in r)if(r.hasOwnProperty(e))return!1;return!0}function Wi(r,e,t){if(t!=null&&r.indexOf(t)<0)throw new z(`${t} is not a valid ${e}. Valid values are ${r} or null/undefined.`)}function ux(r,e,t=0,n=Infinity){return Gn(t>=0),Gn(n>=t),Array.isArray(r)&&r.length>=t&&r.length<=n&&r.every(o=>typeof o===e)}function Ht(r,e){Array.isArray(r)?(y.assert(r.length>0,()=>`${e} is unexpectedly an empty array.`),r.forEach((t,n)=>Ht(t,`element ${n+1} of ${e}`))):y.assert(Number.isInteger(r)&&r>0,()=>`Expected ${e} to be a positive integer, but got ${KM(r)}.`)}function KM(r){return r===null?"null":Array.isArray(r)?"["+r.map(e=>KM(e)).join(",")+"]":typeof r=="string"?`"${r}"`:`${r}`}function XM(r,e){let t=y.now(),n;return(...s)=>{let a=y.now();return a-t<e||(t=a,n=r(...s)),n}}function cx(r){return r==="relu"?"relu":r==="linear"?"linear":r==="elu"?"elu":null}function IC(r,e){return G(()=>xt(ge(P(r,r),e,!0)))}var Sp=class extends Q.Serializable{getConfig(){return{}}},Mf=class extends Sp{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return G(()=>{let t=IC(e,this.axis),n=ir(t,0,this.maxValue);return P(e,me(n,ee(Jt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Mf.className="MaxNorm";Q.registerClass(Mf);var Lf=class extends Sp{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return G(()=>me(e,ee(Jt(),IC(e,this.axis))))}getConfig(){return{axis:this.axis}}};Lf.className="UnitNorm";Q.registerClass(Lf);var zf=class extends Sp{apply(e){return Sr(e)}};zf.className="NonNeg";Q.registerClass(zf);var Bf=class extends Sp{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return G(()=>{let t=IC(e,this.axis),n=ee(P(this.rate,ir(t,this.minValue,this.maxValue)),P(1-this.rate,t));return P(e,me(n,ee(Jt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Bf.className="MinMaxNorm";Q.registerClass(Bf);var YM={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Ot(r){return Np(r)}function ZM(r,e={}){return Gi(r,Q.SerializationMap.getMap().classNameMap,e,"constraint")}function Pt(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in YM?YM[r]:r,config:{}};return ZM(t)}else return r instanceof Sp?r:ZM(r)}function uJ(r){return new Mf(r)}function cJ(r){return new Lf(r)}function pJ(){return new zf}function mJ(r){return new Bf(r)}var DC={};Ke(DC,{constant:()=>wJ,glorotNormal:()=>SJ,glorotUniform:()=>NJ,heNormal:()=>TJ,heUniform:()=>AJ,identity:()=>CJ,leCunNormal:()=>EJ,leCunUniform:()=>DJ,ones:()=>bJ,orthogonal:()=>$J,randomNormal:()=>_J,randomUniform:()=>kJ,truncatedNormal:()=>vJ,varianceScaling:()=>IJ,zeros:()=>yJ});var JM=["channelsFirst","channelsLast"],QM=["nearest","bilinear"],eL=["valid","same","causal"],tL=["max","avg"],rL=["sum","mul","concat","ave"];var Tp=new Map;function Rt(r){Wi(JM,"DataFormat",r)}function nL(r){Wi(QM,"InterpolationFormat",r)}function Jr(r){Wi(eL,"PaddingMode",r)}function SC(r){Wi(tL,"PoolMode",r)}var Vf=[],oL="/";function Ms(r,e){Vf.push(r);try{let t=e();return Vf.pop(),t}catch(t){throw Vf.pop(),t}}function fJ(){return Vf.length===0?"":Vf.join(oL)+oL}function px(r){if(!sL(r))throw new Error("Not a valid tensor name: '"+r+"'");return fJ()+r}function mx(r){if(!sL(r))throw new Error("Not a valid tensor name: '"+r+"'");Tp.has(r)||Tp.set(r,0);let e=Tp.get(r);if(Tp.set(r,Tp.get(r)+1),e>0){let t=`${r}_${e}`;return Tp.set(t,1),t}else return r}var dJ=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function sL(r){return!!r.match(dJ)}function iL(r){return r===parseInt(r.toString(),10)}function ts(r,e,t){e==null&&(e=0),t==null&&(t=r.length);let n=1;for(let o=e;o<t;++o)n*=r[o];return n}function aL(r){return r=Array.isArray(r)?new Float32Array(r):r,Gt(r)}function ic(r){return Pi(aL(r)).dataSync()[0]}function Ls(r){return ur(aL(r)).dataSync()[0]}function zr(r,e){if(e<r)throw new z(`end (${e}) < begin (${r}) is forbidden.`);let t=[];for(let n=r;n<e;++n)t.push(n);return t}function Ba(r,e){return r.asType(e)}function Va(r,e=-1){let t=r.shape.slice();return e<0&&(e=t.length+e+1),t.splice(e,0,1),r.reshape(t)}function lL(r,e){return G(()=>{if(r.shape.length!==2)throw new z(`repeat() expects a rank-2 tensor, but received a rank-${r.shape.length} tensor.`);let t=Va(r,1);return fx(t,[1,e,1])})}function uL(r){let e=[ts(r.shape)];return r.reshape(e)}function cL(r){if(r.rank<=1)throw new z(`batchFlatten requires a minimum rank of 2. Got rank: ${r.rank}.`);let e=[r.shape[0],ts(r.shape,1)];return r.reshape(e)}function Ga(r,e,t){return G(()=>{switch(r.rank){case 1:return Km(r,e,t);case 2:return pg(r,[e,0],[t,r.shape[1]]);case 3:return Xm(r,[e,0,0],[t,r.shape[1],r.shape[2]]);case 4:return ep(r,[e,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3]]);case 5:return Re(r,[e,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4]]);case 6:return Re(r,[e,0,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4],r.shape[5]]);default:throw new z(`sliceAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}})}function TC(r,e,t){return G(()=>{switch(r.rank){case 1:return Km(r,e,t);case 2:return pg(r,[0,e],[r.shape[0],t]);case 3:return Xm(r,[0,0,e],[r.shape[0],r.shape[1],t]);case 4:return ep(r,[0,0,0,e],[r.shape[0],r.shape[1],r.shape[2],t]);default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function Gf(r,e,t,n){return G(()=>{switch(r.rank){case 1:return Km(r,e,t);case 2:switch(n){case 1:return Ga(r,e,t);case 2:return TC(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}case 3:switch(n){case 1:return Ga(r,e,t);case 2:return Xm(r,[0,e,0],[r.shape[0],t,r.shape[2]]);case 3:return TC(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}case 4:switch(n){case 1:return Ga(r,e,t);case 2:return ep(r,[0,e,0,0],[r.shape[0],t,r.shape[2],r.shape[3]]);case 3:return ep(r,[0,0,e,0],[r.shape[0],r.shape[1],t,r.shape[3]]);case 4:return TC(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function Ap(r,e=-1){let t;return e<0&&(t=r[0].rank,t!==0?e=t:e=0),e===r[0].rank&&(e=-1),Ze(r,e)}function AC(r,e){switch(r.rank){case 1:return Cw([r,e]);case 2:return Iw([r,e],0);case 3:return Nw([r,e],0);case 4:return Sw([r,e],0);default:throw new z(`concatAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}}function fx(r,e){if(Array.isArray(e)||(e=[e]),r.rank!==e.length)throw new z(`The length of input n (${e.length}) does not match the number of dimensions in input x (${r.rank})`);return zn(r,e)}function Ep(r,e=0,t=1,n,o){return cg(r,e,t,n,o)}function rs(r,e,t,n){if(r.rank<2||e.rank<2)throw new Se(`dot requires both inputs to be rank >= 2 but got x shape = ${r.shape} and y shape = ${e.shape}`);if(e.rank>=3){let o=r.shape.slice(-1)[0],s=e.shape.slice(-2)[0];if(o!==s)throw new Se(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${r.shape} and y shape = ${e.shape}`)}if(r.rank===2&&e.rank===2){let o=!1,s=!1;return Go.matMul({a:r,b:e,transposeA:o,transposeB:s,bias:n?EC(r.rank,n,Zr()):null,activation:t})}else{let o=r.shape.slice(),s=o.pop();r=r.reshape([-1,s]);let a=e.shape.slice(),i=a.pop(),l=a.pop(),u=[...a,i],c=Array.from({length:e.rank},(d,h)=>h===0?e.rank-2:h<=e.rank-2?h-1:h);e=e.transpose(c).reshape([l,-1]);let p=[...o,...u],m=!1,f=!1;return Go.matMul({a:r,b:e,transposeA:m,transposeB:f,bias:n?EC(r.rank,n,Zr()):null,activation:t}).reshape(p)}}function dx(r,e,t){return G(()=>(Array.isArray(e)?e=Gt(e,"int32"):e=e.toInt(),zo(r,e,t)))}function ac(r){return P(r,r)}function EC(r,e,t){let n=e.shape;if(e.rank!==1&&e.rank!==r)throw new z(`Unexpected bias dimensions: ${e.rank}; expected it to be 1 or ${r}`);if(r===5){if(t==="channelsFirst")return n.length===1?e.reshape([1,n[0],1,1,1]):e.reshape([1,n[3],n[0],n[1],n[2]]);if(t==="channelsLast")return n.length===1?e.reshape([1,1,1,1,n[0]]):e.reshape([1].concat(n))}else if(r===4){if(t==="channelsFirst")return n.length===1?e.reshape([1,n[0],1,1]):e.reshape([1,n[2],n[0],n[1]]);if(t==="channelsLast")return n.length===1?e.reshape([1,1,1,n[0]]):e.reshape([1].concat(n))}else if(r===3){if(t==="channelsFirst")return n.length===1?e.reshape([1,n[0],1]):e.reshape([1,n[1],n[0]]);if(t==="channelsLast")return n.length===1?e.reshape([1,1,n[0]]):e.reshape([1].concat(n))}else if(r<3)return e;throw new z(`Unsupported input rank by biasAdd: ${e.rank}`)}function cn(r,e,t){return G(()=>(t==null&&(t=Zr()),Rt(t),r.add(EC(r.rank,e,t))))}function pL(r,e=1){if(e!==1)throw new Se(`Support for alpha values other than 1 (${e}) is not implemented yet.`);return Ns(r)}function mL(r){return G(()=>me(r,Nt(r).add(1)))}function hx(r,e,t,n){return G(()=>tk(r,e,t,n))}function fL(r){return G(()=>{let e=ee(.5,P(.2,r));return ir(e,0,1)})}function bl(r,e,t=!1){return t?r():e()}var dL=["fanIn","fanOut","fanAvg"],hL=["normal","uniform","truncatedNormal"];function hJ(r){Wi(dL,"FanMode",r)}function gJ(r){Wi(hL,"Distribution",r)}var pn=class extends Q.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Wf=class extends pn{apply(e,t){return gt(e,t)}};Wf.className="Zeros";Q.registerClass(Wf);var lc=class extends pn{apply(e,t){return Nr(e,t)}};lc.className="Ones";Q.registerClass(lc);var jf=class extends pn{constructor(e){super();if(typeof e!="object")throw new z(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new z(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return G(()=>P(le(this.value),Nr(e,t)))}getConfig(){return{value:this.value}}};jf.className="Constant";Q.registerClass(jf);var Uf=class extends pn{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Es(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Uf.className="RandomUniform";Q.registerClass(Uf);var Hf=class extends pn{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`randomNormal does not support dType ${t}.`);return Ep(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Hf.className="RandomNormal";Q.registerClass(Hf);var qf=class extends pn{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`truncatedNormal does not support dType ${t}.`);return Bu(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};qf.className="TruncatedNormal";Q.registerClass(qf);var Kf=class extends pn{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return G(()=>{if(e.length!==2||e[0]!==e[1])throw new z("Identity matrix initializer can only be used for 2D square matrices.");return P(this.gain,Yc(e[0]))})}getConfig(){return{gain:this.gain}}};Kf.className="Identity";Q.registerClass(Kf);function xJ(r,e="channelsLast"){let t,n;if(Rt(e),r.length===2)t=r[0],n=r[1];else if([3,4,5].indexOf(r.length)!==-1){if(e==="channelsFirst"){let o=ts(r,2);t=r[1]*o,n=r[0]*o}else if(e==="channelsLast"){let o=ts(r,0,r.length-2);t=r[r.length-2]*o,n=r[r.length-1]*o}}else{let o=ts(r);t=Math.sqrt(o),n=Math.sqrt(o)}return[t,n]}var Br=class extends pn{constructor(e){super();if(e.scale<0)throw new z(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,hJ(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,gJ(this.distribution),this.seed=e.seed}apply(e,t){let n=xJ(e),o=n[0],s=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,o):this.mode==="fanOut"?a/=Math.max(1,s):a/=Math.max(1,(o+s)/2),this.distribution==="normal"){let i=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`${this.getClassName()} does not support dType ${t}.`);return Bu(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*a);return Es(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Br.className="VarianceScaling";Q.registerClass(Br);var Dp=class extends Br{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Br.className}};Dp.className="GlorotUniform";Q.registerClass(Dp);var $p=class extends Br{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Br.className}};$p.className="GlorotNormal";Q.registerClass($p);var Rp=class extends Br{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Br.className}};Rp.className="HeNormal";Q.registerClass(Rp);var Fp=class extends Br{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Br.className}};Fp.className="HeUniform";Q.registerClass(Fp);var Op=class extends Br{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Br.className}};Op.className="LeCunNormal";Q.registerClass(Op);var Pp=class extends Br{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Br.className}};Pp.className="LeCunNormal";Q.registerClass(Pp);var Xf=class extends pn{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Se("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return G(()=>{if(e.length<2)throw new Se("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,o=Ep(n,0,1,"float32"),s=ak.gramSchmidt(o);return e[0]>e[1]&&(s=s.transpose()),P(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Xf.className="Orthogonal";Q.registerClass(Xf);var gL={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function xL(r,e={}){return Gi(r,Q.SerializationMap.getMap().classNameMap,e,"initializer")}function vt(r){return Np(r)}function pt(r){if(typeof r=="string"){let e=r in gL?gL[r]:r;if(e==="GlorotNormal")return new $p;if(e==="GlorotUniform")return new Dp;if(e==="HeNormal")return new Rp;if(e==="HeUniform")return new Fp;if(e==="LeCunNormal")return new Op;if(e==="LeCunUniform")return new Pp;{let t={};return t.className=e,t.config={},xL(t)}}else return r instanceof pn?r:xL(r)}function yJ(){return new Wf}function bJ(){return new lc}function wJ(r){return new jf(r)}function kJ(r){return new Uf(r)}function _J(r){return new Hf(r)}function vJ(r){return new qf(r)}function CJ(r){return new Kf(r)}function IJ(r){return new Br(r)}function NJ(r){return new Dp(r)}function SJ(r){return new $p(r)}function TJ(r){return new Rp(r)}function AJ(r){return new Fp(r)}function EJ(r){return new Op(r)}function DJ(r){return new Pp(r)}function $J(r){return new Xf(r)}var f0={};Ke(f0,{Layer:()=>Me,RNN:()=>hn,RNNCell:()=>Sl,activation:()=>YQ,add:()=>see,alphaDropout:()=>Gee,average:()=>iee,averagePooling1d:()=>d0,averagePooling2d:()=>h0,averagePooling3d:()=>g0,avgPool1d:()=>hee,avgPool2d:()=>xee,avgPool3d:()=>bee,avgPooling1d:()=>gee,avgPooling2d:()=>yee,avgPooling3d:()=>wee,batchNormalization:()=>mee,bidirectional:()=>Fee,concatenate:()=>aee,conv1d:()=>GQ,conv2d:()=>WQ,conv2dTranspose:()=>jQ,conv3d:()=>UQ,convLstm2d:()=>Eee,convLstm2dCell:()=>Dee,cropping2D:()=>qQ,dense:()=>ZQ,depthwiseConv2d:()=>XQ,dot:()=>pee,dropout:()=>JQ,elu:()=>PQ,embedding:()=>oee,flatten:()=>eee,gaussianDropout:()=>Vee,gaussianNoise:()=>Bee,globalAveragePooling1d:()=>kee,globalAveragePooling2d:()=>_ee,globalMaxPool1d:()=>Pee,globalMaxPool2d:()=>Mee,globalMaxPooling1d:()=>JL,globalMaxPooling2d:()=>QL,gru:()=>Cee,gruCell:()=>Iee,input:()=>Mx,inputLayer:()=>OQ,layerNormalization:()=>fee,leakyReLU:()=>LQ,lstm:()=>Nee,lstmCell:()=>See,masking:()=>Wee,maxPool1d:()=>Lee,maxPool2d:()=>zee,maxPooling1d:()=>ez,maxPooling2d:()=>tz,maxPooling3d:()=>vee,maximum:()=>lee,minimum:()=>uee,multiply:()=>cee,permute:()=>nee,prelu:()=>zQ,reLU:()=>MQ,repeatVector:()=>tee,reshape:()=>ree,rnn:()=>$ee,separableConv2d:()=>HQ,simpleRNN:()=>Tee,simpleRNNCell:()=>Aee,softmax:()=>BQ,spatialDropout1d:()=>QQ,stackedRNNCells:()=>Ree,thresholdedReLU:()=>VQ,timeDistributed:()=>Oee,upSampling2d:()=>KQ,zeroPadding2d:()=>dee});var RJ=0;function gx(){return RJ++}var xx={};function wl(r=""){return r in xx||(xx[r]=0),xx[r]+=1,r+xx[r].toString()}function yx(r){return Array.isArray(r)&&Array.isArray(r[0])}function Mp(r){return r.length===0?[]:Array.isArray(r[0])?r:[r]}function Fe(r){let e;if(Array.isArray(r)){if(r.length!==1)throw new z(`Expected Tensor length to be 1; got ${r.length}`);e=r[0]}else e=r;return e}function Je(r){if(Array.isArray(r)&&Array.isArray(r[0])){if(r.length===1)return r=r,r[0];throw new z(`Expected exactly 1 Shape; got ${r.length}`)}else return r}function Lp(r){let e=0;for(let t of r)t.shape.length===0?e+=1:e+=t.shape.reduce((n,o)=>n*o);return e}var yL="Variable",Yf=class{constructor(e,t="float32",n=yL,o=!0,s=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=gx(),n=n==null?yL:n,this.originalName=px(n),this.name=mx(this.originalName),this.trainable_=o,this.constraint=s,this.val=Zw(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),FJ(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function FJ(r,e){if(r.shape.toString()!==e.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(r.shape)+" vs. "+JSON.stringify(e.shape))}function Zf(r){return r.map(e=>e.read())}function zp(r){r.forEach(e=>{e[0].write(e[1])})}var Tt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Vr=class{constructor(e,t,n,o,s,a,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=o,this.callArgs=s,this.outputTensorIndex=i,this.id=gx(),a!=null&&(this.originalName=px(a),this.name=mx(this.originalName)),this.rank=t.length}},OJ=0,kl=class{constructor(e,t){this.callArgs=t,this.id=OJ++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},PJ=0,Me=class extends Q.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=PJ++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Jo(n)+"_"+wl(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let s=null;e.batchSize!=null&&(s=e.batchSize),n=[s].concat(e.inputShape)}this.batchInputShape=n;let o=e.dtype;o==null&&(o=e.inputDType),o==null&&(o="float32"),this.dtype=o}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Lr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new z(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return xr(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return xr(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Sn(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Sn(`Layer ${this.name} is not connected, no input to return.`);return xr(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Sn(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Sn(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return xr(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=bt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=bt(this.inputSpec);if(e.length!==t.length)throw new z(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let o=e[n],s=t[n];if(s==null)continue;let a=o.rank;if(s.ndim!=null&&a!==s.ndim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${s.ndim}, found ndim=${a}`);if(s.maxNDim!=null&&a>s.maxNDim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${a}`);if(s.minNDim!=null&&a<s.minNDim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${s.minNDim}, found ndim=${a}.`);if(s.dtype!=null&&o.dtype!==s.dtype)throw new z(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${s.dtype}, found dtype=${o.dtype}.`);if(s.axes){let i=o.shape;for(let l in s.axes){let u=Number(l),c=s.axes[l],p=u>=0?i[u]:i[i.length+u];if(c!=null&&[c,null].indexOf(p)===-1)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected axis ${u} of input shape to have value ${c} but got shape ${i}.`)}}if(s.shape!=null)for(let i=0;i<s.shape.length;++i){let l=s.shape[i],u=o.shape[i];if(l!=null&&u!=null&&l!==u)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected shape=${s.shape}, found shape=${o.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=bt(e),o=!0;for(let a of n)if(!(a instanceof Vr)){o=!1;break}let s=!0;for(let a of n)if(a instanceof Vr){s=!1;break}if(o===s)throw new z("Arguments to apply() must be all SymbolicTensors or all Tensors");return Ms(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let i of bt(e))a.push(i.shape);this.build(xr(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(e),s){let a=this.call(e,t),i=bt(a),l=[];for(let u of i)n.indexOf(u)!==-1&&(u=u.clone()),l.push(u);if(a=xr(l),this.activityRegularizer!=null)throw new Se("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=MJ(e),i=this.computeOutputShape(a),l,u=LJ(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),i!=null&&i.length>0&&Array.isArray(i[0])?l=i.map((c,p)=>new Vr(u,c,this,bt(e),t,this.name,p)):l=new Vr(u,i,this,bt(e),t,this.name),this.addInboundNode(e,l,null,null,a,i,t),this._refCount++,this.activityRegularizer!=null)throw new Se("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return l}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,o)=>{n!=null&&e[o]!=null&&e[o]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Sn(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Sn(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Lr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Lp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Zf(e?this.trainableWeights:this.weights)}setWeights(e){G(()=>{let t=this.weights;if(t.length!==e.length)throw new z(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],o=Zf(t);for(let s=0;s<o.length;++s){let a=o[s],i=t[s],l=e[s];if(!y.arraysEqual(a.shape,l.shape))throw new z(`Layer weight shape ${a.shape} not compatible with provided weight shape ${l.shape}`);n.push([i,l])}zp(n)})}addWeight(e,t,n,o,s,a,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new z(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(o=pt("zeros"));let l=o.apply(t,n),u=new Yf(l,n,e,a,i);return l.dispose(),s!=null&&this.addLoss(()=>s.apply(u.read())),a==null&&(a=!0),a?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=bt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,o,s,a,i=null){let l=bt(e);t=bt(t),n=bt(n),o=bt(o),s=Mp(s),a=Mp(a);let u=[],c=[],p=[];for(let m of l)u.push(m.sourceLayer),c.push(m.nodeIndex),p.push(m.tensorIndex);new kl({outboundLayer:this,inboundLayers:u,nodeIndices:c,tensorIndices:p,inputTensors:l,outputTensors:t,inputMasks:n,outputMasks:o,inputShapes:s,outputShapes:a},i);for(let m=0;m<t.length;m++)t[m].sourceLayer=this,t[m].nodeIndex=this.inboundNodes.length-1,t[m].tensorIndex=m}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function MJ(r){r=bt(r);let e=[];for(let t of r)e.push(t.shape);return xr(e)}function LJ(r){return"float32"}function $C(r,e,t){if((e==null||t!=null&&t>0)&&(e=r.sourceLayer,t=r.nodeIndex),e.inboundNodes.length===0)return[r];{let n=e.inboundNodes[t];if(n.inboundLayers.length===0)return n.inputTensors;{let o=[];for(let s=0;s<n.inboundLayers.length;s++){let a=n.inputTensors[s],i=n.inboundLayers[s],l=n.nodeIndices[s],u=$C(a,i,l);for(let c of u)o.indexOf(c)===-1&&o.push(c)}return o}}}var ji=class extends Me{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:wl("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new z("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new z("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new z("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let o=new Vr(this.dtype,this.batchInputShape,this,[],{},this.name);o.nodeIndex=0,o.tensorIndex=0,new kl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[o],outputTensors:[o],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new z(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};ji.className="InputLayer";Q.registerClass(ji);function bx(r){if(r.batchShape==null&&r.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(r.batchShape!=null&&r.shape!=null)throw new z("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let e=r.batchShape;r.shape!=null&&e==null&&(e=[null].concat(r.shape));let t=r.dtype;return t==null&&(t="float32"),new ji({batchInputShape:e,name:r.name,dtype:t,sparse:r.sparse}).inboundNodes[0].outputTensors[0]}async function Ui(r){if(r==null)return;let e=[],t=[],n=[];for(let o in r){let s=r[o];if(typeof s!="number"){let a=s;e.push(a.data()),t.push(o),n.push(a)}}if(e.length>0){let o=await Promise.all(e);for(let s=0;s<o.length;++s)r[t[s]]=o[s][0];Ae(n)}}function wx(r){if(r!=null)for(let e in r){let t=r[e];typeof t!="number"&&t.dispose()}}var bL;(function(r){r[r.SILENT=0]="SILENT",r[r.VERBOSE=1]="VERBOSE"})(bL||(bL={}));var zJ=125,_l=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},kx=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},wL=class extends _l{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let o in t){let s=t[o];if(typeof s=="number")this.totals.hasOwnProperty(o)||(this.totals[o]=0),this.totals[o]=this.totals[o]+s*n;else{let a;o in this.totals?a=this.totals[o]:this.totals[o]=0;let i=G(()=>ee(this.totals[o],P(s,n)));this.totals[o]=i,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:G(()=>{let o=P(me(1,this.seen),this.totals[n]);t[n]=o,this.totals[n].dispose(),Dt(t[n])}))}},_x=class extends _l{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let s in this.history){let a=this.history[s];for(let i=0;i<a.length;++i)if(typeof a[i]!="number"){let l=a[i];e.push(l.data()),t.push(s),n.push(i)}}let o=await Promise.all(e);for(let s=0;s<o.length;++s)this.history[t[s]][n[s]].dispose(),this.history[t[s]][n[s]]=o[s][0]}},vx=class extends _l{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=zJ),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");y.isNumber(this.yieldEvery)&&(this.maybeWait=XM(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let o=[];this.yield!=null&&(await Ui(n),o.push(this.yield(e,t,n))),o.push(nf()),await Promise.all(o)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Ui(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Ui(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(nf()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Ui(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Ui(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(nf()):y.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Ui(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Ui(e),await this.trainEnd(e))}};function Cx(r,e){return r==null&&(r={}),r instanceof _l?[r]:Array.isArray(r)&&r[0]instanceof _l?r:bt(r).map(n=>new vx(n,e))}var mn=class{constructor(){}static registerCallbackConstructor(e,t){y.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),mn.checkForDuplicate(t),mn.constructors[e]==null&&(mn.constructors[e]=[]),mn.constructors[e].push(t)}static checkForDuplicate(e){for(let t in mn.constructors)mn.constructors[+t].forEach(o=>{if(o===e)throw new z("Duplicate callback constructor.")})}static clear(){mn.constructors={}}static createCallbacks(e){let t=[];for(let n in mn.constructors){let o=+n;e>=o&&t.push(...mn.constructors[o])}return t.map(n=>new n)}};mn.constructors={};function Ix(r,e,t,n,o,s,a,i,l){let u=new _x,c=[new wL,...mn.createCallbacks(e)];r!=null&&c.push(...r),c.push(u);let p=new kx(c);return p.setParams({epochs:t,initialEpoch:n,samples:o,steps:s,batchSize:a,verbose:e,doValidation:i,metrics:l}),{callbackList:p,history:u}}function Qr(r,e={},t=!1){return Gi(r,Q.SerializationMap.getMap().classNameMap,e,"layer",t)}function Jf(r,e){return G(()=>{r.dtype!=="float32"&&(r=r.asType("float32"));let t=ge(ac(r),e,!0),n=va(t.shape,Jt()),o=xt(Yr(t,n));return me(r,o)})}function Hi(r,e){return G(()=>ht(ac(ce(e,r)),-1))}function Bp(r,e){return G(()=>ht(Nt(ce(e,r)),-1))}function vl(r,e){return G(()=>{let t=ce(r,e),n=ir(Nt(r),Jt(),Number.MAX_VALUE),o=Nt(me(t,n));return P(100,ht(o,-1))})}function BJ(r,e){return G(()=>{let t=ir(e,Jt(),Number.MAX_VALUE),n=lr(ee(1,t)),o=ir(r,Jt(),Number.MAX_VALUE),s=lr(ee(1,o));return ht(ac(ce(n,s)),-1)})}function VJ(r,e){return G(()=>{let t=Yr(0,ce(1,P(r,e)));return ht(ac(t),-1)})}function GJ(r,e){return G(()=>{let t=Yr(0,ce(1,P(r,e)));return ht(t,-1)})}function WJ(r,e){return G(()=>{let t=ge(P(r,e),-1),n=ur(P(ce(1,r),e),-1);return Yr(0,ee(1,ce(n,t)))})}function jJ(r,e){return G(()=>{let t=Math.log(2),n=ce(e,r),o=ce(ee(n,Ts(P(-2,n))),t);return ht(o,-1)})}function uc(r,e,t=!1){return G(()=>{if(t)e=Aa(e);else{let n=ge(e,e.shape.length-1,!0);e=me(e,n)}return e=ir(e,Jt(),1-Jt()),He(ge(P(r.toFloat(),lr(e)),e.shape.length-1))})}function Vp(r,e,t=!1){return G(()=>{let n=Ss(uL(r)).toInt();e=ir(e,Jt(),1-Jt());let o=e.shape,s=Cs(n,o[o.length-1]).reshape(o);return uc(s,e,t)})}function UJ(r,e){if(!y.arraysEqual(r.shape,e.shape))throw new z(`logits and labels must have the same shape, but got shapes ${JSON.stringify(r.shape)} and ${JSON.stringify(e.shape)}`);return G(()=>{let t=e.relu(),n=e.abs().neg();return t.sub(e.mul(r)).add(n.exp().log1p())})}function Gp(r,e){return G(()=>{let t;return t=ir(e,Jt(),1-Jt()),t=lr(me(t,ce(1,t))),ht(UJ(r,t),-1)})}function HJ(r,e){return G(()=>{let t=ir(r,Jt(),1),n=ir(e,Jt(),1);return ge(P(r,lr(me(t,n))),-1)})}function qJ(r,e){return G(()=>{let t=lr(ee(Jt(),e));return ht(ce(e,P(r,t)),-1)})}function Qf(r,e){return G(()=>{let t=Jf(r,-1),n=Jf(e,-1),o=P(t,n);return He(ge(o,-1))})}var ed={meanSquaredError:Hi,meanAbsoluteError:Bp,meanAbsolutePercentageError:vl,meanSquaredLogarithmicError:BJ,squaredHinge:VJ,hinge:GJ,categoricalHinge:WJ,logcosh:jJ,categoricalCrossentropy:uc,sparseCategoricalCrossentropy:Vp,binaryCrossentropy:Gp,kullbackLeiblerDivergence:HJ,poisson:qJ,cosineProximity:Qf};function Nx(r){if(typeof r=="string"){if(r in ed)return ed[r];let e=`Unknown loss ${r}`;throw r.toLowerCase().includes("softmaxcrossentropy")&&(e=`Unknown loss ${r}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new z(e)}else return r}function td(r,e){return G(()=>{let t=P(.5,tr(e)),n=Ba(er(e,t),r.dtype);return ht(vn(r,n),-1)})}function rd(r,e){return G(()=>Ba(vn(il(r,-1),il(e,-1)),"float32"))}function kL(r,e){return G(()=>hr(r.equal(1),e.equal(1)).sum().cast("float32"))}function KJ(r,e){return G(()=>hr(r.equal(1),e.equal(0)).sum().cast("float32"))}function XJ(r,e){return G(()=>hr(r.equal(0),e.equal(1)).sum().cast("float32"))}function RC(r,e){return G(()=>{let t=kL(r,e),n=XJ(r,e),o=t.add(n);return $t(er(o,0),t.div(o),0).cast("float32")})}function _L(r,e){return G(()=>{let t=kL(r,e),n=KJ(r,e),o=t.add(n);return $t(er(o,0),t.div(o),0).cast("float32")})}function Sx(r,e){return Gp(r,e)}function Tx(r,e){return r.rank===e.rank&&(r=r.squeeze([r.rank-1])),e=e.argMax(-1),e.dtype!==r.dtype&&(e=e.asType(r.dtype)),vn(r,e).asType("float32")}var YJ=Hi,ZJ=Hi,JJ=Bp,QJ=Bp,eQ=vl,tQ=vl,nd=uc,rQ=Qf,FC=Vp,Ax={binaryAccuracy:td,categoricalAccuracy:rd,precision:RC,categoricalCrossentropy:nd,sparseCategoricalCrossentropy:FC,mse:YJ,MSE:ZJ,mae:JJ,MAE:QJ,mape:eQ,MAPE:tQ,cosine:rQ};function vL(r){if(typeof r=="string"&&r in Ax)return Ax[r];if(typeof r!="string"&&r!=null)return r;throw new z(`Unknown metric ${r}`)}function od(r){if(Gn(r!==null,`Unknown LossOrMetricFn ${r}`),typeof r=="string")return r;{let e;for(let t of Object.keys(ed))if(ed[t]===r){e=t;break}if(e!==void 0)return e;for(let t of Object.keys(Ax))if(Ax[t]===r){e=t;break}return e!==void 0?e:r.name}}function CL(r){let e={Adagrad:()=>cl.adagrad(.01),Adadelta:()=>cl.adadelta(1,.95,Jt()),Adam:()=>cl.adam(.001,.9,.999,Jt()),Adamax:()=>cl.adamax(.002,.9,.999,Jt(),0),RMSProp:()=>cl.rmsprop(.001,.9,0,Jt()),SGD:()=>cl.sgd(.01)};if(e.adagrad=e.Adagrad,e.adadelta=e.Adadelta,e.adam=e.Adam,e.adamax=e.Adamax,e.rmsprop=e.RMSProp,e.sgd=e.SGD,r in e)return e[r]();throw new z(`Unknown Optimizer ${r}`)}var IL=1*1024*1024;function PC(r,e,t=!1){if(r==null||typeof r!="object"||Object.getPrototypeOf(r)!==Object.prototype||!OC(r))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(t){let n=JSON.stringify(r);n.length>IL&&console.warn(`User-defined metadata of model "${e}" is too large in size (length=${n.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${IL}.`)}}function OC(r){if(r===null)return!0;if(typeof r=="object")if(Object.getPrototypeOf(r)===Object.prototype){let e=Object.keys(r);for(let t of e)if(typeof t!="string"||!OC(r[t]))return!1;return!0}else if(Array.isArray(r)){for(let e of r)if(!OC(e))return!1;return!0}else return!1;else{let e=typeof r;return e==="string"||e==="number"||e==="boolean"}}function NL(r,e,t,n=console.log){let o=oQ(r),s=["Layer (type)","Output shape","Param #"];o?(e=e||65,t=t||[.45,.85,1]):(e=e||98,t=t||[.33,.55,.67,1]),t[t.length-1]<=1&&(t=t.map(c=>Math.floor(e*c)));let a;if(!o){s.push("Receives inputs"),a=[];for(let c in r.nodesByDepth)a.push(...r.nodesByDepth[c])}n("_".repeat(e)),Ex(s,t,n),n("=".repeat(e));let i=r.layers;for(let c=0;c<i.length;++c)o?sQ(i[c],t,n):iQ(i[c],t,a,n),n((c===i.length-1?"=":"_").repeat(e));r.checkTrainableWeightsConsistency();let l=nQ(r),u=Lp(r.nonTrainableWeights);n(`Total params: ${l+u}`),n(`Trainable params: ${l}`),n(`Non-trainable params: ${u}`),n("_".repeat(e))}function nQ(r){let e;return r.collectedTrainableWeights!=null?e=Lp(r.collectedTrainableWeights):e=Lp(r.trainableWeights),e}function oQ(r){let e=!0,t=[],n=[];for(let o in r.nodesByDepth)t.push(r.nodesByDepth[o]);for(let o of t){if(o.length>1||o.length===1&&o[0].inboundLayers.length>1){e=!1;break}n.push(...o)}if(e)for(let o of r.layers){let s=!1;for(let a of o.inboundNodes)if(n.indexOf(a)!==-1)if(s){e=!1;break}else s=!0;if(!e)break}return e}function Ex(r,e,t=console.log){let n="";for(let o=0;o<r.length;++o)o>0&&(n=n.slice(0,n.length-1)+" "),n+=r[o],n=n.slice(0,e[o]),n+=" ".repeat(e[o]-n.length);t(n)}function sQ(r,e,t){let n;try{n=JSON.stringify(r.outputShape)}catch(i){n="multiple"}let o=r.name,s=r.getClassName(),a=[`${o} (${s})`,n,r.countParams().toString()];Ex(a,e,t)}function iQ(r,e,t,n){let o;try{o=JSON.stringify(r.outputShape)}catch(c){o="multiple"}let s=[];for(let c of r.inboundNodes)if(!(t!=null&&t.length>0&&t.indexOf(c)===-1))for(let p=0;p<c.inboundLayers.length;++p){let m=c.inboundLayers[p].name,f=c.nodeIndices[p],d=c.tensorIndices[p];s.push(`${m}[${f}][${d}]`)}let a=r.name,i=r.getClassName(),l=s.length===0?"":s[0],u=[`${a} (${i})`,o,r.countParams().toString(),l];Ex(u,e,n);for(let c=1;c<s.length;++c)Ex(["","","",s[c]],e,n)}function SL(r,e,t){return(r==="inboundNodes"||r==="outputLayers"||r==="inputLayers")&&e===0&&typeof t=="string"}function cc(r,e){if(r===null)return null;if(typeof r=="string")return za(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let t=[],n=r.length;for(let o=0;o<n;++o){let s=r[o];SL(e,o,s)?t.push(s):t.push(cc(s,e))}return t}else{let t={};for(let n of Object.keys(r)){let o=r[n];if(n==="name"&&typeof o=="string")t[n]=o;else{let s=za(n);t[s]=cc(o,s)}}return t}}function Dx(r,e){if(r==null)return null;if(typeof r=="string")return Jo(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let t=[],n=r.length;for(let o=0;o<n;++o){let s=r[o];SL(e,o,s)?t.push(s):t.push(Dx(s,e))}return t}else{let t={};for(let n of Object.keys(r)){let o=r[n],s=Jo(n);(n==="name"||n==="className")&&typeof o=="string"?t[s]=o:t[s]=Dx(o,n)}return t}}var Wp="3.3.0";function aQ(r,e){if(r.dtype==null||r.dtype===e.dtype)return e;try{return oe(e,r.dtype)}catch(t){throw new z(`The dtype of the feed (${e.dtype}) can not be cast to the dtype of the key '${r.name}' (${r.dtype}).`)}}var zs=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof zs)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=aQ(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new z(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Vr){if(this.id2Value[e.id]==null)throw new z(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new z(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Vr){if(this.id2Value[e.id]==null)throw new z(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new z(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ae(this.id2Mask)}},MC={},TL={};function pc(r,e,t,n){let o=t==null?!1:t.training,s=Array.isArray(r),a=s?r:[r],i=a.map(d=>d.name),l=[],u=e.names();for(let d of i)u.indexOf(d)!==-1?l.push(e.getValue(d)):l.push(null);n!=null&&(n.maxNumTensors=-Infinity,n.minNumTensors=Infinity);let c=i.join(",")+"|"+e.names().join(","),p,m;if(MC[c]==null){let d=lQ(a,e);p=d.sorted,m=d.recipientCounts,MC[c]=p,TL[c]=m}p=MC[c],m={},o||Object.assign(m,TL[c]);let f=new zs(e);for(let d=0;d<p.length;++d){if(n!=null){let F=qc().numTensors;F>n.maxNumTensors&&(n.maxNumTensors=F),F<n.minNumTensors&&(n.minNumTensors=F)}let h=p[d],g=h.sourceLayer;if(g instanceof ji)continue;let x=[],w=[],b=[],k=!1;for(let F of h.inputs){let M=f.getValue(F),V=f.getMask(F);x.push(M),w.push(V),V!=null&&(k=!0),o||(m[F.name]--,m[F.name]===0&&!e.hasKey(F)&&i.indexOf(F.name)===-1&&!M.isDisposed&&F.sourceLayer.stateful!==!0&&b.push(M))}k&&(t=t||{},t.mask=w[0]);let _=bt(g.apply(x,t)),A=null;g.supportsMasking&&(A=g.computeMask(x,w));let N=uQ(h),$=Array.isArray(N)?N:[N];for(let F=0;F<$.length;++F){f.hasKey($[F])||f.add($[F],_[F],Array.isArray(A)?A[0]:A);let M=i.indexOf($[F].name);M!==-1&&(l[M]=_[F])}o||Ae(b)}return f.disposeMasks(),s?l:l[0]}function lQ(r,e){y.assert(r!=null&&r.length>0,()=>"Expected at least one fetch, got none");let t=[],n={};if(r.length===1){let o=AL(r[0],e);t=o.sorted,n=o.recipientMap}else{let o=new Set;for(let s of r){let{sorted:a,recipientMap:i}=AL(s,e);for(let l of a)o.has(l.name)||(t.push(l),o.add(l.name));for(let l in i)n[l]==null&&(n[l]=new Set),i[l].forEach(u=>n[l].add(u))}}return{sorted:t,recipientCounts:cQ(n)}}function cQ(r){let e={};for(let t in r)e[t]=r[t].size;return e}function AL(r,e){let t=new Set,n=[],o={};for(let i of e.names())t.add(i);let s=[],a=[];for(s.push(r);s.length>0;){let i=s[s.length-1];if(t.has(i.name)){s.pop();continue}let l=a[a.length-1]===s.length-1;if(i.inputs.length===0||l)s.pop(),n.push(i),t.add(i.name),l&&a.pop();else{a.push(s.length-1);for(let u of i.inputs)o[u.name]==null&&(o[u.name]=new Set),o[u.name].add(i.name),!t.has(u.name)&&s.push(u)}}return{sorted:n,recipientMap:o}}function uQ(r){let e;if(r.sourceLayer.inboundNodes.length===1)e=r.sourceLayer.output;else{let t=null;for(let n=0;n<r.sourceLayer.inboundNodes.length;++n)for(let o of r.sourceLayer.inboundNodes[n].outputTensors)if(o.id===r.id){t=n;break}e=r.sourceLayer.getOutputAt(t)}return e}var Wn=class extends Me{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let w=this.getClassName().toLowerCase();this.name=wl(w)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],es(this.inputs).length!==this.inputs.length)throw new z(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(w=>w.name)}`);es(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(w=>w.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let w of this.outputs){let b=w.sourceLayer,k=w.nodeIndex,_=w.tensorIndex;this.outputLayers.push(b),this.outputLayersNodeIndices.push(k),this.outputLayersTensorIndices.push(_)}for(let w of this.inputs){let b=w.sourceLayer,k=w.nodeIndex,_=w.tensorIndex;Gn(k===0,"input layer has >1 nodes"),Gn(_===0,"input layer has >1 tensors"),this.inputLayers.push(b),this.inputLayersNodeIndices.push(k),this.inputLayersTensorIndices.push(_)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let w=0;w<this.inputLayers.length;w++){let b=this.inputLayers[w];if(!(b instanceof ji))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${w} (0-based) originates from layer type ${b.getClassName()}.`);this.inputNames.push(b.name),this.feedInputShapes.push(b.batchInputShape),this.feedInputNames.push(b.name)}for(let w of this.outputLayers)this.outputNames.push(w.name);this.internalInputShapes=this.inputs.map(w=>w.shape),this.internalOutputShapes=this.outputs.map(w=>w.shape);let t={},n={},o={},s={},a={},i=[],l=(w,b,k,_,A,N)=>{(_==null||A==null||N==null)&&(_=w.sourceLayer,A=w.nodeIndex,N=w.tensorIndex);let $=_.inboundNodes[A];if(k.indexOf($)!==-1)throw new Lr(`The tensor ${w.name} at layer "${_.name}" is part of a cycle.`);if(b.indexOf($)!==-1)return;this.containerNodes.add(Wn.nodeKey(_,A)),_.id in a||(a[_.id]=Object.keys(a).length),k.indexOf($)===-1&&k.push($);let F=$.inboundLayers.length;for(let M=0;M<F;M++){let V=$.inputTensors[M],W=$.inboundLayers[M],U=$.nodeIndices[M],H=$.tensorIndices[M];l(V,b,k,W,U,H)}for(b.push($);k.indexOf($)>=0;)k.splice(k.indexOf($),1);i.push($)},u=[],c=[];for(let w of this.outputs)l(w,u,c);let p=i.slice().reverse();for(let w of p){n[w.id]=w,w.id in t||(t[w.id]=0);let b=t[w.id],k=o[w.outboundLayer.id]==null?0:o[w.outboundLayer.id];b=Math.max(b,k),o[w.outboundLayer.id]=b,s[w.outboundLayer.id]=w.outboundLayer,t[w.id]=b;for(let _=0;_<w.inboundLayers.length;_++){let A=w.inboundLayers[_],N=w.nodeIndices[_],$=A.inboundNodes[N],F=t[$.id]==null?0:t[$.id];t[$.id]=Math.max(b+1,F),n[$.id]=$}}let m={};for(let w in t){let b=t[w];b in m||(m[b]=[]),m[b].push(n[w])}let f={};for(let w in o){let b=o[w];b in f||(f[b]=[]),f[b].push(s[w])}let d=Object.keys(f).map(w=>parseInt(w,10)).sort(Pf);this.layers=[];for(let w of d){let b=f[w];b.sort((k,_)=>{let A=a[k.id],N=a[_.id];return A<N?-1:A>N?1:0});for(let k of b)k instanceof Wn&&this.internalContainerRefs.push(k),this.layers.push(k)}this.layersByDepth=f,d=Object.keys(m).map(w=>parseInt(w,10)).sort(Pf);let h=this.inputs.slice(),g=[];for(let w of d)for(let b of m[w]){let k=b.outboundLayer;if(k!=null){for(let _ of b.inputTensors)if(h.indexOf(_)===-1)throw new Lr(`Graph disconnected: cannot obtain value for tensor ${_} at layer "${k.name}". The following previous layers were accessed without issue: ${g}`);for(let _ of b.outputTensors)h.push(_);g.push(k.name)}}this.nodesByDepth=m;let x=this.layers.map(w=>w.name);for(let w of x){let b=x.filter(k=>k===w).length;if(b!==1)throw new Lr(`The name "${w}" is used ${b} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(x))}this.outboundNodes=[],this.inboundNodes=[],new kl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(w=>null),outputMasks:this.outputs.map(w=>null),inputShapes:this.inputs.map(w=>w.shape),outputShapes:this.outputs.map(w=>w.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new z("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},o=0;for(let a of this.layers)for(let i of a.weights){if(n[i.originalName]!=null)throw new z(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,o++}let s=[];for(let a in e){let i=a;if(n[a]==null){let l=a.split("/");i=l.slice(0,-2).concat([l[l.length-1]]).join("/")}if(n[i]!=null)s.push([n[i],e[a]]);else if(t)throw new z(`Provided weight data has no target variable: ${a}`);delete n[i]}if(t){let a=[];for(let i in n)a.push(i);if(a.length>0)throw new z(`${a.length} of ${o} weights are not set: ${a}`)}zp(s)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${Wp}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Dx(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return G(()=>{e=bt(e);let n=new zs;for(let o=0;o<this.inputs.length;++o)n.add(this.inputs[o],e[o]);return pc(this.outputs,n,t)})}computeMask(e,t){return G(()=>{e=bt(e);let n;return t==null?n=Zo(null,e.length):n=bt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Mp(e);if(t.length!==this.inputLayers.length)throw new z(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let l=this.inputLayers[i],u=t[i],c=l.name+"_0_0";n[c]=u}let o=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Pf);if(o.length>1)for(let i of o){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer;if(this.inputLayers.map(h=>h.id).indexOf(c.id)!==-1)continue;let p=[];for(let h=0;h<u.inboundLayers.length;h++){let g=u.inboundLayers[h],x=u.nodeIndices[h],w=u.tensorIndices[h],b=`${g.name}_${x}_${w}`,k=n[b];p.push(k)}let m=c.computeOutputShape(xr(p)),f=Mp(m),d=c.inboundNodes.indexOf(u);for(let h=0;h<f.length;h++){let g=`${c.name}_${d}_${h}`;n[g]=f[h]}}}let s=[],a=[];for(let i=0;i<this.outputLayers.length;i++){let l=this.outputLayers[i],u=this.outputLayersNodeIndices[i],c=this.outputLayersTensorIndices[i],p=`${l.name}_${u}_${c}`;a.push(p)}for(let i=0;i<a.length;i++){let l=a[i];Gn(l in n),s.push(n[l])}return xr(s)}runInternalGraph(e,t){t==null&&(t=Zo(null,e.length));let n={};for(let l=0;l<this.inputs.length;++l){let u=this.inputs[l],c=e[l],p=t[l];n[u.id]=[c,p]}let o=Object.keys(this.nodesByDepth).map(l=>parseInt(l,10)).sort(Pf);for(let l of o){let u=this.nodesByDepth[l];for(let c of u){let p=c.outboundLayer,m=c.inputTensors,f=c.outputTensors,d=new Array;for(let h of m)h.id in n&&d.push(n[h.id]);if(d.length===m.length){let h={},g,x,w,b;if(c.callArgs!=null&&(h=c.callArgs),d.length===1){let[k,_]=d[0];h.mask==null&&(h.mask=_),w=bt(p.call(k,h)),b=bt(p.computeMask(k,_)),g=[k],x=[_]}else g=d.map(k=>k[0]),x=d.map(k=>k[1]),h.mask==null&&(h.mask=x),w=bt(p.call(g,h)),b=bt(p.computeMask(g,x));if(p.activityRegularizer)throw new Se("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let k=0;k<f.length;++k){let _=f[k],A=w[k],N=b[k];n[_.id]=[A,N]}}}}let s=[],a=[],i=[];for(let l of this.outputs){Gn(l.id in n,`Could not compute output ${l.name} : ${l.id}`);let[u,c]=n[l.id];i.push(u.shape),s.push(u),a.push(c)}return[s,a,i]}buildNodeConversionMap(e){let t={},n;for(let o of this.layers){n=o instanceof Wn?1:0;for(let s=0;s<o.inboundNodes.length;s++){let a=Wn.nodeKey(o,s);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new z(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new z("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new z(`No such layer: ${e}`)}calculateLosses(){return G(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let o=Wn.nodeKey(t,n);this.containerNodes.has(o)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let i=a.getClassName(),l=a.getConfig(),u=[];for(let p=0;p<a.inboundNodes.length;p++){let m=a.inboundNodes[p],f=Wn.nodeKey(a,p),d={};if(this.containerNodes.has(f)){if(m.callArgs)try{JSON.stringify(m.callArgs),d=m.callArgs}catch(h){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${m.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),d={}}if(m.inboundLayers.length>0){let h=[];for(let g=0;g<m.inboundLayers.length;g++){let x=m.inboundLayers[g],w=m.nodeIndices[g],b=m.tensorIndices[g],k=Wn.nodeKey(x,w),_=t[k];_==null&&(_=0),h.push([x.name,_,b,d])}u.push(h)}}}let c={};c.name=a.name,c.className=i,c.config=l,c.inboundNodes=u,n.push(c)}e.layers=n;let o=[];for(let a=0;a<this.inputLayers.length;a++){let i=this.inputLayers[a],l=this.inputLayersNodeIndices[a],u=Wn.nodeKey(i,l);if(!this.containerNodes.has(u))continue;let c=t[u];c==null&&(c=0);let p=this.inputLayersTensorIndices[a];o.push([i.name,c,p])}e.inputLayers=o;let s=[];for(let a=0;a<this.outputLayers.length;a++){let i=this.outputLayers[a],l=this.outputLayersNodeIndices[a],u=Wn.nodeKey(i,l);if(!this.containerNodes.has(u))continue;let c=t[u];c==null&&(c=0);let p=this.outputLayersTensorIndices[a];s.push([i.name,c,p])}return e.outputLayers=s,e}static fromConfig(e,t,n={},o=!1){let s={},a={};function i(g,x){g.name in a?a[g.name].push(x):a[g.name]=[x]}function l(g,x){let w=[],b;for(let k of x){let _=k[0],A=k[1],N=k[2];if(b=k[3]==null?{}:k[3],!(_ in s)){i(g,x);return}let $=s[_];if($.inboundNodes.length<=A){i(g,x);return}let F=$.inboundNodes[A];w.push(F.outputTensors[N])}w.length>0&&g.apply(xr(w),b)}function u(g){let x=g.name,w=Qr(g,t.customObjects!=null?t.customObjects:{});w.setFastWeightInitDuringBuild(o),s[x]=w,g.inboundNodes.forEach(k=>{if(!(k instanceof Array))throw new z(`Corrupted configuration, expected array for nodeData: ${k}`);i(w,k)})}let c=t.name,p=t.layers;for(let g of p)u(g);for(;!qM(a);)for(let g of p){let x=s[g.name];if(x.name in a){let w=a[x.name];delete a[x.name];for(let b of w)l(x,b)}}let m=[],f=[],d=t.inputLayers;for(let g of d){let x=g[0],w=g[1],b=g[2];Gn(x in s);let _=s[x].inboundNodes[w].outputTensors;m.push(_[b])}let h=t.outputLayers;for(let g of h){let x=g[0],w=g[1],b=g[2];Gn(x in s);let _=s[x].inboundNodes[w].outputTensors;f.push(_[b])}return new e({inputs:m,outputs:f,name:c})}get stateful(){if(this._stateful)throw new z("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){G(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function pQ(r,e,t){let n=e.length;if(r==null||Array.isArray(r)&&r.length===0)return e.map(o=>null);if(n===1)return Array.isArray(r)&&r.length===1?r:typeof r=="object"&&e[0]in r?[r[e[0]]]:[r];if(Array.isArray(r)){if(r.length!==n)throw new Error(`Provided ${t} is an array of ${r.length} element(s), but the model has ${n} outputs. Make sure a set of weights is provided for each model output.`);return r}else if(typeof r=="object"&&Object.keys(r).length>0&&typeof r[Object.keys(r)[0]]=="object"){let o=[];return e.forEach(s=>{s in r?o.push(r[s]):o.push(null)}),o}else throw new Error(`The model has multiple (${n}) outputs, so ${t} must be either an array with ${n} elements or an object with ${e} keys. Provided ${t} not understood: ${JSON.stringify(r)}`)}function $x(r,e){return pQ(r,e,"classWeight")}async function Rx(r,e,t,n){if(e!=null||n!=null)throw new Error("Support sampleWeight is not implemented yet");if(t!=null){let o=G(()=>{if(r.shape.length===1)return r.clone();if(r.shape.length===2)if(r.shape[1]>1){let i=1;return r.argMax(i)}else{if(r.shape[1]===1)return r.reshape([r.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${r.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${r.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await o.data());Ae(o);let a=[];return s.forEach(i=>{if(t[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);a.push(t[i])}),Gt(a,"float32")}else return null}function EL(r,e){return P(r,e)}var mQ=32;function $L(r,e){let t,n,o=e;t=o.xs,n=o.ys,y.assert(t!=null&&n!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${e}`);let s=DL("input",r.inputNames,t),a=DL("output",r.outputNames,n),i=s[0].shape[0];y.assert(s.length===r.inputs.length,()=>`LayersModel has ${r.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(r.inputNames)})`),y.assert(a.length===r.outputs.length,()=>`LayersModel has ${r.outputs.length} outputs, but the dataset provides ${a.length} outputs. (Expected output keys: ${JSON.stringify(r.outputNames)})`);for(let l=0;l<s.length;l++)y.assert(s[l].shape[0]===i,()=>`Batch size mismatch: input ${r.inputNames[l]} has ${s[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);for(let l=0;l<a.length;l++)y.assert(a[l].shape[0]===i,()=>`Batch size mismatch: output ${r.outputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);return{xs:s,ys:a}}function DL(r,e,t){if(t instanceof Ve)return[t];if(Array.isArray(t))return y.assert(t.length===e.length,()=>`Received an array of ${t.length} Tensors, but expected ${e.length} to match the ${r} keys ${e}.`),t;{let n=[];for(let o of e){if(t[o]==null)throw new z(`The feature data generated by the dataset lacks the required ${r} key '${o}'.`);n.push(t[o])}return n}}function fQ(r){if(r.length===3)throw new Se("Validation with sample weights is not implemented yet.");return{xs:r[0],ys:r[1]}}async function FL(r,e,t){let n=t.batchesPerEpoch!=null;if(y.assert(r.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),y.assert(t!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),y.assert(t.epochs!=null&&t.epochs>0&&Number.isInteger(t.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${t.epochs}`),y.assert(!n||t.batchesPerEpoch>0&&Number.isInteger(t.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${t.batchesPerEpoch}`),y.assert(t.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;try{let o=t.validationData!=null,s,a;if(o)if(RL(t.validationData))y.assert(t.validationBatches==null||t.validationBatches>0&&Number.isInteger(t.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${t.validationBatches}`);else{let g=fQ(t.validationData);s=g.xs,a=g.ys}let i=r.makeTrainFunction(),l=r.getDedupedMetricsNames(),u;o?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=Cx(t.callbacks,t.yieldEvery),p=t.verbose==null?1:t.verbose,{callbackList:m,history:f}=Ix(c,p,t.epochs,null,null,dQ(e,t),null,o,u);m.setModel(r),r.history=f,await m.onTrainBegin(),r.stopTraining_=!1;let d=t.initialEpoch==null?0:t.initialEpoch,h=await e.iterator();for(;d<t.epochs;){let g={};await m.onEpochBegin(d);let x=0,w=0;for(n||(h=await e.iterator());n?x<t.batchesPerEpoch:!0;){let b=await h.next();if(n&&b.done){console.warn(`You provided \`batchesPerEpoch\` as ${t.batchesPerEpoch}, but your dataset iterator ran out of data after ${x} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${t.batchesPerEpoch*t.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(b.value!=null){let{xs:k,ys:_}=$L(r,b.value),A={};A.batch=w,A.size=k[0].shape[0],await m.onBatchBegin(w,A);let N=[];if(t.classWeight!=null){let M=$x(t.classWeight,r.outputNames);for(let V=0;V<M.length;++V)N.push(await Rx(_[V],null,M[V]))}let $=k.concat(_).concat(N),F=i($);Ae($);for(let M=0;M<l.length;++M){let V=l[M],W=F[M];A[V]=W,Dt(W)}await m.onBatchEnd(w,A),wx(A),w++,x++}if(n?x>=t.batchesPerEpoch:b.done){if(o){let k;RL(t.validationData)?k=bt(await r.evaluateDataset(t.validationData,{batches:t.validationBatches})):k=bt(r.evaluate(s,a,{batchSize:t.validationBatchSize==null?mQ:t.validationBatchSize,verbose:0}));for(let _=0;_<r.metricsNames.length;++_)g[`val_${r.metricsNames[_]}`]=k[_]}break}if(r.stopTraining_)break}if(await m.onEpochEnd(d,g),d++,r.stopTraining_)break}return await m.onTrainEnd(),await r.history.syncData(),r.history}finally{r.isTraining=!1}}function dQ(r,e){let t=null;return e.batchesPerEpoch!=null?t=e.batchesPerEpoch:Number.isFinite(r.size)&&(t=r.size),t}function RL(r){return typeof r.iterator=="function"}function hQ(r){return typeof r.next=="function"}async function OL(r,e,t){t=t||{};let n=t.batches!=null,o=r.testFunction,s=[];if(t.verbose>0)throw new Se("Verbose mode is not implemented yet.");y.assert(!n||t.batches>0&&Number.isInteger(t.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(t.batches)}`);let a=hQ(e)?e:await e.iterator(),i=0,l=0;for(;n?l<t.batches:!0;){let u=await a.next();if(s=G(()=>{if(u.value){let{xs:c,ys:p}=$L(r,u.value),m=c.concat(p),f=G(()=>o(m));if(Ae(m),l===0)for(let h=0;h<f.length;++h)s.push(le(0));let d=m[0].shape[0];for(let h=0;h<f.length;++h){let g=f[h],x=s[h];s[h]=G(()=>ee(s[h],P(d,g))),l>0&&Ae(x)}Ae(f),i+=d,++l}return s}),u.done){n&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${t.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let c=s[u];s[u]=me(s[u],i),Ae(c)}return xr(s)}function Fx(r){y.assert(r>0&&Number.isInteger(r),()=>`batchSize is required to be a positive integer, but got ${r}`)}function jp(r,e,t){return r==null?[null]:Array.isArray(r)?r.map(n=>Ga(n,e,t-e)):Ga(r,e,t-e)}function Ox(r,e){return G(()=>r==null?null:Array.isArray(r)?r.map(t=>Ox(t,e)):dx(r,e.dtype==="int32"?e:e.toInt()))}function Px(r,e){let t=[],n=0,o=null;for(;n<r;)o=n+e,o>=r&&(o=r),t.push([n,o]),n=o;return t}async function gQ(r,e,t,n,o,s,a,i,l,u,c,p,m,f,d){o==null&&(o=32),s==null&&(s=1),c==null&&(c=!0),m==null&&(m=0);let h=!1;if(l!=null&&u!=null&&(h=!0),d!=null&&(h=!0,f==null))throw new z("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=r.checkNumSamples(t,o,f,"steps_per_epoch"),x;g!=null&&(x=zr(0,g)),a==null&&(a=1);let{callbackList:w,history:b}=Ix(i,a,s,m,g,f,o,h,p);w.setModel(r),r.history=b,await w.onTrainBegin(),r.stopTraining_=!1;for(let k=m;k<s;++k){await w.onEpochBegin(k);let _={};if(f!=null)throw new Se("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Se("batch shuffling is not implemneted yet");c&&y.shuffle(x);let A=Gt(x),N=Px(g,o);for(let $=0;$<N.length;++$){let F={};if(await w.onBatchBegin($,F),G(()=>{let M=N[$][0],V=N[$][1],W=Ga(A,M,V-M);F.batch=$,F.size=V-M;let U=Ox(t,W),H=e(U);for(let q=0;q<n.length;++q){let X=n[q],ne=H[q];F[X]=ne,Dt(ne)}if($===N.length-1&&h){let q=r.testLoop(l,u,o);for(let X=0;X<n.length;++X){let ne=n[X],Y=q[X];Dt(Y),_["val_"+ne]=Y}}}),await w.onBatchEnd($,F),wx(F),r.stopTraining_)break}A.dispose()}if(await w.onEpochEnd(k,_),r.stopTraining_)break}return await w.onTrainEnd(),await r.history.syncData(),r.history}async function PL(r,e,t,n={}){if(r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;let o,s,a,i,l,u,c;try{let p=n.batchSize==null?32:n.batchSize;Fx(p);let m=!1,f=await r.standardizeUserData(e,t,n.sampleWeight,n.classWeight,m,p);o=f[0],s=f[1],c=f[2];let d=!1,h;if(n.validationData!=null&&n.validationData.length>0){if(d=!0,n.validationData.length===2)a=n.validationData[0],i=n.validationData[1];else throw n.validationData.length===3?new Se("validationData including sample weights is not supported yet."):new z(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let N=!0,$=await r.standardizeUserData(a,i,null,null,N,p);l=$[0],u=$[1],h=l.concat(u)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){d=!0;let N=Math.floor(o[0].shape[0]*(1-n.validationSplit)),$=o[0].shape[0];l=jp(o,N,$),o=jp(o,0,N),u=jp(s,N,$),s=jp(s,0,N),h=l.concat(u)}else n.validationSteps!=null&&(d=!0);let g=o.concat(s).concat(c);r.checkTrainableWeightsConsistency();let x=r.makeTrainFunction(),w=r.getDedupedMetricsNames(),b,k;d?(r.makeTestFunction(),b=r.testFunction,k=w.slice().concat(w.map(N=>"val_"+N))):(b=null,h=[],k=w.slice());let _=Cx(n.callbacks,n.yieldEvery);return await gQ(r,x,g,w,p,n.epochs,n.verbose,_,b,h,n.shuffle,k,n.initialEpoch,null,null)}finally{r.isTraining=!1,Cl(o,e),Cl(s,t),Cl(l,a),Cl(u,i),c!=null&&Ae(c)}}function LC(r){let e=[];r instanceof Ve&&(r=[r]);for(let t=0;t<r.length;++t){let n=r[t];if(n.rank===1)e.push(Va(n,1));else{if(n.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");e.push(n)}}return e}function Cl(r,e){if(r==null)return;let t=[];if(e instanceof Ve)t.push(e.id);else if(Array.isArray(e))e.forEach(o=>t.push(o.id));else if(e!=null)for(let o in e){let s=e[o];t.push(s.id)}let n=[];if(r instanceof Ve)t.indexOf(r.id)===-1&&n.push(r);else if(Array.isArray(r))r.forEach(o=>{t.indexOf(o.id)===-1&&n.push(o)});else if(r!=null)for(let o in r){let s=r[o];t.indexOf(s.id)===-1&&n.push(s)}n.forEach(o=>{o.isDisposed||o.dispose()})}function xQ(r){return r instanceof Ve}function zC(r){return Array.isArray(r)}function ML(r){return!xQ(r)&&!zC(r)}function LL(r,e,t,n=!0,o=""){if(e==null||e.length===0){if(r!=null){let a=!1;if(zC(r)&&r.length>0)a=!0;else if(ML(r)){for(let i in r)if(r.hasOwnProperty(i)){a=!0;break}}else a=!0;if(a)throw new z(`Error when checking model ${o} expected no data, but got ${r}`)}return[]}if(r==null)return e.map(a=>null);let s;if(ML(r)){r=r,s=[];for(let a of e){if(r[a]==null)throw new z(`No data provided for "${a}". Need data for each key in: ${e}`);s.push(r[a])}}else if(zC(r)){if(r=r,r.length!==e.length)throw new z(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${e.length} Tensor(s), but instead got the following list of Tensor(s): ${r}`);s=r}else{if(r=r,e.length>1)throw new z(`The model ${o} expects ${e.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${r.shape}`);s=[r]}if(s=LC(s),t!=null)for(let a=0;a<e.length;++a){if(t[a]==null)continue;let i=s[a];if(i.shape.length!==t[a].length)throw new z(`Error when checking ${o}: expected ${e[a]} to have ${t[a].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<t[a].length;++l){if(l===0&&!n)continue;let u=i.shape[l],c=t[a][l];if(c!=null&&c>=0&&u!==c)throw new z(`Error when checking ${o}: expected ${e[a]} to have shape [${t[a]}], but got array with shape [${i.shape}].`)}}return s}function yQ(r,e,t){let n=es(r.map(s=>s.shape[0]));n.sort();let o=es(e.map(s=>s.shape[0]));if(o.sort(),n.length>1)throw new z(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(r.map(s=>s.shape))}`);if(o.length>1)throw new z(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(n.length>0&&o.length>0&&!y.arraysEqual(n,o))throw new z(`Input Tensors should have the same number of samples as target Tensors. Found ${n[0]} input sample(s) and ${o[0]} target sample(s).`)}function bQ(r,e,t){let n=[Hi,Gp,uc];for(let o=0;o<r.length;++o){let s=r[o],a=e[o],i=t[o];if(a!=null){if(a===uc&&s.shape[s.shape.length-1]===1)throw new z(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(n.indexOf(a)!==-1){let l=s.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let p=l[c],m=u[c];if(m!=null&&p!==m)throw new z(`A target Tensor with shape ${s.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function zL(r,e,t,n=!0,o=""){let s;if(Array.isArray(r)){if(r.length!==e.length)throw new z(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${e.length} Tensor(s), but instead got ${r.length} Tensors(s).`);s=r}else{if(e.length>1)throw new z(`The model expects ${e.length} ${o} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(r.shape)}.`);s=[r]}if(t!=null)for(let a=0;a<e.length;++a){if(t[a]==null)continue;let i=s[a];if(i.shape.length!==t[a].length)throw new z(`Error when checking ${o}: expected ${e[a]} to have ${t[a].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<t[a].length;++l){if(l===0&&!n)continue;let u=i.shape[l],c=t[a][l];if(c!=null&&c!==u)throw new z(`Error when checking ${o}: expected ${e[a]} to have shape ${JSON.stringify(t[a])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function wQ(r,e){if(r==null||Array.isArray(r)&&r.length===0)return e.map(n=>[]);let t;if(typeof r=="string"||typeof r=="function")t=[r];else if(Array.isArray(r)||typeof r=="object")t=r;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${r}`);if(Array.isArray(t))return e.map(n=>t);{let n=[];for(let o of e){let s=t.hasOwnProperty(o)?t[o]:[];Array.isArray(s)||(s=[s]),n.push(s)}return n}}var kQ="layers-model",Tn=class extends Wn{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new z("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");NL(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=CL(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Pr))throw new z("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new z(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(Nx(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new z(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(i=>Nx(i))}else{let a=Nx(e.loss);this.outputs.forEach(i=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let i=this.internalOutputShapes[a],l=this.outputNames[a];this.feedOutputNames.push(l),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Ms("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let i=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([i,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let o=wQ(e.metrics,this.outputNames),s=(a,i,l)=>{this.outputNames.length>1&&(i=this.outputNames[a]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([l,a])};Ms("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let i=o[a];(u=>{let c="",p,m,f;for(let d of u){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let g=this.internalOutputShapes[a];g[g.length-1]===1||this.lossFunctions[a]===Gp?["accuracy","acc"].indexOf(d)!==-1?m=td:["crossentropy","ce"].indexOf(d)!==-1&&(m=Sx):this.lossFunctions[a]===Vp?["accuracy","acc"].indexOf(d)!==-1?m=Tx:["crossentropy","ce"].indexOf(d)!==-1&&(m=FC):["accuracy","acc"].indexOf(d)!==-1?m=rd:["crossentropy","ce"].indexOf(d)!==-1&&(m=nd);let x;["accuracy","acc"].indexOf(d)!==-1?x="acc":["crossentropy","ce"].indexOf(d)!==-1&&(x="ce"),f=m,p=c+x}else f=vL(d),p=c+od(d);let h;Ms(p,()=>{h=f}),s(a,p,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let o=n.batchSize==null?32:n.batchSize;Fx(o);let s=!0,a=this.standardizeUserDataXY(e,t,s,o);try{let i=a[0].concat(a[1]);this.makeTestFunction();let l=this.testFunction,u=this.testLoop(l,i,o,n.verbose,n.steps);return xr(u)}finally{Cl(a[0],e),Cl(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),OL(this,e,t)}checkNumSamples(e,t,n,o="steps"){let s;if(n!=null){if(s=null,t!=null)throw new z(`If ${o} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?s=e[0].shape[0]:s=e.shape[0];else throw new z(`Either the input data should have a defined shape, or ${o} shoud be specified.`);return s}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new z("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),o=n?t:[t],s=this.retrieveSymbolicTensors(o),a=new zs;if(e instanceof Ve&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new z(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let l=0;l<this.inputs.length;++l)a.add(this.inputs[l],e[l])}else for(let l of this.inputs){let u=e[l.name];if(u==null)throw new z(`No value is provided for the model's input ${l.name}`);a.add(l,u)}let i=pc(s,a);return n?i:i[0]}retrieveSymbolicTensors(e){let t=Zo(null,e.length),n=e.length;for(let o of this.layers){let s=Array.isArray(o.output)?o.output:[o.output],a=s.map(i=>i.name);for(let i=0;i<e.length;++i){let l=a.indexOf(e[i]);if(l!==-1&&(t[i]=s[l],n--),n===0)break}if(n===0)break}if(n>0){let o=[];throw t.forEach((s,a)=>{s==null&&o.push(e[a])}),new z(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(o)}`)}return t}predictLoop(e,t=32,n=!1){return G(()=>{let o=this.checkNumSamples(e);if(n)throw new Se("Verbose predictLoop() is not implemented yet.");let s=Px(o,t),a=this.outputs.map(i=>[]);for(let i=0;i<s.length;++i)G(()=>{let u=s[i][0],c=s[i][1],p=jp(e,u,c),m=[];if(Array.isArray(p))for(let d=0;d<p.length;++d)m.push({key:this.inputs[d],value:p[d]});else m.push({key:this.inputs[0],value:p});let f=new zs(m);return pc(this.outputs,f)}).forEach((u,c)=>a[c].push(u));return xr(a.map(i=>Ze(i,0)))})}predict(e,t={}){let n=LC(e);zL(n,this.inputNames,this.feedInputShapes,!1);try{let o=t.batchSize==null?32:t.batchSize;return Fx(o),this.predictLoop(n,o)}finally{Cl(n,e)}}predictOnBatch(e){zL(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,o){if(this.optimizer_==null)throw new Lr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let a=0;a<this.feedOutputShapes.length;++a){let i=this.feedOutputShapes[a];this.feedLossFns[a]===Vp?s.push(i.slice(0,i.length-1).concat([1])):s.push(i)}if(e=LL(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=LL(t,this.feedOutputNames,s,!1,"target"),yQ(e,t,null),bQ(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&o!=null&&o>0&&e[0].shape[0]%o!=0)throw new z(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${o}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,o,s=!0,a){let[i,l]=this.standardizeUserDataXY(e,t,s,a);if(n!=null)throw new Error("sample weight is not supported yet.");let u=null;if(o!=null){let c=$x(o,this.outputNames);u=[];for(let p=0;p<c.length;++p)u.push(await Rx(l[p],null,c[p]))}return[i,l,u]}testLoop(e,t,n,o=0,s){return G(()=>{let a=this.checkNumSamples(t,n,s,"steps"),i=[];if(o>0)throw new Se("Verbose mode is not implemented yet.");if(s!=null)throw new Se("steps mode in testLoop() is not implemented yet");{let l=Px(a,n),u=Gt(zr(0,a));for(let c=0;c<l.length;++c){let p=l[c][0],m=l[c][1],f=Ga(u,p,m-p),d=Ox(t,f),h=e(d);if(c===0)for(let g=0;g<h.length;++g)i.push(le(0));for(let g=0;g<h.length;++g){let x=h[g];i[g]=ee(i[g],P(m-p,x))}}for(let c=0;c<i.length;++c)i[c]=me(i[c],a)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let o=e[n],s=o;vC(e,o)>1&&(s+=`_${vC(e.slice(0,n),o)}`),t.push(s)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),o=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],i=()=>{let p=[];for(let h=0;h<this.inputs.length;++h)p.push({key:this.inputs[h],value:n[h]});let m=new zs(p),f=pc(this.outputs,m,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let x=this.lossFunctions[h](o[h],f[h]);s[h]!=null&&(x=EL(x,s[h]));let w=ht(x);t.push(w),h===0?d=x:d=ee(d,x)}for(let h=0;h<this.metricsTensors.length;++h){let g;if(this.outputs.length>1&&h<this.outputs.length)g=t[h];else{let x=this.metricsTensors[h][0],w=this.metricsTensors[h][1];g=ht(x(o[w],f[w]))}Dt(g),a.push(g)}return d=ht(d),this.calculateLosses().forEach(h=>{d=ee(d,h)}),d},l=this.collectedTrainableWeights.map(p=>p.read()),u=!0;return[this.optimizer_.minimize(i,u,l)].concat(a)}}makeTestFunction(){this.testFunction=e=>G(()=>{let t=[],n,o=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let u=0;u<this.inputs.length;++u)a.push({key:this.inputs[u],value:o[u]});let i=new zs(a),l=pc(this.outputs,i);for(let u=0;u<this.lossFunctions.length;++u){let c=this.lossFunctions[u],p=ht(c(s[u],l[u]));u===0?n=p:n=ee(n,p),t.push(n)}for(let u=0;u<this.metricsTensors.length;++u){let c=this.metricsTensors[u][0],p=this.metricsTensors[u][1],m=ht(c(s[p],l[p]));t.push(m)}return t})}async fit(e,t,n={}){return PL(this,e,t,n)}async fitDataset(e,t){return FL(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),o=n[0],s=n[1],i=this.makeTrainFunction()(o.concat(s)),l=[];for(let u of i){let c=await u.data();l.push(c[0])}return Ae(i),xr(l)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,o=n?this.trainableWeights:this.weights,s=this.getWeights(n);for(let a=0;a<o.length;++a)n&&!o[a].trainable||t.push({name:o[a].originalName,tensor:s[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=qc().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-qc().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Jo(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Jo(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let o of t)if(typeof n[o]=="string")e[o]=Jo(n[o]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Jo(od(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Jo(od(e)));{let e={};for(let t in this.metrics)e[t]=Jo(od(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=cc(e.optimizer_config),n=Qr(t),o;if(typeof e.loss=="string")o=za(e.loss);else if(Array.isArray(e.loss))o=e.loss.map(a=>za(a));else if(e.loss!=null){o={};for(let a in e.loss)o[a]=za(e.loss[a])}let s;if(Array.isArray(e.metrics))s=e.metrics.map(a=>za(a));else if(e.metrics!=null){s={};for(let a in e.metrics)s[a]=za(e.metrics[a])}this.compile({loss:o,metrics:s,optimizer:n})}async save(e,t){if(typeof e=="string"){let u=Ir.getSaveHandlers(e);if(u.length===0)throw new z(`Cannot find any save handlers for URL '${e}'`);if(u.length>1)throw new z(`Found more than one (${u.length}) save handlers for URL '${e}'`);e=u[0]}if(e.save==null)throw new z("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Ir.encodeWeights(this.getNamedWeights(t)),o=!1,s=null,i={modelTopology:this.toJSON(s,o),format:kQ,generatedBy:`TensorFlow.js tfjs-layers v${Wp}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){i.trainingConfig=this.getTrainingConfig();let u="optimizer",{data:c,specs:p}=await Ir.encodeWeights(await this.optimizer.getWeights(),u);n.specs.push(...p),n.data=Ir.concatenateArrayBuffers([n.data,c])}if(this.userDefinedMetadata!=null){let u=!0;PC(this.userDefinedMetadata,this.name,u),i.userDefinedMetadata=this.userDefinedMetadata}return i.weightData=n.data,i.weightSpecs=n.specs,e.save(i)}setUserDefinedMetadata(e){PC(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Tn.className="Model";Q.registerClass(Tn);var BC=class extends Tn{};BC.className="Functional";Q.registerClass(BC);async function BL(r,e){"modelTopology"in r||(r={modelTopology:r}),r=r;let t=r.modelTopology;t.model_config!=null&&(t=t.model_config);let n=cc(t),o=Qr(n,e);if(r.weightsManifest!=null){let s=await Ir.loadWeights(r.weightsManifest,r.pathPrefix,o.weights.map(i=>i.originalName)),a={};for(let i of o.weights)a[i.originalName]=s[i.originalName];o.loadWeights(a),Ae(s)}return o}async function VL(r,e){if(e==null&&(e={}),typeof r=="string"){let t=Ir.getLoadHandlers(r,e);if(t.length===0)t.push(Ir.browserHTTPRequest(r,e));else if(t.length>1)throw new z(`Found more than one (${t.length}) load handlers for URL '${r}'`);r=t[0]}return _Q(r,void 0,e)}async function _Q(r,e,t){if(t==null&&(t={}),r.load==null)throw new z("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let n=await r.load(),o=n.modelTopology;o.model_config!=null&&(o=o.model_config);let s=t.strict==null?!0:t.strict,a=n.weightData!=null&&n.weightSpecs!=null&&s,i=Qr(cc(o),e,a),l=n.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),n.userDefinedMetadata!=null&&i.setUserDefinedMetadata(n.userDefinedMetadata),n.weightData!=null){if(n.weightSpecs==null)throw new z("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=vQ(n.weightData,n.weightSpecs);i.loadWeights(u,s),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),Ae(u),Ae(c.map(p=>p.tensor))}return i}function vQ(r,e){let t=Ir.decodeWeights(r,e),n={},o=[];return e.forEach(s=>{s.group==="optimizer"?o.push({name:s.name,tensor:t[s.name]}):n[s.name]=t[s.name]}),{modelWeights:n,optimizerWeights:o}}var qi=class extends Tn{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:wl("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new z(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof qi||e instanceof Tn,n;if(t){if(n=e,n.outputs.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new z("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new z("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let o=bx({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(o)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new z(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=$C(this.outputs[0])}this.inboundNodes=[],new kl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Zo(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(o=>o.shape),outputShapes:this.outputs[0].shape})}else{let o=e.apply(this.outputs[0]);if(Array.isArray(o))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[o],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(Je(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Tn({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Lr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Lr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Lr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Lr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},o=!1){let s,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new z("Legacy serialization format not supported yet.");s=t}else y.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=t.layers,delete t.layers,a=t;let i=new e(a);if(!(i instanceof qi))throw new Se(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let l of s){let c=Qr(l,void 0,o);o&&c.setFastWeightInitDuringBuild(!0),i.add(c)}return i}set stopTraining(e){if(this.model==null)throw new z("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new z("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};qi.className="Sequential";Q.registerClass(qi);function GL(r){return new Tn(r)}function WL(r){return new qi(r)}function jL(r,e){return e==null&&(e={}),VL(r,e)}function Mx(r){return bx(r)}function UL(r,e){mn.registerCallbackConstructor(r,e)}var fn=class extends Q.Serializable{getConfig(){return{}}},VC=class extends fn{apply(e,t=1){return pL(e,t)}};VC.className="elu";Q.registerClass(VC);var GC=class extends fn{apply(e){return Ou(e)}};GC.className="selu";Q.registerClass(GC);var WC=class extends fn{apply(e){return Sr(e)}};WC.className="relu";Q.registerClass(WC);var jC=class extends fn{apply(e){return G(()=>As(6,Sr(e)))}};jC.className="relu6";Q.registerClass(jC);var UC=class extends fn{apply(e){return e}};UC.className="linear";Q.registerClass(UC);var HC=class extends fn{apply(e){return qr(e)}};HC.className="sigmoid";Q.registerClass(HC);var qC=class extends fn{apply(e){return fL(e)}};qC.className="hardSigmoid";Q.registerClass(qC);var KC=class extends fn{apply(e){return Ts(e)}};KC.className="softplus";Q.registerClass(KC);var XC=class extends fn{apply(e){return mL(e)}};XC.className="softsign";Q.registerClass(XC);var YC=class extends fn{apply(e){return Oi(e)}};YC.className="tanh";Q.registerClass(YC);var sd=class extends fn{apply(e,t=-1){return Aa(e,t)}};sd.className="softmax";Q.registerClass(sd);var ZC=class extends fn{apply(e,t=-1){return Au(e,t)}};ZC.className="logSoftmax";Q.registerClass(ZC);var JC=class extends fn{apply(e,t=1){return G(()=>qr(e.mul(t)).mul(e))}};JC.className="swish";Q.registerClass(JC);function Bs(r){return r.getClassName()}function QC(r,e={}){return Gi(r,Q.SerializationMap.getMap().classNameMap,e,"activation")}function Vs(r){if(r==null){let e={};return e.className="linear",e.config={},QC(e)}if(typeof r=="string"){let e={};return e.className=r,e.config={},QC(e)}else return r instanceof fn?r:QC(r)}function e0(r){if(r!=null&&typeof r!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${r}`)}var t0=class extends Q.Serializable{},mc=class extends t0{constructor(e){super();e0(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return G(()=>{let t=gt([1]);return this.hasL1&&(t=ee(t,ge(P(this.l1,Nt(e))))),this.hasL2&&(t=ee(t,ge(P(this.l2,ac(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};mc.className="L1L2";Q.registerClass(mc);function HL(r){return e0(r),new mc({l1:r!=null?r.l1:null,l2:0})}function qL(r){return e0(r),new mc({l2:r!=null?r.l2:null,l1:0})}var KL={l1l2:"L1L2"};function st(r){return Np(r)}function XL(r,e={}){return Gi(r,Q.SerializationMap.getMap().classNameMap,e,"regularizer")}function wt(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in KL?KL[r]:r,config:{}};return XL(t)}else return r instanceof t0?r:XL(r)}var id=class extends Me{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Fe(e);let n=Sr(e);return this.maxValue!=null&&(n=ir(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};id.className="ReLU";Q.registerClass(id);var ad=class extends Me{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Fe(e);return Ca(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};ad.className="LeakyReLU";Q.registerClass(ad);var ld=class extends Me{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=pt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=wt(e.alphaRegularizer),this.alphaConstraint=Pt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new z(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=Je(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let o of this.sharedAxes)t[o-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let o=1;o<e.length;++o)n[o]=e[o];this.inputSpec=[new Tt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Fe(e),Ta(e,this.alpha.read())}getConfig(){let e={alphaInitializer:vt(this.alphaInitializer),alphaRegularizer:st(this.alphaRegularizer),alphaConstraint:Ot(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};ld.className="PReLU";Q.registerClass(ld);var ud=class extends Me{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Se(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Fe(e);return Ns(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};ud.className="ELU";Q.registerClass(ud);var cd=class extends Me{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Fe(e);return n.mul(Ba(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};cd.className="ThresholdedReLU";Q.registerClass(cd);var pd=class extends Me{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new sd().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Fe(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};pd.className="Softmax";Q.registerClass(pd);function Il(r,e,t){if(typeof r=="number")return Zo(r,e);if(r.length!==e)throw new z(`The ${t} argument must be an integer or tuple of ${e} integers. Received: ${r.length} elements.`);for(let n=0;n<e;++n){let o=r[n];if(!iL(o))throw new z(`The ${t} argument must be an integer or tuple of ${e} integers. Received: ${JSON.stringify(r)} including a non-integer number ${o}`)}return r}function dn(r,e,t,n,o=1){if(r==null)return r;let s=e+(e-1)*(o-1),a;return t==="same"?a=r:a=r-s+1,Math.floor((a+n-1)/n)}function md(r,e,t,n){if(r==null)return null;if(n==="valid")r=r*e+Ls([t-e,0]);else if(n==="same")r=r*e;else throw new z(`Unsupport padding mode: ${n}.`);return r}function fd(r,e){return G(()=>(Rt(e),e==="channelsFirst"?Ue(r,[0,2,3,1]):r))}function r0(r,e){return G(()=>(Rt(e),e==="channelsFirst"?Ue(r,[0,2,3,4,1]):r))}function CQ(r,e,t,n=1,o="valid",s,a=1){return G(()=>{if(s==null&&(s=Zr()),Rt(s),r.shape.length!==3)throw new z(`The input of a conv1dWithBias operation should be 3, but is ${r.shape.length} instead.`);if(e.shape.length!==3)throw new z(`The kernel for a conv1dWithBias operation should be 3, but is ${e.shape.length} instead`);if(t!=null&&t.shape.length!==1)throw new z(`The bias for a conv1dWithBias operation should be 1, but is ${e.shape.length} instead`);if(s==="channelsFirst"&&(r=Ue(r,[0,2,1])),o==="causal")throw new Se("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=_u(r,e,n,o==="same"?"same":"valid","NWC",a);return t!=null&&(i=cn(i,t)),i})}function YL(r,e,t,n=[1,1],o="valid",s,a,i=null){return G(()=>{if(s==null&&(s=Zr()),Rt(s),r.rank!==3&&r.rank!==4)throw new z(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${r.rank}.`);if(e.rank!==3&&e.rank!==4)throw new z(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${r.rank}.`);let l=fd(r,s);if(o==="causal")throw new Se("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Go.conv2d({x:l,filter:e,strides:n,pad:o==="same"?"same":"valid",dilations:a,dataFormat:"NHWC",bias:t,activation:i}),s==="channelsFirst"&&(l=Ue(l,[0,3,1,2])),l})}function IQ(r,e,t,n=[1,1,1],o="valid",s,a){return G(()=>{if(s==null&&(s=Zr()),Rt(s),r.rank!==4&&r.rank!==5)throw new z(`conv3dWithBias expects input to be of rank 4 or 5, but received ${r.rank}.`);if(e.rank!==4&&e.rank!==5)throw new z(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${r.rank}.`);let i=r0(r,s);if(o==="causal")throw new Se("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=$m(i,e,n,o==="same"?"same":"valid","NDHWC",a),t!=null&&(i=cn(i,t)),s==="channelsFirst"&&(i=Ue(i,[0,4,1,2,3])),i})}var Up=class extends Me{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Up.verifyArgs(t),this.rank=e,Ht(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Se(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Il(t.kernelSize,e,"kernelSize"),this.strides=Il(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Jr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Rt(this.dataFormat),this.activation=Vs(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=pt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Pt(t.biasConstraint),this.biasRegularizer=wt(t.biasRegularizer),this.activityRegularizer=wt(t.activityRegularizer),this.dilationRate=Il(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new z(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new z(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new z(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Gn("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!ux(e.kernelSize,"number",1,3))throw new z(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Bs(this.activation),useBias:this.useBias,biasInitializer:vt(this.biasInitializer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),biasConstraint:Ot(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},fc=class extends Up{constructor(e,t){super(e,t);this.kernel=null,fc.verifyArgs(t),this.filters=t.filters,Ht(this.filters,"filters"),this.kernelInitializer=pt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Pt(t.kernelConstraint),this.kernelRegularizer=wt(t.kernelRegularizer)}build(e){e=Je(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],o=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",o,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return G(()=>{e=Fe(e);let n,o=this.bias==null?null:this.bias.read(),s=cx(this.activation.getClassName());if(s!=null&&this.rank===2)n=YL(e,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)n=CQ(e,this.kernel.read(),o,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=YL(e,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=IQ(e,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Se("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=Je(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let s=0;s<n.length;++s){let a=dn(n[s],this.kernelSize[s],this.padding,this.strides[s],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[s]);t.push(a)}let o=[e[0]];return this.dataFormat==="channelsLast"?(o=o.concat(t),o.push(this.filters)):(o.push(this.filters),o=o.concat(t)),o}getConfig(){let e={filters:this.filters,kernelInitializer:vt(this.kernelInitializer),kernelRegularizer:st(this.kernelRegularizer),kernelConstraint:Ot(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new z(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Nl=class extends fc{constructor(e){super(2,e);Nl.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!ux(e.kernelSize,"number",1,2))throw new z(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Nl.className="Conv2D";Q.registerClass(Nl);var dc=class extends fc{constructor(e){super(3,e);dc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new z(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};dc.className="Conv3D";Q.registerClass(dc);var dd=class extends Nl{constructor(e){super(e);if(this.inputSpec=[new Tt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Je(e),e.length!==4)throw new z("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",o,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Tt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return G(()=>{let n=Fe(e);if(n.shape.length!==4)throw new z(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],a,i;this.dataFormat==="channelsFirst"?(a=2,i=3):(a=1,i=2);let l=o[a],u=o[i],c=this.kernelSize[0],p=this.kernelSize[1],m=this.strides[0],f=this.strides[1],d=md(l,m,c,this.padding),h=md(u,f,p,this.padding),g=[s,d,h,this.filters];this.dataFormat!=="channelsLast"&&(n=Ue(n,[0,2,3,1]));let x=vu(n,this.kernel.read(),g,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(x=Ue(x,[0,3,1,2])),this.bias!=null&&(x=cn(x,this.bias.read(),this.dataFormat)),this.activation!=null&&(x=this.activation.apply(x)),x})}computeOutputShape(e){e=Je(e);let t=e.slice(),n,o,s;this.dataFormat==="channelsFirst"?(n=1,o=2,s=3):(n=3,o=1,s=2);let a=this.kernelSize[0],i=this.kernelSize[1],l=this.strides[0],u=this.strides[1];return t[n]=this.filters,t[o]=md(t[o],l,a,this.padding),t[s]=md(t[s],u,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};dd.className="Conv2DTranspose";Q.registerClass(dd);var n0=class extends fc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new z("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new z("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new z(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=pt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=wt(t.depthwiseRegularizer),this.depthwiseConstraint=Pt(t.depthwiseConstraint),this.pointwiseInitializer=pt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=wt(t.pointwiseRegularizer),this.pointwiseConstraint=Pt(t.pointwiseConstraint)}build(e){if(e=Je(e),e.length<this.rank+2)throw new z(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],o=this.kernelSize.concat([n,this.depthMultiplier]),s=[];for(let i=0;i<this.rank;++i)s.push(1);s.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",o,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",s,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Tt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return G(()=>{e=Fe(e);let n;if(this.rank===1)throw new Se("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ue(e,[0,2,3,1])),n=Hm(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=cn(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ue(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=vt(this.depthwiseInitializer),e.pointwiseInitializer=vt(this.pointwiseInitializer),e.depthwiseRegularizer=st(this.depthwiseRegularizer),e.pointwiseRegularizer=st(this.pointwiseRegularizer),e.depthwiseConstraint=Ot(this.depthwiseConstraint),e.pointwiseConstraint=Ot(this.pointwiseConstraint),e}};n0.className="SeparableConv";var hd=class extends n0{constructor(e){super(2,e)}};hd.className="SeparableConv2D";Q.registerClass(hd);var hc=class extends fc{constructor(e){super(1,e);hc.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!ux(e.kernelSize,"number",1,1))throw new z(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};hc.className="Conv1D";Q.registerClass(hc);var gd=class extends Me{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return G(()=>{if(e=Fe(e),this.dataFormat==="channelsLast"){let n=Gf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Gf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Gf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Gf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};gd.className="Cropping2D";Q.registerClass(gd);var xd=class extends Me{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,nL(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return G(()=>{let n=Fe(e),o=n.shape;if(this.dataFormat==="channelsFirst"){n=Ue(n,[0,2,3,1]);let s=this.size[0]*o[2],a=this.size[1]*o[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([s,a]):n.resizeBilinear([s,a]);return Ue(i,[0,3,1,2])}else{let s=this.size[0]*o[1],a=this.size[1]*o[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([s,a]):n.resizeBilinear([s,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};xd.className="UpSampling2D";Q.registerClass(xd);function NQ(r,e,t=[1,1],n="valid",o,s){return G(()=>{o==null&&(o=Zr()),Rt(o);let a=fd(r,o);if(r.rank!==4)throw new z(`Input for depthwiseConv2d is required to be 4-D, but is instead ${r.rank}-D`);if(e.rank!==4)throw new z(`depthwiseKernel is required to be 4-D, but is instead ${e.rank}-D`);return a=Is(a,e,t,n==="same"?"same":"valid","NHWC",s),o==="channelsFirst"&&(a=Ue(a,[0,3,1,2])),a})}var yd=class extends Up{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=pt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Pt(e.depthwiseConstraint),this.depthwiseRegularizer=wt(e.depthwiseRegularizer)}build(e){if(e=Je(e),e.length<4)throw new z(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],o=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",o,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return G(()=>{e=Fe(e);let n=NQ(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=cn(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=Je(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],o=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,s=dn(t,this.kernelSize[0],this.padding,this.strides[0]),a=dn(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],o,s,a]:[e[0],s,a,o]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=vt(this.depthwiseInitializer),e.depthwiseRegularizer=st(this.depthwiseRegularizer),e.depthwiseConstraint=Ot(this.depthwiseRegularizer),e}};yd.className="DepthwiseConv2D";Q.registerClass(yd);function o0(r,e,t,n){if(Array.isArray(r)){if(e!=null||t!=null)throw new z("When inputs is an array, neither initialState or constants should be provided");n!=null&&(t=r.slice(r.length-n,r.length),r=r.slice(0,r.length-n)),r.length>1&&(e=r.slice(1,r.length)),r=r[0]}function o(s){return s==null||Array.isArray(s)?s:[s]}return e=o(e),t=o(t),{inputs:r,initialState:e,constants:t}}function s0(r,e,t,n=!1,o,s,a=!1,i=!1){return G(()=>{let l=e.shape.length;if(l<3)throw new z(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(zr(2,l));if(e=Ue(e,u),s!=null)throw new Se("The rnn() functoin of the deeplearn.js backend does not support constants yet.");a&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),o!=null&&(o=o.asType("bool").asType("float32"),o.rank===l-1&&(o=ar(o,-1)),o=Ue(o,u)),n&&(e=qt(e,0),o!=null&&(o=qt(o,0)));let c=[],p,m=t,f=e.shape[0],d=pr(e),h;o!=null&&(h=pr(o));for(let x=0;x<f;++x){let w=d[x],b=G(()=>r(w,m));if(o==null)p=b[0],m=b[1];else{let k=G(()=>{let _=h[x],A=tr(_).sub(_),N=b[0].mul(_).add(m[0].mul(A)),$=m.map((F,M)=>b[1][M].mul(_).add(F.mul(A)));return{output:N,newStates:$}});p=k.output,m=k.newStates}i&&c.push(p)}let g;return i&&(g=Vt(c,1)),[p,g,m]})}var hn=class extends Me{constructor(e){super(e);let t;if(e.cell==null)throw new z("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Hp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new z("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Tt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return zr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){yx(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],o;if(this.returnSequences?o=[e[0],e[1],n]:o=[e[0],n],this.returnState){let s=[];for(let a of t)s.push([e[0],a]);return[o].concat(s)}else return o}computeMask(e,t){return G(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let o=this.states.map(s=>null);return[n].concat(o)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Se("Constants support is not implemented in RNN yet.");yx(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,o=e.slice(2);this.inputSpec[0]=new Tt({shape:[n,null,...o]});let s=[e[0]].concat(e.slice(2));if(t!=null)throw new Se("Constants support is not implemented in RNN yet.");this.cell.build(s);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!y.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),a))throw new z(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(i=>new Tt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){G(()=>{if(!this.stateful)throw new Sn("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>gt([n,o])):this.states_=[gt([n,this.cell.stateSize])];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>gt([n,o])):this.states_[0]=gt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let o=0;o<this.states_.length;++o){let s=e[o],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[o]:this.cell.stateSize,i=[n,a];if(!y.arraysEqual(s.shape,i))throw new z(`State ${o} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${s.shape}`);this.states_[o]=s}}this.states_=this.states_.map(o=>Dt(o.clone()))})}apply(e,t){let n=t==null?null:t.initialState,o=t==null?null:t.constants;t==null&&(t={});let s=o0(e,n,o,this.numConstants);e=s.inputs,n=s.initialState,o=s.constants;let a=[],i=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let u of n)this.stateSpec.push(new Tt({shape:u.shape}));i=i.concat(this.stateSpec)}if(o!=null&&(t.constants=o,a=a.concat(o),this.numConstants=o.length),a[0]instanceof Vr){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return G(()=>{let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;e=Fe(e),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==a)throw new z(`RNN Layer has ${a} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:o},u=s0((d,h)=>{let g=this.cell.call([d].concat(h),i);return[g[0],g.slice(1)]},e,s,this.goBackwards,n,null,this.unroll,this.returnSequences),c=u[0],p=u[1],m=u[2];this.stateful&&this.resetStates(m,o);let f=this.returnSequences?p:c;return this.returnState?[f].concat(m):f})}getInitialState(e){return G(()=>{let t=gt(e.shape);return t=ge(t,[1,2]),t=Va(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?fx(t,[1,n]):t):this.cell.stateSize>1?[fx(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===hn.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let o=t.cell,s=Qr(o,n);return new e(Object.assign(t,{cell:s}))}};hn.className="RNN";Q.registerClass(hn);var Sl=class extends Me{},qp=class extends Sl{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ht(this.units,"units"),this.activation=Vs(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Pt(e.kernelConstraint),this.recurrentConstraint=Pt(e.recurrentConstraint),this.biasConstraint=Pt(e.biasConstraint),this.dropout=ic([1,Ls([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ic([1,Ls([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Je(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return G(()=>{if(e=e,e.length!==2)throw new z(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let o=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Wa({ones:()=>tr(e),rate:this.dropout,training:o})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Wa({ones:()=>tr(n),rate:this.recurrentDropout,training:o}));let s,a=this.dropoutMask,i=this.recurrentDropoutMask;a!=null?s=rs(P(e,a),this.kernel.read()):s=rs(e,this.kernel.read()),this.bias!=null&&(s=cn(s,this.bias.read())),i!=null&&(n=P(n,i));let l=ee(s,rs(n,this.recurrentKernel.read()));return this.activation!=null&&(l=this.activation.apply(l)),[l,l]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Bs(this.activation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),recurrentInitializer:vt(this.recurrentInitializer),biasInitializer:vt(this.biasInitializer),kernelRegularizer:st(this.kernelRegularizer),recurrentRegularizer:st(this.recurrentRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Ot(this.kernelConstraint),recurrentConstraint:Ot(this.recurrentConstraint),biasConstraint:Ot(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};qp.className="SimpleRNNCell";Q.registerClass(qp);var bd=class extends hn{constructor(e){e.cell=new qp(e),super(e)}call(e,t){return G(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:o,initialState:s})})}static fromConfig(e,t){return new e(t)}};bd.className="SimpleRNN";Q.registerClass(bd);var Kp=class extends Sl{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new z("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Ht(this.units,"units"),this.activation=Vs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Vs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Pt(e.kernelConstraint),this.recurrentConstraint=Pt(e.recurrentConstraint),this.biasConstraint=Pt(e.biasConstraint),this.dropout=ic([1,Ls([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ic([1,Ls([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Je(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return G(()=>{if(e=e,e.length!==2)throw new z(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,o=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Wa({ones:()=>tr(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Wa({ones:()=>tr(o),rate:this.recurrentDropout,training:n,count:3}));let s=this.dropoutMask,a=this.recurrentDropoutMask,i,l,u;0<this.dropout&&this.dropout<1&&(e=P(e,s[0]));let c=rs(e,this.kernel.read());this.useBias&&(c=cn(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(o=P(o,a[0]));let p=this.recurrentKernel.read(),[m,f]=cr(p,[2*this.units,this.units],p.rank-1),d=rs(o,m),[h,g,x]=cr(c,3,c.rank-1),[w,b]=cr(d,2,d.rank-1);i=this.recurrentActivation.apply(ee(h,w)),l=this.recurrentActivation.apply(ee(g,b));let k=rs(P(l,o),f);u=this.activation.apply(ee(x,k));let _=ee(P(i,o),P(ee(1,He(i)),u));return[_,_]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Bs(this.activation),recurrentActivation:Bs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),recurrentInitializer:vt(this.recurrentInitializer),biasInitializer:vt(this.biasInitializer),kernelRegularizer:st(this.kernelRegularizer),recurrentRegularizer:st(this.recurrentRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Ot(this.kernelConstraint),recurrentConstraint:Ot(this.recurrentConstraint),biasConstraint:Ot(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Kp.className="GRUCell";Q.registerClass(Kp);var wd=class extends hn{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Kp(e),super(e)}call(e,t){return G(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:o,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};wd.className="GRU";Q.registerClass(wd);var Tl=class extends Sl{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ht(this.units,"units"),this.activation=Vs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Vs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Pt(e.kernelConstraint),this.recurrentConstraint=Pt(e.recurrentConstraint),this.biasConstraint=Pt(e.biasConstraint),this.dropout=ic([1,Ls([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ic([1,Ls([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=Je(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let o;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,a=this.units;o=new(t=class extends pn{apply(l,u){let c=s.apply([a]),p=new lc().apply([a]),m=s.apply([a*2]);return AC(AC(c,p),m)}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,o,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return G(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new z(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let o=e[1],s=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Wa({ones:()=>tr(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Wa({ones:()=>tr(o),rate:this.recurrentDropout,training:n,count:4}));let a=this.dropoutMask,i=this.recurrentDropoutMask,l,u,c,p;0<this.dropout&&this.dropout<1&&(e=P(e,a[0]));let m=rs(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(o=P(o,i[0])),m=ee(m,rs(o,this.recurrentKernel.read())),this.useBias&&(m=cn(m,this.bias.read()));let[f,d,h,g]=cr(m,4,m.rank-1);l=this.recurrentActivation.apply(f),u=this.recurrentActivation.apply(d),c=ee(P(u,s),P(l,this.activation.apply(h))),p=this.recurrentActivation.apply(g);let x=P(p,this.activation.apply(c));return[x,x,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Bs(this.activation),recurrentActivation:Bs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),recurrentInitializer:vt(this.recurrentInitializer),biasInitializer:vt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:st(this.kernelRegularizer),recurrentRegularizer:st(this.recurrentRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Ot(this.kernelConstraint),recurrentConstraint:Ot(this.recurrentConstraint),biasConstraint:Ot(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Tl.className="LSTMCell";Q.registerClass(Tl);var kd=class extends hn{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Tl(e),super(e)}call(e,t){return G(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:o,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};kd.className="LSTM";Q.registerClass(kd);var Hp=class extends Sl{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return G(()=>{e=e;let n=e.slice(1),o=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?o.push(n.splice(0,i.stateSize.length)):o.push(n.splice(0,1));o.reverse();let s=[],a;for(let i=0;i<this.cells.length;++i){let l=this.cells[i];n=o[i],i===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=l.call(a,t),s.push(a.slice(1))}n=[];for(let i of s.slice().reverse())n.push(...i);return[a[0]].concat(n)})}build(e){yx(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,o)=>{Ms(`RNNCell_${o}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=s=>({className:s.getClassName(),config:s.getConfig()}),o={cells:this.cells.map(t)};return Object.assign({},e,o)}static fromConfig(e,t,n={}){let o=[];for(let s of t.cells)o.push(Qr(s,n));return new e({cells:o})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Zf(e)}setWeights(e){let t=[];for(let n of this.cells){let o=n.weights.length,s=e.splice(o);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],s[a]])}zp(t)}};Hp.className="StackedRNNCells";Q.registerClass(Hp);function Wa(r){let{ones:e,rate:t,training:n=!1,count:o=1}=r,s=()=>hx(e(),t),a=()=>bl(s,e,n);return!o||o<=1?Dt(a().clone()):Array(o).fill(void 0).map(a).map(l=>Dt(l.clone()))}var SQ=function(r,e){var t={};for(var n in r)Object.prototype.hasOwnProperty.call(r,n)&&e.indexOf(n)<0&&(t[n]=r[n]);if(r!=null&&typeof Object.getOwnPropertySymbols=="function")for(var o=0,n=Object.getOwnPropertySymbols(r);o<n.length;o++)e.indexOf(n[o])<0&&Object.prototype.propertyIsEnumerable.call(r,n[o])&&(t[n[o]]=r[n[o]]);return t};var i0=class extends hn{constructor(e){if(e.unroll)throw new Se("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Se("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Tt({ndim:5})]}call(e,t){return G(()=>{if(this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new z("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,o=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:o,initialState:s})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return G(()=>{let{stateSize:t}=this.cell,n=e.shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)],a=gt(s);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){G(()=>{if(!this.stateful)throw new Sn("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)];if(n[0]==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>gt(s)):this.states_=[gt(s)];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>gt(s)):this.states_[0]=gt(s);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let i=0;i<this.states_.length;++i){let l=e[i],u=s;if(!y.arraysEqual(l.shape,u))throw new z(`State ${i} is incompatible with layer ${this.name}: expected shape=${u}, received shape=${l.shape}`);this.states_[i]=l}}this.states_=this.states_.map(i=>Dt(i.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:o,padding:s,strides:a,dilationRate:i}=this.cell,l=t==="channelsFirst",u=e[l?3:2],c=e[l?4:3],p=dn(u,o[0],s,a[0],i[0]),m=dn(c,o[1],s,a[1],i[1]);return[...e.slice(0,2),...l?[n,p,m]:[p,m,n]]}};i0.className="ConvRNN2D";var Xp=class extends Tl{constructor(e){let{filters:t,kernelSize:n,strides:o,padding:s,dataFormat:a,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Ht(this.filters,"filters"),this.kernelSize=Il(n,2,"kernelSize"),this.kernelSize.forEach(l=>Ht(l,"kernelSize")),this.strides=Il(o||1,2,"strides"),this.strides.forEach(l=>Ht(l,"strides")),this.padding=s||"valid",Jr(this.padding),this.dataFormat=a||"channelsLast",Rt(this.dataFormat),this.dilationRate=Il(i||1,2,"dilationRate"),this.dilationRate.forEach(l=>Ht(l,"dilationRate"))}build(e){var t;e=Je(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[n]}`);let o=e[n],s=4,a=this.kernelSize.concat([o,this.filters*s]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let l;if(this.unitForgetBias){let u=this.biasInitializer,c=this.filters;l=new(t=class extends pn{apply(m,f){let d=u.apply([c]),h=Nr([c]),g=u.apply([c*2]);return Ap([d,h,g])}},t.className="CustomInit",t)}else l=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,l,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return G(()=>{if(e.length!==3)throw new z(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,o=e[0],s=e[1],a=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Wa({ones:()=>tr(o),rate:this.dropout,training:n,count:i}));let l=this.dropoutMask,u=(J,ie,ue)=>!ie||!ie[ue]?J:P(ie[ue],J),c=u(o,l,0),p=u(o,l,1),m=u(o,l,2),f=u(o,l,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Wa({ones:()=>tr(s),rate:this.recurrentDropout,training:n,count:i}));let d=this.recurrentDropoutMask,h=u(s,d,0),g=u(s,d,1),x=u(s,d,2),w=u(s,d,3),b=3,[k,_,A,N]=cr(this.kernel.read(),i,b),[$,F,M,V]=this.useBias?cr(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,k,$,this.padding),p=this.inputConv(p,_,F,this.padding),m=this.inputConv(m,A,M,this.padding),f=this.inputConv(f,N,V,this.padding);let[W,U,H,q]=cr(this.recurrentKernel.read(),i,b);h=this.recurrentConv(h,W),g=this.recurrentConv(g,U),x=this.recurrentConv(x,H),w=this.recurrentConv(w,q);let X=this.recurrentActivation.apply(ee(c,h)),ne=this.recurrentActivation.apply(ee(p,g)),Y=ee(P(ne,a),P(X,this.activation.apply(ee(m,x)))),re=P(this.recurrentActivation.apply(ee(f,w)),this.activation.apply(Y));return[re,re,Y]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=SQ(e,["units"]),o={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,o)}inputConv(e,t,n,o){let s=Kr(e,t,this.strides,o||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?cn(s,n,this.dataFormat):s}recurrentConv(e,t){return Kr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Xp.className="ConvLSTM2DCell";Q.registerClass(Xp);var _d=class extends i0{constructor(e){let t=new Xp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};_d.className="ConvLSTM2D";Q.registerClass(_d);var Yp=class extends Me{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let o=0;o<this.noiseShape.length;++o)n.push(this.noiseShape[o]==null?t[o]:this.noiseShape[o]);return n}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Fe(e);if(0<this.rate&&this.rate<1){let o=t.training==null?!1:t.training,s=this.getNoiseShape(n);return bl(()=>hx(n,this.rate,s,this.seed),()=>n,o)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Yp.className="Dropout";Q.registerClass(Yp);var vd=class extends Yp{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};vd.className="SpatialDropout1D";Q.registerClass(vd);var Cd=class extends Me{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Ht(this.units,"units"),this.activation=Vs(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Pt(e.kernelConstraint),this.biasConstraint=Pt(e.biasConstraint),this.kernelRegularizer=wt(e.kernelRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.activityRegularizer=wt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=Je(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=Je(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Fe(e),o=cx(this.activation.getClassName()),s;return o!=null?s=rs(n,this.kernel.read(),o,this.bias?this.bias.read():null):(s=rs(n,this.kernel.read()),this.bias!=null&&(s=cn(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let e={units:this.units,activation:Bs(this.activation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),biasInitializer:vt(this.biasInitializer),kernelRegularizer:st(this.kernelRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Ot(this.kernelConstraint),biasConstraint:Ot(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Cd.className="Dense";Q.registerClass(Cd);var Id=class extends Me{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=Je(e);for(let t of e.slice(1))if(t==null)throw new z(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],ts(e,1)]}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Fe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let o=[0];for(let s=2;s<n.rank;++s)o.push(s);o.push(1),n=n.transpose(o)}return cL(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Id.className="Flatten";Q.registerClass(Id);var Nd=class extends Me{constructor(e){super(e);this.supportsMasking=!0,this.activation=Vs(e.activation)}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Fe(e);return this.activation.apply(n)})}getConfig(){let e={activation:Bs(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Nd.className="Activation";Q.registerClass(Nd);var Sd=class extends Me{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return G(()=>(e=Fe(e),lL(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Sd.className="RepeatVector";Q.registerClass(Sd);var Td=class extends Me{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",o=t.slice(),s=1,a=null;for(let l=0;l<o.length;++l){let u=o[l];if(this.isUnknown(u))if(a===null)a=l;else throw new z("Can only specifiy one unknown dimension.");else s*=u}let i=ts(e);if(a!==null){if(s===0||i%s!=0)throw new z(n);o[a]=i/s}else if(i!==s)throw new z(n);return o}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Fe(e),o=n.shape,s=o.slice(0,1).concat(this.fixUnknownDimension(o.slice(1),this.targetShape));return n.reshape(s)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Td.className="Reshape";Q.registerClass(Td);var Ad=class extends Me{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=zr(1,e.dims.length+1);if(!y.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Tt({ndim:this.dims.length+1})]}computeOutputShape(e){e=Je(e);let t=e.slice();return this.dims.forEach((n,o)=>{t[o+1]=e[n]}),t}call(e,t){return Ue(Fe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Ad.className="Permute";Q.registerClass(Ad);var Ed=class extends Me{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Fe(e),o=-1;return sl(Vo(n,this.maskValue),o)}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Fe(e),o=-1,s=!0,a=sl(Vo(n,this.maskValue),o,s);return n.mul(a.asType(n.dtype))})}};Ed.className="Masking";Q.registerClass(Ed);var Dd=class extends Me{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(bt(e.inputLength))}this.inputDim=e.inputDim,Ht(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Ht(this.outputDim,"outputDim"),this.embeddingsInitializer=pt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=wt(e.embeddingsRegularizer),this.activityRegularizer=wt(e.activityRegularizer),this.embeddingsConstraint=Pt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return G(()=>this.maskZero?(e=Fe(e),Vo(e,Ce(e))):null)}computeOutputShape(e){if(e=Je(e),this.inputLength==null)return[...e,this.outputDim];let t=bt(this.inputLength);if(t.length!==e.length-1)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let o=0;o<t.length;++o){let s=t[o],a=e[o+1];if(s!=null&&a!=null&&s!==a)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);s==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Fe(e);return n.dtype!=="int32"&&(n=Ba(n,"int32")),dx(this.embeddings.read(),n.as1D()).reshape(Je(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:vt(this.embeddingsInitializer),embeddingsRegularizer:st(this.embeddingsRegularizer),activityRegularizer:st(this.activityRegularizer),embeddingsConstraint:Ot(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Dd.className="Embedding";Q.registerClass(Dd);var Al=class extends Me{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Se}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let o=0;o<t.length;++o){let s=e[e.length-t.length+o],a=t[o];if(s==null||a==null||s<0||a<0)n.push(null);else if(s===1)n.push(a);else if(a===1)n.push(s);else{if(s!==a)throw new z("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(s)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[Je(e)]),e=e,e.length<2)throw new z(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let s of e)s!=null&&s[0]!==null&&t.push(s[0]);if(t=es(t),t.length>1)throw new z(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let s=1;s<e.length;++s){let a=e[s]==null?null:e[s].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let o=e.map(s=>s.length);e.indexOf(null)===-1&&es(o).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return G(()=>{if(e=e,this.reshapeRequired){let n=[],o=e.map(s=>s.rank);if(o.indexOf(null)===-1){let s=Ls(o);for(let a of e){let i=a.rank;for(let l=0;l<s-i;++l)a=Va(a,1);n.push(a)}return this.mergeFunction(n)}else{let s=!1;for(let l of e){let u=l.rank;if(u==null){let c=l.shape,p=c[0],m=c.slice(1).concat([p]),f=l.reshape([p].concat(ts(c.slice(1))));f=Ue(f,[1,0]),f=f.reshape(m),n.push(f),s=!0}else if(u>1){let c=zr(1,u).concat([0]);n.push(Ue(l,c)),s=!0}else n.push(l)}let a=this.mergeFunction(n),i=a.rank;if(s){if(i==null){let l=a.shape,u=l.length,c=l[u-1],p=[c].concat(l.slice(0,l.length-1));a=Ue(a.reshape([-1,c]),[1,0]).reshape(p)}else if(i>1){let l=[i-1].concat(zr(0,i-1));a=Ue(a,l)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let o=1;o<e.length;++o){let s=e[o]==null?null:e[o].slice(1);t=this.computeElementwiseOpOutputShape(t,s)}let n=[];for(let o of e)o!=null&&o[0]!==null&&n.push(o[0]);return n=es(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return G(()=>{if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an Array");if(!Array.isArray(e))throw new z("`inputs` should be an Array");if(t.length!==e.length)throw new z(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(o=>o==null))return null;t=t.map(o=>o==null?o:ar(o,0));let n=t[0];for(let o=1;o<t.length-1;++o)n=hr(n,t[o]);return n})}},$d=class extends Al{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ee(t,e[n]);return t})}};$d.className="Add";Q.registerClass($d);var Rd=class extends Al{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=P(t,e[n]);return t})}};Rd.className="Multiply";Q.registerClass(Rd);var Fd=class extends Al{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ee(t,e[n]);return P(1/e.length,t)})}};Fd.className="Average";Q.registerClass(Fd);var Od=class extends Al{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Yr(t,e[n]);return t})}};Od.className="Maximum";Q.registerClass(Od);var Pd=class extends Al{constructor(e){super(e)}mergeFunction(e){return G(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=As(t,e[n]);return t})}};Pd.className="Minimum";Q.registerClass(Pd);var Md=class extends Al{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new z("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let o of e)if(o!=null){t=!1;break}if(t)return;let n=[];for(let o=0;o<e.length;++o){let s=e[o].slice();s.splice(this.axis,1);let a=!1;for(let i of n)if(y.arraysEqual(i,s)){a=!0;break}a||n.push(s)}if(n.length>1)throw new z("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return G(()=>Ap(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new z("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),o=this.axis<0?n.length+this.axis:this.axis;for(let s of t.slice(1)){if(n[o]==null||s[o]==null){n[o]=null;break}n[o]+=s[o]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new z("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new z(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return G(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let o=[];for(let a=0;a<e.length;++a)t[a]==null?o.push(tr(e[a]).asType("bool")):t[a].rank<e[a].rank?o.push(ar(t[a],-1)):o.push(t[a]);let s=Ze(o,this.axis);return bu(s,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Md.className="Concatenate";Q.registerClass(Md);function Ld(r,e){for(;r<0;)r+=e;return r}function TQ(r,e,t){if(r.shape.length>3||e.shape.length>3)throw new Se("batchDot is not implemented for tensors of 4D or higher rank yet");if(y.assert(r.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${r.shape.length}`),y.assert(r.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${e.shape.length}`),typeof t=="number"&&(t=[t,t]),r.dtype==="complex64"||e.dtype==="complex64")throw new Se("batchDot is not implemented for complex64-type Tensors yet.");let n=r.shape.length,o=e.shape.length;t==null&&(t=[n-1,o-2]);let s=t;return G(()=>{let a;if(n>o){a=n-o;let l=[];for(let u=0;u<a;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else if(o>n){a=o-n;let l=[];for(let u=0;u<a;++u)l.push(1);r=r.reshape(r.shape.concat(l))}else a=0;let i;if(r.shape.length===2&&e.shape.length===2)s[0]===s[1]?i=r.mul(e).sum(s[0]):i=r.transpose([1,0]).mul(e).sum(s[1]);else{let l=s[0]!==r.shape.length-1,u=s[1]===e.shape.length-1;i=r.matMul(e,l,u)}if(a>0){let l;n>o?l=n+o-3:l=n-1;let u=[];for(let c=l;c<l+a;++c)u.push(c);i=i.squeeze(u)}return i.shape.length===1&&(i=i.expandDims(1)),i})}var zd=class extends Al{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){y.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Se("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(t,n);if(t[o[0]]!==n[o[1]])throw new z(`Dimension incompatibility: ${t[o[0]]} !== ${n[o[1]]}`)}mergeFunction(e){if(e.length!==2)throw new z(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],o;return Array.isArray(this.axes)?o=this.axes.map((s,a)=>Ld(s,e[a].shape.length)):o=[Ld(this.axes,t.shape.length),Ld(this.axes,n.shape.length)],this.normalize&&(t=Jf(t,o[0]),n=Jf(n,o[1])),TQ(t,n,o)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Ld(this.axes,e.length),Ld(this.axes,t.length)],n}computeOutputShape(e){y.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Se("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(t,n);t.splice(o[0],1),n.splice(o[1],1),n.splice(0,1);let s=t.concat(n);return s.length===1&&s.push(1),s}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};zd.className="Dot";Q.registerClass(zd);var Bd=class extends Me{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Fe(e);return bl(()=>Ep(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Bd.className="GaussianNoise";Q.registerClass(Bd);var Vd=class extends Me{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return G(()=>{this.invokeCallHook(e,t);let n=Fe(e);return this.rate>0&&this.rate<1?bl(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return n.mul(Ep(n.shape,1,s))},()=>n,t.training||!1):n})}};Vd.className="GaussianDropout";Q.registerClass(Vd);var Gd=class extends Me{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Fe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return G(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return bl(()=>{let s=Fe(e),a=1.6732632423543772,i=1.0507009873554805,l=-a*i,u=an(Es(n),this.rate);u=Ba(u,"float32");let c=((1-this.rate)*(1+this.rate*l**2))**-.5,p=-c*l*this.rate;return s.mul(u).add(u.add(-1).mul(l)).mul(c).add(p)},()=>Fe(e),t.training||!1)}return e})}};Gd.className="AlphaDropout";Q.registerClass(Gd);function Wd(r,e,t,n,o,s=.001){let a;if(r.rank===2)a=ww(r,e,t,n,o,s);else if(r.rank===3)a=kw(r,e,t,n,o,s);else if(r.rank===4)a=_w(r,e,t,n,o,s);else throw new Se(`batchNormalization is not implemented for array of rank ${r.rank} yet`);return a}function AQ(r,e,t,n,o=.001){return G(()=>{let s=Zc(r,n),a=s.mean,i=s.variance;return[Wd(r,a,i,t,e,o),a,i]})}function EQ(r,e,t,n,o=.001){return G(()=>{let s=Zc(r,n),a=s.mean,i=s.variance,l=[];for(let d of zr(0,r.rank))n.indexOf(d)!==-1?l.push(1):l.push(r.shape[d]);let u=a.reshape(l),c=i.reshape(l),p=e==null?null:e.reshape(l),m=t==null?null:t.reshape(l);return[Wd(r,u,c,m,p,o),a,i]})}function DQ(r,e,t,n,o=.001){return y.arraysEqual(n.slice().sort(),zr(0,r.rank-1))?AQ(r,e,t,n,o):EQ(r,e,t,n,o)}var jd=class extends Me{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=pt(e.betaInitializer||"zeros"),this.gammaInitializer=pt(e.gammaInitializer||"ones"),this.movingMeanInitializer=pt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=pt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Pt(e.betaConstraint),this.gammaConstraint=Pt(e.gammaConstraint),this.betaRegularizer=wt(e.betaRegularizer),this.gammaRegularizer=wt(e.gammaRegularizer)}build(e){e=Je(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new z(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Tt({ndim:e.length,axes:{[t]:n}})];let o=[n];this.scale&&(this.gamma=this.addWeight("gamma",o,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",o,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",o,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",o,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return G(()=>{let n=t.training==null?!1:t.training,o=Fe(e),s=o.shape,a=s.length,i=zr(0,a),l=this.axis>=0?this.axis:this.axis+a;i.splice(l,1);let u=Zo(1,a);u[l]=s[l];let c=i.slice();c.sort();let p=!y.arraysEqual(c,zr(0,a).slice(0,a-1)),m=()=>{if(p){let w=this.movingMean.read().reshape(u),b=this.movingVariance.read().reshape(u),k=this.center?this.beta.read().reshape(u):null,_=this.scale?this.gamma.read().reshape(u):null;return Wd(o,w,b,k,_,this.epsilon)}else return Wd(o,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return m();let[f,d,h]=DQ(o,this.gamma.read(),this.beta.read(),i,this.epsilon),g=(w,b,k)=>{G(()=>{let _=1-k,A=w.read(),N=A.sub(b).mul(_);w.write(A.sub(N))})};return(()=>{g(this.movingMean,d,this.momentum),g(this.movingVariance,h,this.momentum)})(),f})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:vt(this.betaInitializer),gammaInitializer:vt(this.gammaInitializer),movingMeanInitializer:vt(this.movingMeanInitializer),movingVarianceInitializer:vt(this.movingVarianceInitializer),betaRegularizer:st(this.betaRegularizer),gammaRegularizer:st(this.gammaRegularizer),betaConstraint:Ot(this.betaConstraint),gammaConstraint:Ot(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};jd.className="BatchNormalization";Q.registerClass(jd);var Ud=class extends Me{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=pt(e.betaInitializer||"zeros"),this.gammaInitializer=pt(e.gammaInitializer||"ones"),this.betaRegularizer=wt(e.betaRegularizer),this.gammaRegularizer=wt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=Je(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s<this.axis.length;++s)this.axis[s]<0&&(this.axis[s]+=t);for(let s of this.axis)if(s<0||s>=t)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==es(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(s=>e[s]),o=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,o):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,o):this.beta=null,this.built=!0}call(e,t){let n=Fe(e),o=n.shape,s=o.length;return G(()=>{let a=!0,{mean:i,variance:l}=Zc(n,this.axis,a),u=Zo(1,s);for(let h of this.axis)u[h]=o[h];let c=h=>h!=null&&h.shape.length!==s&&this.axis!==[s-1]?h.reshape(u):h,p=c(this.gamma.read()),m=c(this.beta.read()),f=[],d=[];for(let h=0;h<s;++h)this.axis.indexOf(h)!==-1?(f.push(o[h]),d.push(1)):(f.push(1),d.push(o[h]));return i=i.tile(f),l=l.tile(f),p=p.tile(d),m=m.tile(d),Wd(n,i,l,m,p,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:vt(this.betaInitializer),gammaInitializer:vt(this.gammaInitializer),betaRegularizer:st(this.betaRegularizer),gammaRegularizer:st(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Ud.className="LayerNormalization";Q.registerClass(Ud);function $Q(r,e,t){return G(()=>{if(r.rank!==4)throw new z(`temporalPadding expects input tensor to be 4-D, but received a ${r.rank}-D tensor.`);if(e==null&&(e=[[1,1],[1,1]]),e.length!==2||e[0].length!==2||e[1].length!==2)throw new z("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(t==null&&(t=Zr()),t!=="channelsLast"&&t!=="channelsFirst")throw new z(`Unknown data format: ${t}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let n;return t==="channelsFirst"?n=[[0,0],[0,0],e[0],e[1]]:n=[[0,0],e[0],e[1],[0,0]],Fr(r,n)})}var Hd=class extends Me{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Zr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new z(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new z(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new z(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Tt({ndim:4})]}computeOutputShape(e){e=Je(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return G(()=>$Q(Fe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Hd.className="ZeroPadding2D";Q.registerClass(Hd);function Lx(r,e,t,n,o,s){return G(()=>{Rt(o),SC(s),Jr(n),t==null&&(t=[1,1]),n==null&&(n="valid"),o==null&&(o=Zr()),s==null&&(s="max"),r=fd(r,o);let a,i=n==="same"?"same":"valid";return s==="max"?a=Na(r,e,t,i):a=wa(r,e,t,i),o==="channelsFirst"&&(a=Ue(a,[0,3,1,2])),a})}function ZL(r,e,t,n,o,s){return G(()=>{Rt(o),SC(s),Jr(n),t==null&&(t=[1,1,1]),n==null&&(n="valid"),o==null&&(o=Zr()),s==null&&(s="max"),r=r0(r,o);let a,i=n==="same"?"same":"valid";return s==="max"?a=Vm(r,e,t,i):a=Em(r,e,t,i),o==="channelsFirst"&&(a=Ue(a,[0,4,1,2,3])),a})}var a0=class extends Me{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new z(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Ht(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new z(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Jr(this.padding),this.inputSpec=[new Tt({ndim:3})]}computeOutputShape(e){e=Je(e);let t=dn(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return G(()=>{this.invokeCallHook(e,t),e=Va(Fe(e),2);let n=this.poolingFunction(Fe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Cn(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},qd=class extends a0{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Rt(s),Jr(o),Lx(e,t,n,o,s,"max")}};qd.className="MaxPooling1D";Q.registerClass(qd);var Kd=class extends a0{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Rt(s),Jr(o),Lx(e,t,n,o,s,"avg")}};Kd.className="AveragePooling1D";Q.registerClass(Kd);var l0=class extends Me{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new z(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Ht(this.poolSize,"poolSize"),Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),Jr(this.padding),this.inputSpec=[new Tt({ndim:4})]}computeOutputShape(e){e=Je(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=dn(t,this.poolSize[0],this.padding,this.strides[0]),n=dn(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return G(()=>(this.invokeCallHook(e,t),this.poolingFunction(Fe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Xd=class extends l0{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Rt(s),Jr(o),Lx(e,t,n,o,s,"max")}};Xd.className="MaxPooling2D";Q.registerClass(Xd);var Yd=class extends l0{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Rt(s),Jr(o),Lx(e,t,n,o,s,"avg")}};Yd.className="AveragePooling2D";Q.registerClass(Yd);var u0=class extends Me{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new z(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Ht(this.poolSize,"poolSize"),Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),Jr(this.padding),this.inputSpec=[new Tt({ndim:5})]}computeOutputShape(e){e=Je(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],o=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=dn(t,this.poolSize[0],this.padding,this.strides[0]),n=dn(n,this.poolSize[1],this.padding,this.strides[1]),o=dn(o,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,o]:[e[0],t,n,o,e[4]]}call(e,t){return G(()=>(this.invokeCallHook(e,t),this.poolingFunction(Fe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Zd=class extends u0{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Rt(s),Jr(o),ZL(e,t,n,o,s,"max")}};Zd.className="MaxPooling3D";Q.registerClass(Zd);var Jd=class extends u0{constructor(e){super(e)}poolingFunction(e,t,n,o,s){return Rt(s),Jr(o),ZL(e,t,n,o,s,"avg")}};Jd.className="AveragePooling3D";Q.registerClass(Jd);var c0=class extends Me{constructor(e){super(e);this.inputSpec=[new Tt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Se}},Qd=class extends c0{constructor(e){super(e||{})}call(e,t){return G(()=>{let n=Fe(e);return ht(n,1)})}};Qd.className="GlobalAveragePooling1D";Q.registerClass(Qd);var eh=class extends c0{constructor(e){super(e||{})}call(e,t){return G(()=>{let n=Fe(e);return ur(n,1)})}};eh.className="GlobalMaxPooling1D";Q.registerClass(eh);var p0=class extends Me{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.inputSpec=[new Tt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Se}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},th=class extends p0{call(e,t){return G(()=>{let n=Fe(e);return this.dataFormat==="channelsLast"?ht(n,[1,2]):ht(n,[2,3])})}};th.className="GlobalAveragePooling2D";Q.registerClass(th);var rh=class extends p0{call(e,t){return G(()=>{let n=Fe(e);return this.dataFormat==="channelsLast"?ur(n,[1,2]):ur(n,[2,3])})}};rh.className="GlobalMaxPooling2D";Q.registerClass(rh);var m0=class extends Me{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let o=t.layer,s=Qr(o,n);delete t.layer;let a={layer:s};return Object.assign(a,t),new e(a)}},nh=class extends m0{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=Je(e),e.length<3)throw new z(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=Je(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),o=e[1];return[n[0],o].concat(n.slice(1))}call(e,t){return G(()=>(e=Fe(e),s0((a,i)=>[Fe(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};nh.className="TimeDistributed";Q.registerClass(nh);function RQ(r){Wi(rL,"BidirectionalMergeMode",r)}var FQ="concat",oh=class extends m0{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Qr(n),t.goBackwards=t.goBackwards!==!0;let o={};if(o.className=e.layer.getClassName(),o.config=t,this.backwardLayer=Qr(o),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?FQ:e.mergeMode,RQ(this.mergeMode),e.weights)throw new Se("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,o,s;return this.returnState&&(s=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,o=[n]):this.mergeMode==null?o=[n,n.slice()]:o=[n],this.returnState?this.mergeMode==null?o.concat(s).concat(s.slice()):[n].concat(s).concat(s.slice()):xr(o)}apply(e,t){let n=t==null?null:t.initialState,o=t==null?null:t.constants;t==null&&(t={});let s=o0(e,n,o,this.numConstants);if(e=s.inputs,n=s.initialState,o=s.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&o==null)return super.apply(e,t);let a=[],i=[];if(n!=null){let u=n.length;if(u%2>0)throw new z("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let c=n.map(p=>new Tt({shape:p.shape}));this.forwardLayer.stateSpec=c.slice(0,u/2),this.backwardLayer.stateSpec=c.slice(u/2),i.push(...c)}if(o!=null)throw new Se("Support for constants in Bidirectional layers is not implemented yet.");let l=a[0]instanceof Vr;for(let u of a)if(u instanceof Vr!==l)throw new z("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(l){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return G(()=>{let n=t.initialState,o,s;if(n==null)o=this.forwardLayer.call(e,t),s=this.backwardLayer.call(e,t);else{let l=n.slice(0,n.length/2),u=n.slice(n.length/2);o=this.forwardLayer.call(e,Object.assign(t,{initialState:l})),s=this.backwardLayer.call(e,Object.assign(t,{initialState:u}))}let a;this.returnState&&(Array.isArray(o)&&(a=o.slice(1).concat(s.slice(1))),o=o[0],s=s[0]),this.returnSequences&&(s=qt(s,1));let i;return this.mergeMode==="concat"?i=Ap([o,s]):this.mergeMode==="sum"?i=ee(o,s):this.mergeMode==="ave"?i=P(.5,ee(o,s)):this.mergeMode==="mul"?i=P(o,s):this.mergeMode==null&&(i=[o,s]),this.returnState?this.mergeMode==null?i.concat(a):[i].concat(a):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Ms(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Ms(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let s=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(s).concat(s):[n].concat(s).concat(s)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Qr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Se("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let o=t;return o.layer=n,new e(o)}};oh.className="Bidirectional";Q.registerClass(oh);function OQ(r){return new ji(r)}function PQ(r){return new ud(r)}function MQ(r){return new id(r)}function LQ(r){return new ad(r)}function zQ(r){return new ld(r)}function BQ(r){return new pd(r)}function VQ(r){return new cd(r)}function GQ(r){return new hc(r)}function WQ(r){return new Nl(r)}function jQ(r){return new dd(r)}function UQ(r){return new dc(r)}function HQ(r){return new hd(r)}function qQ(r){return new gd(r)}function KQ(r){return new xd(r)}function XQ(r){return new yd(r)}function YQ(r){return new Nd(r)}function ZQ(r){return new Cd(r)}function JQ(r){return new Yp(r)}function QQ(r){return new vd(r)}function eee(r){return new Id(r)}function tee(r){return new Sd(r)}function ree(r){return new Td(r)}function nee(r){return new Ad(r)}function oee(r){return new Dd(r)}function see(r){return new $d(r)}function iee(r){return new Fd(r)}function aee(r){return new Md(r)}function lee(r){return new Od(r)}function uee(r){return new Pd(r)}function cee(r){return new Rd(r)}function pee(r){return new zd(r)}function mee(r){return new jd(r)}function fee(r){return new Ud(r)}function dee(r){return new Hd(r)}function d0(r){return new Kd(r)}function hee(r){return d0(r)}function gee(r){return d0(r)}function h0(r){return new Yd(r)}function xee(r){return h0(r)}function yee(r){return h0(r)}function g0(r){return new Jd(r)}function bee(r){return g0(r)}function wee(r){return g0(r)}function kee(r){return new Qd(r)}function _ee(r){return new th(r)}function JL(r){return new eh(r)}function QL(r){return new rh(r)}function ez(r){return new qd(r)}function tz(r){return new Xd(r)}function vee(r){return new Zd(r)}function Cee(r){return new wd(r)}function Iee(r){return new Kp(r)}function Nee(r){return new kd(r)}function See(r){return new Tl(r)}function Tee(r){return new bd(r)}function Aee(r){return new qp(r)}function Eee(r){return new _d(r)}function Dee(r){return new Xp(r)}function $ee(r){return new hn(r)}function Ree(r){return new Hp(r)}function Fee(r){return new oh(r)}function Oee(r){return new nh(r)}var Pee=JL,Mee=QL,Lee=ez,zee=tz;function Bee(r){return new Bd(r)}function Vee(r){return new Vd(r)}function Gee(r){return new Gd(r)}function Wee(r){return new Ed(r)}var x0={};Ke(x0,{MAPE:()=>ete,MSE:()=>nte,binaryAccuracy:()=>jee,binaryCrossentropy:()=>Uee,categoricalAccuracy:()=>qee,categoricalCrossentropy:()=>Kee,cosineProximity:()=>Zee,mape:()=>tte,meanAbsoluteError:()=>Jee,meanAbsolutePercentageError:()=>Qee,meanSquaredError:()=>rte,mse:()=>ote,precision:()=>Xee,recall:()=>Yee,sparseCategoricalAccuracy:()=>Hee});function jee(r,e){return td(r,e)}function Uee(r,e){return Sx(r,e)}function Hee(r,e){return Tx(r,e)}function qee(r,e){return rd(r,e)}function Kee(r,e){return nd(r,e)}function Xee(r,e){return RC(r,e)}function Yee(r,e){return _L(r,e)}function Zee(r,e){return Qf(r,e)}function Jee(r,e){return Bp(r,e)}function Qee(r,e){return vl(r,e)}function ete(r,e){return vl(r,e)}function tte(r,e){return vl(r,e)}function rte(r,e){return Hi(r,e)}function nte(r,e){return Hi(r,e)}function ote(r,e){return Hi(r,e)}var y0={};Ke(y0,{modelFromJSON:()=>BL});var b0={};Ke(b0,{l1:()=>ite,l1l2:()=>ste,l2:()=>ate});function ste(r){return new mc(r)}function ite(r){return HL(r)}function ate(r){return qL(r)}var zx=class extends _l{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Tn))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Bx(r,e){return r<e}function rz(r,e){return r>e}var Vx=class extends zx{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Se("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Bx:this.mode==="max"?this.monitorFunc=rz:this.monitor.indexOf("acc")!==-1?this.monitorFunc=rz:this.monitorFunc=Bx,this.monitorFunc===Bx&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Bx?Infinity:-Infinity}async onEpochEnd(e,t){await Ui(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function lte(r){return new Vx(r)}var nz={earlyStopping:lte};var ns;(function(r){r[r.DT_INVALID=0]="DT_INVALID",r[r.DT_FLOAT=1]="DT_FLOAT",r[r.DT_DOUBLE=2]="DT_DOUBLE",r[r.DT_INT32=3]="DT_INT32",r[r.DT_UINT8=4]="DT_UINT8",r[r.DT_INT16=5]="DT_INT16",r[r.DT_INT8=6]="DT_INT8",r[r.DT_STRING=7]="DT_STRING",r[r.DT_COMPLEX64=8]="DT_COMPLEX64",r[r.DT_INT64=9]="DT_INT64",r[r.DT_BOOL=10]="DT_BOOL",r[r.DT_QINT8=11]="DT_QINT8",r[r.DT_QUINT8=12]="DT_QUINT8",r[r.DT_QINT32=13]="DT_QINT32",r[r.DT_BFLOAT16=14]="DT_BFLOAT16",r[r.DT_FLOAT_REF=101]="DT_FLOAT_REF",r[r.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",r[r.DT_INT32_REF=103]="DT_INT32_REF",r[r.DT_UINT8_REF=104]="DT_UINT8_REF",r[r.DT_INT16_REF=105]="DT_INT16_REF",r[r.DT_INT8_REF=106]="DT_INT8_REF",r[r.DT_STRING_REF=107]="DT_STRING_REF",r[r.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",r[r.DT_INT64_REF=109]="DT_INT64_REF",r[r.DT_BOOL_REF=110]="DT_BOOL_REF",r[r.DT_QINT8_REF=111]="DT_QINT8_REF",r[r.DT_QUINT8_REF=112]="DT_QUINT8_REF",r[r.DT_QINT32_REF=113]="DT_QINT32_REF",r[r.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(ns||(ns={}));var oz;(function(r){let e;(function(t){t[t.LEGACY=0]="LEGACY",t[t.V1=1]="V1",t[t.V2=2]="V2"})(e=r.CheckpointFormatVersion||(r.CheckpointFormatVersion={}))})(oz||(oz={}));var w0={};function sz(r,e){let t={tfOpName:r,category:"custom",inputs:[],attrs:[],customExecutor:e};w0[r]=t}function Gx(r){return w0[r]}function iz(r){delete w0[r]}function C(r,e,t,n,o){let s=e.inputParams[r];if(s&&s.inputIndexStart!==void 0){let i=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?i+1:s.inputIndexEnd;if(s.type==="tensor")return yr(e.inputNames[s.inputIndexStart],t,n,o);if(s.type==="tensors")return e.inputNames.slice(i,l).map(m=>yr(m,t,n,o));let u=yr(e.inputNames.slice(i)[0],t,n,o),c=u.dataSync();return s.type==="number"?c[0]:y.toNestedArray(u.shape,c)}let a=e.attrParams[r];return a&&a.value}function yr(r,e,t,n){let[o,s]=en(r);if(n!=null){let i=n.getHashTableHandleByName(o);if(i!=null)return i}let a=t.currentContextIds.find(i=>!!e[Wx(o,i)]);return a!==void 0?e[Wx(o,a)][s]:void 0}function az(r,e,t){return e[Wx(r,t.currentContextId)]}function Gs(r,e){let[t,n]=en(r);return[Wx(t,e&&e.currentContextId),n]}function Wx(r,e){return e?`${r}-${e}`:r}function en(r){let e=r.split(":");return e.length===1?[r,0]:[e[0],Number(e[e.length-1])]}function sh(r,e,t){let n=C("pad",r,e,t);if(n==="explicit"){n=C("explicitPaddings",r,e,t);let o=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)o[s][0]=n[s*2],o[s][1]=n[s*2+1];return o}return n}function Ws(r){return r.kept?r:Pn(r)}var k0={};Ke(k0,{json:()=>ute});var ute=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var _0={};Ke(_0,{json:()=>cte});var cte=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var v0={};Ke(v0,{json:()=>pte});var pte=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}];var C0={};Ke(C0,{json:()=>mte});var mte=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];var I0={};Ke(I0,{json:()=>fte});var fte=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];var N0={};Ke(N0,{json:()=>dte});var dte=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var S0={};Ke(S0,{json:()=>hte});var hte=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];var T0={};Ke(T0,{json:()=>gte});var gte=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];var A0={};Ke(A0,{json:()=>xte});var xte=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}];var E0={};Ke(E0,{json:()=>yte});var yte=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}];var D0={};Ke(D0,{json:()=>bte});var bte=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var $0={};Ke($0,{json:()=>wte});var wte=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var R0={};Ke(R0,{json:()=>kte});var kte=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}];var F0={};Ke(F0,{json:()=>_te});var _te=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];var O0={};Ke(O0,{json:()=>vte});var vte=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}];var P0={};Ke(P0,{json:()=>Cte});var Cte=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}];var M0={};Ke(M0,{json:()=>Ite});var Ite=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}];var jx=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[k0,_0,v0,C0,I0,N0,S0,D0,E0,T0,$0,R0,F0,O0,P0,M0,A0],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,o)=>(n[o.tfOpName]=o,n),{})}transformGraph(e,t={}){let n=e.node,o=[],s=[],a=[],i=n.reduce((h,g)=>(h[g.name]=this.mapNode(g),g.op.startsWith("Placeholder")?o.push(h[g.name]):g.op==="Const"?s.push(h[g.name]):(g.input==null||g.input.length===0)&&a.push(h[g.name]),h),{}),l=[],u=[],c={},p={};t!=null&&(c=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let m=Object.keys(i);m.forEach(h=>{let g=i[h];g.inputNames.forEach(x=>{let[w]=Gs(x);g.inputs.push(i[w]),i[w].children.push(g)})}),Object.keys(p).length===0?m.forEach(h=>{let g=i[h];g.children.length===0&&u.push(g)}):Object.keys(p).forEach(h=>{let[g]=Gs(h),x=i[g];x!=null&&(x.signatureKey=p[h],u.push(x))}),Object.keys(c).length>0?Object.keys(c).forEach(h=>{let[g]=Gs(h),x=i[g];x&&(x.signatureKey=c[h],l.push(x))}):l=o;let f={};e.library!=null&&e.library.function!=null&&(f=e.library.function.reduce((h,g)=>(h[g.signature.name]=this.mapFunction(g),h),{}));let d={nodes:i,inputs:l,outputs:u,weights:s,placeholders:o,signature:t,functions:f};return a.length>0&&(d.initNodes=a),d}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Gx(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(o=>o.startsWith("^")?o.substr(1):o),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((o,s)=>(o[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},o),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((o,s)=>{let a=s.type,i;switch(s.type){case"string":i=Ux(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Ux(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":i=Jx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Jx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":i=qx(e.attr,s.tfName,s.defaultValue||0),i===void 0&&!!s.tfDeprecatedName&&(i=qx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":i=Zx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Zx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":i=Hx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Hx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":i=ey(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ey(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":i=Yx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Yx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":i=Qx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Qx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":i=Kx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Kx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":i=Xx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=Xx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":i=lz(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=lz(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${e.op}`)}return o[s.name]={value:i,type:a},o},{})),n}mapFunction(e){let t=e.nodeDef,n=[],o=[],s={};t!=null&&(s=t.reduce((p,m)=>(p[m.name]=this.mapNode(m),m.op==="Const"&&o.push(p[m.name]),p),{}));let a=[],i=[];e.signature.inputArg.forEach(p=>{let[m]=Gs(p.name),f={name:m,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:L0(p.type),type:"dtype"}},children:[]};f.signatureKey=p.name,a.push(f),s[m]=f}),Object.keys(s).forEach(p=>{let m=s[p];m.inputNames.forEach(f=>{let[d]=Gs(f);m.inputs.push(s[d]),s[d].children.push(m)})});let u=e.ret;e.signature.outputArg.forEach(p=>{let[m,f]=Gs(u[p.name]),d=s[m];d!=null&&(d.defaultOutput=f,i.push(d))});let c=this.mapArgsToSignature(e);return{nodes:s,inputs:a,outputs:i,weights:o,placeholders:n,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function Nte(r){let e=j().global;if(typeof e.atob!="undefined")return e.atob(r);if(typeof Buffer!="undefined")return new Buffer(r,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function uz(r,e){let t=Array.isArray(r)?String.fromCharCode.apply(null,r):Nte(r);return e?t:t.toLowerCase()}function Ux(r,e,t,n=!1){let o=r[e];return o!=null?uz(o.s,n):t}function Hx(r,e,t){let n=r[e];return n?n.b:t}function qx(r,e,t){let n=r[e]||{},o=n.i!=null?n.i:n.f!=null?n.f:t;return typeof o=="number"?o:parseInt(o,10)}function L0(r){switch(typeof r=="string"&&(r=ns[r]),r){case ns.DT_FLOAT:return"float32";case ns.DT_INT32:case ns.DT_INT64:case ns.DT_INT8:case ns.DT_UINT8:return"int32";case ns.DT_BOOL:return"bool";case ns.DT_DOUBLE:return"float32";case ns.DT_STRING:return"string";default:return null}}function lz(r,e,t){let n=r[e];return n&&n.func?n.func.name:t}function Kx(r,e,t){let n=r[e];return n&&n.type?L0(n.type):t}function Xx(r,e,t){let n=r[e];return n&&n.list&&n.list.type?n.list.type.map(o=>L0(o)):t}function cz(r){if(!r.unknownRank)return r.dim!=null?r.dim.map(e=>typeof e.size=="number"?e.size:parseInt(e.size,10)):[]}function Yx(r,e,t){let n=r[e];return n&&n.shape?cz(n.shape):t}function Zx(r,e,t){let n=r[e];return n?((n.list.f&&n.list.f.length?n.list.f:n.list.i)||[]).map(o=>typeof o=="number"?o:parseInt(o,10)):t}function Jx(r,e,t,n=!1){let o=r[e];return o&&o.list&&o.list.s?o.list.s.map(s=>uz(s,n)):t}function Qx(r,e,t){let n=r[e];return n&&n.list&&n.list.shape?n.list.shape.map(o=>cz(o)):t}function ey(r,e,t){let n=r[e];return n&&n.list&&n.list.b?n.list.b:t}var z0=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(o=>this.getInput(o)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((o,s)=>(o[s]=this.getAttr(s),o),{}))}getInput(e){return yr(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return yr(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return qx(this.node.rawAttrs,e,t);if(n.s!=null)return Ux(this.node.rawAttrs,e,t);if(n.b!=null)return Hx(this.node.rawAttrs,e,t);if(n.shape!=null)return Yx(this.node.rawAttrs,e,t);if(n.type!=null)return Kx(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Zx(this.node.rawAttrs,e,t);if(n.list.s!=null)return Jx(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Qx(this.node.rawAttrs,e,t);if(n.list.b!=null)return ey(this.node.rawAttrs,e,t);if(n.list.type!=null)return Xx(this.node.rawAttrs,e,t)}return t}};var pz=(r,e,t)=>{switch(r.op){case"BiasAdd":case"AddV2":case"Add":return[ee(C("a",r,e,t),C("b",r,e,t))];case"AddN":return[gw(C("tensors",r,e,t))];case"FloorMod":case"Mod":return[Wm(C("a",r,e,t),C("b",r,e,t))];case"Mul":return[P(C("a",r,e,t),C("b",r,e,t))];case"RealDiv":case"Div":return[me(C("a",r,e,t),C("b",r,e,t))];case"DivNoNan":return[Om(C("a",r,e,t),C("b",r,e,t))];case"FloorDiv":return[yu(C("a",r,e,t),C("b",r,e,t))];case"Sub":return[ce(C("a",r,e,t),C("b",r,e,t))];case"Minimum":return[As(C("a",r,e,t),C("b",r,e,t))];case"Maximum":return[Yr(C("a",r,e,t),C("b",r,e,t))];case"Pow":return[Or(C("a",r,e,t),C("b",r,e,t))];case"SquaredDifference":return[zu(C("a",r,e,t),C("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var mz=(r,e,t)=>{switch(r.op){case"Abs":case"ComplexAbs":return[Nt(C("x",r,e,t))];case"Acos":return[_m(C("x",r,e,t))];case"Acosh":return[vm(C("x",r,e,t))];case"Asin":return[Im(C("x",r,e,t))];case"Asinh":return[Nm(C("x",r,e,t))];case"Atan":return[Sm(C("x",r,e,t))];case"Atan2":return[Tm(C("x",r,e,t),C("y",r,e,t))];case"Atanh":return[Am(C("x",r,e,t))];case"Ceil":return[Dm(C("x",r,e,t))];case"Complex":return[_n(C("real",r,e,t),C("imag",r,e,t))];case"Cos":return[_a(C("x",r,e,t))];case"Cosh":return[Cu(C("x",r,e,t))];case"Elu":return[Ns(C("x",r,e,t))];case"Erf":return[Pm(C("x",r,e,t))];case"Exp":return[Zt(C("x",r,e,t))];case"Expm1":return[Mm(C("x",r,e,t))];case"Floor":return[Ss(C("x",r,e,t))];case"Log":return[lr(C("x",r,e,t))];case"Log1p":return[Tu(C("x",r,e,t))];case"Imag":return[Nu(C("x",r,e,t))];case"Neg":return[He(C("x",r,e,t))];case"Reciprocal":return[jm(C("x",r,e,t))];case"Real":return[ll(C("x",r,e,t))];case"Relu":return[Sr(C("x",r,e,t))];case"Round":return[Um(C("x",r,e,t))];case"Selu":return[Ou(C("x",r,e,t))];case"Sigmoid":return[qr(C("x",r,e,t))];case"Sin":return[Pu(C("x",r,e,t))];case"Sign":return[qm(C("x",r,e,t))];case"Sinh":return[Mu(C("x",r,e,t))];case"Softplus":return[Ts(C("x",r,e,t))];case"Sqrt":return[xt(C("x",r,e,t))];case"Square":return[Oe(C("x",r,e,t))];case"Tanh":return[Oi(C("x",r,e,t))];case"Tan":return[Zm(C("x",r,e,t))];case"ClipByValue":return[ir(C("x",r,e,t),C("clipValueMin",r,e,t),C("clipValueMax",r,e,t))];case"Relu6":return[Ru(C("x",r,e,t))];case"Rsqrt":return[Fu(yr(r.inputNames[0],e,t))];case"Prod":return[Du(C("x",r,e,t),C("axes",r,e,t))];case"LeakyRelu":return[Ca(C("x",r,e,t),C("alpha",r,e,t))];case"Prelu":return[Ta(C("x",r,e,t),C("alpha",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function An(r,e,t=""){if(!(typeof r=="number"||typeof e=="number")){y.assert(r.length===e.length,()=>t+` Shapes ${r} and ${e} must match`);for(let n=0;n<r.length;n++){let o=r[n],s=e[n];y.assert(o<0||s<0||o===s,()=>t+` Shapes ${r} and ${e} must match`)}}}function fz(r){return!(typeof r=="number"||r.some(e=>e<0))}function Zp(r,e,t){let n=ty(r,t),o=!fz(n);if(o&&e.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${n}`);if(o&&e.forEach(s=>{n=ty(s.shape,n)}),!fz(n))throw new Error(`Non-fully-defined elementShape: ${n}`);return n}function ty(r,e){if(typeof r=="number")return e;if(typeof e=="number")return r;if(r.length!==e.length)throw new Error(`Incompatible ranks during merge: ${r} vs. ${e}`);let t=[];for(let n=0;n<r.length;++n){let o=r[n],s=e[n];if(o>=0&&s>=0&&o!==s)throw new Error(`Incompatible shape during merge: ${r} vs. ${e}`);t[n]=o>=0?o:s}return t}var B0=class{constructor(e,t,n,o,s,a,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=o,this.identicalElementShapes=s,this.dynamicSize=a,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=le(0),Dt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),An(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Dt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,o)=>this.write(n,t[o]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let o=0;o<this.size();o++)e.push(o)}if(e.length===0)return Rr([],[0].concat(this.elementShape));let n=this.readMany(e);return An(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Vt(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Rr([],[0].concat(this.elementShape));let t=[];for(let o=0;o<this.size();o++)t.push(o);let n=this.readMany(t);return An(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Ze(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,pr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,o=e.map(l=>(n+=l,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let s=n===0?0:t.size/n,a=[];G(()=>{t=L(t,[1,n,s]);for(let l=0;l<e.length;++l){let u=l===0?0:o[l-1],c=[0,u,0],p=[1,e[l],s];a[l]=L(Re(t,c,p),this.elementShape)}return a});let i=[];for(let l=0;l<e.length;l++)i[l]=l;this.writeMany(i,a)}};var gc=class{constructor(e,t,n,o=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(s=>{if(n!==s.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${s.dtype}`);An(t,s.shape,"TensorList shape mismatch: "),Dt(s)}),this.idTensor=le(0),this.maxNumElements=o,Dt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new gc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);An(e,this.elementShape,"TensorList shape mismatch: ");let o=Zp(this.elementShape,this.tensors,e);return G(()=>{let s=this.tensors.map(a=>L(a,o));return Vt(s,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Zp(this.elementShape,this.tensors,e),o=this.tensors.pop();return An(o.shape,e,"TensorList shape mismatch: "),L(o,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(An(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Dt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);An(this.tensors[e].shape,t,"TensorList shape mismatch: ");let o=Zp(this.elementShape,this.tensors,t);return L(this.tensors[e],o)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);An(this.elementShape,t.shape,"TensorList shape mismatch: "),Dt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);An(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let o=Zp(this.elementShape,this.tensors,n);return e.length===0?Rr([],[0].concat(o)):G(()=>{let s=e.map(a=>L(this.tensors[a],o));return Vt(s,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);An(this.elementShape,t,"TensorList shape mismatch: ");let n=Zp(this.elementShape,this.tensors,t);return this.size()===0?Rr([],[0].concat(n)):G(()=>{let o=this.tensors.map(s=>L(s,n));return Ze(o,0)})}};function dz(r,e,t){let n=r.dtype;if(r.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${r.shape}`);if(r.dtype!==t)throw new Error(`Invalid data types; op elements ${r.dtype}, but list elements ${t}`);let o=r.shape.slice(1);An(o,e,"TensorList shape mismatch: ");let s=pr(r);return new gc(s,e,n)}function hz(r,e,t){return new gc([],r,e,t)}function gz(r,e,t,n){if(e.length!==r.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${r.shape[0]}`);let o=Math.max(...e);if(n!=null&&n!==-1&&o>=n)throw new Error(`Max index must be < array size (${o} vs. ${n})`);let s=new gc([],t,r.dtype,n),a=pr(r,0);return e.forEach((i,l)=>{s.setItem(i,a[l])}),s}function xz(r,e,t){let n=0,o=e.map(c=>(n+=c,n));if(n!==r.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${r.shape}`);let s=r.shape.slice(1),a=ty(s,t),i=n===0?0:r.size/n,l=G(()=>{let c=[];r=L(r,[1,n,i]);for(let p=0;p<e.length;++p){let m=p===0?0:o[p-1],f=[0,m,0],d=[1,e[p],i];c[p]=L(Re(r,f,d),a)}return r.dispose(),c}),u=new gc([],t,r.dtype,e.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var yz=async(r,e,t)=>{switch(r.op){case"If":case"StatelessIf":{let n=C("thenBranch",r,e,t),o=C("elseBranch",r,e,t),s=C("cond",r,e,t),a=C("args",r,e,t);return(await s.data())[0]?t.functionMap[n].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap):t.functionMap[o].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap)}case"While":case"StatelessWhile":{let n=C("body",r,e,t),o=C("cond",r,e,t),s=C("args",r,e,t),a=await t.functionMap[o].executeFunctionAsync(s,t.tensorArrayMap,t.tensorListMap),i=s.map(c=>c.id),l=await a[0].data();a.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;l[0];){let c=u;u=await t.functionMap[n].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);let p=u.map(f=>f.id);c.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()});let m=await t.functionMap[o].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);l=await m[0].data(),m.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()})}return u}case"LoopCond":{let n=C("pred",r,e,t);return[Ws(n)]}case"Switch":{let n=C("pred",r,e,t),o=C("data",r,e,t);return o.kept||(o=Ws(o)),(await n.data())[0]?[void 0,o]:[o,void 0]}case"Merge":{let n=r.inputNames.find(o=>yr(o,e,t)!==void 0);if(n){let o=yr(n,e,t);return[Ws(o)]}return}case"Enter":{let n=C("frameName",r,e,t),o=C("tensor",r,e,t);return t.enterFrame(n),[Ws(o)]}case"Exit":{let n=C("tensor",r,e,t);return t.exitFrame(),[Ws(n)]}case"NextIteration":{let n=C("tensor",r,e,t);return t.nextIteration(),[Ws(n)]}case"TensorArrayV3":{let n=C("size",r,e,t),o=C("dtype",r,e,t),s=C("elementShape",r,e,t),a=C("dynamicSize",r,e,t),i=C("clearAfterRead",r,e,t),l=C("identicalElementShapes",r,e,t),u=C("name",r,e,t),c=new B0(u,o,n,s,l,a,i);return t.addTensorArray(c),[c.idTensor,le(1)]}case"TensorArrayWriteV3":{let n=C("tensorArrayId",r,e,t),o=C("index",r,e,t),s=C("tensor",r,e,t),a=t.getTensorArray(n.id);return a.write(o,s),[a.idTensor]}case"TensorArrayReadV3":{let n=C("tensorArrayId",r,e,t),o=C("index",r,e,t);return[t.getTensorArray(n.id).read(o)]}case"TensorArrayGatherV3":{let n=C("tensorArrayId",r,e,t),o=C("indices",r,e,t),s=C("dtype",r,e,t);return[t.getTensorArray(n.id).gather(o,s)]}case"TensorArrayScatterV3":{let n=C("tensorArrayId",r,e,t),o=C("indices",r,e,t),s=C("tensor",r,e,t),a=t.getTensorArray(n.id);return a.scatter(o,s),[a.idTensor]}case"TensorArrayConcatV3":{let n=C("tensorArrayId",r,e,t),o=t.getTensorArray(n.id),s=C("dtype",r,e,t);return[o.concat(s)]}case"TensorArraySplitV3":{let n=C("tensorArrayId",r,e,t),o=C("tensor",r,e,t),s=C("lengths",r,e,t),a=t.getTensorArray(n.id);return a.split(s,o),[a.idTensor]}case"TensorArraySizeV3":{let n=C("tensorArrayId",r,e,t),o=t.getTensorArray(n.id);return[le(o.size(),"int32")]}case"TensorArrayCloseV3":{let n=C("tensorArrayId",r,e,t),o=t.getTensorArray(n.id);return o.clearAndClose(),[o.idTensor]}case"TensorListSetItem":{let n=C("tensorListId",r,e,t),o=C("index",r,e,t),s=C("tensor",r,e,t),a=t.getTensorList(n.id);return a.setItem(o,s),[a.idTensor]}case"TensorListGetItem":{let n=C("tensorListId",r,e,t),o=C("index",r,e,t),s=C("elementShape",r,e,t),a=C("elementDType",r,e,t);return[t.getTensorList(n.id).getItem(o,s,a)]}case"TensorListScatterV2":case"TensorListScatter":{let n=C("indices",r,e,t),o=C("tensor",r,e,t),s=C("elementShape",r,e,t),a=C("numElements",r,e,t),i=gz(o,n,s,a);return t.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let n=C("elementShape",r,e,t),o=C("elementDType",r,e,t),s;r.op==="TensorListReserve"?s="numElements":s="maxNumElements";let a=C(s,r,e,t),i=hz(n,o,a);return t.addTensorList(i),[i.idTensor]}case"TensorListGather":{let n=C("tensorListId",r,e,t),o=C("indices",r,e,t),s=C("elementShape",r,e,t),a=C("elementDType",r,e,t);return[t.getTensorList(n.id).gather(o,a,s)]}case"TensorListStack":{let n=C("tensorListId",r,e,t),o=C("elementShape",r,e,t),s=C("elementDType",r,e,t),a=C("numElements",r,e,t);return[t.getTensorList(n.id).stack(o,s,a)]}case"TensorListFromTensor":{let n=C("tensor",r,e,t),o=C("elementShape",r,e,t),s=C("elementDType",r,e,t),a=dz(n,o,s);return t.addTensorList(a),[a.idTensor]}case"TensorListConcat":{let n=C("tensorListId",r,e,t),o=t.getTensorList(n.id),s=C("dtype",r,e,t),a=C("elementShape",r,e,t);return[o.concat(s,a)]}case"TensorListPushBack":{let n=C("tensorListId",r,e,t),o=C("tensor",r,e,t),s=t.getTensorList(n.id);return s.pushBack(o),[s.idTensor]}case"TensorListPopBack":{let n=C("tensorListId",r,e,t),o=C("elementShape",r,e,t),s=C("elementDType",r,e,t);return[t.getTensorList(n.id).popBack(o,s)]}case"TensorListSplit":{let n=C("tensor",r,e,t),o=C("elementShape",r,e,t),s=C("lengths",r,e,t),a=xz(n,s,o);return t.addTensorList(a),[a.idTensor]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};function bz(r,e,t){let[n,o]=C("fusedOps",r,e,t),s=n==="biasadd",a=o==="prelu",i=n==="fusedbatchnorm",l=C("numArgs",r,e,t);if(s){if(a&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(i)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let u=C("strides",r,e,t),c=sh(r,e,t),p=C("dataFormat",r,e,t).toUpperCase(),m=C("dilations",r,e,t),[f,d]=C("args",r,e,t),h=C("leakyreluAlpha",r,e,t);return{stride:u,pad:c,dataFormat:p,dilations:m,biasArg:f,preluArg:d,activationFunc:o,leakyreluAlpha:h}}var wz=(r,e,t)=>{switch(r.op){case"Conv1D":{let n=C("stride",r,e,t),o=C("pad",r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilation",r,e,t);return[_u(C("x",r,e,t),C("filter",r,e,t),n,o,s,a)]}case"Conv2D":{let n=C("strides",r,e,t),o=sh(r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilations",r,e,t);return[Kr(C("x",r,e,t),C("filter",r,e,t),[n[1],n[2]],o,s,[a[1],a[2]])]}case"_FusedConv2D":{let{stride:n,pad:o,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=bz(r,e,t);return[Go.conv2d({x:C("x",r,e,t),filter:C("filter",r,e,t),strides:[n[1],n[2]],pad:o,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:n,pad:o,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=bz(r,e,t);return[Go.depthwiseConv2d({x:C("x",r,e,t),filter:C("filter",r,e,t),strides:[n[1],n[2]],pad:o,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let n=C("outputShape",r,e,t),o=C("strides",r,e,t),s=sh(r,e,t);return[vu(C("x",r,e,t),C("filter",r,e,t),n,[o[1],o[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let n=C("strides",r,e,t),o=sh(r,e,t),s=C("dilations",r,e,t),a=C("dataFormat",r,e,t).toUpperCase();return[Is(C("input",r,e,t),C("filter",r,e,t),[n[1],n[2]],o,a,[s[1],s[2]])]}case"Conv3D":{let n=C("strides",r,e,t),o=C("pad",r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilations",r,e,t);return[$m(C("x",r,e,t),C("filter",r,e,t),[n[1],n[2],n[3]],o,s,[a[1],a[2],a[3]])]}case"AvgPool":{let n=C("strides",r,e,t),o=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[wa(C("x",r,e,t),[s[1],s[2]],[n[1],n[2]],o)]}case"MaxPool":{let n=C("strides",r,e,t),o=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[Na(C("x",r,e,t),[s[1],s[2]],[n[1],n[2]],o)]}case"MaxPoolWithArgmax":{let n=C("strides",r,e,t),o=C("pad",r,e,t),s=C("kernelSize",r,e,t),a=C("includeBatchInIndex",r,e,t),{result:i,indexes:l}=zw(C("x",r,e,t),[s[1],s[2]],[n[1],n[2]],o,a);return[i,l]}case"AvgPool3D":{let n=C("strides",r,e,t),o=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[Em(C("x",r,e,t),[s[1],s[2],s[3]],[n[1],n[2],n[3]],o)]}case"MaxPool3D":{let n=C("strides",r,e,t),o=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[Vm(C("x",r,e,t),[s[1],s[2],s[3]],[n[1],n[2],n[3]],o)]}case"Dilation2D":{let n=C("strides",r,e,t),o=C("pad",r,e,t),s=C("dilations",r,e,t),a=n[1],i=n[2],l=s[1],u=s[2];return[Fm(C("x",r,e,t),C("filter",r,e,t),[a,i],o,[l,u],"NHWC")]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var kz=(r,e,t)=>{switch(r.op){case"Fill":{let n=C("shape",r,e,t),o=C("dtype",r,e,t),s=C("value",r,e,t);return[va(n,s,o)]}case"LinSpace":{let n=C("start",r,e,t),o=C("stop",r,e,t),s=C("num",r,e,t);return[Rw(n,o,s)]}case"Multinomial":{let n=C("logits",r,e,t),o=C("numSamples",r,e,t),s=C("seed",r,e,t);return[Bw(n,o,s)]}case"OneHot":{let n=C("indices",r,e,t),o=C("depth",r,e,t),s=C("onValue",r,e,t),a=C("offValue",r,e,t);return[Cs(n,o,s,a)]}case"Ones":return[Nr(C("shape",r,e,t),C("dtype",r,e,t))];case"OnesLike":return[tr(C("x",r,e,t))];case"RandomUniform":return[Es(C("shape",r,e,t),C("minval",r,e,t),C("maxval",r,e,t),C("dtype",r,e,t))];case"Range":{let n=C("start",r,e,t),o=C("stop",r,e,t),s=C("step",r,e,t);return[Qc(n,o,s,C("dtype",r,e,t))]}case"TruncatedNormal":{let n=C("shape",r,e,t),o=C("mean",r,e,t),s=C("stdDev",r,e,t),a=C("seed",r,e,t);return[Bu(n,o,s,C("dtype",r,e,t),a)]}case"Zeros":return[gt(C("shape",r,e,t),C("dtype",r,e,t))];case"ZerosLike":return[Ce(C("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function V0(r,e,t){let n=C("boxes",r,e,t),o=C("scores",r,e,t),s=C("maxOutputSize",r,e,t),a=C("iouThreshold",r,e,t),i=C("scoreThreshold",r,e,t),l=C("softNmsSigma",r,e,t);return{boxes:n,scores:o,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}}var _z=async(r,e,t)=>{switch(r.op){case"NonMaxSuppressionV5":{let{boxes:n,scores:o,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}=V0(r,e,t),u=await $s.nonMaxSuppressionWithScoreAsync(n,o,s,a,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:n,scores:o,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=V0(r,e,t),l=C("padToMaxOutputSize",r,e,t),u=await $s.nonMaxSuppressionPaddedAsync(n,o,s,a,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:n,scores:o,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=V0(r,e,t);return[await $s.nonMaxSuppressionAsync(n,o,s,a,i)]}case"Where":{let n=oe(C("condition",r,e,t),"bool"),o=[await ef(n)];return n.dispose(),o}case"ListDiff":return Yw(C("x",r,e,t),C("y",r,e,t));default:throw TypeError(`Node type ${r.op} is not implemented`)}};var vz=(r,e,t)=>{switch(r.op){case"TopKV2":{let n=C("x",r,e,t),o=C("k",r,e,t),s=C("sorted",r,e,t),a=Jm(n,o,s);return[a.values,a.indices]}case"Unique":{let n=C("x",r,e,t),o=tp(n);return[o.values,o.indices]}case"UniqueV2":{let n=C("x",r,e,t),o=C("axis",r,e,t),s=tp(n,o);return[s.values,s.indices]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Cz=(r,e,t)=>{switch(r.op){case"Const":return e[r.name];case"PlaceholderWithDefault":let n=C("default",r,e,t);return[yr(r.name,e,t)||n];case"Placeholder":return[yr(r.name,e,t)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=C("x",r,e,t);return[Ws(u)]}case"IdentityN":return C("x",r,e,t).map(u=>Ws(u));case"Snapshot":let o=C("x",r,e,t);return[Ws(o)];case"Shape":return[Gt(C("x",r,e,t).shape,"int32")];case"ShapeN":return C("x",r,e,t).map(u=>Gt(u.shape));case"Size":return[le(C("x",r,e,t).size,"int32")];case"Rank":return[le(C("x",r,e,t).rank,"int32")];case"NoOp":return[le(1)];case"Print":let s=C("x",r,e,t),a=C("data",r,e,t),i=C("message",r,e,t),l=C("summarize",r,e,t);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;u<a.length;u++)console.log(Array.prototype.slice.call(a[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var G0=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=le(0),this.tensorMap=new Map,Dt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return le(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(o=>o.dispose()),this.tensorMap.clear(),G(()=>{let o=pr(t),s=n.length,a=o.length;y.assert(s===a,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${a} elements.`);for(let i=0;i<s;i++){let l=n[i],u=o[i];Dt(u),this.tensorMap.set(l,u)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return G(()=>{let o=[];for(let s=0;s<n.length;s++){let a=n[s],i=this.findWithDefault(a,t);o.push(i)}return Vt(o)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}};var Iz=async(r,e,t,n)=>{switch(r.op){case"HashTable":case"HashTableV2":{let o=C("keyDType",r,e,t),s=C("valueDType",r,e,t),a=new G0(o,s);return n.addHashTable(r.name,a),[a.handle]}case"LookupTableImport":case"LookupTableImportV2":{let o=C("tableHandle",r,e,t,n),s=C("keys",r,e,t),a=C("values",r,e,t);return[await n.getHashTableById(o.id).import(s,a)]}case"LookupTableFind":case"LookupTableFindV2":{let o=C("tableHandle",r,e,t,n),s=C("keys",r,e,t),a=C("defaultValue",r,e,t);return[await n.getHashTableById(o.id).find(s,a)]}case"LookupTableSize":case"LookupTableSizeV2":{let o=C("tableHandle",r,e,t,n);return[n.getHashTableById(o.id).tensorSize()]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Nz=(r,e,t)=>{switch(r.op){case"ResizeBilinear":{let n=C("images",r,e,t),o=C("size",r,e,t),s=C("alignCorners",r,e,t),a=C("halfPixelCenters",r,e,t);return[$s.resizeBilinear(n,[o[0],o[1]],s,a)]}case"ResizeNearestNeighbor":{let n=C("images",r,e,t),o=C("size",r,e,t),s=C("alignCorners",r,e,t),a=C("halfPixelCenters",r,e,t);return[$s.resizeNearestNeighbor(n,[o[0],o[1]],s,a)]}case"CropAndResize":{let n=C("image",r,e,t),o=C("boxes",r,e,t),s=C("boxInd",r,e,t),a=C("cropSize",r,e,t),i=C("method",r,e,t),l=C("extrapolationValue",r,e,t);return[$s.cropAndResize(n,o,s,a,i,l)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Sz=(r,e,t)=>{switch(r.op){case"Equal":return[vn(C("a",r,e,t),C("b",r,e,t))];case"NotEqual":return[Vo(C("a",r,e,t),C("b",r,e,t))];case"Greater":return[er(C("a",r,e,t),C("b",r,e,t))];case"GreaterEqual":return[an(C("a",r,e,t),C("b",r,e,t))];case"Less":return[Su(C("a",r,e,t),C("b",r,e,t))];case"LessEqual":return[Bn(C("a",r,e,t),C("b",r,e,t))];case"LogicalAnd":return[hr(C("a",r,e,t),C("b",r,e,t))];case"LogicalNot":return[Ia(C("a",r,e,t))];case"LogicalOr":return[Eu(C("a",r,e,t),C("b",r,e,t))];case"Select":case"SelectV2":return[$t(C("condition",r,e,t),C("a",r,e,t),C("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Tz=(r,e,t)=>{switch(r.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[We(C("a",r,e,t),C("b",r,e,t),C("transposeA",r,e,t),C("transposeB",r,e,t))];case"Transpose":return[Ue(C("x",r,e,t),C("perm",r,e,t))];case"_FusedMatMul":let[n,o]=C("fusedOps",r,e,t),s=n==="biasadd",a=o==="prelu",i=C("numArgs",r,e,t),l=C("leakyreluAlpha",r,e,t);if(s){if(a&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=C("args",r,e,t);return[Go.matMul({a:C("a",r,e,t),b:C("b",r,e,t),transposeA:C("transposeA",r,e,t),transposeB:C("transposeB",r,e,t),bias:u,activation:o,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Az=(r,e,t)=>{switch(r.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Lo(C("x",r,e,t),C("mean",r,e,t),C("variance",r,e,t),C("offset",r,e,t),C("scale",r,e,t),C("epsilon",r,e,t))];case"FusedBatchNormV3":return[Lo(C("x",r,e,t),C("mean",r,e,t),C("variance",r,e,t),C("offset",r,e,t),C("scale",r,e,t),C("epsilon",r,e,t))];case"LRN":return[Lm(C("x",r,e,t),C("radius",r,e,t),C("bias",r,e,t),C("alpha",r,e,t),C("beta",r,e,t))];case"Softmax":return[Aa(C("x",r,e,t))];case"LogSoftmax":return[Au(C("x",r,e,t))];case"SparseToDense":return[tf(C("sparseIndices",r,e,t),C("outputShape",r,e,t),C("sparseValues",r,e,t),C("defaultValue",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Ez=(r,e,t)=>{switch(r.op){case"Max":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[ur(C("x",r,e,t),a,i)]}case"Mean":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[ht(C("x",r,e,t),a,i)]}case"Min":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[Pi(C("x",r,e,t),a,i)]}case"Sum":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[ge(C("x",r,e,t),a,i)]}case"All":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[bu(C("x",r,e,t),a,i)]}case"Any":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[sl(C("x",r,e,t),a,i)]}case"ArgMax":{let a=C("axis",r,e,t);return[il(C("x",r,e,t),a)]}case"ArgMin":{let a=C("axis",r,e,t);return[Cm(C("x",r,e,t),a)]}case"Prod":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[Du(C("x",r,e,t),a,i)]}case"Cumsum":{let a=C("axis",r,e,t),i=C("exclusive",r,e,t),l=C("reverse",r,e,t);return[Iu(C("x",r,e,t),a,i,l)]}case"Bincount":let n=C("x",r,e,t),o=C("weights",r,e,t),s=C("size",r,e,t);return[vw(n,o,s)];case"DenseBincount":{let a=C("x",r,e,t),i=C("weights",r,e,t),l=C("size",r,e,t),u=C("binaryOutput",r,e,t);return[Tw(a,i,l,u)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Dz=(r,e,t)=>{switch(r.op){case"ConcatV2":case"Concat":{let n=C("n",r,e,t),o=C("axis",r,e,t),s=C("tensors",r,e,t);return s=s.slice(0,n),[Ze(s,o)]}case"Gather":{let n=C("x",r,e,t),o=C("indices",r,e,t);return[zo(n,oe(o,"int32"),0)]}case"GatherV2":{let n=C("axis",r,e,t),o=C("batchDims",r,e,t),s=C("x",r,e,t),a=C("indices",r,e,t);return[zo(s,oe(a,"int32"),n,o)]}case"Reverse":{let n=C("dims",r,e,t),o=[];for(let a=0;a<n.length;a++)n[a]&&o.push(a);let s=C("x",r,e,t);return[qt(s,o)]}case"ReverseV2":{let n=C("axis",r,e,t),o=C("x",r,e,t);return[qt(o,n)]}case"Slice":{let n=C("begin",r,e,t),o=C("size",r,e,t);return[Re(C("x",r,e,t),n,o)]}case"StridedSlice":{let n=C("begin",r,e,t),o=C("end",r,e,t),s=C("strides",r,e,t),a=C("beginMask",r,e,t),i=C("endMask",r,e,t),l=C("ellipsisMask",r,e,t),u=C("newAxisMask",r,e,t),c=C("shrinkAxisMask",r,e,t),p=C("x",r,e,t);return[Ym(p,n,o,s,a,i,l,u,c)]}case"Pack":return G(()=>{let n=C("axis",r,e,t),o=C("tensors",r,e,t),s=o[0].shape,a=Cn(o[0]).shape,i=o.map(l=>{let u=y.arraysEqual(l.shape,s);if(!u&&!y.arraysEqual(Cn(l).shape,a))throw new Error("the input tensors shape does not match");return u?l:L(l,s)});return[Vt(i,n)]});case"Unpack":{let n=C("axis",r,e,t),o=C("tensor",r,e,t);return pr(o,n)}case"Tile":{let n=C("reps",r,e,t);return[zn(C("x",r,e,t),n)]}case"Split":case"SplitV":{let n=C("axis",r,e,t),o=C("numOrSizeSplits",r,e,t),s=C("x",r,e,t);return cr(s,o,n)}case"ScatterNd":{let n=C("indices",r,e,t),o=C("values",r,e,t),s=C("shape",r,e,t);return[Qw(n,o,s)]}case"GatherNd":{let n=C("x",r,e,t),o=C("indices",r,e,t);return[ek(n,o)]}case"SparseToDense":{let n=C("sparseIndices",r,e,t),o=C("outputShape",r,e,t),s=C("sparseValues",r,e,t),a=C("defaultValue",r,e,t);return[tf(n,s,o,s.dtype===a.dtype?a:oe(a,s.dtype))]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var $z=(r,e,t)=>{switch(r.op){case"FFT":return[Ea(C("x",r,e,t))];case"IFFT":return[Mi(C("x",r,e,t))];case"RFFT":return[Da(C("x",r,e,t))];case"IRFFT":return[Lu(C("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Rz=(r,e,t)=>{switch(r.op){case"Cast":return[oe(C("x",r,e,t),C("dtype",r,e,t))];case"ExpandDims":{let n=C("axis",r,e,t);return[ar(C("x",r,e,t),n)]}case"Squeeze":{let n=C("axis",r,e,t);return[Cn(C("x",r,e,t),n)]}case"Reshape":return[L(C("x",r,e,t),C("shape",r,e,t))];case"MirrorPad":return[Gm(C("x",r,e,t),C("padding",r,e,t),C("mode",r,e,t))];case"PadV2":case"Pad":return[Fr(C("x",r,e,t),C("padding",r,e,t),C("constantValue",r,e,t))];case"SpaceToBatchND":{let n=C("blockShape",r,e,t),o=C("paddings",r,e,t);return[Sa(C("x",r,e,t),n,o)]}case"BatchToSpaceND":{let n=C("blockShape",r,e,t),o=C("crops",r,e,t);return[ka(C("x",r,e,t),n,o)]}case"DepthToSpace":{let n=C("blockSize",r,e,t),o=C("dataFormat",r,e,t).toUpperCase();return[Rm(C("x",r,e,t),n,o)]}case"BroadcastTo":return[al(C("x",r,e,t),C("shape",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function W0(r,e,t,n){let o=((s,a,i)=>{switch(s.category){case"arithmetic":return G(()=>pz(s,a,i));case"basic_math":return G(()=>mz(s,a,i));case"control":return yz(s,a,i);case"convolution":return G(()=>wz(s,a,i));case"creation":return G(()=>kz(s,a,i));case"dynamic":return _z(s,a,i);case"evaluation":return G(()=>vz(s,a,i));case"image":return G(()=>Nz(s,a,i));case"graph":return G(()=>Cz(s,a,i));case"logical":return G(()=>Sz(s,a,i));case"matrices":return G(()=>Tz(s,a,i));case"normalization":return G(()=>Az(s,a,i));case"reduction":return G(()=>Ez(s,a,i));case"slice_join":return G(()=>Dz(s,a,i));case"spectral":return G(()=>$z(s,a,i));case"transformation":return G(()=>Rz(s,a,i));case"hash_table":return Iz(s,a,i,n);case"custom":let l=Gx(s.op);if(l&&l.customExecutor)return l.customExecutor(new z0(s,a,i));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(r,e,t);return y.isPromise(o)?o.then(s=>[].concat(s)):[].concat(o)}var ry=class{constructor(e={},t={},n={},o={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=o,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function U0(r,e,t,n){let o=new Set,s=[],a=null,i=null,l=new Set,u=Object.keys(r).map(m=>en(m)[0]),c=[];n!=null&&(c=n.map(m=>en(m.name)[0]));let p=[...e];for(;p.length>0;){let m=p.pop();if((j0(m)||Ste(m)||Tte(m))&&a==null&&(a=m,i=a.children.map(f=>f.name).filter(f=>o.has(f))),o.add(m.name),t[m.name]==null&&u.indexOf(m.name)===-1&&c.indexOf(m.name)===-1){if(m.inputs.length===0){s.push(m.name);continue}m.inputs.forEach(f=>{l.has(f.name)||(l.add(f.name),p.push(f))})}}return{inputs:r,outputs:e,usedNodes:o,missingInputs:s,dynamicNode:a,syncInputs:i}}function Fz(r,e,t){let{usedNodes:n,inputs:o}=t,s=[],a=Object.keys(o).map(c=>en(c)[0]).map(c=>r.nodes[c]),i=r.initNodes;a.forEach(c=>{n.has(c.name)&&s.push(c)}),r.weights.forEach(c=>{n.has(c.name)&&s.push(c)}),i!=null&&i.forEach(c=>{n.has(c.name)&&s.push(c)});let l=new Set,u=[];for(;s.length>0;){let c=s.pop();l.add(c.name),e[c.name]||u.push(c),c.children.forEach(p=>{!l.has(p.name)&&n.has(p.name)&&p.inputs.every(m=>l.has(m.name))&&s.push(p)})}return u}var Ate=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Ete=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Dte=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function j0(r){return Ate.indexOf(r.op)>=0}function Ste(r){return Ete.indexOf(r.op)>=0}function Tte(r){return Dte.indexOf(r.op)>=0}var Jp=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Jp(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(o=>o.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(s=>s.name).sort(),o=t.map(s=>s.name).sort();return n.join(this.SEPERATOR)+"--"+o.join(this.SEPERATOR)}compile(e,t){let n=U0(e,t,this.weightMap,this._initNodes),{missingInputs:o,dynamicNode:s,syncInputs:a}=n;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(o.length>0){let i=t.map(u=>u.name),l=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${l}]. Missing the following inputs: [${o}]`)}return Fz(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let o=n.map(p=>this.graph.nodes[en(p)[0]]),s=t.map(p=>en(p)[0]),a=s.map(p=>this.graph.nodes[p]);a.length===0&&(a=this._outputs);let i=this.getCompilationKey(o,a),l=this.compiledMap.get(i);l==null&&(l=this.compile(e,a),this.compiledMap.set(i,l));let u={},c={};return G(()=>{let p=new ry(this.weightMap,u,c,this.functionExecutorMap),m=Object.assign({},this.weightMap);Object.keys(e).forEach(h=>{let[g,x]=en(h),w=[];w[x]=e[h],m[g]=w});let f=this.getFrozenTensorIds(m),d={};for(let h=0;h<l.length;h++){let g=l[h];if(!m[g.name]){let x=W0(g,m,p,this._resourceManager);if(y.isPromise(x))throw new Error(`The execution of the op '${g.op}' returned a promise. Please use model.executeAsync() instead.`);m[g.name]=x,this.checkTensorForDisposal(g.name,g,m,p,f,s,d)}}return this.parent==null&&p.dispose(f),t.map(h=>yr(h,m,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(o=>o.id)));return new Set(t)}checkTensorForDisposal(e,t,n,o,s,a,i){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(l=>{l!=null&&(i[l.id]=(i[l.id]||0)+t.children.length)}),t.inputs.forEach(l=>{if(l.category!=="control"){let u=az(l.name,n,o);u!=null&&u.forEach(c=>{if(c&&!s.has(c.id)){let p=i[c.id];p===1?(c.dispose(),delete i[c.id]):p!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,o={},s={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new ry(this.weightMap,o,s,this.functionExecutorMap),i=await this.executeWithControlFlow(e,a,t,n),l=t.map(m=>yr(m,i,a)),u=l.map(m=>m.id),c=Object.keys(e).map(m=>e[m].id),p=new Set([...u,...c,...this.weightIds]);return Object.keys(i).forEach(m=>{i[m].forEach(d=>{d&&!d.isDisposed&&!p.has(d.id)&&d.dispose()})}),this.parent==null&&a.dispose(p),l}async executeFunctionAsync(e,t,n){let o=e.reduce((s,a,i)=>(s[this.inputs[i].name]=a,s),{});return this._executeAsync(o,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,o){let s=Object.keys(e),a=s.map(b=>this.graph.nodes[en(b)[0]]),i=n.map(b=>en(b)[0]),l=i.map(b=>this.graph.nodes[b]);l.length===0&&(l=this._outputs);let{usedNodes:u,missingInputs:c,dynamicNode:p,syncInputs:m}=U0(e,l,this.weightMap,this._initNodes),f=[...a,...this.graph.weights,...this._initNodes||[]].map(b=>({node:b,contexts:t.currentContext})),d=Object.assign({},this.weightMap);Object.keys(e).forEach(b=>{let[k,_]=en(b),A=[];A[_]=e[b],d[k]=A});let h={},g=this.getFrozenTensorIds(d),x={};for(;f.length>0;){let b=this.processStack(a,f,t,d,x,g,i,h,u);await Promise.all(b)}p==null&&!o&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let w=l.filter(b=>!j0(b)&&!yr(b.name,d,t)).map(b=>b.name);if(w.length>0){let b="";throw p!=null&&(b=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${m}]`),new Error(`Cannot compute the outputs [${w}] from the provided inputs [${s}]. Consider providing the following inputs: [${c}]. ${b}`)}return d}processStack(e,t,n,o,s,a,i,l,u){let c=[];for(;t.length>0;){let p=t.pop();n.currentContext=p.contexts;let m="";if(p.node.op==="Enter"&&C("isConstant",p.node,o,n)&&([m]=Gs(p.node.name,n)),o[p.node.name]==null){let f=W0(p.node,o,n,this._resourceManager);m||([m]=Gs(p.node.name,n));let d=n.currentContext;y.isPromise(f)?c.push(f.then(h=>(o[m]=h,n.currentContext=d,this.checkTensorForDisposal(m,p.node,o,n,a,i,l),this.processChildNodes(p.node,t,n,o,s,u),h))):(o[m]=f,this.checkTensorForDisposal(m,p.node,o,n,a,i,l),this.processChildNodes(p.node,t,n,o,s,u))}else this.processChildNodes(p.node,t,n,o,s,u)}return c}processChildNodes(e,t,n,o,s,a){e.children.forEach(i=>{let[l]=Gs(i.name,n);s[l]||!a.has(i.name)||(i.op==="Merge"?i.inputNames.some(u=>!!yr(u,o,n))&&(s[l]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(u=>!!yr(u,o,n))&&(s[l]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[o]=en(t),s=this.graph.nodes[o];if(s.attrParams.shape&&s.attrParams.shape.value){let a=s.attrParams.shape.value,i=a.length===n.shape.length&&n.shape.every((l,u)=>a[u]===-1||a[u]===l);y.assert(i,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&y.assert(n.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let o=this._signature.inputs[n];t[o.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[o]=en(n);return this.graph.nodes[o]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=en(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}};var H0=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}};var $te="?tfjs-format=file",Rte="model.json",ny=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new H0}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Ir.browserHTTPRequest(e,this.loadOptions);else{let t=Ir.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Ir.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let o=Ir.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Jp(jx.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(o),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let s=jx.Instance.transformGraph(e.modelInitializer);this.initializer=new Jp(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Ir.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ve)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,o)=>(t[n]=e[o],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Oz(r,e={}){if(r==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");e==null&&(e={}),e.fromTFHub&&r.load==null&&(r.endsWith("/")||(r=r+"/"),r=`${r}${Rte}${$te}`);let t=new ny(r,e);return await t.load(),t}var Pz="3.3.0";var py={};Ke(py,{CSVDataset:()=>ch,Dataset:()=>Ki,FileDataSource:()=>hh,TextLineDataset:()=>lh,URLDataSource:()=>gh,array:()=>b3,csv:()=>A3,func:()=>E3,generator:()=>D3,microphone:()=>R3,version_data:()=>F3,webcam:()=>$3,zip:()=>w3});var y3=Ec(Q0());var n3=Ec(Q0());function Jz(r,e){return sy(r,e)}function sy(r,e,t=new Map,n=new Set){if(r==null)return null;if(n.has(r))throw new Error("Circular references are not supported.");if(t.has(r))return t.get(r);let o=e(r);if(o.recurse&&o.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(o.recurse)if(El(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let a in r){let i=r[a],l=sy(i,e,t,n);s[a]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return t.set(r,o.value),o.value}function e3(r,e=eI){return Qz(r,e)}function Qz(r,e,t=new Set){let n=r[0];if(t.has(n))throw new Error("Circular references are not supported.");let o=e(r);if(o.recurse&&o.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(o.recurse)if(El(n)){let s=Array.isArray(n)?[]:{};t.add(n);for(let a in n){let i=r.map(u=>u[a]),l=Qz(i,e,t);s[a]=l}return t.delete(n),s}else throw new Error(`Can't recurse into non-iterable type: ${n}`);else return o.value}function eI(r){return r===null?null:El(r[0])?{value:null,recurse:!0}:{value:r,recurse:!1}}async function iy(r,e){let t=new Map;sy(r,e,t);for(let o of Array.from(t.keys())){let s=t.get(o);if(y.isPromise(s)){let a=await s;t.set(o,a)}}return sy(r,e,t)}function El(r){return r!=null&&!ArrayBuffer.isView(r)&&(Array.isArray(r)||typeof r=="object"&&!(r instanceof Ve))}function t3(r){return r==null||Bte(r)||Array.isArray(r)||typeof r=="object"&&r instanceof Ve||y.isTypedArray(r)}function Bte(r){return r===null||typeof r!="object"&&typeof r!="function"}function r3(r){return Jz(r,Vte)}function Vte(r){return r instanceof Ve?{value:r.clone(),recurse:!1}:El(r)?{value:null,recurse:!0}:{value:r,recurse:!1}}var ih=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}};var Qp=class extends ih{constructor(){super(Qp.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let o=0;o<n;o++)t[o]=this.get(this.wrap(this.begin+o));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};Qp.INITIAL_CAPACITY=32;function tI(r){return new o3(r)}function ah(r){return new s3(r)}function i3(r,e){return new rI(r,e)}function l3(r,e=ja.FAIL){return new a3(r,e)}var Kt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new h3(this,e)}filter(e){return new f3(this,e)}map(e){return new d3(this,e)}mapAsync(e){return new nI(this,e)}serialMapAsync(e){return new nI(this,e).serial()}flatmap(e){return new g3(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new m3(this,e,t)}columnMajorBatch(e,t=!0,n=eI){return this.rowMajorBatch(e,t).map(s=>e3(s,n))}concatenate(e,t){return new rI(tI([this,e]),t)}take(e){return e<0||e==null?this:new p3(this,e)}skip(e){return e<0||e==null?this:new c3(this,e)}prefetch(e){return new oI(this,e)}shuffle(e,t){return new x3(this,e,t)}serial(){return new u3(this)}},o3=class extends Kt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:r3(e),done:!1}}},s3=class extends Kt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},u3=class extends Kt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},c3=class extends Kt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ae(e.value)}return this.upstream.next()}},p3=class extends Kt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},m3=class extends Kt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},f3=class extends Kt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ae(e.value)}}},d3=class extends Kt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Mo.getTensorsInContainer(e.value),n=this.transform(e.value),o=Mo.getTensorsInContainer(n);for(let s of t)Mo.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},h3=class extends Kt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},nI=class extends Kt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Mo.getTensorsInContainer(e.value),n=await this.transform(e.value),o=Mo.getTensorsInContainer(n);for(let s of t)Mo.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},em=class extends Kt{constructor(){super();this.outputQueue=new Qp,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},g3=class extends em{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Mo.getTensorsInContainer(e.value),n=this.transform(e.value),o=Mo.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let s of t)Mo.isTensorInList(s,o)||s.dispose();return!0}},rI=class extends Kt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ja;(function(r){r[r.FAIL=0]="FAIL",r[r.SHORTEST=1]="SHORTEST",r[r.LONGEST=2]="LONGEST"})(ja||(ja={}));var a3=class extends Kt{constructor(e,t=ja.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function o(a){return a instanceof Kt?{value:a.next().then(l=>(t++,l.done&&n++,l.value)),recurse:!1}:{value:null,recurse:!0}}let s=await iy(this.iterators,o);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ja.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ja.SHORTEST:return{value:null,done:!0};case ja.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},oI=class extends Kt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new ih(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},x3=class extends oI{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=n3.alea(n||y.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}};var Ki=class{constructor(){this.size=null}batch(e,t=!0){let n=this;y.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let o;return this.size===Infinity||this.size==null?o=this.size:t?o=Math.ceil(this.size/e):o=Math.floor(this.size/e),gn(async()=>(await n.iterator()).columnMajorBatch(e,t,Gte),o)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,gn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,gn(async()=>(await t.iterator()).filter(o=>G(()=>e(o))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return gn(async()=>(await t.iterator()).map(n=>G(()=>e(n))),this.size)}mapAsync(e){let t=this;return gn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return gn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,gn(async()=>{let o=ah(async()=>({value:await t.iterator(),done:!1}));return i3(o.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,gn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let o=this,s=y3.alea(t||y.now().toString());return gn(async()=>{let a=s.int32();return n&&(a+=s.int32()),(await o.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,gn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Ki.MAX_BUFFER_SIZE=1e4;function gn(r,e=null){return new class extends Ki{constructor(){super(...arguments);this.size=e}async iterator(){return r()}}}function b3(r){return gn(async()=>tI(r),r.length)}function w3(r){if(!El(r))throw new Error("The argument to zip() must be an object or array.");let e;if(Array.isArray(r))for(let t=0;t<r.length;t++)e=e==null?r[t].size:Math.min(e,r[t].size);else if(r instanceof Object)for(let t in r)e=e==null?r[t].size:Math.min(e,r[t].size);return gn(async()=>{let t=await iy(r,n=>{if(n instanceof Ki)return{value:n.iterator(),recurse:!1};if(El(n))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return l3(t,ja.SHORTEST)},e)}function Gte(r){if(r===null)return null;let e=r[0];return t3(e)?{value:Wte(r),recurse:!1}:{value:null,recurse:!0}}function Wte(r){if(r.length===0)throw new Error("Can't make a batch of zero elements.");return r[0]instanceof Ve?Vt(r):Rr(r)}var lh=class extends Ki{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(o=>(o.endsWith("\r")&&(o=o.slice(0,-1)),o))}};var ay='"',uh=Symbol("out"),k3=Symbol("field"),ly=Symbol("quote"),sI=Symbol("quoteafterquote"),_3=Symbol("quoteinquote"),ch=class extends Ki{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new lh(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(y.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&y.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((o,s)=>(o[s]=o[s]+1||1,o),{}),n=Object.keys(t).filter(o=>t[o]>1);if(y.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let o of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(o)===-1)throw new Error('The key "'+o+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},o={};for(let s=0;s<this.fullColumnNames.length;s++){let a=this.fullColumnNames[s],i=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!i)){let l=t[s],u=null;if(l==="")if(i&&i.default!==void 0)u=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);u=void 0}else{let c=Number(l);if(isNaN(c))i&&i.dtype==="bool"?u=this.getBoolean(l):u=l;else if(!i||!i.dtype)u=c;else switch(i.dtype){case"float32":u=c;break;case"int32":u=Math.floor(c);break;case"bool":u=this.getBoolean(l);break;default:u=c}}i&&i.isLabel?o[a]=u:n[a]=u}}return Object.keys(o).length===0?n:{xs:n,ys:o}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],o=0,s=e.length,a=uh;for(let i=0;i<s;i++)switch(a){case uh:switch(e.charAt(i)){case ay:o=i+1,a=ly;break;case this.delimiter:if(o=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=uh;break;default:a=k3,o=i;break}break;case k3:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(o,i)),a=uh,o=i+1;break;default:}break;case ly:switch(e.charAt(i)){case ay:a=sI;break;default:}break;case sI:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(o,i-1)),a=uh,o=i+1;break;case ay:a=ly;break;default:a=_3;break}break;case _3:switch(e.charAt(i)){case ay:a=ly;break;default:}break;default:}if(a===sI?n.push(e.substring(o,s-1)):n.push(e.substring(o)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}};var ph=class extends Kt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(j().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new ph(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let o=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(o,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let o=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(o,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(o=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&o({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(s),o({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((o,s)=>n.set(o,s*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(y.sizeFromShape(t));return n.set(e,n.length-e.length),Rr(n,t)}};var mh=class extends Kt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Gt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,o=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-n)/2,a=(1-o)/2,i=s+n,l=o+a;this.cropBox=Li([a,s,l,i],[1,4])}else this.cropBox=Li([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(j().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new mh(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&y.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Yh.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return G(()=>{let t=ar(oe(e,"float32"),0),n;n=$s.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let o=n.shape;return L(n,o.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}};var fh=class{};var uy=class extends Kt{split(e){return new v3(this,e)}},v3=class extends uy{constructor(e,t){super();this.upstream=e,this.impl=new C3(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},C3=class extends em{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}};var iI=class extends Kt{decodeUTF8(){return new N3(this)}},N3=class extends uy{constructor(e){super();this.upstream=e,this.impl=new S3(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},S3=class extends em{constructor(e){super();if(this.upstream=e,j().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=I3();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return j().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}};var dh=class extends iI{constructor(e,t={}){super();this.file=e,this.options=t,y.assert(e instanceof Uint8Array||(j().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let o=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,o)));else{let s=new FileReader;s.onload=i=>{let l=s.result;if(l instanceof ArrayBuffer&&(l=new Uint8Array(l)),!(l instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(l)},s.onabort=i=>n(new Error("Aborted")),s.onerror=i=>n(new Error(i.type));let a=this.file.slice(this.offset,o);s.readAsArrayBuffer(a)}this.offset=o}),done:!1}}};async function T3(r,e={}){let t,n;typeof r=="string"?t=r:(t=r.url,n=jte(r));let o=await y.fetch(t,n);if(o.ok){let s=new Uint8Array(await o.arrayBuffer());return new dh(s,e)}else throw new Error(o.statusText)}var jte=r=>({method:r.method,headers:r.headers,body:r.body,mode:r.mode,credentials:r.credentials,cache:r.cache,redirect:r.redirect,referrer:r.referrer,integrity:r.integrity});function cy(r){return typeof r=="string"&&r.substr(0,7)==="file://"}var hh=class extends fh{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(cy(this.input)&&j().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new dh(this.input,this.options)}};var gh=class extends fh{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return cy(this.url)?new hh(this.url,this.fileOptions).iterator():T3(this.url,this.fileOptions)}};function A3(r,e={}){return new ch(new gh(r),e)}function E3(r){let e=ah(r);return gn(async()=>e)}function D3(r){return gn(async()=>{let e=await r();return ah(()=>e.next())})}async function $3(r,e){return mh.create(r,e)}async function R3(r){return ph.create(r)}var F3="3.3.0";var Ute={tfjs:bI,"tfjs-core":wI,"tfjs-data":kI,"tfjs-layers":_I,"tfjs-converter":vI,"tfjs-backend-cpu":bk,"tfjs-backend-webgl":O_,"tfjs-backend-wasm":xC};export{as as Abs,qs as Acos,Ks as Acosh,np as AdadeltaOptimizer,op as AdagradOptimizer,sp as AdamOptimizer,ip as AdamaxOptimizer,wn as Add,Hn as AddN,Ml as All,Ll as Any,qn as ArgMax,ea as ArgMin,Xs as Asin,Ys as Asinh,Zs as Atan,Qs as Atan2,Js as Atanh,Kn as AvgPool,ta as AvgPool3D,Bl as AvgPool3DGrad,zl as AvgPoolGrad,sx as BackendWasm,Xn as BatchMatMul,ra as BatchToSpaceND,Vl as Bincount,Ob as BroadcastTo,zx as Callback,kx as CallbackList,$n as Cast,Yn as Ceil,Rn as ClipByValue,Gl as Complex,na as ComplexAbs,ls as Concat,Zn as Conv2D,Wl as Conv2DBackpropFilter,Jn as Conv2DBackpropInput,oa as Conv3D,jl as Conv3DBackpropFilterV2,Ul as Conv3DBackpropInputV2,Qn as Cos,ei as Cosh,ti as CropAndResize,eo as Cumsum,vx as CustomCallback,Za as DataStorage,Hl as DenseBincount,ri as DepthToSpace,to as DepthwiseConv2dNative,ql as DepthwiseConv2dNativeBackpropFilter,Kl as DepthwiseConv2dNativeBackpropInput,Xl as Diag,sa as Dilation2D,Pc as Dilation2DBackpropFilter,Oc as Dilation2DBackpropInput,$b as ENV,Vx as EarlyStopping,ni as Elu,Yl as EluGrad,Bh as Environment,si as Equal,oi as Erf,no as Exp,us as ExpandDims,ii as Expm1,Zl as FFT,ia as Fill,ai as FlipLeftRight,oo as Floor,so as FloorDiv,Mc as FromPixels,io as FusedBatchNorm,ks as FusedConv2D,_s as FusedDepthwiseConv2D,zg as GPGPUContext,li as GatherNd,cs as GatherV2,ny as GraphModel,ui as Greater,ao as GreaterEqual,_x as History,Jl as IFFT,Fn as Identity,Ql as Imag,Tt as InputSpec,ci as IsFinite,pi as IsInf,mi as IsNan,js as KernelBackend,aa as LRN,tu as LRNGrad,Yf as LayerVariable,Tn as LayersModel,lo as LeakyRelu,fi as Less,di as LessEqual,eu as LinSpace,uo as Log,hi as Log1p,Pb as LogSoftmax,gi as LogicalAnd,Ja as LogicalNot,Qa as LogicalOr,Hu as MathBackendCPU,Ju as MathBackendWebGL,co as Max,mo as MaxPool,la as MaxPool3D,nu as MaxPool3DGrad,ru as MaxPoolGrad,ou as MaxPoolWithArgmax,po as Maximum,fo as Mean,ho as Min,go as Minimum,ua as MirrorPad,xi as Mod,ap as MomentumOptimizer,su as Multinomial,xo as Multiply,ps as Neg,bi as NonMaxSuppressionV3,wi as NonMaxSuppressionV4,ki as NonMaxSuppressionV5,yi as NotEqual,GI as OP_SCOPE_SUFFIX,yo as OneHot,ms as OnesLike,Pr as Optimizer,fs as Pack,bo as PadV2,tV as Pool,wo as Pow,ko as Prelu,_i as Prod,lp as RMSPropOptimizer,hn as RNN,ca as Range,Vb as Rank,iu as Real,ro as RealDiv,vi as Reciprocal,Wt as Reduction,_o as Relu,Co as Relu6,ds as Reshape,vo as ResizeBilinear,lu as ResizeBilinearGrad,pa as ResizeNearestNeighbor,au as ResizeNearestNeighborGrad,Io as Reverse,$i as RotateWithOffset,No as Round,So as Rsqrt,ul as SGDOptimizer,Ci as ScatterNd,hs as Select,Ii as Selu,qi as Sequential,Ao as Sigmoid,Si as Sign,To as Sin,Ni as Sinh,gs as Slice,$o as Softmax,Ti as Softplus,ma as SpaceToBatchND,uu as SparseToDense,xs as SplitV,Eo as Sqrt,fa as Square,Ro as SquaredDifference,On as Step,Ai as StridedSlice,Fo as Sub,Do as Sum,Vr as SymbolicTensor,Ei as Tan,Oo as Tanh,Ve as Tensor,lt as TensorBuffer,kn as Tile,Di as TopK,cu as Transform,Po as Transpose,pu as Unique,ys as Unpack,da as UnsortedSegmentSum,rl as Variable,bs as ZerosLike,ws as _FusedMatMul,Nt as abs,_m as acos,vm as acosh,ee as add,gw as addN,bu as all,sl as any,il as argMax,Cm as argMin,Im as asin,Nm as asinh,Sm as atan,Tm as atan2,Am as atanh,wa as avgPool,Em as avgPool3d,hw as backend,S as backend_util,oW as basicLSTMCell,Lo as batchNorm,ww as batchNorm2d,kw as batchNorm3d,_w as batchNorm4d,ka as batchToSpaceND,vw as bincount,mU as booleanMaskAsync,al as broadcastTo,Yh as browser,ve as buffer,nz as callbacks,oe as cast,Dm as ceil,ir as clipByValue,Pn as clone,_n as complex,Ze as concat,Cw as concat1d,Iw as concat2d,Nw as concat3d,Sw as concat4d,NC as constraints,_u as conv1d,Kr as conv2d,vu as conv2dTranspose,$m as conv3d,IW as conv3dTranspose,oV as copyRegisteredKernels,_a as cos,Cu as cosh,rf as cosineWindow,Iu as cumsum,Xr as customGrad,py as data,Tw as denseBincount,rg as deprecationWarn,Rm as depthToSpace,Is as depthwiseConv2d,iz as deregisterOp,hu as device_util,RW as diag,Fm as dilation2d,xG as disableDeprecationWarnings,Ae as dispose,yG as disposeVariables,me as div,Om as divNoNan,Aw as dot,tk as dropout,Ns as elu,gG as enableDebugMode,hG as enableProdMode,rk as enclosingPowerOfTwo,Mn as engine,j as env,vn as equal,Pm as erf,Zt as exp,ar as expandDims,Mm as expm1,Yc as eye,Ea as fft,va as fill,CG as findBackend,IG as findBackendFactory,Ss as floor,yu as floorDiv,P_ as forceHalfFloat,Go as fused,zo as gather,ek as gatherND,Zh as gather_util,_G as getBackend,Vh as getGradient,zc as getKernel,gm as getKernelsForBackend,fE as gpgpu_util,lj as grad,uj as grads,er as greater,an as greaterEqual,Mi as ifft,Nu as imag,$s as image,kU as inTopKAsync,DC as initializers,Mx as input,Ir as io,Lu as irfft,Ew as isFinite,Dw as isInf,$w as isNaN,Dt as keep,Ar as kernel_impls,f0 as layers,Ca as leakyRelu,Su as less,Bn as lessEqual,ak as linalg,Rw as linspace,Oz as loadGraphModel,jL as loadLayersModel,Lm as localResponseNormalization,lr as log,Tu as log1p,Fw as logSigmoid,Au as logSoftmax,Bm as logSumExp,hr as logicalAnd,Ia as logicalNot,Eu as logicalOr,Lw as logicalXor,dH as losses,We as matMul,bN as math,ur as max,Na as maxPool,Vm as maxPool3d,zw as maxPoolWithArgmax,Yr as maximum,ht as mean,qc as memory,x0 as metrics,Pi as min,As as minimum,Gm as mirrorPad,Wm as mod,GL as model,y0 as models,Zc as moments,hU as movingAverage,P as mul,Lj as multiRNNCell,Bw as multinomial,He as neg,nf as nextFrame,Vu as norm,Vo as notEqual,Cs as oneHot,Nr as ones,tr as onesLike,T as op,Wj as outerProduct,Fr as pad,Hj as pad1d,Kj as pad2d,Yj as pad3d,Jj as pad4d,Vw as pool,Or as pow,Ta as prelu,sw as print,Du as prod,bG as profile,a4 as rand,h4 as randomGamma,cg as randomNormal,Es as randomUniform,Qc as range,kG as ready,ll as real,jm as reciprocal,xu as registerBackend,UL as registerCallbackConstructor,Lb as registerGradient,el as registerKernel,sz as registerOp,b0 as regularizers,Sr as relu,Ru as relu6,vG as removeBackend,L as reshape,qt as reverse,C4 as reverse1d,N4 as reverse2d,T4 as reverse3d,E4 as reverse4d,Da as rfft,Um as round,Fu as rsqrt,le as scalar,Qw as scatterND,Jh as scatter_util,Ou as selu,Hm as separableConv2d,WL as sequential,Q as serialization,PN as setBackend,NG as setPlatform,ZZ as setWasmPath,JZ as setWasmPaths,Bk as setWebGLContext,Yw as setdiff1dAsync,wg as shared,qr as sigmoid,qm as sign,fH as signal,Pu as sin,Mu as sinh,Re as slice,Km as slice1d,pg as slice2d,Xm as slice3d,ep as slice4d,sr as slice_util,Aa as softmax,Ts as softplus,Sa as spaceToBatchND,tf as sparseToDense,mH as spectral,cr as split,xt as sqrt,Oe as square,zu as squaredDifference,Cn as squeeze,Vt as stack,Ds as step,Ym as stridedSlice,ce as sub,ge as sum,fu as sumOutType,Zm as tan,Oi as tanh,Rr as tensor,Gt as tensor1d,Li as tensor2d,uw as tensor3d,rU as tensor4d,nU as tensor5d,oU as tensor6d,Mo as tensor_util,RN as test_util,G as tidy,zn as tile,wG as time,Jm as topk,cl as train,Ue as transpose,Bu as truncatedNormal,tp as unique,nV as unregisterGradient,rV as unregisterKernel,Qm as unsortedSegmentSum,pr as unstack,dr as upcastType,y as util,cj as valueAndGrad,pj as valueAndGrads,Zw as variable,ig as variableGrads,Ute as version,Pz as version_converter,dG as version_core,bk as version_cpu,Wp as version_layers,xC as version_wasm,O_ as version_webgl,r8 as webgl,lE as webgl_util,$t as where,ef as whereAsync,gt as zeros,Ce as zerosLike};
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */
//# sourceMappingURL=tfjs.esm.js.map