human/src/human.js

423 lines
15 KiB
JavaScript

import { tf, wasm } from '../dist/tfjs.esm.js';
import * as facemesh from './face/facemesh.js';
import * as age from './age/age.js';
import * as gender from './gender/gender.js';
import * as emotion from './emotion/emotion.js';
import * as embedding from './embedding/embedding.js';
import * as posenet from './body/posenet.js';
import * as handpose from './hand/handpose.js';
import * as gesture from './gesture.js';
import * as image from './image.js';
import * as profile from './profile.js';
import * as config from '../config.js';
import * as app from '../package.json';
// helper function: gets elapsed time on both browser and nodejs
const now = () => {
if (typeof performance !== 'undefined') return performance.now();
return parseInt(Number(process.hrtime.bigint()) / 1000 / 1000);
};
// helper function: perform deep merge of multiple objects so it allows full inheriance with overrides
function mergeDeep(...objects) {
const isObject = (obj) => obj && typeof obj === 'object';
return objects.reduce((prev, obj) => {
Object.keys(obj || {}).forEach((key) => {
const pVal = prev[key];
const oVal = obj[key];
if (Array.isArray(pVal) && Array.isArray(oVal)) {
prev[key] = pVal.concat(...oVal);
} else if (isObject(pVal) && isObject(oVal)) {
prev[key] = mergeDeep(pVal, oVal);
} else {
prev[key] = oVal;
}
});
return prev;
}, {});
}
class Human {
constructor(userConfig = {}) {
this.tf = tf;
this.version = app.version;
this.config = mergeDeep(config.default, userConfig);
this.fx = null;
this.state = 'idle';
this.numTensors = 0;
this.analyzeMemoryLeaks = false;
this.checkSanity = false;
this.firstRun = true;
this.perf = {};
// object that contains all initialized models
this.models = {
facemesh: null,
posenet: null,
handpose: null,
iris: null,
age: null,
gender: null,
emotion: null,
};
// export raw access to underlying models
this.facemesh = facemesh;
this.age = age;
this.gender = gender;
this.emotion = emotion;
this.body = posenet;
this.hand = handpose;
}
// helper function: wrapper around console output
log(...msg) {
// eslint-disable-next-line no-console
if (msg && this.config.console) console.log('Human:', ...msg);
}
profile() {
if (this.config.profile) return profile.data;
return {};
}
// helper function: measure tensor leak
analyze(...msg) {
if (!this.analyzeMemoryLeaks) return;
const current = tf.engine().state.numTensors;
const previous = this.numTensors;
this.numTensors = current;
const leaked = current - previous;
if (leaked !== 0) this.log(...msg, leaked);
}
// quick sanity check on inputs
sanity(input) {
if (!this.checkSanity) return null;
if (!input) return 'input is not defined';
if (tf.ENV.flags.IS_NODE && !(input instanceof tf.Tensor)) {
return 'input must be a tensor';
}
try {
tf.getBackend();
} catch {
return 'backend not loaded';
}
return null;
}
simmilarity(embedding1, embedding2) {
if (this.config.face.embedding.enabled) return embedding.simmilarity(embedding1, embedding2);
return 0;
}
// preload models, not explicitly required as it's done automatically on first use
async load(userConfig) {
this.state = 'load';
const timeStamp = now();
if (userConfig) this.config = mergeDeep(this.config, userConfig);
if (this.firstRun) {
this.checkBackend(true);
this.log(`version: ${this.version} TensorFlow/JS version: ${tf.version_core}`);
this.log('configuration:', this.config);
this.log('flags:', tf.ENV.flags);
this.firstRun = false;
}
if (this.config.async) {
[
this.models.facemesh,
this.models.age,
this.models.gender,
this.models.emotion,
this.models.embedding,
this.models.posenet,
this.models.handpose,
] = await Promise.all([
this.models.facemesh || (this.config.face.enabled ? facemesh.load(this.config) : null),
this.models.age || ((this.config.face.enabled && this.config.face.age.enabled) ? age.load(this.config) : null),
this.models.gender || ((this.config.face.enabled && this.config.face.gender.enabled) ? gender.load(this.config) : null),
this.models.emotion || ((this.config.face.enabled && this.config.face.emotion.enabled) ? emotion.load(this.config) : null),
this.models.embedding || ((this.config.face.enabled && this.config.face.embedding.enabled) ? embedding.load(this.config) : null),
this.models.posenet || (this.config.body.enabled ? posenet.load(this.config) : null),
this.models.handpose || (this.config.hand.enabled ? handpose.load(this.config) : null),
]);
} else {
if (this.config.face.enabled && !this.models.facemesh) this.models.facemesh = await facemesh.load(this.config);
if (this.config.face.enabled && this.config.face.age.enabled && !this.models.age) this.models.age = await age.load(this.config);
if (this.config.face.enabled && this.config.face.gender.enabled && !this.models.gender) this.models.gender = await gender.load(this.config);
if (this.config.face.enabled && this.config.face.emotion.enabled && !this.models.emotion) this.models.emotion = await emotion.load(this.config);
if (this.config.face.enabled && this.config.face.embedding.enabled && !this.models.embedding) this.models.embedding = await embedding.load(this.config);
if (this.config.body.enabled && !this.models.posenet) this.models.posenet = await posenet.load(this.config);
if (this.config.hand.enabled && !this.models.handpose) this.models.handpose = await handpose.load(this.config);
}
const current = Math.trunc(now() - timeStamp);
if (current > (this.perf.load || 0)) this.perf.load = current;
}
// check if backend needs initialization if it changed
async checkBackend(force) {
const timeStamp = now();
if (this.config.backend && (this.config.backend !== '') && force || (tf.getBackend() !== this.config.backend)) {
this.state = 'backend';
/* force backend reload
if (this.config.backend in tf.engine().registry) {
const backendFactory = tf.findBackendFactory(this.config.backend);
tf.removeBackend(this.config.backend);
tf.registerBackend(this.config.backend, backendFactory);
} else {
this.log('Backend not registred:', this.config.backend);
}
*/
this.log('setting backend:', this.config.backend);
if (this.config.backend === 'wasm') {
this.log('settings wasm path:', this.config.wasmPath);
wasm.setWasmPaths(this.config.wasmPath);
const simd = await tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');
if (!simd) this.log('warning: wasm simd support is not enabled');
}
await tf.setBackend(this.config.backend);
tf.enableProdMode();
/* debug mode is really too mcuh
tf.enableDebugMode();
*/
if (tf.getBackend() === 'webgl') {
if (this.config.deallocate) {
this.log('changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:', this.config.deallocate);
tf.ENV.set('WEBGL_DELETE_TEXTURE_THRESHOLD', this.config.deallocate ? 0 : -1);
}
// tf.ENV.set('WEBGL_FORCE_F16_TEXTURES', true);
tf.ENV.set('WEBGL_PACK_DEPTHWISECONV', true);
}
await tf.ready();
}
const current = Math.trunc(now() - timeStamp);
if (current > (this.perf.backend || 0)) this.perf.backend = current;
}
async detectFace(input) {
// run facemesh, includes blazeface and iris
// eslint-disable-next-line no-async-promise-executor
let timeStamp;
let ageRes;
let genderRes;
let emotionRes;
let embeddingRes;
const faceRes = [];
this.state = 'run:face';
timeStamp = now();
const faces = await this.models.facemesh.estimateFaces(input, this.config);
this.perf.face = Math.trunc(now() - timeStamp);
for (const face of faces) {
this.analyze('Get Face');
// is something went wrong, skip the face
if (!face.image || face.image.isDisposedInternal) {
this.log('Face object is disposed:', face.image);
continue;
}
// run age, inherits face from blazeface
this.analyze('Start Age:');
if (this.config.async) {
ageRes = this.config.face.age.enabled ? age.predict(face.image, this.config) : {};
} else {
this.state = 'run:age';
timeStamp = now();
ageRes = this.config.face.age.enabled ? await age.predict(face.image, this.config) : {};
this.perf.age = Math.trunc(now() - timeStamp);
}
// run gender, inherits face from blazeface
this.analyze('Start Gender:');
if (this.config.async) {
genderRes = this.config.face.gender.enabled ? gender.predict(face.image, this.config) : {};
} else {
this.state = 'run:gender';
timeStamp = now();
genderRes = this.config.face.gender.enabled ? await gender.predict(face.image, this.config) : {};
this.perf.gender = Math.trunc(now() - timeStamp);
}
// run emotion, inherits face from blazeface
this.analyze('Start Emotion:');
if (this.config.async) {
emotionRes = this.config.face.emotion.enabled ? emotion.predict(face.image, this.config) : {};
} else {
this.state = 'run:emotion';
timeStamp = now();
emotionRes = this.config.face.emotion.enabled ? await emotion.predict(face.image, this.config) : {};
this.perf.emotion = Math.trunc(now() - timeStamp);
}
this.analyze('End Emotion:');
// run emotion, inherits face from blazeface
this.analyze('Start Embedding:');
if (this.config.async) {
embeddingRes = this.config.face.embedding.enabled ? embedding.predict(face.image, this.config) : {};
} else {
this.state = 'run:embedding';
timeStamp = now();
embeddingRes = this.config.face.embedding.enabled ? await embedding.predict(face.image, this.config) : {};
this.perf.embedding = Math.trunc(now() - timeStamp);
}
this.analyze('End Emotion:');
// if async wait for results
if (this.config.async) {
[ageRes, genderRes, emotionRes, embeddingRes] = await Promise.all([ageRes, genderRes, emotionRes, embeddingRes]);
}
this.analyze('Finish Face:');
// dont need face anymore
face.image.dispose();
// calculate iris distance
// iris: array[ center, left, top, right, bottom]
const irisSize = (face.annotations.leftEyeIris && face.annotations.rightEyeIris)
/* average human iris size is 11.7mm */
? 11.7 * Math.max(Math.abs(face.annotations.leftEyeIris[3][0] - face.annotations.leftEyeIris[1][0]), Math.abs(face.annotations.rightEyeIris[4][1] - face.annotations.rightEyeIris[2][1]))
: 0;
// combine results
faceRes.push({
confidence: face.confidence,
box: face.box,
mesh: face.mesh,
annotations: face.annotations,
age: ageRes.age,
gender: genderRes.gender,
genderConfidence: genderRes.confidence,
emotion: emotionRes,
embedding: embeddingRes,
iris: (irisSize !== 0) ? Math.trunc(irisSize) / 100 : 0,
});
this.analyze('End Face');
}
this.analyze('End FaceMesh:');
if (this.config.async) {
if (this.perf.face) delete this.perf.face;
if (this.perf.age) delete this.perf.age;
if (this.perf.gender) delete this.perf.gender;
if (this.perf.emotion) delete this.perf.emotion;
}
return faceRes;
}
async image(input, userConfig = {}) {
this.state = 'image';
this.config = mergeDeep(this.config, userConfig);
const process = image.process(input, this.config);
process.tensor.dispose();
return process.canvas;
}
// main detect function
async detect(input, userConfig = {}) {
// detection happens inside a promise
return new Promise(async (resolve) => {
this.state = 'config';
let timeStamp;
// update configuration
this.config = mergeDeep(this.config, userConfig);
// sanity checks
this.state = 'check';
const error = this.sanity(input);
if (error) {
this.log(error, input);
resolve({ error });
}
let poseRes;
let handRes;
let faceRes;
const timeStart = now();
// configure backend
await this.checkBackend();
// load models if enabled
await this.load();
if (this.config.scoped) tf.engine().startScope();
this.analyze('Start Scope:');
timeStamp = now();
const process = image.process(input, this.config);
this.perf.image = Math.trunc(now() - timeStamp);
this.analyze('Get Image:');
// run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion
if (this.config.async) {
faceRes = this.config.face.enabled ? this.detectFace(process.tensor) : [];
if (this.perf.face) delete this.perf.face;
} else {
this.state = 'run:face';
timeStamp = now();
faceRes = this.config.face.enabled ? await this.detectFace(process.tensor) : [];
this.perf.face = Math.trunc(now() - timeStamp);
}
// run posenet
this.analyze('Start Body:');
if (this.config.async) {
poseRes = this.config.body.enabled ? this.models.posenet.estimatePoses(process.tensor, this.config) : [];
if (this.perf.body) delete this.perf.body;
} else {
this.state = 'run:body';
timeStamp = now();
poseRes = this.config.body.enabled ? await this.models.posenet.estimatePoses(process.tensor, this.config) : [];
this.perf.body = Math.trunc(now() - timeStamp);
}
this.analyze('End Body:');
// run handpose
this.analyze('Start Hand:');
if (this.config.async) {
handRes = this.config.hand.enabled ? this.models.handpose.estimateHands(process.tensor, this.config) : [];
if (this.perf.hand) delete this.perf.hand;
} else {
this.state = 'run:hand';
timeStamp = now();
handRes = this.config.hand.enabled ? await this.models.handpose.estimateHands(process.tensor, this.config) : [];
this.perf.hand = Math.trunc(now() - timeStamp);
}
// this.analyze('End Hand:');
// if async wait for results
if (this.config.async) {
[faceRes, poseRes, handRes] = await Promise.all([faceRes, poseRes, handRes]);
}
process.tensor.dispose();
if (this.config.scoped) tf.engine().endScope();
this.analyze('End Scope:');
let gestureRes = [];
if (this.config.gesture.enabled) {
timeStamp = now();
gestureRes = { face: gesture.face(faceRes), body: gesture.body(poseRes), hand: gesture.hand(handRes) };
if (!this.config.async) this.perf.gesture = Math.trunc(now() - timeStamp);
else if (this.perf.gesture) delete this.perf.gesture;
}
this.perf.total = Math.trunc(now() - timeStart);
this.state = 'idle';
resolve({ face: faceRes, body: poseRes, hand: handRes, gesture: gestureRes, performance: this.perf, canvas: process.canvas });
});
}
async warmup(userConfig, sample) {
if (!sample) sample = new ImageData(255, 255);
const warmup = await this.detect(sample, userConfig);
this.log('warmed up');
return warmup;
}
}
export { Human as default };