human/src/human.js

240 lines
8.1 KiB
JavaScript

const tf = require('@tensorflow/tfjs');
const facemesh = require('./facemesh/facemesh.js');
const ssrnet = require('./ssrnet/ssrnet.js');
const emotion = require('./emotion/emotion.js');
const posenet = require('./posenet/posenet.js');
const handpose = require('./handpose/handpose.js');
const defaults = require('../config.js').default;
const app = require('../package.json');
let config;
let state = 'idle';
// object that contains all initialized models
const models = {
facemesh: null,
posenet: null,
handpose: null,
iris: null,
age: null,
gender: null,
emotion: null,
};
const override = {
face: { detector: { skipFrames: 0 }, age: { skipFrames: 0 }, emotion: { skipFrames: 0 } },
hand: { skipFrames: 0 },
};
// helper function: gets elapsed time on both browser and nodejs
const now = () => {
if (typeof performance !== 'undefined') return performance.now();
return parseInt(Number(process.hrtime.bigint()) / 1000 / 1000);
};
// helper function: wrapper around console output
const log = (...msg) => {
// eslint-disable-next-line no-console
if (msg && config.console) console.log(...msg);
};
// helper function: measure tensor leak
let numTensors = 0;
const analyzeMemoryLeaks = false;
const analyze = (...msg) => {
if (!analyzeMemoryLeaks) return;
const current = tf.engine().state.numTensors;
const previous = numTensors;
numTensors = current;
const leaked = current - previous;
if (leaked !== 0) log(...msg, leaked);
};
// helper function: perform deep merge of multiple objects so it allows full inheriance with overrides
function mergeDeep(...objects) {
const isObject = (obj) => obj && typeof obj === 'object';
return objects.reduce((prev, obj) => {
Object.keys(obj || {}).forEach((key) => {
const pVal = prev[key];
const oVal = obj[key];
if (Array.isArray(pVal) && Array.isArray(oVal)) {
prev[key] = pVal.concat(...oVal);
} else if (isObject(pVal) && isObject(oVal)) {
prev[key] = mergeDeep(pVal, oVal);
} else {
prev[key] = oVal;
}
});
return prev;
}, {});
}
function sanity(input) {
if (!input) return 'input is not defined';
if (tf.ENV.flags.IS_BROWSER && (input instanceof ImageData || input instanceof HTMLImageElement || input instanceof HTMLCanvasElement || input instanceof HTMLVideoElement || input instanceof HTMLMediaElement)) {
const width = input.naturalWidth || input.videoWidth || input.width || (input.shape && (input.shape[1] > 0));
if (!width || (width === 0)) return 'input is empty';
}
if (tf.ENV.flags.IS_BROWSER && (input instanceof HTMLVideoElement || input instanceof HTMLMediaElement)) {
if (input.readyState && (input.readyState <= 2)) return 'input is not ready';
}
if (tf.ENV.flags.IS_NODE && !(input instanceof tf.Tensor)) {
return 'input must be a tensor';
}
try {
tf.getBackend();
} catch {
return 'backend not loaded';
}
return null;
}
async function load(userConfig) {
if (userConfig) config = mergeDeep(defaults, userConfig);
if (config.face.enabled && !models.facemesh) models.facemesh = await facemesh.load(config.face);
if (config.body.enabled && !models.posenet) models.posenet = await posenet.load(config.body);
if (config.hand.enabled && !models.handpose) models.handpose = await handpose.load(config.hand);
if (config.face.enabled && config.face.age.enabled && !models.age) models.age = await ssrnet.loadAge(config);
if (config.face.enabled && config.face.gender.enabled && !models.gender) models.gender = await ssrnet.loadGender(config);
if (config.face.enabled && config.face.emotion.enabled && !models.emotion) models.emotion = await emotion.load(config);
}
async function detect(input, userConfig = {}) {
state = 'config';
const perf = {};
let timeStamp;
timeStamp = now();
const shouldOverride = tf.ENV.flags.IS_NODE || (tf.ENV.flags.IS_BROWSER && !((input instanceof HTMLVideoElement) || (input instanceof HTMLMediaElement)));
config = mergeDeep(defaults, userConfig, shouldOverride ? override : {});
perf.config = Math.trunc(now() - timeStamp);
// sanity checks
timeStamp = now();
state = 'check';
const error = sanity(input);
if (error) {
log(error, input);
return { error };
}
perf.sanity = Math.trunc(now() - timeStamp);
// eslint-disable-next-line no-async-promise-executor
return new Promise(async (resolve) => {
const timeStart = now();
// configure backend
timeStamp = now();
if (tf.getBackend() !== config.backend) {
state = 'backend';
log('Human library setting backend:', config.backend);
await tf.setBackend(config.backend);
await tf.ready();
}
perf.backend = Math.trunc(now() - timeStamp);
// check number of loaded models
const loadedModels = Object.values(models).filter((a) => a).length;
if (loadedModels === 0) {
log('Human library starting');
log('Configuration:', config);
log('Flags:', tf.ENV.flags);
}
// load models if enabled
timeStamp = now();
state = 'load';
await load();
perf.load = Math.trunc(now() - timeStamp);
if (config.scoped) tf.engine().startScope();
analyze('Start Detect:');
// run posenet
state = 'run:body';
timeStamp = now();
analyze('Start PoseNet');
const poseRes = config.body.enabled ? await models.posenet.estimatePoses(input, config.body) : [];
analyze('End PoseNet:');
perf.body = Math.trunc(now() - timeStamp);
// run handpose
state = 'run:hand';
timeStamp = now();
analyze('Start HandPose:');
const handRes = config.hand.enabled ? await models.handpose.estimateHands(input, config.hand) : [];
analyze('End HandPose:');
perf.hand = Math.trunc(now() - timeStamp);
// run facemesh, includes blazeface and iris
const faceRes = [];
if (config.face.enabled) {
state = 'run:face';
timeStamp = now();
analyze('Start FaceMesh:');
const faces = await models.facemesh.estimateFaces(input, config.face);
perf.face = Math.trunc(now() - timeStamp);
for (const face of faces) {
// is something went wrong, skip the face
if (!face.image || face.image.isDisposedInternal) {
log('face object is disposed:', face.image);
continue;
}
// run ssr-net age & gender, inherits face from blazeface
state = 'run:agegender';
timeStamp = now();
const ssrData = (config.face.age.enabled || config.face.gender.enabled) ? await ssrnet.predict(face.image, config) : {};
perf.agegender = Math.trunc(now() - timeStamp);
// run emotion, inherits face from blazeface
state = 'run:emotion';
timeStamp = now();
const emotionData = config.face.emotion.enabled ? await emotion.predict(face.image, config) : {};
perf.emotion = Math.trunc(now() - timeStamp);
// dont need face anymore
face.image.dispose();
// calculate iris distance
// iris: array[ bottom, left, top, right, center ]
const iris = (face.annotations.leftEyeIris && face.annotations.rightEyeIris)
? Math.max(face.annotations.leftEyeIris[3][0] - face.annotations.leftEyeIris[1][0], face.annotations.rightEyeIris[3][0] - face.annotations.rightEyeIris[1][0])
: 0;
faceRes.push({
confidence: face.confidence,
box: face.box,
mesh: face.mesh,
annotations: face.annotations,
age: ssrData.age,
gender: ssrData.gender,
agConfidence: ssrData.confidence,
emotion: emotionData,
iris: (iris !== 0) ? Math.trunc(100 * 11.7 /* human iris size in mm */ / iris) / 100 : 0,
});
}
analyze('End FaceMesh:');
}
state = 'idle';
if (config.scoped) tf.engine().endScope();
analyze('End Scope:');
perf.total = Math.trunc(now() - timeStart);
resolve({ face: faceRes, body: poseRes, hand: handRes, performance: perf });
});
}
exports.detect = detect;
exports.defaults = defaults;
exports.config = config;
exports.models = models;
exports.facemesh = facemesh;
exports.ssrnet = ssrnet;
exports.posenet = posenet;
exports.handpose = handpose;
exports.tf = tf;
exports.version = app.version;
exports.state = state;
// Error: Failed to compile fragment shader