mirror of https://github.com/vladmandic/human
240 lines
8.1 KiB
JavaScript
240 lines
8.1 KiB
JavaScript
const tf = require('@tensorflow/tfjs');
|
|
const facemesh = require('./facemesh/facemesh.js');
|
|
const ssrnet = require('./ssrnet/ssrnet.js');
|
|
const emotion = require('./emotion/emotion.js');
|
|
const posenet = require('./posenet/posenet.js');
|
|
const handpose = require('./handpose/handpose.js');
|
|
const defaults = require('../config.js').default;
|
|
const app = require('../package.json');
|
|
|
|
let config;
|
|
let state = 'idle';
|
|
|
|
// object that contains all initialized models
|
|
const models = {
|
|
facemesh: null,
|
|
posenet: null,
|
|
handpose: null,
|
|
iris: null,
|
|
age: null,
|
|
gender: null,
|
|
emotion: null,
|
|
};
|
|
|
|
const override = {
|
|
face: { detector: { skipFrames: 0 }, age: { skipFrames: 0 }, emotion: { skipFrames: 0 } },
|
|
hand: { skipFrames: 0 },
|
|
};
|
|
|
|
// helper function: gets elapsed time on both browser and nodejs
|
|
const now = () => {
|
|
if (typeof performance !== 'undefined') return performance.now();
|
|
return parseInt(Number(process.hrtime.bigint()) / 1000 / 1000);
|
|
};
|
|
|
|
// helper function: wrapper around console output
|
|
const log = (...msg) => {
|
|
// eslint-disable-next-line no-console
|
|
if (msg && config.console) console.log(...msg);
|
|
};
|
|
|
|
// helper function: measure tensor leak
|
|
let numTensors = 0;
|
|
const analyzeMemoryLeaks = false;
|
|
const analyze = (...msg) => {
|
|
if (!analyzeMemoryLeaks) return;
|
|
const current = tf.engine().state.numTensors;
|
|
const previous = numTensors;
|
|
numTensors = current;
|
|
const leaked = current - previous;
|
|
if (leaked !== 0) log(...msg, leaked);
|
|
};
|
|
|
|
// helper function: perform deep merge of multiple objects so it allows full inheriance with overrides
|
|
function mergeDeep(...objects) {
|
|
const isObject = (obj) => obj && typeof obj === 'object';
|
|
return objects.reduce((prev, obj) => {
|
|
Object.keys(obj || {}).forEach((key) => {
|
|
const pVal = prev[key];
|
|
const oVal = obj[key];
|
|
if (Array.isArray(pVal) && Array.isArray(oVal)) {
|
|
prev[key] = pVal.concat(...oVal);
|
|
} else if (isObject(pVal) && isObject(oVal)) {
|
|
prev[key] = mergeDeep(pVal, oVal);
|
|
} else {
|
|
prev[key] = oVal;
|
|
}
|
|
});
|
|
return prev;
|
|
}, {});
|
|
}
|
|
|
|
function sanity(input) {
|
|
if (!input) return 'input is not defined';
|
|
if (tf.ENV.flags.IS_BROWSER && (input instanceof ImageData || input instanceof HTMLImageElement || input instanceof HTMLCanvasElement || input instanceof HTMLVideoElement || input instanceof HTMLMediaElement)) {
|
|
const width = input.naturalWidth || input.videoWidth || input.width || (input.shape && (input.shape[1] > 0));
|
|
if (!width || (width === 0)) return 'input is empty';
|
|
}
|
|
if (tf.ENV.flags.IS_BROWSER && (input instanceof HTMLVideoElement || input instanceof HTMLMediaElement)) {
|
|
if (input.readyState && (input.readyState <= 2)) return 'input is not ready';
|
|
}
|
|
if (tf.ENV.flags.IS_NODE && !(input instanceof tf.Tensor)) {
|
|
return 'input must be a tensor';
|
|
}
|
|
try {
|
|
tf.getBackend();
|
|
} catch {
|
|
return 'backend not loaded';
|
|
}
|
|
return null;
|
|
}
|
|
|
|
async function load(userConfig) {
|
|
if (userConfig) config = mergeDeep(defaults, userConfig);
|
|
if (config.face.enabled && !models.facemesh) models.facemesh = await facemesh.load(config.face);
|
|
if (config.body.enabled && !models.posenet) models.posenet = await posenet.load(config.body);
|
|
if (config.hand.enabled && !models.handpose) models.handpose = await handpose.load(config.hand);
|
|
if (config.face.enabled && config.face.age.enabled && !models.age) models.age = await ssrnet.loadAge(config);
|
|
if (config.face.enabled && config.face.gender.enabled && !models.gender) models.gender = await ssrnet.loadGender(config);
|
|
if (config.face.enabled && config.face.emotion.enabled && !models.emotion) models.emotion = await emotion.load(config);
|
|
}
|
|
|
|
async function detect(input, userConfig = {}) {
|
|
state = 'config';
|
|
const perf = {};
|
|
let timeStamp;
|
|
|
|
timeStamp = now();
|
|
const shouldOverride = tf.ENV.flags.IS_NODE || (tf.ENV.flags.IS_BROWSER && !((input instanceof HTMLVideoElement) || (input instanceof HTMLMediaElement)));
|
|
config = mergeDeep(defaults, userConfig, shouldOverride ? override : {});
|
|
perf.config = Math.trunc(now() - timeStamp);
|
|
|
|
// sanity checks
|
|
timeStamp = now();
|
|
state = 'check';
|
|
const error = sanity(input);
|
|
if (error) {
|
|
log(error, input);
|
|
return { error };
|
|
}
|
|
perf.sanity = Math.trunc(now() - timeStamp);
|
|
|
|
// eslint-disable-next-line no-async-promise-executor
|
|
return new Promise(async (resolve) => {
|
|
const timeStart = now();
|
|
|
|
// configure backend
|
|
timeStamp = now();
|
|
if (tf.getBackend() !== config.backend) {
|
|
state = 'backend';
|
|
log('Human library setting backend:', config.backend);
|
|
await tf.setBackend(config.backend);
|
|
await tf.ready();
|
|
}
|
|
perf.backend = Math.trunc(now() - timeStamp);
|
|
|
|
// check number of loaded models
|
|
const loadedModels = Object.values(models).filter((a) => a).length;
|
|
if (loadedModels === 0) {
|
|
log('Human library starting');
|
|
log('Configuration:', config);
|
|
log('Flags:', tf.ENV.flags);
|
|
}
|
|
|
|
// load models if enabled
|
|
timeStamp = now();
|
|
state = 'load';
|
|
await load();
|
|
perf.load = Math.trunc(now() - timeStamp);
|
|
|
|
if (config.scoped) tf.engine().startScope();
|
|
|
|
analyze('Start Detect:');
|
|
|
|
// run posenet
|
|
state = 'run:body';
|
|
timeStamp = now();
|
|
analyze('Start PoseNet');
|
|
const poseRes = config.body.enabled ? await models.posenet.estimatePoses(input, config.body) : [];
|
|
analyze('End PoseNet:');
|
|
perf.body = Math.trunc(now() - timeStamp);
|
|
|
|
// run handpose
|
|
state = 'run:hand';
|
|
timeStamp = now();
|
|
analyze('Start HandPose:');
|
|
const handRes = config.hand.enabled ? await models.handpose.estimateHands(input, config.hand) : [];
|
|
analyze('End HandPose:');
|
|
perf.hand = Math.trunc(now() - timeStamp);
|
|
|
|
// run facemesh, includes blazeface and iris
|
|
const faceRes = [];
|
|
if (config.face.enabled) {
|
|
state = 'run:face';
|
|
timeStamp = now();
|
|
analyze('Start FaceMesh:');
|
|
const faces = await models.facemesh.estimateFaces(input, config.face);
|
|
perf.face = Math.trunc(now() - timeStamp);
|
|
for (const face of faces) {
|
|
// is something went wrong, skip the face
|
|
if (!face.image || face.image.isDisposedInternal) {
|
|
log('face object is disposed:', face.image);
|
|
continue;
|
|
}
|
|
// run ssr-net age & gender, inherits face from blazeface
|
|
state = 'run:agegender';
|
|
timeStamp = now();
|
|
const ssrData = (config.face.age.enabled || config.face.gender.enabled) ? await ssrnet.predict(face.image, config) : {};
|
|
perf.agegender = Math.trunc(now() - timeStamp);
|
|
// run emotion, inherits face from blazeface
|
|
state = 'run:emotion';
|
|
timeStamp = now();
|
|
const emotionData = config.face.emotion.enabled ? await emotion.predict(face.image, config) : {};
|
|
perf.emotion = Math.trunc(now() - timeStamp);
|
|
|
|
// dont need face anymore
|
|
face.image.dispose();
|
|
// calculate iris distance
|
|
// iris: array[ bottom, left, top, right, center ]
|
|
const iris = (face.annotations.leftEyeIris && face.annotations.rightEyeIris)
|
|
? Math.max(face.annotations.leftEyeIris[3][0] - face.annotations.leftEyeIris[1][0], face.annotations.rightEyeIris[3][0] - face.annotations.rightEyeIris[1][0])
|
|
: 0;
|
|
faceRes.push({
|
|
confidence: face.confidence,
|
|
box: face.box,
|
|
mesh: face.mesh,
|
|
annotations: face.annotations,
|
|
age: ssrData.age,
|
|
gender: ssrData.gender,
|
|
agConfidence: ssrData.confidence,
|
|
emotion: emotionData,
|
|
iris: (iris !== 0) ? Math.trunc(100 * 11.7 /* human iris size in mm */ / iris) / 100 : 0,
|
|
});
|
|
}
|
|
analyze('End FaceMesh:');
|
|
}
|
|
|
|
state = 'idle';
|
|
|
|
if (config.scoped) tf.engine().endScope();
|
|
analyze('End Scope:');
|
|
|
|
perf.total = Math.trunc(now() - timeStart);
|
|
resolve({ face: faceRes, body: poseRes, hand: handRes, performance: perf });
|
|
});
|
|
}
|
|
|
|
exports.detect = detect;
|
|
exports.defaults = defaults;
|
|
exports.config = config;
|
|
exports.models = models;
|
|
exports.facemesh = facemesh;
|
|
exports.ssrnet = ssrnet;
|
|
exports.posenet = posenet;
|
|
exports.handpose = handpose;
|
|
exports.tf = tf;
|
|
exports.version = app.version;
|
|
exports.state = state;
|
|
|
|
// Error: Failed to compile fragment shader
|