human/dist/human.js

8047 lines
1.5 MiB

/*
Human
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
var Human=(()=>{var Qg=Object.defineProperty;var KN=(e,t,n)=>t in e?Qg(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var ZN=e=>Qg(e,"__esModule",{value:!0});var wa=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var qc=(e,t)=>{ZN(e);for(var n in t)Qg(e,n,{get:t[n],enumerable:!0})};var de=(e,t,n)=>(KN(e,typeof t!="symbol"?t+"":t,n),n),v5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var Xc=(e,t,n)=>(v5(e,t,"read from private field"),n?n.call(e):t.get(e)),Kc=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},Zc=(e,t,n,s)=>(v5(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var D2e={};qc(D2e,{Human:()=>YT,default:()=>YT,defaults:()=>ka,env:()=>ge});function Ze(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: ${r} expecting json file`);return r}function se(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var ce=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function e2(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")e2(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&se("invalid configuration",s),s}function $n(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=$n(a,o):n[r]=o}),n),{})}var ka={backend:"",modelBasePath:"",wasmPath:"",debug:!0,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,cropFactor:1.6,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",detector:{modelPath:""},maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Pl={};qc(Pl,{Abs:()=>di,Acos:()=>su,Acosh:()=>ru,AdadeltaOptimizer:()=>Rf,AdagradOptimizer:()=>$f,AdamOptimizer:()=>_f,AdamaxOptimizer:()=>Df,Add:()=>Hr,AddN:()=>Ta,All:()=>au,Any:()=>ou,ArgMax:()=>Na,ArgMin:()=>iu,Asin:()=>lu,Asinh:()=>uu,Atan:()=>cu,Atan2:()=>pu,Atanh:()=>du,AvgPool:()=>Ea,AvgPool3D:()=>ed,AvgPool3DGrad:()=>yh,AvgPoolGrad:()=>Ah,BackendWasm:()=>L6,BatchMatMul:()=>Ra,BatchToSpaceND:()=>pi,Bincount:()=>xh,BroadcastArgs:()=>bh,BroadcastTo:()=>M5,Callback:()=>Xk,CallbackList:()=>Ow,Cast:()=>$a,Ceil:()=>_a,ClipByValue:()=>jr,Complex:()=>td,ComplexAbs:()=>nd,Concat:()=>hi,Conv2D:()=>Da,Conv2DBackpropFilter:()=>vh,Conv2DBackpropInput:()=>Pa,Conv3D:()=>sd,Conv3DBackpropFilterV2:()=>wh,Conv3DBackpropInputV2:()=>kh,Cos:()=>Fa,Cosh:()=>Oa,CropAndResize:()=>mi,Cumsum:()=>fi,CustomCallback:()=>zw,DataStorage:()=>Yc,DenseBincount:()=>Sh,DepthToSpace:()=>gi,DepthwiseConv2dNative:()=>Ma,DepthwiseConv2dNativeBackpropFilter:()=>Ih,DepthwiseConv2dNativeBackpropInput:()=>Ch,Diag:()=>Th,Dilation2D:()=>rd,Dilation2DBackpropFilter:()=>Eh,Dilation2DBackpropInput:()=>Nh,ENV:()=>Cr,EarlyStopping:()=>Zk,Einsum:()=>ad,Elu:()=>La,EluGrad:()=>Rh,Environment:()=>F5,Equal:()=>Ai,Erf:()=>hu,Exp:()=>Ba,ExpandDims:()=>yi,Expm1:()=>xi,FFT:()=>$h,Fill:()=>fu,FlipLeftRight:()=>bi,Floor:()=>Wa,FloorDiv:()=>Va,FromPixels:()=>fd,FusedBatchNorm:()=>Ua,FusedConv2D:()=>bo,FusedDepthwiseConv2D:()=>vo,GPGPUContext:()=>Mm,GatherNd:()=>wi,GatherV2:()=>vi,GraphModel:()=>N7,Greater:()=>ki,GreaterEqual:()=>Ga,History:()=>Mw,IFFT:()=>_h,Identity:()=>Ha,Imag:()=>od,InputSpec:()=>Zt,IsFinite:()=>mu,IsInf:()=>gu,IsNan:()=>Au,KernelBackend:()=>eu,LRN:()=>ld,LRNGrad:()=>Ph,LayerVariable:()=>$w,LayersModel:()=>ta,LeakyRelu:()=>Si,Less:()=>Ii,LessEqual:()=>Ci,LinSpace:()=>Dh,Log:()=>ja,Log1p:()=>yu,LogSoftmax:()=>z5,LogicalAnd:()=>Ti,LogicalNot:()=>xu,LogicalOr:()=>id,MathBackendCPU:()=>Oy,MathBackendWebGL:()=>fp,Max:()=>qa,MaxPool:()=>Ka,MaxPool3D:()=>ud,MaxPool3DGrad:()=>Oh,MaxPoolGrad:()=>Fh,MaxPoolWithArgmax:()=>Mh,Maximum:()=>Xa,Mean:()=>Za,Min:()=>Ya,Minimum:()=>Ja,MirrorPad:()=>Qa,Mod:()=>bu,MomentumOptimizer:()=>Pf,Multinomial:()=>zh,Multiply:()=>eo,Neg:()=>Ni,NonMaxSuppressionV3:()=>Ri,NonMaxSuppressionV4:()=>vu,NonMaxSuppressionV5:()=>$i,NotEqual:()=>Ei,OP_SCOPE_SUFFIX:()=>Q5,OneHot:()=>Di,OnesLike:()=>_i,Optimizer:()=>Jr,OptimizerConstructors:()=>Do,Pack:()=>Pi,PadV2:()=>to,Pool:()=>zE,Pow:()=>no,Prelu:()=>so,Prod:()=>Fi,RMSPropOptimizer:()=>Ff,RNN:()=>na,Range:()=>wu,Rank:()=>d2,Real:()=>cd,RealDiv:()=>za,Reciprocal:()=>ku,Reduction:()=>Vn,Relu:()=>ro,Relu6:()=>oo,Reshape:()=>Oi,ResizeBilinear:()=>ao,ResizeBilinearGrad:()=>Bh,ResizeNearestNeighbor:()=>Su,ResizeNearestNeighborGrad:()=>Lh,Reverse:()=>Mi,RotateWithOffset:()=>Yi,Round:()=>zi,Rsqrt:()=>io,SGDOptimizer:()=>zd,ScatterNd:()=>Li,Select:()=>Bi,Selu:()=>Iu,Sequential:()=>om,Sigmoid:()=>uo,Sign:()=>Cu,Sin:()=>lo,Sinh:()=>Vi,Slice:()=>Wi,Softmax:()=>ho,Softplus:()=>Tu,SpaceToBatchND:()=>Ui,SparseFillEmptyRows:()=>Wh,SparseReshape:()=>Vh,SparseSegmentMean:()=>Uh,SparseSegmentSum:()=>Gh,SparseToDense:()=>dd,SplitV:()=>Gi,Sqrt:()=>co,Square:()=>Nu,SquaredDifference:()=>fo,Step:()=>yo,StridedSlice:()=>Hi,StringNGrams:()=>pd,StringSplit:()=>Hh,StringToHashBucketFast:()=>jh,Sub:()=>mo,Sum:()=>po,SymbolicTensor:()=>mr,Tan:()=>ji,Tanh:()=>go,Tensor:()=>Je,TensorBuffer:()=>tn,Tile:()=>qr,TopK:()=>qi,Transform:()=>Xi,Transpose:()=>Ao,Unique:()=>qh,Unpack:()=>Ki,UnsortedSegmentSum:()=>hd,Variable:()=>wd,ZerosLike:()=>Zi,_FusedMatMul:()=>xo,abs:()=>nn,acos:()=>L3,acosh:()=>B3,add:()=>le,addN:()=>af,all:()=>G2,any:()=>of,argMax:()=>js,argMin:()=>W3,asin:()=>V3,asinh:()=>U3,atan:()=>G3,atan2:()=>H3,atanh:()=>j3,avgPool:()=>uf,avgPool3d:()=>q2,backend:()=>Er,backend_util:()=>E,basicLSTMCell:()=>I$,batchNorm:()=>Ou,batchNorm2d:()=>Z3,batchNorm3d:()=>Y3,batchNorm4d:()=>J3,batchToSpaceND:()=>cf,bincount:()=>X2,booleanMaskAsync:()=>MP,broadcastArgs:()=>Q3,broadcastTo:()=>Nd,broadcast_util:()=>sl,browser:()=>Hs,buffer:()=>ze,callbacks:()=>JV,cast:()=>pe,ceil:()=>ev,clipByValue:()=>ps,clone:()=>Bn,complex:()=>So,concat:()=>vt,concat1d:()=>tv,concat2d:()=>Mu,concat3d:()=>nv,concat4d:()=>sv,constraints:()=>cw,conv1d:()=>K2,conv2d:()=>Eo,conv2dTranspose:()=>Y2,conv3d:()=>J2,conv3dTranspose:()=>av,copyRegisteredKernels:()=>VE,cos:()=>df,cosh:()=>Q2,cosineWindow:()=>S1,cumsum:()=>e1,customGrad:()=>$r,data:()=>E7,denseBincount:()=>ov,deprecationWarn:()=>V2,depthToSpace:()=>iv,depthwiseConv2d:()=>Ed,deregisterOp:()=>tU,device_util:()=>$u,diag:()=>t_,dilation2d:()=>lv,disableDeprecationWarnings:()=>WR,dispose:()=>ee,disposeVariables:()=>VR,div:()=>he,divNoNan:()=>uv,dot:()=>l_,dropout:()=>zv,einsum:()=>cv,elu:()=>Rd,enableDebugMode:()=>BR,enableProdMode:()=>M3,enclosingPowerOfTwo:()=>Lv,engine:()=>ss,env:()=>K,equal:()=>Ts,erf:()=>dv,exp:()=>Ns,expandDims:()=>Xt,expm1:()=>pv,eye:()=>t1,fft:()=>wf,fill:()=>zu,findBackend:()=>U2,findBackendFactory:()=>jR,floor:()=>$d,floorDiv:()=>rf,forceHalfFloat:()=>a4,fused:()=>_o,gather:()=>Lu,gatherND:()=>Mv,gather_util:()=>P2,getBackend:()=>Cs,getGradient:()=>i2,getKernel:()=>Xh,getKernelsForBackend:()=>Xr,getThreadsCount:()=>Nge,gpgpu_util:()=>_I,grad:()=>D_,grads:()=>P_,greater:()=>hs,greaterEqual:()=>ll,ifft:()=>Fd,imag:()=>pf,image:()=>$e,inTopKAsync:()=>XP,initializers:()=>Aw,input:()=>ik,io:()=>ns,irfft:()=>y1,isFinite:()=>k_,isInf:()=>I_,isNaN:()=>hv,keep:()=>gn,kernel_impls:()=>Ks,layers:()=>Nw,leakyRelu:()=>hf,less:()=>n1,lessEqual:()=>ul,linalg:()=>Kv,linspace:()=>fv,loadGraphModel:()=>Xe,loadLayersModel:()=>uW,localResponseNormalization:()=>mv,log:()=>Es,log1p:()=>ff,logSigmoid:()=>B_,logSoftmax:()=>s1,logSumExp:()=>bv,logicalAnd:()=>ur,logicalNot:()=>gf,logicalOr:()=>o1,logicalXor:()=>J_,losses:()=>_O,matMul:()=>Ue,math:()=>A3,max:()=>An,maxPool:()=>Af,maxPool3d:()=>i1,maxPoolWithArgmax:()=>vv,maximum:()=>Zr,mean:()=>Wt,memory:()=>nf,meshgrid:()=>rD,metrics:()=>Hk,min:()=>Ro,minimum:()=>_d,mirrorPad:()=>wv,mod:()=>Dd,model:()=>iW,models:()=>jk,moments:()=>yf,movingAverage:()=>BP,mul:()=>L,multiRNNCell:()=>pD,multinomial:()=>kv,neg:()=>Ot,nextFrame:()=>Zv,norm:()=>w1,notEqual:()=>Wu,oneHot:()=>Cd,ones:()=>fs,onesLike:()=>Rs,op:()=>V,outerProduct:()=>AD,pad:()=>Xs,pad1d:()=>bD,pad2d:()=>wD,pad3d:()=>SD,pad4d:()=>CD,pool:()=>$D,pow:()=>$o,prelu:()=>bf,print:()=>d3,prod:()=>l1,profile:()=>UR,rand:()=>OD,randomGamma:()=>BD,randomNormal:()=>Sv,randomUniform:()=>Vu,range:()=>Uu,ready:()=>sf,real:()=>Pd,reciprocal:()=>Iv,registerBackend:()=>ol,registerCallbackConstructor:()=>cW,registerGradient:()=>L5,registerKernel:()=>or,registerOp:()=>eU,regularizers:()=>qk,relu:()=>_r,relu6:()=>d1,removeBackend:()=>HR,reshape:()=>G,reverse:()=>$s,reverse1d:()=>KD,reverse2d:()=>YD,reverse3d:()=>QD,reverse4d:()=>tP,rfft:()=>kf,round:()=>p1,rsqrt:()=>h1,scalar:()=>Re,scatterND:()=>Ov,scatter_util:()=>F2,selu:()=>f1,separableConv2d:()=>Cv,sequential:()=>lW,serialization:()=>ue,setBackend:()=>z3,setPlatform:()=>qR,setThreadsCount:()=>Tge,setWasmPath:()=>Cge,setWasmPaths:()=>W6,setWebGLContext:()=>Nm,setdiff1dAsync:()=>Tv,shared:()=>wm,sigmoid:()=>ds,sign:()=>Nv,signal:()=>$O,sin:()=>m1,sinh:()=>g1,slice:()=>De,slice1d:()=>vf,slice2d:()=>A1,slice3d:()=>dl,slice4d:()=>pl,slice_util:()=>Ft,softmax:()=>Gu,softplus:()=>Bu,spaceToBatchND:()=>xf,sparse:()=>Md,sparseToDense:()=>k1,spectral:()=>RO,split:()=>sn,sqrt:()=>Dn,square:()=>gt,squaredDifference:()=>x1,squeeze:()=>ot,stack:()=>yn,step:()=>Od,stridedSlice:()=>Ev,string:()=>Ef,sub:()=>me,sum:()=>Se,sumOutType:()=>kd,tan:()=>Rv,tanh:()=>Fu,tensor:()=>Pt,tensor1d:()=>Kt,tensor2d:()=>cr,tensor3d:()=>x3,tensor4d:()=>TP,tensor5d:()=>NP,tensor6d:()=>EP,tensor_util:()=>ir,test_util:()=>P3,tidy:()=>q,tile:()=>qs,time:()=>GR,topk:()=>$v,train:()=>hl,transpose:()=>Qe,truncatedNormal:()=>Sf,unique:()=>b1,unregisterGradient:()=>WE,unregisterKernel:()=>BE,unsortedSegmentSum:()=>_v,unstack:()=>rs,upcastType:()=>Ln,util:()=>v,valueAndGrad:()=>F_,valueAndGrads:()=>O_,variable:()=>Dv,variableGrads:()=>gv,version:()=>U6,version_converter:()=>rG,version_core:()=>Np,version_cpu:()=>GH,version_layers:()=>oA,version_wasm:()=>Ege,version_webgl:()=>AQ,webgl:()=>yQ,webgl_util:()=>nI,webgpu:()=>WC,where:()=>Wn,whereAsync:()=>v1,zeros:()=>Gt,zerosLike:()=>et});var Ql=(e=>typeof wa!="undefined"?wa:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof wa!="undefined"?wa:t)[n]}):e)(function(e){if(typeof wa!="undefined")return wa.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),YN=Object.create,dh=Object.defineProperty,JN=Object.getOwnPropertyDescriptor,QN=Object.getOwnPropertyNames,eE=Object.getPrototypeOf,tE=Object.prototype.hasOwnProperty,w5=e=>dh(e,"__esModule",{value:!0}),Vs=(e=>typeof Ql!="undefined"?Ql:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof Ql!="undefined"?Ql:t)[n]}):e)(function(e){if(typeof Ql!="undefined")return Ql.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),ts=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},Oe=(e,t)=>{w5(e);for(var n in t)dh(e,n,{get:t[n],enumerable:!0})},nE=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of QN(t))!tE.call(e,s)&&s!=="default"&&dh(e,s,{get:()=>t[s],enumerable:!(n=JN(t,s))||n.enumerable});return e},li=e=>nE(w5(dh(e!=null?YN(eE(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),sE=ts({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(R){}function s(R,T,F){this.low=R|0,this.high=T|0,this.unsigned=!!F}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(R){return(R&&R.__isLong__)===!0}s.isLong=r;var a={},o={};function i(R,T){var F,U,j;return T?(R>>>=0,(j=0<=R&&R<256)&&(U=o[R],U)?U:(F=c(R,(R|0)<0?-1:0,!0),j&&(o[R]=F),F)):(R|=0,(j=-128<=R&&R<128)&&(U=a[R],U)?U:(F=c(R,R<0?-1:0,!1),j&&(a[R]=F),F))}s.fromInt=i;function l(R,T){if(isNaN(R))return T?b:y;if(T){if(R<0)return b;if(R>=g)return $}else{if(R<=-A)return O;if(R+1>=A)return N}return R<0?l(-R,T).neg():c(R%m|0,R/m|0,T)}s.fromNumber=l;function c(R,T,F){return new s(R,T,F)}s.fromBits=c;var u=Math.pow;function d(R,T,F){if(R.length===0)throw Error("empty string");if(R==="NaN"||R==="Infinity"||R==="+Infinity"||R==="-Infinity")return y;if(typeof T=="number"?(F=T,T=!1):T=!!T,F=F||10,F<2||36<F)throw RangeError("radix");var U;if((U=R.indexOf("-"))>0)throw Error("interior hyphen");if(U===0)return d(R.substring(1),T,F).neg();for(var j=l(u(F,8)),z=y,X=0;X<R.length;X+=8){var Z=Math.min(8,R.length-X),J=parseInt(R.substring(X,X+Z),F);if(Z<8){var te=l(u(F,Z));z=z.mul(te).add(l(J))}else z=z.mul(j),z=z.add(l(J))}return z.unsigned=T,z}s.fromString=d;function p(R,T){return typeof R=="number"?l(R,T):typeof R=="string"?d(R,T):c(R.low,R.high,typeof T=="boolean"?T:R.unsigned)}s.fromValue=p;var h=1<<16,f=1<<24,m=h*h,g=m*m,A=g/2,x=i(f),y=i(0);s.ZERO=y;var b=i(0,!0);s.UZERO=b;var w=i(1);s.ONE=w;var k=i(1,!0);s.UONE=k;var I=i(-1);s.NEG_ONE=I;var N=c(4294967295|0,2147483647|0,!1);s.MAX_VALUE=N;var $=c(4294967295|0,4294967295|0,!0);s.MAX_UNSIGNED_VALUE=$;var O=c(0,2147483648|0,!1);s.MIN_VALUE=O;var D=s.prototype;D.toInt=function(){return this.unsigned?this.low>>>0:this.low},D.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},D.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(O)){var F=l(T),U=this.div(F),j=U.mul(F).sub(this);return U.toString(T)+j.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var z=l(u(T,6),this.unsigned),X=this,Z="";;){var J=X.div(z),te=X.sub(J.mul(z)).toInt()>>>0,re=te.toString(T);if(X=J,X.isZero())return re+Z;for(;re.length<6;)re="0"+re;Z=""+re+Z}},D.getHighBits=function(){return this.high},D.getHighBitsUnsigned=function(){return this.high>>>0},D.getLowBits=function(){return this.low},D.getLowBitsUnsigned=function(){return this.low>>>0},D.getNumBitsAbs=function(){if(this.isNegative())return this.eq(O)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,F=31;F>0&&(T&1<<F)==0;F--);return this.high!=0?F+33:F+1},D.isZero=function(){return this.high===0&&this.low===0},D.eqz=D.isZero,D.isNegative=function(){return!this.unsigned&&this.high<0},D.isPositive=function(){return this.unsigned||this.high>=0},D.isOdd=function(){return(this.low&1)==1},D.isEven=function(){return(this.low&1)==0},D.equals=function(T){return r(T)||(T=p(T)),this.unsigned!==T.unsigned&&this.high>>>31==1&&T.high>>>31==1?!1:this.high===T.high&&this.low===T.low},D.eq=D.equals,D.notEquals=function(T){return!this.eq(T)},D.neq=D.notEquals,D.ne=D.notEquals,D.lessThan=function(T){return this.comp(T)<0},D.lt=D.lessThan,D.lessThanOrEqual=function(T){return this.comp(T)<=0},D.lte=D.lessThanOrEqual,D.le=D.lessThanOrEqual,D.greaterThan=function(T){return this.comp(T)>0},D.gt=D.greaterThan,D.greaterThanOrEqual=function(T){return this.comp(T)>=0},D.gte=D.greaterThanOrEqual,D.ge=D.greaterThanOrEqual,D.compare=function(T){if(r(T)||(T=p(T)),this.eq(T))return 0;var F=this.isNegative(),U=T.isNegative();return F&&!U?-1:!F&&U?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},D.comp=D.compare,D.negate=function(){return!this.unsigned&&this.eq(O)?O:this.not().add(w)},D.neg=D.negate,D.add=function(T){r(T)||(T=p(T));var F=this.high>>>16,U=this.high&65535,j=this.low>>>16,z=this.low&65535,X=T.high>>>16,Z=T.high&65535,J=T.low>>>16,te=T.low&65535,re=0,Q=0,ne=0,oe=0;return oe+=z+te,ne+=oe>>>16,oe&=65535,ne+=j+J,Q+=ne>>>16,ne&=65535,Q+=U+Z,re+=Q>>>16,Q&=65535,re+=F+X,re&=65535,c(ne<<16|oe,re<<16|Q,this.unsigned)},D.subtract=function(T){return r(T)||(T=p(T)),this.add(T.neg())},D.sub=D.subtract,D.multiply=function(T){if(this.isZero())return y;if(r(T)||(T=p(T)),n){var F=n.mul(this.low,this.high,T.low,T.high);return c(F,n.get_high(),this.unsigned)}if(T.isZero())return y;if(this.eq(O))return T.isOdd()?O:y;if(T.eq(O))return this.isOdd()?O:y;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(x)&&T.lt(x))return l(this.toNumber()*T.toNumber(),this.unsigned);var U=this.high>>>16,j=this.high&65535,z=this.low>>>16,X=this.low&65535,Z=T.high>>>16,J=T.high&65535,te=T.low>>>16,re=T.low&65535,Q=0,ne=0,oe=0,fe=0;return fe+=X*re,oe+=fe>>>16,fe&=65535,oe+=z*re,ne+=oe>>>16,oe&=65535,oe+=X*te,ne+=oe>>>16,oe&=65535,ne+=j*re,Q+=ne>>>16,ne&=65535,ne+=z*te,Q+=ne>>>16,ne&=65535,ne+=X*J,Q+=ne>>>16,ne&=65535,Q+=U*re+j*te+z*J+X*Z,Q&=65535,c(oe<<16|fe,Q<<16|ne,this.unsigned)},D.mul=D.multiply,D.divide=function(T){if(r(T)||(T=p(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var F=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return c(F,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:y;var U,j,z;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return k;z=b}else{if(this.eq(O)){if(T.eq(w)||T.eq(I))return O;if(T.eq(O))return w;var X=this.shr(1);return U=X.div(T).shl(1),U.eq(y)?T.isNegative()?w:I:(j=this.sub(T.mul(U)),z=U.add(j.div(T)),z)}else if(T.eq(O))return this.unsigned?b:y;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();z=y}for(j=this;j.gte(T);){U=Math.max(1,Math.floor(j.toNumber()/T.toNumber()));for(var Z=Math.ceil(Math.log(U)/Math.LN2),J=Z<=48?1:u(2,Z-48),te=l(U),re=te.mul(T);re.isNegative()||re.gt(j);)U-=J,te=l(U,this.unsigned),re=te.mul(T);te.isZero()&&(te=w),z=z.add(te),j=j.sub(re)}return z},D.div=D.divide,D.modulo=function(T){if(r(T)||(T=p(T)),n){var F=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return c(F,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},D.mod=D.modulo,D.rem=D.modulo,D.not=function(){return c(~this.low,~this.high,this.unsigned)},D.and=function(T){return r(T)||(T=p(T)),c(this.low&T.low,this.high&T.high,this.unsigned)},D.or=function(T){return r(T)||(T=p(T)),c(this.low|T.low,this.high|T.high,this.unsigned)},D.xor=function(T){return r(T)||(T=p(T)),c(this.low^T.low,this.high^T.high,this.unsigned)},D.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?c(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):c(0,this.low<<T-32,this.unsigned)},D.shl=D.shiftLeft,D.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?c(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):c(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},D.shr=D.shiftRight,D.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var F=this.high;if(T<32){var U=this.low;return c(U>>>T|F<<32-T,F>>>T,this.unsigned)}else return T===32?c(F,0,this.unsigned):c(F>>>T-32,0,this.unsigned)},D.shru=D.shiftRightUnsigned,D.shr_u=D.shiftRightUnsigned,D.toSigned=function(){return this.unsigned?c(this.low,this.high,!1):this},D.toUnsigned=function(){return this.unsigned?this:c(this.low,this.high,!0)},D.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},D.toBytesLE=function(){var T=this.high,F=this.low;return[F&255,F>>>8&255,F>>>16&255,F>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},D.toBytesBE=function(){var T=this.high,F=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,F>>>24,F>>>16&255,F>>>8&255,F&255]},s.fromBytes=function(T,F,U){return U?s.fromBytesLE(T,F):s.fromBytesBE(T,F)},s.fromBytesLE=function(T,F){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,F)},s.fromBytesBE=function(T,F){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],F)}}}),rE=ts({"(disabled):node-fetch"(){}}),aE=ts({"(disabled):util"(){}}),oE=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(c){var u=this,d=l();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=d(" "),u.s1=d(" "),u.s2=d(" "),u.s0-=d(c),u.s0<0&&(u.s0+=1),u.s1-=d(c),u.s1<0&&(u.s1+=1),u.s2-=d(c),u.s2<0&&(u.s2+=1),d=null}function o(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function i(c,u){var d=new a(c),p=u&&u.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var c=4022871197,u=function(d){d=String(d);for(var p=0;p<d.length;p++){c+=d.charCodeAt(p);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),iE=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),lE=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,d==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),uE=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.x,p=c.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,c.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}u(c,l)}function o(l,c){return c.x=l.x.slice(),c.i=l.i,c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),cE=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.w,p=c.X,h=c.i,f,m;return c.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,c.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,A,x=[],y=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,y=Math.max(y,p.length)),m=0,g=-32;g<y;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(A=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,h=x[g&127]^=f+A,m=h==0?m+1:0);for(m>=128&&(x[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=x[m+34&127],h=x[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,x[m]=f^h;d.w=A,d.X=x,d.i=m}u(c,l)}function o(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),dE=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.b,h=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^h,c.c=h=h-f|0,c.d=f<<16^h>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var d=0;d<u.length+20;d++)c.b^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),pE=ts({"(disabled):crypto"(){}}),hE=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",c=r.pow(a,o),u=r.pow(2,i),d=u*2,p=a-1,h;function f(w,k,I){var N=[];k=k==!0?{entropy:!0}:k||{};var $=x(A(k.entropy?[w,b(s)]:w==null?y():w,3),N),O=new m(N),D=function(){for(var R=O.g(o),T=c,F=0;R<u;)R=(R+F)*a,T*=a,F=O.g(1);for(;R>=d;)R/=2,T/=2,F>>>=1;return(R+F)/T};return D.int32=function(){return O.g(4)|0},D.quick=function(){return O.g(4)/4294967296},D.double=D,x(b(O.S),s),(k.pass||I||function(R,T,F,U){return U&&(U.S&&g(U,O),R.state=function(){return g(O,{})}),F?(r[l]=R,T):R})(D,$,"global"in k?k.global:this==r,k.state)}function m(w){var k,I=w.length,N=this,$=0,O=N.i=N.j=0,D=N.S=[];for(I||(w=[I++]);$<a;)D[$]=$++;for($=0;$<a;$++)D[$]=D[O=p&O+w[$%I]+(k=D[$])],D[O]=k;(N.g=function(R){for(var T,F=0,U=N.i,j=N.j,z=N.S;R--;)T=z[U=p&U+1],F=F*a+z[p&(z[U]=z[j=p&j+T])+(z[j]=T)];return N.i=U,N.j=j,F})(a)}function g(w,k){return k.i=w.i,k.j=w.j,k.S=w.S.slice(),k}function A(w,k){var I=[],N=typeof w,$;if(k&&N=="object")for($ in w)try{I.push(A(w[$],k-1))}catch(O){}return I.length?I:N=="string"?w:w+"\0"}function x(w,k){for(var I=w+"",N,$=0;$<I.length;)k[p&$]=p&(N^=k[p&$]*19)+I.charCodeAt($++);return b(k)}function y(){try{var w;return h&&(w=h.randomBytes)?w=w(a):(w=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(w)),b(w)}catch(N){var k=n.navigator,I=k&&k.plugins;return[+new Date,n,I,n.screen,b(s)]}}function b(w){return String.fromCharCode.apply(0,w)}if(x(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=pE()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),ph=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=oE(),s=iE(),r=lE(),a=uE(),o=cE(),i=dE(),l=hE();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),k5=ts({"(disabled):src/node_modules/string_decoder/index.js"(){}}),fE=ts({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return ne.buffer!=Ct&&Sn(ne.buffer),_t}function o(){return ne.buffer!=Ct&&Sn(ne.buffer),ks}function i(){return ne.buffer!=Ct&&Sn(ne.buffer),Fn}function l(){return ne.buffer!=Ct&&Sn(ne.buffer),us}function c(){return ne.buffer!=Ct&&Sn(ne.buffer),Ss}var u=typeof r!="undefined"?r:{},d,p;u.ready=new Promise(function(C,_){d=C,p=_});var h={},f;for(f in u)u.hasOwnProperty(f)&&(h[f]=u[f]);var m=[],g="./this.program",A=function(C,_){throw _},x=!1,y=!1,b=!1,w=!1;x=typeof window=="object",y=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",w=!x&&!b&&!y;var k=u.ENVIRONMENT_IS_PTHREAD||!1;k&&(Ct=u.buffer);var I="";function N(C){return u.locateFile?u.locateFile(C,I):I+C}var $,O,D,R,T,F;if(b){y?I=Vs("path").dirname(I)+"/":I=__dirname+"/",$=function(_,B){return T||(T=Vs("fs")),F||(F=Vs("path")),_=F.normalize(_),T.readFileSync(_,B?null:"utf8")},D=function(_){var B=$(_,!0);return B.buffer||(B=new Uint8Array(B)),we(B.buffer),B},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(C){if(!(C instanceof jc))throw C}),process.on("unhandledRejection",Vr),A=function(C){process.exit(C)},u.inspect=function(){return"[Emscripten Module object]"};var U;try{U=Vs("worker_threads")}catch(C){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),C}global.Worker=U.Worker}else w?(typeof read!="undefined"&&($=function(_){return read(_)}),D=function(_){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer(_)):(B=read(_,"binary"),we(typeof B=="object"),B)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(A=function(C){quit(C)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(x||y)&&(y?I=self.location.href:typeof document!="undefined"&&document.currentScript&&(I=document.currentScript.src),typeof s!="undefined"&&s&&(I=s),I.indexOf("blob:")!==0?I=I.substr(0,I.lastIndexOf("/")+1):I="",b?($=function(_,B){return T||(T=Vs("fs")),F||(F=Vs("path")),_=F.normalize(_),T.readFileSync(_,B?null:"utf8")},D=function(_){var B=$(_,!0);return B.buffer||(B=new Uint8Array(B)),we(B.buffer),B}):($=function(C){var _=new XMLHttpRequest;return _.open("GET",C,!1),_.send(null),_.responseText},y&&(D=function(C){var _=new XMLHttpRequest;return _.open("GET",C,!1),_.responseType="arraybuffer",_.send(null),new Uint8Array(_.response)}),O=function(C,_,B){var Y=new XMLHttpRequest;Y.open("GET",C,!0),Y.responseType="arraybuffer",Y.onload=function(){if(Y.status==200||Y.status==0&&Y.response){_(Y.response);return}B()},Y.onerror=B,Y.send(null)}),R=function(C){document.title=C});b&&typeof performance=="undefined"&&(global.performance=Vs("perf_hooks").performance);var j=u.print||console.log.bind(console),z=u.printErr||console.warn.bind(console);for(f in h)h.hasOwnProperty(f)&&(u[f]=h[f]);h=null,u.arguments&&(m=u.arguments),u.thisProgram&&(g=u.thisProgram),u.quit&&(A=u.quit);function X(C){X.shown||(X.shown={}),X.shown[C]||(X.shown[C]=1,z(C))}var Z=Atomics.load,J=Atomics.store,te=Atomics.compareExchange,re;u.wasmBinary&&(re=u.wasmBinary);var Q=u.noExitRuntime||!0;typeof WebAssembly!="object"&&Vr("no native wasm support detected");var ne,oe,fe=!1,be;function we(C,_){C||Vr("Assertion failed: "+_)}function Ce(C){var _=u["_"+C];return we(_,"Cannot call unknown function "+C+", make sure it is exported"),_}function Me(C,_,B,Y,xe){var Ae={string:function(On){var Jl=0;if(On!=null&&On!==0){var b5=(On.length<<2)+1;Jl=Kl(b5),dt(On,Jl,b5)}return Jl},array:function(On){var Jl=Kl(On.length);return wt(On,Jl),Jl}};function ye(On){return _==="string"?qe(On):_==="boolean"?Boolean(On):On}var Te=Ce(C),ut=[],hn=0;if(Y)for(var en=0;en<Y.length;en++){var va=Ae[B[en]];va?(hn===0&&(hn=Hc()),ut[en]=va(Y[en])):ut[en]=Y[en]}var Yl=Te.apply(null,ut);return Yl=ye(Yl),hn!==0&&Xl(hn),Yl}function We(C,_,B,Y){B=B||[];var xe=B.every(function(ye){return ye==="number"}),Ae=_!=="string";return Ae&&xe&&!Y?Ce(C):function(){return Me(C,_,B,arguments,Y)}}function He(C,_,B){for(var Y=_+B,xe="";!(_>=Y);){var Ae=C[_++];if(!Ae)return xe;if(!(Ae&128)){xe+=String.fromCharCode(Ae);continue}var ye=C[_++]&63;if((Ae&224)==192){xe+=String.fromCharCode((Ae&31)<<6|ye);continue}var Te=C[_++]&63;if((Ae&240)==224?Ae=(Ae&15)<<12|ye<<6|Te:Ae=(Ae&7)<<18|ye<<12|Te<<6|C[_++]&63,Ae<65536)xe+=String.fromCharCode(Ae);else{var ut=Ae-65536;xe+=String.fromCharCode(55296|ut>>10,56320|ut&1023)}}return xe}function qe(C,_){return C?He(o(),C,_):""}function ct(C,_,B,Y){if(!(Y>0))return 0;for(var xe=B,Ae=B+Y-1,ye=0;ye<C.length;++ye){var Te=C.charCodeAt(ye);if(Te>=55296&&Te<=57343){var ut=C.charCodeAt(++ye);Te=65536+((Te&1023)<<10)|ut&1023}if(Te<=127){if(B>=Ae)break;_[B++]=Te}else if(Te<=2047){if(B+1>=Ae)break;_[B++]=192|Te>>6,_[B++]=128|Te&63}else if(Te<=65535){if(B+2>=Ae)break;_[B++]=224|Te>>12,_[B++]=128|Te>>6&63,_[B++]=128|Te&63}else{if(B+3>=Ae)break;_[B++]=240|Te>>18,_[B++]=128|Te>>12&63,_[B++]=128|Te>>6&63,_[B++]=128|Te&63}}return _[B]=0,B-xe}function dt(C,_,B){return ct(C,o(),_,B)}function rt(C){for(var _=0,B=0;B<C.length;++B){var Y=C.charCodeAt(B);Y>=55296&&Y<=57343&&(Y=65536+((Y&1023)<<10)|C.charCodeAt(++B)&1023),Y<=127?++_:Y<=2047?_+=2:Y<=65535?_+=3:_+=4}return _}function wt(C,_){a().set(C,_)}function ft(C,_){return C%_>0&&(C+=_-C%_),C}var Ct,_t,ks,kn,rr,Fn,us,Bs,Ss;function Sn(C){Ct=C,u.HEAP8=_t=new Int8Array(C),u.HEAP16=kn=new Int16Array(C),u.HEAP32=Fn=new Int32Array(C),u.HEAPU8=ks=new Uint8Array(C),u.HEAPU16=rr=new Uint16Array(C),u.HEAPU32=us=new Uint32Array(C),u.HEAPF32=Bs=new Float32Array(C),u.HEAPF64=Ss=new Float64Array(C)}var kr=u.INITIAL_MEMORY||16777216;if(k)ne=u.wasmMemory,Ct=u.buffer;else if(u.wasmMemory)ne=u.wasmMemory;else if(ne=new WebAssembly.Memory({initial:kr/65536,maximum:2147483648/65536,shared:!0}),!(ne.buffer instanceof SharedArrayBuffer))throw z("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");ne&&(Ct=ne.buffer),kr=Ct.byteLength,Sn(Ct);var Rn,Sr=[],Ir=[],ma=[],Fc=[],ar=[],Bp=!1,$0=!1;k||Ir.push({func:function(){rh()}});function Wp(){if(!k){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)_0(u.preRun.shift());Hl(Sr)}}function Vp(){Bp=!0,!k&&Hl(Ir)}function Up(){k||Hl(ma)}function Qn(){k||($0=!0)}function Gp(){if(!k){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)D0(u.postRun.shift());Hl(ar)}}function _0(C){Sr.unshift(C)}function D0(C){ar.unshift(C)}var Ws=0,Oc=null,ri=null;function P0(C){we(!k,"addRunDependency cannot be used in a pthread worker"),Ws++,u.monitorRunDependencies&&u.monitorRunDependencies(Ws)}function F0(C){if(Ws--,u.monitorRunDependencies&&u.monitorRunDependencies(Ws),Ws==0&&(Oc!==null&&(clearInterval(Oc),Oc=null),ri)){var _=ri;ri=null,_()}}u.preloadedImages={},u.preloadedAudios={};function Vr(C){u.onAbort&&u.onAbort(C),k&&console.error("Pthread aborting at "+new Error().stack),C+="",z(C),fe=!0,be=1,C="abort("+C+"). Build with -s ASSERTIONS=1 for more info.";var _=new WebAssembly.RuntimeError(C);throw p(_),_}function ai(C,_){return String.prototype.startsWith?C.startsWith(_):C.indexOf(_)===0}var O0="data:application/octet-stream;base64,";function Hp(C){return ai(C,O0)}var M0="file://";function jp(C){return ai(C,M0)}var es="tfjs-backend-wasm-threaded-simd.wasm";Hp(es)||(es=N(es));function z0(C){try{if(C==es&&re)return new Uint8Array(re);if(D)return D(C);throw"both async and sync fetching of the wasm failed"}catch(_){Vr(_)}}function qp(){if(!re&&(x||y)){if(typeof fetch=="function"&&!jp(es))return fetch(es,{credentials:"same-origin"}).then(function(C){if(!C.ok)throw"failed to load wasm binary file at '"+es+"'";return C.arrayBuffer()}).catch(function(){return z0(es)});if(O)return new Promise(function(C,_){O(es,function(B){C(new Uint8Array(B))},_)})}return Promise.resolve().then(function(){return z0(es)})}function L0(){var C={a:$g};function _(ye,Te){var ut=ye.exports;if(u.asm=ut,Rn=u.asm.kb,oe=Te,!k){var hn=Ee.unusedWorkers.length;Ee.unusedWorkers.forEach(function(en){Ee.loadWasmModuleToWorker(en,function(){--hn||F0("wasm-instantiate")})})}}k||P0("wasm-instantiate");function B(ye){_(ye.instance,ye.module)}function Y(ye){return qp().then(function(Te){return WebAssembly.instantiate(Te,C)}).then(ye,function(Te){z("failed to asynchronously prepare wasm: "+Te),Vr(Te)})}function xe(){return!re&&typeof WebAssembly.instantiateStreaming=="function"&&!Hp(es)&&!jp(es)&&typeof fetch=="function"?fetch(es,{credentials:"same-origin"}).then(function(ye){var Te=WebAssembly.instantiateStreaming(ye,C);return Te.then(B,function(ut){return z("wasm streaming compile failed: "+ut),z("falling back to ArrayBuffer instantiation"),Y(B)})}):Y(B)}if(u.instantiateWasm)try{var Ae=u.instantiateWasm(C,_);return Ae}catch(ye){return z("Module.instantiateWasm callback failed with error: "+ye),!1}return xe().catch(p),{}}var Xp={10072:function(){throw"Canceled!"},10090:function(C,_){setTimeout(function(){f5(C,_)},0)}};function B0(){Ee.initRuntime()}function Hl(C){for(;C.length>0;){var _=C.shift();if(typeof _=="function"){_(u);continue}var B=_.func;typeof B=="number"?_.arg===void 0?Rn.get(B)():Rn.get(B)(_.arg):B(_.arg===void 0?null:_.arg)}}var ga={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135};function Mc(C,_){if(C<=0||C>a().length||C&!0||_<0)return-28;if(_==0)return 0;_>=2147483647&&(_=1/0);var B=Atomics.load(i(),Zl>>2),Y=0;if(B==C){var xe=Atomics.compareExchange(i(),Zl>>2,B,0);if(xe==B&&(--_,Y=1,_<=0))return 1}var Ae=Atomics.notify(i(),C>>2,_);if(Ae>=0)return Ae+Y;throw"Atomics.notify returned an unexpected value "+Ae}u._emscripten_futex_wake=Mc;function W0(C){if(k)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in killThread!";i()[C+12>>2]=0;var _=Ee.pthreads[C];_.worker.terminate(),Ee.freeThreadData(_),Ee.runningWorkers.splice(Ee.runningWorkers.indexOf(_.worker),1),_.worker.pthread=void 0}function V0(C){if(k)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in cancelThread!";var _=Ee.pthreads[C];_.worker.postMessage({cmd:"cancel"})}function Kp(C){if(k)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in cleanupThread!";var _=Ee.pthreads[C];if(_){i()[C+12>>2]=0;var B=_.worker;Ee.returnWorkerToPool(B)}}var Ee={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var C=8,_=0;_<C;++_)Ee.allocateUnusedWorker()},initRuntime:function(){for(var C=ii(228),_=0;_<228/4;++_)l()[C/4+_]=0;i()[C+12>>2]=C;var B=C+152;i()[B>>2]=B;for(var Y=ii(512),_=0;_<128;++_)l()[Y/4+_]=0;Atomics.store(l(),C+100>>2,Y),Atomics.store(l(),C+40>>2,C),Yg(C,!y,1),p5(C)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Ee.threadExitHandlers.length>0;)Ee.threadExitHandlers.pop()();k&&ba()&&d5()},runExitHandlersAndDeinitThread:function(C,_){Atomics.store(l(),C+56>>2,1),Atomics.store(l(),C+60>>2,0),Ee.runExitHandlers(),Atomics.store(l(),C+4>>2,_),Atomics.store(l(),C+0>>2,1),Mc(C+0,2147483647),Yg(0,0,0)},threadExit:function(C){var _=ba();_&&(Ee.runExitHandlersAndDeinitThread(_,C),k&&postMessage({cmd:"exit"}))},threadCancel:function(){Ee.runExitHandlersAndDeinitThread(ba(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var C in Ee.pthreads){var _=Ee.pthreads[C];_&&_.worker&&Ee.returnWorkerToPool(_.worker)}Ee.pthreads={};for(var B=0;B<Ee.unusedWorkers.length;++B){var Y=Ee.unusedWorkers[B];Y.terminate()}Ee.unusedWorkers=[];for(var B=0;B<Ee.runningWorkers.length;++B){var Y=Ee.runningWorkers[B],_=Y.pthread;Ee.freeThreadData(_),Y.terminate()}Ee.runningWorkers=[]},freeThreadData:function(C){if(!!C){if(C.threadInfoStruct){var _=i()[C.threadInfoStruct+100>>2];i()[C.threadInfoStruct+100>>2]=0,Gc(_),Gc(C.threadInfoStruct)}C.threadInfoStruct=0,C.allocatedOwnStack&&C.stackBase&&Gc(C.stackBase),C.stackBase=0,C.worker&&(C.worker.pthread=null)}},returnWorkerToPool:function(C){Ee.runWithoutMainThreadQueuedCalls(function(){delete Ee.pthreads[C.pthread.threadInfoStruct],Ee.unusedWorkers.push(C),Ee.runningWorkers.splice(Ee.runningWorkers.indexOf(C),1),Ee.freeThreadData(C.pthread),C.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(C){i()[x5>>2]=0;try{C()}finally{i()[x5>>2]=1}},receiveObjectTransfer:function(C){},loadWasmModuleToWorker:function(C,_){C.onmessage=function(B){var Y=B.data,xe=Y.cmd;if(C.pthread&&(Ee.currentProxiedOperationCallerThread=C.pthread.threadInfoStruct),Y.targetThread&&Y.targetThread!=ba()){var Ae=Ee.pthreads[Y.targetThread];Ae?Ae.worker.postMessage(B.data,Y.transferList):console.error('Internal error! Worker sent a message "'+xe+'" to target pthread '+Y.targetThread+", but that thread no longer exists!"),Ee.currentProxiedOperationCallerThread=void 0;return}if(xe==="processQueuedMainThreadWork")uh();else if(xe==="spawnThread")nh(B.data);else if(xe==="cleanupThread")Kp(Y.thread);else if(xe==="killThread")W0(Y.thread);else if(xe==="cancelThread")V0(Y.thread);else if(xe==="loaded")C.loaded=!0,_&&_(C),C.runPthread&&(C.runPthread(),delete C.runPthread);else if(xe==="print")j("Thread "+Y.threadId+": "+Y.text);else if(xe==="printErr")z("Thread "+Y.threadId+": "+Y.text);else if(xe==="alert")alert("Thread "+Y.threadId+": "+Y.text);else if(xe==="exit"){var ye=C.pthread&&Atomics.load(l(),C.pthread.threadInfoStruct+64>>2);ye&&Ee.returnWorkerToPool(C)}else if(xe==="exitProcess")try{XN(Y.returnCode)}catch(Te){if(Te instanceof jc)return;throw Te}else xe==="cancelDone"?Ee.returnWorkerToPool(C):xe==="objectTransfer"?Ee.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?C.postMessage(B.data):z("worker sent an unknown command "+xe);Ee.currentProxiedOperationCallerThread=void 0},C.onerror=function(B){z("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},b&&(C.on("message",function(B){C.onmessage({data:B})}),C.on("error",function(B){C.onerror(B)}),C.on("exit",function(B){})),C.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||s,wasmMemory:ne,wasmModule:oe})},allocateUnusedWorker:function(){var C=N("tfjs-backend-wasm-threaded-simd.worker.js");Ee.unusedWorkers.push(new Worker(C))},getNewWorker:function(){return Ee.unusedWorkers.length==0&&(Ee.allocateUnusedWorker(),Ee.loadWasmModuleToWorker(Ee.unusedWorkers[0])),Ee.unusedWorkers.length>0?Ee.unusedWorkers.pop():null},busySpinWait:function(C){for(var _=performance.now()+C;performance.now()<_;);}};function U0(C,_){A5(C,_),Xl(C)}u.establishStackSpace=U0;function G0(){return Q}u.getNoExitRuntime=G0;function H0(C,_){return Rn.get(C)(_)}u.invokeEntryPoint=H0;function j0(C,_,B,Y){Vr("Assertion failed: "+qe(C)+", at: "+[_?qe(_):"unknown filename",B,Y?qe(Y):"unknown function"])}function q0(C,_){var B=_main(C,_)}var oi;b?oi=function(){var C=process.hrtime();return C[0]*1e3+C[1]/1e6}:k?oi=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?oi=dateNow:oi=function(){return performance.now()};function X0(C){return i()[u5()>>2]=C,C}function K0(C,_){if(k)return Aa(1,1,C,_)}function Z0(C,_){if(C==_)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:C,cmd:"processThreadQueue"});else{var B=Ee.pthreads[C],Y=B&&B.worker;if(!Y)return;Y.postMessage({cmd:"processThreadQueue"})}return 1}function Y0(){Vr()}function J0(C,_,B){var Y=ng(_,B);return Xp[C].apply(null,Y)}function Q0(C,_){}function Zp(C,_,B){if(C<=0||C>a().length||C&!0)return-28;if(x){if(Atomics.load(i(),C>>2)!=_)return-6;for(var xe=performance.now(),Ae=xe+B,ye=Atomics.exchange(i(),Zl>>2,C);;){if(xe=performance.now(),xe>Ae)return ye=Atomics.exchange(i(),Zl>>2,0),-73;if(ye=Atomics.exchange(i(),Zl>>2,0),ye==0)break;if(uh(),Atomics.load(i(),C>>2)!=_)return-6;ye=Atomics.exchange(i(),Zl>>2,C)}return 0}else{var Y=Atomics.wait(i(),C>>2,_,B);if(Y==="timed-out")return-73;if(Y==="not-equal")return-6;if(Y==="ok")return 0;throw"Atomics.wait returned an unexpected value "+Y}}function eg(C,_,B){o().copyWithin(C,_,_+B)}function tg(){return b?Vs("os").cpus().length:navigator.hardwareConcurrency}function Aa(C,_){for(var B=arguments.length-2,Y=Hc(),xe=B,Ae=Kl(xe*8),ye=Ae>>3,Te=0;Te<B;Te++){var ut=arguments[2+Te];c()[ye+Te]=ut}var hn=g5(C,xe,Ae,_);return Xl(Y),hn}var zc=[],Lc=[];function ng(C,_){Lc.length=0;var B;for(_>>=2;B=o()[C++];){var Y=B<105;Y&&_&1&&_++,Lc.push(Y?c()[_++>>1]:i()[_]),++_}return Lc}function sg(C,_,B){zc.length=_;for(var Y=B>>3,xe=0;xe<_;xe++)zc[xe]=c()[Y+xe];var Ae=C<0,ye=Ae?Xp[-C-1]:Rg[C];return ye.apply(null,zc)}function rg(){return o().length}function ag(C){try{return ne.grow(C-Ct.byteLength+65535>>>16),Sn(ne.buffer),1}catch(_){}}function og(C){var _=rg();if(C<=_)return!1;var B=2147483648;if(C>B)return!1;for(var Y=1;Y<=4;Y*=2){var xe=_*(1+.2/Y);xe=Math.min(xe,C+100663296);var Ae=Math.min(B,ft(Math.max(C,xe),65536)),ye=ag(Ae);if(ye)return!0}return!1}var Ve={inEventHandler:0,removeAllEventListeners:function(){for(var C=Ve.eventHandlers.length-1;C>=0;--C)Ve._removeHandler(C);Ve.eventHandlers=[],Ve.deferredCalls=[]},registerRemoveEventListeners:function(){Ve.removeEventListenersRegistered||(Fc.push(Ve.removeAllEventListeners),Ve.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(C,_,B){function Y(ye,Te){if(ye.length!=Te.length)return!1;for(var ut in ye)if(ye[ut]!=Te[ut])return!1;return!0}for(var xe in Ve.deferredCalls){var Ae=Ve.deferredCalls[xe];if(Ae.targetFunction==C&&Y(Ae.argsList,B))return}Ve.deferredCalls.push({targetFunction:C,precedence:_,argsList:B}),Ve.deferredCalls.sort(function(ye,Te){return ye.precedence<Te.precedence})},removeDeferredCalls:function(C){for(var _=0;_<Ve.deferredCalls.length;++_)Ve.deferredCalls[_].targetFunction==C&&(Ve.deferredCalls.splice(_,1),--_)},canPerformEventHandlerRequests:function(){return Ve.inEventHandler&&Ve.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Ve.canPerformEventHandlerRequests())for(var C=0;C<Ve.deferredCalls.length;++C){var _=Ve.deferredCalls[C];Ve.deferredCalls.splice(C,1),--C,_.targetFunction.apply(null,_.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(C,_){for(var B=0;B<Ve.eventHandlers.length;++B)Ve.eventHandlers[B].target==C&&(!_||_==Ve.eventHandlers[B].eventTypeString)&&Ve._removeHandler(B--)},_removeHandler:function(C){var _=Ve.eventHandlers[C];_.target.removeEventListener(_.eventTypeString,_.eventListenerFunc,_.useCapture),Ve.eventHandlers.splice(C,1)},registerOrRemoveHandler:function(C){var _=function(xe){++Ve.inEventHandler,Ve.currentEventHandler=C,Ve.runDeferredCalls(),C.handlerFunc(xe),Ve.runDeferredCalls(),--Ve.inEventHandler};if(C.callbackfunc)C.eventListenerFunc=_,C.target.addEventListener(C.eventTypeString,_,C.useCapture),Ve.eventHandlers.push(C),Ve.registerRemoveEventListeners();else for(var B=0;B<Ve.eventHandlers.length;++B)Ve.eventHandlers[B].target==C.target&&Ve.eventHandlers[B].eventTypeString==C.eventTypeString&&Ve._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(C,_,B,Y,xe){var Ae=Hc(),ye=Kl(12);i()[ye>>2]=B,i()[ye+4>>2]=Y,i()[ye+8>>2]=xe,Zg(0,C,637534208,_,Y,ye),Xl(Ae)},getTargetThreadForEventCallback:function(C){switch(C){case 1:return 0;case 2:return Ee.currentProxiedOperationCallerThread;default:return C}},getNodeNameForTarget:function(C){return C?C==window?"#window":C==screen?"#screen":C&&C.nodeName?C.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function ig(C){var _=rt(C)+1,B=ii(_);return dt(C,B,_),B}function lg(C,_,B,Y){var xe=Hc(),Ae=Kl(12),ye=0;_&&(ye=ig(_)),i()[Ae>>2]=ye,i()[Ae+4>>2]=B,i()[Ae+8>>2]=Y,Zg(0,C,657457152,0,ye,Ae),Xl(xe)}function ug(C,_,B,Y){_=_?qe(_):"",lg(C,_,B,Y)}function cg(C){return C>2?qe(C):C}var dg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function pg(C){C=cg(C);var _=dg[C]||(typeof document!="undefined"?document.querySelector(C):void 0);return _}function Bc(C){return pg(C)}function Yp(C,_,B){var Y=Bc(C);if(!Y)return-4;if(Y.canvasSharedPtr&&(i()[Y.canvasSharedPtr>>2]=_,i()[Y.canvasSharedPtr+4>>2]=B),Y.offscreenCanvas||!Y.controlTransferredOffscreen){Y.offscreenCanvas&&(Y=Y.offscreenCanvas);var xe=!1;if(Y.GLctxObject&&Y.GLctxObject.GLctx){var Ae=Y.GLctxObject.GLctx.getParameter(2978);xe=Ae[0]===0&&Ae[1]===0&&Ae[2]===Y.width&&Ae[3]===Y.height}Y.width=_,Y.height=B,xe&&Y.GLctxObject.GLctx.viewport(0,0,_,B)}else if(Y.canvasSharedPtr){var ye=i()[Y.canvasSharedPtr+8>>2];return ug(ye,C,_,B),1}else return-4;return 0}function Jp(C,_,B){return k?Aa(2,1,C,_,B):Yp(C,_,B)}function hg(C,_,B){var Y=Bc(C);return Y?Yp(C,_,B):Jp(C,_,B)}function fg(C){}function mg(C,_){}function gg(C){var _=C.getExtension("ANGLE_instanced_arrays");if(_)return C.vertexAttribDivisor=function(B,Y){_.vertexAttribDivisorANGLE(B,Y)},C.drawArraysInstanced=function(B,Y,xe,Ae){_.drawArraysInstancedANGLE(B,Y,xe,Ae)},C.drawElementsInstanced=function(B,Y,xe,Ae,ye){_.drawElementsInstancedANGLE(B,Y,xe,Ae,ye)},1}function Ag(C){var _=C.getExtension("OES_vertex_array_object");if(_)return C.createVertexArray=function(){return _.createVertexArrayOES()},C.deleteVertexArray=function(B){_.deleteVertexArrayOES(B)},C.bindVertexArray=function(B){_.bindVertexArrayOES(B)},C.isVertexArray=function(B){return _.isVertexArrayOES(B)},1}function yg(C){var _=C.getExtension("WEBGL_draw_buffers");if(_)return C.drawBuffers=function(B,Y){_.drawBuffersWEBGL(B,Y)},1}function xg(C){return!!(C.multiDrawWebgl=C.getExtension("WEBGL_multi_draw"))}var lt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(_){lt.lastError||(lt.lastError=_)},getNewId:function(C){for(var _=lt.counter++,B=C.length;B<_;B++)C[B]=null;return _},getSource:function(C,_,B,Y){for(var xe="",Ae=0;Ae<_;++Ae){var ye=Y?i()[Y+Ae*4>>2]:-1;xe+=qe(i()[B+Ae*4>>2],ye<0?void 0:ye)}return xe},createContext:function(C,_){var B=C.getContext("webgl",_);if(!B)return 0;var Y=lt.registerContext(B,_);return Y},registerContext:function(C,_){var B=ii(8);i()[B+4>>2]=ba();var Y={handle:B,attributes:_,version:_.majorVersion,GLctx:C};return C.canvas&&(C.canvas.GLctxObject=Y),lt.contexts[B]=Y,(typeof _.enableExtensionsByDefault=="undefined"||_.enableExtensionsByDefault)&&lt.initExtensions(Y),B},makeContextCurrent:function(C){return lt.currentContext=lt.contexts[C],u.ctx=ya=lt.currentContext&&lt.currentContext.GLctx,!(C&&!ya)},getContext:function(C){return lt.contexts[C]},deleteContext:function(C){lt.currentContext===lt.contexts[C]&&(lt.currentContext=null),typeof Ve=="object"&&Ve.removeAllHandlersOnTarget(lt.contexts[C].GLctx.canvas),lt.contexts[C]&&lt.contexts[C].GLctx.canvas&&(lt.contexts[C].GLctx.canvas.GLctxObject=void 0),Gc(lt.contexts[C].handle),lt.contexts[C]=null},initExtensions:function(C){if(C||(C=lt.currentContext),!C.initExtensionsDone){C.initExtensionsDone=!0;var _=C.GLctx;gg(_),Ag(_),yg(_),_.disjointTimerQueryExt=_.getExtension("EXT_disjoint_timer_query"),xg(_);var B=_.getSupportedExtensions()||[];B.forEach(function(Y){Y.indexOf("lose_context")<0&&Y.indexOf("debug")<0&&_.getExtension(Y)})}},populateUniformTable:function(C){for(var _=lt.programs[C],B=lt.programInfos[C]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},Y=B.uniforms,xe=ya.getProgramParameter(_,35718),Ae=0;Ae<xe;++Ae){var ye=ya.getActiveUniform(_,Ae),Te=ye.name;B.maxUniformLength=Math.max(B.maxUniformLength,Te.length+1),Te.slice(-1)=="]"&&(Te=Te.slice(0,Te.lastIndexOf("[")));var ut=ya.getUniformLocation(_,Te);if(ut){var hn=lt.getNewId(lt.uniforms);Y[Te]=[ye.size,hn],lt.uniforms[hn]=ut;for(var en=1;en<ye.size;++en){var va=Te+"["+en+"]";ut=ya.getUniformLocation(_,va),hn=lt.getNewId(lt.uniforms),lt.uniforms[hn]=ut}}}}},bg=["default","low-power","high-performance"];function vg(C,_){var B=_>>2,Y=i()[B+(24>>2)],xe={alpha:!!i()[B+(0>>2)],depth:!!i()[B+(4>>2)],stencil:!!i()[B+(8>>2)],antialias:!!i()[B+(12>>2)],premultipliedAlpha:!!i()[B+(16>>2)],preserveDrawingBuffer:!!i()[B+(20>>2)],powerPreference:bg[Y],failIfMajorPerformanceCaveat:!!i()[B+(28>>2)],majorVersion:i()[B+(32>>2)],minorVersion:i()[B+(36>>2)],enableExtensionsByDefault:i()[B+(40>>2)],explicitSwapControl:i()[B+(44>>2)],proxyContextToMainThread:i()[B+(48>>2)],renderViaOffscreenBackBuffer:i()[B+(52>>2)]},Ae=Bc(C);if(!Ae||xe.explicitSwapControl)return 0;var ye=lt.createContext(Ae,xe);return ye}function wg(C,_){return vg(C,_)}var jl={mappings:{},buffers:[null,[],[]],printChar:function(C,_){var B=jl.buffers[C];_===0||_===10?((C===1?j:z)(He(B,0)),B.length=0):B.push(_)},varargs:void 0,get:function(){jl.varargs+=4;var C=i()[jl.varargs-4>>2];return C},getStr:function(C){var _=qe(C);return _},get64:function(C,_){return C}};function Qp(C){return k?Aa(3,1,C):0}function eh(C,_,B,Y,xe){if(k)return Aa(4,1,C,_,B,Y,xe)}function th(C,_,B,Y){if(k)return Aa(5,1,C,_,B,Y);for(var xe=0,Ae=0;Ae<B;Ae++){for(var ye=i()[_+Ae*8>>2],Te=i()[_+(Ae*8+4)>>2],ut=0;ut<Te;ut++)jl.printChar(C,o()[ye+ut]);xe+=Te}return i()[Y>>2]=xe,0}function kg(C){var _=Ee.threadExitHandlers.pop();C&&_()}function Sg(C,_){Ee.threadExitHandlers.push(function(){Rn.get(C)(_)})}function nh(C){if(k)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var _=Ee.getNewWorker();if(_.pthread!==void 0)throw"Internal error!";if(!C.pthread_ptr)throw"Internal error, no pthread ptr!";Ee.runningWorkers.push(_);for(var B=ii(128*4),Y=0;Y<128;++Y)i()[B+Y*4>>2]=0;var xe=C.stackBase+C.stackSize,Ae=Ee.pthreads[C.pthread_ptr]={worker:_,stackBase:C.stackBase,stackSize:C.stackSize,allocatedOwnStack:C.allocatedOwnStack,threadInfoStruct:C.pthread_ptr},ye=Ae.threadInfoStruct>>2;Atomics.store(l(),ye+(64>>2),C.detached),Atomics.store(l(),ye+(100>>2),B),Atomics.store(l(),ye+(40>>2),Ae.threadInfoStruct),Atomics.store(l(),ye+(80>>2),C.stackSize),Atomics.store(l(),ye+(76>>2),xe),Atomics.store(l(),ye+(104>>2),C.stackSize),Atomics.store(l(),ye+(104+8>>2),xe),Atomics.store(l(),ye+(104+12>>2),C.detached);var Te=c5(),ut=Te+40;Atomics.store(l(),ye+(172>>2),ut),_.pthread=Ae;var hn={cmd:"run",start_routine:C.startRoutine,arg:C.arg,threadInfoStruct:C.pthread_ptr,stackBase:C.stackBase,stackSize:C.stackSize};_.runPthread=function(){hn.time=performance.now(),_.postMessage(hn,C.transferList)},_.loaded&&(_.runPthread(),delete _.runPthread)}function Ig(C,_,B,Y){if(typeof SharedArrayBuffer=="undefined")return z("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!C)return z("pthread_create called with a null thread pointer!"),28;var xe=[],Ae=0;if(k&&(xe.length===0||Ae))return m5(687865856,C,_,B,Y);if(Ae)return Ae;var ye=0,Te=0,ut=0;_&&_!=-1?(ye=i()[_>>2],ye+=81920,Te=i()[_+8>>2],ut=i()[_+12>>2]!==0):ye=2097152;var hn=Te==0;hn?Te=y5(16,ye):(Te-=ye,we(Te>0));for(var en=ii(228),va=0;va<228>>2;++va)l()[(en>>2)+va]=0;i()[C>>2]=en,i()[en+12>>2]=en;var Yl=en+152;i()[Yl>>2]=Yl;var On={stackBase:Te,stackSize:ye,allocatedOwnStack:hn,detached:ut,startRoutine:B,pthread_ptr:en,arg:Y,transferList:xe};return k?(On.cmd="spawnThread",postMessage(On,xe)):nh(On),0}function Cg(){if(!!k){var C=ba();if(!!C){var _=Atomics.load(l(),C+56>>2);if(!_){var B=Atomics.load(l(),C+0>>2);if(B==2)throw"Canceled!"}}}}function Tg(){b||y||X("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Ng(C,_,B){if(!C)return z("pthread_join attempted on a null thread pointer!"),ga.ESRCH;if(k&&ba()==C)return z("PThread "+C+" is attempting to join to itself!"),ga.EDEADLK;if(!k&&h5()==C)return z("Main thread "+C+" is attempting to join to itself!"),ga.EDEADLK;var Y=i()[C+12>>2];if(Y!==C)return z("pthread_join attempted on thread "+C+", which does not point to a valid thread, or does not exist anymore!"),ga.ESRCH;var xe=Atomics.load(l(),C+64>>2);if(xe)return z("Attempted to join thread "+C+", which was already detached!"),ga.EINVAL;for(B&&Tg();;){var Ae=Atomics.load(l(),C+0>>2);if(Ae==1){var ye=Atomics.load(l(),C+4>>2);return _&&(i()[_>>2]=ye),Atomics.store(l(),C+64>>2,1),k?postMessage({cmd:"cleanupThread",thread:C}):Kp(C),0}if(!B)return ga.EBUSY;Cg(),k||uh(),Zp(C+0,Ae,k?100:1)}}function Eg(C,_){return Ng(C,_,!0)}function sh(C){if(k)return Aa(6,1,C);switch(C){case 30:return 16384;case 85:var _=2147483648;return _/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return X0(28),-1}k||Ee.initMainThreadBlock();var ya,Rg=[null,K0,Jp,Qp,eh,th,sh],$g={e:j0,r:q0,x:Z0,b:Y0,y:J0,j:Q0,d:Zp,c:Mc,f:oi,p:eg,A:tg,u:sg,q:og,v:hg,i:fg,s:mg,w:wg,l:Qp,n:eh,g:th,o:B0,a:ne||u.wasmMemory,z:kg,k:Sg,h:Ig,m:Eg,t:sh},l5=L0(),rh=u.___wasm_call_ctors=function(){return(rh=u.___wasm_call_ctors=u.asm.B).apply(null,arguments)},_g=u._init=function(){return(_g=u._init=u.asm.C).apply(null,arguments)},Dg=u._init_with_threads_count=function(){return(Dg=u._init_with_threads_count=u.asm.D).apply(null,arguments)},Pg=u._get_threads_count=function(){return(Pg=u._get_threads_count=u.asm.E).apply(null,arguments)},Fg=u._register_tensor=function(){return(Fg=u._register_tensor=u.asm.F).apply(null,arguments)},Og=u._dispose_data=function(){return(Og=u._dispose_data=u.asm.G).apply(null,arguments)},Mg=u._dispose=function(){return(Mg=u._dispose=u.asm.H).apply(null,arguments)},zg=u._Abs=function(){return(zg=u._Abs=u.asm.I).apply(null,arguments)},Lg=u._Add=function(){return(Lg=u._Add=u.asm.J).apply(null,arguments)},Bg=u._AddN=function(){return(Bg=u._AddN=u.asm.K).apply(null,arguments)},Wg=u._All=function(){return(Wg=u._All=u.asm.L).apply(null,arguments)},Vg=u._Any=function(){return(Vg=u._Any=u.asm.M).apply(null,arguments)},Ug=u._ArgMax=function(){return(Ug=u._ArgMax=u.asm.N).apply(null,arguments)},Gg=u._AvgPool=function(){return(Gg=u._AvgPool=u.asm.O).apply(null,arguments)},Hg=u._BatchMatMul=function(){return(Hg=u._BatchMatMul=u.asm.P).apply(null,arguments)},jg=u._Ceil=function(){return(jg=u._Ceil=u.asm.Q).apply(null,arguments)},qg=u._ClipByValue=function(){return(qg=u._ClipByValue=u.asm.R).apply(null,arguments)},Xg=u._Conv2D=function(){return(Xg=u._Conv2D=u.asm.S).apply(null,arguments)},ah=u._Conv2DBackpropInput=function(){return(ah=u._Conv2DBackpropInput=u.asm.T).apply(null,arguments)},oh=u._Cos=function(){return(oh=u._Cos=u.asm.U).apply(null,arguments)},Wc=u._Cosh=function(){return(Wc=u._Cosh=u.asm.V).apply(null,arguments)},ql=u._CropAndResize=function(){return(ql=u._CropAndResize=u.asm.W).apply(null,arguments)},Kg=u._Cumsum=function(){return(Kg=u._Cumsum=u.asm.X).apply(null,arguments)},Vc=u._DepthToSpace=function(){return(Vc=u._DepthToSpace=u.asm.Y).apply(null,arguments)},ae=u._DepthwiseConv2dNative=function(){return(ae=u._DepthwiseConv2dNative=u.asm.Z).apply(null,arguments)},ie=u._Elu=function(){return(ie=u._Elu=u.asm._).apply(null,arguments)},ke=u._Equal=function(){return(ke=u._Equal=u.asm.$).apply(null,arguments)},at=u._Exp=function(){return(at=u._Exp=u.asm.aa).apply(null,arguments)},Lt=u._FlipLeftRight=function(){return(Lt=u._FlipLeftRight=u.asm.ba).apply(null,arguments)},Tt=u._Floor=function(){return(Tt=u._Floor=u.asm.ca).apply(null,arguments)},Ke=u._FloorDiv=function(){return(Ke=u._FloorDiv=u.asm.da).apply(null,arguments)},Ye=u._FusedBatchNorm=function(){return(Ye=u._FusedBatchNorm=u.asm.ea).apply(null,arguments)},In=u._FusedConv2D=function(){return(In=u._FusedConv2D=u.asm.fa).apply(null,arguments)},Ur=u._FusedDepthwiseConv2D=function(){return(Ur=u._FusedDepthwiseConv2D=u.asm.ga).apply(null,arguments)},Gr=u._Gather=function(){return(Gr=u._Gather=u.asm.ha).apply(null,arguments)},ih=u._GatherNd=function(){return(ih=u._GatherNd=u.asm.ia).apply(null,arguments)},Uc=u._Greater=function(){return(Uc=u._Greater=u.asm.ja).apply(null,arguments)},cs=u._GreaterEqual=function(){return(cs=u._GreaterEqual=u.asm.ka).apply(null,arguments)},xa=u._LeakyRelu=function(){return(xa=u._LeakyRelu=u.asm.la).apply(null,arguments)},lh=u._Less=function(){return(lh=u._Less=u.asm.ma).apply(null,arguments)},JT=u._LessEqual=function(){return(JT=u._LessEqual=u.asm.na).apply(null,arguments)},QT=u._Log=function(){return(QT=u._Log=u.asm.oa).apply(null,arguments)},eN=u._LogicalAnd=function(){return(eN=u._LogicalAnd=u.asm.pa).apply(null,arguments)},tN=u._Max=function(){return(tN=u._Max=u.asm.qa).apply(null,arguments)},nN=u._MaxPool=function(){return(nN=u._MaxPool=u.asm.ra).apply(null,arguments)},sN=u._Maximum=function(){return(sN=u._Maximum=u.asm.sa).apply(null,arguments)},rN=u._Mean=function(){return(rN=u._Mean=u.asm.ta).apply(null,arguments)},aN=u._Min=function(){return(aN=u._Min=u.asm.ua).apply(null,arguments)},oN=u._Minimum=function(){return(oN=u._Minimum=u.asm.va).apply(null,arguments)},iN=u._MirrorPad=function(){return(iN=u._MirrorPad=u.asm.wa).apply(null,arguments)},lN=u._Multiply=function(){return(lN=u._Multiply=u.asm.xa).apply(null,arguments)},uN=u._Neg=function(){return(uN=u._Neg=u.asm.ya).apply(null,arguments)},cN=u._NonMaxSuppressionV3=function(){return(cN=u._NonMaxSuppressionV3=u.asm.za).apply(null,arguments)},dN=u._NonMaxSuppressionV4=function(){return(dN=u._NonMaxSuppressionV4=u.asm.Aa).apply(null,arguments)},pN=u._NonMaxSuppressionV5=function(){return(pN=u._NonMaxSuppressionV5=u.asm.Ba).apply(null,arguments)},hN=u._NotEqual=function(){return(hN=u._NotEqual=u.asm.Ca).apply(null,arguments)},fN=u._OneHot=function(){return(fN=u._OneHot=u.asm.Da).apply(null,arguments)},mN=u._PadV2=function(){return(mN=u._PadV2=u.asm.Ea).apply(null,arguments)},gN=u._Pow=function(){return(gN=u._Pow=u.asm.Fa).apply(null,arguments)},AN=u._Prelu=function(){return(AN=u._Prelu=u.asm.Ga).apply(null,arguments)},yN=u._Prod=function(){return(yN=u._Prod=u.asm.Ha).apply(null,arguments)},xN=u._RealDiv=function(){return(xN=u._RealDiv=u.asm.Ia).apply(null,arguments)},bN=u._Relu=function(){return(bN=u._Relu=u.asm.Ja).apply(null,arguments)},vN=u._Relu6=function(){return(vN=u._Relu6=u.asm.Ka).apply(null,arguments)},wN=u._ResizeBilinear=function(){return(wN=u._ResizeBilinear=u.asm.La).apply(null,arguments)},kN=u._Reverse=function(){return(kN=u._Reverse=u.asm.Ma).apply(null,arguments)},SN=u._RotateWithOffset=function(){return(SN=u._RotateWithOffset=u.asm.Na).apply(null,arguments)},IN=u._Round=function(){return(IN=u._Round=u.asm.Oa).apply(null,arguments)},CN=u._Rsqrt=function(){return(CN=u._Rsqrt=u.asm.Pa).apply(null,arguments)},TN=u._ScatterNd=function(){return(TN=u._ScatterNd=u.asm.Qa).apply(null,arguments)},NN=u._SelectV2=function(){return(NN=u._SelectV2=u.asm.Ra).apply(null,arguments)},EN=u._Sigmoid=function(){return(EN=u._Sigmoid=u.asm.Sa).apply(null,arguments)},RN=u._Sin=function(){return(RN=u._Sin=u.asm.Ta).apply(null,arguments)},$N=u._Softmax=function(){return($N=u._Softmax=u.asm.Ua).apply(null,arguments)},_N=u._Sqrt=function(){return(_N=u._Sqrt=u.asm.Va).apply(null,arguments)},DN=u._Square=function(){return(DN=u._Square=u.asm.Wa).apply(null,arguments)},PN=u._SquaredDifference=function(){return(PN=u._SquaredDifference=u.asm.Xa).apply(null,arguments)},FN=u._Step=function(){return(FN=u._Step=u.asm.Ya).apply(null,arguments)},ON=u._StridedSlice=function(){return(ON=u._StridedSlice=u.asm.Za).apply(null,arguments)},MN=u._Sub=function(){return(MN=u._Sub=u.asm._a).apply(null,arguments)},zN=u._Sum=function(){return(zN=u._Sum=u.asm.$a).apply(null,arguments)},LN=u._Tan=function(){return(LN=u._Tan=u.asm.ab).apply(null,arguments)},BN=u._Tanh=function(){return(BN=u._Tanh=u.asm.bb).apply(null,arguments)},WN=u._Tile=function(){return(WN=u._Tile=u.asm.cb).apply(null,arguments)},VN=u._TopK=function(){return(VN=u._TopK=u.asm.db).apply(null,arguments)},UN=u._Transform=function(){return(UN=u._Transform=u.asm.eb).apply(null,arguments)},GN=u._Transpose=function(){return(GN=u._Transpose=u.asm.fb).apply(null,arguments)},HN=u.__FusedMatMul=function(){return(HN=u.__FusedMatMul=u.asm.gb).apply(null,arguments)},ii=u._malloc=function(){return(ii=u._malloc=u.asm.hb).apply(null,arguments)},Gc=u._free=function(){return(Gc=u._free=u.asm.ib).apply(null,arguments)},u5=u.___errno_location=function(){return(u5=u.___errno_location=u.asm.jb).apply(null,arguments)},c5=u._emscripten_get_global_libc=function(){return(c5=u._emscripten_get_global_libc=u.asm.lb).apply(null,arguments)},ba=u._pthread_self=function(){return(ba=u._pthread_self=u.asm.mb).apply(null,arguments)},d5=u.___pthread_tsd_run_dtors=function(){return(d5=u.___pthread_tsd_run_dtors=u.asm.nb).apply(null,arguments)},uh=u._emscripten_main_thread_process_queued_calls=function(){return(uh=u._emscripten_main_thread_process_queued_calls=u.asm.ob).apply(null,arguments)},jN=u._emscripten_current_thread_process_queued_calls=function(){return(jN=u._emscripten_current_thread_process_queued_calls=u.asm.pb).apply(null,arguments)},p5=u._emscripten_register_main_browser_thread_id=function(){return(p5=u._emscripten_register_main_browser_thread_id=u.asm.qb).apply(null,arguments)},h5=u._emscripten_main_browser_thread_id=function(){return(h5=u._emscripten_main_browser_thread_id=u.asm.rb).apply(null,arguments)},f5=u.__emscripten_do_dispatch_to_thread=function(){return(f5=u.__emscripten_do_dispatch_to_thread=u.asm.sb).apply(null,arguments)},m5=u._emscripten_sync_run_in_main_thread_4=function(){return(m5=u._emscripten_sync_run_in_main_thread_4=u.asm.tb).apply(null,arguments)},g5=u._emscripten_run_in_main_runtime_thread_js=function(){return(g5=u._emscripten_run_in_main_runtime_thread_js=u.asm.ub).apply(null,arguments)},Zg=u.__emscripten_call_on_thread=function(){return(Zg=u.__emscripten_call_on_thread=u.asm.vb).apply(null,arguments)},qN=u._emscripten_tls_init=function(){return(qN=u._emscripten_tls_init=u.asm.wb).apply(null,arguments)},Yg=u.__emscripten_thread_init=function(){return(Yg=u.__emscripten_thread_init=u.asm.xb).apply(null,arguments)},Hc=u.stackSave=function(){return(Hc=u.stackSave=u.asm.yb).apply(null,arguments)},Xl=u.stackRestore=function(){return(Xl=u.stackRestore=u.asm.zb).apply(null,arguments)},Kl=u.stackAlloc=function(){return(Kl=u.stackAlloc=u.asm.Ab).apply(null,arguments)},A5=u._emscripten_stack_set_limits=function(){return(A5=u._emscripten_stack_set_limits=u.asm.Bb).apply(null,arguments)},y5=u._memalign=function(){return(y5=u._memalign=u.asm.Cb).apply(null,arguments)},x5=u.__emscripten_allow_main_runtime_queued_calls=10064,Zl=u.__emscripten_main_thread_futex=10268;u.cwrap=We,u.PThread=Ee,u.PThread=Ee,u.wasmMemory=ne,u.ExitStatus=jc;var ch;function jc(C){this.name="ExitStatus",this.message="Program terminated with exit("+C+")",this.status=C}ri=function C(){ch||Jg(),ch||(ri=C)};function Jg(C){if(C=C||m,Ws>0)return;if(k){d(u),Vp(),postMessage({cmd:"loaded"});return}if(Wp(),Ws>0)return;function _(){ch||(ch=!0,u.calledRun=!0,!fe&&(Vp(),Up(),d(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),Gp()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),_()},1)):_()}u.run=Jg;function XN(C,_){if(!(_&&Q&&C===0)){if(!_&&k)throw postMessage({cmd:"exitProcess",returnCode:C}),new jc(C);Q||(Ee.terminateAllThreads(),be=C,Qn(),u.onExit&&u.onExit(C),fe=!0),A(C,new jc(C))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return k&&(Q=!1,Ee.initWorker()),Jg(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),mE=ts({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(ae,ie){o=ae,i=ie});var l={},c;for(c in a)a.hasOwnProperty(c)&&(l[c]=a[c]);var u=[],d="./this.program",p=function(ae,ie){throw ie},h=!1,f=!1,m=!1,g=!1;h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!m&&!f;var A="";function x(ae){return a.locateFile?a.locateFile(ae,A):A+ae}var y,b,w,k,I,N;m?(f?A=Vs("path").dirname(A)+"/":A=__dirname+"/",y=function(ie,ke){return I||(I=Vs("fs")),N||(N=Vs("path")),ie=N.normalize(ie),I.readFileSync(ie,ke?null:"utf8")},w=function(ie){var ke=y(ie,!0);return ke.buffer||(ke=new Uint8Array(ke)),j(ke.buffer),ke},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(ae){if(!(ae instanceof Kg))throw ae}),process.on("unhandledRejection",ar),p=function(ae){process.exit(ae)},a.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(y=function(ie){return read(ie)}),w=function(ie){var ke;return typeof readbuffer=="function"?new Uint8Array(readbuffer(ie)):(ke=read(ie,"binary"),j(typeof ke=="object"),ke)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(p=function(ae){quit(ae)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||f)&&(f?A=self.location.href:typeof document!="undefined"&&document.currentScript&&(A=document.currentScript.src),s&&(A=s),A.indexOf("blob:")!==0?A=A.substr(0,A.lastIndexOf("/")+1):A="",y=function(ae){var ie=new XMLHttpRequest;return ie.open("GET",ae,!1),ie.send(null),ie.responseText},f&&(w=function(ae){var ie=new XMLHttpRequest;return ie.open("GET",ae,!1),ie.responseType="arraybuffer",ie.send(null),new Uint8Array(ie.response)}),b=function(ae,ie,ke){var at=new XMLHttpRequest;at.open("GET",ae,!0),at.responseType="arraybuffer",at.onload=function(){if(at.status==200||at.status==0&&at.response){ie(at.response);return}ke()},at.onerror=ke,at.send(null)},k=function(ae){document.title=ae});var $=a.print||console.log.bind(console),O=a.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(a[c]=l[c]);l=null,a.arguments&&(u=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(p=a.quit);var D;a.wasmBinary&&(D=a.wasmBinary);var R=a.noExitRuntime||!0;typeof WebAssembly!="object"&&ar("no native wasm support detected");var T,F=!1,U;function j(ae,ie){ae||ar("Assertion failed: "+ie)}function z(ae){var ie=a["_"+ae];return j(ie,"Cannot call unknown function "+ae+", make sure it is exported"),ie}function X(ae,ie,ke,at,Lt){var Tt={string:function(cs){var xa=0;if(cs!=null&&cs!==0){var lh=(cs.length<<2)+1;xa=Wc(lh),ne(cs,xa,lh)}return xa},array:function(cs){var xa=Wc(cs.length);return oe(cs,xa),xa}};function Ke(cs){return ie==="string"?re(cs):ie==="boolean"?Boolean(cs):cs}var Ye=z(ae),In=[],Ur=0;if(at)for(var Gr=0;Gr<at.length;Gr++){var ih=Tt[ke[Gr]];ih?(Ur===0&&(Ur=ah()),In[Gr]=ih(at[Gr])):In[Gr]=at[Gr]}var Uc=Ye.apply(null,In);return Uc=Ke(Uc),Ur!==0&&oh(Ur),Uc}function Z(ae,ie,ke,at){ke=ke||[];var Lt=ke.every(function(Ke){return Ke==="number"}),Tt=ie!=="string";return Tt&&Lt&&!at?z(ae):function(){return X(ae,ie,ke,arguments,at)}}var J=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function te(ae,ie,ke){for(var at=ie+ke,Lt=ie;ae[Lt]&&!(Lt>=at);)++Lt;if(Lt-ie>16&&ae.subarray&&J)return J.decode(ae.subarray(ie,Lt));for(var Tt="";ie<Lt;){var Ke=ae[ie++];if(!(Ke&128)){Tt+=String.fromCharCode(Ke);continue}var Ye=ae[ie++]&63;if((Ke&224)==192){Tt+=String.fromCharCode((Ke&31)<<6|Ye);continue}var In=ae[ie++]&63;if((Ke&240)==224?Ke=(Ke&15)<<12|Ye<<6|In:Ke=(Ke&7)<<18|Ye<<12|In<<6|ae[ie++]&63,Ke<65536)Tt+=String.fromCharCode(Ke);else{var Ur=Ke-65536;Tt+=String.fromCharCode(55296|Ur>>10,56320|Ur&1023)}}return Tt}function re(ae,ie){return ae?te(Ce,ae,ie):""}function Q(ae,ie,ke,at){if(!(at>0))return 0;for(var Lt=ke,Tt=ke+at-1,Ke=0;Ke<ae.length;++Ke){var Ye=ae.charCodeAt(Ke);if(Ye>=55296&&Ye<=57343){var In=ae.charCodeAt(++Ke);Ye=65536+((Ye&1023)<<10)|In&1023}if(Ye<=127){if(ke>=Tt)break;ie[ke++]=Ye}else if(Ye<=2047){if(ke+1>=Tt)break;ie[ke++]=192|Ye>>6,ie[ke++]=128|Ye&63}else if(Ye<=65535){if(ke+2>=Tt)break;ie[ke++]=224|Ye>>12,ie[ke++]=128|Ye>>6&63,ie[ke++]=128|Ye&63}else{if(ke+3>=Tt)break;ie[ke++]=240|Ye>>18,ie[ke++]=128|Ye>>12&63,ie[ke++]=128|Ye>>6&63,ie[ke++]=128|Ye&63}}return ie[ke]=0,ke-Lt}function ne(ae,ie,ke){return Q(ae,Ce,ie,ke)}function oe(ae,ie){we.set(ae,ie)}function fe(ae,ie){return ae%ie>0&&(ae+=ie-ae%ie),ae}var be,we,Ce,Me,We,He,qe,ct,dt;function rt(ae){be=ae,a.HEAP8=we=new Int8Array(ae),a.HEAP16=Me=new Int16Array(ae),a.HEAP32=He=new Int32Array(ae),a.HEAPU8=Ce=new Uint8Array(ae),a.HEAPU16=We=new Uint16Array(ae),a.HEAPU32=qe=new Uint32Array(ae),a.HEAPF32=ct=new Float32Array(ae),a.HEAPF64=dt=new Float64Array(ae)}var wt=a.INITIAL_MEMORY||16777216,ft,Ct=[],_t=[],ks=[],kn=[],rr=!1;_t.push({func:function(){qp()}});function Fn(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)Sn(a.preRun.shift());Ws(Ct)}function us(){rr=!0,Ws(_t)}function Bs(){Ws(ks)}function Ss(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)kr(a.postRun.shift());Ws(kn)}function Sn(ae){Ct.unshift(ae)}function kr(ae){kn.unshift(ae)}var Rn=0,Sr=null,Ir=null;function ma(ae){Rn++,a.monitorRunDependencies&&a.monitorRunDependencies(Rn)}function Fc(ae){if(Rn--,a.monitorRunDependencies&&a.monitorRunDependencies(Rn),Rn==0&&(Sr!==null&&(clearInterval(Sr),Sr=null),Ir)){var ie=Ir;Ir=null,ie()}}a.preloadedImages={},a.preloadedAudios={};function ar(ae){a.onAbort&&a.onAbort(ae),ae+="",O(ae),F=!0,U=1,ae="abort("+ae+"). Build with -s ASSERTIONS=1 for more info.";var ie=new WebAssembly.RuntimeError(ae);throw i(ie),ie}function Bp(ae,ie){return String.prototype.startsWith?ae.startsWith(ie):ae.indexOf(ie)===0}var $0="data:application/octet-stream;base64,";function Wp(ae){return Bp(ae,$0)}var Vp="file://";function Up(ae){return Bp(ae,Vp)}var Qn="tfjs-backend-wasm.wasm";Wp(Qn)||(Qn=x(Qn));function Gp(ae){try{if(ae==Qn&&D)return new Uint8Array(D);if(w)return w(ae);throw"both async and sync fetching of the wasm failed"}catch(ie){ar(ie)}}function _0(){if(!D&&(h||f)){if(typeof fetch=="function"&&!Up(Qn))return fetch(Qn,{credentials:"same-origin"}).then(function(ae){if(!ae.ok)throw"failed to load wasm binary file at '"+Qn+"'";return ae.arrayBuffer()}).catch(function(){return Gp(Qn)});if(b)return new Promise(function(ae,ie){b(Qn,function(ke){ae(new Uint8Array(ke))},ie)})}return Promise.resolve().then(function(){return Gp(Qn)})}function D0(){var ae={a:es};function ie(Ke,Ye){var In=Ke.exports;a.asm=In,T=a.asm.h,rt(T.buffer),ft=a.asm.Sa,Fc("wasm-instantiate")}ma("wasm-instantiate");function ke(Ke){ie(Ke.instance)}function at(Ke){return _0().then(function(Ye){return WebAssembly.instantiate(Ye,ae)}).then(Ke,function(Ye){O("failed to asynchronously prepare wasm: "+Ye),ar(Ye)})}function Lt(){return!D&&typeof WebAssembly.instantiateStreaming=="function"&&!Wp(Qn)&&!Up(Qn)&&typeof fetch=="function"?fetch(Qn,{credentials:"same-origin"}).then(function(Ke){var Ye=WebAssembly.instantiateStreaming(Ke,ae);return Ye.then(ke,function(In){return O("wasm streaming compile failed: "+In),O("falling back to ArrayBuffer instantiation"),at(ke)})}):at(ke)}if(a.instantiateWasm)try{var Tt=a.instantiateWasm(ae,ie);return Tt}catch(Ke){return O("Module.instantiateWasm callback failed with error: "+Ke),!1}return Lt().catch(i),{}}function Ws(ae){for(;ae.length>0;){var ie=ae.shift();if(typeof ie=="function"){ie(a);continue}var ke=ie.func;typeof ke=="number"?ie.arg===void 0?ft.get(ke)():ft.get(ke)(ie.arg):ke(ie.arg===void 0?null:ie.arg)}}function Oc(){ar()}function ri(ae,ie,ke){Ce.copyWithin(ae,ie,ie+ke)}function P0(){return Ce.length}function F0(ae){try{return T.grow(ae-be.byteLength+65535>>>16),rt(T.buffer),1}catch(ie){}}function Vr(ae){var ie=P0(),ke=2147483648;if(ae>ke)return!1;for(var at=1;at<=4;at*=2){var Lt=ie*(1+.2/at);Lt=Math.min(Lt,ae+100663296);var Tt=Math.min(ke,fe(Math.max(ae,Lt),65536)),Ke=F0(Tt);if(Ke)return!0}return!1}var ai={mappings:{},buffers:[null,[],[]],printChar:function(ae,ie){var ke=ai.buffers[ae];ie===0||ie===10?((ae===1?$:O)(te(ke,0)),ke.length=0):ke.push(ie)},varargs:void 0,get:function(){ai.varargs+=4;var ae=He[ai.varargs-4>>2];return ae},getStr:function(ae){var ie=re(ae);return ie},get64:function(ae,ie){return ae}};function O0(ae){return 0}function Hp(ae,ie,ke,at,Lt){}function M0(ae,ie,ke,at){for(var Lt=0,Tt=0;Tt<ke;Tt++){for(var Ke=He[ie+Tt*8>>2],Ye=He[ie+(Tt*8+4)>>2],In=0;In<Ye;In++)ai.printChar(ae,Ce[Ke+In]);Lt+=Ye}return He[at>>2]=Lt,0}function jp(){return 28}var es={a:Oc,d:ri,e:Vr,f:O0,c:Hp,b:M0,g:jp},z0=D0(),qp=a.___wasm_call_ctors=function(){return(qp=a.___wasm_call_ctors=a.asm.i).apply(null,arguments)},L0=a._init=function(){return(L0=a._init=a.asm.j).apply(null,arguments)},Xp=a._init_with_threads_count=function(){return(Xp=a._init_with_threads_count=a.asm.k).apply(null,arguments)},B0=a._get_threads_count=function(){return(B0=a._get_threads_count=a.asm.l).apply(null,arguments)},Hl=a._register_tensor=function(){return(Hl=a._register_tensor=a.asm.m).apply(null,arguments)},ga=a._dispose_data=function(){return(ga=a._dispose_data=a.asm.n).apply(null,arguments)},Mc=a._dispose=function(){return(Mc=a._dispose=a.asm.o).apply(null,arguments)},W0=a._Abs=function(){return(W0=a._Abs=a.asm.p).apply(null,arguments)},V0=a._Add=function(){return(V0=a._Add=a.asm.q).apply(null,arguments)},Kp=a._AddN=function(){return(Kp=a._AddN=a.asm.r).apply(null,arguments)},Ee=a._All=function(){return(Ee=a._All=a.asm.s).apply(null,arguments)},U0=a._Any=function(){return(U0=a._Any=a.asm.t).apply(null,arguments)},G0=a._ArgMax=function(){return(G0=a._ArgMax=a.asm.u).apply(null,arguments)},H0=a._AvgPool=function(){return(H0=a._AvgPool=a.asm.v).apply(null,arguments)},j0=a._BatchMatMul=function(){return(j0=a._BatchMatMul=a.asm.w).apply(null,arguments)},q0=a._Ceil=function(){return(q0=a._Ceil=a.asm.x).apply(null,arguments)},oi=a._ClipByValue=function(){return(oi=a._ClipByValue=a.asm.y).apply(null,arguments)},X0=a._Conv2D=function(){return(X0=a._Conv2D=a.asm.z).apply(null,arguments)},K0=a._Conv2DBackpropInput=function(){return(K0=a._Conv2DBackpropInput=a.asm.A).apply(null,arguments)},Z0=a._Cos=function(){return(Z0=a._Cos=a.asm.B).apply(null,arguments)},Y0=a._Cosh=function(){return(Y0=a._Cosh=a.asm.C).apply(null,arguments)},J0=a._CropAndResize=function(){return(J0=a._CropAndResize=a.asm.D).apply(null,arguments)},Q0=a._Cumsum=function(){return(Q0=a._Cumsum=a.asm.E).apply(null,arguments)},Zp=a._DepthToSpace=function(){return(Zp=a._DepthToSpace=a.asm.F).apply(null,arguments)},eg=a._DepthwiseConv2dNative=function(){return(eg=a._DepthwiseConv2dNative=a.asm.G).apply(null,arguments)},tg=a._Elu=function(){return(tg=a._Elu=a.asm.H).apply(null,arguments)},Aa=a._Equal=function(){return(Aa=a._Equal=a.asm.I).apply(null,arguments)},zc=a._Exp=function(){return(zc=a._Exp=a.asm.J).apply(null,arguments)},Lc=a._FlipLeftRight=function(){return(Lc=a._FlipLeftRight=a.asm.K).apply(null,arguments)},ng=a._Floor=function(){return(ng=a._Floor=a.asm.L).apply(null,arguments)},sg=a._FloorDiv=function(){return(sg=a._FloorDiv=a.asm.M).apply(null,arguments)},rg=a._FusedBatchNorm=function(){return(rg=a._FusedBatchNorm=a.asm.N).apply(null,arguments)},ag=a._FusedConv2D=function(){return(ag=a._FusedConv2D=a.asm.O).apply(null,arguments)},og=a._FusedDepthwiseConv2D=function(){return(og=a._FusedDepthwiseConv2D=a.asm.P).apply(null,arguments)},Ve=a._Gather=function(){return(Ve=a._Gather=a.asm.Q).apply(null,arguments)},ig=a._GatherNd=function(){return(ig=a._GatherNd=a.asm.R).apply(null,arguments)},lg=a._Greater=function(){return(lg=a._Greater=a.asm.S).apply(null,arguments)},ug=a._GreaterEqual=function(){return(ug=a._GreaterEqual=a.asm.T).apply(null,arguments)},cg=a._LeakyRelu=function(){return(cg=a._LeakyRelu=a.asm.U).apply(null,arguments)},dg=a._Less=function(){return(dg=a._Less=a.asm.V).apply(null,arguments)},pg=a._LessEqual=function(){return(pg=a._LessEqual=a.asm.W).apply(null,arguments)},Bc=a._Log=function(){return(Bc=a._Log=a.asm.X).apply(null,arguments)},Yp=a._LogicalAnd=function(){return(Yp=a._LogicalAnd=a.asm.Y).apply(null,arguments)},Jp=a._Max=function(){return(Jp=a._Max=a.asm.Z).apply(null,arguments)},hg=a._MaxPool=function(){return(hg=a._MaxPool=a.asm._).apply(null,arguments)},fg=a._Maximum=function(){return(fg=a._Maximum=a.asm.$).apply(null,arguments)},mg=a._Mean=function(){return(mg=a._Mean=a.asm.aa).apply(null,arguments)},gg=a._Min=function(){return(gg=a._Min=a.asm.ba).apply(null,arguments)},Ag=a._Minimum=function(){return(Ag=a._Minimum=a.asm.ca).apply(null,arguments)},yg=a._MirrorPad=function(){return(yg=a._MirrorPad=a.asm.da).apply(null,arguments)},xg=a._Multiply=function(){return(xg=a._Multiply=a.asm.ea).apply(null,arguments)},lt=a._Neg=function(){return(lt=a._Neg=a.asm.fa).apply(null,arguments)},bg=a._NonMaxSuppressionV3=function(){return(bg=a._NonMaxSuppressionV3=a.asm.ga).apply(null,arguments)},vg=a._NonMaxSuppressionV4=function(){return(vg=a._NonMaxSuppressionV4=a.asm.ha).apply(null,arguments)},wg=a._NonMaxSuppressionV5=function(){return(wg=a._NonMaxSuppressionV5=a.asm.ia).apply(null,arguments)},jl=a._NotEqual=function(){return(jl=a._NotEqual=a.asm.ja).apply(null,arguments)},Qp=a._OneHot=function(){return(Qp=a._OneHot=a.asm.ka).apply(null,arguments)},eh=a._PadV2=function(){return(eh=a._PadV2=a.asm.la).apply(null,arguments)},th=a._Pow=function(){return(th=a._Pow=a.asm.ma).apply(null,arguments)},kg=a._Prelu=function(){return(kg=a._Prelu=a.asm.na).apply(null,arguments)},Sg=a._Prod=function(){return(Sg=a._Prod=a.asm.oa).apply(null,arguments)},nh=a._RealDiv=function(){return(nh=a._RealDiv=a.asm.pa).apply(null,arguments)},Ig=a._Relu=function(){return(Ig=a._Relu=a.asm.qa).apply(null,arguments)},Cg=a._Relu6=function(){return(Cg=a._Relu6=a.asm.ra).apply(null,arguments)},Tg=a._ResizeBilinear=function(){return(Tg=a._ResizeBilinear=a.asm.sa).apply(null,arguments)},Ng=a._Reverse=function(){return(Ng=a._Reverse=a.asm.ta).apply(null,arguments)},Eg=a._RotateWithOffset=function(){return(Eg=a._RotateWithOffset=a.asm.ua).apply(null,arguments)},sh=a._Round=function(){return(sh=a._Round=a.asm.va).apply(null,arguments)},ya=a._Rsqrt=function(){return(ya=a._Rsqrt=a.asm.wa).apply(null,arguments)},Rg=a._ScatterNd=function(){return(Rg=a._ScatterNd=a.asm.xa).apply(null,arguments)},$g=a._SelectV2=function(){return($g=a._SelectV2=a.asm.ya).apply(null,arguments)},l5=a._Sigmoid=function(){return(l5=a._Sigmoid=a.asm.za).apply(null,arguments)},rh=a._Sin=function(){return(rh=a._Sin=a.asm.Aa).apply(null,arguments)},_g=a._Softmax=function(){return(_g=a._Softmax=a.asm.Ba).apply(null,arguments)},Dg=a._Sqrt=function(){return(Dg=a._Sqrt=a.asm.Ca).apply(null,arguments)},Pg=a._Square=function(){return(Pg=a._Square=a.asm.Da).apply(null,arguments)},Fg=a._SquaredDifference=function(){return(Fg=a._SquaredDifference=a.asm.Ea).apply(null,arguments)},Og=a._Step=function(){return(Og=a._Step=a.asm.Fa).apply(null,arguments)},Mg=a._StridedSlice=function(){return(Mg=a._StridedSlice=a.asm.Ga).apply(null,arguments)},zg=a._Sub=function(){return(zg=a._Sub=a.asm.Ha).apply(null,arguments)},Lg=a._Sum=function(){return(Lg=a._Sum=a.asm.Ia).apply(null,arguments)},Bg=a._Tan=function(){return(Bg=a._Tan=a.asm.Ja).apply(null,arguments)},Wg=a._Tanh=function(){return(Wg=a._Tanh=a.asm.Ka).apply(null,arguments)},Vg=a._Tile=function(){return(Vg=a._Tile=a.asm.La).apply(null,arguments)},Ug=a._TopK=function(){return(Ug=a._TopK=a.asm.Ma).apply(null,arguments)},Gg=a._Transform=function(){return(Gg=a._Transform=a.asm.Na).apply(null,arguments)},Hg=a._Transpose=function(){return(Hg=a._Transpose=a.asm.Oa).apply(null,arguments)},jg=a.__FusedMatMul=function(){return(jg=a.__FusedMatMul=a.asm.Pa).apply(null,arguments)},qg=a._malloc=function(){return(qg=a._malloc=a.asm.Qa).apply(null,arguments)},Xg=a._free=function(){return(Xg=a._free=a.asm.Ra).apply(null,arguments)},ah=a.stackSave=function(){return(ah=a.stackSave=a.asm.Ta).apply(null,arguments)},oh=a.stackRestore=function(){return(oh=a.stackRestore=a.asm.Ua).apply(null,arguments)},Wc=a.stackAlloc=function(){return(Wc=a.stackAlloc=a.asm.Va).apply(null,arguments)};a.cwrap=Z;var ql;function Kg(ae){this.name="ExitStatus",this.message="Program terminated with exit("+ae+")",this.status=ae}Ir=function ae(){ql||Vc(),ql||(Ir=ae)};function Vc(ae){if(ae=ae||u,Rn>0||(Fn(),Rn>0))return;function ie(){ql||(ql=!0,a.calledRun=!0,!F&&(us(),Bs(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),Ss()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),ie()},1)):ie()}if(a.run=Vc,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return Vc(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),gE=1e-7,AE=1e-4,Yc=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},eu=class{refCount(e){return Us("refCount")}incRef(e){return Us("incRef")}timerAvailable(){return!0}time(e){return Us("time")}read(e){return Us("read")}readSync(e){return Us("readSync")}numDataIds(){return Us("numDataIds")}disposeData(e,t){return Us("disposeData")}write(e,t,n){return Us("write")}move(e,t,n,s,r){return Us("move")}memory(){return Us("memory")}floatPrecision(){return Us("floatPrecision")}epsilon(){return this.floatPrecision()===32?gE:AE}dispose(){return Us("dispose")}};function Us(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function S5(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,hh(e,t,n)}function yE(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,hh(e,n,s),hh(t,n,s)}function Jc(e,t,n){return Math.max(e,Math.min(t,n))}function xE(e){return e%2==0?e:e+1}function hh(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function bE(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function vE(e,t){let n=Math.random();return t*n+(1-n)*e}function wE(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function M(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Mn(e,t,n=""){M(Sa(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ui(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ci(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||_n(e)&&!n)for(let s=0;s<e.length;++s)ci(e[s],t,n);else t.push(e);return t}function Ut(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function kE(e){return e.length===0}function Sa(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function fn(e){return e%1==0}function SE(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function IE(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function CE(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return S5(t),t}function Qc(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function TE(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function NE(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function Gs(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),M(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(s=>fn(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function I5(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:Gs(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function C5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function T5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function N5(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function E5(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function EE(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function _n(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function t2(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function R5(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Ia(e){return typeof e=="string"||e instanceof String}function $5(e){return typeof e=="boolean"}function _5(e){return typeof e=="number"}function fh(e){return Array.isArray(e)?fh(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":_5(e)?"float32":Ia(e)?"string":$5(e)?"bool":"float32"}function Ca(e){return!!(e&&e.constructor&&e.call&&e.apply)}function mh(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function tu(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function D5(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,c)=>l*c)*(s?2:1);for(let l=0;l<a;l++)r[l]=D5(e+l*i,o,n,s)}return r}function nu(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return D5(0,e,t,n)}function n2(e,t){let n=gh(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function gh(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function RE(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return nu(e,new Float32Array(n));if(t==="int32")return nu(e,new Int32Array(n));if(t==="bool")return nu(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function s2(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function $E(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function _E(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function r2(e){return e&&e.then&&typeof e.then=="function"}var P5="tfjsflags",F5=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=DE,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(K().getBool("IS_TEST")||K().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];K().getBool("IS_TEST")||K().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(r2(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);P5 in e&&e[P5].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=FE(s,r)})}};function DE(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(PE(t,s[0],s[1]),s.join("="))),t}function PE(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function FE(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function K(){return Cr}var Cr=null;function OE(e){Cr=e}var a2;function O5(){if(a2==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");a2=e}return a2}function ME(){let e=O5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function o2(e,t){let n=ME();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var di="Abs",su="Acos",ru="Acosh",Hr="Add",Ta="AddN",au="All",ou="Any",Na="ArgMax",iu="ArgMin",lu="Asin",uu="Asinh",cu="Atan",du="Atanh",pu="Atan2",Ea="AvgPool",Ah="AvgPoolGrad",ed="AvgPool3D",yh="AvgPool3DGrad",Ra="BatchMatMul",pi="BatchToSpaceND",xh="Bincount",M5="BroadcastTo",bh="BroadcastArgs",$a="Cast",_a="Ceil",jr="ClipByValue",td="Complex",nd="ComplexAbs",hi="Concat",Da="Conv2D",vh="Conv2DBackpropFilter",Pa="Conv2DBackpropInput",sd="Conv3D",wh="Conv3DBackpropFilterV2",kh="Conv3DBackpropInputV2",Fa="Cos",Oa="Cosh",fi="Cumsum",mi="CropAndResize",Sh="DenseBincount",gi="DepthToSpace",Ma="DepthwiseConv2dNative",Ih="DepthwiseConv2dNativeBackpropFilter",Ch="DepthwiseConv2dNativeBackpropInput",Th="Diag",rd="Dilation2D",Nh="Dilation2DBackpropInput",Eh="Dilation2DBackpropFilter",za="RealDiv",ad="Einsum",La="Elu",Rh="EluGrad",hu="Erf",Ai="Equal",Ba="Exp",yi="ExpandDims",xi="Expm1",$h="FFT",fu="Fill",bi="FlipLeftRight",Wa="Floor",Va="FloorDiv",Ua="FusedBatchNorm",vi="GatherV2",wi="GatherNd",ki="Greater",Ga="GreaterEqual",Ha="Identity",_h="IFFT",od="Imag",mu="IsFinite",gu="IsInf",Au="IsNan",Si="LeakyRelu",Ii="Less",Ci="LessEqual",Dh="LinSpace",ja="Log",yu="Log1p",Ti="LogicalAnd",xu="LogicalNot",id="LogicalOr",z5="LogSoftmax",ld="LRN",Ph="LRNGrad",qa="Max",Xa="Maximum",Ka="MaxPool",Fh="MaxPoolGrad",ud="MaxPool3D",Oh="MaxPool3DGrad",Mh="MaxPoolWithArgmax",Za="Mean",Ya="Min",Ja="Minimum",Qa="MirrorPad",bu="Mod",zh="Multinomial",eo="Multiply",Ni="Neg",Ei="NotEqual",Ri="NonMaxSuppressionV3",vu="NonMaxSuppressionV4",$i="NonMaxSuppressionV5",_i="OnesLike",Di="OneHot",Pi="Pack",to="PadV2",zE="Pool",no="Pow",so="Prelu",Fi="Prod",wu="Range",cd="Real",ku="Reciprocal",ro="Relu",Oi="Reshape",Su="ResizeNearestNeighbor",Lh="ResizeNearestNeighborGrad",ao="ResizeBilinear",Bh="ResizeBilinearGrad",oo="Relu6",Mi="Reverse",zi="Round",io="Rsqrt",Li="ScatterNd",Bi="Select",Iu="Selu",Wi="Slice",lo="Sin",Vi="Sinh",Cu="Sign",uo="Sigmoid",Tu="Softplus",co="Sqrt",po="Sum",Ui="SpaceToBatchND",Gi="SplitV",ho="Softmax",Wh="SparseFillEmptyRows",Vh="SparseReshape",Uh="SparseSegmentMean",Gh="SparseSegmentSum",dd="SparseToDense",fo="SquaredDifference",Nu="Square",Hi="StridedSlice",pd="StringNGrams",Hh="StringSplit",jh="StringToHashBucketFast",mo="Sub",ji="Tan",go="Tanh",qr="Tile",qi="TopK",Xi="Transform",Ao="Transpose",qh="Unique",Ki="Unpack",hd="UnsortedSegmentSum",Zi="ZerosLike",yo="Step",fd="FromPixels",Yi="RotateWithOffset",xo="_FusedMatMul",bo="FusedConv2D",vo="FusedDepthwiseConv2D";function wo(...e){K().getBool("IS_TEST")||K().getBool("PROD")||console.warn(...e)}function LE(...e){K().getBool("IS_TEST")||K().getBool("PROD")||console.log(...e)}var Eu=o2("kernelRegistry",()=>new Map),md=o2("gradRegistry",()=>new Map);function Xh(e,t){let n=l2(e,t);return Eu.get(n)}function i2(e){return md.get(e)}function Xr(e){let t=Eu.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function or(e){let{kernelName:t,backendName:n}=e,s=l2(t,n);Eu.has(s)&&wo(`The kernel '${t}' for backend '${n}' is already registered`),Eu.set(s,e)}function L5(e){let{kernelName:t}=e;md.has(t)&&K().getBool("DEBUG")&&wo(`Overriding the gradient for '${t}'`),md.set(t,e)}function BE(e,t){let n=l2(e,t);if(!Eu.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Eu.delete(n)}function WE(e){if(!md.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);md.delete(e)}function VE(e,t){Xr(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});or(r)})}function l2(e,t){return`${t}_${e}`}var v={};Oe(v,{arraysEqual:()=>Sa,assert:()=>M,assertNonNegativeIntegerDimensions:()=>s2,assertNonNull:()=>ui,assertShapesMatch:()=>Mn,bytesFromStringArray:()=>R5,bytesPerElement:()=>t2,checkConversionForErrors:()=>N5,clamp:()=>Jc,computeStrides:()=>tu,createScalarValue:()=>XE,createShuffledIndices:()=>CE,decodeString:()=>Yh,distSquared:()=>wE,encodeString:()=>yd,fetch:()=>ZE,fingerPrint64:()=>qE,flatten:()=>ci,getArrayFromDType:()=>T5,getTypedArrayFromDType:()=>C5,hasEncodingLoss:()=>EE,hexToLong:()=>gd,indexToLoc:()=>_E,inferDtype:()=>fh,inferFromImplicitShape:()=>NE,isBoolean:()=>$5,isFunction:()=>Ca,isInt:()=>fn,isNumber:()=>_5,isPromise:()=>r2,isScalarShape:()=>kE,isString:()=>Ia,isTypedArray:()=>_n,isValidDtype:()=>E5,locToIndex:()=>$E,makeOnesTypedArray:()=>n2,makeZerosNestedTypedArray:()=>RE,makeZerosTypedArray:()=>gh,nearestDivisor:()=>mh,nearestLargerEven:()=>xE,now:()=>Ad,parseAxisParam:()=>Gs,randUniform:()=>vE,repeatedTry:()=>TE,rightPad:()=>Qc,shuffle:()=>S5,shuffleCombo:()=>yE,sizeFromShape:()=>Ut,sizeToSquarishShape:()=>IE,squeezeShape:()=>I5,sum:()=>bE,swap:()=>hh,tanh:()=>SE,toNestedArray:()=>nu,toTypedArray:()=>Zh});var B5=li(sE()),Ji=B5.default||B5;function gd(e){return Ji.fromString(e,!0,16)}var W5=gd("c3a5c85c97cb3127"),Qi=gd("b492b66fbe98f273"),zn=gd("9ae16a3b2f90404f");function u2(e){return e.xor(e.shru(47))}function V5(e,t,n){let s=e.slice(t,t+n);return Ji.fromBytes(Array.from(s),!0,!0)}function bt(e,t){return V5(e,t,8)}function U5(e,t){return V5(e,t,4)}function mn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function ko(e,t,n=gd("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function UE(e,t,n,s,r,a){r=r.add(e),a=mn(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(mn(r,44)),[r.add(s),a.add(o)]}function Kh(e,t,n,s){return UE(bt(e,t),bt(e,t+8),bt(e,t+16),bt(e,t+24),n,s)}function GE(e,t=e.length){if(t>=8){let n=zn.add(t*2),s=bt(e,0).add(zn),r=bt(e,t-8),a=mn(r,37).mul(n).add(s),o=mn(s,25).add(r).mul(n);return ko(a,o,n)}if(t>=4){let n=zn.add(t*2),s=U5(e,0);return ko(s.shl(3).add(t),U5(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return u2(zn.mul(a).xor(W5.mul(o))).mul(zn)}return zn}function HE(e,t=e.length){let n=zn.add(t*2),s=bt(e,0).mul(Qi),r=bt(e,8),a=bt(e,t-8).mul(n),o=bt(e,t-16).mul(zn);return ko(mn(s.add(r),43).add(mn(a,30)).add(o),s.add(mn(r.add(zn),18)).add(a),n)}function jE(e,t=e.length){let n=zn.add(t*2),s=bt(e,0).mul(zn),r=bt(e,8),a=bt(e,t-8).mul(n),o=bt(e,t-16).mul(zn),i=mn(s.add(r),43).add(mn(a,30)).add(o),l=ko(i,s.add(mn(r.add(zn),18)).add(a),n),c=bt(e,16).mul(n),u=bt(e,24),d=i.add(bt(e,t-32)).mul(n),p=l.add(bt(e,t-24)).mul(n);return ko(mn(c.add(u),43).add(mn(d,30)).add(p),c.add(mn(u.add(s),18)).add(d),n)}function qE(e,t=e.length){let n=Ji.fromNumber(81,!0);if(t<=32)return t<=16?GE(e,t):HE(e,t);if(t<=64)return jE(e,t);let s=n,r=n.mul(Qi).add(113),a=u2(r.mul(zn).add(113)).mul(zn),o=[Ji.UZERO,Ji.UZERO],i=[Ji.UZERO,Ji.UZERO];s=s.mul(zn).add(bt(e,0));let l=0,c=(t-1>>6)*64,u=c+(t-1&63)-63;do s=mn(s.add(r).add(o[0]).add(bt(e,l+8)),37).mul(Qi),r=mn(r.add(o[1]).add(bt(e,l+48)),42).mul(Qi),s=s.xor(i[1]),r=r.add(o[0]).add(bt(e,l+40)),a=mn(a.add(i[0]),33).mul(Qi),o=Kh(e,l,o[1].mul(Qi),s.add(i[0])),i=Kh(e,l+32,a.add(i[1]),r.add(bt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==c);let d=Qi.add(a.and(255).shl(1));return l=u,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=mn(s.add(r).add(o[0]).add(bt(e,l+8)),37).mul(d),r=mn(r.add(o[1]).add(bt(e,l+48)),42).mul(d),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(bt(e,l+40))),a=mn(a.add(i[0]),33).mul(d),o=Kh(e,l,o[1].mul(d),s.add(i[0])),i=Kh(e,l+32,a.add(i[1]),r.add(bt(e,l+16))),[a,s]=[s,a],ko(ko(o[0],i[0],d).add(u2(r).mul(W5)).add(a),ko(o[1],i[1],d).add(s),d)}function XE(e,t){return t==="string"?yd(e):Zh([e],t)}function KE(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Zh(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ci(e)),K().getBool("DEBUG")&&N5(e,t),KE(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Ad(){return K().platform.now()}function ZE(e,t){return K().platform.fetch(e,t)}function yd(e,t="utf-8"){return t=t||"utf-8",K().platform.encode(e,t)}function Yh(e,t="utf-8"){return t=t||"utf-8",K().platform.decode(e,t)}var YE=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new QE)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=Ad();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:Ad()-o})}if(K().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let c=s[l];c.data().then(u=>{JE(u,c.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function JE(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var QE=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?Qc(`${s}ms`,9):s.error,i=Qc(e,25),l=t.rank,c=t.size,u=Qc(t.shape.toString(),14),d="";for(let p in r){let h=r[p];if(h!=null){let f=h.shape||t.shape,m=f.length;d+=`${p}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${u} %c${c} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function e9(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let c=e[l],u=c.inputs;for(let d in u){let p=u[d],h=!1;for(let f=0;f<t.length;f++)if(s[p.id]){c.outputs.forEach(m=>s[m.id]=!0),h=!0,r[c.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let d=0;d<c.outputs.length;d++)if(a[c.outputs[d].id]){for(let p in u)a[u[p].id]=!0,o[c.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let c=e[l];if(r[c.id]&&o[c.id]){let u={};for(let p in c.inputs){let h=c.inputs[p];s[h.id]&&(u[p]=h)}let d=Object.assign({},c);d.inputs=u,d.outputs=c.outputs,i.push(d)}}return i}function t9(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let c=e[l.id];c!=null?o.push(c):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let c=n(()=>i[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=a.inputs[l];if(!Sa(c.shape,u.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let d=e[u.id];e[u.id]=s(d,c),d.dispose()}}}}var G5=20,xd=3,c2=7;function n9(e,t,n,s){let r=tu(t),a=s9(e,t,n,r),o=t.length,i=Jh(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(c=>" "+c).join(`
`)),l.join(`
`)}function s9(e,t,n,s){let r=Ut(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?vd(e):e;if(i>1)for(let c=0;c<r/a;c++){let u=c*a;for(let d=0;d<a;d++)o[d]=Math.max(o[d],bd(l[u+d],0,n).length)}return o}function bd(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(c2))} + ${parseFloat(e[1].toFixed(c2))}j`:Ia(e)?s=`'${e}'`:n==="bool"?s=H5(e):s=parseFloat(e.toFixed(c2)).toString(),Qc(s,t)}function H5(e){return e===0?"false":"true"}function Jh(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=vd(e);return[bd(m[0],0,n)]}return n==="bool"?[H5(e[0])]:[e[0].toString()]}if(l===1){if(i>G5){let g=xd*o,A=Array.from(e.slice(0,g)),x=Array.from(e.slice((i-xd)*o,i*o));return n==="complex64"&&(A=vd(A),x=vd(x)),["["+A.map((y,b)=>bd(y,r[b],n)).join(", ")+", ..., "+x.map((y,b)=>bd(y,r[i-xd+b],n)).join(", ")+"]"]}let m=n==="complex64"?vd(e):Array.from(e);return["["+m.map((g,A)=>bd(g,r[A],n)).join(", ")+"]"]}let c=t.slice(1),u=s.slice(1),d=s[0]*o,p=[];if(i>G5){for(let m=0;m<xd;m++){let g=m*d,A=g+d;p.push(...Jh(e.slice(g,A),c,n,u,r,!1))}p.push("...");for(let m=i-xd;m<i;m++){let g=m*d,A=g+d;p.push(...Jh(e.slice(g,A),c,n,u,r,m===i-1))}}else for(let m=0;m<i;m++){let g=m*d,A=g+d;p.push(...Jh(e.slice(g,A),c,n,u,r,m===i-1))}let h=l===2?",":"";p[0]="["+p[0]+h;for(let m=1;m<p.length-1;m++)p[m]=" "+p[m]+h;let f=`,
`;for(let m=2;m<l;m++)f+=`
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(a?"":f),p}function vd(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var tn=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Ut(e),n!=null){let s=n.length;M(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||T5(t,this.size),this.strides=tu(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Tr().makeTensor(this.values,this.shape,this.dtype)}},Tr=null,Ru=null,r9=null;function a9(e){Tr=e}function o9(e){Ru=e}function i9(e){r9=e}var Je=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Ut(e),this.strides=tu(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Ru.buffer(this.shape,this.dtype,e)}bufferSync(){return Ru.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return nu(this.shape,e,this.dtype==="complex64")}arraySync(){return nu(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Tr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Yh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Tr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Yh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Tr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Tr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Ru.print(this,e)}clone(){return this.throwIfDisposed(),Ru.clone(this)}toString(e=!1){let t=this.dataSync();return n9(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Ru.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Tr().makeVariable(this,e,t,n)}};Object.defineProperty(Je,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function l9(){return o2("Tensor",()=>Je)}l9();var wd=class extends Je{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Sa(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Tr().disposeTensor(this),this.dataId=e.dataId,Tr().incRef(this,null)}dispose(){Tr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(wd,Symbol.hasInstance,{value:e=>e instanceof Je&&e.assign!=null&&e.assign instanceof Function});var ir={};Oe(ir,{assertTypesMatch:()=>j5,getTensorsInContainer:()=>g2,isTensorInList:()=>c9,makeTypesMatch:()=>Dt});var d2;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(d2||(d2={}));var p2;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(p2||(p2={}));var h2;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(h2||(h2={}));var f2;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(f2||(f2={}));var m2;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(m2||(m2={}));var u9={float32:f2,int32:p2,bool:h2,complex64:m2};function Ln(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return u9[e][t]}function kd(e){return Ln(e,"int32")}function Dt(e,t){if(e.dtype===t.dtype)return[e,t];let n=Ln(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function j5(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function c9(e,t){return t.some(n=>n.id===e.id)}function g2(e){let t=[],n=new Set;return q5(e,t,n),t}function q5(e,t,n){if(e==null)return;if(e instanceof Je){t.push(e);return}if(!d9(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),q5(a,t,n))}}function d9(e){return Array.isArray(e)||typeof e=="object"}function A2(e){return e.kernelName!=null}var X5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},y2=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new X5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(wo(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new YE(this.backendInstance),!0}setupRegisteredKernels(){Xr(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Xr(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof eu)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,wo(`Initialization of backend ${e} failed`),wo(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return wo(`Initialization of backend ${e} failed`),wo(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return y2.nextTensorId++}nextVariableId(){return y2.nextVariableId++}clone(e){let t=W.runKernel(Ha,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return W.runKernel($a,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(Xh(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=A2(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(A2(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=Xh(h,this.backendName);M(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let A=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let x=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,A,x);let y=x.map(b=>{if(b.rank!=null)return b;let{dataId:w,shape:k,dtype:I}=b;return this.makeTensorFromDataId(w,k,I)});if(s){let b=this.getTensorsForGradient(h,f,y);n=this.saveTensorsForBackwardMode(b)}return y}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:c,attrs:u}=e,d=A2(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(p=this.profiler.profileKernel(l,c,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),s&&this.addTapeNode(l,c,t,d,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(h=>c[h]!=null?c[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=i2(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,c)=>a[c]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&Ia(e[0])&&(r=e.map(i=>yd(i)));let a=s.write(r,t,n),o=new Je(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=R5(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new Je(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new wd(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*t2(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof wd||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*t2(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=i2(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((c,u)=>{if(c==null){let d=n[u],p=gh(d.size,d.dtype);return this.makeTensor(p,d.shape,d.dtype)}return c}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=g2(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(r instanceof Je,()=>"The result y returned by f() must be a tensor.");let a=e9(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?p9(r.shape):n,t9(o,a,l=>this.tidy(l),h9);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return M(Ca(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(o=>o instanceof Je),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),M(n.value instanceof Je,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(Ca(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),c=Array.isArray(l)?l:[l];M(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(c.every(d=>d instanceof Je),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((d,p)=>{u[p]=()=>d}),u};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Ad(),n=await this.backend.time(e);return n.wallMs=Ad()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new X5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}},x2=y2;x2.nextTensorId=0;x2.nextVariableId=0;function p9(e){let t=n2(Ut(e),"float32");return W.makeTensor(t,e,"float32")}function K5(){let e=O5();if(e._tfengine==null){let t=new F5(e);e._tfengine=new x2(t)}return OE(e._tfengine.ENV),a9(()=>e._tfengine),e._tfengine}var W=K5();function h9(e,t){let n={a:e,b:t};return W.runKernel(Hr,n)}var $u={};Oe($u,{isBrowser:()=>Z5,isMobile:()=>g9,mockIsMobile:()=>m9});function f9(){return typeof navigator!="undefined"&&navigator!=null}var b2;function m9(e){b2=e}function g9(e){if(b2!==void 0)return b2;if(e||f9()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function Z5(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var lr=K();lr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});lr.registerFlag("IS_BROWSER",()=>Z5());lr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");lr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));lr.registerFlag("PROD",()=>!1);lr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>lr.getBool("DEBUG"));lr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);lr.registerFlag("IS_TEST",()=>!1);lr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);lr.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Nr(e,t){let n=e;if(_n(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||_n(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&K().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Y5(e,s,[]),s}function Y5(e,t,n){if(n=n||[],!Array.isArray(e)&&!_n(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)Y5(e[r],s,n.concat(r))}function J5(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function P(e,t,n,s="numeric"){if(e instanceof Je)return J5(s,e.dtype,t,n),e;let r=fh(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),J5(s,r,t,n),e==null||!_n(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=Nr(e,r);!_n(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Zh(e,r):ci(e,[],!0);return W.makeTensor(i,a,r)}function Sd(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>P(a,`${t}[${o}]`,n,s))}var Q5="__op";function V(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Q5;let r=(...a)=>{W.startScope(n);try{let o=s(...a);return r2(o)&&console.error("Cannot return a Promise inside of tidy."),W.endScope(o),o}catch(o){throw W.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function A9(e,t){let n=P(e,"real","complex"),s=P(t,"imag","complex");Mn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return W.runKernel(td,r)}var So=V({complex_:A9});function Io(e,t,n,s){if(s==null&&(s=fh(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!_n(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){s2(t);let r=Ut(t),a=Ut(n);M(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==Ut(t.slice(o)):!0;M(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!_n(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?Zh(e,s):ci(e,[],!0),W.makeTensor(e,t,s)}function Pt(e,t,n){let s=Nr(e,n);return Io(e,t,s,n)}var v2={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Qh=4;async function y9(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let c={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async d=>{let p=await l.bytes(),h=p.reduce((g,A)=>g+A.length,0)+Qh*p.length,f=new Uint8Array(h),m=0;for(let g=0;g<p.length;g++){let A=p[g],x=new Uint8Array(new Uint32Array([A.length]).buffer);f.set(x,m),m+=Qh,f.set(A,m),m+=A.length}d(f)});s.push(u)}else s.push(l.data());t!=null&&(c.group=t),n.push(c)}let a=await Promise.all(s);return{data:x9(a),specs:n}}function e3(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,c=Ut(l),u;if("quantization"in a){let d=a.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${a.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=v2[d.dtype],h=e.slice(r,r+c*p),f=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){u=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=g*d.scale+d.min}}else if(d.dtype==="float16")s===void 0&&(s=I9()),u=s(f);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(i==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);u=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*p}else if(i==="string"){let d=Ut(a.shape);u=[];for(let p=0;p<d;p++){let h=new Uint32Array(e.slice(r,r+Qh))[0];r+=Qh;let f=new Uint8Array(e.slice(r,r+h));u.push(f),r+=h}}else{let d=v2[i],p=e.slice(r,r+c*d);if(i==="float32")u=new Float32Array(p);else if(i==="int32")u=new Int32Array(p);else if(i==="bool")u=new Uint8Array(p);else if(i==="complex64"){u=new Float32Array(p);let h=new Float32Array(u.length/2),f=new Float32Array(u.length/2);for(let A=0;A<h.length;A++)h[A]=u[A*2],f[A]=u[A*2+1];let m=Pt(h,l,"float32"),g=Pt(f,l,"float32");n[o]=So(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*d}i!=="complex64"&&(n[o]=Pt(u,l,i))}return n}function x9(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var w2=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function t3(e){return w2?Buffer.byteLength(e):new Blob([e]).size}function b9(e){if(w2)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function v9(e){if(w2){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function k2(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function n3(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function s3(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function S2(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Id(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:t3(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:t3(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function w9(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)==0;)r-=8388608,s<<=1;return s&=~8388608,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function k9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function S9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function I9(){let e=w9(),t=k9(),n=S9();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Bt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Bt.instance==null&&(Bt.instance=new Bt),Bt.instance}static registerSaveRouter(e){Bt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Bt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Bt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Bt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Bt.getInstance().loadRouters:Bt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},C9=e=>Bt.registerSaveRouter(e),T9=e=>Bt.registerLoadRouter(e),N9=e=>Bt.getSaveHandlers(e),E9=(e,t)=>Bt.getLoadHandlers(e,t),I2="tensorflowjs",C2=1,el="models_store",Co="model_info_store";function r3(){if(!K().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function T2(e){let t=e.result;t.createObjectStore(el,{keyPath:"modelPath"}),t.createObjectStore(Co,{keyPath:"modelPath"})}var tl=class{constructor(e){if(this.indexedDB=r3(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(I2,C2);r.onupgradeneeded=()=>T2(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(el,"readonly"),l=o.objectStore(el).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=c=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=Id(t),i=a.transaction(Co,"readwrite"),l=i.objectStore(Co),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),u;c.onsuccess=()=>{u=a.transaction(el,"readwrite");let p=u.objectStore(el).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});p.onsuccess=()=>n({modelArtifactsInfo:o}),p.onerror=h=>{l=i.objectStore(Co);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(p.error)),f.onerror=m=>(a.close(),s(p.error))}},c.onerror=d=>(a.close(),s(c.error)),i.oncomplete=()=>{u==null?a.close():u.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};tl.URL_SCHEME="indexeddb://";var a3=e=>K().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(tl.URL_SCHEME)?R9(e.slice(tl.URL_SCHEME.length)):null;Bt.registerSaveRouter(a3);Bt.registerLoadRouter(a3);function R9(e){return new tl(e)}function $9(e){return e.startsWith(tl.URL_SCHEME)?e.slice(tl.URL_SCHEME.length):e}var _9=class{constructor(){this.indexedDB=r3()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(I2,C2);n.onupgradeneeded=()=>T2(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(Co,"readonly"),o=r.objectStore(Co).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=$9(e),new Promise((t,n)=>{let s=this.indexedDB.open(I2,C2);s.onupgradeneeded=()=>T2(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(Co,"readwrite"),o=a.objectStore(Co),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=o.delete(e),u=()=>{l=r.transaction(el,"readwrite");let p=l.objectStore(el).delete(e);p.onsuccess=()=>t(i.result.modelArtifactsInfo),p.onerror=h=>n(i.error)};c.onsuccess=u,c.onerror=d=>(u(),r.close(),n(i.error))}},i.onerror=c=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},Kr="/",_u="tensorflowjs_models",o3="info",D9="model_topology",P9="weight_specs",F9="weight_data",O9="model_metadata";function i3(e){return{info:[_u,e,o3].join(Kr),topology:[_u,e,D9].join(Kr),weightSpecs:[_u,e,P9].join(Kr),weightData:[_u,e,F9].join(Kr),modelMetadata:[_u,e,O9].join(Kr)}}function l3(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function M9(e){let t=e.split(Kr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Kr)}function z9(e){return e.startsWith(nl.URL_SCHEME)?e.slice(nl.URL_SCHEME.length):e}var nl=class{constructor(e){if(!K().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=i3(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=Id(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,b9(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw l3(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=v9(a),t}};nl.URL_SCHEME="localstorage://";var u3=e=>K().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(nl.URL_SCHEME)?L9(e.slice(nl.URL_SCHEME.length)):null;Bt.registerSaveRouter(u3);Bt.registerLoadRouter(u3);function L9(e){return new nl(e)}var B9=class{constructor(){M(K().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=_u+Kr,n=Kr+o3;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=M9(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=z9(e);let t=i3(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return l3(t),n}},Du="://",Is=class{constructor(){this.managers={}}static getInstance(){return Is.instance==null&&(Is.instance=new Is),Is.instance}static registerManager(e,t){M(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Du)&&(e=e.slice(0,e.indexOf(Du))),M(e.length>0,()=>"scheme must not be an empty string.");let n=Is.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function ef(e){if(e.indexOf(Du)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Is.getSchemes().join(",")}`);return{scheme:e.split(Du)[0],path:e.split(Du)[1]}}async function c3(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Bt.getLoadHandlers(e);M(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Bt.getSaveHandlers(t);M(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=ef(e).scheme,l=ef(e).path,c=i===ef(e).scheme,u=await r.load();n&&c&&await Is.getManager(i).removeModel(l);let d=await o.save(u);return n&&!c&&await Is.getManager(i).removeModel(l),d.modelArtifactsInfo}async function W9(){let e=Is.getSchemes(),t={};for(let n of e){let s=await Is.getManager(n).listModels();for(let r in s){let a=n+Du+r;t[a]=s[r]}}return t}async function V9(e){let t=ef(e);return Is.getManager(t.scheme).removeModel(t.path)}async function U9(e,t){return c3(e,t,!1)}async function G9(e,t){return c3(e,t,!0)}var H9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(K().get("IS_BROWSER")){K().setPlatform("browser",new H9);try{Is.registerManager(nl.URL_SCHEME,new B9)}catch(e){}try{Is.registerManager(tl.URL_SCHEME,new _9)}catch(e){}}var j9={importFetch:()=>rE()},N2,q9=class{constructor(){this.util=aE(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return K().global.fetch!=null?K().global.fetch(e,t):(N2==null&&(N2=j9.importFetch()),N2(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};K().get("IS_NODE")&&K().setPlatform("node",new q9);function ze(e,t="float32",n){return t=t||"float32",s2(e),new tn(e,t,n)}function X9(e,t){let n=P(e,"x","cast");if(!E5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return W.runKernel($a,s,r)}var pe=V({cast_:X9});function K9(e){let n={x:P(e,"x","clone","string_or_numeric")};return W.runKernel(Ha,n)}var Bn=V({clone_:K9});function d3(e,t=!1){console.log(e.toString(t))}K5();var Z9={buffer:ze,cast:pe,clone:Bn,print:d3};o9(Z9);var ns={};Oe(ns,{browserFiles:()=>sR,browserHTTPRequest:()=>lR,concatenateArrayBuffers:()=>k2,copyModel:()=>U9,decodeWeights:()=>e3,encodeWeights:()=>y9,fromMemory:()=>cR,getLoadHandlers:()=>E9,getModelArtifactsForJSON:()=>S2,getModelArtifactsInfoForJSON:()=>Id,getSaveHandlers:()=>N9,http:()=>_2,isHTTPScheme:()=>$2,listModels:()=>W9,loadWeights:()=>rR,moveModel:()=>G9,registerLoadRouter:()=>T9,registerSaveRouter:()=>C9,removeModel:()=>V9,weightsLoaderFactory:()=>m3,withSaveHandler:()=>dR});var Y9="model",J9=".json",Q9=".weights.bin";function p3(e){return new Promise(t=>setTimeout(t)).then(e)}var E2=class{constructor(e){if(!K().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(E2.URL_SCHEME)&&(e=e.slice(E2.URL_SCHEME.length)),(e==null||e.length===0)&&(e=Y9),this.modelJsonFileName=e+J9,this.weightDataFileName=e+Q9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=s3(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await p3(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await p3(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Id(e)}}}},tf=E2;tf.URL_SCHEME="downloads://";var eR=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=S2(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,k2(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>n3(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=n3(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},tR=e=>K().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(tf.URL_SCHEME)?nR(e.slice(tf.URL_SCHEME.length)):null;Bt.registerSaveRouter(tR);function nR(e="model"){return new tf(e)}function sR(e){return new eR(e)}function h3(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(c=>{let u=n+ ++r/e.length*(s-n);return t(u),c}),l);function o(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,c){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),M(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(a))}async function f3(e,t){t==null&&(t={});let n=t.fetchFunc==null?K().platform.fetch:t.fetchFunc,s=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await h3(s,t.onProgress,r,a)).map(d=>d.arrayBuffer()),l=.5,c=1;return t.onProgress==null?await Promise.all(i):await h3(i,t.onProgress,l,c)}async function rR(e,t="",n,s){return m3(o=>f3(o,{requestInit:s}))(e,t,n)}function m3(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let A="quantization"in g?g.quantization.dtype:g.dtype,x=v2[A]*Ut(g.shape),y=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:x})};s!=null?s.forEach((b,w)=>{b===g.name&&(y(),o[w]=!0)}):y(),i.push(g.name),m+=x})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),c=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;c.push(m)})});let u=await e(c),d={},p=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b<f;b++)m+=u[p+b].byteLength;let g=new ArrayBuffer(m),A=new Uint8Array(g),x=0;for(let b=0;b<f;b++){let w=new Uint8Array(u[p+b]);A.set(w,x),x+=w.byteLength}a[h].forEach(b=>{let w=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),k=e3(w,[b.manifestEntry]);for(let I in k)d[I]=k[I]}),p+=f}),d}}var aR="application/octet-stream",oR="application/json",R2=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=K().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=s3(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:oR}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:aR}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Id(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return S2(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=iR(t),r=this.weightPathPrefix||n,a=[];for(let c of e)a.push(...c.weights);let o=[],i=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(u)):o.push(r+u+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await f3(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,k2(l)]}};R2.URL_SCHEME_REGEX=/^https?:\/\//;function iR(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function $2(e){return e.match(R2.URL_SCHEME_REGEX)!=null}var g3=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>$2(s)):n=$2(e),n)return _2(e,t)}return null};Bt.registerSaveRouter(g3);Bt.registerLoadRouter(g3);function _2(e,t){return new R2(e,t)}function lR(e,t){return _2(e,t)}var D2=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},uR=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function cR(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new D2(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new D2({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new D2({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function dR(e){return new uR(e)}var A3={};Oe(A3,{confusionMatrix:()=>gR});function pR(e,t,n=!1,s=!1){let r=P(e,"a","matMul"),a=P(t,"b","matMul");[r,a]=Dt(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return W.runKernel(Ra,o,i)}var Ue=V({matMul_:pR});function hR(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:P(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return W.runKernel(Di,a,o)}var Cd=V({oneHot_:hR});function fR(e,t){let n=P(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{M(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return W.runKernel(Ao,s,r)}var Qe=V({transpose_:fR});function mR(e,t,n){let s=P(e,"labels","confusionMatrix"),r=P(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),M(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),M(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=Cd(pe(s,"int32"),n),o=Cd(pe(r,"int32"),n),i=Qe(a),l=Ue(i,o);return pe(l,"int32")}var gR=V({confusionMatrix_:mR}),sl={};Oe(sl,{assertAndGetBroadcastShape:()=>mt,getBroadcastDims:()=>y3,getReductionAxes:()=>qt});function y3(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function qt(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function mt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}var Hs={};Oe(Hs,{fromPixels:()=>kR,fromPixelsAsync:()=>vR,toPixels:()=>wR});function x3(e,t,n){if(ui(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=Nr(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Io(e,t,s,n)}var rl;function b3(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let f=2;if(r&&e.readyState<f)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Xh(fd,W.backendName)!=null){let f={pixels:e},m={numChannels:t};return W.runKernel(fd,f,m)}let[c,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;if(o)d=e.getContext("2d").getImageData(0,0,c,u).data;else if(s||n)d=e.data;else if(a||r||i){if(rl==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")rl=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else rl=document.createElement("canvas").getContext("2d");rl.canvas.width=c,rl.canvas.height=u,rl.drawImage(e,0,0,c,u),d=rl.getImageData(0,0,c,u).data}let p;if(t===4)p=new Int32Array(d);else{let f=c*u;p=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)p[m*t+g]=d[m*4+g]}return x3(p,[u,c,t],"int32")}function AR(e){return e!=null&&e.data instanceof Uint8Array}function yR(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function xR(e){return e!=null&&e.width!==0&&e.height!==0}function bR(e){return yR()&&!(e instanceof ImageBitmap)&&xR(e)&&!AR(e)}async function vR(e,t=3){let n=null;if(K().getBool("WRAP_TO_IMAGEBITMAP")&&bR(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return b3(n,t)}async function wR(e,t){let n=P(e,"img","toPixels");if(!(e instanceof Je)){let c=n;n=pe(c,"int32"),c.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let c=0;c<s*r;++c){let u=[0,0,0,255];for(let p=0;p<a;p++){let h=o[c*a+p];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(u[0]=h*i,u[1]=h*i,u[2]=h*i):u[p]=h*i}let d=c*4;l[d+0]=Math.round(u[0]),l[d+1]=Math.round(u[1]),l[d+2]=Math.round(u[2]),l[d+3]=Math.round(u[3])}if(t!=null){t.width=r,t.height=s;let c=t.getContext("2d"),u=new ImageData(l,r,s);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var kR=V({fromPixels_:b3}),P2={};Oe(P2,{prepareAndValidate:()=>v3});function v3(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Ut(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let d=0;d<r.length-1;++d)o*=r[d];let i=e.shape,l=r.slice();l.pop();let c=1;for(let d=a;d<n;++d)c*=i[d],l.push(i[d]);let u=[...tu(e.shape).map(d=>d/c),1].slice(0,a);return[l,o,c,u]}var F2={};Oe(F2,{calculateShapes:()=>w3,validateInput:()=>M2,validateUpdateShape:()=>O2});function O2(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function M2(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}O2(n,t,e)}function w3(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let d=r;d<a;++d)o*=n[d];let i=r<1?1:r,l=Ut(t.shape)/i,c=[...tu(n.slice(0,r)),1],u=Ut(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:c,outputSize:u}}var Ft={};Oe(Ft,{assertParamsValid:()=>IR,computeFlatOffset:()=>RR,computeOutShape:()=>TR,getNormalizedAxes:()=>NR,isSliceContinous:()=>ER,maskToAxes:()=>CR,parseSliceParams:()=>$3,sliceInfo:()=>$R,startForAxis:()=>E3,startIndicesWithElidedDims:()=>C3,stopForAxis:()=>R3,stopIndicesWithElidedDims:()=>T3,stridesForAxis:()=>N3,stridesWithElidedDims:()=>k3});var z2=-2,SR=-1;function IR(e,t,n){let s=e.shape.length;M(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),M(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)M(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function CR(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function TR(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function k3(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function S3(e,t,n){return n<=e?n:n-(t-1)}function I3(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function NR(e,t,n,s,r,a,o,i,l){let c=e.length,u=new Array(c),d=new Array(c),p=new Array(c);if(t.length&&n>0){let h=t[0],f=n+1;u=C3(o,h,f,s,e),d=T3(i,h,f,r,e),p=k3(a,h,f,e)}else for(let h=0;h<c;h++)u[h]=E3(o,s,a,e,h,l),d[h]=R3(i,r,a,e,h,l),p[h]=N3(a,h,l);return{begin:u,end:d,strides:p}}function C3(e,t,n,s,r){let a=[...r],o=I3(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=S3(t,n,i),c=s[l];e&1<<l&&(c=0),a[i]=c}return a}function T3(e,t,n,s,r){let a=[...r],o=I3(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=S3(t,n,i),c=s[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),a[i]=c}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=Jc(0,a[i],r[i])}return a}function N3(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function E3(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=Jc(0,o,l-1),o}function R3(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=Jc(0,o,l):o=Jc(-1,o,l-1),o}function ER(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function RR(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function $3(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{M(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(M(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function $R(e,t,n,s,r,a,o,i,l){let c;if(s==null?(c=new Array(t.length),c.fill(1)):c=s,o!=null&&(o&o-1)!=0)throw new Error("Multiple ellipses in slice is not allowed.");let u=!1,d={dims:c.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:c.slice(),beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};for(let y=0;y<d.dims;y++)u&&(1<<y&i)!=0&&d.numAddAxisAfterEllipsis++,1<<y&o&&(u=!0);u||(d.ellipsisMask|=1<<d.dims,d.dims++);let p={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};_R(d,p);let h=!0,f=!0,m=!0,g=[],A=[];for(let y=0;y<e.length;++y){if(p.strides[y]===0)throw Error(`strides[${y}] must be non-zero`);let b=!!(p.shrinkAxisMask&1<<y),w=e[y];if(w===-1){g.push(b?1:-1);continue}let k=[p.beginMask&1<<y,p.endMask&1<<y],I=[p.strides[y]>0?0:-1,p.strides[y]>0?w:w-1];if(b&&p.strides[y]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&p.strides[y]===1;let N=!!(p.beginMask&1<<y&&p.endMask&1<<y);if(p.beginValid&&p.endValid){if(b){let R=p.begin[y]<0?w+p.begin[y]:p.begin[y];if(p.begin[y]=R,p.end[y]=p.begin[y]+1,R<0||R>=w)throw Error(`slice index ${p.begin[y]} of dimension ${y} out of bounds.`)}else p.begin[y]=_3(p.begin[y],0,p.strides[y],w,k,I),p.end[y]=_3(p.end[y],1,p.strides[y],w,k,I);let D=p.strides[y]===1&&p.begin[y]===0&&p.end[y]===w;h=h&&D,f=f&&(y===0&&p.strides[y]===1||D)}else h=h&&p.strides[y]===1&&N,f=f&&(y===0&&p.strides[y]===1||N);let $,O=!1;if(p.beginValid&&p.endValid?($=p.end[y]-p.begin[y],O=!0):b?($=1,O=!0):N&&w>=0&&(p.strides[y]<0?$=-w:$=w,O=!0),O){let D;$===0||$<0!=p.strides[y]<0?D=0:D=Math.trunc($/p.strides[y])+($%p.strides[y]!=0?1:0),g.push(D)}else g.push(-1)}for(let y=0;y<p.finalShapeGatherIndices.length;++y){let b=p.finalShapeGatherIndices[y];b>=0?A.push(g[b]):b===z2&&A.push(1)}return{finalShapeSparse:A.filter((y,b)=>p.finalShapeGatherIndices[b]!==z2),finalShape:A,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:p.begin,end:p.end,strides:p.strides}}function _R(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let s=0;s<e.dims;s++)if(1<<s&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-s)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=s}else if(1<<s&e.newAxisMask)t.finalShapeGatherIndices.push(z2),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[s]),e.end!=null&&(t.end[n]=e.end[s]),t.strides[n]=e.strides[s],e.beginMask&1<<s&&(t.beginMask|=1<<n),e.endMask&1<<s&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<s?(t.finalShapeGatherIndices.push(SR),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(s)),t.inputShapeGatherIndicesSparse[n]=s,n++}}function _3(e,t,n,s,r,a){if(r[t])return n>0?a[t]:a[t+1&1];{let o=e<0?s+e:e;return o<a[0]?a[0]:o>a[1]?a[1]:o}}var ue={};Oe(ue,{Serializable:()=>D3,SerializationMap:()=>al,registerClass:()=>To});var D3=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},al=class{constructor(){this.classNameMap={}}static getMap(){return al.instance==null&&(al.instance=new al),al.instance}static register(e){al.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function To(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),al.register(e)}var P3={};Oe(P3,{TEST_EPSILON_FLOAT16:()=>F3,encodeStrings:()=>O3,expectArrayBuffersEqual:()=>LR,expectArraysClose:()=>PR,expectArraysEqual:()=>OR,expectNumbersClose:()=>MR,expectPromiseToFail:()=>FR,expectValuesInRange:()=>zR,testEpsilon:()=>L2});var DR=.001,F3=.1;function PR(e,t,n){return n==null&&(n=L2()),B2(e,t,(s,r)=>W2(s,r,n))}function L2(){return W.backend.floatPrecision()===32?DR:F3}function B2(e,t,n){let s=!0;if((_n(e)||_n(t))&&(s=!1),_n(e)&&_n(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=Nr(e),i=Nr(t);if(!Sa(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=_n(e)?e:ci(e),a=_n(t)?t:ci(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
Actual: ${r}.
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
Actual: ${r}.
Expected: ${a}.`)}}function FR(e,t){e().then(()=>t.fail(),()=>t())}function OR(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ia(e)||Ia(e[0])||Ia(t)||Ia(t[0])?B2(e,n,(s,r)=>s==r):B2(e,t,(s,r)=>W2(s,r,0))}function MR(e,t,n){if(n==null&&(n=L2()),!W2(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function W2(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function zR(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function LR(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function O3(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?O3(n):e[t]=yd(n)}return e}function M3(){K().set("PROD",!0)}function BR(){K().set("DEBUG",!0)}function WR(){K().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function V2(e){K().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}i9(V2);function VR(){W.disposeVariables()}function ss(){return W}function nf(){return W.memory()}function UR(e){return W.profile(e)}function q(e,t){return W.tidy(e,t)}function ee(e){g2(e).forEach(n=>n.dispose())}function gn(e){return W.keep(e)}function GR(e){return W.time(e)}function z3(e){return W.setBackend(e)}function sf(){return W.ready()}function Cs(){return W.backendName}function HR(e){W.removeBackend(e)}function U2(e){return W.findBackend(e)}function jR(e){return W.findBackendFactory(e)}function ol(e,t,n=1){return W.registerBackend(e,t,n)}function Er(){return W.backend}function qR(e,t){K().setPlatform(e,t)}function XR(e,t){let n=P(e,"a","add"),s=P(t,"b","add");[n,s]=Dt(n,s);let r={a:n,b:s};return W.runKernel(Hr,r)}var le=V({add_:XR});function KR(e,t){let n=P(e,"a","floorDiv"),s=P(t,"b","floorDiv");[n,s]=Dt(n,s);let r={a:n,b:s};return W.runKernel(Va,r)}var rf=V({floorDiv_:KR});function ZR(e,t){let n=P(e,"a","div"),s=P(t,"b","div");if([n,s]=Dt(n,s),n.dtype==="int32"&&s.dtype==="int32")return rf(n,s);let r={a:n,b:s},a={};return W.runKernel(za,r,a)}var he=V({div_:ZR});function YR(e,t){let n=P(e,"a","mul"),s=P(t,"b","mul");[n,s]=Dt(n,s);let r={a:n,b:s};return W.runKernel(eo,r)}var L=V({mul_:YR});function JR(e){let t=P(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return W.runKernel(nd,n)}else{let n={x:t};return W.runKernel(di,n)}}var nn=V({abs_:JR});function QR(e){let n={x:P(e,"x","acos")};return W.runKernel(su,n)}var L3=V({acos_:QR});function e$(e){let n={x:P(e,"x","acosh")};return W.runKernel(ru,n)}var B3=V({acosh_:e$});function t$(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>P(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!Sa(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return W.runKernel(Ta,s)}var af=V({addN_:t$});function n$(e,t=null,n=!1){let r={x:P(e,"x","all","bool")},a={axis:t,keepDims:n};return W.runKernel(au,r,a)}var G2=V({all_:n$});function s$(e,t=null,n=!1){let r={x:P(e,"x","any","bool")},a={axis:t,keepDims:n};return W.runKernel(ou,r,a)}var of=V({any_:s$});function r$(e,t=0){let s={x:P(e,"x","argMax")},r={axis:t};return W.runKernel(Na,s,r)}var js=V({argMax_:r$});function a$(e,t=0){let s={x:P(e,"x","argMin")},r={axis:t};return W.runKernel(iu,s,r)}var W3=V({argMin_:a$});function o$(e){let n={x:P(e,"x","asin")};return W.runKernel(lu,n)}var V3=V({asin_:o$});function i$(e){let n={x:P(e,"x","asinh")};return W.runKernel(uu,n)}var U3=V({asinh_:i$});function l$(e){let n={x:P(e,"x","atan")};return W.runKernel(cu,n)}var G3=V({atan_:l$});function u$(e,t){let n=P(e,"a","atan2"),s=P(t,"b","atan2");[n,s]=Dt(n,s);let r={a:n,b:s};return W.runKernel(pu,r)}var H3=V({atan2_:u$});function c$(e){let n={x:P(e,"x","atanh")};return W.runKernel(du,n)}var j3=V({atanh_:c$});function d$(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=K3(r);return Td(e,i,n,a,s,null,null,l)}function q3(e,t,n,s,r,a,o="channelsLast"){let[i,l]=lf(t),c;if(o==="channelsLast")c=[i,l,e[3],e[3]];else if(o==="channelsFirst")c=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Td(e,c,n,s,r,a,!1,o)}function p$(e,t,n,s,r,a,o="NDHWC"){let[i,l,c]=j2(t),u,d;if(o==="NDHWC")d="channelsLast",u=[i,l,c,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",u=[i,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return X3(e,u,n,s,r,!1,d,a)}function Td(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,c,u,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,d]=e;else if(i==="channelsFirst")[l,d,c,u]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,h,,f]=t,[m,g]=lf(n),[A,x]=lf(s),y=Pu(p,A),b=Pu(h,x),{padInfo:w,outHeight:k,outWidth:I}=m$(r,c,u,m,g,y,b,a,i),N=o?f*d:f,$;return i==="channelsFirst"?$=[l,N,k,I]:i==="channelsLast"&&($=[l,k,I,N]),{batchSize:l,dataFormat:i,inHeight:c,inWidth:u,inChannels:d,outHeight:k,outWidth:I,outChannels:N,padInfo:w,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:h,effectiveFilterHeight:y,effectiveFilterWidth:b,dilationHeight:A,dilationWidth:x,inShape:e,outShape:$,filterShape:t}}function X3(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,c,u,d,p]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,d,p]=e;else if(o==="channelsFirst")[l,p,c,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[A,x,y]=j2(n),[b,w,k]=j2(s),I=Pu(h,b),N=Pu(f,w),$=Pu(m,k),{padInfo:O,outDepth:D,outHeight:R,outWidth:T}=g$(r,c,u,d,A,x,y,I,N,$,i),F=a?g*p:g,U;return o==="channelsFirst"?U=[l,F,D,R,T]:o==="channelsLast"&&(U=[l,D,R,T,F]),{batchSize:l,dataFormat:o,inDepth:c,inHeight:u,inWidth:d,inChannels:p,outDepth:D,outHeight:R,outWidth:T,outChannels:F,padInfo:O,strideDepth:A,strideHeight:x,strideWidth:y,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:I,effectiveFilterHeight:N,effectiveFilterWidth:$,dilationDepth:b,dilationHeight:w,dilationWidth:k,inShape:e,outShape:U,filterShape:t}}function h$(e,t,n,s,r){s==null&&(s=H2(e,t,n));let a=e[0],o=e[1],i=il((a-t+2*s)/n+1,r),l=il((o-t+2*s)/n+1,r);return[i,l]}function f$(e,t,n,s,r,a){r==null&&(r=H2(e,t,s));let o=e[0],i=e[1],l=e[2],c=il((o-t+2*r)/s+1,a),u=il((i-t+2*r)/s+1,a),d=il((l-t+2*r)/s+1,a);return[c,u,d,n]}function H2(e,t,n,s=1){let r=Pu(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function lf(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function j2(e){return typeof e=="number"?[e,e,e]:e}function Pu(e,t){return t<=1?e:e+(e-1)*(t-1)}function m$(e,t,n,s,r,a,o,i,l){let c,u,d;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=h$([t,n],a,s,e,i);u=h[0],d=h[1]}else if(e==="same"){u=Math.ceil(t/s),d=Math.ceil(n/r);let p=Math.max(0,(u-1)*s+a-t),h=Math.max(0,(d-1)*r+o-n),f=Math.floor(p/2),m=p-f,g=Math.floor(h/2),A=h-g;c={top:f,bottom:m,left:g,right:A,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-a+1)/s),d=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];c={top:p,bottom:h,left:f,right:m,type:p===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=il((t-a+p+h)/s+1,i),d=il((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:d}}function g$(e,t,n,s,r,a,o,i,l,c,u){let d,p,h,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=f$([t,n,s,1],i,1,r,e,u);p=g[0],h=g[1],f=g[2]}else if(e==="same"){p=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(p-1)*r+i-t,g=(h-1)*a+l-n,A=(f-1)*o+c-s,x=Math.floor(m/2),y=m-x,b=Math.floor(g/2),w=g-b,k=Math.floor(A/2),I=A-k;d={top:b,bottom:w,left:k,right:I,front:x,back:y,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-c+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:p,outHeight:h,outWidth:f}}function il(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function No(e){let[t,n,s]=lf(e);return t===1&&n===1&&s===1}function Rr(e,t){return No(e)||No(t)}function K3(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function A$(e,t){let s={x:P(e,"x","reshape","string_or_numeric")},r={shape:t};return W.runKernel(Oi,s,r)}var G=V({reshape_:A$});function y$(e,t,n,s,r){let a=P(e,"x","avgPool","float32"),o=1;M(Rr(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),r!=null&&M(fn(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=W.runKernel(Ea,c,u);return d=pe(d,a.dtype),l?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var uf=V({avgPool_:y$});function x$(e,t,n,s,r,a="NDHWC"){let o=P(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(fn(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=W.runKernel(ed,c,u);return d=pe(d,i.dtype),l?G(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var q2=V({avgPool3d_:x$});function b$(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=Sd(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${a.dtype}. `)}),n.length===1)return Bn(n[0]);let s=n,r={axis:t};return W.runKernel(hi,s,r)}var vt=V({concat_:b$});function v$(e){let n={x:P(e,"x","sigmoid","float32")};return W.runKernel(uo,n)}var ds=V({sigmoid_:v$});function w$(e,t,n){let s=P(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return W.runKernel(Wi,r,a)}var De=V({slice_:w$});function k$(e){let n={x:P(e,"x","tanh","float32")};return W.runKernel(go,n)}var Fu=V({tanh_:k$});function S$(e,t,n,s,r,a){let o=P(e,"forgetBias","basicLSTMCell"),i=P(t,"lstmKernel","basicLSTMCell"),l=P(n,"lstmBias","basicLSTMCell"),c=P(s,"data","basicLSTMCell"),u=P(r,"c","basicLSTMCell"),d=P(a,"h","basicLSTMCell"),p=vt([c,d],1),h=Ue(p,i),f=le(h,l),m=f.shape[0],g=f.shape[1]/4,A=[m,g],x=De(f,[0,0],A),y=De(f,[0,g],A),b=De(f,[0,g*2],A),w=De(f,[0,g*3],A),k=le(L(ds(x),Fu(y)),L(u,ds(le(o,b)))),I=L(Fu(k),ds(w));return[k,I]}var I$=V({basicLSTMCell_:S$});function C$(e,t,n){let s=P(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);M(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(s.shape[0]%r==0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return W.runKernel(pi,a,o)}var cf=V({batchToSpaceND_:C$});function T$(e){let t;return e.rank===0||e.rank===1?t=G(e,[1,1,1,e.size]):e.rank===2?t=G(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function N$(e,t,n,s,r,a){a==null&&(a=.001);let o=P(e,"x","batchNorm"),i=P(t,"mean","batchNorm"),l=P(n,"variance","batchNorm"),c;r!=null&&(c=P(r,"scale","batchNorm"));let u;s!=null&&(u=P(s,"offset","batchNorm")),M(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:T$(o),scale:c,offset:u,mean:i,variance:l},h={varianceEpsilon:a},f=W.runKernel(Ua,p,h);return G(f,o.shape)}var Ou=V({batchNorm_:N$});function E$(e,t,n,s,r,a){let o=P(e,"x","batchNorm"),i=P(t,"mean","batchNorm"),l=P(n,"variance","batchNorm"),c;r!=null&&(c=P(r,"scale","batchNorm"));let u;return s!=null&&(u=P(s,"offset","batchNorm")),M(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),M(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),Ou(o,i,l,u,c,a)}var Z3=V({batchNorm2d_:E$});function R$(e,t,n,s,r,a){let o=P(e,"x","batchNorm"),i=P(t,"mean","batchNorm"),l=P(n,"variance","batchNorm"),c;r!=null&&(c=P(r,"scale","batchNorm"));let u;return s!=null&&(u=P(s,"offset","batchNorm")),M(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),M(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),Ou(o,i,l,u,c,a)}var Y3=V({batchNorm3d_:R$});function $$(e,t,n,s,r,a){let o=P(e,"x","batchNorm"),i=P(t,"mean","batchNorm"),l=P(n,"variance","batchNorm"),c;r!=null&&(c=P(r,"scale","batchNorm"));let u;return s!=null&&(u=P(s,"offset","batchNorm")),M(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),M(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),Ou(o,i,l,u,c,a)}var J3=V({batchNorm4d_:$$});function _$(e,t,n){let s=P(e,"x","bincount"),r=P(t,"weights","bincount");M(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return W.runKernel(xh,a,o)}var X2=V({bincount_:_$});function D$(e,t){let n=P(e,"s0","broadcastArgs","int32"),s=P(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return W.runKernel(bh,r)}var Q3=V({broadcastArgs_:D$});function P$(e,t){let n=P(e,"broadcastTo","x"),s=n.shape;if(t.some(c=>!(c>0)||c%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let c=n.shape.slice();for(;c.length<t.length;)c.unshift(1);n=G(n,c)}let r=n.shape,a=Array.from(t);for(let c=t.length-1;c>=0;c--)if(r[c]===t[c])a[c]=1;else if(n.shape[c]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((c,u)=>c>1?u:-1).filter(c=>c>=0).length===0)return Bn(n);let i={x:n},l={reps:a};return W.runKernel(qr,i,l)}var Nd=V({broadcastTo_:P$});function F$(e){let n={x:P(e,"x","ceil","float32")};return W.runKernel(_a,n)}var ev=V({ceil_:F$});function O$(e,t,n){let s=P(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return W.runKernel(jr,r,a)}var ps=V({clipByValue_:O$});function M$(e){return vt(e,0)}var tv=V({concat1d_:M$});function z$(e,t){return vt(e,t)}var Mu=V({concat2d_:z$});function L$(e,t){return vt(e,t)}var nv=V({concat3d_:L$});function B$(e,t){return vt(e,t)}var sv=V({concat4d_:B$});function W$(e,t,n,s,r="NHWC",a=[1,1],o){let i=P(e,"x","conv2d","float32"),l=P(t,"filter","conv2d","float32"),c=i,u=!1;i.rank===3&&(u=!0,c=G(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&M(fn(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d=r==="NHWC"?c.shape[3]:c.shape[1];M(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),M(Rr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let p={x:c,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=W.runKernel(Da,p,h);return u?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Eo=V({conv2d_:W$});function V$(e,t,n,s,r="NWC",a=1,o){let i=P(e,"x","conv1d"),l=P(t,"filter","conv1d"),c=i,u=!1;i.rank===2&&(u=!0,c=G(i,[1,i.shape[0],i.shape[1]])),M(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&M(fn(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(Rr(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),M(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=G(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=G(c,[c.shape[0],1,c.shape[1],c.shape[2]]),g=Eo(p,d,[1,n],s,"NHWC",[1,a],o);return u?G(g,[g.shape[2],g.shape[3]]):G(g,[g.shape[0],g.shape[2],g.shape[3]])}var K2=V({conv1d_:V$});function U$(e,t,n,s,r,a="NHWC",o){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,c=!1;t.rank===3&&(c=!0,l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),M(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];M(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),M(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&M(fn(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let p={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=W.runKernel(Pa,p,h);return c?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Z2=V({conv2DBackpropInput_:U$});function G$(e,t,n,s,r,a){let o=P(e,"x","conv2dTranspose"),i=P(t,"filter","conv2dTranspose");return Z2(n,o,i,s,r,"NHWC",a)}var Y2=V({conv2dTranspose_:G$});function H$(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=P(e,"x","conv3d"),i=P(t,"filter","conv3d"),l=o,c=!1;o.rank===4&&(c=!0,l=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),M(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),M(Rr(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let u={x:l,filter:i},d={strides:n,pad:s,dataFormat:r,dilations:a},p=W.runKernel(sd,u,d);return c?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var J2=V({conv3d_:H$});function j$(e,t,n,s,r){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],c=o.shape[4];M(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),M(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:o,filter:n},d={pad:r,strides:s,inputShape:a},p=W.runKernel(kh,u,d);return i?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var rv=V({conv3DBackpropInput_:j$});function q$(e,t,n,s,r){let a=P(e,"x","conv3dTranspose"),o=P(t,"filter","conv3dTranspose");return rv(n,a,o,s,r)}var av=V({conv3dTranspose_:q$});function X$(e){let n={x:P(e,"x","cos","float32")};return W.runKernel(Fa,n)}var df=V({cos_:X$});function K$(e){let n={x:P(e,"x","cosh","float32")};return W.runKernel(Oa,n)}var Q2=V({cosh_:K$});function Z$(e,t=0,n=!1,s=!1){let a={x:P(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return W.runKernel(fi,a,o)}var e1=V({cumsum_:Z$});function Y$(e,t,n,s=!1){let r=P(e,"x","denseBincount"),a=P(t,"weights","denseBincount");M(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),M(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return W.runKernel(Sh,o,i)}var ov=V({denseBincount_:Y$});function J$(e,t,n="NHWC"){let s=P(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];M(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),M(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${s.shape}`),M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${a} and ${t} for depthToSpace with input shape
${s.shape}`),M(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return W.runKernel(gi,i,l)}var iv=V({depthToSpace_:J$});function Q$(e,t,n,s,r="NHWC",a=[1,1],o){let i=P(e,"x","depthwiseConv2d","float32"),l=P(t,"filter","depthwiseConv2d","float32"),c=i,u=!1;i.rank===3&&(u=!0,c=G(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&M(fn(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:c,filter:l},p={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},h=W.runKernel(Ma,d,p);return u?G(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Ed=V({depthwiseConv2d_:Q$});function e_(e){let n={x:P(e,"x","diag")};return W.runKernel(Th,n)}var t_=V({diag_:e_});function n_(e,t,n,s,r=[1,1],a="NHWC"){let o=P(e,"x","dilation2d"),i=P(t,"filter","dilation2d");M(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),M(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),M(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,c=!1;o.rank===3&&(l=G(o,[1,o.shape[0],o.shape[1],o.shape[2]]),c=!0);let u={x:l,filter:i},d={strides:n,pad:s,dilations:r},p=W.runKernel(rd,u,d);return c?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var lv=V({dilation2d_:n_});function s_(e,t){let n=P(e,"a","equal","string_or_numeric"),s=P(t,"b","equal","string_or_numeric");[n,s]=Dt(n,s),mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ai,r)}var Ts=V({equal_:s_});function r_(e,t,n){let s=P(t,"a","where"),r=P(n,"b","where"),a=P(e,"condition","where","bool"),o=mt(mt(a.shape,s.shape),r.shape),i=Nd(a,o),l=Nd(s,o),c=Nd(r,o),u={condition:i,t:l,e:c};return W.runKernel(Bi,u)}var Wn=V({where_:r_});function a_(e){let n={x:P(e,"x","zerosLike")};return W.runKernel(Zi,n)}var et=V({zerosLike_:a_});function o_(e,t){let n=P(e,"a","div"),s=P(t,"b","div");[n,s]=Dt(n,s);let r=he(n,s),a=et(r),o=Ts(s,a);return Wn(o,a,r)}var uv=V({divNoNan_:o_});function i_(e,t){let n=P(e,"t1","dot"),s=P(t,"t2","dot");M((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(M(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=G(n,[1,-1]),i=G(s,[-1,1]),l=Ue(o,i);return G(l,[])}else if(n.rank===1&&s.rank===2){let o=G(n,[1,-1]),i=G(s,[s.shape[0],s.shape[1]]),l=Ue(o,i);return G(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=G(s,[-1,1]),i=Ue(n,o);return G(i,[i.size])}else{let o=G(s,[s.shape[0],s.shape[1]]);return Ue(n,o)}}var l_=V({dot_:i_});function u_(e,...t){let n=t.map((r,a)=>P(r,`tensors${a}`,"einsum")),s={equation:e};return W.runKernel(ad,n,s)}var cv=V({einsum_:u_});function c_(e){let n={x:P(e,"x","elu","float32")};return W.runKernel(La,n)}var Rd=V({elu_:c_});function d_(e){let t=P(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=pe(t,"float32"));let n={x:t};return W.runKernel(hu,n)}var dv=V({erf_:d_});function p_(e){let n={x:P(e,"x","exp")};return W.runKernel(Ba,n)}var Ns=V({exp_:p_});function h_(e,t=0){let n=P(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return W.runKernel(yi,s,r)}var Xt=V({expandDims_:h_});function f_(e){let n={x:P(e,"x","expm1")};return W.runKernel(xi,n)}var pv=V({expm1_:f_});function m_(e,t){let n=P(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return W.runKernel(qr,s,r)}var qs=V({tile_:m_});function g_(e,t,n,s="float32"){t==null&&(t=e);let r=ze([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=G(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return qs(Xt(o,0),[n[0],1,1]);if(n.length===2)return qs(Xt(Xt(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return qs(Xt(Xt(Xt(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var t1=V({eye_:g_});function zu(e,t,n){let s={shape:e,value:t,dtype:n};return W.runKernel(fu,{},s)}function A_(e){let n={x:P(e,"x","floor","float32")};return W.runKernel(Wa,n)}var $d=V({floor_:A_});function y_(e,t,n=0,s=0){let r=P(e,"x","gather"),a=P(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return W.runKernel(vi,o,i)}var Lu=V({gather_:y_});function x_(e,t){let n=P(e,"a","greater","string_or_numeric"),s=P(t,"b","greater","string_or_numeric");[n,s]=Dt(n,s),mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(ki,r)}var hs=V({greater_:x_});function b_(e,t){let n=P(e,"a","greaterEqual","string_or_numeric"),s=P(t,"b","greaterEqual","string_or_numeric");[n,s]=Dt(n,s),mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ga,r)}var ll=V({greaterEqual_:b_});function v_(e){let n={input:P(e,"input","imag")};return W.runKernel(od,n)}var pf=V({imag_:v_});function w_(e){let n={x:P(e,"x","isFinite")};return W.runKernel(mu,n)}var k_=V({isFinite_:w_});function S_(e){let n={x:P(e,"x","isInf")};return W.runKernel(gu,n)}var I_=V({isInf_:S_});function C_(e){let n={x:P(e,"x","isNaN")};return W.runKernel(Au,n)}var hv=V({isNaN_:C_});function T_(e,t=.2){let s={x:P(e,"x","leakyRelu")},r={alpha:t};return W.runKernel(Si,s,r)}var hf=V({leakyRelu_:T_});function N_(e,t){let n=P(e,"a","less","string_or_numeric"),s=P(t,"b","less","string_or_numeric");[n,s]=Dt(n,s),mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ii,r)}var n1=V({less_:N_});function E_(e,t){let n=P(e,"a","lessEqual","string_or_numeric"),s=P(t,"b","lessEqual","string_or_numeric");[n,s]=Dt(n,s),mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ci,r)}var ul=V({lessEqual_:E_});function fv(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return W.runKernel(Dh,{},s)}function R_(e,t=5,n=1,s=1,r=.5){let a=P(e,"x","localResponseNormalization");M(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${a.rank}.`),M(fn(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=G(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},c={depthRadius:t,bias:n,alpha:s,beta:r},u=W.runKernel(ld,l,c);return i?G(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var mv=V({localResponseNormalization_:R_});function $_(e){let n={x:P(e,"x","log","float32")};return W.runKernel(ja,n)}var Es=V({log_:$_});function __(e){let n={x:P(e,"x","log1p")};return W.runKernel(yu,n)}var ff=V({log1p_:__});function D_(e){return M(Ca(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=P(t,"x","tf.grad","string_or_numeric"),r=n!=null?P(n,"dy","tf.grad"):null;return W.tidy(()=>{let{value:a,grads:o}=W.gradients(()=>e(s),[s],r);return r!=null&&Mn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),mf(o),o[0]})}}function P_(e){return M(Ca(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=Sd(t,"args","tf.grads","string_or_numeric"),r=n!=null?P(n,"dy","tf.grads"):null;return W.tidy(()=>{let{value:a,grads:o}=W.gradients(()=>e(...s),s,r);return r!=null&&Mn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),mf(o),o})}}function F_(e){return M(Ca(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof Je,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof Je,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=W.gradients(()=>e(t),[t],n);return mf(s),{grad:s[0],value:r}}}function O_(e){return M(Ca(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(r=>r instanceof Je),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof Je,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=W.gradients(()=>e(...t),t,n);return n!=null&&Mn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),mf(s.grads),s}}function gv(e,t){M(Ca(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(c=>c instanceof wd),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in W.registeredVariables)t.push(W.registeredVariables[c])}let s=n?t.filter(c=>!c.trainable):null,r=t.length;t=t.filter(c=>c.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=W.gradients(e,t,null,a);M(i.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((c,u)=>{i[u]!=null&&(l[c.name]=i[u])}),s!=null&&s.forEach(c=>l[c.name]=null),{value:o,grads:l}}function $r(e){return W.customGrad(e)}function mf(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function M_(e){let n={x:P(e,"x","neg")};return W.runKernel(Ni,n)}var Ot=V({neg_:M_});function z_(e){let n={x:P(e,"x","softplus")};return W.runKernel(Tu,n)}var Bu=V({softplus_:z_});function L_(e){let t=P(e,"x","logSigmoid");return $r(s=>({value:Ot(Bu(Ot(s))),gradFunc:o=>L(o,ds(Ot(s)))}))(t)}var B_=V({logSigmoid_:L_});function W_(e,t=null,n=!1){let r={x:P(e,"x","max")},a={reductionIndices:t,keepDims:n};return W.runKernel(qa,r,a)}var An=V({max_:W_});function V_(e,t){let n=P(e,"a","sub"),s=P(t,"b","sub");[n,s]=Dt(n,s);let r={a:n,b:s};return W.runKernel(mo,r)}var me=V({sub_:V_});function U_(e,t=null,n=!1){let s=P(e,"x","sum");s.dtype==="bool"&&(s=pe(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return W.runKernel(po,r,a)}var Se=V({sum_:U_});function G_(e,t=-1){let n=P(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return $r((r,a)=>{let o=!0,i=An(r,t,!0),l=me(r,i),c=me(pe(l,"float32"),Es(Se(Ns(l),t,o)));return a([c]),{value:c,gradFunc:(d,p)=>{let[h]=p,f=!0,m=Ns(h);return me(d,L(Se(d,t,f),m))}}})(n)}var s1=V({logSoftmax_:G_});function r1(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function Av(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function yv(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function cl(e,t){let n=t.map(s=>1);return Av(e,n,t)}function H_(e,t,n){M(r1(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function xv(e,t){if(r1(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function a1(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function j_(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function q_(e,t=null,n=!1){let s=P(e,"x","logSumExp"),r=Gs(t,s.shape),a=An(s,r,!0),o=me(s,a),i=Ns(o),l=Se(i,r),c=Es(l),u=le(G(a,c.shape),c);if(n){let d=cl(u.shape,r);return G(u,d)}return u}var bv=V({logSumExp_:q_});function X_(e,t){let n=P(e,"a","logicalAnd","bool"),s=P(t,"b","logicalAnd","bool");mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ti,r)}var ur=V({logicalAnd_:X_});function K_(e){let n={x:P(e,"x","logicalNot","bool")};return W.runKernel(xu,n)}var gf=V({logicalNot_:K_});function Z_(e,t){let n=P(e,"a","logicalOr","bool"),s=P(t,"b","logicalOr","bool");mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(id,r)}var o1=V({logicalOr_:Z_});function Y_(e,t){let n=P(e,"a","logicalXor","bool"),s=P(t,"b","logicalXor","bool");return mt(n.shape,s.shape),ur(o1(e,t),gf(ur(e,t)))}var J_=V({logicalXor_:Y_});function Q_(e,t,n,s,r){let a=P(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),M(Rr(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),r!=null&&M(fn(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=W.runKernel(Ka,c,u);return l?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Af=V({maxPool_:Q_});function eD(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=P(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(fn(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=W.runKernel(ud,c,u);return l?G(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var i1=V({maxPool3d_:eD});function tD(e,t,n,s,r=!1){let o={x:P(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=W.runKernel(Mh,o,i);return{result:l[0],indexes:l[1]}}var vv=V({maxPoolWithArgmax_:tD});function nD(e,t){let n=P(e,"a","maximum"),s=P(t,"b","maximum");[n,s]=Dt(n,s),n.dtype==="bool"&&(n=pe(n,"int32"),s=pe(s,"int32")),mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Xa,r)}var Zr=V({maximum_:nD});function sD(e,t=null,n=!1){let r={x:P(e,"x","mean")},a={axis:t,keepDims:n};return W.runKernel(Za,r,a)}var Wt=V({mean_:sD});function Gt(e,t="float32"){if(t==="complex64"){let s=Gt(e,"float32"),r=Gt(e,"float32");return So(s,r)}let n=gh(Ut(e),t);return W.makeTensor(n,e,t)}function fs(e,t="float32"){if(t==="complex64"){let s=fs(e,"float32"),r=Gt(e,"float32");return So(s,r)}let n=n2(Ut(e),t);return W.makeTensor(n,e,t)}function rD(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=P(e,"x","meshgrid",e instanceof Je?e.dtype:"float32");if(t===void 0)return[s];let r=P(t,"y","meshgrid",t instanceof Je?t.dtype:"float32"),a=Ut(s.shape),o=Ut(r.shape);return n==="xy"?(s=G(s,[1,-1]),r=G(r,[-1,1]),[Ue(fs([o,1],s.dtype),s),Ue(r,fs([1,a],r.dtype))]):(s=G(s,[-1,1]),r=G(r,[1,-1]),[Ue(s,fs([1,o],s.dtype)),Ue(fs([a,1],r.dtype),r)])}function aD(e,t=null,n=!1){let r={x:P(e,"x","min")},a={axis:t,keepDims:n};return W.runKernel(Ya,r,a)}var Ro=V({min_:aD});function oD(e,t){let n=P(e,"a","minimum"),s=P(t,"b","minimum");[n,s]=Dt(n,s),n.dtype==="bool"&&(n=pe(n,"int32"),s=pe(s,"int32")),mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ja,r)}var _d=V({minimum_:oD});function iD(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=P(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)M(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),M(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return W.runKernel(Qa,o,a)}var wv=V({mirrorPad_:iD});function lD(e,t){let n=P(e,"a","mod"),s=P(t,"b","mod");[n,s]=Dt(n,s);let r={a:n,b:s};return W.runKernel(bu,r)}var Dd=V({mod_:lD});function uD(e){let t=P(e,"x","square"),n={};return W.runKernel("Square",{x:t},n)}var gt=V({square_:uD});function cD(e,t=null,n=!1){e=P(e,"x","moments");let s=Gs(t,e.shape),r=Wt(e,s,n),a=r.shape;n||(a=cl(r.shape,s));let o=gt(me(pe(e,"float32"),G(r,a))),i=Wt(o,s,n);return{mean:r,variance:i}}var yf=V({moments_:cD});function dD(e,t,n,s){let r=P(t,"data","multiRNNCell"),a=Sd(n,"c","multiRNNCell"),o=Sd(s,"h","multiRNNCell"),i=r,l=[];for(let d=0;d<e.length;d++){let p=e[d](i,a[d],o[d]);l.push(p[0]),l.push(p[1]),i=p[1]}let c=[],u=[];for(let d=0;d<l.length;d+=2)c.push(l[d]),u.push(l[d+1]);return[c,u]}var pD=V({multiRNNCell_:dD});function hD(e,t,n,s=!1){let r=P(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?G(r,[1,-1]):r},c={numSamples:t,seed:n,normalized:s},u=W.runKernel(zh,l,c);return o===1?G(u,[u.size]):u}var kv=V({multinomial_:hD});function fD(e,t){let n=P(e,"a","notEqual","string_or_numeric"),s=P(t,"b","notEqual","string_or_numeric");[n,s]=Dt(n,s),mt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ei,r)}var Wu=V({notEqual_:fD});function mD(e){let n={x:P(e,"x","onesLike")};return W.runKernel(_i,n)}var Rs=V({onesLike_:mD});function gD(e,t){let n=P(e,"v1","outerProduct"),s=P(t,"v2","outerProduct");M(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=G(n,[-1,1]),a=G(s,[1,-1]);return Ue(r,a)}var AD=V({outerProduct_:gD});function yD(e,t,n=0){let s=P(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return W.runKernel(to,a,r)}var Xs=V({pad_:yD});function xD(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Xs(e,[t],n)}var bD=V({pad1d_:xD});function vD(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Xs(e,t,n)}var wD=V({pad2d_:vD});function kD(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Xs(e,t,n)}var SD=V({pad3d_:kD});function ID(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Xs(e,t,n)}var CD=V({pad4d_:ID});function TD(e,t,n){let s=P(e,"x","spaceToBatchND");M(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return W.runKernel(Ui,r,a)}var xf=V({spaceToBatchND_:TD});function ND(e,t,n,s,r,a){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=P(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(Rr(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=q3(i.shape,t,a,r,s),u=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=RD([c.filterHeight,c.filterWidth],u):d=[[0,0],[0,0]];let p=u[0]===1&&u[1]===1,[h,f]=ED([c.inHeight,c.inWidth],u,d),m=p?s:"valid",g=p?i:xf(i,u,h),x=(n==="avg"?()=>uf(g,t,a,m):()=>Af(g,t,a,m))(),y=p?x:cf(x,u,f);return l?G(y,[y.shape[1],y.shape[2],y.shape[3]]):y}function ED(e,t,n){let s=n.map(u=>u[0]),r=n.map(u=>u[1]),a=e.concat(s,r),o=t.map((u,d)=>(u-a[d]%u)%u),i=r.map((u,d)=>u+o[d]),l=t.map((u,d)=>[s[d],i[d]]),c=t.map((u,d)=>[0,o[d]]);return[l,c]}function RD(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var $D=V({pool_:ND});function _D(e,t){let n=P(e,"base","pow"),s=P(t,"exp","pow");[n,s]=Dt(n,s);let r={a:n,b:s};return W.runKernel(no,r)}var $o=V({pow_:_D});function DD(e,t){let n=P(e,"x","prelu"),s=P(t,"alpha","prelu"),r={x:n,alpha:s};return W.runKernel(so,r)}var bf=V({prelu_:DD});function PD(e,t=null,n=!1){let s=P(e,"x","prod");s.dtype==="bool"&&(s=pe(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return W.runKernel(Fi,r,a)}var l1=V({prod_:PD});function FD(e,t,n){let s=Ut(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return W.makeTensor(r,e,n)}var OD=V({rand_:FD}),u1=li(ph()),c1=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=u1.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},MD=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=u1.alea(r.toString()),this.randn=new c1(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},zD=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=u1.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function LD(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new MD(t,n,s,r),o=ze(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var BD=V({randomGamma_:LD});function WD(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new c1(t,n,s,!1,r),o=ze(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var Sv=V({randomNormal_:WD});function VD(e,t=0,n=1,s="float32",r){let a=ze(e,s),o=new zD(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var Vu=V({randomUniform_:VD});function Uu(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return W.runKernel(wu,{},r)}function UD(e){let n={input:P(e,"input","real")};return W.runKernel(cd,n)}var Pd=V({real_:UD});function GD(e){let n={x:P(e,"x","reciprocal")};return W.runKernel(ku,n)}var Iv=V({reciprocal_:GD});function HD(e){let n={x:P(e,"x","relu")};return W.runKernel(ro,n)}var _r=V({relu_:HD});function jD(e){let n={x:P(e,"x","relu6")};return W.runKernel(oo,n)}var d1=V({relu6_:jD});function qD(e,t){let s={x:P(e,"x","reverse")},r={dims:t};return W.runKernel(Mi,s,r)}var $s=V({reverse_:qD});function XD(e){let t=P(e,"x","reverse");return M(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),$s(t,0)}var KD=V({reverse1d_:XD});function ZD(e,t){let n=P(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),$s(n,t)}var YD=V({reverse2d_:ZD});function JD(e,t){let n=P(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),$s(n,t)}var QD=V({reverse3d_:JD});function eP(e,t){let n=P(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),$s(n,t)}var tP=V({reverse4d_:eP});function nP(e){let n={x:P(e,"x","round")};return W.runKernel(zi,n)}var p1=V({round_:nP});function sP(e){let n={x:P(e,"x","rsqrt","float32")};return W.runKernel(io,n)}var h1=V({rsqrt_:sP});function Re(e,t){if((_n(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&_n(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Io(e,[],[],t)}function rP(e){let n={x:P(e,"x","selu")};return W.runKernel(Iu,n)}var f1=V({selu_:rP});function aP(e,t,n,s,r,a=[1,1],o="NHWC"){let i=P(e,"x","separableConv2d"),l=P(t,"depthwiseFilter","separableConv2d"),c=P(n,"pointwiseFilter","separableConv2d"),u=i,d=!1;if(i.rank===3&&(d=!0,u=G(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),M(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let p=l.shape[2],h=l.shape[3];M(c.shape[2]===p*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*h}, but got ${c.shape[2]}.`);let f=Ed(u,l,s,r,o,a),g=Eo(f,c,1,"valid",o);return d?G(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var Cv=V({separableConv2d_:aP});async function oP(e,t){let n=P(e,"x","setdiff1d"),s=P(t,"y","setdiff1d");M(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let u=0;u<r.length;u++)o.has(r[u])||i++;let l=new tn([i],n.dtype),c=new tn([i],"int32");for(let u=0,d=0;u<r.length;u++)o.has(r[u])||(l.values[d]=r[u],c.values[d]=u,d++);return[l.toTensor(),c.toTensor()]}var Tv=oP;function iP(e){let n={x:P(e,"x","sign")};return W.runKernel(Cu,n)}var Nv=V({sign_:iP});function lP(e){let n={x:P(e,"x","sin","float32")};return W.runKernel(lo,n)}var m1=V({sin_:lP});function uP(e){let n={x:P(e,"x","sinh")};return W.runKernel(Vi,n)}var g1=V({sinh_:uP});function cP(e,t,n){let s=P(e,"x","slice1d");return M(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),De(s,[t],[n])}var vf=V({slice1d_:cP});function dP(e,t,n){let s=P(e,"x","slice2d");return M(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),De(s,t,n)}var A1=V({slice2d_:dP});function pP(e,t,n){let s=P(e,"x","slice3d");return M(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),De(s,t,n)}var dl=V({slice3d_:pP});function hP(e,t,n){let s=P(e,"x","slice4d");return M(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),De(s,t,n)}var pl=V({slice4d_:hP});function fP(e,t=-1){let n=P(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return W.runKernel(ho,s,r)}var Gu=V({softmax_:fP});function mP(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return W.runKernel($h,t)}var wf=V({fft_:mP});function gP(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return W.runKernel(_h,t)}var Fd=V({ifft_:gP});function AP(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=G(e,[n,t]);s=Fd(r)}else{let r=[n,2*(t-1)],a=G(Pd(e),[n,t]),o=G(pf(e),[n,t]),i=$s(De(a,[0,1],[n,t-2]),1),l=L($s(De(o,[0,1],[n,t-2]),1),Re(-1)),c=vt([a,i],1),u=vt([o,l],1),d=G(So(c,u),[r[0],r[1]]);s=Fd(d)}if(s=Pd(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=G(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var y1=V({irfft_:AP});function yP(e,t,n=0){let r={x:P(e,"x","split")},a={numOrSizeSplits:t,axis:n};return W.runKernel(Gi,r,a)}var sn=V({split_:yP});function xP(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=De(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=vt([e,Gt(f)],e.shape.length-1),n=t}else r=e;let a=et(r),o=G(So(r,a),[s,n]),i=wf(o),l=Math.floor(n/2)+1,c=Pd(i),u=pf(i),d=sn(c,[l,n-l],c.shape.length-1),p=sn(u,[l,n-l],u.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,G(So(d[0],p[0]),h)}var kf=V({rfft_:xP});function bP(e){let n={x:P(e,"x","sqrt","float32")};return W.runKernel(co,n)}var Dn=V({sqrt_:bP});function vP(e,t){let n=P(e,"a","squaredDifference"),s=P(t,"b","squaredDifference");[n,s]=Dt(n,s),mt(n.shape,s.shape);let r={a:n,b:s},a={};return W.runKernel(fo,r,a)}var x1=V({squaredDifference_:vP});function wP(e,t){let n=P(e,"x","squeeze");return G(n,I5(n.shape,t).newShape)}var ot=V({squeeze_:wP});function kP(e,t=0){let n=Sd(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return W.runKernel(Pi,s,r)}var yn=V({stack_:kP});function SP(e,t=0){let s={x:P(e,"x","step")},r={alpha:t};return W.runKernel(yo,s,r)}var Od=V({step_:SP});function IP(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let u={x:P(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return W.runKernel(Hi,u,d)}var Ev=V({stridedSlice_:IP});function CP(e){let n={x:P(e,"x","tan","float32")};return W.runKernel(ji,n)}var Rv=V({tan_:CP});function Kt(e,t){ui(e);let n=Nr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Io(e,null,n,t)}function cr(e,t,n){if(ui(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=Nr(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Io(e,t,s,n)}function TP(e,t,n){if(ui(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=Nr(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Io(e,t,s,n)}function NP(e,t,n){if(ui(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=Nr(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Io(e,t,s,n)}function EP(e,t,n){if(ui(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=Nr(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,Io(e,t,s,n)}function RP(e,t=1,n=!0){let s=P(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=W.runKernel(qi,a,o);return{values:i,indices:l}}var $v=V({topk_:RP});function $P(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new c1(t,n,s,!0,r),o=ze(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var Sf=V({truncatedNormal_:$P});function _P(e,t=0){let n=P(e,"x","unique","string_or_numeric");M(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=W.runKernel(qh,s,r);return{values:a,indices:o}}var b1=V({unique_:_P});function DP(e,t,n){let s=P(e,"x","unsortedSegmentSum"),r=P(t,"segmentIds","unsortedSegmentSum","int32");M(fn(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return W.runKernel(hd,a,o)}var _v=V({unsortedSegmentSum_:DP});function PP(e,t=0){let n=P(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return W.runKernel(Ki,s,r)}var rs=V({unstack_:PP});function Dv(e,t=!0,n,s){return W.makeVariable(e,t,n,s)}function Pv(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=ze(e,"int32"),r=ze([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function FP(e){let t=P(e,"condition","whereAsync","bool"),n=await t.data(),s=Pv(t.shape,n);return e!==t&&t.dispose(),s}var v1=FP;async function OP(e,t,n){let s=P(e,"tensor","boolMask"),r=P(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;M(o>0,()=>"mask cannot be scalar"),Mn(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let c=i.slice(0,a).concat([l],i.slice(a+o)),u=G(s,c),d=G(r,[-1]),p=await v1(d),h=ot(p,[1]),f=Lu(u,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),u.dispose(),d.dispose(),p.dispose(),f}var MP=OP;function zP(e,t="euclidean",n=null,s=!1){e=P(e,"x","norm");let r=Fv(e,t,n),a=r.shape;if(s){let o=Gs(n,e.shape);a=cl(r.shape,o)}return G(r,a)}function Fv(e,t,n=null){if(e.rank===0)return nn(e);if(e.rank!==1&&n===null)return Fv(G(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Se(nn(e),n);if(t===1/0)return An(nn(e),n);if(t===-1/0)return Ro(nn(e),n);if(t==="euclidean"||t===2)return Dn(Se($o(nn(e),Re(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return An(Se(nn(e),n[0]),n[1]-1);if(t===1/0)return An(Se(nn(e),n[1]),n[0]);if(t===-1/0)return Ro(Se(nn(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Dn(Se(gt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var w1=V({norm_:zP});function LP(e,t,n,s,r=!0){let a=P(e,"v","movingAverage"),o=P(t,"x","movingAverage"),i=P(n,"decay","movingAverage");j5(a,o),M(Sa(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Re(1),c=me(l,i),u=L(me(o,a),c);if(r){M(s!=null,()=>"When using zeroDebias: true, step is required.");let d=P(s,"step","movingAverage");u=he(u,me(l,$o(i,d)))}return le(a,u)}var BP=V({movingAverage_:LP});function WP(e,t,n){let s=P(e,"indices","scatterND","int32"),r=P(t,"updates","scatterND");M2(r,s,n);let a={indices:s,updates:r},o={shape:n};return W.runKernel(Li,a,o)}var Ov=V({scatterND_:WP});function VP(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function UP(e,t,n,s=0){let r=P(e,"sparseIndices","sparseToDense","int32"),a=P(t,"sparseValues","sparseToDense"),o=P(s,"defaultValue","sparseToDense",a.dtype);VP(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return W.runKernel(dd,i,l)}var k1=V({sparseToDense_:UP});function GP(e,t){let n=P(t,"indices","gatherND","int32"),r={params:P(e,"x","gatherND","string_or_numeric"),indices:n};return W.runKernel(wi,r)}var Mv=V({gatherND_:GP});function HP(e,t){if(t==null)return e.shape.slice();if(Sa(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function jP(e,t,n,s){let r=P(e,"x","dropout");if(M(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Je?r.clone():r;let a=HP(r,n),o=1-t,i=he($d(le(Vu(a,0,1,"float32",s),o)),o);return L(r,i)}var zv=V({dropout_:jP});function Lv(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function S1(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return Kt(r,"float32")}async function qP(e,t,n=1){let s=P(e,"predictions","inTopK"),r=P(t,"targets","inTopK");M(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),M(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),Mn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];M(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,c]=[o.length/a,a],u=C5("bool",l);for(let d=0;d<l;d++){let p=d*c,h=o.subarray(p,p+c),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),u[d]=0;for(let m=0;m<n;m++)if(f[m].index===i[d]){u[d]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),Pt(u,r.shape,"bool")}var XP=qP,_o={};Oe(_o,{conv2d:()=>YP,depthwiseConv2d:()=>tF,matMul:()=>sF});function KP(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=a==="NHWC"?i.shape[3]:i.shape[1],u=a==="NHWC"?l.shape[3]:l.shape[1];M(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),M(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),o!=null&&M(fn(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:i,dy:l},p={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return W.runKernel(vh,d,p)}var I1=V({conv2DBackpropFilter_:KP});function If(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,Od(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Cf(e,t){let n=t,s=qt(e.shape,t.shape);return s.length>0&&(n=Se(n,s)),G(n,e.shape)}function Tf(e,t,n,s){if(t==="linear")return e;if(t==="relu")return _r(e);if(t==="elu")return Rd(e);if(t==="relu6")return d1(e);if(t==="prelu")return bf(e,n);if(t==="leakyrelu")return hf(e,s);if(t==="sigmoid")return ds(e);throw new Error(`Unknown fused activation ${t}.`)}var Nf=(e,t)=>!(e>0)||t==="linear";function ZP({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",Nf(W.state.gradientDepth,l)===!1){let w=Eo(e,t,n,s,r,a,o);return i!=null&&(w=le(w,i)),Tf(w,l,c,u)}let d=P(e,"x","conv2d","float32"),p=P(t,"filter","conv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=G(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),M(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),o!=null&&M(fn(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(h.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${p.shape[2]}.`),M(Rr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let m=Td(h.shape,p.shape,n,a,s,o),g;i!=null&&(g=P(i,"bias","fused conv2d"),[g]=Dt(g,d),mt(m.outShape,g.shape));let A;c!=null&&(A=P(c,"prelu weights","fused conv2d"));let x=(w,k)=>{let[I,N,$,O]=k,D=If(w,$,l);M(No(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let R=Z2(N.shape,D,I,n,s),T=I1(N,D,I.shape,n,s),F=[R,T];if(O!=null){let U=Cf(O,D);F.push(U)}return F},y={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?$r((k,I,N)=>{let $=W.runKernel(bo,y,b);return N([I,k,$]),f&&($=G($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:x}})(h,p):$r((k,I,N,$)=>{let O=W.runKernel(bo,y,b);return $([I,k,O,N]),f&&(O=G(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:x}})(h,p,g)}var YP=V({fusedConv2d_:ZP});function JP(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:i,dy:l},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return W.runKernel(Ih,c,u)}var Bv=V({depthwiseConv2dNativeBackpropFilter_:JP});function QP(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:i,filter:n},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},d=W.runKernel(Ch,c,u);return l?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Wv=V({depthwiseConv2dNativeBackpropInput_:QP});function eF({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(Nf(W.state.gradientDepth,l)===!1){let w=Ed(e,t,n,s,r,a,o);return i!=null&&(w=le(w,i)),Tf(w,l,c,u)}let d=P(e,"x","depthwiseConv2d","float32"),p=P(t,"filter","depthwiseConv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=G(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),M(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),M(h.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),a==null&&(a=[1,1]),M(Rr(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&M(fn(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${s}.`);let m=Td(h.shape,p.shape,n,a,s,o,!0),g;i!=null&&(g=P(i,"bias","fused conv2d"),[g]=Dt(g,d),mt(m.outShape,g.shape));let A;c!=null&&(A=P(c,"prelu weights","fused depthwiseConv2d"));let x=(w,k)=>{M(No(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[I,N,$,O]=k,D=If(w,$,l),R=Wv(N.shape,D,I,n,s,a,o),T=Bv(N,D,I.shape,n,s,a,o);if(O!=null){let F=Cf(g,D);return[R,T,F]}return[R,T]},y={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?$r((k,I,N)=>{let $=W.runKernel(vo,y,b);return N([I,k,$]),f&&($=G($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:x}})(h,p):$r((k,I,N,$)=>{let O=W.runKernel(vo,y,b);return $([I,k,O,N]),f&&(O=G(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:x}})(h,p,g)}var tF=V({fusedDepthwiseConv2d_:eF});function nF({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(Nf(W.state.gradientDepth,a)===!1){let D=Ue(e,t,n,s);return r!=null&&(D=le(D,r)),Tf(D,a,o,i)}let l=P(e,"a","fused matMul"),c=P(t,"b","fused matMul");[l,c]=Dt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=s?c.shape[c.rank-1]:c.shape[c.rank-2],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?c.shape[c.rank-2]:c.shape[c.rank-1],f=l.shape.slice(0,-2),m=c.shape.slice(0,-2),g=Ut(f),A=Ut(m);M(u===d,()=>`Error in fused matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${s} must match.`);let y=mt(l.shape.slice(0,-2),c.shape.slice(0,-2)).concat([p,h]),b=n?G(l,[g,u,p]):G(l,[g,p,u]),w=s?G(c,[A,h,d]):G(c,[A,d,h]),k;r!=null&&(k=P(r,"bias","fused matMul"),[k]=Dt(k,l),mt(y,k.shape));let I;o!=null&&(I=P(o,"prelu weights","fused matMul"));let N=(D,R)=>{let[T,F,U,j]=R,z=If(G(D,U.shape),U,a),X,Z;if(!n&&!s?(X=Ue(z,F,!1,!0),Z=Ue(T,z,!0,!1)):!n&&s?(X=Ue(z,F,!1,!1),Z=Ue(z,T,!0,!1)):n&&!s?(X=Ue(F,z,!1,!0),Z=Ue(T,z,!1,!1)):(X=Ue(F,z,!0,!0),Z=Ue(z,T,!0,!0)),r!=null){let J=Cf(j,z);return[X,Z,J]}else return[X,Z]},$={a:b,b:w,bias:k,preluActivationWeights:I},O={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?$r((R,T,F)=>{let U=W.runKernel(xo,$,O);return F([R,T,U]),{value:G(U,y),gradFunc:N}})(b,w):$r((R,T,F,U)=>{let j=W.runKernel(xo,$,O);return U([R,T,j,F]),{value:G(j,y),gradFunc:N}})(b,w,k)}var sF=V({fusedMatMul_:nF});function rF(e){return S1(e,.54,.46)}var aF=V({hammingWindow_:rF});function oF(e){return S1(e,.5,.5)}var Vv=V({hannWindow_:oF});function iF(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(De(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=vt([De(e,a,t-i),zu([i],r)]);o.push(l),a+=n}return o.length===0?cr([],[0,t]):G(vt(o),[o.length,t])}var Uv=V({frame_:iF});function lF(e,t,n,s,r=Vv){s==null&&(s=Lv(t));let a=Uv(e,t,n),o=L(a,r(t));return kf(o,s)}var uF=V({stft_:lF});function cF(e,t,n,s,r="bilinear",a=0){let o=P(e,"image","cropAndResize"),i=P(t,"boxes","cropAndResize","float32"),l=P(n,"boxInd","cropAndResize","int32"),c=i.shape[0];M(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${i.shape}.`),M(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${i.shape}.`),M(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),M(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),M(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let u={image:o,boxes:i,boxInd:l},d={method:r,extrapolationValue:a,cropSize:s};return W.runKernel(mi,u,d)}var dF=V({cropAndResize_:cF});function pF(e){let t=P(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return W.runKernel(bi,n,{})}var hF=V({flipLeftRight_:pF});function fF(e){let t=P(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];M(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),M(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,qs(t,r)}var mF=V({grayscaleToRGB_:fF});function gF(e,t,n=0,s=.5){let r=P(e,"image","rotateWithOffset","float32");M(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return W.runKernel(Yi,a,o)}var AF=V({rotateWithOffset_:gF});function Hu(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),M(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),M(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function yF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=P(e,"boxes","nonMaxSuppression","float32"),o=P(t,"scores","nonMaxSuppression","float32"),i=Hu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return W.runKernel(Ri,{boxes:a,scores:o},l)}var xF=V({nonMaxSuppression_:yF});function bF(e,t,n){let s=vF(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function vF(e,t,n){return kF(e,t,n||wF)}function wF(e,t){return e>t?1:e<t?-1:0}function kF(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function Gv(e,t,n,s,r){return C1(e,t,n,s,r,0)}function Hv(e,t,n,s,r,a){return C1(e,t,n,s,r,0,!1,a,!0)}function jv(e,t,n,s,r,a){return C1(e,t,n,s,r,a,!0)}function C1(e,t,n,s,r,a,o=!1,i=!1,l=!1){let c=[];for(let g=0;g<t.length;g++)t[g]>r&&c.push({score:t[g],boxIndex:g,suppressBeginIndex:0});c.sort(qv);let u=a>0?-.5/a:0,d=[],p=[];for(;d.length<n&&c.length>0;){let g=c.pop(),{score:A,boxIndex:x,suppressBeginIndex:y}=g;if(A<r)break;let b=!1;for(let w=d.length-1;w>=y;--w){let k=SF(e,x,d[w]);if(k>=s){b=!0;break}if(g.score=g.score*IF(s,u,k),g.score<=r)break}g.suppressBeginIndex=d.length,b||(g.score===A?(d.push(x),p.push(g.score)):g.score>r&&bF(c,g,qv))}let h=d.length,f=n-h;i&&f>0&&(d.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=p),l&&(m.validOutputs=h),m}function SF(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),c=Math.min(r[0],r[2]),u=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),p=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(d-c)*(p-u);if(h<=0||f<=0)return 0;let m=Math.max(a,c),g=Math.max(o,u),A=Math.min(i,d),x=Math.min(l,p),y=Math.max(A-m,0)*Math.max(x-g,0);return y/(h+f-y)}function IF(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function qv(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function CF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=P(e,"boxes","nonMaxSuppressionAsync"),o=P(t,"scores","nonMaxSuppressionAsync"),i=Hu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),c=l[0],u=l[1],{selectedIndices:d}=Gv(c,u,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Kt(d,"int32")}var TF=CF;function NF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=P(e,"boxes","nonMaxSuppression"),i=P(t,"scores","nonMaxSuppression"),l=Hu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c={boxes:o,scores:i},u={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},d=W.runKernel($i,c,u);return{selectedIndices:d[0],selectedScores:d[1]}}var EF=V({nonMaxSuppressionWithScore_:NF});async function RF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=P(e,"boxes","nonMaxSuppressionAsync"),i=P(t,"scores","nonMaxSuppressionAsync"),l=Hu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c=await Promise.all([o.data(),i.data()]),u=c[0],d=c[1],{selectedIndices:p,selectedScores:h}=jv(u,d,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Kt(p,"int32"),selectedScores:Kt(h)}}var $F=RF;function _F(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=P(e,"boxes","nonMaxSuppression"),i=P(t,"scores","nonMaxSuppression"),l=Hu(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,p={boxes:o,scores:i},h={maxOutputSize:c,iouThreshold:u,scoreThreshold:d,padToMaxOutputSize:a},f=W.runKernel(vu,p,h);return{selectedIndices:f[0],validOutputs:f[1]}}var DF=V({nonMaxSuppressionPadded_:_F});async function PF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=P(e,"boxes","nonMaxSuppressionAsync"),i=P(t,"scores","nonMaxSuppressionAsync"),l=Hu(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,[p,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=Hv(p,h,c,u,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Kt(f,"int32"),validOutputs:Re(m,"int32")}}var FF=PF;function OF(e,t,n=!1,s=!1){let r=P(e,"images","resizeBilinear");M(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=G(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=W.runKernel(ao,i,l);return o?G(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var MF=V({resizeBilinear_:OF});function zF(e,t,n=!1,s=!1){let r=P(e,"images","resizeNearestNeighbor");M(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=G(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=W.runKernel(Su,i,l);return o?G(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var LF=V({resizeNearestNeighbor_:zF});function BF(e,t="binary",n=!1,s=.5){let r=P(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],c=L(Kt([s]),255),u,d,p,h;if(M(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),M(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),M(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),M(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[u,d,p]=sn(r,[1,1,1],-1);let g=L(u,a),A=L(d,o),x=L(p,i);h=le(le(g,A),x)}else h=e;if(t==="otsu"){let g=X2(pe(p1(h),"int32"),Pt([]),256);c=WF(g,l)}let f=n?ul(h,c):hs(h,c);return pe(L(f,255),"int32")}function WF(e,t){let n=Kt([-1]),s=Kt([0]),r=Kt([0]),a,o,i,l,c,u;for(let d=0;d<e.size-1;d++){a=De(e,0,d+1),o=De(e,d+1),c=he(Se(a),t),u=he(Se(o),t);let p=Se(L(a,Uu(0,a.size)));i=he(p,Se(a));let h=zu(o.shape,a.size),f=le(Uu(0,o.size),h),m=L(o,f);l=he(Se(m),Se(o));let g=me(i,l),A=me(i,l),x=L(c,u);r=L(L(x,g),A);let y=hs(r,s);s=Wn(y,r,s),n=Wn(y,Kt([d]),n)}return n}var VF=V({threshold_:BF});function UF(e,t,n="nearest",s="constant",r=0,a){let o=P(e,"image","transform","float32"),i=P(t,"transforms","transform","float32");M(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},c={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return W.runKernel(Xi,l,c)}var GF=V({transform_:UF});function HF(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=P(e,"a","bandPart");M(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=G(Uu(0,a,1,"int32"),[-1,1]),l=Uu(0,o,1,"int32"),c=me(i,l),u=ur(ul(c,Re(+t,"int32")),ll(c,Re(-n,"int32"))),d=Gt([a,o],s.dtype);return G(yn(rs(G(s,[-1,a,o])).map(p=>Wn(u,p,d))),r)}var jF=V({bandPart_:HF});function qF(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)M(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=sn(e,e.shape[0],0).map(r=>ot(r,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(W.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=L(Se(L(n[o],a)),n[o]);a=me(a,i)}return he(a,w1(a,"euclidean"))}));return t?yn(n,0):n}var XF=V({gramSchmidt_:qF});function KF(e,t=!1){if(M(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Xv(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),s=rs(G(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[c,u]=Xv(l,t);r.push(c),a.push(u)});let o=G(yn(r,0),e.shape),i=G(yn(a,0),e.shape);return[o,i]}}function Xv(e,t=!1){return W.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=t1(n),a=Bn(e),o=cr([[1]],[1,1]),i=Bn(o),l=n>=s?s:n;for(let c=0;c<l;++c){let u=a,d=i,p=r;[i,a,r]=W.tidy(()=>{let h=De(a,[c,c],[n-c,1]),f=w1(h),m=De(a,[c,c],[1,1]),g=Wn(hs(m,0),cr([[-1]]),cr([[1]])),A=me(m,L(g,f)),x=he(h,A);x.shape[0]===1?i=Bn(o):i=vt([o,De(x,[1,0],[x.shape[0]-1,x.shape[1]])],0);let y=Ot(he(Ue(g,A),f)),b=De(a,[c,0],[n-c,s]),w=L(y,i),k=Qe(i);if(c===0)a=me(b,Ue(w,Ue(k,b)));else{let $=me(b,Ue(w,Ue(k,b)));a=vt([De(a,[0,0],[c,s]),$],0)}let I=Qe(w),N=De(r,[0,c],[n,r.shape[1]-c]);if(c===0)r=me(N,Ue(Ue(N,i),I));else{let $=me(N,Ue(Ue(N,i),I));r=vt([De(r,[0,0],[n,c]),$],1)}return[i,a,r]}),ee([u,d,p])}return!t&&n>s&&(r=De(r,[0,0],[n,s]),a=De(a,[0,0],[s,s])),[r,a]})}var ZF=V({qr_:KF}),Vn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Vn||(Vn={}));function YF(e,t,n=Vn.SUM_BY_NONZERO_WEIGHTS){let s=P(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=P(t,"weights","computeWeightedLoss"));let a=r==null?s:L(s,r);if(n===Vn.NONE)return a;if(n===Vn.SUM)return Se(a);if(n===Vn.MEAN){if(r==null)return Wt(a);{let o=s.size/r.size,i=he(Se(a),Se(r));return o>1?he(i,Re(o)):i}}if(n===Vn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return he(Se(a),Re(s.size));{let o=L(r,fs(s.shape)),i=pe(Se(Wu(o,Re(0))),"float32");return he(Se(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Yr=V({computeWeightedLoss_:YF});function JF(e,t,n,s=Vn.SUM_BY_NONZERO_WEIGHTS){let r=P(e,"labels","absoluteDifference"),a=P(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=P(n,"weights","absoluteDifference")),Mn(r.shape,a.shape,"Error in absoluteDifference: ");let i=nn(me(r,a));return Yr(i,o,s)}var QF=V({absoluteDifference_:JF});function eO(e,t,n,s,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=P(e,"labels","cosineDistance"),o=P(t,"predictions","cosineDistance"),i=null;s!=null&&(i=P(s,"weights","cosineDistance")),Mn(a.shape,o.shape,"Error in cosineDistance: ");let l=Re(1),c=me(l,Se(L(a,o),n,!0));return Yr(c,i,r)}var tO=V({cosineDistance_:eO});function nO(e,t,n,s=Vn.SUM_BY_NONZERO_WEIGHTS){let r=P(e,"labels","hingeLoss"),a=P(t,"predictions","hingeLoss"),o=null;n!=null&&(o=P(n,"weights","hingeLoss")),Mn(r.shape,a.shape,"Error in hingeLoss: ");let i=Re(1);r=me(L(Re(2),r),i);let l=_r(me(i,L(r,a)));return Yr(l,o,s)}var sO=V({hingeLoss_:nO});function rO(e,t,n,s=1,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=P(e,"labels","huberLoss"),o=P(t,"predictions","huberLoss"),i=null;n!=null&&(i=P(n,"weights","huberLoss")),Mn(a.shape,o.shape,"Error in huberLoss: ");let l=Re(s),c=nn(me(o,a)),u=_d(c,l),d=me(c,u),p=le(L(Re(.5),gt(u)),L(l,d));return Yr(p,i,r)}var aO=V({huberLoss_:rO});function oO(e,t,n,s=1e-7,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=P(e,"labels","logLoss"),o=P(t,"predictions","logLoss"),i=null;n!=null&&(i=P(n,"weights","logLoss")),Mn(a.shape,o.shape,"Error in logLoss: ");let l=Re(1),c=Re(s),u=Ot(L(a,Es(le(o,c)))),d=L(me(l,a),Es(le(me(l,o),c))),p=me(u,d);return Yr(p,i,r)}var iO=V({logLoss_:oO});function lO(e,t,n,s=Vn.SUM_BY_NONZERO_WEIGHTS){let r=P(e,"labels","meanSquaredError"),a=P(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=P(n,"weights","meanSquaredError")),Mn(r.shape,a.shape,"Error in meanSquaredError: ");let i=x1(r,a);return Yr(i,o,s)}var uO=V({meanSquaredError_:lO});function cO(e,t){let n=P(e,"labels","sigmoidCrossEntropyWithLogits"),s=P(t,"logits","sigmoidCrossEntropyWithLogits");Mn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=_r(s),a=L(s,n),o=ff(Ns(Ot(nn(s))));return le(me(r,a),o)}function dO(e,t,n,s=0,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=P(e,"multiClassLabels","sigmoidCrossEntropy"),o=P(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=P(n,"weights","sigmoidCrossEntropy")),Mn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let c=Re(s),u=Re(1),d=Re(.5);a=le(L(a,me(u,c)),L(d,c))}let l=cO(a,o);return Yr(l,i,r)}var pO=V({sigmoidCrossEntropy_:dO});function hO(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return $r((r,a,o)=>{let l=bv(a,[n],!0),c=me(pe(a,"float32"),l);o([r,c]);let u=Ot(L(c,r));return{value:Se(u,[n]),gradFunc:(h,f)=>{let[m,g]=f,A=cl(h.shape,[n]);return[L(G(h,A),me(pe(m,"float32"),Ns(g))),L(G(h,A),me(Ns(g),pe(m,"float32")))]}}})(e,t)}function fO(e,t,n,s=0,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=P(e,"onehotLabels","softmaxCrossEntropy"),o=P(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=P(n,"weights","softmaxCrossEntropy")),Mn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let c=Re(s),u=Re(1),d=Re(a.shape[1]);a=le(L(a,me(u,c)),he(c,d))}let l=hO(a,o);return Yr(l,i,r)}var mO=V({softmaxCrossEntropy_:fO});function gO(e,t,n,s){let r=P(e,"indices","sparseFillEmptyRows"),a=P(t,"values","sparseFillEmptyRows"),o=P(n,"denseShape","sparseFillEmptyRows"),i=P(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},c=W.runKernel(Wh,l);return{outputIndices:c[0],outputValues:c[1],emptyRowIndicator:c[2],reverseIndexMap:c[3]}}var AO=V({sparseFillEmptyRows_:gO});function yO(e,t,n){let s=P(e,"inputIndices","sparseReshape"),r=P(t,"inputShape","sparseReshape"),a=P(n,"newShape","sparseReshape");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=W.runKernel(Vh,o);return{outputIndices:i[0],outputShape:i[1]}}var xO=V({sparseReshape_:yO});function bO(e,t,n){let s=P(e,"data","sparseSegmentMean"),r=P(t,"indices","sparseSegmentMean"),a=P(n,"segmentIds","sparseSegmentMean");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return W.runKernel(Uh,o)}var vO=V({sparseSegmentMean_:bO});function wO(e,t,n){let s=P(e,"data","sparseSegmentSum"),r=P(t,"indices","sparseSegmentSum"),a=P(n,"segmentIds","sparseSegmentSum");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return W.runKernel(Gh,o)}var kO=V({sparseSegmentSum_:wO});function SO(e,t,n,s,r,a,o,i){let l=P(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let c=P(t,"dataSplits","stringNGrams");if(c.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let u={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:c},p=W.runKernel(pd,d,u);return{nGrams:p[0],nGramsSplits:p[1]}}var IO=V({stringNGrams_:SO});function CO(e,t,n=!0){let s=P(e,"input","stringSplit","string"),r=P(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=W.runKernel(Hh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var TO=V({stringSplit_:CO});function NO(e,t){let n=P(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return W.runKernel(jh,r,s)}var EO=V({stringToHashBucketFast_:NO}),RO={fft:wf,ifft:Fd,rfft:kf,irfft:y1},$O={hammingWindow:aF,hannWindow:Vv,frame:Uv,stft:uF},$e={flipLeftRight:hF,grayscaleToRGB:mF,resizeNearestNeighbor:LF,resizeBilinear:MF,rotateWithOffset:AF,cropAndResize:dF,nonMaxSuppression:xF,nonMaxSuppressionAsync:TF,nonMaxSuppressionWithScore:EF,nonMaxSuppressionWithScoreAsync:$F,nonMaxSuppressionPadded:DF,nonMaxSuppressionPaddedAsync:FF,threshold:VF,transform:GF},Kv={bandPart:jF,gramSchmidt:XF,qr:ZF},_O={absoluteDifference:QF,computeWeightedLoss:Yr,cosineDistance:tO,hingeLoss:sO,huberLoss:aO,logLoss:iO,meanSquaredError:uO,sigmoidCrossEntropy:pO,softmaxCrossEntropy:mO},Md={sparseFillEmptyRows:AO,sparseReshape:xO,sparseSegmentMean:vO,sparseSegmentSum:kO},Ef={stringNGrams:IO,stringSplit:TO,stringToHashBucketFast:EO},Jr=class extends D3{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return ee(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return gv(e,t)}dispose(){this.iterations_!=null&&ee(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Re(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Jr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Rf=class extends Jr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:q(()=>et(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:q(()=>et(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;q(()=>{let c=le(L(i,this.rho),L(gt(o),1-this.rho)),u=L(he(Dn(le(l,this.epsilon)),Dn(le(i,this.epsilon))),o),d=le(L(l,this.rho),L(gt(u),1-this.rho));i.assign(c),l.assign(d);let p=le(L(u,-this.learningRate),r);r.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(ee(this.accumulatedGrads.map(e=>e.variable)),ee(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Rf.className="Adadelta";To(Rf);var $f=class extends Jr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n];if(this.accumulatedGrads[s]==null){let i=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:q(()=>zu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;q(()=>{let i=le(o,gt(a));o.assign(i);let l=le(L(he(a,Dn(le(i,W.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&ee(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};$f.className="Adagrad";To($f);var _f=class extends Jr{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],q(()=>{this.accBeta1=Re(t).variable(),this.accBeta2=Re(n).variable()}),s==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);q(()=>{let n=me(1,this.accBeta1),s=me(1,this.accBeta2);t.forEach((r,a)=>{let o=W.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:q(()=>et(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:q(()=>et(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedSecondMoment[a].variable,d=le(L(c,this.beta1),L(l,1-this.beta1)),p=le(L(u,this.beta2),L(gt(l),1-this.beta2)),h=he(d,n),f=he(p,s);c.assign(d),u.assign(p);let m=le(L(he(h,le(Dn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&ee(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),q(()=>{this.accBeta1.assign($o(this.beta1,this.iterations_+1)),this.accBeta2.assign($o(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};_f.className="Adam";To(_f);var Df=class extends Jr{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],q(()=>{this.iteration=Re(0).variable(),this.accBeta1=Re(t).variable()}),s==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);q(()=>{let n=me(1,this.accBeta1),s=he(-this.learningRate,le(L(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=W.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:et(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:et(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedWeightedInfNorm[a].variable,d=le(L(c,this.beta1),L(l,1-this.beta1)),p=L(u,this.beta2),h=nn(l),f=Zr(p,h);c.assign(d),u.assign(f);let m=le(L(he(s,n),he(d,le(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(le(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&ee(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Df.className="Adamax";To(Df);var zd=class extends Jr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=W.registeredVariables[n];q(()=>{let o=le(L(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=gn(Re(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};zd.className="SGD";To(zd);var Pf=class extends zd{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Re(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n];if(this.accumulations[s]==null){let i=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:q(()=>et(r).variable(i))}}let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&q(()=>{let i,l=le(L(this.m,a),o);this.useNesterov?i=le(L(this.c,le(o,L(l,this.m))),r):i=le(L(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&ee(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Pf.className="Momentum";To(Pf);var Ff=class extends Jr{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=W.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:q(()=>et(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:q(()=>et(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:q(()=>et(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;q(()=>{let c=le(L(i,this.decay),L(gt(o),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[s].variable,d=le(L(u,this.decay),L(o,1-this.decay)),p=he(L(o,this.learningRate),Dn(me(c,le(gt(d),this.epsilon)))),h=le(L(l,this.momentum),p);i.assign(c),u.assign(d),l.assign(h);let f=me(r,h);r.assign(f)}else{let u=le(L(i,this.decay),L(gt(o),1-this.decay)),d=le(L(l,this.momentum),he(L(o,this.learningRate),Dn(le(u,this.epsilon))));i.assign(u),l.assign(d);let p=me(r,d);r.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&ee(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&ee(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&ee(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Ff.className="RMSProp";To(Ff);var Do=class{static sgd(e){return new zd(e)}static momentum(e,t,n=!1){return new Pf(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new Ff(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new _f(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new Rf(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new Df(e,t,n,s,r)}static adagrad(e,t=.1){return new $f(e,t)}},hl={sgd:Do.sgd,momentum:Do.momentum,adadelta:Do.adadelta,adagrad:Do.adagrad,rmsprop:Do.rmsprop,adamax:Do.adamax,adam:Do.adam},DO=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Zv(){return new Promise(e=>DO(()=>e()))}var E={};Oe(E,{ERF_A1:()=>GO,ERF_A2:()=>HO,ERF_A3:()=>jO,ERF_A4:()=>qO,ERF_A5:()=>XO,ERF_P:()=>UO,PARALLELIZE_THRESHOLD:()=>T1,SELU_SCALE:()=>Jv,SELU_SCALEALPHA:()=>Yv,applyActivation:()=>Tf,assertAndGetBroadcastShape:()=>mt,assertAxesAreInnerMostDims:()=>H_,assertParamsConsistent:()=>PO,assignToTypedArray:()=>eM,axesAreInnerMostDims:()=>r1,calculateShapes:()=>w3,checkEinsumDimSizes:()=>oM,combineLocations:()=>Av,complexWithEvenIndex:()=>YO,complexWithOddIndex:()=>JO,computeConv2DInfo:()=>Td,computeConv3DInfo:()=>X3,computeDefaultPad:()=>H2,computeDilation2DInfo:()=>d$,computeOptimalWindowSize:()=>OO,computeOutAndReduceShapes:()=>yv,computeOutShape:()=>FO,computePool2DInfo:()=>q3,computePool3DInfo:()=>p$,convertConv2DDataFormat:()=>K3,decodeEinsumEquation:()=>rM,eitherStridesOrDilationsAreOne:()=>Rr,expandShapeToKeepDim:()=>cl,exponent:()=>nM,exponents:()=>tM,fromStringArrayToUint8:()=>mM,fromUint8ToStringArray:()=>fM,getAxesPermutation:()=>xv,getBroadcastDims:()=>y3,getComplexWithIndex:()=>QO,getEinsumComputePath:()=>iM,getEinsumPermutation:()=>aM,getFusedBiasGradient:()=>Cf,getFusedDyActivation:()=>If,getImageCenter:()=>MO,getInnerMostAxes:()=>j_,getPermuted:()=>LO,getReductionAxes:()=>qt,getReshaped:()=>zO,getReshapedPermuted:()=>BO,getSliceBeginCoords:()=>WO,getSliceSize:()=>VO,getUndoAxesPermutation:()=>a1,isIdentityPermutation:()=>lM,log:()=>LE,mergeRealAndImagArrays:()=>KO,prepareAndValidate:()=>v3,prepareSplitSize:()=>cM,segment_util:()=>tw,shouldFuse:()=>Nf,slice_util:()=>Ft,splitRealAndImagArrays:()=>ZO,tupleValuesAreOne:()=>No,upcastType:()=>Ln,validateInput:()=>M2,validateUpdateShape:()=>O2,warn:()=>wo});function PO(e,t){let n=e[0].length;e.forEach((r,a)=>{M(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)M(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function FO(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var T1=30;function OO(e){return e<=T1?e:mh(e,Math.floor(Math.sqrt(e)))}function MO(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function zO(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function LO(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2==1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function BO(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function WO(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function VO(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var Yv=1.7580993408473768,Jv=1.0507009873554805,UO=.3275911,GO=.254829592,HO=-.284496736,jO=1.421413741,qO=-1.453152027,XO=1.061405429;function KO(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function ZO(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function YO(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function JO(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function QO(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function eM(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function tM(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function nM(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var N1="->",sM=/->/g,Qv=",",ew="...";function rM(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(sM,"").length)/N1.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${N1}").`);let[s,r]=e.split(N1);M(s.indexOf(ew)===-1,()=>`The ellipsis notation ("${ew}") is not supported yet.`);let a=s.split(Qv),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let p=0;p<r.length;++p){let h=r[p];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let p=0;p<s.length;++p){let h=s[p];i.indexOf(h)===-1&&h!==Qv&&i.push(h)}let l=new Array(a.length);for(let p=0;p<o;++p){if(new Set(a[p].split("")).size!==a[p].length)throw new Error(`Found duplicate axes in input component ${a[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let h=0;h<a[p].length;++h)l[p].push(i.indexOf(a[p][h]))}let c=i.length,u=r.length,d=[];for(let p=u;p<c;++p)d.push(p);return{allDims:i,summedDims:d,idDims:l}}function aM(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function oM(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:M(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function iM(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=uM(t,i);for(let c of l)a.indexOf(c)===-1&&(s[o].push(c),a.push(c))}return{path:n,steps:s}}function lM(e){return e.every((t,n)=>t===n)}function uM(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function cM(e,t,n=0){let s=[];if(typeof t=="number")M(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);M(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}M(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}var tw={};Oe(tw,{collectGatherOpShapeInfo:()=>hM,computeOutShape:()=>pM,segOpComputeOptimalWindowSize:()=>dM});function dM(e,t){let n=!1,s;for(e<=T1?(s=e,n=!0):s=mh(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=mh(e,s+1);return s}function pM(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function hM(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let d=0;d<s;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let o=e.shape[n],i=[],l=1,c=1,u=1;for(let d=0;d<s;++d)i.push(e.shape[d]),l*=e.shape[d];for(let d=s;d<n;d++)i.push(e.shape[d]),c*=e.shape[d];for(let d=s;d<r;d++)i.push(t.shape[d]);for(let d=n+1;d<a;d++)i.push(e.shape[d]),u*=e.shape[d];return{batchSize:l,sliceSize:u,outerSize:c,dimSize:o,outputShape:i}}function fM(e){try{return e.map(t=>Yh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function mM(e){return e.map(t=>yd(t))}var Ks={};Oe(Ks,{nonMaxSuppressionV3Impl:()=>Gv,nonMaxSuppressionV4Impl:()=>Hv,nonMaxSuppressionV5Impl:()=>jv,whereImpl:()=>Pv});var nw={kernelName:di,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Od(pe(n,"float32"),-1))}}},gM={kernelName:su,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=gt(pe(n,"float32")),r=Dn(me(Re(1),s));return Ot(he(e,r))}}}},AM={kernelName:ru,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Dn(me(gt(pe(n,"float32")),1));return he(e,s)}}}},yM={kernelName:Hr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=e,l=qt(n.shape,r);return l.length>0&&(i=Se(i,l)),G(i,n.shape)},b:()=>{let i=e,l=qt(s.shape,r);return l.length>0&&(i=Se(i,l)),G(i,s.shape)}}}},xM={kernelName:Ta,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},bM={kernelName:Na,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>et(n)}}},vM={kernelName:iu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>et(n)}}},wM={kernelName:lu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,Dn(me(Re(1),gt(pe(n,"float32")))))}}},kM={kernelName:uu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Dn(le(Re(1),gt(pe(n,"float32"))));return he(e,s)}}}},SM={kernelName:pu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=le(gt(n),gt(s)),l=L(e,he(s,i)),c=qt(n.shape,r);return c.length>0&&(l=Se(l,c)),G(l,n.shape)},b:()=>{let i=le(gt(n),gt(s)),l=Ot(L(e,he(n,i))),c=qt(s.shape,r);return c.length>0&&(l=Se(l,c)),G(l,s.shape)}}}},IM={kernelName:cu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,le(gt(pe(n,"float32")),1))}}},CM={kernelName:du,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,me(Re(1),gt(pe(n,"float32"))))}}};function TM(e,t,n,s,r,a){let o=P(e,"dy","avgPool3dGrad"),i=P(t,"input","avgPool3dGrad"),l=o,c=i,u=!1;i.rank===4&&(u=!0,l=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),c=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),a!=null&&M(fn(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let d={dy:l,input:c},p={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=W.runKernel(yh,d,p);return u?G(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var NM=V({avgPool3dGrad_:TM}),EM={kernelName:ed,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>NM(e,s,r,a,o,i)}}};function RM(e,t,n,s,r){let a=P(e,"dy","avgPoolGrad"),o=P(t,"input","avgPoolGrad");M(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,c=!1;o.rank===3&&(c=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let u={dy:l,input:i},d={filterSize:n,strides:s,pad:r},p=W.runKernel(Ah,u,d);return c?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var $M=V({avgPoolGrad_:RM}),_M={kernelName:Ea,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>$M(e,s,r,a,o)}}},DM={kernelName:Ra,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Ue(e,r,!1,!0),b:()=>Ue(s,e,!0,!1)}:!a&&o?{a:()=>Ue(e,r,!1,!1),b:()=>Ue(e,s,!0,!1)}:a&&!o?{a:()=>Ue(r,e,!1,!0),b:()=>Ue(s,e,!1,!1)}:{a:()=>Ue(r,e,!0,!0),b:()=>Ue(e,s,!0,!0)}}},PM={kernelName:pi,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>xf(e,s,r)}}},FM={kernelName:M5,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>Se(e,i,!0)}}},OM={kernelName:$a,gradFunc:e=>({x:()=>e.clone()})},MM={kernelName:_a,gradFunc:e=>({x:()=>et(e)})},zM={kernelName:jr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>Wn(ur(ll(s,r),ul(s,a)),e,et(e))}}},LM={kernelName:nd,inputsToSave:["x"],gradFunc:nw.gradFunc},BM={kernelName:hi,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=Gs(r,t[0].shape)[0],o=s.map(l=>l[a]);return sn(e,o,a).map(l=>()=>l)}},WM={kernelName:Da,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return M(No(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>Z2(s.shape,e,r,o,i,l),filter:()=>I1(s,e,r.shape,o,i,l)}}},VM={kernelName:Pa,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Eo(e,r,a,o,i,1,l),filter:()=>I1(e,s,r.shape,a,o,i,l)}}};function UM(e,t,n,s,r){let a=e;e.rank===4&&(a=G(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),M(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),M(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return W.runKernel(wh,i,l)}var GM=V({conv3DBackpropFilter_:UM}),HM={kernelName:sd,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;M(No(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>rv(o.shape,e,i,r,a),filter:()=>GM(o,e,i.shape,r,a)}}},jM={kernelName:Fa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Ot(m1(pe(n,"float32"))),e)}}},qM={kernelName:Oa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(g1(pe(n,"float32")),e)}}},XM={kernelName:fi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=xv([r],s.rank),l=e1(e,r,a,!o);return i!=null&&(l=Qe(l,i)),l}}}},KM={kernelName:Ma,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;M(No(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,c]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),M(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),M(Rr(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),o!=null&&M(fn(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>Wv(l.shape,e,c,r,a,i,o),filter:()=>Bv(l,e,c.shape,r,a,i,o)}}},ZM={kernelName:rd,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>W.runKernel(Nh,a,n),filter:()=>W.runKernel(Eh,o,n)}}},YM={kernelName:La,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>W.runKernel(Rh,s)}}},JM={kernelName:hu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(Ns(Ot(gt(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,s)}}},QM={kernelName:Ba,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},ez={kernelName:yi,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>G(e,n.shape)}}},tz={kernelName:xi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Ns(n))}}},nz={kernelName:Wa,gradFunc:e=>({x:()=>et(e)})},sz={kernelName:Va,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=he(e,pe(s,"float32")),l=qt(n.shape,r);return l.length>0?G(Se(i,l),n.shape):i},b:()=>{let i=L(e,pe(n,"float32")),l=qt(s.shape,r);l.length>0&&(i=G(Se(i,l),s.shape));let c=gt(s);return Ot(he(i,pe(c,"float32")))}}}},rz={kernelName:Ua,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Re(1):i,c=qt(a.shape,r.shape),u=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)u.push(r.shape[b]);u.push(1)}let d=me(r,a),p=L(e,l),h=h1(le(o,Re(s))),f=L(L(L(h,h),h),Re(-.5));return{x:()=>a.rank===1?G(L(L(e,qs(G(h,[1,1,1,a.shape[0]]),u)),l),r.shape):G(L(L(e,h),l),r.shape),mean:()=>{let b=L(L(h,Re(-1)),p);return a.rank===1&&(b=Se(b,c)),G(b,a.shape)},variance:()=>{let b=L(L(f,d),p);return a.rank===1&&(b=Se(b,c)),G(b,a.shape)},scale:()=>{let b=L(d,h),w=L(e,b);return a.rank===1&&(w=Se(w,c)),G(w,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=Se(b,c)),G(b,a.shape)}}}},az={kernelName:vi,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=Gs(a,s.shape)[0];return{x:()=>{let l=s.shape,c=r.size,u=l.slice(0,o),d=u.length,p=l.slice(a,l.length).slice(1),h=p.length,f=sw(0,d),m=sw(d+1,d+1+h),g=rw([u,[c],p]),A=G(e,g),x=G(r,[c]),y=rw([[d],f,m]),b=Qe(A,y),w=_v(b,x,s.shape[o]),k=a1(y);return w=Qe(w,k),w},indices:()=>r}}};function sw(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function rw(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var oz={kernelName:Ga,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>et(n),b:()=>et(s)}}},iz={kernelName:Ha,gradFunc:e=>({x:()=>pe(e,"float32")})},lz={kernelName:mu,gradFunc:e=>({x:()=>et(e)})},uz={kernelName:gu,gradFunc:e=>({x:()=>et(e)})},cz={kernelName:Au,gradFunc:e=>({x:()=>et(e)})},dz={kernelName:Si,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=hs(s,0);return{x:()=>Wn(a,e,L(e,r))}}},pz={kernelName:yu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,le(n,1))}}},hz={kernelName:ja,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,pe(n,"float32"))}}},fz={kernelName:z5,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let a=!0,o=Ns(s);return me(e,L(Se(e,r,a),o))}}}};function mz(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return W.runKernel(Ph,i,l)}var gz=V({localResponseNormalizationBackprop_:mz}),Az={kernelName:ld,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>gz(s,r,e,a,o,i,l)}}};function aw(e,t,n,s){return t.rank<n.rank&&(t=G(t,cl(t.shape,s))),e.rank<n.rank&&(e=G(e,cl(e.shape,s))),{x:()=>L(e,pe(Ts(n,t),e.dtype))}}var ow={kernelName:qa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=Gs(r,a.shape),l=aw(e,o,a,i);return{x:()=>l.x()}}},yz={kernelName:Xa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,pe(ll(n,s),"float32")),b:()=>L(e,pe(n1(n,s),"float32"))}}};function xz(e,t,n,s,r,a,o){let i=P(e,"dy","maxPool3dGrad"),l=P(t,"input","maxPool3dGrad"),c=P(n,"output","maxPool3dGrad"),u=i,d=l,p=c,h=!1;l.rank===4&&(h=!0,u=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=G(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=G(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),M(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),M(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),o!=null&&M(fn(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:u,input:d,output:p},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=W.runKernel(Oh,f,m);return h?G(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var bz=V({maxPool3dGrad_:xz}),vz={kernelName:ud,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>bz(e,s,r,a,o,i,l)}}};function wz(e,t,n,s,r,a,o){let i=P(e,"dy","maxPoolGrad"),l=P(t,"input","maxPoolGrad"),c=P(n,"output","maxPoolGrad");M(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),M(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&M(fn(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let u={dy:i,input:l,output:c},d={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return W.runKernel(Fh,u,d)}var kz=V({maxPoolGrad_:wz}),Sz={kernelName:Ka,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>kz(e,s,r,a,o,i)}}},Iz={kernelName:Za,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=Gs(r,s.shape),i=yv(s.shape,a)[1],l=Ut(i);return{x:()=>{let u=s.shape.slice();a.forEach(h=>{u[h]=1});let d=G(e,u);return he(L(d,fs(s.shape,"float32")),l)}}}},Cz={kernelName:Ya,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=Gs(r,a.shape),l=aw(e,o,a,i);return{x:()=>l.x()}}},Tz={kernelName:Ja,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,pe(ul(n,s),"float32")),b:()=>L(e,pe(hs(n,s),"float32"))}}},Nz={kernelName:Qa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>De(e,a,s.shape)}}},Ez={kernelName:bu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=qt(n.shape,r);return i.length>0?G(Se(e,i),n.shape):e},b:()=>{let i=L(e,Ot($d(he(n,s)))),l=qt(s.shape,r);return l.length>0?G(Se(i,l),s.shape):i}}}},Rz={kernelName:eo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=L(e,pe(s,"float32")),l=qt(n.shape,r);return l.length>0?G(Se(i,l),n.shape):i},b:()=>{let i=L(e,pe(n,"float32")),l=qt(s.shape,r);return l.length>0?G(Se(i,l),s.shape):i}}}},$z={kernelName:Ni,gradFunc:e=>({x:()=>Ot(e)})},_z={kernelName:Di,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Gt(n.shape,"float32")}}},Dz={kernelName:_i,gradFunc:e=>({x:()=>et(e)})},Pz={kernelName:Pi,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return rs(e,s).map(a=>()=>a)}},iw={kernelName:to,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>De(e,a,s.shape)}}},Fz={kernelName:no,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=mt(a.shape,o.shape);return{a:()=>{let u=pe(o,"float32"),d=L(e,L(u,$o(a,me(u,Re(1))))),p=qt(a.shape,i);return p.length>0&&(d=Se(d,p)),G(d,a.shape)},b:()=>{let u=hs(a,0),d=Wn(u,Es(a),et(a)),p=L(e,L(r,d)),h=qt(o.shape,i);return h.length>0&&(p=Se(p,h)),G(p,o.shape)}}}},Oz={kernelName:so,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=hs(n,0);return{x:()=>Wn(r,e,L(e,s)),alpha:()=>{let a=Wn(r,et(e),L(e,n)),o=qt(s.shape,e.shape);return o.length>0&&(a=Se(a,o)),G(a,s.shape)}}}},Mz={kernelName:za,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=he(e,pe(s,"float32")),l=qt(n.shape,r);return l.length>0?G(Se(i,l),n.shape):i},b:()=>{let i=L(e,pe(n,"float32")),l=qt(s.shape,r);l.length>0&&(i=G(Se(i,l),s.shape));let c=gt(s);return Ot(he(i,pe(c,"float32")))}}}},zz={kernelName:ku,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,Ot(gt(n)))}}},Lz={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(ul(n,6),Od(n));return{x:()=>L(e,pe(s,"float32"))}}},Bz={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,pe(Od(n),"float32"))}}},Wz={kernelName:Oi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>G(e,n.shape)}}},Vz={kernelName:ao,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>W.runKernel(Bh,r,n)}}},Uz={kernelName:Su,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>W.runKernel(Lh,r,n)}}},Gz={kernelName:Mi,gradFunc:(e,t,n)=>{let{dims:s}=n,r=Gs(s,e.shape);return{x:()=>$s(e,r)}}},Hz={kernelName:zi,gradFunc:e=>({x:()=>et(e)})},jz={kernelName:io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ot(he(e,L($o(n,1.5),2)))}}},qz={kernelName:Bi,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>pe(et(n),"float32"),t:()=>L(e,pe(n,e.dtype)),e:()=>L(e,pe(gf(n),e.dtype))}}},Xz={kernelName:Iu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=hs(n,Re(0)),r=Re(Yv),a=Re(Jv),o=L(e,a),i=L(L(e,r),Ns(pe(n,"float32")));return Wn(s,o,i)}}}},Kz={kernelName:uo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,me(Re(1),n)))}}},Zz={kernelName:Cu,gradFunc:e=>({x:()=>et(e)})},Yz={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(df(pe(n,"float32")),e)}}},Jz={kernelName:Vi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Q2(pe(n,"float32")),e)}}},Qz={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=$3(s,r,a),c=[];for(let u=0;u<e.rank;u++)c.push([i[u],o[u]-i[u]-l[u]]);return{x:()=>Xs(e,c)}}},eL={kernelName:ho,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=L(e,s);return{logits:()=>me(o,L(Se(o,[r],a),s))}}},tL={kernelName:Tu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,ds(n))}}},lw={kernelName:Ui,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>cf(e,s,r)}}},uw={kernelName:Gi,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>vt(e,s)}}},nL={kernelName:co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,L(Dn(pe(n,"float32")),2))}}},sL={kernelName:Nu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(pe(n,"float32"),2))}}},rL={kernelName:fo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Re(2);return{a:()=>L(e,L(r,me(n,s))),b:()=>L(e,L(r,me(s,n)))}}},aL={kernelName:yo,gradFunc:e=>({x:()=>et(e)})},oL={kernelName:mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=mt(n.shape,s.shape);return{a:()=>{let i=e,l=qt(n.shape,r);return l.length>0&&(i=Se(i,l)),G(i,n.shape)},b:()=>{let i=e,l=qt(s.shape,r);return l.length>0&&(i=Se(i,l)),G(Ot(i),s.shape)}}}},iL={kernelName:po,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;Gs(a,s.shape).forEach(c=>{r[c]=1});let i=G(e,r),l=L(i,fs(s.shape,"float32"));return{x:()=>l}}},lL={kernelName:ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,gt(df(n)))}}},uL={kernelName:go,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(me(Re(1),gt(n)),e)}}},cL={kernelName:qr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=et(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=le(o,De(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=le(o,De(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)o=le(o,De(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)for(let u=0;u<r[3];++u)o=le(o,De(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2],u*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},dL={kernelName:Ao,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=a1(r);return{x:()=>Qe(e,a)}}},pL={kernelName:Ki,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>yn(e,r)}}},hL={kernelName:hd,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fL(e,n)}}};function fL(e,t){let n=Zr(t,et(t)),s=Lu(e,n),r=ll(t,Re(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=Xt(r,i+1);r=ur(r,fs(s.shape,"bool"));let o=et(s);return Wn(r,s,o)}var mL={kernelName:Zi,gradFunc:e=>({x:()=>et(e)})},gL=[nw,gM,AM,yM,xM,bM,vM,wM,kM,SM,IM,CM,EM,_M,DM,PM,FM,OM,MM,zM,LM,BM,VM,WM,HM,jM,qM,XM,KM,ZM,Mz,YM,JM,QM,ez,tz,sz,nz,rz,az,oz,iz,lz,uz,cz,dz,pz,hz,fz,Az,ow,ow,yz,vz,Sz,Iz,Cz,Tz,Nz,Ez,Rz,$z,_z,Dz,Pz,iw,iw,Fz,Oz,zz,Lz,Bz,Wz,Vz,Uz,Gz,Hz,jz,qz,Xz,Kz,Zz,Yz,Jz,Qz,eL,tL,lw,lw,uw,uw,nL,rL,sL,aL,oL,iL,lL,uL,cL,dL,pL,hL,mL];for(let e of gL)L5(e);var cw={};Oe(cw,{maxNorm:()=>bL,minMaxNorm:()=>kL,nonNeg:()=>wL,unitNorm:()=>vL});var E1;function rn(){return E1==null&&(E1=Er().epsilon()),E1}function dr(){return"channelsLast"}var Qr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Qr.prototype)}},pr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,pr.prototype)}},H=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,H.prototype)}},Le=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Le.prototype)}},dw=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,dw.prototype)}};function fl(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Dr(e,t){if(!e)throw new dw(t)}function pw(e,t){let n=0;for(let s of e)s===t&&n++;return n}function as(e){return e.length===1?e[0]:e}function kt(e){return Array.isArray(e)?e:[e]}function ea(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function ml(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Zs={};function R1(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function $1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>$1(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:$1(s))}}}function Ld(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Zs)o=Zs[a];else if(o=t[a],o==null)throw new H(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new H(`${s}: Improper config format: ${JSON.stringify(a)}.
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in Zs?[i,l]=Zs.className:o in t&&([i,l]=t[o]),i==null)throw new H(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let h of Object.keys(Zs))c[h]=Zs[h];for(let h of Object.keys(n))c[h]=n[h];let u=a.config;u.customObjects=c;let d={...Zs};for(let h of Object.keys(n))Zs[h]=n[h];$1(a.config);let p=l(i,a.config,n,r);return Zs={...d},p}else{let c={...Zs};for(let d of Object.keys(n))Zs[d]=n[d];let u=new i(a.config);return Zs={...c},u}}}function AL(e,t){return e<t?-1:e>t?1:0}function Of(e,t){return-1*AL(e,t)}function Po(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function yL(e){if(e==null)throw new H(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function gl(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new H(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function _1(e,t,n=0,s=1/0){return Dr(n>=0),Dr(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function xn(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>xn(n,`element ${s+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${hw(e)}.`)}function hw(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>hw(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function xL(e,t,n){let s=n!=null?n():v.now(),r;return(...o)=>{let i=n!=null?n():v.now();return i-s<t||(s=i,r=e(...o)),r}}function fw(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function D1(e,t){return q(()=>Dn(Se(L(e,e),t,!0)))}var Bd=class extends ue.Serializable{getConfig(){return{}}},P1=class extends Bd{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return q(()=>{let t=D1(e,this.axis),n=ps(t,0,this.maxValue);return L(e,he(n,le(rn(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};P1.className="MaxNorm";ue.registerClass(P1);var F1=class extends Bd{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return q(()=>he(e,le(rn(),D1(e,this.axis))))}getConfig(){return{axis:this.axis}}};F1.className="UnitNorm";ue.registerClass(F1);var O1=class extends Bd{apply(e){return _r(e)}};O1.className="NonNeg";ue.registerClass(O1);var M1=class extends Bd{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return q(()=>{let t=D1(e,this.axis),n=le(L(this.rate,ps(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,he(n,le(rn(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};M1.className="MinMaxNorm";ue.registerClass(M1);var mw={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function an(e){return R1(e)}function gw(e,t={}){return Ld(e,ue.SerializationMap.getMap().classNameMap,t,"constraint")}function on(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in mw?mw[e]:e,config:{}};return gw(n)}else return e instanceof Bd?e:gw(e)}function bL(e){return new P1(e)}function vL(e){return new F1(e)}function wL(){return new O1}function kL(e){return new M1(e)}var Aw={};Oe(Aw,{constant:()=>jL,glorotNormal:()=>QL,glorotUniform:()=>JL,heNormal:()=>eB,heUniform:()=>tB,identity:()=>ZL,leCunNormal:()=>nB,leCunUniform:()=>sB,ones:()=>HL,orthogonal:()=>rB,randomNormal:()=>XL,randomUniform:()=>qL,truncatedNormal:()=>KL,varianceScaling:()=>YL,zeros:()=>GL});var SL=["channelsFirst","channelsLast"],IL=["nearest","bilinear"],CL=["valid","same","causal"],TL=["max","avg"],NL=["sum","mul","concat","ave"],ju=new Map;function Ht(e){gl(SL,"DataFormat",e)}function EL(e){gl(IL,"InterpolationFormat",e)}function _s(e){gl(CL,"PaddingMode",e)}function yw(e){gl(TL,"PoolMode",e)}var Wd=[],xw="/";function Al(e,t){Wd.push(e);try{let n=t();return Wd.pop(),n}catch(n){throw Wd.pop(),n}}function RL(){return Wd.length===0?"":Wd.join(xw)+xw}function bw(e){if(!ww(e))throw new Error("Not a valid tensor name: '"+e+"'");return RL()+e}function vw(e){if(!ww(e))throw new Error("Not a valid tensor name: '"+e+"'");ju.has(e)||ju.set(e,0);let t=ju.get(e);if(ju.set(e,ju.get(e)+1),t>0){let n=`${e}_${t}`;return ju.set(n,1),n}else return e}var $L=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function ww(e){return!!e.match($L)}function _L(e){return e===parseInt(e.toString(),10)}function Fo(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function qu(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function Oo(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function hr(e,t){if(t<e)throw new H(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Mf(e,t){return pe(e,t)}function Vd(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),G(e,n)}function DL(e,t){return q(()=>{if(e.shape.length!==2)throw new H(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Vd(e,1);return B1(n,[1,t,1])})}function PL(e){let t=[Fo(e.shape)];return G(e,t)}function FL(e){if(e.rank<=1)throw new H(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Fo(e.shape,1)];return G(e,t)}function yl(e,t,n){return q(()=>{switch(e.rank){case 1:return vf(e,t,n);case 2:return A1(e,[t,0],[n,e.shape[1]]);case 3:return dl(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return pl(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return De(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return De(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new H(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function z1(e,t,n){return q(()=>{switch(e.rank){case 1:return vf(e,t,n);case 2:return A1(e,[0,t],[e.shape[0],n]);case 3:return dl(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return pl(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function zf(e,t,n,s){return q(()=>{switch(e.rank){case 1:return vf(e,t,n);case 2:switch(s){case 1:return yl(e,t,n);case 2:return z1(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return yl(e,t,n);case 2:return dl(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return z1(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return yl(e,t,n);case 2:return pl(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return pl(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return z1(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${s}`)}default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function L1(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),vt(e,t)}function kw(e,t){switch(e.rank){case 1:return tv([e,t]);case 2:return Mu([e,t],0);case 3:return nv([e,t],0);case 4:return sv([e,t],0);default:throw new H(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function B1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new H(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return qs(e,t)}function Lf(e,t=0,n=1,s,r){return Sv(e,t,n,s,r)}function Pr(e,t,n,s){if(e.rank<2||t.rank<2)throw new Le(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Le(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,a=!1;return _o.matMul({a:e,b:t,transposeA:r,transposeB:a,bias:s?W1(e.rank,s,dr()):null,activation:n})}else{let r=e.shape.slice(),a=r.pop();e=G(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),c=[...o,i],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=G(Qe(t,u),[l,-1]);let d=[...r,...c],p=!1,h=!1;return G(_o.matMul({a:e,b:t,transposeA:p,transposeB:h,bias:s?W1(e.rank,s,dr()):null,activation:n}),d)}}function Sw(e,t,n){return q(()=>(Array.isArray(t)?t=Kt(t,"int32"):t=pe(t,"int32"),Lu(e,t,n)))}function Ud(e){return L(e,e)}function W1(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new H(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?G(t,[1,s[0],1,1,1]):G(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?G(t,[1,1,1,1,s[0]]):G(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?G(t,[1,s[0],1,1]):G(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?G(t,[1,1,1,s[0]]):G(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?G(t,[1,s[0],1]):G(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?G(t,[1,1,s[0]]):G(t,[1].concat(s))}else if(e<3)return t;throw new H(`Unsupported input rank by biasAdd: ${t.rank}`)}function fr(e,t,n){return q(()=>(n==null&&(n=dr()),Ht(n),le(e,W1(e.rank,t,n))))}function OL(e,t=1){if(t!==1)throw new Le(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Rd(e)}function ML(e){return q(()=>he(e,le(nn(e),1)))}function Iw(e,t,n,s){return q(()=>zv(e,t,n,s))}function zL(e){return q(()=>{let t=le(.5,L(.2,e));return ps(t,0,1)})}function Gd(e,t,n=!1){return n?e():t()}var LL=["fanIn","fanOut","fanAvg"],BL=["normal","uniform","truncatedNormal"];function WL(e){gl(LL,"FanMode",e)}function VL(e){gl(BL,"Distribution",e)}var Ys=class extends ue.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},V1=class extends Ys{apply(e,t){return Gt(e,t)}};V1.className="Zeros";ue.registerClass(V1);var Bf=class extends Ys{apply(e,t){return fs(e,t)}};Bf.className="Ones";ue.registerClass(Bf);var U1=class extends Ys{constructor(e){super();if(typeof e!="object")throw new H(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new H(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return q(()=>L(Re(this.value),fs(e,t)))}getConfig(){return{value:this.value}}};U1.className="Constant";ue.registerClass(U1);var G1=class extends Ys{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Vu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};G1.className="RandomUniform";ue.registerClass(G1);var H1=class extends Ys{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Le(`randomNormal does not support dType ${t}.`);return Lf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};H1.className="RandomNormal";ue.registerClass(H1);var j1=class extends Ys{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Le(`truncatedNormal does not support dType ${t}.`);return Sf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};j1.className="TruncatedNormal";ue.registerClass(j1);var q1=class extends Ys{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return q(()=>{if(e.length!==2||e[0]!==e[1])throw new H("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,t1(e[0]))})}getConfig(){return{gain:this.gain}}};q1.className="Identity";ue.registerClass(q1);function UL(e,t="channelsLast"){let n,s;if(Ht(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Fo(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=Fo(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=Fo(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var os=class extends Ys{constructor(e){super();if(e.scale<0)throw new H(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,WL(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,VL(this.distribution),this.seed=e.seed}apply(e,t){let n=UL(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Le(`${this.getClassName()} does not support dType ${t}.`);return Sf(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return Vu(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};os.className="VarianceScaling";ue.registerClass(os);var Wf=class extends os{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return os.className}};Wf.className="GlorotUniform";ue.registerClass(Wf);var Vf=class extends os{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return os.className}};Vf.className="GlorotNormal";ue.registerClass(Vf);var Uf=class extends os{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return os.className}};Uf.className="HeNormal";ue.registerClass(Uf);var Gf=class extends os{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return os.className}};Gf.className="HeUniform";ue.registerClass(Gf);var Hf=class extends os{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return os.className}};Hf.className="LeCunNormal";ue.registerClass(Hf);var jf=class extends os{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return os.className}};jf.className="LeCunNormal";ue.registerClass(jf);var X1=class extends Ys{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Le("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return q(()=>{if(e.length<2)throw new Le("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=Lf(n,0,1,"float32"),r=Kv.gramSchmidt(s);return e[0]>e[1]&&(r=Qe(r)),L(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};X1.className="Orthogonal";ue.registerClass(X1);var Cw={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Tw(e,t={}){return Ld(e,ue.SerializationMap.getMap().classNameMap,t,"initializer")}function Mt(e){return R1(e)}function Nt(e){if(typeof e=="string"){let t=e in Cw?Cw[e]:e;if(t==="GlorotNormal")return new Vf;if(t==="GlorotUniform")return new Wf;if(t==="HeNormal")return new Uf;if(t==="HeUniform")return new Gf;if(t==="LeCunNormal")return new Hf;if(t==="LeCunUniform")return new jf;{let n={};return n.className=t,n.config={},Tw(n)}}else return e instanceof Ys?e:Tw(e)}function GL(){return new V1}function HL(){return new Bf}function jL(e){return new U1(e)}function qL(e){return new G1(e)}function XL(e){return new H1(e)}function KL(e){return new j1(e)}function ZL(e){return new q1(e)}function YL(e){return new os(e)}function JL(e){return new Wf(e)}function QL(e){return new Vf(e)}function eB(e){return new Uf(e)}function tB(e){return new Gf(e)}function nB(e){return new Hf(e)}function sB(e){return new jf(e)}function rB(e){return new X1(e)}var Nw={};Oe(Nw,{Layer:()=>tt,RNN:()=>na,RNNCell:()=>Yd,activation:()=>LW,add:()=>XW,alphaDropout:()=>$V,average:()=>KW,averagePooling1d:()=>my,averagePooling2d:()=>gy,averagePooling3d:()=>Ay,avgPool1d:()=>rV,avgPool2d:()=>oV,avgPool3d:()=>lV,avgPooling1d:()=>aV,avgPooling2d:()=>iV,avgPooling3d:()=>uV,batchNormalization:()=>tV,bidirectional:()=>kV,concatenate:()=>ZW,conv1d:()=>RW,conv2d:()=>$W,conv2dTranspose:()=>_W,conv3d:()=>DW,conv3dTranspose:()=>PW,convLstm2d:()=>xV,convLstm2dCell:()=>bV,cropping2D:()=>OW,dense:()=>BW,depthwiseConv2d:()=>zW,dot:()=>eV,dropout:()=>WW,elu:()=>SW,embedding:()=>qW,flatten:()=>UW,gaussianDropout:()=>RV,gaussianNoise:()=>EV,globalAveragePooling1d:()=>cV,globalAveragePooling2d:()=>dV,globalMaxPool1d:()=>IV,globalMaxPool2d:()=>CV,globalMaxPooling1d:()=>Wk,globalMaxPooling2d:()=>Vk,gru:()=>hV,gruCell:()=>fV,input:()=>ik,inputLayer:()=>kW,layerNormalization:()=>nV,leakyReLU:()=>CW,lstm:()=>mV,lstmCell:()=>gV,masking:()=>_V,maxPool1d:()=>TV,maxPool2d:()=>NV,maxPooling1d:()=>Uk,maxPooling2d:()=>Gk,maxPooling3d:()=>pV,maximum:()=>YW,minimum:()=>JW,multiply:()=>QW,permute:()=>jW,prelu:()=>TW,reLU:()=>IW,repeatVector:()=>GW,reshape:()=>HW,rnn:()=>vV,separableConv2d:()=>FW,simpleRNN:()=>AV,simpleRNNCell:()=>yV,softmax:()=>NW,spatialDropout1d:()=>VW,stackedRNNCells:()=>wV,thresholdedReLU:()=>EW,timeDistributed:()=>SV,upSampling2d:()=>MW,zeroPadding2d:()=>sV});var aB=0;function Ew(){return aB++}var qf={};function Xf(e=""){return e in qf||(qf[e]=0),qf[e]+=1,e+qf[e].toString()}function K1(e){return Array.isArray(e)&&Array.isArray(e[0])}function Kf(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Be(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new H(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function pt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new H(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Zf(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var Rw="Variable",$w=class{constructor(e,t="float32",n=Rw,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Ew(),n=n==null?Rw:n,this.originalName=bw(n),this.name=vw(this.originalName),this.trainable_=s,this.constraint=r,this.val=Dv(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),oB(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function oB(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Z1(e){return e.map(t=>t.read())}function Y1(e){e.forEach(t=>{t[0].write(t[1])})}var Zt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},mr=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=Ew(),a!=null&&(this.originalName=bw(a),this.name=vw(this.originalName)),this.rank=t.length}},iB=0,Yf=class{constructor(e,t){this.callArgs=t,this.id=iB++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},lB=0,tt=class extends ue.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=lB++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ea(n)+"_"+Xf(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new pr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new H(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return as(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return as(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Qr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Qr(`Layer ${this.name} is not connected, no input to return.`);return as(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Qr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Qr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return as(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=kt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=kt(this.inputSpec);if(e.length!==t.length)throw new H(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new H(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),c=r.axes[i],u=l>=0?o[l]:o[o.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=kt(e),s=!0;for(let a of n)if(!(a instanceof mr)){s=!1;break}let r=!0;for(let a of n)if(a instanceof mr){r=!1;break}if(s===r)throw new H("Arguments to apply() must be all SymbolicTensors or all Tensors");return Al(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of kt(e))a.push(o.shape);this.build(as(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=kt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=as(i),this.activityRegularizer!=null)throw new Le("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=uB(e),o=this.computeOutputShape(a),i,l=cB(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((c,u)=>new mr(l,c,this,kt(e),t,this.name,u)):i=new mr(l,o,this,kt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Le("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Qr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Qr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new pr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Zf(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Z1(e?this.trainableWeights:this.weights)}setWeights(e){q(()=>{let t=this.weights;if(t.length!==e.length)throw new H(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=Z1(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!v.arraysEqual(a.shape,i.shape))throw new H(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}Y1(n)})}addWeight(e,t,n,s,r,a,o,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new H(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=i!=null?i():Nt("zeros"));let l=s.apply(t,n),c=new $w(l,n,e,a,o);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(c.read())),a==null&&(a=!0),a?this._trainableWeights.push(c):this._nonTrainableWeights.push(c),c}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=kt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=kt(e);t=kt(t),n=kt(n),s=kt(s),r=Kf(r),a=Kf(a);let l=[],c=[],u=[];for(let d of i)l.push(d.sourceLayer),c.push(d.nodeIndex),u.push(d.tensorIndex);new Yf({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function uB(e){e=kt(e);let t=[];for(let n of e)t.push(n.shape);return as(t)}function cB(e){return"float32"}function _w(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],c=_w(o,i,l);for(let u of c)r.indexOf(u)===-1&&r.push(u)}return r}}}var Xu=class extends tt{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Xf("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new H("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new H("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new H("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new mr(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new Yf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new H(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Xu.className="InputLayer";ue.registerClass(Xu);function Dw(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new H("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Xu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Mo(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];ee(s)}}function Pw(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var Fw;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(Fw||(Fw={}));var dB=125,Ku=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Ow=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},pB=class extends Ku{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=q(()=>le(this.totals[s],L(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:q(()=>{let s=L(he(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),gn(t[n])}))}},Mw=class extends Ku{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},zw=class extends Ku{constructor(e,t){super();if(this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||Zv,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=dB),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=xL(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await Mo(n),s.push(this.yield(e,t,n))),s.push(this.nextFrameFunc()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Mo(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Mo(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Mo(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Mo(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Mo(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Mo(e),await this.trainEnd(e))}};function Lw(e,t){return e==null&&(e={}),e instanceof Ku?[e]:Array.isArray(e)&&e[0]instanceof Ku?e:kt(e).map(s=>new zw(s,t))}var Fr=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Fr.checkForDuplicate(t),Fr.constructors[e]==null&&(Fr.constructors[e]=[]),Fr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Fr.constructors)Fr.constructors[+t].forEach(s=>{if(s===e)throw new H("Duplicate callback constructor.")})}static clear(){Fr.constructors={}}static createCallbacks(e){let t=[];for(let n in Fr.constructors){let s=+n;e>=s&&t.push(...Fr.constructors[s])}return t.map(n=>new n)}},J1=Fr;J1.constructors={};function Bw(e,t,n,s,r,a,o,i,l){let c=new Mw,u=[new pB,...J1.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let d=new Ow(u);return d.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:c}}function gr(e,t={},n=!1){return Ld(e,ue.SerializationMap.getMap().classNameMap,t,"layer",n)}function Jf(e,t){return q(()=>{e.dtype!=="float32"&&(e=pe(e,"float32"));let n=Se(Ud(e),t,!0),s=zu(n.shape,rn()),r=Dn(Zr(n,s));return he(e,r)})}function xl(e,t){return q(()=>Wt(Ud(me(t,e)),-1))}function Qf(e,t){return q(()=>Wt(nn(me(t,e)),-1))}function Zu(e,t){return q(()=>{let n=me(e,t),s=ps(nn(e),rn(),Number.MAX_VALUE),r=nn(he(n,s));return L(100,Wt(r,-1))})}function hB(e,t){return q(()=>{let n=ps(t,rn(),Number.MAX_VALUE),s=Es(le(1,n)),r=ps(e,rn(),Number.MAX_VALUE),a=Es(le(1,r));return Wt(Ud(me(s,a)),-1)})}function fB(e,t){return q(()=>{let n=Zr(0,me(1,L(e,t)));return Wt(Ud(n),-1)})}function mB(e,t){return q(()=>{let n=Zr(0,me(1,L(e,t)));return Wt(n,-1)})}function gB(e,t){return q(()=>{let n=Se(L(e,t),-1),s=An(L(me(1,e),t),-1);return Zr(0,le(1,me(s,n)))})}function AB(e,t){return q(()=>{let n=Math.log(2),s=me(t,e),r=me(le(s,Bu(L(-2,s))),n);return Wt(r,-1)})}function Hd(e,t,n=!1){return q(()=>{if(n)t=Gu(t);else{let s=Se(t,t.shape.length-1,!0);t=he(t,s)}return t=ps(t,rn(),1-rn()),Ot(Se(L(pe(e,"float32"),Es(t)),t.shape.length-1))})}function em(e,t,n=!1){return q(()=>{let s=pe($d(PL(e)),"int32");t=ps(t,rn(),1-rn());let r=t.shape,a=G(Cd(s,r[r.length-1]),r);return Hd(a,t,n)})}function yB(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new H(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return q(()=>{let n=_r(t),s=Ot(nn(t));return le(me(n,L(t,e)),ff(Ns(s)))})}function tm(e,t){return q(()=>{let n;return n=ps(t,rn(),1-rn()),n=Es(he(n,me(1,n))),Wt(yB(e,n),-1)})}function xB(e,t){return q(()=>{let n=ps(e,rn(),1),s=ps(t,rn(),1);return Se(L(e,Es(he(n,s))),-1)})}function bB(e,t){return q(()=>{let n=Es(le(rn(),t));return Wt(me(t,L(e,n)),-1)})}function Q1(e,t){return q(()=>{let n=Jf(e,-1),s=Jf(t,-1),r=L(n,s);return Ot(Se(r,-1))})}var nm={meanSquaredError:xl,meanAbsoluteError:Qf,meanAbsolutePercentageError:Zu,meanSquaredLogarithmicError:hB,squaredHinge:fB,hinge:mB,categoricalHinge:gB,logcosh:AB,categoricalCrossentropy:Hd,sparseCategoricalCrossentropy:em,binaryCrossentropy:tm,kullbackLeiblerDivergence:xB,poisson:bB,cosineProximity:Q1};function eA(e){if(typeof e=="string"){if(e in nm)return nm[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new H(t)}else return e}function tA(e,t){return q(()=>{let n=L(.5,Rs(t)),s=Mf(hs(t,n),e.dtype);return Wt(Ts(e,s),-1)})}function nA(e,t){return q(()=>Mf(Ts(js(e,-1),js(t,-1)),"float32"))}function Ww(e,t){return q(()=>pe(Se(ur(Ts(e,1),Ts(t,1))),"float32"))}function vB(e,t){return q(()=>pe(Se(ur(Ts(e,1),Ts(t,0))),"float32"))}function wB(e,t){return q(()=>pe(Se(ur(Ts(e,0),Ts(t,1))),"float32"))}function Vw(e,t){return q(()=>{let n=Ww(e,t),s=wB(e,t),r=le(n,s);return pe(Wn(hs(r,0),he(n,r),0),"float32")})}function kB(e,t){return q(()=>{let n=Ww(e,t),s=vB(e,t),r=le(n,s);return pe(Wn(hs(r,0),he(n,r),0),"float32")})}function Uw(e,t){return tm(e,t)}function Gw(e,t){return e.rank===t.rank&&(e=ot(e,[e.rank-1])),t=js(t,-1),t.dtype!==e.dtype&&(t=pe(t,e.dtype)),pe(Ts(e,t),"float32")}var SB=xl,IB=xl,CB=Qf,TB=Qf,NB=Zu,EB=Zu,sA=Hd,RB=Q1,Hw=em,sm={binaryAccuracy:tA,categoricalAccuracy:nA,precision:Vw,categoricalCrossentropy:sA,sparseCategoricalCrossentropy:Hw,mse:SB,MSE:IB,mae:CB,MAE:TB,mape:NB,MAPE:EB,cosine:RB};function $B(e){if(typeof e=="string"&&e in sm)return sm[e];if(typeof e!="string"&&e!=null)return e;throw new H(`Unknown metric ${e}`)}function rm(e){if(Dr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(nm))if(nm[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(sm))if(sm[n]===e){t=n;break}return t!==void 0?t:e.name}}function _B(e){let t={Adagrad:()=>hl.adagrad(.01),Adadelta:()=>hl.adadelta(1,.95,rn()),Adam:()=>hl.adam(.001,.9,.999,rn()),Adamax:()=>hl.adamax(.002,.9,.999,rn(),0),RMSProp:()=>hl.rmsprop(.001,.9,0,rn()),SGD:()=>hl.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new H(`Unknown Optimizer ${e}`)}var jw=1*1024*1024;function qw(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!rA(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>jw&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${jw}.`)}}function rA(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!rA(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!rA(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function DB(e,t,n,s=console.log){let r=FB(e),a=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let o;if(!r){a.push("Receives inputs"),o=[];for(let u in e.nodesByDepth)o.push(...e.nodesByDepth[u])}s("_".repeat(t)),am(a,n,s),s("=".repeat(t));let i=e.layers;for(let u=0;u<i.length;++u)r?OB(i[u],n,s):MB(i[u],n,o,s),s((u===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=PB(e),c=Zf(e.nonTrainableWeights);s(`Total params: ${l+c}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${c}`),s("_".repeat(t))}function PB(e){let t;return e.collectedTrainableWeights!=null?t=Zf(e.collectedTrainableWeights):t=Zf(e.trainableWeights),t}function FB(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function am(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function OB(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch(i){s="multiple"}let r=e.name,a=e.getClassName(),o=[`${r} (${a})`,s,e.countParams().toString()];am(o,t,n)}function MB(e,t,n,s){let r;try{r=JSON.stringify(e.outputShape)}catch(u){r="multiple"}let a=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let d=0;d<u.inboundLayers.length;++d){let p=u.inboundLayers[d].name,h=u.nodeIndices[d],f=u.tensorIndices[d];a.push(`${p}[${h}][${f}]`)}let o=e.name,i=e.getClassName(),l=a.length===0?"":a[0],c=[`${o} (${i})`,r,e.countParams().toString(),l];am(c,t,s);for(let u=1;u<a.length;++u)am(["","","",a[u]],t,s)}function Xw(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function jd(e,t){if(e===null)return null;if(typeof e=="string")return ml(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];Xw(t,r,a)?n.push(a):n.push(jd(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=ml(s);n[a]=jd(r,a)}}return n}}function aA(e,t){if(e==null)return null;if(typeof e=="string")return ea(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];Xw(t,r,a)?n.push(a):n.push(aA(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=ea(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=aA(r,s)}return n}}var oA="0.0.0";function zB(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return pe(t,e.dtype)}catch(n){throw new H(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var bl=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof bl)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=zB(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new H(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof mr){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof mr){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&ee(this.id2Mask)}},iA={},Kw={};function qd(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],c=t.names();for(let f of i)c.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let u=i.join(",")+"|"+t.names().join(","),d,p;if(iA[u]==null){let f=LB(o,t);d=f.sorted,p=f.recipientCounts,iA[u]=d,Kw[u]=p}d=iA[u],p={},r||Object.assign(p,Kw[u]);let h=new bl(t);for(let f=0;f<d.length;++f){if(s!=null){let $=nf().numTensors;$>s.maxNumTensors&&(s.maxNumTensors=$),$<s.minNumTensors&&(s.minNumTensors=$)}let m=d[f],g=m.sourceLayer;if(g instanceof Xu)continue;let A=[],x=[],y=[],b=!1;for(let $ of m.inputs){let O=h.getValue($),D=h.getMask($);A.push(O),x.push(D),D!=null&&(b=!0),r||(p[$.name]--,p[$.name]===0&&!t.hasKey($)&&i.indexOf($.name)===-1&&!O.isDisposed&&$.sourceLayer.stateful!==!0&&y.push(O))}b&&(n=n||{},n.mask=x[0]);let w=kt(g.apply(A,n)),k=null;g.supportsMasking&&(k=g.computeMask(A,x));let I=WB(m),N=Array.isArray(I)?I:[I];for(let $=0;$<N.length;++$){h.hasKey(N[$])||h.add(N[$],w[$],Array.isArray(k)?k[0]:k);let O=i.indexOf(N[$].name);O!==-1&&(l[O]=w[$])}r||ee(y)}return h.disposeMasks(),a?l:l[0]}function LB(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=Zw(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=Zw(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(c=>s[l].add(c))}}return{sorted:n,recipientCounts:BB(s)}}function BB(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Zw(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let c of i.inputs)r[c.name]==null&&(r[c.name]=new Set),r[c.name].add(i.name),!n.has(c.name)&&a.push(c)}}return{sorted:s,recipientMap:r}}function WB(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var Or=class extends tt{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let A=this.getClassName().toLowerCase();this.name=Xf(A)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Po(this.inputs).length!==this.inputs.length)throw new H(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(A=>A.name)}`);Po(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(A=>A.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let A of this.outputs){let x=A.sourceLayer,y=A.nodeIndex,b=A.tensorIndex;this.outputLayers.push(x),this.outputLayersNodeIndices.push(y),this.outputLayersTensorIndices.push(b)}for(let A of this.inputs){let x=A.sourceLayer,y=A.nodeIndex,b=A.tensorIndex;Dr(y===0,"input layer has >1 nodes"),Dr(b===0,"input layer has >1 tensors"),this.inputLayers.push(x),this.inputLayersNodeIndices.push(y),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let A=0;A<this.inputLayers.length;A++){let x=this.inputLayers[A];if(!(x instanceof Xu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${A} (0-based) originates from layer type ${x.getClassName()}.`);this.inputNames.push(x.name),this.feedInputShapes.push(x.batchInputShape),this.feedInputNames.push(x.name)}for(let A of this.outputLayers)this.outputNames.push(A.name);this.internalInputShapes=this.inputs.map(A=>A.shape),this.internalOutputShapes=this.outputs.map(A=>A.shape);let t={},n={},s={},r={},a={},o=[],i=(A,x,y,b,w,k)=>{(b==null||w==null||k==null)&&(b=A.sourceLayer,w=A.nodeIndex,k=A.tensorIndex);let I=b.inboundNodes[w];if(y.indexOf(I)!==-1)throw new pr(`The tensor ${A.name} at layer "${b.name}" is part of a cycle.`);if(x.indexOf(I)!==-1)return;this.containerNodes.add(Or.nodeKey(b,w)),b.id in a||(a[b.id]=Object.keys(a).length),y.indexOf(I)===-1&&y.push(I);let N=I.inboundLayers.length;for(let $=0;$<N;$++){let O=I.inputTensors[$],D=I.inboundLayers[$],R=I.nodeIndices[$],T=I.tensorIndices[$];i(O,x,y,D,R,T)}for(x.push(I);y.indexOf(I)>=0;)y.splice(y.indexOf(I),1);o.push(I)},l=[],c=[];for(let A of this.outputs)i(A,l,c);let u=o.slice().reverse();for(let A of u){n[A.id]=A,A.id in t||(t[A.id]=0);let x=t[A.id],y=s[A.outboundLayer.id]==null?0:s[A.outboundLayer.id];x=Math.max(x,y),s[A.outboundLayer.id]=x,r[A.outboundLayer.id]=A.outboundLayer,t[A.id]=x;for(let b=0;b<A.inboundLayers.length;b++){let w=A.inboundLayers[b],k=A.nodeIndices[b],I=w.inboundNodes[k],N=t[I.id]==null?0:t[I.id];t[I.id]=Math.max(x+1,N),n[I.id]=I}}let d={};for(let A in t){let x=t[A];x in d||(d[x]=[]),d[x].push(n[A])}let p={};for(let A in s){let x=s[A];x in p||(p[x]=[]),p[x].push(r[A])}let h=Object.keys(p).map(A=>parseInt(A,10)).sort(Of);this.layers=[];for(let A of h){let x=p[A];x.sort((y,b)=>{let w=a[y.id],k=a[b.id];return w<k?-1:w>k?1:0});for(let y of x)y instanceof Or&&this.internalContainerRefs.push(y),this.layers.push(y)}this.layersByDepth=p,h=Object.keys(d).map(A=>parseInt(A,10)).sort(Of);let f=this.inputs.slice(),m=[];for(let A of h)for(let x of d[A]){let y=x.outboundLayer;if(y!=null){for(let b of x.inputTensors)if(f.indexOf(b)===-1)throw new pr(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${y.name}". The following previous layers were accessed without issue: ${m}`);for(let b of x.outputTensors)f.push(b);m.push(y.name)}}this.nodesByDepth=d;let g=this.layers.map(A=>A.name);for(let A of g){let x=g.filter(y=>y===A).length;if(x!==1)throw new pr(`The name "${A}" is used ${x} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Yf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(A=>null),outputMasks:this.outputs.map(A=>null),inputShapes:this.inputs.map(A=>A.shape),outputShapes:this.outputs.map(A=>A.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new H("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new H(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new H(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new H(`${a.length} of ${s} weights are not set: ${a}`)}Y1(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${oA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=aA(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return q(()=>{e=kt(e);let n=new bl;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return qd(this.outputs,n,t)})}computeMask(e,t){return q(()=>{e=kt(e);let n;return t==null?n=fl(null,e.length):n=kt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Kf(e);if(t.length!==this.inputLayers.length)throw new H(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],c=i.name+"_0_0";n[c]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Of);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let c=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(c.id)!==-1)continue;let u=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],A=l.tensorIndices[f],x=`${m.name}_${g}_${A}`,y=n[x];u.push(y)}let d=c.computeOutputShape(as(u)),p=Kf(d),h=c.inboundNodes.indexOf(l);for(let f=0;f<p.length;f++){let m=`${c.name}_${h}_${f}`;n[m]=p[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],c=this.outputLayersTensorIndices[o],u=`${i.name}_${l}_${c}`;a.push(u)}for(let o=0;o<a.length;o++){let i=a[o];Dr(i in n),r.push(n[i])}return as(r)}runInternalGraph(e,t){t==null&&(t=fl(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],c=e[i],u=t[i];n[l.id]=[c,u]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Of);for(let i of s){let l=this.nodesByDepth[i];for(let c of l){let u=c.outboundLayer,d=c.inputTensors,p=c.outputTensors,h=new Array;for(let f of d)f.id in n&&h.push(n[f.id]);if(h.length===d.length){let f={},m,g,A,x;if(c.callArgs!=null&&(f=c.callArgs),h.length===1){let[y,b]=h[0];f.mask==null&&(f.mask=b),A=kt(u.call(y,f)),x=kt(u.computeMask(y,b)),m=[y],g=[b]}else m=h.map(y=>y[0]),g=h.map(y=>y[1]),f.mask==null&&(f.mask=g),A=kt(u.call(m,f)),x=kt(u.computeMask(m,g));if(u.activityRegularizer)throw new Le("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let y=0;y<p.length;++y){let b=p[y],w=A[y],k=x[y];n[b.id]=[w,k]}}}}let r=[],a=[],o=[];for(let i of this.outputs){Dr(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,c]=n[i.id];o.push(l.shape),r.push(l),a.push(c)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof Or?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=Or.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new H(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new H("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new H(`No such layer: ${e}`)}calculateLosses(){return q(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=Or.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let u=0;u<a.inboundNodes.length;u++){let d=a.inboundNodes[u],p=Or.nodeKey(a,u),h={};if(this.containerNodes.has(p)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let f=[];for(let m=0;m<d.inboundLayers.length;m++){let g=d.inboundLayers[m],A=d.nodeIndices[m],x=d.tensorIndices[m],y=Or.nodeKey(g,A),b=t[y];b==null&&(b=0),f.push([g.name,b,x,h])}l.push(f)}}}let c={};c.name=a.name,c.className=o,c.config=i,c.inboundNodes=l,n.push(c)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=Or.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.inputLayersTensorIndices[a];s.push([o.name,c,u])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=Or.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.outputLayersTensorIndices[a];r.push([o.name,c,u])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let A=[],x;for(let y of g){let b=y[0],w=y[1],k=y[2];if(x=y[3]==null?{}:y[3],!(b in r)){o(m,g);return}let I=r[b];if(I.inboundNodes.length<=w){o(m,g);return}let N=I.inboundNodes[w];A.push(N.outputTensors[k])}A.length>0&&m.apply(as(A),x)}function l(m){let g=m.name,A=gr(m,t.customObjects!=null?t.customObjects:{});A.setFastWeightInitDuringBuild(s),r[g]=A,m.inboundNodes.forEach(y=>{if(!(y instanceof Array))throw new H(`Corrupted configuration, expected array for nodeData: ${y}`);o(A,y)})}let c=t.name,u=t.layers;for(let m of u)l(m);for(;!yL(a);)for(let m of u){let g=r[m.name];if(g.name in a){let A=a[g.name];delete a[g.name];for(let x of A)i(g,x)}}let d=[],p=[],h=t.inputLayers;for(let m of h){let g=m[0],A=m[1],x=m[2];Dr(g in r);let b=r[g].inboundNodes[A].outputTensors;d.push(b[x])}let f=t.outputLayers;for(let m of f){let g=m[0],A=m[1],x=m[2];Dr(g in r);let b=r[g].inboundNodes[A].outputTensors;p.push(b[x])}return new e({inputs:d,outputs:p,name:c})}get stateful(){if(this._stateful)throw new H("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){q(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function VB(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function Yw(e,t){return VB(e,t,"classWeight")}async function Jw(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=q(()=>{if(e.shape.length===1)return Bn(e);if(e.shape.length===2){if(e.shape[1]>1)return js(e,1);if(e.shape[1]===1)return G(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());ee(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Kt(o,"float32")}else return null}function UB(e,t){return L(e,t)}var GB=32;function Qw(e,t){let n,s,r=t;n=r.xs,s=r.ys,v.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=ek("input",e.inputNames,n),o=ek("output",e.outputNames,s),i=a[0].shape[0];v.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)v.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)v.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function ek(e,t,n){if(n instanceof Je)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new H(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function HB(e){if(e.length===3)throw new Le("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function jB(e,t,n){let s=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(tk(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=HB(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;r?c=l.slice().concat(l.map(g=>"val_"+g)):c=l.slice();let u=Lw(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:p,history:h}=Bw(u,d,n.epochs,null,null,qB(t,n),null,r,c);p.setModel(e),e.history=h,await p.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await p.onEpochBegin(f);let A=0,x=0;for(s||(m=await t.iterator());s?A<n.batchesPerEpoch:!0;){let y=await m.next();if(s&&y.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${A} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(y.value!=null){let{xs:b,ys:w}=Qw(e,y.value),k={};k.batch=x,k.size=b[0].shape[0],await p.onBatchBegin(x,k);let I=[];if(n.classWeight!=null){let O=Yw(n.classWeight,e.outputNames);for(let D=0;D<O.length;++D)I.push(await Jw(w[D],null,O[D]))}let N=b.concat(w).concat(I),$=i(N);ee(N);for(let O=0;O<l.length;++O){let D=l[O],R=$[O];k[D]=R,gn(R)}await p.onBatchEnd(x,k),Pw(k),x++,A++}if(s?A>=n.batchesPerEpoch:y.done){if(r){let b;tk(n.validationData)?b=kt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=kt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?GB:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)g[`val_${e.metricsNames[w]}`]=b[w]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(f,g),f++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function qB(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function tk(e){return typeof e.iterator=="function"}function XB(e){return typeof e.next=="function"}async function KB(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Le("Verbose mode is not implemented yet.");v.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=XB(t)?t:await t.iterator(),i=0,l=0;for(;s?l<n.batches:!0;){let c=await o.next();if(a=q(()=>{if(c.value){let{xs:u,ys:d}=Qw(e,c.value),p=u.concat(d),h=q(()=>r(p));if(ee(p),l===0)for(let m=0;m<h.length;++m)a.push(Re(0));let f=p[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],A=a[m];a[m]=q(()=>le(a[m],L(f,g))),l>0&&ee(A)}ee(h),i+=f,++l}return a}),c.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<a.length;++c){let u=a[c];a[c]=he(a[c],i),ee(u)}return as(a)}function lA(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Xd(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>yl(s,t,n-t)):yl(e,t,n-t)}function uA(e,t){return q(()=>e==null?null:Array.isArray(e)?e.map(n=>uA(n,t)):Sw(e,t.dtype==="int32"?t:pe(t,"int32")))}function cA(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function ZB(e,t,n,s,r,a,o,i,l,c,u,d,p,h,f){r==null&&(r=32),a==null&&(a=1),u==null&&(u=!0),p==null&&(p=0);let m=!1;if(l!=null&&c!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new H("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),A;g!=null&&(A=hr(0,g)),o==null&&(o=1);let{callbackList:x,history:y}=Bw(i,o,a,p,g,h,r,m,d);x.setModel(e),e.history=y,await x.onTrainBegin(),e.stopTraining_=!1;for(let b=p;b<a;++b){await x.onEpochBegin(b);let w={};if(h!=null)throw new Le("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new Le("batch shuffling is not implemneted yet");u&&v.shuffle(A);let k=Kt(A),I=cA(g,r);for(let N=0;N<I.length;++N){let $={};if(await x.onBatchBegin(N,$),q(()=>{let O=I[N][0],D=I[N][1],R=yl(k,O,D-O);$.batch=N,$.size=D-O;let T=uA(n,R),F=t(T);for(let U=0;U<s.length;++U){let j=s[U],z=F[U];$[j]=z,gn(z)}if(N===I.length-1&&m){let U=e.testLoop(l,c,r);for(let j=0;j<s.length;++j){let z=s[j],X=U[j];gn(X),w["val_"+z]=X}}}),await x.onBatchEnd(N,$),Pw($),e.stopTraining_)break}k.dispose()}if(await x.onEpochEnd(b,w),e.stopTraining_)break}return await x.onTrainEnd(),await e.history.syncData(),e.history}async function YB(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,c,u;try{let d=s.batchSize==null?32:s.batchSize;lA(d);let p=!1,h=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,p,d);r=h[0],a=h[1],u=h[2];let f=!1,m;if(s.validationData!=null&&s.validationData.length>0){if(f=!0,s.validationData.length===2)o=s.validationData[0],i=s.validationData[1];else throw s.validationData.length===3?new Le("validationData including sample weights is not supported yet."):new H(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let I=!0,N=await e.standardizeUserData(o,i,null,null,I,d);l=N[0],c=N[1],m=l.concat(c)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){f=!0;let I=Math.floor(r[0].shape[0]*(1-s.validationSplit)),N=r[0].shape[0];l=Xd(r,I,N),r=Xd(r,0,I),c=Xd(a,I,N),a=Xd(a,0,I),m=l.concat(c)}else s.validationSteps!=null&&(f=!0);let g=r.concat(a).concat(u);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),x=e.getDedupedMetricsNames(),y,b;f?(e.makeTestFunction(),y=e.testFunction,b=x.slice().concat(x.map(I=>"val_"+I))):(y=null,m=[],b=x.slice());let w=Lw(s.callbacks,s.yieldEvery);return await ZB(e,A,g,x,d,s.epochs,s.verbose,w,y,m,s.shuffle,b,s.initialEpoch,null,null)}finally{e.isTraining=!1,vl(r,t),vl(a,n),vl(l,o),vl(c,i),u!=null&&ee(u)}}function nk(e){let t=[];e instanceof Je&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(Vd(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function vl(e,t){if(e==null)return;let n=[];if(t instanceof Je)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof Je)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function JB(e){return e instanceof Je}function dA(e){return Array.isArray(e)}function sk(e){return!JB(e)&&!dA(e)}function rk(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(dA(e)&&e.length>0)o=!0;else if(sk(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new H(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(sk(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new H(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(dA(e)){if(e=e,e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new H(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=nk(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new H(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u>=0&&c!==u)throw new H(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function QB(e,t,n){let s=Po(e.map(a=>a.shape[0]));s.sort();let r=Po(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new H(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new H(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!v.arraysEqual(s,r))throw new H(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function eW(e,t,n){let s=[xl,tm,Hd];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===Hd&&a.shape[a.shape.length-1]===1)throw new H(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),c=i.slice(1);for(let u=0;u<l.length;++u){let d=l[u],p=c[u];if(p!=null&&d!==p)throw new H(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function ak(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new H(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new H(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new H(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u!==c)throw new H(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function tW(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var nW="layers-model",ta=class extends Or{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new H("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");DB(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=_B(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Jr))throw new H("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new H(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(eA(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new H(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>eA(o))}else{let a=eA(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Al("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=tW(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};Al("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let c="",u,d,p;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===tm?["accuracy","acc"].indexOf(h)!==-1?d=tA:["crossentropy","ce"].indexOf(h)!==-1&&(d=Uw):this.lossFunctions[a]===em?["accuracy","acc"].indexOf(h)!==-1?d=Gw:["crossentropy","ce"].indexOf(h)!==-1&&(d=Hw):["accuracy","acc"].indexOf(h)!==-1?d=nA:["crossentropy","ce"].indexOf(h)!==-1&&(d=sA);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),p=d,u=c+g}else p=$B(h),u=c+rm(h);let f;Al(u,()=>{f=p}),r(a,u,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;lA(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return as(l)}finally{vl(a[0],e),vl(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),KB(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new H(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new H(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new H("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new bl;if(e instanceof Je&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new H(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new H(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=qd(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=fl(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new H(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return q(()=>{let s=this.checkNumSamples(e);if(n)throw new Le("Verbose predictLoop() is not implemented yet.");let r=cA(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)q(()=>{let l=r[o][0],c=r[o][1],u=Xd(e,l,c),d=[];if(Array.isArray(u))for(let h=0;h<u.length;++h)d.push({key:this.inputs[h],value:u[h]});else d.push({key:this.inputs[0],value:u});let p=new bl(d);return qd(this.outputs,p)}).forEach((l,c)=>a[c].push(l));return as(a.map(o=>vt(o,0)))})}predict(e,t={}){let n=nk(e);ak(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return lA(s),this.predictLoop(n,s)}finally{vl(n,e)}}predictOnBatch(e){ak(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new pr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===em?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=rk(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=rk(t,this.feedOutputNames,r,!1,"target"),QB(e,t,null),eW(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!=0)throw new H(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let c=Yw(s,this.outputNames);l=[];for(let u=0;u<c.length;++u)l.push(await Jw(i[u],null,c[u]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return q(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Le("Verbose mode is not implemented yet.");if(r!=null)throw new Le("steps mode in testLoop() is not implemented yet");{let i=cA(a,n),l=Kt(hr(0,a));for(let c=0;c<i.length;++c){let u=i[c][0],d=i[c][1],p=yl(l,u,d-u),h=uA(t,p),f=e(h);if(c===0)for(let m=0;m<f.length;++m)o.push(Re(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=le(o[m],L(d-u,g))}}for(let c=0;c<o.length;++c)o[c]=he(o[c],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;pw(e,s)>1&&(r+=`_${pw(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let u=[];for(let f=0;f<this.inputs.length;++f)u.push({key:this.inputs[f],value:n[f]});let d=new bl(u),p=qd(this.outputs,d,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](s[f],p[f]);r[f]!=null&&(g=UB(g,r[f]));let A=Wt(g);t.push(A),f===0?h=g:h=le(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],A=this.metricsTensors[f][1];m=Wt(g(s[A],p[A]))}gn(m),a.push(m)}return h=Wt(h),this.calculateLosses().forEach(f=>{h=le(h,f)}),h},i=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>q(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new bl(a),i=qd(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],u=Wt(c(r[l],i[l]));l===0?n=u:n=le(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],u=this.metricsTensors[l][1],d=Wt(c(r[u],i[u]));t.push(d)}return t})}async fit(e,t,n={}){return YB(this,e,t,n)}async fitDataset(e,t){return jB(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let c=await l.data();i.push(c[0])}return ee(o),as(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=nf().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-nf().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=ea(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>ea(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=ea(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ea(rm(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ea(rm(e)));{let e={};for(let t in this.metrics)e[t]=ea(rm(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=jd(e.optimizer_config),n=gr(t),s;if(typeof e.loss=="string")s=ml(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>ml(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=ml(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>ml(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=ml(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=ns.getSaveHandlers(e);if(l.length===0)throw new H(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new H(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new H("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await ns.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:nW,generatedBy:`TensorFlow.js tfjs-layers v${oA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:c,specs:u}=await ns.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...u),n.data=ns.concatenateArrayBuffers([n.data,c])}if(this.userDefinedMetadata!=null){let l=!0;qw(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){qw(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};ta.className="Model";ue.registerClass(ta);var ok=class extends ta{};ok.className="Functional";ue.registerClass(ok);async function sW(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=jd(n),r=gr(s,t);if(e.weightsManifest!=null){let a=await ns.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),ee(a)}return r}async function rW(e,t){if(t==null&&(t={}),typeof e=="string"){let n=ns.getLoadHandlers(e,t);if(n.length===0)n.push(ns.browserHTTPRequest(e,t));else if(n.length>1)throw new H(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return aW(e,void 0,t)}async function aW(e,t,n){if(n==null&&(n={}),e.load==null)throw new H("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=gr(jd(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new H("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=oW(s.weightData,s.weightSpecs);i.loadWeights(c,a),i.optimizer!=null&&u.length>0&&await i.optimizer.setWeights(u),ee(c),ee(u.map(d=>d.tensor))}return i}function oW(e,t){let n=ns.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var pA=class extends ta{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Xf("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new H(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof pA||e instanceof ta,n;if(t){if(n=e,n.outputs.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new H("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new H("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=Dw({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new H(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=_w(this.outputs[0])}this.inboundNodes=[],new Yf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:fl(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(pt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new ta({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new pr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new pr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new pr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new pr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new H("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof pA))throw new Le(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let c=gr(i,void 0,s);s&&c.setFastWeightInitDuringBuild(!0),o.add(c)}return o}set stopTraining(e){if(this.model==null)throw new H("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new H("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}},om=pA;om.className="Sequential";ue.registerClass(om);function iW(e){return new ta(e)}function lW(e){return new om(e)}function uW(e,t){return t==null&&(t={}),rW(e,t)}function ik(e){return Dw(e)}function cW(e,t){J1.registerCallbackConstructor(e,t)}var is=class extends ue.Serializable{getConfig(){return{}}},lk=class extends is{apply(e,t=1){return OL(e,t)}};lk.className="elu";ue.registerClass(lk);var uk=class extends is{apply(e){return f1(e)}};uk.className="selu";ue.registerClass(uk);var ck=class extends is{apply(e){return _r(e)}};ck.className="relu";ue.registerClass(ck);var dk=class extends is{apply(e){return q(()=>_d(6,_r(e)))}};dk.className="relu6";ue.registerClass(dk);var pk=class extends is{apply(e){return e}};pk.className="linear";ue.registerClass(pk);var hk=class extends is{apply(e){return ds(e)}};hk.className="sigmoid";ue.registerClass(hk);var fk=class extends is{apply(e){return zL(e)}};fk.className="hardSigmoid";ue.registerClass(fk);var mk=class extends is{apply(e){return Bu(e)}};mk.className="softplus";ue.registerClass(mk);var gk=class extends is{apply(e){return ML(e)}};gk.className="softsign";ue.registerClass(gk);var Ak=class extends is{apply(e){return Fu(e)}};Ak.className="tanh";ue.registerClass(Ak);var hA=class extends is{apply(e,t=-1){return Gu(e,t)}};hA.className="softmax";ue.registerClass(hA);var yk=class extends is{apply(e,t=-1){return s1(e,t)}};yk.className="logSoftmax";ue.registerClass(yk);var xk=class extends is{apply(e,t=1){return q(()=>L(ds(L(e,t)),e))}};xk.className="swish";ue.registerClass(xk);var bk=class extends is{apply(e){return q(()=>L(e,Fu(Bu(e))))}};bk.className="mish";ue.registerClass(bk);function zo(e){return e.getClassName()}function fA(e,t={}){return Ld(e,ue.SerializationMap.getMap().classNameMap,t,"activation")}function Lo(e){if(e==null){let t={};return t.className="linear",t.config={},fA(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},fA(t)}else return e instanceof is?e:fA(e)}function mA(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var vk=class extends ue.Serializable{},Kd=class extends vk{constructor(e){super();mA(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return q(()=>{let t=Gt([1]);return this.hasL1&&(t=le(t,Se(L(this.l1,nn(e))))),this.hasL2&&(t=le(t,Se(L(this.l2,Ud(e))))),G(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Kd.className="L1L2";ue.registerClass(Kd);function dW(e){return mA(e),new Kd({l1:e!=null?e.l1:null,l2:0})}function pW(e){return mA(e),new Kd({l2:e!=null?e.l2:null,l1:0})}var wk={l1l2:"L1L2"};function At(e){return R1(e)}function kk(e,t={}){return Ld(e,ue.SerializationMap.getMap().classNameMap,t,"regularizer")}function Et(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in wk?wk[e]:e,config:{}};return kk(n)}else return e instanceof vk?e:kk(e)}var gA=class extends tt{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Be(e);let n=_r(e);return this.maxValue!=null&&(n=ps(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};gA.className="ReLU";ue.registerClass(gA);var AA=class extends tt{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Be(e);return hf(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};AA.className="LeakyReLU";ue.registerClass(AA);var yA=class extends tt{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Nt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Et(e.alphaRegularizer),this.alphaConstraint=on(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new H(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=pt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new Zt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Be(e),bf(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Mt(this.alphaInitializer),alphaRegularizer:At(this.alphaRegularizer),alphaConstraint:an(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};yA.className="PReLU";ue.registerClass(yA);var xA=class extends tt{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Le(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Be(e);return Rd(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};xA.className="ELU";ue.registerClass(xA);var bA=class extends tt{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Be(e);return L(n,pe(hs(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};bA.className="ThresholdedReLU";ue.registerClass(bA);var vA=class extends tt{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new hA().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Be(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};vA.className="Softmax";ue.registerClass(vA);function Yu(e,t,n){if(typeof e=="number")return fl(e,t);if(e.length!==t)throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!_L(r))throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Ar(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function Mr(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+Oo([n-t,0]);else if(s==="same")e=e*t;else throw new H(`Unsupport padding mode: ${s}.`);return e}function wA(e,t){return q(()=>(Ht(t),t==="channelsFirst"?Qe(e,[0,2,3,1]):e))}function Sk(e,t){return q(()=>(Ht(t),t==="channelsFirst"?Qe(e,[0,2,3,4,1]):e))}function hW(e,t,n,s=1,r="valid",a,o=1){return q(()=>{if(a==null&&(a=dr()),Ht(a),e.shape.length!==3)throw new H(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new H(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new H(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=Qe(e,[0,2,1])),r==="causal")throw new Le("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=K2(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=fr(i,n)),i})}function Ik(e,t,n,s=[1,1],r="valid",a,o,i=null){return q(()=>{if(a==null&&(a=dr()),Ht(a),e.rank!==3&&e.rank!==4)throw new H(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new H(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=wA(e,a);if(r==="causal")throw new Le("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=_o.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=Qe(l,[0,3,1,2])),l})}function fW(e,t,n,s=[1,1,1],r="valid",a,o){return q(()=>{if(a==null&&(a=dr()),Ht(a),e.rank!==4&&e.rank!==5)throw new H(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new H(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=Sk(e,a);if(r==="causal")throw new Le("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=J2(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=fr(i,n)),a==="channelsFirst"&&(i=Qe(i,[0,4,1,2,3])),i})}var kA=class extends tt{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",kA.verifyArgs(t),this.rank=e,xn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Le(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Yu(t.kernelSize,e,"kernelSize"),this.strides=Yu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,_s(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ht(this.dataFormat),this.activation=Lo(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Nt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=on(t.biasConstraint),this.biasRegularizer=Et(t.biasRegularizer),this.activityRegularizer=Et(t.activityRegularizer),this.dilationRate=Yu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new H(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new H(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new H(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Dr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!_1(e.kernelSize,"number",1,3))throw new H(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:zo(this.activation),useBias:this.useBias,biasInitializer:Mt(this.biasInitializer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),biasConstraint:an(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Zd=class extends kA{constructor(e,t){super(e,t);this.kernel=null,Zd.verifyArgs(t),this.filters=t.filters,xn(this.filters,"filters"),this.kernelInitializer=Nt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=on(t.kernelConstraint),this.kernelRegularizer=Et(t.kernelRegularizer)}build(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return q(()=>{e=Be(e);let n,s=this.bias==null?null:this.bias.read(),r=fw(this.activation.getClassName());if(r!=null&&this.rank===2)n=Ik(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=hW(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=Ik(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=fW(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Le("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=pt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=Ar(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:Mt(this.kernelInitializer),kernelRegularizer:At(this.kernelRegularizer),kernelConstraint:an(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new H(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Ck=class extends Zd{constructor(e){super(2,e);Ck.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!_1(e.kernelSize,"number",1,2))throw new H(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}},im=Ck;im.className="Conv2D";ue.registerClass(im);var Tk=class extends Zd{constructor(e){super(3,e);Tk.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new H(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}},lm=Tk;lm.className="Conv3D";ue.registerClass(lm);var SA=class extends im{constructor(e){super(e);if(this.inputSpec=[new Zt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=pt(e),e.length!==4)throw new H("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Zt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return q(()=>{let n=Be(e);if(n.shape.length!==4)throw new H(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],c=this.kernelSize[0],u=this.kernelSize[1],d=this.strides[0],p=this.strides[1],h=Mr(i,d,c,this.padding),f=Mr(l,p,u,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Qe(n,[0,2,3,1]));let g=Y2(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Qe(g,[0,3,1,2])),this.bias!=null&&(g=fr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=pt(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=Mr(t[s],i,a,this.padding),t[r]=Mr(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};SA.className="Conv2DTranspose";ue.registerClass(SA);var IA=class extends lm{constructor(e){super(e);if(this.inputSpec=[new Zt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=pt(e),e.length!==5)throw new H("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Zt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return q(()=>{let n=Be(e);if(n.shape.length!==5)throw new H(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],c=s[a],u=s[o],d=this.kernelSize[0],p=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],A=Mr(l,f,d,this.padding),x=Mr(c,m,p,this.padding),y=Mr(u,g,h,this.padding),b=[r,A,x,y,this.filters];this.dataFormat!=="channelsLast"&&(n=Qe(n,[0,2,3,4,1]));let w=av(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=Qe(w,[0,4,1,2,3])),this.bias!==null&&(w=fr(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=pt(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[s]=Mr(t[s],c,o,this.padding),t[r]=Mr(t[r],u,i,this.padding),t[a]=Mr(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};IA.className="Conv3DTranspose";ue.registerClass(IA);var Nk=class extends Zd{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new H("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new H("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new H(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Nt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Et(t.depthwiseRegularizer),this.depthwiseConstraint=on(t.depthwiseConstraint),this.pointwiseInitializer=Nt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Et(t.pointwiseRegularizer),this.pointwiseConstraint=on(t.pointwiseConstraint)}build(e){if(e=pt(e),e.length<this.rank+2)throw new H(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Zt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return q(()=>{e=Be(e);let n;if(this.rank===1)throw new Le("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Qe(e,[0,2,3,1])),n=Cv(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=fr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Qe(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Mt(this.depthwiseInitializer),e.pointwiseInitializer=Mt(this.pointwiseInitializer),e.depthwiseRegularizer=At(this.depthwiseRegularizer),e.pointwiseRegularizer=At(this.pointwiseRegularizer),e.depthwiseConstraint=an(this.depthwiseConstraint),e.pointwiseConstraint=an(this.pointwiseConstraint),e}};Nk.className="SeparableConv";var CA=class extends Nk{constructor(e){super(2,e)}};CA.className="SeparableConv2D";ue.registerClass(CA);var Ek=class extends Zd{constructor(e){super(1,e);Ek.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!_1(e.kernelSize,"number",1,1))throw new H(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}},TA=Ek;TA.className="Conv1D";ue.registerClass(TA);var NA=class extends tt{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return q(()=>{if(e=Be(e),this.dataFormat==="channelsLast"){let n=zf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return zf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=zf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return zf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};NA.className="Cropping2D";ue.registerClass(NA);var EA=class extends tt{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ht(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,EL(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return q(()=>{let n=Be(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=Qe(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?$e.resizeNearestNeighbor(n,[r,a]):$e.resizeBilinear(n,[r,a]);return Qe(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?$e.resizeNearestNeighbor(n,[r,a]):$e.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};EA.className="UpSampling2D";ue.registerClass(EA);function mW(e,t,n=[1,1],s="valid",r,a){return q(()=>{r==null&&(r=dr()),Ht(r);let o=wA(e,r);if(e.rank!==4)throw new H(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new H(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=Ed(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=Qe(o,[0,3,1,2])),o})}var RA=class extends kA{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Nt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=on(e.depthwiseConstraint),this.depthwiseRegularizer=Et(e.depthwiseRegularizer)}build(e){if(e=pt(e),e.length<4)throw new H(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return q(()=>{e=Be(e);let n=mW(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=fr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ar(t,this.kernelSize[0],this.padding,this.strides[0]),a=Ar(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Mt(this.depthwiseInitializer),e.depthwiseRegularizer=At(this.depthwiseRegularizer),e.depthwiseConstraint=an(this.depthwiseRegularizer),e}};RA.className="DepthwiseConv2D";ue.registerClass(RA);function Rk(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new H("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function $k(e,t,n,s=!1,r,a,o=!1,i=!1){return q(()=>{let l=t.shape.length;if(l<3)throw new H(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(hr(2,l));if(t=Qe(t,c),a!=null)throw new Le("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=pe(pe(r,"bool"),"float32"),r.rank===l-1&&(r=Xt(r,-1)),r=Qe(r,c)),s&&(t=$s(t,0),r!=null&&(r=$s(r,0)));let u=[],d,p=n,h=t.shape[0],f=rs(t),m;r!=null&&(m=rs(r));for(let A=0;A<h;++A){let x=f[A],y=q(()=>e(x,p));if(r==null)d=y[0],p=y[1];else{let b=q(()=>{let w=m[A],k=me(Rs(w),w),I=le(L(y[0],w),L(p[0],k)),N=p.map(($,O)=>le(L(y[1][O],w),L($,k)));return{output:I,newStates:N}});d=b.output,p=b.newStates}i&&u.push(d)}let g;return i&&(g=yn(u,1)),[d,g,p]})}var _k=class extends tt{constructor(e){super(e);let t;if(e.cell==null)throw new H("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new dm({cells:e.cell}):t=e.cell,t.stateSize==null)throw new H("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Zt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return hr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){K1(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return q(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Le("Constants support is not implemented in RNN yet.");K1(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new Zt({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new Le("Constants support is not implemented in RNN yet.");this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new H(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Zt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){q(()=>{if(!this.stateful)throw new Qr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Gt([n,s])):this.states_=[Gt([n,this.cell.stateSize])];else if(e==null)ee(this.states_),this.keptStates!=null&&(ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Gt([n,s])):this.states_[0]=Gt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):ee(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!v.arraysEqual(r.shape,o))throw new H(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>gn(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=Rk(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Zt({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof mr){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return q(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Be(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new H(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=$k((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),c=l[0],u=l[1],d=l[2];this.stateful&&this.resetStates(d,s);let p=this.returnSequences?u:c;return this.returnState?[p].concat(d):p})}getInitialState(e){return q(()=>{let t=Gt(e.shape);return t=Se(t,[1,2]),t=Vd(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?B1(t,[1,n]):t):this.cell.stateSize>1?[B1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===_k.className&&(t.cell={className:this.cell.getClassName(),config:n}),{...n,...e,...t}}static fromConfig(e,t,n={}){let s=t.cell,r=gr(s,n);return new e(Object.assign(t,{cell:r}))}},na=_k;na.className="RNN";ue.registerClass(na);var Yd=class extends tt{},um=class extends Yd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,xn(this.units,"units"),this.activation=Lo(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Et(e.kernelRegularizer),this.recurrentRegularizer=Et(e.recurrentRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.kernelConstraint=on(e.kernelConstraint),this.recurrentConstraint=on(e.recurrentConstraint),this.biasConstraint=on(e.biasConstraint),this.dropout=qu([1,Oo([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=qu([1,Oo([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=pt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return q(()=>{if(e=e,e.length!==2)throw new H(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Bo({ones:()=>Rs(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Bo({ones:()=>Rs(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=Pr(L(e,a),this.kernel.read()):r=Pr(e,this.kernel.read()),this.bias!=null&&(r=fr(r,this.bias.read())),o!=null&&(n=L(n,o));let i=le(r,Pr(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:zo(this.activation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),recurrentInitializer:Mt(this.recurrentInitializer),biasInitializer:Mt(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),recurrentRegularizer:At(this.recurrentRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:an(this.kernelConstraint),recurrentConstraint:an(this.recurrentConstraint),biasConstraint:an(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return{...e,...t}}};um.className="SimpleRNNCell";ue.registerClass(um);var $A=class extends na{constructor(e){e.cell=new um(e);super(e)}call(e,t){return q(()=>{this.cell.dropoutMask!=null&&(ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};$A.className="SimpleRNN";ue.registerClass($A);var cm=class extends Yd{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new H("GRUCell does not support reset_after parameter set to true.");this.units=e.units,xn(this.units,"units"),this.activation=Lo(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Lo(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Et(e.kernelRegularizer),this.recurrentRegularizer=Et(e.recurrentRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.kernelConstraint=on(e.kernelConstraint),this.recurrentConstraint=on(e.recurrentConstraint),this.biasConstraint=on(e.biasConstraint),this.dropout=qu([1,Oo([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=qu([1,Oo([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=pt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return q(()=>{if(e=e,e.length!==2)throw new H(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Bo({ones:()=>Rs(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Bo({ones:()=>Rs(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=L(e,r[0]));let c=Pr(e,this.kernel.read());this.useBias&&(c=fr(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,a[0]));let u=this.recurrentKernel.read(),[d,p]=sn(u,[2*this.units,this.units],u.rank-1),h=Pr(s,d),[f,m,g]=sn(c,3,c.rank-1),[A,x]=sn(h,2,h.rank-1);o=this.recurrentActivation.apply(le(f,A)),i=this.recurrentActivation.apply(le(m,x));let y=Pr(L(i,s),p);l=this.activation.apply(le(g,y));let b=le(L(o,s),L(le(1,Ot(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:zo(this.activation),recurrentActivation:zo(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),recurrentInitializer:Mt(this.recurrentInitializer),biasInitializer:Mt(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),recurrentRegularizer:At(this.recurrentRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:an(this.kernelConstraint),recurrentConstraint:an(this.recurrentConstraint),biasConstraint:an(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return{...e,...t}}};cm.className="GRUCell";ue.registerClass(cm);var _A=class extends na{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new cm(e);super(e)}call(e,t){return q(()=>{this.cell.dropoutMask!=null&&(ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};_A.className="GRU";ue.registerClass(_A);var Jd=class extends Yd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,xn(this.units,"units"),this.activation=Lo(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Lo(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Et(e.kernelRegularizer),this.recurrentRegularizer=Et(e.recurrentRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.kernelConstraint=on(e.kernelConstraint),this.recurrentConstraint=on(e.recurrentConstraint),this.biasConstraint=on(e.biasConstraint),this.dropout=qu([1,Oo([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=qu([1,Oo([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=pt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends Ys{apply(o,i){let l=r.apply([a]),c=new Bf().apply([a]),u=r.apply([a*2]);return kw(kw(l,c),u)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return q(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new H(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Bo({ones:()=>Rs(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Bo({ones:()=>Rs(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,c,u;0<this.dropout&&this.dropout<1&&(e=L(e,a[0]));let d=Pr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,o[0])),d=le(d,Pr(s,this.recurrentKernel.read())),this.useBias&&(d=fr(d,this.bias.read()));let[p,h,f,m]=sn(d,4,d.rank-1);i=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(h),c=le(L(l,r),L(i,this.activation.apply(f))),u=this.recurrentActivation.apply(m);let g=L(u,this.activation.apply(c));return[g,g,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:zo(this.activation),recurrentActivation:zo(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),recurrentInitializer:Mt(this.recurrentInitializer),biasInitializer:Mt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:At(this.kernelRegularizer),recurrentRegularizer:At(this.recurrentRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:an(this.kernelConstraint),recurrentConstraint:an(this.recurrentConstraint),biasConstraint:an(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return{...e,...t}}};Jd.className="LSTMCell";ue.registerClass(Jd);var DA=class extends na{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Jd(e);super(e)}call(e,t){return q(()=>{this.cell.dropoutMask!=null&&(ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};DA.className="LSTM";ue.registerClass(DA);var dm=class extends Yd{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return q(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){K1(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{Al(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return{...e,...s}}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(gr(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Z1(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}Y1(t)}};dm.className="StackedRNNCells";ue.registerClass(dm);function Bo(e){let{ones:t,rate:n,training:s=!1,count:r=1,dropoutFunc:a}=e,o=()=>a!=null?a(t(),n):Iw(t(),n),i=()=>Gd(o,t,s);return!r||r<=1?gn(i().clone()):Array(r).fill(void 0).map(i).map(c=>gn(c.clone()))}var Dk=class extends na{constructor(e){if(e.unroll)throw new Le("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Le("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Zt({ndim:5})]}call(e,t){return q(()=>{if(this.cell.dropoutMask!=null&&(ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new H("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return q(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Gt(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){q(()=>{if(!this.stateful)throw new Qr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Gt(r)):this.states_=[Gt(r)];else if(e==null)ee(this.states_),this.keptStates!=null&&(ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Gt(r)):this.states_[0]=Gt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):ee(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!v.arraysEqual(i.shape,l))throw new H(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>gn(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],c=e[i?4:3],u=Ar(l,s[0],r,a[0],o[0]),d=Ar(c,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,u,d]:[u,d,n]]}};Dk.className="ConvRNN2D";var pm=class extends Jd{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super({...e,units:t});this.filters=t,xn(this.filters,"filters"),this.kernelSize=Yu(n,2,"kernelSize"),this.kernelSize.forEach(i=>xn(i,"kernelSize")),this.strides=Yu(s||1,2,"strides"),this.strides.forEach(i=>xn(i,"strides")),this.padding=r||"valid",_s(this.padding),this.dataFormat=a||"channelsLast",Ht(this.dataFormat),this.dilationRate=Yu(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>xn(i,"dilationRate"))}build(e){var t;e=pt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;i=new(t=class extends Ys{apply(u,d){let p=l.apply([c]),h=fs([c]),f=l.apply([c*2]);return L1([p,h,f])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return q(()=>{if(e.length!==3)throw new H(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Bo({ones:()=>Rs(s),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,l=(Z,J,te)=>!J||!J[te]?Z:L(J[te],Z),c=l(s,i,0),u=l(s,i,1),d=l(s,i,2),p=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Bo({ones:()=>Rs(r),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),A=l(r,h,3),x=3,[y,b,w,k]=sn(this.kernel.read(),o,x),[I,N,$,O]=this.useBias?sn(this.bias.read(),o):[null,null,null,null];c=this.inputConv(c,y,I,this.padding),u=this.inputConv(u,b,N,this.padding),d=this.inputConv(d,w,$,this.padding),p=this.inputConv(p,k,O,this.padding);let[D,R,T,F]=sn(this.recurrentKernel.read(),o,x);f=this.recurrentConv(f,D),m=this.recurrentConv(m,R),g=this.recurrentConv(g,T),A=this.recurrentConv(A,F);let U=this.recurrentActivation.apply(le(c,f)),j=this.recurrentActivation.apply(le(u,m)),z=le(L(j,a),L(U,this.activation.apply(le(d,g)))),X=L(this.recurrentActivation.apply(le(p,A)),this.activation.apply(z));return[X,X,z]})}getConfig(){let{units:e,...t}=super.getConfig(),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return{...t,...n}}inputConv(e,t,n,s){let r=Eo(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?fr(r,n,this.dataFormat):r}recurrentConv(e,t){return Eo(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};pm.className="ConvLSTM2DCell";ue.registerClass(pm);var PA=class extends Dk{constructor(e){let t=new pm(e);super({...e,cell:t})}static fromConfig(e,t){return new e(t)}};PA.className="ConvLSTM2D";ue.registerClass(PA);var hm=class extends tt{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Be(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Gd(()=>Iw(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};hm.className="Dropout";ue.registerClass(hm);var FA=class extends hm{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};FA.className="SpatialDropout1D";ue.registerClass(FA);var OA=class extends tt{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,xn(this.units,"units"),this.activation=Lo(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=on(e.kernelConstraint),this.biasConstraint=on(e.biasConstraint),this.kernelRegularizer=Et(e.kernelRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.activityRegularizer=Et(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=pt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=pt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Be(e),s=fw(this.activation.getClassName()),r;return s!=null?r=Pr(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=Pr(n,this.kernel.read()),this.bias!=null&&(r=fr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:zo(this.activation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),biasInitializer:Mt(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:an(this.kernelConstraint),biasConstraint:an(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};OA.className="Dense";ue.registerClass(OA);var MA=class extends tt{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=pt(e);for(let t of e.slice(1))if(t==null)throw new H(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Fo(e,1)]}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Be(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=Qe(n,s)}return FL(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};MA.className="Flatten";ue.registerClass(MA);var zA=class extends tt{constructor(e){super(e);this.supportsMasking=!0,this.activation=Lo(e.activation)}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Be(e);return this.activation.apply(n)})}getConfig(){let e={activation:zo(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};zA.className="Activation";ue.registerClass(zA);var LA=class extends tt{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return q(()=>(e=Be(e),DL(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};LA.className="RepeatVector";ue.registerClass(LA);var BA=class extends tt{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new H("Can only specifiy one unknown dimension.");else r*=l}let o=Fo(e);if(a!==null){if(r===0||o%r!=0)throw new H(n);s[a]=o/r}else if(o!==r)throw new H(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Be(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return G(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};BA.className="Reshape";ue.registerClass(BA);var WA=class extends tt{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=hr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Zt({ndim:this.dims.length+1})]}computeOutputShape(e){e=pt(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return Qe(Be(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};WA.className="Permute";ue.registerClass(WA);var VA=class extends tt{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Be(e),s=-1;return of(Wu(n,this.maskValue),s)}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Be(e),s=-1,r=!0,a=of(Wu(n,this.maskValue),s,r);return L(n,pe(a,n.dtype))})}};VA.className="Masking";ue.registerClass(VA);var UA=class extends tt{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(kt(e.inputLength))}this.inputDim=e.inputDim,xn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,xn(this.outputDim,"outputDim"),this.embeddingsInitializer=Nt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Et(e.embeddingsRegularizer),this.activityRegularizer=Et(e.activityRegularizer),this.embeddingsConstraint=on(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return q(()=>this.maskZero?(e=Be(e),Wu(e,et(e))):null)}computeOutputShape(e){if(e=pt(e),this.inputLength==null)return[...e,this.outputDim];let t=kt(this.inputLength);if(t.length!==e.length-1)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Be(e);n.dtype!=="int32"&&(n=Mf(n,"int32"));let s=Sw(this.embeddings.read(),G(n,[n.size]));return G(s,pt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Mt(this.embeddingsInitializer),embeddingsRegularizer:At(this.embeddingsRegularizer),activityRegularizer:At(this.activityRegularizer),embeddingsConstraint:an(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};UA.className="Embedding";ue.registerClass(UA);var wl=class extends tt{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Le}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new H("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[pt(e)]),e=e,e.length<2)throw new H(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Po(t),t.length>1)throw new H(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&Po(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return q(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=Oo(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=Vd(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let c=i.shape,u=c[0],d=c.slice(1).concat([u]),p=G(i,[u].concat(Fo(c.slice(1))));p=Qe(p,[1,0]),p=G(p,d),n.push(p),r=!0}else if(l>1){let c=hr(1,l).concat([0]);n.push(Qe(i,c)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,c=i[l-1],u=[c].concat(i.slice(0,i.length-1));a=G(Qe(G(a,[-1,c]),[1,0]),u)}else if(o>1){let i=[o-1].concat(hr(0,o-1));a=Qe(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=Po(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return q(()=>{if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an Array");if(!Array.isArray(e))throw new H("`inputs` should be an Array");if(t.length!==e.length)throw new H(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Xt(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=ur(n,t[s]);return n})}},GA=class extends wl{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=le(t,e[n]);return t})}};GA.className="Add";ue.registerClass(GA);var HA=class extends wl{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=L(t,e[n]);return t})}};HA.className="Multiply";ue.registerClass(HA);var jA=class extends wl{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=le(t,e[n]);return L(1/e.length,t)})}};jA.className="Average";ue.registerClass(jA);var qA=class extends wl{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Zr(t,e[n]);return t})}};qA.className="Maximum";ue.registerClass(qA);var XA=class extends wl{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=_d(t,e[n]);return t})}};XA.className="Minimum";ue.registerClass(XA);var KA=class extends wl{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new H("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(v.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new H("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return q(()=>L1(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new H("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new H("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new H(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return q(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(pe(Rs(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Xt(t[a],-1)):s.push(t[a]);let r=vt(s,this.axis);return G2(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};KA.className="Concatenate";ue.registerClass(KA);function Qd(e,t){for(;e<0;)e+=t;return e}function gW(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Le("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Le("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return q(()=>{let o;if(s>r){o=s-r;let l=[];for(let c=0;c<o;++c)l.push(1);t=G(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let c=0;c<o;++c)l.push(1);e=G(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=Se(L(e,t),a[0]):i=Se(L(Qe(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,c=a[1]===t.shape.length-1;i=Ue(e,t,l,c)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let c=[];for(let u=l;u<l+o;++u)c.push(u);i=ot(i,c)}return i.shape.length===1&&(i=Xt(i,1)),i})}var ZA=class extends wl{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Le("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new H(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new H(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>Qd(r,e[a].shape.length)):s=[Qd(this.axes,t.shape.length),Qd(this.axes,n.shape.length)],this.normalize&&(t=Jf(t,s[0]),n=Jf(n,s[1])),gW(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Qd(this.axes,e.length),Qd(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Le("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};ZA.className="Dot";ue.registerClass(ZA);var YA=class extends tt{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Be(e);return Gd(()=>le(Lf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};YA.className="GaussianNoise";ue.registerClass(YA);var JA=class extends tt{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Be(e);return this.rate>0&&this.rate<1?Gd(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return L(n,Lf(n.shape,1,r))},()=>n,t.training||!1):n})}};JA.className="GaussianDropout";ue.registerClass(JA);var QA=class extends tt{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Be(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return q(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Gd(()=>{let r=Be(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=ll(Vu(n),this.rate);l=Mf(l,"float32");let c=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-c*i*this.rate,d=le(L(r,l),L(le(l,-1),i));return le(L(d,c),u)},()=>Be(e),t.training||!1)}return e})}};QA.className="AlphaDropout";ue.registerClass(QA);function ep(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=Z3(e,t,n,s,r,a);else if(e.rank===3)o=Y3(e,t,n,s,r,a);else if(e.rank===4)o=J3(e,t,n,s,r,a);else throw new Le(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function AW(e,t,n,s,r=.001){return q(()=>{let a=yf(e,s),o=a.mean,i=a.variance;return[ep(e,o,i,n,t,r),o,i]})}function yW(e,t,n,s,r=.001){return q(()=>{let a=yf(e,s),o=a.mean,i=a.variance,l=[];for(let f of hr(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let c=G(o,l),u=G(i,l),d=t==null?null:G(t,l),p=n==null?null:G(n,l);return[ep(e,c,u,p,d,r),o,i]})}function xW(e,t,n,s,r=.001){return v.arraysEqual(s.slice().sort(),hr(0,e.rank-1))?AW(e,t,n,s,r):yW(e,t,n,s,r)}var ey=class extends tt{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Nt(e.betaInitializer||"zeros"),this.gammaInitializer=Nt(e.gammaInitializer||"ones"),this.movingMeanInitializer=Nt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Nt(e.movingVarianceInitializer||"ones"),this.betaConstraint=on(e.betaConstraint),this.gammaConstraint=on(e.gammaConstraint),this.betaRegularizer=Et(e.betaRegularizer),this.gammaRegularizer=Et(e.gammaRegularizer)}build(e){e=pt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new H(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Zt({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return q(()=>{let n=t.training==null?!1:t.training,s=Be(e),r=s.shape,a=r.length,o=hr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=fl(1,a);l[i]=r[i];let c=o.slice();c.sort();let u=!v.arraysEqual(c,hr(0,a).slice(0,a-1)),d=()=>{if(u){let A=G(this.movingMean.read(),l),x=G(this.movingVariance.read(),l),y=this.center?G(this.beta.read(),l):null,b=this.scale?G(this.gamma.read(),l):null;return ep(s,A,x,y,b,this.epsilon)}else return ep(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[p,h,f]=xW(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(A,x,y)=>{q(()=>{let b=1-y,w=A.read(),k=L(me(w,x),b);A.write(me(w,k))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Mt(this.betaInitializer),gammaInitializer:Mt(this.gammaInitializer),movingMeanInitializer:Mt(this.movingMeanInitializer),movingVarianceInitializer:Mt(this.movingVarianceInitializer),betaRegularizer:At(this.betaRegularizer),gammaRegularizer:At(this.gammaRegularizer),betaConstraint:an(this.betaConstraint),gammaConstraint:an(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};ey.className="BatchNormalization";ue.registerClass(ey);var ty=class extends tt{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Nt(e.betaInitializer||"zeros"),this.gammaInitializer=Nt(e.gammaInitializer||"ones"),this.betaRegularizer=Et(e.betaRegularizer),this.gammaRegularizer=Et(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=pt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Po(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Be(e),s=n.shape,r=s.length;return q(()=>{let a=!0,{mean:o,variance:i}=yf(n,this.axis,a),l=fl(1,r);for(let f of this.axis)l[f]=s[f];let c=f=>f!=null&&f.shape.length!==r?G(f,l):f,u=c(this.gamma.read()),d=c(this.beta.read()),p=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(p.push(s[f]),h.push(1)):(p.push(1),h.push(s[f]));return o=qs(o,p),i=qs(i,p),u=qs(u,h),d=qs(d,h),ep(n,o,i,d,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Mt(this.betaInitializer),gammaInitializer:Mt(this.gammaInitializer),betaRegularizer:At(this.betaRegularizer),gammaRegularizer:At(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};ty.className="LayerNormalization";ue.registerClass(ty);function bW(e,t,n){return q(()=>{if(e.rank!==4)throw new H(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new H("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=dr()),n!=="channelsLast"&&n!=="channelsFirst")throw new H(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],Xs(e,s)})}var ny=class extends tt{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?dr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new H(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new H(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new H(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Zt({ndim:4})]}computeOutputShape(e){e=pt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return q(()=>bW(Be(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ny.className="ZeroPadding2D";ue.registerClass(ny);function fm(e,t,n,s,r,a){return q(()=>{Ht(r),yw(a),_s(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=dr()),a==null&&(a="max"),e=wA(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=Af(e,t,n,i):o=uf(e,t,n,i),r==="channelsFirst"&&(o=Qe(o,[0,3,1,2])),o})}function Pk(e,t,n,s,r,a){return q(()=>{Ht(r),yw(a),_s(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=dr()),a==null&&(a="max"),e=Sk(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=i1(e,t,n,i):o=q2(e,t,n,i),r==="channelsFirst"&&(o=Qe(o,[0,4,1,2,3])),o})}var Fk=class extends tt{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new H(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(xn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new H(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);xn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,_s(this.padding),this.inputSpec=[new Zt({ndim:3})]}computeOutputShape(e){e=pt(e);let t=Ar(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return q(()=>{this.invokeCallHook(e,t),e=Vd(Be(e),2);let n=this.poolingFunction(Be(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ot(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},sy=class extends Fk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ht(r),_s(s),fm(e,t,n,s,r,"max")}};sy.className="MaxPooling1D";ue.registerClass(sy);var ry=class extends Fk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ht(r),_s(s),fm(e,t,n,s,r,"avg")}};ry.className="AveragePooling1D";ue.registerClass(ry);var Ok=class extends tt{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new H(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];xn(this.poolSize,"poolSize"),xn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ht(this.dataFormat),_s(this.padding),this.inputSpec=[new Zt({ndim:4})]}computeOutputShape(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ar(t,this.poolSize[0],this.padding,this.strides[0]),n=Ar(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return q(()=>(this.invokeCallHook(e,t),this.poolingFunction(Be(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},ay=class extends Ok{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ht(r),_s(s),fm(e,t,n,s,r,"max")}};ay.className="MaxPooling2D";ue.registerClass(ay);var oy=class extends Ok{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ht(r),_s(s),fm(e,t,n,s,r,"avg")}};oy.className="AveragePooling2D";ue.registerClass(oy);var Mk=class extends tt{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new H(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];xn(this.poolSize,"poolSize"),xn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ht(this.dataFormat),_s(this.padding),this.inputSpec=[new Zt({ndim:5})]}computeOutputShape(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ar(t,this.poolSize[0],this.padding,this.strides[0]),n=Ar(n,this.poolSize[1],this.padding,this.strides[1]),s=Ar(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return q(()=>(this.invokeCallHook(e,t),this.poolingFunction(Be(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},iy=class extends Mk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ht(r),_s(s),Pk(e,t,n,s,r,"max")}};iy.className="MaxPooling3D";ue.registerClass(iy);var ly=class extends Mk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ht(r),_s(s),Pk(e,t,n,s,r,"avg")}};ly.className="AveragePooling3D";ue.registerClass(ly);var zk=class extends tt{constructor(e){super(e);this.inputSpec=[new Zt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Le}},uy=class extends zk{constructor(e){super(e||{})}call(e,t){return q(()=>{let n=Be(e);return Wt(n,1)})}};uy.className="GlobalAveragePooling1D";ue.registerClass(uy);var cy=class extends zk{constructor(e){super(e||{})}call(e,t){return q(()=>{let n=Be(e);return An(n,1)})}};cy.className="GlobalMaxPooling1D";ue.registerClass(cy);var Lk=class extends tt{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ht(this.dataFormat),this.inputSpec=[new Zt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Le}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},dy=class extends Lk{call(e,t){return q(()=>{let n=Be(e);return this.dataFormat==="channelsLast"?Wt(n,[1,2]):Wt(n,[2,3])})}};dy.className="GlobalAveragePooling2D";ue.registerClass(dy);var py=class extends Lk{call(e,t){return q(()=>{let n=Be(e);return this.dataFormat==="channelsLast"?An(n,[1,2]):An(n,[2,3])})}};py.className="GlobalMaxPooling2D";ue.registerClass(py);var Bk=class extends tt{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=gr(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},hy=class extends Bk{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=pt(e),e.length<3)throw new H(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=pt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return q(()=>(e=Be(e),$k((a,o)=>[Be(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};hy.className="TimeDistributed";ue.registerClass(hy);function vW(e){gl(NL,"BidirectionalMergeMode",e)}var wW="concat",fy=class extends Bk{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=gr(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=gr(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?wW:e.mergeMode,vW(this.mergeMode),e.weights)throw new Le("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):as(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=Rk(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new H("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let c=n.map(u=>new Zt({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),o.push(...c)}if(s!=null)throw new Le("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof mr;for(let l of a)if(l instanceof mr!==i)throw new H("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return q(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=$s(r,1));let o;return this.mergeMode==="concat"?o=L1([s,r]):this.mergeMode==="sum"?o=le(s,r):this.mergeMode==="ave"?o=L(.5,le(s,r)):this.mergeMode==="mul"?o=L(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Al(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Al(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=gr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Le("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};fy.className="Bidirectional";ue.registerClass(fy);function kW(e){return new Xu(e)}function SW(e){return new xA(e)}function IW(e){return new gA(e)}function CW(e){return new AA(e)}function TW(e){return new yA(e)}function NW(e){return new vA(e)}function EW(e){return new bA(e)}function RW(e){return new TA(e)}function $W(e){return new im(e)}function _W(e){return new SA(e)}function DW(e){return new lm(e)}function PW(e){return new IA(e)}function FW(e){return new CA(e)}function OW(e){return new NA(e)}function MW(e){return new EA(e)}function zW(e){return new RA(e)}function LW(e){return new zA(e)}function BW(e){return new OA(e)}function WW(e){return new hm(e)}function VW(e){return new FA(e)}function UW(e){return new MA(e)}function GW(e){return new LA(e)}function HW(e){return new BA(e)}function jW(e){return new WA(e)}function qW(e){return new UA(e)}function XW(e){return new GA(e)}function KW(e){return new jA(e)}function ZW(e){return new KA(e)}function YW(e){return new qA(e)}function JW(e){return new XA(e)}function QW(e){return new HA(e)}function eV(e){return new ZA(e)}function tV(e){return new ey(e)}function nV(e){return new ty(e)}function sV(e){return new ny(e)}function my(e){return new ry(e)}function rV(e){return my(e)}function aV(e){return my(e)}function gy(e){return new oy(e)}function oV(e){return gy(e)}function iV(e){return gy(e)}function Ay(e){return new ly(e)}function lV(e){return Ay(e)}function uV(e){return Ay(e)}function cV(e){return new uy(e)}function dV(e){return new dy(e)}function Wk(e){return new cy(e)}function Vk(e){return new py(e)}function Uk(e){return new sy(e)}function Gk(e){return new ay(e)}function pV(e){return new iy(e)}function hV(e){return new _A(e)}function fV(e){return new cm(e)}function mV(e){return new DA(e)}function gV(e){return new Jd(e)}function AV(e){return new $A(e)}function yV(e){return new um(e)}function xV(e){return new PA(e)}function bV(e){return new pm(e)}function vV(e){return new na(e)}function wV(e){return new dm(e)}function kV(e){return new fy(e)}function SV(e){return new hy(e)}var IV=Wk,CV=Vk,TV=Uk,NV=Gk;function EV(e){return new YA(e)}function RV(e){return new JA(e)}function $V(e){return new QA(e)}function _V(e){return new VA(e)}var Hk={};Oe(Hk,{MAPE:()=>UV,MSE:()=>jV,binaryAccuracy:()=>DV,binaryCrossentropy:()=>PV,categoricalAccuracy:()=>OV,categoricalCrossentropy:()=>MV,cosineProximity:()=>BV,mape:()=>GV,meanAbsoluteError:()=>WV,meanAbsolutePercentageError:()=>VV,meanSquaredError:()=>HV,mse:()=>qV,precision:()=>zV,recall:()=>LV,sparseCategoricalAccuracy:()=>FV});function DV(e,t){return tA(e,t)}function PV(e,t){return Uw(e,t)}function FV(e,t){return Gw(e,t)}function OV(e,t){return nA(e,t)}function MV(e,t){return sA(e,t)}function zV(e,t){return Vw(e,t)}function LV(e,t){return kB(e,t)}function BV(e,t){return Q1(e,t)}function WV(e,t){return Qf(e,t)}function VV(e,t){return Zu(e,t)}function UV(e,t){return Zu(e,t)}function GV(e,t){return Zu(e,t)}function HV(e,t){return xl(e,t)}function jV(e,t){return xl(e,t)}function qV(e,t){return xl(e,t)}var jk={};Oe(jk,{modelFromJSON:()=>sW});var qk={};Oe(qk,{l1:()=>KV,l1l2:()=>XV,l2:()=>ZV});function XV(e){return new Kd(e)}function KV(e){return dW(e)}function ZV(e){return pW(e)}var Xk=class extends Ku{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof ta))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function mm(e,t){return e<t}function Kk(e,t){return e>t}var Zk=class extends Xk{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Le("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=mm:this.mode==="max"?this.monitorFunc=Kk:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Kk:this.monitorFunc=mm,this.monitorFunc===mm&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===mm?1/0:-1/0}async onEpochEnd(e,t){await Mo(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function YV(e){return new Zk(e)}var JV={earlyStopping:YV},QV=K();QV.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var yr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(yr||(yr={}));var Yk;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Yk||(Yk={}));var yy={};function eU(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};yy[e]=n}function Jk(e){return yy[e]}function tU(e){delete yy[e]}function S(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return Un(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(p=>Un(p,n,s,r));let c=Un(t.inputNames.slice(i)[0],n,s,r),u=c.dataSync();return a.type==="number"?u[0]:v.toNestedArray(c.shape,u)}let o=t.attrParams[e];return o&&o.value}function Un(e,t,n,s){let[r,a]=ms(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[gm(r,i)]);return o!==void 0?t[gm(r,o)][a]:void 0}function nU(e,t,n){return t[gm(e,n.currentContextId)]}function zr(e,t){let[n,s,r]=ms(e);return[gm(n,t&&t.currentContextId),s,r]}function gm(e,t){return t?`${e}-${t}`:e}function ms(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function Am(e,t,n){let s=S("pad",e,t,n);if(s==="explicit"){s=S("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function sa(e){return e.kept?e:Bn(e)}var Qk={};Oe(Qk,{json:()=>sU});var sU=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],e7={};Oe(e7,{json:()=>rU});var rU=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],t7={};Oe(t7,{json:()=>aU});var aU=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],n7={};Oe(n7,{json:()=>oU});var oU=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],s7={};Oe(s7,{json:()=>iU});var iU=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],r7={};Oe(r7,{json:()=>lU});var lU=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],a7={};Oe(a7,{json:()=>uU});var uU=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],o7={};Oe(o7,{json:()=>cU});var cU=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],i7={};Oe(i7,{json:()=>dU});var dU=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],l7={};Oe(l7,{json:()=>pU});var pU=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],u7={};Oe(u7,{json:()=>hU});var hU=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],c7={};Oe(c7,{json:()=>fU});var fU=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],d7={};Oe(d7,{json:()=>mU});var mU=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],p7={};Oe(p7,{json:()=>gU});var gU=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],h7={};Oe(h7,{json:()=>AU});var AU=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],f7={};Oe(f7,{json:()=>yU});var yU=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],m7={};Oe(m7,{json:()=>xU});var xU=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],g7={};Oe(g7,{json:()=>bU});var bU=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],A7={};Oe(A7,{json:()=>vU});var vU=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],y7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Qk,e7,t7,n7,s7,r7,a7,o7,i7,l7,u7,c7,d7,p7,h7,f7,m7,g7,A7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,A)=>{let[x,,y]=zr(g),b=o[x];if(b.outputs!=null){let w=b.outputs.indexOf(y);if(w!==-1){let k=`${x}:${w}`;m.inputNames[A]=k}}m.inputs.push(b),b.children.push(m)})}),Object.keys(u).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(u).forEach(f=>{let[m]=zr(f),g=o[m];g!=null&&(g.signatureKey=u[f],l.push(g))}),Object.keys(c).length>0?Object.keys(c).forEach(f=>{let[m]=zr(f),g=o[m];g&&(g.signatureKey=c[f],i.push(g))}):i=s;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:p};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Jk(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=xy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=xy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=Ty(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Ty(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=vy(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=vy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=Cy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Cy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=by(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=by(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=Ey(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Ey(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=Iy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Iy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=Ny(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Ny(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=ky(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ky(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=Sy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Sy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=b7(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=b7(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&s.push(u[d.name]),u),{}));let a=[],o=[];e.signature.inputArg.forEach(u=>{let[d]=zr(u.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:wy(u.type),type:"dtype"}},children:[]};p.signatureKey=u.name,a.push(p),r[d]=p}),Object.keys(r).forEach(u=>{let d=r[u];d.inputNames.forEach((p,h)=>{let[f,,m]=zr(p),g=r[f];if(g.outputs!=null){let A=g.outputs.indexOf(m);if(A!==-1){let x=`${f}:${A}`;d.inputNames[h]=x}}d.inputs.push(g),g.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(u=>{let[d,p]=zr(l[u.name]),h=r[d];h!=null&&(h.defaultOutput=p,o.push(h))});let c=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function wU(e){let t=K().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function x7(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):wU(e);return t?n:n.toLowerCase()}function xy(e,t,n,s=!1){let r=e[t];return r!=null?x7(r.s,s):n}function by(e,t,n){let s=e[t];return s?s.b:n}function vy(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function wy(e){switch(typeof e=="string"&&(e=yr[e]),e){case yr.DT_FLOAT:return"float32";case yr.DT_INT32:case yr.DT_INT64:case yr.DT_INT8:case yr.DT_UINT8:return"int32";case yr.DT_BOOL:return"bool";case yr.DT_DOUBLE:return"float32";case yr.DT_STRING:return"string";default:return null}}function b7(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function ky(e,t,n){let s=e[t];return s&&s.type?wy(s.type):n}function Sy(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>wy(r)):n}function v7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Iy(e,t,n){let s=e[t];return s&&s.shape?v7(s.shape):n}function Cy(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function Ty(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>x7(a,s)):n}function Ny(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>v7(r)):n}function Ey(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var kU=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return Un(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Un(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return vy(this.node.rawAttrs,e,t);if(n.s!=null)return xy(this.node.rawAttrs,e,t);if(n.b!=null)return by(this.node.rawAttrs,e,t);if(n.shape!=null)return Iy(this.node.rawAttrs,e,t);if(n.type!=null)return ky(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Cy(this.node.rawAttrs,e,t);if(n.list.s!=null)return Ty(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Ny(this.node.rawAttrs,e,t);if(n.list.b!=null)return Ey(this.node.rawAttrs,e,t);if(n.list.type!=null)return Sy(this.node.rawAttrs,e,t)}return t}},SU=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[le(S("a",e,t,n),S("b",e,t,n))];case"AddN":return[af(S("tensors",e,t,n))];case"FloorMod":case"Mod":return[Dd(S("a",e,t,n),S("b",e,t,n))];case"Mul":return[L(S("a",e,t,n),S("b",e,t,n))];case"RealDiv":case"Div":return[he(S("a",e,t,n),S("b",e,t,n))];case"DivNoNan":return[uv(S("a",e,t,n),S("b",e,t,n))];case"FloorDiv":return[rf(S("a",e,t,n),S("b",e,t,n))];case"Sub":return[me(S("a",e,t,n),S("b",e,t,n))];case"Minimum":return[_d(S("a",e,t,n),S("b",e,t,n))];case"Maximum":return[Zr(S("a",e,t,n),S("b",e,t,n))];case"Pow":return[$o(S("a",e,t,n),S("b",e,t,n))];case"SquaredDifference":return[x1(S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},IU=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[nn(S("x",e,t,n))];case"Acos":return[L3(S("x",e,t,n))];case"Acosh":return[B3(S("x",e,t,n))];case"Asin":return[V3(S("x",e,t,n))];case"Asinh":return[U3(S("x",e,t,n))];case"Atan":return[G3(S("x",e,t,n))];case"Atan2":return[H3(S("x",e,t,n),S("y",e,t,n))];case"Atanh":return[j3(S("x",e,t,n))];case"Ceil":return[ev(S("x",e,t,n))];case"Complex":return[So(S("real",e,t,n),S("imag",e,t,n))];case"Cos":return[df(S("x",e,t,n))];case"Cosh":return[Q2(S("x",e,t,n))];case"Elu":return[Rd(S("x",e,t,n))];case"Erf":return[dv(S("x",e,t,n))];case"Exp":return[Ns(S("x",e,t,n))];case"Expm1":return[pv(S("x",e,t,n))];case"Floor":return[$d(S("x",e,t,n))];case"Log":return[Es(S("x",e,t,n))];case"Log1p":return[ff(S("x",e,t,n))];case"Imag":return[pf(S("x",e,t,n))];case"Neg":return[Ot(S("x",e,t,n))];case"Reciprocal":return[Iv(S("x",e,t,n))];case"Real":return[Pd(S("x",e,t,n))];case"Relu":return[_r(S("x",e,t,n))];case"Round":return[p1(S("x",e,t,n))];case"Selu":return[f1(S("x",e,t,n))];case"Sigmoid":return[ds(S("x",e,t,n))];case"Sin":return[m1(S("x",e,t,n))];case"Sign":return[Nv(S("x",e,t,n))];case"Sinh":return[g1(S("x",e,t,n))];case"Softplus":return[Bu(S("x",e,t,n))];case"Sqrt":return[Dn(S("x",e,t,n))];case"Square":return[gt(S("x",e,t,n))];case"Tanh":return[Fu(S("x",e,t,n))];case"Tan":return[Rv(S("x",e,t,n))];case"ClipByValue":return[ps(S("x",e,t,n),S("clipValueMin",e,t,n),S("clipValueMax",e,t,n))];case"Relu6":return[d1(S("x",e,t,n))];case"Rsqrt":return[h1(Un(e.inputNames[0],t,n))];case"Prod":return[l1(S("x",e,t,n),S("axes",e,t,n))];case"LeakyRelu":return[hf(S("x",e,t,n),S("alpha",e,t,n))];case"Prelu":return[bf(S("x",e,t,n),S("alpha",e,t,n))];case"IsNan":return[hv(Un(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Js(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];v.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function w7(e){return!(typeof e=="number"||e.some(t=>t<0))}function tp(e,t,n){let s=Ry(e,n),r=!w7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=Ry(a.shape,s)}),!w7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function Ry(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var CU=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Re(0),gn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Js(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,gn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return Pt([],[0].concat(this.elementShape));let n=this.readMany(e);return Js(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),yn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Pt([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return Js(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),vt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,rs(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];q(()=>{t=G(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],c=[0,l,0],u=[1,e[i],r];a[i]=G(De(t,c,u),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},np=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Js(t,r.shape,"TensorList shape mismatch: "),gn(r)}),this.idTensor=Re(0),this.maxNumElements=s,gn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new np([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Js(e,this.elementShape,"TensorList shape mismatch: ");let s=tp(this.elementShape,this.tensors,e);return q(()=>{let r=this.tensors.map(a=>G(a,s));return yn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=tp(this.elementShape,this.tensors,e),s=this.tensors.pop();return Js(s.shape,e,"TensorList shape mismatch: "),G(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Js(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");gn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Js(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=tp(this.elementShape,this.tensors,t);return G(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Js(this.elementShape,t.shape,"TensorList shape mismatch: "),gn(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Js(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=tp(this.elementShape,this.tensors,n);return e.length===0?Pt([],[0].concat(s)):q(()=>{let r=e.map(a=>G(this.tensors[a],s));return yn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Js(this.elementShape,t,"TensorList shape mismatch: ");let n=tp(this.elementShape,this.tensors,t);return this.size()===0?Pt([],[0].concat(n)):q(()=>{let s=this.tensors.map(r=>G(r,n));return vt(s,0)})}};function TU(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Js(r,t,"TensorList shape mismatch: ");let a=rs(e);return new np(a,t,s)}function NU(e,t,n){return new np([],e,t,n)}function EU(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new np([],n,e.dtype,s),o=rs(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function RU(e,t,n){let s=0,r=t.map(u=>(s+=u,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=Ry(a,n),i=s===0?0:e.size/s,l=q(()=>{let u=[];e=G(e,[1,s,i]);for(let d=0;d<t.length;++d){let p=d===0?0:r[d-1],h=[0,p,0],f=[1,t[d],i];u[d]=G(De(e,h,f),o)}return e.dispose(),u}),c=new np([],n,e.dtype,t.length);for(let u=0;u<l.length;u++)c.setItem(u,l[u]);return c}var $U=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=S("thenBranch",e,t,n),r=S("elseBranch",e,t,n),a=S("cond",e,t,n),o=S("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=S("body",e,t,n),r=S("cond",e,t,n),a=S("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(u=>u.id),l=await o[0].data();o.forEach(u=>{!u.kept&&i.indexOf(u.id)===-1&&u.dispose()});let c=a;for(;l[0];){let u=c;c=await n.functionMap[s].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let d=c.map(h=>h.id);u.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let p=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await p[0].data(),p.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return c}case"LoopCond":{let s=S("pred",e,t,n);return[sa(s)]}case"Switch":{let s=S("pred",e,t,n),r=S("data",e,t,n);return r.kept||(r=sa(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>Un(r,t,n)!==void 0);if(s){let r=Un(s,t,n);return[sa(r)]}return}case"Enter":{let s=S("frameName",e,t,n),r=S("tensor",e,t,n);return n.enterFrame(s),[sa(r)]}case"Exit":{let s=S("tensor",e,t,n);return n.exitFrame(),[sa(s)]}case"NextIteration":{let s=S("tensor",e,t,n);return n.nextIteration(),[sa(s)]}case"TensorArrayV3":{let s=S("size",e,t,n),r=S("dtype",e,t,n),a=S("elementShape",e,t,n),o=S("dynamicSize",e,t,n),i=S("clearAfterRead",e,t,n),l=S("identicalElementShapes",e,t,n),c=S("name",e,t,n),u=new CU(c,r,s,a,l,o,i);return n.addTensorArray(u),[u.idTensor,Re(1)]}case"TensorArrayWriteV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=S("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=S("tensorArrayId",e,t,n),r=S("tensor",e,t,n),a=S("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Re(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("elementShape",e,t,n),o=S("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=S("indices",e,t,n),r=S("tensor",e,t,n),a=S("elementShape",e,t,n),o=S("numElements",e,t,n),i=EU(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=S("elementShape",e,t,n),r=S("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=S(a,e,t,n),i=NU(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=S("tensorListId",e,t,n),r=S("indices",e,t,n),a=S("elementShape",e,t,n),o=S("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),o=S("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),o=TU(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=S("tensorListId",e,t,n),r=n.getTensorList(s.id),a=S("dtype",e,t,n),o=S("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=S("tensorListId",e,t,n),r=S("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("lengths",e,t,n),o=RU(s,a,r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function k7(e,t,n){let[s,r]=S("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",c=S("numArgs",e,t,n);if(a){if(i&&c!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&c!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let u=S("strides",e,t,n),d=Am(e,t,n),p=S("dataFormat",e,t,n).toUpperCase(),h=S("dilations",e,t,n),[f,m]=S("args",e,t,n);o&&(m=f,f=void 0);let g=S("leakyreluAlpha",e,t,n);return{stride:u,pad:d,dataFormat:p,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var _U=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=S("stride",e,t,n),r=S("pad",e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),o=S("dilation",e,t,n);return[K2(S("x",e,t,n),S("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=S("strides",e,t,n),r=Am(e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),o=S("dilations",e,t,n);return[Eo(S("x",e,t,n),S("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=k7(e,t,n);return[_o.conv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=k7(e,t,n);return[_o.depthwiseConv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=S("outputShape",e,t,n),r=S("strides",e,t,n),a=Am(e,t,n);return[Y2(S("x",e,t,n),S("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=S("strides",e,t,n),r=Am(e,t,n),a=S("dilations",e,t,n),o=S("dataFormat",e,t,n).toUpperCase();return[Ed(S("input",e,t,n),S("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),o=S("dilations",e,t,n);return[J2(S("x",e,t,n),S("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[uf(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[Af(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n),o=S("includeBatchInIndex",e,t,n),{result:i,indexes:l}=vv(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[q2(S("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[i1(S("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("dilations",e,t,n),o=s[1],i=s[2],l=a[1],c=a[2];return[lv(S("x",e,t,n),S("filter",e,t,n),[o,i],r,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},DU=(e,t,n)=>{switch(e.op){case"Fill":{let s=S("shape",e,t,n),r=S("dtype",e,t,n),a=S("value",e,t,n);return[zu(s,a,r)]}case"LinSpace":{let s=S("start",e,t,n),r=S("stop",e,t,n),a=S("num",e,t,n);return[fv(s,r,a)]}case"Multinomial":{let s=S("logits",e,t,n),r=S("numSamples",e,t,n),a=S("seed",e,t,n);return[kv(s,r,a)]}case"OneHot":{let s=S("indices",e,t,n),r=S("depth",e,t,n),a=S("onValue",e,t,n),o=S("offValue",e,t,n);return[Cd(s,r,a,o)]}case"Ones":return[fs(S("shape",e,t,n),S("dtype",e,t,n))];case"OnesLike":return[Rs(S("x",e,t,n))];case"RandomUniform":return[Vu(S("shape",e,t,n),S("minval",e,t,n),S("maxval",e,t,n),S("dtype",e,t,n))];case"Range":{let s=S("start",e,t,n),r=S("stop",e,t,n),a=S("step",e,t,n);return[Uu(s,r,a,S("dtype",e,t,n))]}case"TruncatedNormal":{let s=S("shape",e,t,n),r=S("mean",e,t,n),a=S("stdDev",e,t,n),o=S("seed",e,t,n);return[Sf(s,r,a,S("dtype",e,t,n),o)]}case"Zeros":return[Gt(S("shape",e,t,n),S("dtype",e,t,n))];case"ZerosLike":return[et(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function $y(e,t,n){let s=S("boxes",e,t,n),r=S("scores",e,t,n),a=S("maxOutputSize",e,t,n),o=S("iouThreshold",e,t,n),i=S("scoreThreshold",e,t,n),l=S("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var PU=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=$y(e,t,n),c=await $e.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=$y(e,t,n),l=S("padToMaxOutputSize",e,t,n),c=await $e.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=$y(e,t,n);return[await $e.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=pe(S("condition",e,t,n),"bool"),r=[await v1(s)];return s.dispose(),r}case"ListDiff":return Tv(S("x",e,t,n),S("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},FU=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=S("x",e,t,n),r=S("k",e,t,n),a=S("sorted",e,t,n),o=$v(s,r,a);return[o.values,o.indices]}case"Unique":{let s=S("x",e,t,n),r=b1(s);return[r.values,r.indices]}case"UniqueV2":{let s=S("x",e,t,n),r=S("axis",e,t,n),a=b1(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},OU=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=S("default",e,t,n);return[Un(e.name,t,n)||s];case"Placeholder":return[Un(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=S("x",e,t,n);return[sa(c)]}case"IdentityN":return S("x",e,t,n).map(c=>sa(c));case"Snapshot":let r=S("x",e,t,n);return[sa(r)];case"Shape":return[Kt(S("x",e,t,n).shape,"int32")];case"ShapeN":return S("x",e,t,n).map(c=>Kt(c.shape));case"Size":return[Re(S("x",e,t,n).size,"int32")];case"Rank":return[Re(S("x",e,t,n).rank,"int32")];case"NoOp":return[Re(1)];case"Print":let a=S("x",e,t,n),o=S("data",e,t,n),i=S("message",e,t,n),l=S("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let c=0;c<o.length;c++)console.log(Array.prototype.slice.call(o[c].dataSync()).slice(0,l));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},MU=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Re(0),this.tensorMap=new Map,gn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Re(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),q(()=>{let s=rs(t),r=n.length,a=s.length;v.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];gn(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return q(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return yn(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},zU=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=S("keyDType",e,t,n),a=S("valueDType",e,t,n),o=new MU(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),o=S("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),o=S("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=S("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},LU=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=S("images",e,t,n),r=S("size",e,t,n),a=S("alignCorners",e,t,n),o=S("halfPixelCenters",e,t,n);return[$e.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=S("images",e,t,n),r=S("size",e,t,n),a=S("alignCorners",e,t,n),o=S("halfPixelCenters",e,t,n);return[$e.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=S("image",e,t,n),r=S("boxes",e,t,n),a=S("boxInd",e,t,n),o=S("cropSize",e,t,n),i=S("method",e,t,n),l=S("extrapolationValue",e,t,n);return[$e.cropAndResize(s,r,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},BU=(e,t,n)=>{switch(e.op){case"Equal":return[Ts(S("a",e,t,n),S("b",e,t,n))];case"NotEqual":return[Wu(S("a",e,t,n),S("b",e,t,n))];case"Greater":return[hs(S("a",e,t,n),S("b",e,t,n))];case"GreaterEqual":return[ll(S("a",e,t,n),S("b",e,t,n))];case"Less":return[n1(S("a",e,t,n),S("b",e,t,n))];case"LessEqual":return[ul(S("a",e,t,n),S("b",e,t,n))];case"LogicalAnd":return[ur(S("a",e,t,n),S("b",e,t,n))];case"LogicalNot":return[gf(S("a",e,t,n))];case"LogicalOr":return[o1(S("a",e,t,n),S("b",e,t,n))];case"Select":case"SelectV2":return[Wn(S("condition",e,t,n),S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},WU=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ue(S("a",e,t,n),S("b",e,t,n),S("transposeA",e,t,n),S("transposeB",e,t,n))];case"Einsum":return[cv(S("equation",e,t,n),...S("tensors",e,t,n))];case"Transpose":return[Qe(S("x",e,t,n),S("perm",e,t,n))];case"_FusedMatMul":let[s,r]=S("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=S("numArgs",e,t,n),l=S("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=S("args",e,t,n);return[_o.matMul({a:S("a",e,t,n),b:S("b",e,t,n),transposeA:S("transposeA",e,t,n),transposeB:S("transposeB",e,t,n),bias:c,activation:r,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},VU=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Ou(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"FusedBatchNormV3":return[Ou(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"LRN":return[mv(S("x",e,t,n),S("radius",e,t,n),S("bias",e,t,n),S("alpha",e,t,n),S("beta",e,t,n))];case"Softmax":return[Gu(S("x",e,t,n))];case"LogSoftmax":return[s1(S("x",e,t,n))];case"SparseToDense":return[k1(S("sparseIndices",e,t,n),S("outputShape",e,t,n),S("sparseValues",e,t,n),S("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},UU=(e,t,n)=>{switch(e.op){case"Max":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[An(S("x",e,t,n),o,i)]}case"Mean":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[Wt(S("x",e,t,n),o,i)]}case"Min":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[Ro(S("x",e,t,n),o,i)]}case"Sum":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[Se(S("x",e,t,n),o,i)]}case"All":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[G2(S("x",e,t,n),o,i)]}case"Any":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[of(S("x",e,t,n),o,i)]}case"ArgMax":{let o=S("axis",e,t,n);return[js(S("x",e,t,n),o)]}case"ArgMin":{let o=S("axis",e,t,n);return[W3(S("x",e,t,n),o)]}case"Prod":{let o=S("axis",e,t,n),i=S("keepDims",e,t,n);return[l1(S("x",e,t,n),o,i)]}case"Cumsum":{let o=S("axis",e,t,n),i=S("exclusive",e,t,n),l=S("reverse",e,t,n);return[e1(S("x",e,t,n),o,i,l)]}case"Bincount":let s=S("x",e,t,n),r=S("weights",e,t,n),a=S("size",e,t,n);return[X2(s,r,a)];case"DenseBincount":{let o=S("x",e,t,n),i=S("weights",e,t,n),l=S("size",e,t,n),c=S("binaryOutput",e,t,n);return[ov(o,i,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},GU=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=S("n",e,t,n),r=S("axis",e,t,n),a=S("tensors",e,t,n);return a=a.slice(0,s),[vt(a,r)]}case"Gather":{let s=S("x",e,t,n),r=S("indices",e,t,n);return[Lu(s,pe(r,"int32"),0)]}case"GatherV2":{let s=S("axis",e,t,n),r=S("batchDims",e,t,n),a=S("x",e,t,n),o=S("indices",e,t,n);return[Lu(a,pe(o,"int32"),s,r)]}case"Reverse":{let s=S("dims",e,t,n),r=[];for(let o=0;o<s.length;o++)s[o]&&r.push(o);let a=S("x",e,t,n);return[$s(a,r)]}case"ReverseV2":{let s=S("axis",e,t,n),r=S("x",e,t,n);return[$s(r,s)]}case"Slice":{let s=S("begin",e,t,n),r=S("size",e,t,n);return[De(S("x",e,t,n),s,r)]}case"StridedSlice":{let s=S("begin",e,t,n),r=S("end",e,t,n),a=S("strides",e,t,n),o=S("beginMask",e,t,n),i=S("endMask",e,t,n),l=S("ellipsisMask",e,t,n),c=S("newAxisMask",e,t,n),u=S("shrinkAxisMask",e,t,n),d=S("x",e,t,n);return[Ev(d,s,r,a,o,i,l,c,u)]}case"Pack":return q(()=>{let s=S("axis",e,t,n),r=S("tensors",e,t,n),a=r[0].shape,o=ot(r[0]).shape,i=r.map(l=>{let c=v.arraysEqual(l.shape,a);if(!c&&!v.arraysEqual(ot(l).shape,o))throw new Error("the input tensors shape does not match");return c?l:G(l,a)});return[yn(i,s)]});case"Unpack":{let s=S("axis",e,t,n),r=S("tensor",e,t,n);return rs(r,s)}case"Tile":{let s=S("reps",e,t,n);return[qs(S("x",e,t,n),s)]}case"Split":case"SplitV":{let s=S("axis",e,t,n),r=S("numOrSizeSplits",e,t,n),a=S("x",e,t,n);return sn(a,r,s)}case"ScatterNd":{let s=S("indices",e,t,n),r=S("values",e,t,n),a=S("shape",e,t,n);return[Ov(s,r,a)]}case"GatherNd":{let s=S("x",e,t,n),r=S("indices",e,t,n);return[Mv(s,r)]}case"SparseToDense":{let s=S("sparseIndices",e,t,n),r=S("outputShape",e,t,n),a=S("sparseValues",e,t,n),o=S("defaultValue",e,t,n);return[k1(s,a,r,a.dtype===o.dtype?o:pe(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},HU=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=Md.sparseFillEmptyRows(S("indices",e,t,n),S("values",e,t,n),S("denseShape",e,t,n),S("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=Md.sparseReshape(S("inputIndices",e,t,n),S("inputShape",e,t,n),S("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[Md.sparseSegmentMean(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];case"SparseSegmentSum":return[Md.sparseSegmentSum(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},jU=(e,t,n)=>{switch(e.op){case"FFT":return[wf(S("x",e,t,n))];case"IFFT":return[Fd(S("x",e,t,n))];case"RFFT":return[kf(S("x",e,t,n))];case"IRFFT":return[y1(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},qU=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=Ef.stringNGrams(S("data",e,t,n),S("dataSplits",e,t,n),S("separator",e,t,n),S("nGramWidths",e,t,n),S("leftPad",e,t,n),S("rightPad",e,t,n),S("padWidth",e,t,n),S("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=Ef.stringSplit(S("input",e,t,n),S("delimiter",e,t,n),S("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[Ef.stringToHashBucketFast(S("input",e,t,n),S("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},XU=(e,t,n)=>{switch(e.op){case"Cast":return[pe(S("x",e,t,n),S("dtype",e,t,n))];case"ExpandDims":{let s=S("axis",e,t,n);return[Xt(S("x",e,t,n),s)]}case"Squeeze":{let s=S("axis",e,t,n);return[ot(S("x",e,t,n),s)]}case"Reshape":return[G(S("x",e,t,n),S("shape",e,t,n))];case"MirrorPad":return[wv(S("x",e,t,n),S("padding",e,t,n),S("mode",e,t,n))];case"PadV2":case"Pad":return[Xs(S("x",e,t,n),S("padding",e,t,n),S("constantValue",e,t,n))];case"SpaceToBatchND":{let s=S("blockShape",e,t,n),r=S("paddings",e,t,n);return[xf(S("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=S("blockShape",e,t,n),r=S("crops",e,t,n);return[cf(S("x",e,t,n),s,r)]}case"DepthToSpace":{let s=S("blockSize",e,t,n),r=S("dataFormat",e,t,n).toUpperCase();return[iv(S("x",e,t,n),s,r)]}case"BroadcastTo":return[Nd(S("x",e,t,n),S("shape",e,t,n))];case"BroadcastArgs":return[Q3(S("s0",e,t,n),S("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function S7(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return q(()=>SU(a,o,i));case"basic_math":return q(()=>IU(a,o,i));case"control":return $U(a,o,i);case"convolution":return q(()=>_U(a,o,i));case"creation":return q(()=>DU(a,o,i));case"dynamic":return PU(a,o,i);case"evaluation":return q(()=>FU(a,o,i));case"image":return q(()=>LU(a,o,i));case"graph":return q(()=>OU(a,o,i));case"logical":return q(()=>BU(a,o,i));case"matrices":return q(()=>WU(a,o,i));case"normalization":return q(()=>VU(a,o,i));case"reduction":return q(()=>UU(a,o,i));case"slice_join":return q(()=>GU(a,o,i));case"sparse":return q(()=>HU(a,o,i));case"spectral":return q(()=>jU(a,o,i));case"string":return q(()=>qU(a,o,i));case"transformation":return q(()=>XU(a,o,i));case"hash_table":return zU(a,o,i,s);case"custom":let l=Jk(a.op);if(l&&l.customExecutor)return l.customExecutor(new kU(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var I7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function C7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,c=Object.keys(e).map(p=>ms(p)[0]),u=[];s!=null&&(u=s.map(p=>ms(p.name)[0]));let d=[...t];for(;d.length>0;){let p=d.pop();if((T7(p)||QU(p)||eG(p))&&o==null&&(o=p,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(p.name),n[p.name]==null&&c.indexOf(p.name)===-1&&u.indexOf(p.name)===-1){if(p.inputs.length===0){a.push(p.name);continue}p.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function KU(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(u=>ms(u)[0]).map(u=>e.nodes[u]),i=e.initNodes;o.forEach(u=>{s.has(u.name)&&a.push(u)}),e.weights.forEach(u=>{s.has(u.name)&&a.push(u)}),i!=null&&i.forEach(u=>{s.has(u.name)&&a.push(u)});let l=new Set,c=[];for(;a.length>0;){let u=a.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(d=>{!l.has(d.name)&&s.has(d.name)&&d.inputs.every(p=>l.has(p.name))&&a.push(d)})}return c}var ZU=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],YU=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],JU=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function T7(e){return ZU.indexOf(e.op)>=0}function QU(e){return YU.indexOf(e.op)>=0}function eG(e){return JU.indexOf(e.op)>=0}var _y=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new _y(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=C7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return KU(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(u=>this.graph.nodes[ms(u)[0]]),r=t.map(u=>ms(u)[0]),a=r.map(u=>this.graph.nodes[u]);this.resetIntermediateTensors(),a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},c={};return q(()=>{let u=new I7(this.weightMap,l,c,this.functionExecutorMap),d={...this.weightMap};Object.keys(e).forEach(f=>{let[m,g]=ms(f),A=[];A[g]=e[f],d[m]=A});let p=this.getFrozenTensorIds(d),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!d[m.name]){let g=S7(m,d,u,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);d[m.name]=g,this.checkTensorForDisposal(m.name,m,d,u,p,r,h)}}return this.parent==null&&u.dispose(p),t.map(f=>Un(f,d,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=nU(i.name,n,s);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!r.has(c.id)){let u=o[c.id];if(u===1){if(!this.keepTensorForDebug)c.dispose();else{let[d,p]=zr(t.name,s);this.intermediateTensors[d]?this.intermediateTensors[d][p]=c:(this.intermediateTensors[d]=[],this.intermediateTensors[d][p]=c)}delete o[c.id]}else u!=null&&o[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(n=>{n&&!n.kept&&!n.isDisposed&&!this.keepIds.has(n.id)&&n.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=K().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(c){console.warn(c.message)}this.resetIntermediateTensors();let a=new I7(this.weightMap,s,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,a,t,n);let o=t.map(c=>Un(c,this.tensorsMap,a)),i=o.map(c=>c.id),l=Object.keys(e).map(c=>e[c].id);return this.keepIds=new Set([...i,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&a.dispose(this.keepIds),o}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(x=>this.graph.nodes[ms(x)[0]]),o=n.map(x=>ms(x)[0]),i=o.map(x=>this.graph.nodes[x]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:d}=C7(e,i,this.weightMap,this._initNodes),p=[...a,...this.graph.weights,...this._initNodes||[]].map(x=>({node:x,contexts:t.currentContext})),h={...this.weightMap};Object.keys(e).forEach(x=>{let[y,b]=ms(x),w=[];w[b]=e[x],h[y]=w});let f={},m=this.getFrozenTensorIds(h),g={};for(;p.length>0;){let x=this.processStack(a,p,t,h,g,m,o,f,l);await Promise.all(x)}u==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let A=i.filter(x=>!T7(x)&&!Un(x.name,h,t)).map(x=>x.name);if(A.length>0){let x="";throw u!=null&&(x=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${A}] from the provided inputs [${r}]. Consider providing the following inputs: [${c}]. ${x}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let d="";if(u.node.op==="Enter"&&S("isConstant",u.node,s,n)&&([d]=zr(u.node.name,n)),s[u.node.name]==null){let p=S7(u.node,s,n,this._resourceManager);d||([d]=zr(u.node.name,n));let h=n.currentContext;v.isPromise(p)?c.push(p.then(f=>(s[d]=f,n.currentContext=h,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l),f))):(s[d]=p,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l))}else this.processChildNodes(u.node,t,n,s,r,l)}return c}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=zr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!Un(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!Un(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=ms(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);v.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=ms(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=ms(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},tG=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},nG="?tfjs-format=file",sG="model.json",N7=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new tG}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=ns.browserHTTPRequest(e,this.loadOptions);else{let t=ns.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(ns.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=ns.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new _y(y7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=y7.Instance.transformGraph(e.modelInitializer);this.initializer=new _y(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=ns.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Je)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Xe(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${sG}${nG}`);let n=new N7(e,t);return await n.load(),n}var rG="0.0.0",E7={};Oe(E7,{CSVDataset:()=>U7,Dataset:()=>Qu,FileDataSource:()=>Z7,TextLineDataset:()=>B7,URLDataSource:()=>Y7,array:()=>TG,csv:()=>zG,func:()=>LG,generator:()=>BG,microphone:()=>VG,version_data:()=>UG,webcam:()=>WG,zip:()=>NG});var aG=li(ph()),oG=li(ph());function iG(e,t){return ym(e,t)}function ym(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Ju(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=ym(i,t,n,s);a[o]=l}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function lG(e,t=$7){return R7(e,t)}function R7(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Ju(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(c=>c[o]),l=R7(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function $7(e){return e===null?null:Ju(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function _7(e,t){let n=new Map;ym(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let o=await a;n.set(r,o)}}return ym(e,t,n)}function Ju(e){let t=!1;if(K().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=k5();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Je)&&!(e instanceof Promise)&&!t)}function uG(e){return e==null||cG(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Je||v.isTypedArray(e)}function cG(e){return e===null||typeof e!="object"&&typeof e!="function"}function dG(e){return iG(e,pG)}function pG(e){return e instanceof Je?{value:e.clone(),recurse:!1}:Ju(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var D7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},P7=class extends D7{constructor(){super(P7.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}},F7=P7;F7.INITIAL_CAPACITY=32;function O7(e){return new mG(e)}function Dy(e){return new gG(e)}function hG(e,t){return new z7(e,t)}function fG(e,t=xm.FAIL){return new IG(e,t)}var bn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new kG(this,e)}filter(e){return new vG(this,e)}map(e){return new wG(this,e)}mapAsync(e){return new M7(this,e)}serialMapAsync(e){return new M7(this,e).serial()}flatmap(e){return new SG(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new bG(this,e,t)}columnMajorBatch(e,t=!0,n=$7){return this.rowMajorBatch(e,t).map(r=>lG(r,n))}concatenate(e,t){return new z7(O7([this,e]),t)}take(e){return e<0||e==null?this:new xG(this,e)}skip(e){return e<0||e==null?this:new yG(this,e)}prefetch(e){return new L7(this,e)}shuffle(e,t){return new CG(this,e,t)}serial(){return new AG(this)}},mG=class extends bn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:dG(e),done:!1}}},gG=class extends bn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},AG=class extends bn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},yG=class extends bn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;ee(e.value)}return this.upstream.next()}},xG=class extends bn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},bG=class extends bn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},vG=class extends bn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;ee(e.value)}}},wG=class extends bn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=ir.getTensorsInContainer(e.value),n=this.transform(e.value),s=ir.getTensorsInContainer(n);for(let r of t)ir.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},kG=class extends bn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},M7=class extends bn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=ir.getTensorsInContainer(e.value),n=await this.transform(e.value),s=ir.getTensorsInContainer(n);for(let r of t)ir.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},Py=class extends bn{constructor(){super();this.outputQueue=new F7,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},SG=class extends Py{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=ir.getTensorsInContainer(e.value),n=this.transform(e.value),s=ir.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)ir.isTensorInList(r,s)||r.dispose();return!0}},z7=class extends bn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},xm;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(xm||(xm={}));var IG=class extends bn{constructor(e,t=0){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof bn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await _7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case 0:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case 1:return{value:null,done:!0};case 2:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},L7=class extends bn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new D7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},CG=class extends L7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=oG.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Qu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),gs(async()=>(await n.iterator()).columnMajorBatch(e,t,EG),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,gs(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,gs(async()=>(await t.iterator()).filter(s=>q(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return gs(async()=>(await t.iterator()).map(n=>q(()=>e(n))),this.size)}mapAsync(e){let t=this;return gs(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return gs(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,gs(async()=>{let s=Dy(async()=>({value:await t.iterator(),done:!1}));return hG(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,gs(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=aG.alea(t||v.now().toString());return gs(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,gs(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Qu.MAX_BUFFER_SIZE=1e4;function gs(e,t=null){return new class extends Qu{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function TG(e){return gs(async()=>O7(e),e.length)}function NG(e){if(!Ju(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return gs(async()=>{let n=await _7(e,s=>{if(s instanceof Qu)return{value:s.iterator(),recurse:!1};if(Ju(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return fG(n,xm.SHORTEST)},t)}function EG(e){if(e===null)return null;let t=e[0];return uG(t)?{value:RG(e),recurse:!1}:{value:null,recurse:!0}}function RG(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Je?yn(e):Pt(e)}var B7=class extends Qu{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},bm='"',sp=Symbol("out"),W7=Symbol("field"),vm=Symbol("quote"),Fy=Symbol("quoteafterquote"),V7=Symbol("quoteinquote"),U7=class extends Qu{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new B7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let c=Number(i);if(isNaN(c))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=c;else switch(o.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(i);break;default:l=c}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=sp;for(let o=0;o<r;o++)switch(a){case sp:switch(e.charAt(o)){case bm:s=o+1,a=vm;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=sp;break;default:a=W7,s=o;break}break;case W7:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=sp,s=o+1;break;default:}break;case vm:switch(e.charAt(o)){case bm:a=Fy;break;default:}break;case Fy:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=sp,s=o+1;break;case bm:a=vm;break;default:a=V7;break}break;case V7:switch(e.charAt(o)){case bm:a=vm;break;default:}break;default:}if(a===Fy?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},G7=class extends bn{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(K().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new G7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),Pt(n,t)}},H7=class extends bn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Kt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=cr([a,r,i,o],[1,4])}else this.cropBox=cr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(K().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new H7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Hs.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return q(()=>{let t=Xt(pe(e,"float32"),0),n;n=$e.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return G(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},j7=class{},q7=class extends bn{split(e){return new $G(this,e)}},$G=class extends q7{constructor(e,t){super();this.upstream=e,this.impl=new _G(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},_G=class extends Py{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},DG=class extends bn{decodeUTF8(){return new PG(this)}},PG=class extends q7{constructor(e){super();this.upstream=e,this.impl=new FG(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},FG=class extends Py{constructor(e){super();if(this.upstream=e,K().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=k5();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return K().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},X7=class extends DG{constructor(e,t={}){super();this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(K().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function OG(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=MG(e));let a=await(n||v.fetch)(s,r);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new X7(o,t)}else throw new Error(a.statusText)}var MG=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function K7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var Z7=class extends j7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(K7(this.input)&&K().get("IS_NODE")){let e=Vs("fs");this.input=e.readFileSync(this.input.substr(7))}return new X7(this.input,this.options)}},Y7=class extends j7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return K7(this.url)?new Z7(this.url,this.fileOptions).iterator():OG(this.url,this.fileOptions)}};function zG(e,t={}){return new U7(new Y7(e),t)}function LG(e){let t=Dy(e);return gs(async()=>t)}function BG(e){return gs(async()=>{let t=await e();return Dy(()=>t.next())})}async function WG(e,t){return H7.create(e,t)}async function VG(e){return G7.create(e)}var UG="0.0.0";function Ne(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var GG=Ks.whereImpl,J7=class extends eu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Yc(this,ss())}nextDataId(){return J7.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,K().get("IS_NODE")&&E.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return E.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return ss().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ne([e],"where");let t=this.readSync(e.dataId);return GG(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},Oy=J7;Oy.nextDataId=0;var wm={};Oe(wm,{addImpl:()=>eS,bincountImpl:()=>zy,bincountReduceImpl:()=>tS,ceilImpl:()=>nS,concatImpl:()=>Ly,equalImpl:()=>sS,expImpl:()=>aS,expm1Impl:()=>iS,floorImpl:()=>lS,gatherNdImpl:()=>uS,gatherV2Impl:()=>cS,greaterEqualImpl:()=>pS,greaterImpl:()=>dS,lessEqualImpl:()=>fS,lessImpl:()=>hS,linSpaceImpl:()=>mS,logImpl:()=>gS,maxImpl:()=>AS,maximumImpl:()=>yS,minimumImpl:()=>xS,multiplyImpl:()=>By,negImpl:()=>bS,notEqualImpl:()=>vS,prodImpl:()=>wS,rangeImpl:()=>Vy,rsqrtImpl:()=>kS,sigmoidImpl:()=>_H,simpleAbsImpl:()=>Q7,sliceImpl:()=>Im,sparseFillEmptyRowsImpl:()=>IS,sparseReshapeImpl:()=>CS,sparseSegmentReductionImpl:()=>Uy,sqrtImpl:()=>FH,squaredDifferenceImpl:()=>TS,stridedSliceImpl:()=>NS,stringNGramsImpl:()=>ES,stringSplitImpl:()=>RS,stringToHashBucketFastImpl:()=>$S,subImpl:()=>_S,tileImpl:()=>DS,topKImpl:()=>FS,transposeImpl:()=>Wy,uniqueImpl:()=>OS});function Q7(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var HG=e=>{let{x:t}=e.inputs,n=e.backend;Ne(t,"abs");let s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=Q7(r),n.makeOutput(s,t.shape,t.dtype)},jG={kernelName:di,backendName:"cpu",kernelFunc:HG};function Yt(e){return(t,n,s,r,a)=>{let o=E.assertAndGetBroadcastShape(t,n),i=o.length,l=v.computeStrides(o),c=v.sizeFromShape(o),u=v.getTypedArrayFromDType(a,c),d=t.length,p=n.length,h=v.computeStrides(t),f=v.computeStrides(n),m=E.getBroadcastDims(t,o),g=E.getBroadcastDims(n,o);if(m.length+g.length===0)for(let A=0;A<u.length;++A)u[A]=e(s[A%s.length],r[A%r.length]);else for(let A=0;A<u.length;++A){let x=v.indexToLoc(A,i,l),y=x.slice(-d);m.forEach(I=>y[I]=0);let b=v.locToIndex(y,d,h),w=x.slice(-p);g.forEach(I=>w[I]=0);let k=v.locToIndex(w,p,f);u[A]=e(s[b],r[k])}return[u,o]}}function As(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var qG={kernelName:td,backendName:"cpu",kernelFunc:As};function km(e,t,n="float32"){if(n==="complex64"){let r=km(e,t,"float32"),a=km(e,t,"float32");return As({inputs:{real:r,imag:a},backend:e})}let s=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function Lr(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var XG={kernelName:Ha,backendName:"cpu",kernelFunc:Lr};function kl(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var KG={kernelName:cd,backendName:"cpu",kernelFunc:kl};function Wo(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Lr({inputs:{x:r},backend:n});let o=km(n,r.shape,r.dtype),i=Wo({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=As({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=kl({inputs:{input:r},backend:n}),i=Wo({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Lr({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=v.toTypedArray([0],r.dtype),[l,c]=Yt((u,d)=>u!==d?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var ZG={kernelName:$a,backendName:"cpu",kernelFunc:Wo};function vn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Ne([o,i],e);let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=o.dtype==="string"?E.fromUint8ToStringArray(c):c,p=o.dtype==="string"?E.fromUint8ToStringArray(u):u,h=s||o.dtype,[f,m]=t(o.shape,i.shape,d,p,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let c=Wo({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),d=u.complexTensorInfos.real,p=u.complexTensorInfos.imag,h=l.data.get(d.dataId).values,f=l.data.get(p.dataId).values,m=Wo({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),A=g.complexTensorInfos.real,x=g.complexTensorInfos.imag,y=l.data.get(A.dataId).values,b=l.data.get(x.dataId).values,[w,k,I]=n(o.shape,i.shape,h,f,y,b),N=l.makeTensorInfo(I,"float32",w),$=l.makeTensorInfo(I,"float32",k),O=As({inputs:{real:N,imag:$},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(N),l.disposeIntermediateTensorInfo($),O}else{let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=s||o.dtype,[p,h]=t(o.shape,i.shape,c,u,d);return l.makeTensorInfo(h,d,p)}}}function My(e){return(t,n,s,r,a,o)=>{let i=E.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(i),c=i.length,u=v.computeStrides(i),d=v.getTypedArrayFromDType("float32",l),p=v.getTypedArrayFromDType("float32",l),h=E.getBroadcastDims(t,i),f=E.getBroadcastDims(n,i),m=E.mergeRealAndImagArrays(s,r),g=E.mergeRealAndImagArrays(a,o),A=t.length,x=v.computeStrides(t),y=n.length,b=v.computeStrides(n);if(h.length+f.length===0)for(let w=0;w<d.length;w++){let k=w%m.length,I=w%g.length,N=e(m[k*2],m[k*2+1],g[I*2],g[I*2+1]);d[w]=N.real,p[w]=N.imag}else for(let w=0;w<d.length;w++){let k=v.indexToLoc(w,c,u),I=k.slice(-A);h.forEach(R=>I[R]=0);let N=v.locToIndex(I,A,x),$=k.slice(-y);f.forEach(R=>$[R]=0);let O=v.locToIndex($,y,b),D=e(m[N*2],m[N*2+1],g[O*2],g[O*2+1]);d[w]=D.real,p[w]=D.imag}return[d,p,i]}}var eS=Yt((e,t)=>e+t),YG=My((e,t,n,s)=>({real:e+n,imag:t+s})),rp=vn(Hr,eS,YG),JG={kernelName:Hr,backendName:"cpu",kernelFunc:rp};function zy(e,t,n,s,r){let a=v.sizeFromShape(s),o=v.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function tS(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=ze([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let c=e.get(i,l);if(c<0)throw new Error("Input x must be non-negative!");c>=n||(s?o.set(1,i,c):t.size>0?o.set(o.get(i,c)+t.get(i,l),i,c):o.set(o.get(i,c)+1,i,c))}return o}function Vo(e){return(t,n,s)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function ht(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ne(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=v.sizeFromShape(o.shape),u=n||o.dtype,d=v.getArrayFromDType(u,c);for(let p=0;p<c;++p)d[p]=t(l[p],r);return i.makeTensorInfo(o.shape,u,d)}}function ec(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ne(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=n||o.dtype,u=t(l,c,r);return i.makeTensorInfo(o.shape,c,u)}}var nS=Vo(e=>Math.ceil(e)),QG=ec(_a,nS),eH={kernelName:_a,backendName:"cpu",kernelFunc:QG};function Ly(e,t,n,s){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=v.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?E.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let c=0;c<o.shape[0];++c){let u=c*t[1]+a;for(let d=0;d<o.shape[1];++d)r[u+d]=i[l++]}a+=o.shape[1]})}return r}var sS=Yt((e,t)=>e===t?1:0),rS=vn(Ai,sS,null,"bool"),tH={kernelName:Ai,backendName:"cpu",kernelFunc:rS},aS=Vo(e=>Math.exp(e)),oS=ec(Ba,aS,"float32"),nH={kernelName:Ba,backendName:"cpu",kernelFunc:oS},iS=Vo(e=>Math.expm1(e)),sH=ec(xi,iS),rH={kernelName:xi,backendName:"cpu",kernelFunc:sH},lS=Vo(e=>Math.floor(e)),aH=ec(Wa,lS),oH={kernelName:Wa,backendName:"cpu",kernelFunc:aH};function uS(e,t,n,s,r,a,o,i,l){let c=ze([s,a],n);for(let u=0;u<s;u++){let d=[],p=0;for(let h=0;h<r;h++){let f=e[u*r+h];p+=f*o[h],d.push(f)}if(p<0||p>=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let h=0;h<a;h++)c.values[u*a+h]=t.get(...t.indexToLoc(p*a+h))}return c}function cS(e,t,n){let s=ze(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],c=t.locToIndex([i,l]);o[2]=t.values[c];let u=e.locToIndex(o);s.values[r]=e.values[u]}return s}var dS=Yt((e,t)=>e>t?1:0),iH=vn(ki,dS,null,"bool"),lH={kernelName:ki,backendName:"cpu",kernelFunc:iH},pS=Yt((e,t)=>e>=t?1:0),uH=vn(Ga,pS,null,"bool"),cH={kernelName:Ga,backendName:"cpu",kernelFunc:uH},hS=Yt((e,t)=>e<t?1:0),dH=vn(Ii,hS,null,"bool"),pH={kernelName:Ii,backendName:"cpu",kernelFunc:dH},fS=Yt((e,t)=>e<=t?1:0),hH=vn(Ci,fS,null,"bool"),fH={kernelName:Ci,backendName:"cpu",kernelFunc:hH};function mS(e,t,n){let s=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var gS=Vo(e=>Math.log(e)),mH=ec(ja,gS),gH={kernelName:ja,backendName:"cpu",kernelFunc:mH};function AS(e,t,n,s){let r=v.getTypedArrayFromDType(s,v.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let c=e[o+l];(Number.isNaN(c)||c>i)&&(i=c)}r[a]=i}return r}var yS=Yt((e,t)=>Math.max(e,t)),AH=vn(Xa,yS),yH={kernelName:Xa,backendName:"cpu",kernelFunc:AH},xS=Yt((e,t)=>Math.min(e,t)),xH=vn(Ja,xS),bH={kernelName:Ja,backendName:"cpu",kernelFunc:xH},By=Yt((e,t)=>e*t),vH=My((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),Sm=vn(eo,By,vH),wH={kernelName:eo,backendName:"cpu",kernelFunc:Sm};function bS(e,t,n){let s=v.createScalarValue(-1,n);return By([],t,s,e,n)}function kH(e){let{inputs:t,backend:n}=e,{x:s}=t;Ne(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=bS(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var SH={kernelName:Ni,backendName:"cpu",kernelFunc:kH},vS=Yt((e,t)=>e!==t?1:0),IH=vn(Ei,vS,null,"bool"),CH={kernelName:Ei,backendName:"cpu",kernelFunc:IH};function Wy(e,t,n,s,r){let a=t.length,o=v.sizeFromShape(t),i=v.computeStrides(t),l=v.computeStrides(r),c=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let u=0;u<o;++u){let d=v.indexToLoc(u,a,i),p=new Array(d.length);for(let f=0;f<p.length;f++)p[f]=d[s[f]];let h=v.locToIndex(p,a,l);c[h]=e[u]}return c}function Ds(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;Ne(r,"transpose");let o=r.shape.length,i=new Array(o);for(let d=0;d<i.length;d++)i[d]=r.shape[a[d]];let l=s.data.get(r.dataId).values,c=Wy(l,r.shape,r.dtype,a,i);return{dataId:s.write(c,i,r.dtype),shape:i,dtype:r.dtype}}var TH={kernelName:Ao,backendName:"cpu",kernelFunc:Ds};function wS(e,t,n,s){let[r,a]=E.computeOutAndReduceShapes(e,s),o=Ln(t,"int32"),i=v.makeZerosTypedArray(v.sizeFromShape(r),o),l=v.sizeFromShape(a);for(let c=0;c<i.length;++c){let u=c*l,d=1;for(let p=0;p<l;++p)d*=n[u+p];i[c]=d}return{outVals:i,outShape:r,outDtype:o}}function NH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"prod");let i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=E.getAxesPermutation(l,i),u=l,d=r,p=[];c!=null&&(d=Ds({inputs:{x:r},backend:n,attrs:{perm:c}}),p.push(d),u=E.getInnerMostAxes(u.length,i));let h=n.data.get(d.dataId).values,{outVals:f,outShape:m,outDtype:g}=wS(d.shape,d.dtype,h,u),A=m;return o&&(A=E.expandShapeToKeepDim(m,l)),p.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.makeTensorInfo(A,g,f)}var EH={kernelName:Fi,backendName:"cpu",kernelFunc:NH};function Vy(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return v.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}var kS=Vo(e=>1/Math.sqrt(e)),RH=ec(io,kS),$H={kernelName:io,backendName:"cpu",kernelFunc:RH},_H=Vo(e=>1/(1+Math.exp(-e))),SS=ht(uo,e=>1/(1+Math.exp(-e))),DH={kernelName:uo,backendName:"cpu",kernelFunc:SS};function Im(e,t,n,s,r){let a=Ft.isSliceContinous(s,t,n),o=v.sizeFromShape(n),i=v.computeStrides(s);if(a){let d=Ft.computeFlatOffset(t,i);return r==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=r==="string"?E.fromUint8ToStringArray(e):e,c=ze(s,r,l),u=ze(n,r);for(let d=0;d<u.size;++d){let p=u.indexToLoc(d),h=p.map((f,m)=>f+t[m]);u.set(c.get(...h),...p)}return r==="string"?E.fromStringArrayToUint8(u.values):u.values}function Sl(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Ne(r,"slice");let[i,l]=Ft.parseSliceParams(r,a,o);Ft.assertParamsValid(r,i,l);let c=n.data.get(r.dataId).values,u=Im(c,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,u)}var PH={kernelName:Wi,backendName:"cpu",kernelFunc:Sl};function IS(e,t,n,s,r,a,o){let i=t[0],l=a[0],c=new Array(l),u=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${i}`);let g=v.getArrayFromDType(n,0),A=v.getArrayFromDType(r,0);return[g,[0,d],A,c,u]}let p=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let A=e[g*d];if(A<0)throw new Error(`indices(${g}, 0) is invalid: ${A} < 0`);if(A>=l)throw new Error(`indices(${g}, 0) is invalid: ${A} >= ${l}`);++f[A],p=p&&A>=h,h=A}let m=!0;for(let g=0;g<l;++g){let A=f[g]===0;c[g]=A,m=m&&!A,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&p){let g=e,A=s;for(let x=0;x<i;++x)u[x]=x;return[g,[i,d],A,c,u]}else{let g=f[l-1],A=v.getArrayFromDType(n,g*d),x=v.getArrayFromDType(r,g),y=new Array(l).fill(0);for(let b=0;b<i;++b){let w=e[b*d],k=y[w],I=(w===0?0:f[w-1])+k;y[w]++;for(let N=0;N<d;++N)A[I*d+N]=e[b*d+N];x[I]=s[b],u[b]=I}for(let b=0;b<l;++b)if(y[b]===0){let k=b===0?0:f[b-1];A[k*d+0]=b;for(let I=1;I<d;++I)A[k*d+I]=0;x[k]=o}return[A,[g,d],x,c,u]}}function CS(e,t,n,s,r){let a=v.sizeFromShape(s),o=t[0],i=r.length,l=[],c=1,u=-1;for(let g=0;g<i;++g){let A=r[g];if(A===-1){if(u!==-1)throw new Error(`only one output dimension may be -1, not both ${u} and ${g}`);u=g,l.push(1)}else{if(A<0)throw new Error(`size ${g} must be non-negative, not ${A}`);c*=A,l.push(A)}}if(u!==-1){if(c<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(a/c);if(c*g!==a)throw new Error(`Input to reshape is a SparseTensor with ${a}
dense values, but the requested shape requires a multiple of ${c}. inputShape=${s} outputShape= ${l}`);l[u]=g}let d=v.sizeFromShape(l);if(d!==a)throw new Error(`Input to reshape is a tensor with ${a} dense values, but the requested shape has ${d}. inputShape=${s} outputShape=${l}`);let p=s.length,h=[];if(p>0){h[p-1]=1;for(let g=p-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=v.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let A=0;for(let x=0;x<p;++x)A+=e[g*p+x]*h[x];for(let x=0;x<i;++x)m[g*i+x]=Math.trunc(A/f[x]),A%=f[x]}return[m,[o,i],l]}function Uy(e,t,n,s,r,a=!1,o=0){let i=s.length;if(i!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],c=l[1],d=i>0?r[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let p=t.slice();p[0]=d;let h=p.reduce((y,b)=>y*b,1),f=v.getArrayFromDType(n,h);if(i===0)return d>0&&f.fill(o),[f,p];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,A=0,x=r[m];for(;;){let y=0;if(g<i){if(y=r[g],x===y){++g;continue}if(x>=y)throw new Error("segment ids are not increasing")}if(x<0||x>=d)throw new Error(`Segment id ${x} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);x>A&&f.fill(o,A*c,x*c);for(let b=m;b<g;++b){let w=s[b];if(w<0||w>=l[0])throw new Error(`Bad: indices[${b}] == ${s[b]} out of range [0, ${l[0]})`);for(let k=0;k<c;k++)f[x*c+k]+=e[w*c+k]}if(a)for(let b=0;b<c;b++)f[x*c+b]/=g-m;if(m=g,++g,A=x+1,x=y,g>i)break}return A<d&&f.fill(o,A*c,d*c),[f,p]}var FH=Vo(e=>Math.sqrt(e)),OH=ht(co,e=>Math.sqrt(e)),MH={kernelName:co,backendName:"cpu",kernelFunc:OH},TS=Yt((e,t)=>{let n=e-t;return n*n}),zH=vn(fo,TS),LH={kernelName:fo,backendName:"cpu",kernelFunc:zH};function NS(e,t,n,s){let r=ze(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var BH=class{constructor(e,t,n,s,r,a){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),c=Math.max(0,i-(r-(o+1))),u=a-(l+c),d=t+(l>0?0:o-i),p=0;p+=l*this.leftPad.length;for(let A=0;A<u;++A)p+=e[d+A].length;p+=c*this.rightPad.length,p+=(l+c+u-1)*this.separator.length,n[s+o]=new Uint8Array(p);let f=n[s+o],m=0,g=A=>A.forEach(x=>f[m++]=x);for(let A=0;A<l;++A)g(this.leftPad),g(this.separator);for(let A=0;A<u-1;++A)g(e[d+A]),g(this.separator);if(u>0){g(e[d+u-1]);for(let A=0;A<c;++A)g(this.separator),g(this.rightPad)}else{for(let A=0;A<c-1;++A)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let c=t[l]>=i;if(c=c&&t[l]<=n,!c)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=v.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],c=0;this.nGramWidths.forEach(u=>{c+=this.getNumNGrams(l,u)}),this.preserveShort&&l>0&&c===0&&(c=1),a[i]=a[i-1]+c}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],c=a[i];if(this.nGramWidths.forEach(u=>{let d=t[i+1]-t[i],p=this.getNumNGrams(d,u);this.createNGrams(e,l,o,c,p,u),c+=p}),this.preserveShort&&c===a[i]){let u=t[i+1]-t[i];if(u===0)continue;let d=u+2*this.padWidth,p=1;this.createNGrams(e,l,o,c,p,d)}}return[o,a]}};function ES(e,t,n,s,r,a,o,i){return new BH(n,s,r,a,o,i).compute(e,t)}function WH(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function RS(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let p=0;p<s;++p){let h=r.length;WH(e[p],t,n,r);let f=r.length-h;i[p]=f,a+=f,o=Math.max(o,f)}let l=v.getArrayFromDType("int32",a*2),c=new Array(a),u=[s,o],d=0;for(let p=0;p<s;++p)for(let h=0;h<i[p];++h)l[d*2]=p,l[d*2+1]=h,c[d]=r[d],++d;return[l,c,u]}function $S(e,t){let n=v.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=v.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var _S=Yt((e,t)=>e-t),VH=My((e,t,n,s)=>({real:e-n,imag:t-s})),Gy=vn(mo,_S,VH),UH={kernelName:mo,backendName:"cpu",kernelFunc:Gy};function DS(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=ze(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var ap=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function PS(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,c=Math.log(i),u=.5*Math.exp(2*c/3),d=.5*Math.sqrt(c*u*(i-u)/i)*Math.sign(l-i/2),p=Math.max(n,Math.floor(t-l*u/i+d)),h=Math.min(s,Math.floor(t+(i-l)*u/i+d));PS(e,t,p,h)}let r=e[t],a=n,o=s;for(v.swap(e,n,t),ap(e[s],r)>0&&v.swap(e,n,s);a<o;){for(v.swap(e,a,o),a++,o--;ap(e[a],r)<0;)a=a+1;for(;ap(e[o],r)>0;)o=o-1}ap(e[n],r)===0?v.swap(e,n,o):(o=o+1,v.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function FS(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=v.getTypedArrayFromDType(n,o*s),c=v.getTypedArrayFromDType("int32",o*s);for(let d=0;d<o;d++){let p=d*i,h=e.subarray(p,p+i),f=new Array(h.length);h.forEach((x,y)=>f[y]={value:x,index:y}),s<f.length&&(PS(f,s),f=f.slice(0,s)),r&&f.sort(ap);let m=d*s,g=l.subarray(m,m+s),A=c.subarray(m,m+s);for(let x=0;x<s;x++)g[x]=f[x].value,A[x]=f[x].index}let u=t.slice();return u[u.length-1]=s,[ze(u,n,l),ze(u,"int32",c)]}function OS(e,t,n,s){let r=v.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new tn(a,s,e),c=[],u=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(u)m=e[f].toString();else{let g=[];for(let A=0;A<a[0];A++)for(let x=0;x<a[2];x++)g.push(l.get(A,f,x));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,c.push(f)}}let d=a.slice();d[1]=Object.keys(o).length;let p=new tn(d,s);c.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let A=0;A<a[2];A++)p.set(l.get(g,f,A),g,m,A)});let h=n.slice();return h[r]=d[1],{outputValues:p.values,outputShape:h,indices:i}}var GH="0.0.0";ol("cpu",()=>new Oy,1);var MS=ht(La,e=>e>=0?e:Math.exp(e)-1),HH={kernelName:La,backendName:"cpu",kernelFunc:MS};function zS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Ne([r],"leakyRelu");let o=v.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",o);for(let c=0;c<i.length;c++)l[c]=i[c]<0?a*i[c]:i[c];return n.makeTensorInfo(r.shape,"float32",l)}var jH={kernelName:Si,backendName:"cpu",kernelFunc:zS},qH=Yt((e,t)=>e<0?t*e:e);function LS(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Ne([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=qH(s.shape,r.shape,a,o,"float32");return n.makeTensorInfo(l,"float32",i)}var XH={kernelName:so,backendName:"cpu",kernelFunc:LS},BS=ht(ro,e=>Math.max(0,e)),KH={kernelName:ro,backendName:"cpu",kernelFunc:BS},WS=ht(oo,e=>Math.min(Math.max(0,e),6)),ZH={kernelName:oo,backendName:"cpu",kernelFunc:WS};function Hy(e,t,n,s,r){if(n==="linear")return Lr({inputs:{x:t},backend:e});if(n==="relu")return BS({inputs:{x:t},backend:e});if(n==="elu")return MS({inputs:{x:t},backend:e});if(n==="relu6")return WS({inputs:{x:t},backend:e});if(n==="prelu")return LS({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return zS({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return SS({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Rt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,o),l=v.sizeFromShape(i);v.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let c=n.data.get(r.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,d=c.complexTensorInfos.imag;u.shape=i,d.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var YH={kernelName:Oi,backendName:"cpu",kernelFunc:Rt};function VS(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Ne([r,a],"matMul");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),A=v.sizeFromShape(m),y=sl.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([p,h]);v.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,u,p]:[g,p,u],w=i?[A,h,d]:[A,d,h],k=Rt({inputs:{x:r},backend:n,attrs:{shape:b}}),I=Rt({inputs:{x:a},backend:n,attrs:{shape:w}}),N=o?k.shape[1]:k.shape[2],$=o?k.shape[2]:k.shape[1],O=i?I.shape[1]:I.shape[2],D=Math.max(g,A),R=n.data.get(k.dataId).values,T=n.data.get(I.dataId).values,F=v.computeStrides(k.shape),U=v.computeStrides(I.shape),[j,z,X]=o?[F[0],1,F[1]]:[F[0],F[1],1],[Z,J,te]=i?[1,U[1],U[0]]:[U[1],1,U[0]],re=$*O,Q=ze([D,$,O],k.dtype),ne=Q.values,oe=n.blockSize;for(let fe=0;fe<D;fe++)for(let be=0;be<$;be+=oe)for(let we=0;we<O;we+=oe)for(let Ce=0;Ce<N;Ce+=oe){let Me=Math.min(be+oe,$),We=Math.min(we+oe,O),He=Math.min(Ce+oe,N);for(let qe=be;qe<Me;qe++)for(let ct=we;ct<We;ct++){let dt=0;for(let rt=Ce;rt<He;rt++){let wt=Math.min(fe,g-1)*j,ft=Math.min(fe,A-1)*te,Ct=R[wt+qe*z+rt*X],_t=T[rt*Z+ct*J+ft];dt+=Ct*_t}ne[fe*re+(qe*O+ct)]+=dt}}return n.disposeIntermediateTensorInfo(k),n.disposeIntermediateTensorInfo(I),n.makeTensorInfo(y,Q.dtype,Q.values)}var JH={kernelName:Ra,backendName:"cpu",kernelFunc:VS};function QH(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p,h,f,m=[];p=VS({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:c},backend:n}),o&&(h=rp({inputs:{a:p,b:o},backend:n}),m.push(p),p=h),u&&(f=Hy(n,p,u,i,d),m.push(p),p=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return p}var ej={kernelName:xo,backendName:"cpu",kernelFunc:QH},tj=ht(su,e=>Math.acos(e)),nj={kernelName:su,backendName:"cpu",kernelFunc:tj},sj=ht(ru,e=>Math.acosh(e)),rj={kernelName:ru,backendName:"cpu",kernelFunc:sj};function aj(e){let{inputs:t,backend:n}=e,s=t;Ne(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=ze(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let c=0;c<o.length;c++)o[c]+=l[c]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var oj={kernelName:Ta,backendName:"cpu",kernelFunc:aj};function ij(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"all");let i=v.parseAxisParam(a,r.shape),l=i,c=E.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ds({inputs:{x:r},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("all",l,u.shape.length);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let x=A*h,y=m[x];for(let b=0;b<h;++b){let w=m[x+b];y=y&&w}f[A]=y}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=E.expandShapeToKeepDim(d,i),x=Rt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),x}return g}var lj={kernelName:au,backendName:"cpu",kernelFunc:ij};function uj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"any");let i=v.parseAxisParam(a,r.shape),l=i,c=E.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ds({inputs:{x:r},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("any",l,u.shape.length);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let x=A*h,y=m[x];for(let b=0;b<h;++b){let w=m[x+b];y=y||w}f[A]=y}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=E.expandShapeToKeepDim(d,i),x=Rt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),x}return g}var cj={kernelName:ou,backendName:"cpu",kernelFunc:uj};function dj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ne(r,"argMax");let o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Ds({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],E.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[u,d]=E.computeOutAndReduceShapes(l.shape,o),p=v.sizeFromShape(u),h=v.makeZerosTypedArray(p,"int32"),f=v.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,x=m[A],y=0;for(let b=0;b<f;++b){let w=m[A+b];w>x&&(x=w,y=b)}h[g]=y}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var pj={kernelName:Na,backendName:"cpu",kernelFunc:dj};function hj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ne(r,"argMin");let o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Ds({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],E.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[u,d]=E.computeOutAndReduceShapes(l.shape,o),p=v.sizeFromShape(u),h=v.makeZerosTypedArray(p,"int32"),f=v.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,x=m[A],y=0;for(let b=0;b<f;++b){let w=m[A+b];w<x&&(x=w,y=b)}h[g]=y}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var fj={kernelName:iu,backendName:"cpu",kernelFunc:hj},mj=ht(lu,e=>Math.asin(e)),gj={kernelName:lu,backendName:"cpu",kernelFunc:mj},Aj=ht(uu,e=>Math.asinh(e)),yj={kernelName:uu,backendName:"cpu",kernelFunc:Aj},xj=ht(cu,e=>Math.atan(e)),bj={kernelName:cu,backendName:"cpu",kernelFunc:xj},vj=Yt((e,t)=>Math.atan2(e,t)),wj=vn(pu,vj),kj={kernelName:pu,backendName:"cpu",kernelFunc:wj},Sj=ht(du,e=>Math.atanh(e)),Ij={kernelName:du,backendName:"cpu",kernelFunc:Sj};function jy(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,c=r.dilationWidth,u=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=ze(r.outShape,n),g=m.values,A=r.outShape[1]*r.outShape[2]*r.outShape[3],x=r.outShape[2]*r.outShape[3],y=r.outShape[3];for(let b=0;b<r.batchSize;++b){let w=b*A,k=b*s[0];for(let I=0;I<r.inChannels;++I)for(let N=0;N<r.outHeight;++N){let $=N*o-p,O=Math.max(0,$),D=Math.min(r.inHeight,u+$),R=w+N*x;for(let T=0;T<r.outWidth;++T){let F=T*i-h,U=Math.max(0,F),j=Math.min(r.inWidth,d+F),z=f,X=0,Z=0;for(let te=O;te<D;te+=l){let re=k+te*s[1];for(let Q=U;Q<j;Q+=c){let ne=re+Q*s[2],oe=e[ne+I];a==="max"&&oe>z?z=oe:a==="avg"&&(X+=oe,Z++)}if(isNaN(z))break}let J=R+T*y+I;g[J]=a==="avg"?X/Z:z}}}return m}function US(e,t,n,s,r=!1,a=!1){let o=ze(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,c=s.dilationHeight,u=s.dilationWidth,d=s.effectiveFilterHeight,p=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=ze(t,n,e);for(let g=0;g<s.batchSize;++g)for(let A=0;A<s.inChannels;++A)for(let x=0;x<s.outHeight;++x){let y=x*i-h,b=y;for(;b<0;)b+=c;let w=Math.min(s.inHeight,d+y);for(let k=0;k<s.outWidth;++k){let I=k*l-f,N=I;for(;N<0;)N+=u;let $=Math.min(s.inWidth,p+I),O=Number.NEGATIVE_INFINITY,D=-1;for(let R=b;R<w;R+=c){let T=R-y;for(let F=N;F<$;F+=u){let U=F-I,j=m.get(g,R,F,A);j>O&&(O=j,r?D=a?((g*s.inHeight+R)*s.inWidth+F)*s.inChannels+A:(R*s.inWidth+F)*s.inChannels+A:D=T*p+U)}}o.set(D,g,x,k,A)}}return o}function GS(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,c=r.dilationDepth,u=r.dilationHeight,d=r.dilationWidth,p=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,A=r.padInfo.left,x=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,y=ze(r.outShape,n),b=y.values,w=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],I=r.outShape[3]*r.outShape[4],N=r.outShape[4];for(let $=0;$<r.batchSize;++$){let O=$*w,D=$*s[0];for(let R=0;R<r.inChannels;++R)for(let T=0;T<r.outDepth;++T){let F=T*o-m,U=F;for(;U<0;)U+=c;let j=Math.min(r.inDepth,p+F),z=O+T*k;for(let X=0;X<r.outHeight;++X){let Z=X*i-g,J=Z;for(;J<0;)J+=u;let te=Math.min(r.inHeight,h+Z),re=z+X*I;for(let Q=0;Q<r.outWidth;++Q){let ne=Q*l-A,oe=ne;for(;oe<0;)oe+=d;let fe=Math.min(r.inWidth,f+ne),be=re+Q*N,we=x,Ce=0,Me=0;for(let He=U;He<j;He+=c){let qe=D+He*s[1];for(let ct=J;ct<te;ct+=u){let dt=qe+ct*s[2];for(let rt=oe;rt<fe;rt+=d){let wt=dt+rt*s[3],ft=e[wt+R];if(a==="max"&&ft>we?we=ft:a==="avg"&&(Ce+=ft,Me++),isNaN(we))break}if(isNaN(we))break}if(isNaN(we))break}let We=be+R;b[We]=a==="avg"?Ce/Me:we}}}}return y}function Cj(e,t){let n=ze(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,d=t.effectiveFilterWidth,p=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let A=0;A<t.outDepth;++A){let x=A*s-p,y=x;for(;y<0;)y+=o;let b=Math.min(t.inDepth,c+x);for(let w=0;w<t.outHeight;++w){let k=w*r-h,I=k;for(;I<0;)I+=i;let N=Math.min(t.inHeight,u+k);for(let $=0;$<t.outWidth;++$){let O=$*a-f,D=O;for(;D<0;)D+=l;let R=Math.min(t.inWidth,d+O),T=Number.NEGATIVE_INFINITY,F=-1;for(let U=y;U<b;U+=o){let j=U-x;for(let z=I;z<N;z+=i){let X=z-k;for(let Z=D;Z<R;Z+=l){let J=Z-O,te=e.get(m,U,z,Z,g);te>=T&&(T=te,F=j*u*d+X*u+J)}}}n.set(F,m,A,w,$,g)}}}return n}function Tj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ne(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))d=Lr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=jy(p,r.shape,r.dtype,h,u,"avg");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var Nj={kernelName:Ea,backendName:"cpu",kernelFunc:Tj};function Ej(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Ne(r,"avgPool3d");let u=E.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=GS(d,r.shape,r.dtype,v.computeStrides(r.shape),u,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var Rj={kernelName:ed,backendName:"cpu",kernelFunc:Ej};function $j(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Ne([r,a],"avgPool3DGrad");let u=E.computePool3DInfo(a.shape,o,i,1,l,c),d=u.strideDepth,p=u.strideHeight,h=u.strideWidth,f=u.filterDepth,m=u.filterHeight,g=u.filterWidth,A=u.dilationDepth,x=u.dilationHeight,y=u.dilationWidth,b=u.effectiveFilterDepth,w=u.effectiveFilterHeight,k=u.effectiveFilterWidth,I=b-1-u.padInfo.front,N=k-1-u.padInfo.left,$=w-1-u.padInfo.top,O=ze(a.shape,"float32"),D=1/(f*m*g),R=n.bufferSync(r);for(let T=0;T<u.batchSize;++T)for(let F=0;F<u.inChannels;++F)for(let U=0;U<u.inDepth;++U)for(let j=0;j<u.inHeight;++j)for(let z=0;z<u.inWidth;++z){let X=U-I,Z=j-$,J=z-N,te=0;for(let re=0;re<b;re+=A){let Q=(X+re)/d;if(!(Q<0||Q>=u.outDepth||Math.floor(Q)!==Q))for(let ne=0;ne<w;ne+=x){let oe=(Z+ne)/p;if(!(oe<0||oe>=u.outHeight||Math.floor(oe)!==oe))for(let fe=0;fe<k;fe+=y){let be=(J+fe)/h;if(be<0||be>=u.outWidth||Math.floor(be)!==be)continue;te+=R.get(T,Q,oe,be,F)}}}O.set(te*D,T,U,j,z,F)}return n.makeTensorInfo(O.shape,O.dtype,O.values)}var _j={kernelName:yh,backendName:"cpu",kernelFunc:$j};function Dj(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Ne([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=E.computePool2DInfo(o.shape,i,l,1,c),d=u.strideHeight,p=u.strideWidth,h=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,g=u.dilationWidth,A=u.effectiveFilterHeight,x=u.effectiveFilterWidth,y=x-1-u.padInfo.left,b=A-1-u.padInfo.top,w=ze(o.shape,"float32"),k=1/(h*f),I=n.data.get(r.dataId).values,N=ze(r.shape,"float32",I);for(let $=0;$<u.batchSize;++$)for(let O=0;O<u.inChannels;++O)for(let D=0;D<u.inHeight;++D)for(let R=0;R<u.inWidth;++R){let T=D-b,F=R-y,U=0;for(let j=0;j<A;j+=m){let z=(T+j)/d;if(!(z<0||z>=u.outHeight||Math.floor(z)!==z))for(let X=0;X<x;X+=g){let Z=(F+X)/p;if(Z<0||Z>=u.outWidth||Math.floor(Z)!==Z)continue;U+=N.get($,z,Z,O)}}w.set(U*k,$,D,R,O)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var Pj={kernelName:Ah,backendName:"cpu",kernelFunc:Dj};function Fj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;v.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ne([r,i,l,a,o],"batchNorm");let{varianceEpsilon:c}=s;c==null&&(c=.001);let u=n.data.get(r.dataId).values,d=n.data.get(i.dataId).values,p=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),g=f.length,A=h.length,x=p.length,y=d.length,b=0,w=0,k=0,I=0;for(let N=0;N<u.length;++N)m[N]=f[b++]+(u[N]-d[w++])*h[k++]/Math.sqrt(p[I++]+c),b>=g&&(b=0),w>=y&&(w=0),k>=A&&(k=0),I>=x&&(I=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var Oj={kernelName:Ua,backendName:"cpu",kernelFunc:Fj};function Mj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Ne([r],"batchToSpaceND");let i=a.reduce((A,x)=>A*x),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=Rt({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Ds({inputs:{x:h},backend:n,attrs:{perm:c}}),m=Rt({inputs:{x:f},backend:n,attrs:{shape:u}}),g=Sl({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var zj={kernelName:pi,backendName:"cpu",kernelFunc:Mj};function Lj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=zy(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var Bj={kernelName:xh,backendName:"cpu",kernelFunc:Lj};function Wj(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=E.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var Vj={kernelName:bh,backendName:"cpu",kernelFunc:Wj},Uj=ht(jr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),Gj={kernelName:jr,backendName:"cpu",kernelFunc:Uj},Hj=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let c=0;c<i.length;c++){let u=i[c],d=l[c];s[c]=Math.hypot(u,d)}return n.makeOutput(s,t.shape,"float32")},jj={kernelName:nd,backendName:"cpu",kernelFunc:Hj};function tc(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var qj={kernelName:od,backendName:"cpu",kernelFunc:tc};function nc(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=E.computeOutShape(t.map(m=>m.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>v.sizeFromShape(m.shape)>0);if(i.length===1)return Lr({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(E.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>kl({inputs:{input:b},backend:n})),g=i.map(b=>tc({inputs:{input:b},backend:n})),A=nc({inputs:m,backend:n,attrs:{axis:a}}),x=nc({inputs:g,backend:n,attrs:{axis:a}}),y=As({inputs:{real:A,imag:x},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(x),y}let c=i.map(m=>{let g=v.sizeFromShape(m.shape.slice(a));return Rt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),u=c.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=E.computeOutShape(c.map(m=>m.shape),1);let d=c[0].shape[0]===1,p=Ly(u,o,t[0].dtype,d),h=E.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,p);return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var Xj={kernelName:hi,backendName:"cpu",kernelFunc:nc};function HS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s;Ne([r,a],"conv2d");let d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,A=p.padInfo.left,x=p.padInfo.top,y=p.dataFormat==="channelsLast",b=new tn(p.outShape,r.dtype),w=v.computeStrides(r.shape),k=v.computeStrides(a.shape),I=w[0],N=y?w[1]:w[2],$=y?w[2]:1,O=y?1:w[1],D=b.strides[0],R=y?b.strides[1]:b.strides[2],T=y?b.strides[2]:1,F=y?1:b.strides[1],U=n.data.get(r.dataId).values,j=n.data.get(a.dataId).values,z=b.values;for(let X=0;X<p.batchSize;++X){let Z=X*I,J=X*D;for(let te=0;te<p.outHeight;++te){let re=J+te*R,Q=te*p.strideHeight-x;for(let ne=0;ne<h;++ne){let oe=Q+ne*m;if(oe<0||oe>=p.inHeight)continue;let fe=ne*k[0],be=Z+oe*N;for(let we=0;we<p.outWidth;++we){let Ce=re+we*T,Me=we*p.strideWidth-A;for(let We=0;We<f;++We){let He=Me+We*g;if(He<0||He>=p.inWidth)continue;let qe=fe+We*k[1],ct=be+He*$,dt=qe;for(let rt=0;rt<p.inChannels;++rt){let wt=U[ct+rt*O];for(let ft=0;ft<p.outChannels;++ft)z[Ce+ft*F]+=wt*j[dt+ft];dt+=p.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,z)}var Kj={kernelName:Da,backendName:"cpu",kernelFunc:HS};function Zj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s;Ne([r,a],"conv2dBackpropFilter");let d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=p,A=p.dataFormat==="channelsLast",x=new tn(p.filterShape,"float32"),y=p.padInfo.left,b=p.padInfo.top,w=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,I=new tn(r.shape,r.dtype,w),N=new tn(a.shape,a.dtype,k);for(let $=0;$<m;++$){let O=Math.max(0,Math.ceil((b-$)/h)),D=Math.min(p.outHeight,(p.inHeight+b-$)/h);for(let R=0;R<g;++R){let T=Math.max(0,Math.ceil((y-R)/f)),F=Math.min(p.outWidth,(p.inWidth+y-R)/f);for(let U=0;U<p.inChannels;++U)for(let j=0;j<p.outChannels;++j){let z=0;for(let X=0;X<p.batchSize;++X)for(let Z=O;Z<D;++Z){let J=$+Z*h-b;for(let te=T;te<F;++te){let re=R+te*f-y;A?z+=I.get(X,J,re,U)*N.get(X,Z,te,j):z+=I.get(X,U,J,re)*N.get(X,j,Z,te)}}x.set(z,$,R,U,j)}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var Yj={kernelName:vh,backendName:"cpu",kernelFunc:Zj};function Jj(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s;Ne([r,a],"conv2dBackpropInput");let d=v.computeStrides(a.shape),p=v.computeStrides(r.shape),h=E.convertConv2DDataFormat(c),f=E.computeConv2DInfo(o,a.shape,i,1,l,u,!1,h),m=new tn(f.inShape,"float32"),g=m.values,A=n.data.get(r.dataId).values,x=n.data.get(a.dataId).values,[y,b,w]=d,{batchSize:k,filterHeight:I,filterWidth:N,inChannels:$,inHeight:O,inWidth:D,outChannels:R,outHeight:T,outWidth:F,strideHeight:U,strideWidth:j}=f;h=f.dataFormat;let z=I-1-f.padInfo.top,X=N-1-f.padInfo.left,Z=h==="channelsLast",J=m.strides[0],te=Z?m.strides[1]:m.strides[2],re=Z?m.strides[2]:1,Q=Z?1:m.strides[1],ne=p[0],oe=Z?p[1]:p[2],fe=Z?p[2]:1,be=Z?1:p[1];for(let we=0;we<k;++we)for(let Ce=0;Ce<$;++Ce)for(let Me=0;Me<O;++Me){let We=Me-z,He=Math.max(0,Math.ceil(We/U)),qe=Math.min(T,(I+We)/U);for(let ct=0;ct<D;++ct){let dt=ct-X,rt=Math.max(0,Math.ceil(dt/j)),wt=Math.min(F,(N+dt)/j),ft=0;for(let _t=He;_t<qe;++_t){let ks=_t*U-We;for(let kn=rt;kn<wt;++kn){let rr=kn*j-dt,Fn=ne*we+oe*_t+fe*kn,us=y*(I-1-ks)+b*(N-1-rr)+w*Ce;for(let Bs=0;Bs<R;++Bs){let Ss=A[Fn+be*Bs],Sn=x[us+Bs];ft+=Ss*Sn}}}let Ct=J*we+te*Me+re*ct+Q*Ce;g[Ct]=ft}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var Qj={kernelName:Pa,backendName:"cpu",kernelFunc:Jj};function eq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;Ne([r,a],"conv3d");let c=E.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:u,filterHeight:d,filterWidth:p,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=c,A=g.front,x=g.left,y=g.top,b=new tn(c.outShape,r.dtype),w=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,I=b.values,N=v.computeStrides(r.shape),$=v.computeStrides(a.shape);for(let O=0;O<c.batchSize;++O){let D=O*N[0],R=O*b.strides[0];for(let T=0;T<c.outDepth;++T){let F=R+T*b.strides[1],U=T*c.strideDepth-A;for(let j=0;j<u;++j){let z=U+j*h;if(z<0||z>=c.inDepth)continue;let X=j*$[0],Z=D+z*N[1];for(let J=0;J<c.outHeight;++J){let te=F+J*b.strides[2],re=J*c.strideHeight-y;for(let Q=0;Q<d;++Q){let ne=re+Q*f;if(ne<0||ne>=c.inHeight)continue;let oe=X+Q*$[1],fe=Z+ne*N[2];for(let be=0;be<c.outWidth;++be){let we=te+be*c.outChannels,Ce=be*c.strideWidth-x;for(let Me=0;Me<p;++Me){let We=Ce+Me*m;if(We<0||We>=c.inWidth)continue;let He=oe+Me*$[2],qe=fe+We*c.inChannels,ct=He;for(let dt=0;dt<c.inChannels;++dt){let rt=w[qe+dt];for(let wt=0;wt<c.outChannels;++wt)I[we+wt]+=rt*k[ct+wt];ct+=c.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var tq={kernelName:sd,backendName:"cpu",kernelFunc:eq};function nq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;Ne([r,a],"conv3dBackpropFilterV2");let c=v.computeStrides(r.shape),u=v.computeStrides(a.shape),d=E.computeConv3DInfo(r.shape,l,o,1,i),p=d.strideDepth,h=d.strideHeight,f=d.strideWidth,m=d.filterDepth,g=d.filterHeight,A=d.filterWidth,x=new tn(d.filterShape,"float32"),y=x.values,[b,w,k,I]=x.strides,N=n.data.get(a.dataId).values,[$,O,D,R]=u,T=n.data.get(r.dataId).values,[F,U,j,z]=c,X=d.padInfo.front,Z=d.padInfo.left,J=d.padInfo.top;for(let te=0;te<m;++te){let re=Math.max(0,Math.ceil((X-te)/p)),Q=Math.min(d.outDepth,(d.inDepth+X-te)/p),ne=te*b;for(let oe=0;oe<g;++oe){let fe=Math.max(0,Math.ceil((J-oe)/h)),be=Math.min(d.outHeight,(d.inHeight+J-oe)/h),we=oe*w+ne;for(let Ce=0;Ce<A;++Ce){let Me=Math.max(0,Math.ceil((Z-Ce)/f)),We=Math.min(d.outWidth,(d.inWidth+Z-Ce)/f),He=Ce*k+we;for(let qe=0;qe<d.inChannels;++qe){let ct=qe*I+He;for(let dt=0;dt<d.outChannels;++dt){let rt=0;for(let wt=0;wt<d.batchSize;++wt){let ft=wt*F,Ct=wt*$;for(let _t=re;_t<Q;++_t){let kn=(te+_t*p-X)*U+ft,rr=_t*O+Ct;for(let Fn=fe;Fn<be;++Fn){let Bs=(oe+Fn*h-J)*j+kn,Ss=Fn*D+rr;for(let Sn=Me;Sn<We;++Sn){let Rn=(Ce+Sn*f-Z)*z+Bs,Sr=Sn*R+Ss;rt+=T[Rn+qe]*N[Sr+dt]}}}}y[ct+dt]=rt}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var sq={kernelName:wh,backendName:"cpu",kernelFunc:nq};function rq(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;Ne([r],"conv3dBackpropInputV2");let c=v.computeStrides(r.shape),u=v.computeStrides(a.shape),d=E.computeConv3DInfo(l,a.shape,i,1,o),p=new tn(d.inShape,"float32"),h=p.values,[f,m,g,A]=p.strides,x=n.data.get(r.dataId).values,[y,b,w,k]=c,I=n.data.get(a.dataId).values,[N,$,O,D]=u,{batchSize:R,filterDepth:T,filterHeight:F,filterWidth:U,inChannels:j,inDepth:z,inHeight:X,inWidth:Z,outChannels:J,outDepth:te,outHeight:re,outWidth:Q,strideDepth:ne,strideHeight:oe,strideWidth:fe}=d,be=T-1-d.padInfo.front,we=F-1-d.padInfo.top,Ce=U-1-d.padInfo.left;for(let Me=0;Me<R;++Me)for(let We=0;We<j;++We)for(let He=0;He<z;++He){let qe=He-be,ct=Math.max(0,Math.ceil(qe/ne)),dt=Math.min(te,(T+qe)/ne);for(let rt=0;rt<X;++rt){let wt=rt-we,ft=Math.max(0,Math.ceil(wt/oe)),Ct=Math.min(re,(F+wt)/oe);for(let _t=0;_t<Z;++_t){let ks=_t-Ce,kn=Math.max(0,Math.ceil(ks/fe)),rr=Math.min(Q,(U+ks)/fe),Fn=0;for(let us=ct;us<dt;++us){let Bs=us*ne-qe;for(let Ss=ft;Ss<Ct;++Ss){let Sn=Ss*oe-wt;for(let kr=kn;kr<rr;++kr){let Rn=kr*fe-ks,Sr=y*Me+b*us+w*Ss+k*kr,Ir=N*(T-1-Bs)+$*(F-1-Sn)+O*(U-1-Rn)+D*We;for(let ma=0;ma<J;++ma){let Fc=x[Sr+ma],ar=I[Ir+ma];Fn+=Fc*ar}}}}h[f*Me+m*He+g*rt+A*_t+We]=Fn}}}return n.makeTensorInfo(p.shape,p.dtype,p.values)}var aq={kernelName:kh,backendName:"cpu",kernelFunc:rq},oq=ht(Fa,e=>Math.cos(e)),iq={kernelName:Fa,backendName:"cpu",kernelFunc:oq},lq=ht(Oa,e=>Math.cosh(e)),uq={kernelName:Oa,backendName:"cpu",kernelFunc:lq};function cq(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,[u,d,p,h]=r.shape,f=a.shape[0],[m,g]=i,A=ze([f,m,g,h],"float32"),x=n.data.get(a.dataId).values,y=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,w=v.computeStrides(r.shape),k=v.computeStrides(A.shape);for(let I=0;I<f;I++){let N=I*4,$=x[N],O=x[N+1],D=x[N+2],R=x[N+3],T=y[I];if(T>=u)continue;let F=m>1?(D-$)*(d-1)/(m-1):0,U=g>1?(R-O)*(p-1)/(g-1):0;for(let j=0;j<m;j++){let z=m>1?$*(d-1)+j*F:.5*($+D)*(d-1);if(z<0||z>d-1){for(let X=0;X<g;X++)for(let Z=0;Z<h;Z++){let J=Z+X*k[2]+j*k[1]+I*k[0];A.values[J]=c}continue}if(l==="bilinear"){let X=Math.floor(z),Z=Math.ceil(z),J=z-X;for(let te=0;te<g;te++){let re=g>1?O*(p-1)+te*U:.5*(O+R)*(p-1);if(re<0||re>p-1){for(let fe=0;fe<h;fe++){let be=fe+te*k[2]+j*k[1]+I*k[0];A.values[be]=c}continue}let Q=Math.floor(re),ne=Math.ceil(re),oe=re-Q;for(let fe=0;fe<h;fe++){let be=fe+Q*w[2]+X*w[1]+T*w[0],we=b[be];be=fe+ne*w[2]+X*w[1]+T*w[0];let Ce=b[be];be=fe+Q*w[2]+Z*w[1]+T*w[0];let Me=b[be];be=fe+ne*w[2]+Z*w[1]+T*w[0];let We=b[be],He=we+(Ce-we)*oe,qe=Me+(We-Me)*oe;be=fe+te*k[2]+j*k[1]+I*k[0],A.values[be]=He+(qe-He)*J}}}else for(let X=0;X<g;++X){let Z=g>1?O*(p-1)+X*U:.5*(O+R)*(p-1);if(Z<0||Z>p-1){for(let re=0;re<h;re++){let Q=re+X*k[2]+j*k[1]+I*k[0];A.values[Q]=c}continue}let J=Math.round(Z),te=Math.round(z);for(let re=0;re<h;re++){let Q=re+J*w[2]+te*w[1]+T*w[0],ne=re+X*k[2]+j*k[1]+I*k[0];A.values[ne]=b[Q]}}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var dq={kernelName:mi,backendName:"cpu",kernelFunc:cq};function pq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Ne(r,"cumsum");let l=E.getAxesPermutation([a],r.shape.length),c=r;l!=null&&(c=Ds({inputs:{x:r},backend:n,attrs:{perm:l}}));let u=E.getInnerMostAxes(1,r.shape.length)[0];if(u!==c.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${c.shape.length-1} but got axis=${u}`);let d=Ln(c.dtype,"int32"),p=v.makeZerosTypedArray(v.sizeFromShape(c.shape),d),h=n.data.get(c.dataId).values,f=c.shape[c.shape.length-1],m=i?(A,x)=>A+f-x-1:(A,x)=>A+x;for(let A=0;A<h.length;A+=f)for(let x=0;x<f;x++){let y=m(A,x);if(x===0)p[y]=o?0:h[y];else{let b=m(A,x-1);p[y]=o?h[b]+p[b]:h[y]+p[b]}}let g=n.makeTensorInfo(c.shape,d,p);if(l!=null){let A=E.getUndoAxesPermutation(l),x=Ds({inputs:{x:g},backend:n,attrs:{perm:A}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(c),x}return g}var hq={kernelName:fi,backendName:"cpu",kernelFunc:pq};function fq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=zy(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=tS(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var mq={kernelName:Sh,backendName:"cpu",kernelFunc:fq};function gq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;v.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=r.shape[0],l=r.shape[1],c=r.shape[2],u=r.shape[3],d=l*a,p=c*a,h=u/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*d*p*h),g=0;for(let A=0;A<i;++A)for(let x=0;x<d;++x){let y=Math.floor(x/a),b=x%a;for(let w=0;w<p;++w){let k=Math.floor(w/a),I=w%a,N=(b*a+I)*h;for(let $=0;$<h;++$){let D=$+N+u*(k+c*(y+l*A));m[g++]=f[D]}}}return n.makeTensorInfo([i,d,p,h],r.dtype,m)}var Aq={kernelName:gi,backendName:"cpu",kernelFunc:gq};function jS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s;Ne([r,a],"depthwiseConv2DNative");let u=v.computeStrides(r.shape),d=v.computeStrides(a.shape),p=l;p==null&&(p=[1,1]),v.assert(E.eitherStridesOrDilationsAreOne(o,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${p}'`);let h=E.computeConv2DInfo(r.shape,a.shape,o,p,i,c,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:A,padInfo:x}=h,y=x.left,b=x.top,w=h.outChannels/h.inChannels,k=new tn(h.outShape,r.dtype),I=n.data.get(r.dataId).values,N=n.data.get(a.dataId).values,$=k.values;for(let O=0;O<h.batchSize;++O){let D=O*u[0],R=O*k.strides[0];for(let T=0;T<h.outHeight;++T){let F=R+T*k.strides[1],U=T*h.strideHeight-b;for(let j=0;j<f;++j){let z=U+j*g;if(z<0||z>=h.inHeight)continue;let X=j*d[0],Z=D+z*u[1];for(let J=0;J<h.outWidth;++J){let te=F+J*k.strides[2],re=J*h.strideWidth-y;for(let Q=0;Q<m;++Q){let ne=re+Q*A;if(ne<0||ne>=h.inWidth)continue;let oe=X+Q*d[1],fe=Z+ne*h.inChannels,be=te,we=oe;for(let Ce=0;Ce<h.inChannels;++Ce){let Me=I[fe+Ce];for(let We=0;We<w;++We)$[be+We]+=Me*N[we+We];be+=w,we+=w}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var yq={kernelName:Ma,backendName:"cpu",kernelFunc:jS};function xq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s;Ne([r,a],"depthwiseConv2dNativeBackpropFilter");let d=E.computeConv2DInfo(r.shape,u,o,i,l,c,!0),{strideHeight:p,strideWidth:h,filterHeight:f,filterWidth:m}=d,g=new tn(d.filterShape,"float32"),A=d.padInfo.left,x=d.padInfo.top,y=d.outChannels/d.inChannels,b=n.data.get(r.dataId).values,w=new tn(r.shape,r.dtype,b),k=n.data.get(a.dataId).values,I=new tn(a.shape,a.dtype,k);for(let N=0;N<f;++N){let $=Math.max(0,Math.ceil((x-N)/p)),O=Math.min(d.outHeight,(d.inHeight+x-N)/p);for(let D=0;D<m;++D){let R=Math.max(0,Math.ceil((A-D)/h)),T=Math.min(d.outWidth,(d.inWidth+A-D)/h);for(let F=0;F<d.outChannels;++F){let U=Math.trunc(F/y),j=F%y,z=0;for(let X=0;X<d.batchSize;++X)for(let Z=$;Z<O;++Z){let J=N+Z*p-x;for(let te=R;te<T;++te){let re=D+te*h-A;z+=w.get(X,J,re,U)*I.get(X,Z,te,F)}}g.set(z,N,D,U,j)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var bq={kernelName:Ih,backendName:"cpu",kernelFunc:xq};function vq(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s;Ne([r,a],"depthwiseConv2DNativeBackpropInput");let d=v.computeStrides(r.shape),p=v.computeStrides(a.shape),h=E.computeConv2DInfo(u,a.shape,o,i,l,c,!0),f=new tn(h.inShape,"float32"),m=f.values,[g,A,x]=f.strides,y=n.data.get(r.dataId).values,[b,w,k]=d,I=n.data.get(a.dataId).values,[N,$,O]=p,{batchSize:D,filterHeight:R,filterWidth:T,inChannels:F,inHeight:U,inWidth:j,outChannels:z,outHeight:X,outWidth:Z,strideHeight:J,strideWidth:te}=h,re=R-1-h.padInfo.top,Q=T-1-h.padInfo.left,ne=z/F;for(let oe=0;oe<D;++oe)for(let fe=0;fe<F;++fe)for(let be=0;be<U;++be){let we=be-re,Ce=Math.max(0,Math.ceil(we/J)),Me=Math.min(X,(R+we)/J);for(let We=0;We<j;++We){let He=We-Q,qe=Math.max(0,Math.ceil(He/te)),ct=Math.min(Z,(T+He)/te),dt=0;for(let rt=Ce;rt<Me;++rt){let wt=rt*J-we;for(let ft=qe;ft<ct;++ft){let Ct=ft*te-He,_t=b*oe+w*rt+k*ft,ks=N*(R-1-wt)+$*(T-1-Ct)+O*fe;for(let kn=0;kn<ne;++kn){let rr=fe*ne+kn,Fn=y[_t+rr],us=I[ks+kn];dt+=Fn*us}}}m[g*oe+A*be+x*We+fe]=dt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var wq={kernelName:Ch,backendName:"cpu",kernelFunc:vq};function kq(e){let{inputs:t,backend:n}=e,{x:s}=t,r=v.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=ze([r,r],s.dtype),i=o.values;for(let c=0;c<a.length;c++)i[c*r+c]=a[c];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var Sq={kernelName:Th,backendName:"cpu",kernelFunc:kq},Iq={kernelName:rd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,c=l.data.get(s.dataId).values,u=s.shape.length,d=l.data.get(r.dataId).values,p=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:A,outWidth:x,padInfo:y,strideHeight:b,strideWidth:w,filterHeight:k,filterWidth:I,dilationHeight:N,dilationWidth:$,outShape:O}=E.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),D=v.sizeFromShape(O),R=O.length,T=v.getArrayFromDType(s.dtype,D);for(let U=0;U<h;++U)for(let j=0;j<A;++j){let z=j*b-y.top;for(let X=0;X<x;++X){let Z=X*w-y.left;for(let J=0;J<g;++J){let te=Number.MIN_SAFE_INTEGER;for(let Q=0;Q<k;++Q){let ne=z+Q*N;if(ne>=0&&ne<f)for(let oe=0;oe<I;++oe){let fe=Z+oe*$;if(fe>=0&&fe<m){let be=v.locToIndex([U,ne,fe,J],u,v.computeStrides(s.shape)),we=v.locToIndex([Q,oe,J],p,v.computeStrides(r.shape)),Ce=c[be]+d[we];Ce>te&&(te=Ce)}}}let re=v.locToIndex([U,j,X,J],R,v.computeStrides(O));T[re]=te}}}return{dataId:l.write(v.toTypedArray(T,s.dtype),O,s.dtype),shape:O,dtype:s.dtype}}},Cq={kernelName:Eh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=v.toNestedArray(s.shape,c.data.get(s.dataId).values),d=v.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:x,strideHeight:y,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:I,dilationWidth:N,outShape:$}=E.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===$.length,()=>`Error in ${Eh}, dy must have the same rank as output ${$.length}, but got ${a.rank}`);let O=v.toNestedArray($,c.data.get(a.dataId).values),D=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<p;++T)for(let F=0;F<g;++F){let U=F*y-x.top;for(let j=0;j<A;++j){let z=j*b-x.left;for(let X=0;X<m;++X){let Z=Number.MIN_SAFE_INTEGER,J=0,te=0;for(let re=0;re<w;++re){let Q=U+re*I;if(Q>=0&&Q<h)for(let ne=0;ne<k;++ne){let oe=z+ne*N;if(oe>=0&&oe<f){let fe=u[T][Q][oe][X]+d[re][ne][X];fe>Z&&(Z=fe,J=re,te=ne)}}}D[J][te][X]+=O[T][F][j][X]}}}return{dataId:c.write(v.toTypedArray(D,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},Tq={kernelName:Nh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=v.toNestedArray(s.shape,c.data.get(s.dataId).values),d=v.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:x,strideHeight:y,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:I,dilationWidth:N,outShape:$}=E.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===$.length,()=>`Error in ${Nh}, dy must have the same rank as output ${$.length}, but got ${a.rank}`);let O=v.toNestedArray($,c.data.get(a.dataId).values),D=v.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<p;++T)for(let F=0;F<g;++F){let U=F*y-x.top;for(let j=0;j<A;++j){let z=j*b-x.left;for(let X=0;X<m;++X){let Z=Number.MIN_SAFE_INTEGER,J=U<0?0:U,te=z<0?0:z;for(let re=0;re<w;++re){let Q=U+re*I;if(Q>=0&&Q<h)for(let ne=0;ne<k;++ne){let oe=z+ne*N;if(oe>=0&&oe<f){let fe=u[T][Q][oe][X]+d[re][ne][X];fe>Z&&(Z=fe,J=Q,te=oe)}}}D[T][J][te][X]+=O[T][F][j][X]}}}return{dataId:c.write(v.toTypedArray(D,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function op(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"sum");let i;r.dtype==="bool"?i=Wo({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=Lr({inputs:{x:r},backend:n});let l=i.shape.length,c=v.parseAxisParam(a,i.shape),u=E.getAxesPermutation(c,l),d=c,p=i;u!=null&&(p=Ds({inputs:{x:i},backend:n,attrs:{perm:u}}),d=E.getInnerMostAxes(d.length,l)),E.assertAxesAreInnerMostDims("sum",d,p.shape.length);let[h,f]=E.computeOutAndReduceShapes(p.shape,d),m=E.upcastType(p.dtype,"int32"),g=km(n,h,m),A=v.sizeFromShape(f),x=n.data.get(g.dataId).values,y=n.data.get(p.dataId).values;for(let b=0;b<x.length;++b){let w=b*A,k=0;for(let I=0;I<A;++I)k+=y[w+I];x[b]=k}if(o){let b=E.expandShapeToKeepDim(g.shape,c),w=g;g=Rt({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(i),u!=null&&n.disposeIntermediateTensorInfo(p),g}var Nq={kernelName:po,backendName:"cpu",kernelFunc:op};function Eq(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=E.decodeEinsumEquation(r,a.length);E.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=E.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:x}=E.getEinsumPermutation(h,l[g]),y;E.isIdentityPermutation(A)?y=a[g]:(y=Ds({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(y));let b=y.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(y.shape,b)||(y=Rt({inputs:{x:y},backend:n,attrs:{shape:b}}),f.push(y)),p===null?p=y:(p=Sm({inputs:{a:y,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=op({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var Rq={kernelName:ad,backendName:"cpu",kernelFunc:Eq};function $q(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Ne([s,r],"eluGrad");let a=new Float32Array(v.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let c=o[l];c>=1?a[l]=i[l]:a[l]=i[l]*(c+1)}return n.makeTensorInfo(r.shape,"float32",a)}var _q={kernelName:Rh,backendName:"cpu",kernelFunc:$q},Dq=E.ERF_P,Pq=E.ERF_A1,Fq=E.ERF_A2,Oq=E.ERF_A3,Mq=E.ERF_A4,zq=E.ERF_A5,Lq=ht(hu,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+Dq*n);return t*(1-((((zq*s+Mq)*s+Oq)*s+Fq)*s+Pq)*s*Math.exp(-n*n))}),Bq={kernelName:hu,backendName:"cpu",kernelFunc:Lq};function Cm(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Rt({inputs:{x:r},backend:n,attrs:{shape:i}})}var Wq={kernelName:yi,backendName:"cpu",kernelFunc:Cm},Vq=Yt((e,t)=>e/t),qy=vn(za,Vq),Xy={kernelName:za,backendName:"cpu",kernelFunc:qy};function qS(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,c=[r,a],u=v.sizeFromShape(c),d=v.getTypedArrayFromDType("float32",u),p=v.getTypedArrayFromDType("float32",u);for(let g=0;g<r;g++){let A=Sl({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=Sl({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),y=As({inputs:{real:A,imag:x},backend:n}),{real:b,imag:w}=Uq(y,t,n),k=E.mergeRealAndImagArrays(b,w);for(let I=0;I<a;I++){let N=E.getComplexWithIndex(k,I);d[g*a+I]=N.real,p[g*a+I]=N.imag}n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(y)}let h=n.makeTensorInfo(c,"float32",d),f=n.makeTensorInfo(c,"float32",p),m=As({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function Uq(e,t,n){let s=v.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(Gq(s)){let i=Ky(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let c=n.makeTensorInfo(l,"float32",i.real),u=n.makeTensorInfo(l,"float32",i.imag),d=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),p=Lr({inputs:{x:d},backend:n}),h=Xy.kernelFunc({inputs:{a:c,b:d},backend:n}),f=Xy.kernelFunc({inputs:{a:u,b:p},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=E.mergeRealAndImagArrays(a,o),l=Hq(i,s,t);return E.splitRealAndImagArrays(l)}}function Gq(e){return(e&e-1)==0}function Ky(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=E.mergeRealAndImagArrays(e,t),o=n/2,i=E.complexWithEvenIndex(a),l=i.real,c=i.imag,u=[l.length],d=r.makeTensorInfo(u,"float32",l),p=r.makeTensorInfo(u,"float32",c),h=As({inputs:{real:d,imag:p},backend:r}),f=E.complexWithOddIndex(a),m=f.real,g=f.imag,A=[m.length],x=r.makeTensorInfo(A,"float32",m),y=r.makeTensorInfo(A,"float32",g),b=As({inputs:{real:x,imag:y},backend:r}),w=Ky(l,c,o,s,r),k=w.real,I=w.imag,N=[k.length],$=r.makeTensorInfo(N,"float32",k),O=r.makeTensorInfo(N,"float32",I),D=As({inputs:{real:$,imag:O},backend:r}),R=Ky(m,g,o,s,r),T=R.real,F=R.imag,U=[T.length],j=r.makeTensorInfo(U,"float32",T),z=r.makeTensorInfo(U,"float32",F),X=As({inputs:{real:j,imag:z},backend:r}),Z=E.exponents(n,s),J=[Z.real.length],te=r.makeTensorInfo(J,"float32",Z.real),re=r.makeTensorInfo(J,"float32",Z.imag),Q=As({inputs:{real:te,imag:re},backend:r}),ne=Sm({inputs:{a:Q,b:X},backend:r}),oe=rp({inputs:{a:D,b:ne},backend:r}),fe=Gy({inputs:{a:D,b:ne},backend:r}),be=kl({inputs:{input:oe},backend:r}),we=kl({inputs:{input:fe},backend:r}),Ce=tc({inputs:{input:oe},backend:r}),Me=tc({inputs:{input:fe},backend:r}),We=nc({inputs:[be,we],backend:r,attrs:{axis:0}}),He=nc({inputs:[Ce,Me],backend:r,attrs:{axis:0}}),qe=r.data.get(We.dataId).values,ct=r.data.get(He.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(O),r.disposeIntermediateTensorInfo(D),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(z),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(re),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(fe),r.disposeIntermediateTensorInfo(be),r.disposeIntermediateTensorInfo(Ce),r.disposeIntermediateTensorInfo(we),r.disposeIntermediateTensorInfo(Me),r.disposeIntermediateTensorInfo(We),r.disposeIntermediateTensorInfo(He),{real:qe,imag:ct}}function Hq(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=E.exponent(r*i,t,n),c=E.getComplexWithIndex(e,i);a+=c.real*l.real-c.imag*l.imag,o+=c.real*l.imag+c.imag*l.real}n&&(a/=t,o/=t),E.assignToTypedArray(s,a,o,r)}return s}function jq(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Rt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=qS(i,!1,n),c=Rt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var qq={kernelName:$h,backendName:"cpu",kernelFunc:jq};function Zy(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||v.inferDtype(r),i=v.getArrayFromDType(o,v.sizeFromShape(s));return Kq(i,r,o),t.makeTensorInfo(s,o,i)}var Xq={kernelName:fu,backendName:"cpu",kernelFunc:Zy};function Kq(e,t,n){e.fill(t)}var Zq={kernelName:bi,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[o,i,l,c]=s.shape,u=r.data.get(s.dataId).values;for(let p=0;p<o;p++){let h=p*l*i*c;for(let f=0;f<i;f++){let m=f*(l*c);for(let g=0;g<l;g++){let A=g*c;for(let x=0;x<c;x++){let y=Math.round(l-g-1),b=h+m+A+x,w=u[b];if(y>=0&&y<l){let k=y*c,I=h+m+k+x;w=u[I]}a[b]=w}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},Yq=Yt((e,t)=>Math.floor(e/t)),Jq=vn(Va,Yq,null,"int32"),Qq={kernelName:Va,backendName:"cpu",kernelFunc:Jq};function eX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=HS({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=rp({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Hy(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var tX={kernelName:bo,backendName:"cpu",kernelFunc:eX};function nX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=jS({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=rp({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Hy(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var sX={kernelName:vo,backendName:"cpu",kernelFunc:nX};function rX(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=v.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,c,u,d]=E.prepareAndValidate(s,r);if(c===0)return n.makeTensorInfo(l,s.dtype,[]);let p=n.data.get(r.dataId).values,h=n.bufferSync(s),f=uS(p,h,s.dtype,c,i,u,d,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var aX={kernelName:wi,backendName:"cpu",kernelFunc:rX};function oX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Ne([r,a],"gatherV2");let l=v.parseAxisParam(o,r.shape)[0],c=n.data.get(a.dataId).values,u=r.shape[l];for(let b=0;b<c.length;++b){let w=c[b];v.assert(w<=u-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${u-1}]`)}let d=i;i==null&&(d=0);let p=v.sizeFromShape(a.shape),h=E.segment_util.collectGatherOpShapeInfo(r,a,l,d),f=Rt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=Rt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,p/h.batchSize]}}),g=[h.batchSize,h.outerSize,p/h.batchSize,h.sliceSize],A=n.bufferSync(m),x=n.bufferSync(f),y=cS(x,A,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,y.dtype,y.values)}var iX={kernelName:vi,backendName:"cpu",kernelFunc:oX};function lX(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Rt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=qS(i,!0,n),c=Rt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var uX={kernelName:_h,backendName:"cpu",kernelFunc:lX},cX=ht(mu,e=>Number.isFinite(e)?1:0,"bool"),dX={kernelName:mu,backendName:"cpu",kernelFunc:cX},pX=ht(gu,e=>Math.abs(e)===1/0?1:0,"bool"),hX={kernelName:gu,backendName:"cpu",kernelFunc:pX},fX=ht(Au,e=>Number.isNaN(e)?1:0,"bool"),mX={kernelName:Au,backendName:"cpu",kernelFunc:fX};function gX(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=mS(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var AX={kernelName:Dh,backendName:"cpu",kernelFunc:gX},yX=ht(yu,e=>Math.log1p(e)),xX={kernelName:yu,backendName:"cpu",kernelFunc:yX},bX=Yt((e,t)=>e&&t),vX=vn(Ti,bX,null,"bool"),wX={kernelName:Ti,backendName:"cpu",kernelFunc:vX},kX=ht(xu,e=>e?0:1,"bool"),SX={kernelName:xu,backendName:"cpu",kernelFunc:kX},IX=Yt((e,t)=>e||t),CX=vn(id,IX,null,"bool"),TX={kernelName:id,backendName:"cpu",kernelFunc:CX};function NX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Ne(r,"LRN");let c=r.shape[3],u=c-1,d=n.data.get(r.dataId).values,p=v.sizeFromShape(r.shape),h=new Float32Array(p);function f(m){let g=m%c,A=m-g+Math.max(0,g-a),x=m-g+Math.min(g+a,u),y=0;for(;A<=x;A++){let b=d[A];y+=b*b}return y}for(let m=0;m<p;m++){let g=f(m),A=d[m]*Math.pow(o+i*g,-l);h[m]=A}return n.makeTensorInfo(r.shape,r.dtype,h)}var EX={kernelName:ld,backendName:"cpu",kernelFunc:NX};function RX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s;Ne(o,"LRNGrad");let d=v.sizeFromShape(o.shape),p=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(d),A=d;for(let x=0;x<A;x++){let y=x%p,b=x-y+Math.max(0,y-i),w=x-y+Math.min(p,y+i+1),k=0;for(let I=b;I<w;I++)k+=Math.pow(f[I],2);k=c*k+l;for(let I=b;I<w;I++){let N=-2*c*u*f[I]*m[x]/k;x===I&&(N+=Math.pow(k,-u)),N*=h[x],g[I]+=N}}return n.makeTensorInfo(o.shape,r.dtype,g)}var $X={kernelName:Ph,backendName:"cpu",kernelFunc:RX};function XS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,c=l.length,u=v.parseAxisParam(a,l),d=u,p=E.getAxesPermutation(d,c),h=i.data.get(r.dataId).values;if(p!=null){let b=new Array(c);for(let w=0;w<b.length;w++)b[w]=l[p[w]];h=Wy(h,l,r.dtype,p,b),d=E.getInnerMostAxes(d.length,c),l=b}Ne(r,"max"),E.assertAxesAreInnerMostDims("max",d,c);let[f,m]=E.computeOutAndReduceShapes(l,d),g=v.sizeFromShape(m),A=AS(h,g,f,r.dtype),x=i.write(A,f,r.dtype),y=f;return o&&(y=E.expandShapeToKeepDim(f,u)),{dataId:x,shape:y,dtype:r.dtype}}var _X={kernelName:qa,backendName:"cpu",kernelFunc:XS};function DX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ne(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))d=Lr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=jy(p,r.shape,r.dtype,h,u,"max");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var PX={kernelName:Ka,backendName:"cpu",kernelFunc:DX};function FX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Ne(r,"maxPool3d");let u=E.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=GS(d,r.shape,r.dtype,v.computeStrides(r.shape),u,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var OX={kernelName:ud,backendName:"cpu",kernelFunc:FX};function MX(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Ne([r,a],"maxPool3DGrad");let u=E.computePool3DInfo(a.shape,o,i,1,l,c),d=n.bufferSync(a),p=Cj(d,u),h=u.strideDepth,f=u.strideHeight,m=u.strideWidth,g=u.dilationDepth,A=u.dilationHeight,x=u.dilationWidth,y=u.effectiveFilterDepth,b=u.effectiveFilterHeight,w=u.effectiveFilterWidth,k=y-1-u.padInfo.front,I=w-1-u.padInfo.left,N=b-1-u.padInfo.top,$=ze(a.shape,"float32"),O=n.bufferSync(r);for(let D=0;D<u.batchSize;++D)for(let R=0;R<u.inChannels;++R)for(let T=0;T<u.inDepth;++T)for(let F=0;F<u.inHeight;++F)for(let U=0;U<u.inWidth;++U){let j=T-k,z=F-N,X=U-I,Z=0;for(let J=0;J<y;J+=g){let te=(j+J)/h;if(!(te<0||te>=u.outDepth||Math.floor(te)!==te))for(let re=0;re<b;re+=A){let Q=(z+re)/f;if(!(Q<0||Q>=u.outHeight||Math.floor(Q)!==Q))for(let ne=0;ne<w;ne+=x){let oe=(X+ne)/m;if(oe<0||oe>=u.outWidth||Math.floor(oe)!==oe)continue;let fe=y*b*w-1-p.get(D,te,Q,oe,R),be=J*b*w+re*w+ne,we=fe===be?1:0;if(we===0)continue;Z+=O.get(D,te,Q,oe,R)*we}}}$.set(Z,D,T,F,U,R)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var zX={kernelName:Oh,backendName:"cpu",kernelFunc:MX};function LX(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Ne([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=E.computePool2DInfo(i.shape,l,c,1,u,d),h=n.data.get(i.dataId).values,f=ze(p.outShape,i.dtype,US(h,i.shape,i.dtype,p).values),m=p.strideHeight,g=p.strideWidth,A=p.dilationHeight,x=p.dilationWidth,y=p.effectiveFilterHeight,b=p.effectiveFilterWidth,w=b-1-p.padInfo.left,k=y-1-p.padInfo.top,I=ze(i.shape,"float32"),N=n.data.get(r.dataId).values,$=ze(r.shape,"float32",N);for(let O=0;O<p.batchSize;++O)for(let D=0;D<p.inChannels;++D)for(let R=0;R<p.inHeight;++R)for(let T=0;T<p.inWidth;++T){let F=R-k,U=T-w,j=0;for(let z=0;z<y;z+=A){let X=(F+z)/m;if(!(X<0||X>=p.outHeight||Math.floor(X)!==X))for(let Z=0;Z<b;Z+=x){let J=(U+Z)/g;if(J<0||J>=p.outWidth||Math.floor(J)!==J)continue;let te=y*b-1-f.get(O,X,J,D),re=z*b+Z,Q=te===re?1:0;if(Q===0)continue;j+=$.get(O,X,J,D)*Q}}I.set(j,O,R,T,D)}return n.makeTensorInfo(I.shape,I.dtype,I.values)}var BX={kernelName:Fh,backendName:"cpu",kernelFunc:LX};function WX(e,t,n,s,r){let a=v.computeStrides(t),o=jy(e,t,n,a,r,"max"),i=US(e,t,n,r,!0,s);return[o.values,i.values]}var VX={kernelName:Mh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Ne(s,"MaxPoolWithArgmax");let c=l.data.get(s.dataId).values,u=E.computePool2DInfo(s.shape,r,a,[1,1],o),[d,p]=WX(c,s.shape,s.dtype,i,u),h=l.write(d,u.outShape,s.dtype),f=l.write(p,u.outShape,s.dtype);return[{dataId:h,shape:u.outShape,dtype:s.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function UX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=v.parseAxisParam(a,r.shape),c=E.computeOutAndReduceShapes(r.shape,i)[1],u=v.sizeFromShape(c),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([u]));d.push(p);let h=Wo({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(h);let f=qy({inputs:{a:h,b:p},backend:n});d.push(f);let m=op({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var GX={kernelName:Za,backendName:"cpu",kernelFunc:UX};function HX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"min");let i=v.parseAxisParam(a,r.shape),l=i,c=E.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ds({inputs:{x:r},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,r.shape.length)),E.assertAxesAreInnerMostDims("min",l,u.shape.length);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let x=A*h,y=m[x];for(let b=0;b<h;++b){let w=m[x+b];(Number.isNaN(w)||w<y)&&(y=w)}f[A]=y}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=E.expandShapeToKeepDim(d,i),x=Rt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),x}return g}var jX={kernelName:Ya,backendName:"cpu",kernelFunc:HX};function qX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;Ne(r,"mirrorPad");let i=a.map((y,b)=>y[0]+r.shape[b]+y[1]),l=a.map(y=>y[0]),c=a.map((y,b)=>y[0]+r.shape[b]),u=o==="reflect"?0:1,d=n.data.get(r.dataId).values,p=r.shape.length,h=v.computeStrides(r.shape),f=v.sizeFromShape(i),m=i.length,g=v.computeStrides(i),A=v.getTypedArrayFromDType(r.dtype,f);for(let y=0;y<f;y++){let b=v.indexToLoc(y,m,g);for(let k=0;k<m;k++)b[k]<l[k]?b[k]=l[k]*2-b[k]-u:b[k]>=c[k]&&(b[k]=(c[k]-1)*2-b[k]+u);b=b.map((k,I)=>k-l[I]);let w=v.locToIndex(b,p,h);A[y]=d[w]}return{dataId:n.write(A,i,r.dtype),shape:i,dtype:r.dtype}}var XX={kernelName:Qa,backendName:"cpu",kernelFunc:qX},KX=Yt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),ZX=vn(bu,KX),YX={kernelName:bu,backendName:"cpu",kernelFunc:ZX},JX=li(ph());function KS(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=v.parseAxisParam([i],r.shape),c=XS({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=E.expandShapeToKeepDim(c.shape,l),d=Rt({inputs:{x:c},backend:n,attrs:{shape:u}}),p=Gy({inputs:{a:r,b:d},backend:n}),h=oS({inputs:{x:p},backend:n}),f=op({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=Rt({inputs:{x:f},backend:n,attrs:{shape:u}}),g=qy({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var QX={kernelName:ho,backendName:"cpu",kernelFunc:KS};function eK(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Ne(r,"multinomial");let l=i?r:KS({inputs:{logits:r},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],d=n.data.get(l.dataId).values,p=[c,a],h=v.makeZerosTypedArray(v.sizeFromShape(p),"int32");for(let f=0;f<c;++f){let m=f*u,g=new Float32Array(u-1);g[0]=d[m];for(let y=1;y<g.length;++y)g[y]=g[y-1]+d[m+y];let A=JX.alea(o.toString()),x=f*a;for(let y=0;y<a;++y){let b=A();h[x+y]=g.length;for(let w=0;w<g.length;w++)if(b<g[w]){h[x+y]=w;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(p,"int32",h)}var tK={kernelName:zh,backendName:"cpu",kernelFunc:eK},nK=Ks.nonMaxSuppressionV3Impl;function sK(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;Ne(r,"NonMaxSuppression");let c=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,{selectedIndices:d}=nK(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var rK={kernelName:Ri,backendName:"cpu",kernelFunc:sK},aK=Ks.nonMaxSuppressionV4Impl;function oK(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s;Ne(r,"NonMaxSuppressionPadded");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,{selectedIndices:p,validOutputs:h}=aK(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var iK={kernelName:vu,backendName:"cpu",kernelFunc:oK},lK=Ks.nonMaxSuppressionV5Impl;function uK(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s;Ne(r,"NonMaxSuppressionWithScore");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=lK(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var cK={kernelName:$i,backendName:"cpu",kernelFunc:uK};function dK(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s;Ne(r,"oneHot");let l=v.sizeFromShape(r.shape),c=new Float32Array(l*a);c.fill(i);let u=n.data.get(r.dataId).values;for(let d=0;d<l;++d)u[d]>=0&&u[d]<a&&(c[d*a+u[d]]=o);return n.makeTensorInfo([...r.shape,a],"int32",c)}var pK={kernelName:Di,backendName:"cpu",kernelFunc:dK};function Tm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=kl({inputs:{input:s},backend:n}),a=Tm({inputs:{x:r},backend:n}),o=tc({inputs:{input:s},backend:n}),i=Tm({inputs:{x:o},backend:n}),l=As({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Zy({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var hK={kernelName:Zi,backendName:"cpu",kernelFunc:Tm};function ZS(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=kl({inputs:{input:s},backend:n}),a=ZS({inputs:{x:r},backend:n}),o=tc({inputs:{input:s},backend:n}),i=Tm({inputs:{x:o},backend:n}),l=As({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Zy({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var fK={kernelName:_i,backendName:"cpu",kernelFunc:ZS};function YS(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Cm({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Cm({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=nc({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var mK={kernelName:Pi,backendName:"cpu",kernelFunc:YS};function gK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Ne(r,"pad");let i=a.map((x,y)=>x[0]+r.shape[y]+x[1]),l=a.map(x=>x[0]),c=n.data.get(r.dataId).values,u=v.sizeFromShape(r.shape),d=r.shape.length,p=v.computeStrides(r.shape),h=v.sizeFromShape(i),f=i.length,m=v.computeStrides(i),g=v.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let x=0;x<u;x++){let b=v.indexToLoc(x,d,p).map((k,I)=>k+l[I]),w=v.locToIndex(b,f,m);g[w]=c[x]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var JS={kernelName:to,backendName:"cpu",kernelFunc:gK},AK=Yt((e,t)=>Math.pow(e,t)),yK=vn(no,AK),xK={kernelName:no,backendName:"cpu",kernelFunc:yK};function bK(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=Vy(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var vK={kernelName:wu,backendName:"cpu",kernelFunc:bK},wK=ht(ku,e=>1/e),kK={kernelName:ku,backendName:"cpu",kernelFunc:wK};function SK(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ne(r,"resizeBilinear");let l=v.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([d,c,u,f])),A=[a&&c>1?p-1:p,a&&u>1?h-1:h],x=[a&&c>1?c-1:c,a&&u>1?u-1:u],y=0,b=A[0]/x[0],w=A[1]/x[1];for(let k=0;k<d;k++)for(let I=0;I<c;I++){let N;o?N=b*(I+.5)-.5:N=b*I;let $=Math.max(0,Math.floor(N)),O=N-$,D=Math.min(p-1,Math.ceil(N)),R=k*l[0]+$*l[1],T=k*l[0]+D*l[1];for(let F=0;F<u;F++){let U;o?U=w*(F+.5)-.5:U=w*F;let j=Math.max(0,Math.floor(U)),z=U-j,X=Math.min(h-1,Math.ceil(U)),Z=R+j*l[2],J=T+j*l[2],te=R+X*l[2],re=T+X*l[2];for(let Q=0;Q<f;Q++){let ne=m[Z+Q],oe=m[J+Q],fe=m[te+Q],be=m[re+Q],we=ne+(fe-ne)*z,Ce=oe+(be-oe)*z,Me=we+(Ce-we)*O;g[y++]=Me}}}return n.makeTensorInfo([d,c,u,f],"float32",g)}var IK={kernelName:ao,backendName:"cpu",kernelFunc:SK};function CK(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ne([a,r],"resizeBilinearGrad");let i=v.computeStrides(r.shape),[l,c,u,d]=r.shape,[,p,h]=a.shape,f=new Float32Array(l*c*u*d),m=[o&&p>1?c-1:c,o&&h>1?u-1:u],g=[o&&p>1?p-1:p,o&&h>1?h-1:h],A=m[0]/g[0],x=m[1]/g[1],y=n.data.get(a.dataId).values,b=0;for(let w=0;w<l;w++){let k=w*i[0];for(let I=0;I<p;I++){let N=I*A,$=Math.floor(N),O=Math.min(Math.ceil(N),c-1),D=k+$*i[1],R=k+O*i[1],T=N-$,F=1-T;for(let U=0;U<h;U++){let j=U*x,z=Math.floor(j),X=Math.min(Math.ceil(j),u-1),Z=j-z,J=1-Z,te=D+z*i[2],re=D+X*i[2],Q=R+z*i[2],ne=R+X*i[2],oe=F*J,fe=F*Z,be=T*J,we=T*Z;for(let Ce=0;Ce<d;Ce++){let Me=y[b++];f[te+Ce]+=Me*oe,f[re+Ce]+=Me*fe,f[Q+Ce]+=Me*be,f[ne+Ce]+=Me*we}}}}return n.makeTensorInfo([l,u,c,d],"float32",f)}var TK={kernelName:Bh,backendName:"cpu",kernelFunc:CK};function NK(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ne(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(d*c*u*f),A=[a&&c>1?p-1:p,a&&u>1?h-1:h],x=[a&&c>1?c-1:c,a&&u>1?u-1:u],y=A[0]/x[0],b=A[1]/x[1],w=0;for(let k=0;k<d;k++){let I=k*l[0];for(let N=0;N<c;N++){let $=o?y*(N+.5):y*N,O=Math.min(p-1,a?Math.round($):Math.floor($));o&&(O=Math.max(0,O));let D=I+O*l[1];for(let R=0;R<u;R++){let T=o?b*(R+.5):b*R,F=Math.min(h-1,a?Math.round(T):Math.floor(T));o&&(F=Math.max(0,F));let U=D+F*l[2];for(let j=0;j<f;j++){let z=m[U+j];g[w++]=z}}}}return n.makeTensorInfo([d,c,u,f],r.dtype,g)}var EK={kernelName:Su,backendName:"cpu",kernelFunc:NK};function RK(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ne([a,r],"resizeNearestNeighborGrad");let i=v.computeStrides(r.shape),l=v.computeStrides(a.shape),[c,u,d,p]=r.shape,[,h,f]=a.shape,m=new Float32Array(c*u*d*p),g=n.data.get(a.dataId).values,A=[o&&h>1?u-1:u,o&&f>1?d-1:d],x=[o&&h>1?h-1:h,o&&f>1?f-1:f],y=A[0]/x[0],b=A[1]/x[1],w=1/y,k=1/b,I=Math.ceil(w)*2+2,N=Math.ceil(k)*2+2;for(let $=0;$<c;$++){let O=$*i[0];for(let D=0;D<u;D++){let R=O+D*i[1],T=Math.floor(D*w),F=Math.floor(T-I/2);for(let U=0;U<d;U++){let j=R+U*i[2],z=Math.floor(U*k),X=Math.floor(z-N/2);for(let Z=0;Z<p;Z++){let J=0;for(let te=0;te<I;te++){let re=te+F;if(re<0||re>=h)continue;let Q=O+re*l[1],ne=re*y,oe=Math.min(u-1,o?Math.round(ne):Math.floor(ne));if(D===oe)for(let fe=0;fe<N;fe++){let be=fe+X;if(be<0||be>=f)continue;let we=Q+be*l[2],Ce=be*b,Me=Math.min(d-1,o?Math.round(Ce):Math.floor(Ce));U===Me&&(J+=g[we+Z])}}m[j+Z]=J}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var $K={kernelName:Lh,backendName:"cpu",kernelFunc:RK};function _K(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Ne(r,"reverse");let o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return Lr({inputs:{x:r},backend:n});let l=new tn(r.shape,r.dtype),c=n.bufferSync(r);for(let u=0;u<l.size;u++){let d=l.indexToLoc(u),p=d.slice();i.forEach(h=>p[h]=r.shape[h]-1-p[h]),l.set(c.get(...p),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var DK={kernelName:Mi,backendName:"cpu",kernelFunc:_K},PK={kernelName:Yi,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[c,u,d,p]=s.shape,[h,f]=E.getImageCenter(o,u,d),m=255,g=Math.sin(r),A=Math.cos(r),x=i.data.get(s.dataId).values;for(let b=0;b<c;b++){let w=b*d*u*p;for(let k=0;k<u;k++){let I=k*(d*p);for(let N=0;N<d;N++){let $=N*p;for(let O=0;O<p;O++){let D=[c,k,N,O],R=D[2],T=D[1],F=(R-h)*A-(T-f)*g,U=(R-h)*g+(T-f)*A;F=Math.round(F+h),U=Math.round(U+f);let j=a;if(typeof a!="number"&&(O===3?j=m:j=a[O]),F>=0&&F<d&&U>=0&&U<u){let X=U*(d*p),Z=F*p,J=w+X+Z+O;j=x[J]}let z=w+I+$+O;l[z]=j}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},FK=ht(zi,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),OK={kernelName:zi,backendName:"cpu",kernelFunc:FK};function QS(e,t,n,s,r,a,o,i,l,c){let u=[s/r,r],d=e.values,p=t.values;if(s===0)return ze(n,t.dtype);let h=ze(u,t.dtype);h.values.fill(l);for(let f=0;f<a;f++){let m=[],g=0;for(let A=0;A<o;A++){let x=d[f*o+A];m.push(x),g+=x*i[A]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let A=0;A<r;A++)c?h.values[g*r+A]+=p[f*r+A]:h.values[g*r+A]=t.rank===0?p[0]:p[f*r+A]}return h}function MK(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=E.calculateShapes(a,r,o),p=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=QS(h,f,o,d,c,l,i,u,0,p);return n.makeTensorInfo(o,m.dtype,m.values)}var zK={kernelName:Li,backendName:"cpu",kernelFunc:MK};function LK(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;Ne([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=Ln(r.dtype,a.dtype),d=v.makeZerosTypedArray(v.sizeFromShape(r.shape),u),p=0,h=o===0||o>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?d[p++]=l[f]:d[p++]=c[f];return n.makeTensorInfo(r.shape,u,d)}var BK={kernelName:Bi,backendName:"cpu",kernelFunc:LK},WK=E.SELU_SCALEALPHA,VK=E.SELU_SCALE,UK=ht(Iu,e=>e>=0?VK*e:WK*(Math.exp(e)-1)),GK={kernelName:Iu,backendName:"cpu",kernelFunc:UK},HK=ht(Cu,e=>e<0?-1:e>0?1:0),jK={kernelName:Cu,backendName:"cpu",kernelFunc:HK},qK=ht(lo,e=>Math.sin(e)),XK={kernelName:lo,backendName:"cpu",kernelFunc:qK},KK=ht(Vi,e=>Math.sinh(e)),ZK={kernelName:Vi,backendName:"cpu",kernelFunc:KK},YK=11920928955078125e-23,eI=Math.log(YK)+2,JK=ht(Tu,e=>{let t=e>-eI,n=e<eI,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),QK={kernelName:Tu,backendName:"cpu",kernelFunc:JK};function eZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Ne([r],"spaceToBatchND");let i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let c=JS.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=E.getReshaped(c.shape,a,i,!1),d=E.getPermuted(u.length,a.length,!1),p=E.getReshapedPermuted(c.shape,a,i,!1),m=Rt({inputs:{x:c},backend:n,attrs:{shape:u}}),x=Ds({inputs:{x:m},backend:n,attrs:{perm:d}}),w=Rt({inputs:{x},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(x),w}var tZ={kernelName:Ui,backendName:"cpu",kernelFunc:eZ};function nZ(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=n.data.get(o.dataId).values[0],[d,p,h,f,m]=IS(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var sZ={kernelName:Wh,backendName:"cpu",kernelFunc:nZ};function rZ(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[c,u,d]=CS(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var aZ={kernelName:Vh,backendName:"cpu",kernelFunc:rZ};function oZ(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=Uy(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var iZ={kernelName:Uh,backendName:"cpu",kernelFunc:oZ};function lZ(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=Uy(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var uZ={kernelName:Gh,backendName:"cpu",kernelFunc:lZ};function cZ(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=E.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],A=QS(f,m,i,p,u,c,l,d,g,h);return n.makeTensorInfo(i,A.dtype,A.values)}var dZ={kernelName:dd,backendName:"cpu",kernelFunc:cZ};function pZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=Sl({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});return c[i]+=d,h})}var hZ={kernelName:Gi,backendName:"cpu",kernelFunc:pZ},fZ={kernelName:Nu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Ne(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},mZ=ht(yo,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),gZ={kernelName:yo,backendName:"cpu",kernelFunc:mZ};function AZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s;Ne(r,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:A,begin:x,end:y,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,c,u,d,p),w;if(m)w=Rt({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||A){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Ft.computeOutShape(x,y,b),I=Sl({inputs:{x:r},backend:n,attrs:{begin:x,size:k}});w=Rt({inputs:{x:I},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(I)}else{let k=n.bufferSync(r),I=NS(h,k,b,x);w=n.makeTensorInfo(f,I.dtype,I.values)}return w}var yZ={kernelName:Hi,backendName:"cpu",kernelFunc:AZ};function xZ(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.data.get(u.dataId).values,h=n.data.get(d.dataId).values,[f,m]=ES(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var bZ={kernelName:pd,backendName:"cpu",kernelFunc:xZ};function vZ(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[c,u,d]=RS(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var wZ={kernelName:Hh,backendName:"cpu",kernelFunc:vZ};function kZ(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=$S(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var SZ={kernelName:jh,backendName:"cpu",kernelFunc:kZ},IZ=ht(ji,e=>Math.tan(e)),CZ={kernelName:ji,backendName:"cpu",kernelFunc:IZ},TZ=ht(go,e=>Math.tanh(e)),NZ={kernelName:go,backendName:"cpu",kernelFunc:TZ};function EZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Ne(r,"tile");let o=DS(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var RZ={kernelName:qr,backendName:"cpu",kernelFunc:EZ};function $Z(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Ne(r,"topk");let i=n.data.get(r.dataId).values,[l,c]=FS(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var _Z={kernelName:qi,backendName:"cpu",kernelFunc:$Z};function DZ(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=n,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=v.computeStrides(r.shape),x=A[0],y=A[1],b=A[2],w=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));w.fill(l);let k=s.data.get(r.dataId).values,I=s.data.get(a.dataId).values;for(let $=0;$<u;++$){let O=a.shape[0]===1?I:I.subarray($*8,$*8+8);for(let D=0;D<f;++D)for(let R=0;R<m;++R)for(let T=0;T<h;++T){let F,U=O[6]*R+O[7]*D+1;if(U===0)continue;let j=(O[0]*R+O[1]*D+O[2])/U,z=(O[3]*R+O[4]*D+O[5])/U,X=tI(j,p,i),Z=tI(z,d,i);switch(o){case"nearest":F=LZ(k,d,p,x,y,b,$,Z,X,T,l);break;case"bilinear":F=BZ(k,d,p,x,y,b,$,Z,X,T,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let J=$*x+D*y+R*b+T;w[J]=F}return s.makeTensorInfo(g,r.dtype,w)}return{dataId:s.write(w,g,r.dtype),shape:r.shape,dtype:r.dtype}}var PZ={kernelName:Xi,backendName:"cpu",kernelFunc:DZ};function tI(e,t,n){switch(n){case"reflect":return FZ(e,t);case"wrap":return OZ(e,t);case"nearest":return zZ(e,t);case"constant":default:return MZ(e,t)}}function FZ(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return v.clamp(0,n,t-1)}function OZ(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return v.clamp(0,n,t-1)}function MZ(e,t){return e}function zZ(e,t){return v.clamp(0,e,t-1)}function ip(e,t,n,s,r,a,o,i,l,c,u){let d=o*s+i*r+l*a+c;return 0<=i&&i<t&&0<=l&&l<n?e[d]:u}function LZ(e,t,n,s,r,a,o,i,l,c,u){let d=Math.round(i),p=Math.round(l);return ip(e,t,n,s,r,a,o,d,p,c,u)}function BZ(e,t,n,s,r,a,o,i,l,c,u){let d=Math.floor(i),p=Math.floor(l),h=d+1,f=p+1,m=(f-l)*ip(e,t,n,s,r,a,o,d,p,c,u)+(l-p)*ip(e,t,n,s,r,a,o,d,f,c,u),g=(f-l)*ip(e,t,n,s,r,a,o,h,p,c,u)+(l-p)*ip(e,t,n,s,r,a,o,h,f,c,u);return(h-i)*m+(i-d)*g}function WZ(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Ne(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:c}=OS(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var VZ={kernelName:qh,backendName:"cpu",kernelFunc:WZ};function UZ(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),c=0;for(let h=0;h<o;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o).fill(0),d=r.shape.slice();d[a]=1;let p=new Array(i);for(let h=0;h<p.length;h++){u[a]=h;let f=Sl({inputs:{x:r},backend:n,attrs:{begin:u,size:d}});p[h]=Rt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return p}var GZ={kernelName:Ki,backendName:"cpu",kernelFunc:UZ};function HZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;Ne(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,c=[],u=[],d=i-l,p=a;for(let f=0;f<d;++f){let m=Cm({inputs:{input:p},backend:n,attrs:{dim:f+1}});p=m,u.push(m)}for(let f=0;f<o;++f){let m=v.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),A=rS({inputs:{a:g,b:p},backend:n}),x=Wo({inputs:{x:A},backend:n,attrs:{dtype:"float32"}}),y=Sm({inputs:{a:x,b:r},backend:n}),b=op({inputs:{x:y},backend:n,attrs:{axis:0,keepDims:!1}});c.push(b),u.push(g),u.push(A),u.push(x),u.push(y),u.push(b)}let h=YS({inputs:c,backend:n,attrs:{axis:0}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var jZ={kernelName:hd,backendName:"cpu",kernelFunc:HZ},qZ=[ej,jG,nj,rj,JG,oj,lj,cj,pj,fj,gj,yj,bj,kj,Ij,Nj,Rj,_j,Pj,JH,Oj,zj,Bj,Vj,ZG,eH,Gj,qG,jj,Xj,Yj,Qj,Kj,sq,aq,tq,iq,uq,dq,hq,mq,Aq,yq,bq,wq,Sq,Iq,Tq,Cq,Xy,Rq,HH,_q,tH,Bq,nH,Wq,rH,qq,Xq,Zq,oH,Qq,tX,sX,aX,iX,lH,cH,XG,uX,qj,dX,hX,mX,jH,pH,fH,AX,gH,xX,wX,SX,TX,EX,$X,yH,PX,OX,zX,BX,VX,_X,GX,jX,bH,XX,YX,tK,wH,SH,rK,iK,cK,CH,pK,fK,mK,JS,xK,XH,EH,vK,KG,kK,KH,ZH,YH,IK,TK,EK,$K,DK,PK,OK,$H,zK,BK,GK,DH,jK,XK,ZK,PH,QX,QK,tZ,sZ,aZ,iZ,uZ,dZ,hZ,MH,fZ,LH,gZ,yZ,bZ,wZ,SZ,UH,Nq,CZ,NZ,RZ,_Z,TH,PZ,VZ,GZ,jZ,hK];for(let e of qZ)or(e);var nI={};Oe(nI,{assertNotComplex:()=>rc,bindCanvasToFramebuffer:()=>aY,bindColorTextureToFramebuffer:()=>$m,bindTextureToProgramUniformSampler:()=>AI,bindTextureUnit:()=>fI,bindVertexBufferToProgramAttribute:()=>Qy,callAndCheck:()=>Ie,canBeRepresented:()=>sI,createFragmentShader:()=>oI,createFramebuffer:()=>hI,createProgram:()=>iI,createStaticIndexBuffer:()=>cI,createStaticVertexBuffer:()=>uI,createTexture:()=>dI,createVertexShader:()=>aI,getBatchDim:()=>Cl,getExtensionOrThrow:()=>cp,getFramebufferErrorMessage:()=>yI,getMaxTexturesInShader:()=>wI,getNumChannels:()=>sY,getProgramUniformLocation:()=>gI,getProgramUniformLocationOrThrow:()=>mI,getRowsCols:()=>Tl,getShapeAs3D:()=>_m,getTextureShapeFromLogicalShape:()=>bI,getWebGLDisjointQueryTimerVersion:()=>kI,getWebGLErrorMessage:()=>rI,getWebGLMaxTextureSize:()=>vI,hasExtension:()=>Fs,isCapableOfRenderingToFloatTexture:()=>SI,isDownloadFloatTextureEnabled:()=>II,isReshapeFree:()=>pp,isWebGLFenceEnabled:()=>CI,isWebGLVersionEnabled:()=>tx,linkProgram:()=>lI,resetMaxTextureSize:()=>oY,resetMaxTexturesInShader:()=>iY,unbindColorTextureFromFramebuffer:()=>ex,unbindTextureUnit:()=>rY,validateFramebuffer:()=>dp,validateProgram:()=>Rm,validateTextureSize:()=>pI});var Il={},Yy={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Nm(e,t){Il[e]=t}function Br(e){if(!(e in Il)){let n=KZ(e);if(n!==null)Il[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Il[e];return t==null||t.isContextLost()?(delete Il[e],Br(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Il[e])}function XZ(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function KZ(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=XZ(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Il[e]},!1),e===1?t.getContext("webgl",Yy)||t.getContext("experimental-webgl",Yy):t.getContext("webgl2",Yy)}var lp;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(lp||(lp={}));var Ps;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Ps||(Ps={}));var Cn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Cn||(Cn={}));function up(e,t){return[t,e]}function ZZ(e,t){return e*t}function Em(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function sc(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function YZ(e,t){let[n,s]=sc(e,t);return n*s*4}function Jy(e,t){let n=e,s,r,a,o,i,l,c,u,d,p;return K().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,c=4,u=1,d=n.HALF_FLOAT,p=n.FLOAT):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,c=4,u=4,d=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT),l=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:d,textureTypeFloat:p}}function Ie(e,t){let n=t();return K().getBool("DEBUG")&&JZ(e),n}function JZ(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+rI(e,t))}var QZ=596e-10,eY=65504;function sI(e){return!!(K().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||QZ<Math.abs(e)&&Math.abs(e)<eY)}function rI(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function cp(e,t){return ra(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function aI(e,t){let n=ra(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function oI(e,t){let n=ra(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw nY(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var tY=/ERROR: [0-9]+:([0-9]+):/g;function nY(e,t){let n=tY.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
`),a=r.length.toString().length+2,o=r.map((d,p)=>v.rightPad((p+1).toString(),a)+d),i=0;for(let d=0;d<o.length;d++)i=Math.max(o[d].length,i);let l=o.slice(0,s-1),c=o.slice(s-1,s),u=o.slice(s);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${v.rightPad(c[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
`))}function iI(e){return ra(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function lI(e,t){if(Ie(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Rm(e,t){if(Ie(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function uI(e,t){let n=ra(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function cI(e,t){let n=ra(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function sY(){return K().getNumber("WEBGL_VERSION")===2?1:4}function dI(e){return ra(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function pI(e,t){let n=K().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function hI(e){return ra(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Qy(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),Ie(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),Ie(e,()=>e.enableVertexAttribArray(i)),!0)}function fI(e,t,n){xI(e,n),Ie(e,()=>e.activeTexture(e.TEXTURE0+n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function rY(e,t){xI(e,t),Ie(e,()=>e.activeTexture(e.TEXTURE0+t)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function mI(e,t,n){return ra(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function gI(e,t,n){return e.getUniformLocation(t,n)}function AI(e,t,n,s){Ie(e,()=>fI(e,t,s)),Ie(e,()=>e.uniform1i(n,s))}function aY(e){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Ie(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function $m(e,t,n){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function ex(e,t){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function dp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+yI(e,t))}function yI(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ra(e,t,n){let s=Ie(e,()=>t());if(s==null)throw new Error(n);return s}function xI(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Cl(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function Tl(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function _m(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Cl(e),...Tl(e)]),t}function bI(e,t=!1){let n=K().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?v.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let s=v.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=Cl(e),a=2,o=2;return e.length&&([a,o]=Tl(e)),s=r*(a/2)*(o/2),v.sizeToSquarishShape(s).map(i=>i*2)}return v.sizeToSquarishShape(s)}function Dm(e){return e%2==0}function pp(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||Dm(n)&&Dm(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Dm(e[0])&&Dm(t[0])}var Pm,Fm;function vI(e){if(Pm==null){let t=Br(e);Pm=t.getParameter(t.MAX_TEXTURE_SIZE)}return Pm}function oY(){Pm=null}function iY(){Fm=null}function wI(e){if(Fm==null){let t=Br(e);Fm=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Fm)}function kI(e){if(e===0)return 0;let t,n=Br(e);return Fs(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Fs(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Fs(e,t){return e.getExtension(t)!=null}function tx(e){try{if(Br(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function SI(e){if(e===0)return!1;let t=Br(e);if(e===1){if(!Fs(t,"OES_texture_float"))return!1}else if(!Fs(t,"EXT_color_buffer_float"))return!1;return nx(t)}function II(e){if(e===0)return!1;let t=Br(e);if(e===1){if(!Fs(t,"OES_texture_float")||!Fs(t,"WEBGL_color_buffer_float"))return!1}else{if(Fs(t,"EXT_color_buffer_float"))return nx(t);let s="EXT_color_buffer_half_float";if(Fs(t,s)){let r=t.getExtension(s);return lY(t,r)}return!1}return nx(t)}function nx(e){let t=Jy(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function lY(e,t){let n=Jy(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function CI(e){return e!==2?!1:Br(e).fenceSync!=null}function rc(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var _e=K();_e.registerFlag("HAS_WEBGL",()=>_e.getNumber("WEBGL_VERSION")>0);_e.registerFlag("WEBGL_VERSION",()=>tx(2)?2:tx(1)?1:0);_e.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);_e.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>_e.get("WEBGL_VERSION")===2);_e.registerFlag("WEBGL_CPU_FORWARD",()=>!0);_e.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);_e.registerFlag("WEBGL_PACK",()=>_e.getBool("HAS_WEBGL"));_e.registerFlag("WEBGL_PACK_NORMALIZATION",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_PACK_CLIP",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_PACK_REDUCE",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_LAZILY_UNPACK",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_CONV_IM2COL",()=>_e.getBool("WEBGL_PACK"));_e.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>vI(_e.getNumber("WEBGL_VERSION")));_e.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>wI(_e.getNumber("WEBGL_VERSION")));_e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=_e.getNumber("WEBGL_VERSION");return e===0?0:kI(e)});_e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>_e.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!$u.isMobile());_e.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>SI(_e.getNumber("WEBGL_VERSION")));_e.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>_e.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:_e.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));_e.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>II(_e.getNumber("WEBGL_VERSION")));_e.registerFlag("WEBGL_FENCE_API_ENABLED",()=>CI(_e.getNumber("WEBGL_VERSION")));_e.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>_e.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);_e.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});_e.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>$u.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});_e.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);_e.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);_e.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);_e.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function Gn(){let e,t,n,s,r,a,o,i,l,c;return K().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",c=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,c=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:c}}function Nl(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function Om(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function uY(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function cY(e,t,n="index"){let s=e.map((a,o)=>o),r=uY(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function sx(e){let t=v.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function rx(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var TI=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,{getBroadcastDims:NI}=E;function dY(e,t,n){let s=[];if(e.forEach(h=>{let f=v.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=ax(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
`),a=e.map(h=>pY(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
`),o=t.texShape,i=Gn(),l=mY(i),c,u,d=yY(i);return t.isPacked?(c=hY(t.logicalShape,o,n.enableShapeUniforms),u=AY(i)):(c=fY(t.logicalShape,o,n.enableShapeUniforms),u=gY(i)),n.packedInputs&&(d+=wY),[d,l,u,r,c,a,n.userCode].join(`
`)}function ac(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return PY(e,t);case 1:return OY(e,t);case 2:return zY(e,t);case 3:return BY(e,t);case 4:return VY(e,t);case 5:return UY(e);case 6:return GY(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function EI(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return DY(e);case 1:return FY(e,t);case 2:return MY(e,t);case 3:return LY(e,t);default:return WY(e,t)}}function pY(e,t,n=!1,s){let r="";n?r+=EI(e,s):r+=ac(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=HY(e,t):r+=jY(e,t)),r}function hY(e,t,n){switch(e.length){case 0:return RI();case 1:return kY(e,t,n);case 2:return $Y(e,t,n);case 3:return IY(e,t,n);default:return TY(e,t,n)}}function fY(e,t,n){switch(e.length){case 0:return RI();case 1:return SY(e,t,n);case 2:return _Y(e,t,n);case 3:return CY(e,t,n);case 4:return NY(e,t,n);case 5:return EY(e,t);case 6:return RY(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function mY(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function gY(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function AY(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function yY(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${xY}
${bY}
${vY}
`}var xY=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,bY=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,vY=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,wY=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function RI(){return`
int getOutputCoords() {
return 0;
}
`}function kY(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${s[1]}.0);
}
`:s[1]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${s[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
}
`}function SY(e,t,n){return t[0]===1?n?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?n?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function IY(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function CY(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Om(["r","c","d"],e)}
return ivec3(r, c, d);
}
`;let s=Nl(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${s}
return ivec3(r, c, d);
}
`}function TY(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let c=2;c<e.length-1;c++)o*=e[e.length-c-1],i=`
int b${c} = index / ${o};
index -= b${c} * ${o};
`+i,l=`b${c}, `+l;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
${i}
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${l});
}
`}function NY(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Om(["r","c","d","d2"],e)}
return ivec4(r, c, d, d2);
}
`;let s=Nl(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${s}
return ivec4(r, c, d, d2);
}
`}function EY(e,t){let n=Nl(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function RY(e,t){let n=Nl(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function $Y(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
}
`;let r=Math.ceil(e[1]/2);return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function _Y(e,t,n){return v.arraysEqual(e,t)?n?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function El(e){return`offset${e}`}function DY(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=Gn();return`
vec4 ${n}() {
return ${s.texture2D}(${t}, halfCR);
}
`}function PY(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
float ${s}() {
return sampleTexture(${n}, halfCR);
}
`;let o=El(n);if(t)return`
float ${s}() {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
return sampleTexture(${n}, uv);
}
`;let[i,l]=e.shapeInfo.texShape;return`
float ${s}() {
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
return sampleTexture(${n}, uv);
}
`}function FY(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=Gn();if(t)return`
vec4 ${s}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${a.texture2D}(${n}, uv);
}
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
vec4 ${s}(int index) {
vec2 uv = packedUVfrom1D(
${o[0]}, ${o[1]}, index);
return ${a.texture2D}(${n}, uv);
}
`}function OY(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
float ${s}(int index) {
${oc(e)}
}
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
float ${s}(int index) {
return sampleTexture(${n}, halfCR);
}
`;let i=El(n);return o===1?t?`
float ${s}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
return sampleTexture(${n}, uv);
}
`:a===1?t?`
float ${s}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${s}(int index) {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
return sampleTexture(${n}, uv);
}
`}function MY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=Gn();if(a!=null&&v.arraysEqual(n,a))return t?`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return ${l.texture2D}(${s}, uv);
}
`:`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
return ${l.texture2D}(${s}, uv);
}
`;if(t)return`
vec4 ${r}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${l.texture2D}(${s}, uv);
}
`;let c=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],u=Math.ceil(n[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${u}, ${c[0]}, ${c[1]}, row, col);
return ${l.texture2D}(${s}, uv);
}
`}function zY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&v.arraysEqual(n,a)){if(t)return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`;let p=a[0],h=a[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`}let{newShape:o,keptDims:i}=v.squeezeShape(n),l=o;if(l.length<n.length){let p=ic(e,l),h=["row","col"];return`
${ac(p,t)}
float ${r}(int row, int col) {
return ${r}(${lc(h,i)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
${oc(e)}
}
`;let c=a[0],u=a[1],d=El(s);return u===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${c}.0);
return sampleTexture(${s}, uv);
}
`:c===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
return sampleTexture(${s}, uv);
}
`:t?`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s}Shape[1] + col + ${d};
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n[1]} + col + ${d};
vec2 uv = uvFromFlat(${c}, ${u}, index);
return sampleTexture(${s}, uv);
}
`}function LY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let p=n.slice(1),h=[1,2],f=ic(e,p),m=["b","row","col"];return`
${EI(f,t)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${lc(m,h)});
}
`}let i=Gn();if(t)return`
vec4 ${r}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${i.texture2D}(${s}, uv);
}
`;let l=o[0],c=o[1],u=Math.ceil(n[2]/2),d=u*Math.ceil(n[1]/2);return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${l}, ${c}, ${d}, ${u}, b, row, col);
return ${i.texture2D}(${s}, uv);
}
`}function BY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=v.squeezeShape(n),c=i;if(c.length<n.length){let m=ic(e,c),g=["row","col","depth"];return`
${ac(m,t)}
float ${r}(int row, int col, int depth) {
return ${r}(${lc(g,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${a}, ${o}, 1)));
${oc(e)}
}
`;let u=e.shapeInfo.texShape,d=u[0],p=u[1],h=e.shapeInfo.flatOffset;if(p===a&&h==null)return t?`
float ${r}(int row, int col, int depth) {
int stride1 = ${s}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${o}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${d}.0);
return sampleTexture(${s}, uv);
}
`;if(p===o&&h==null)return t?`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
return sampleTexture(${s}, uv);
}
`;let f=El(s);return t?`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${s}Shape[1] * ${s}Shape[2];
int stride1 = ${s}Shape[2];
int index = row * ${a} + col * ${o} + depth + ${f};
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${o} + depth + ${f};
vec2 uv = uvFromFlat(${d}, ${p}, index);
return sampleTexture(${s}, uv);
}
`}function WY(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=Gn();if(t)return`
vec4 ${s}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${n}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
}
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],c=l[0],u=l[1],d=Math.ceil(a[o-1]/2),p=d*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${p} + (row / 2) * ${d} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,p*=a[o-m-1],f=`b${m} * ${p} + `+f;return`
vec4 ${s}(${h}) {
int index = ${f};
int texR = index / ${u};
int texC = index - texR * ${u};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${u}, ${c});
return ${r.texture2D}(${n}, uv);
}
`}function VY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:c}=v.squeezeShape(n);if(l.length<n.length){let x=ic(e,l),y=["row","col","depth","depth2"];return`
${ac(x,t)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${lc(y,c)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${o}, ${a}, 1)));
${oc(e)}
}
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===i&&u==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
${f}
${m}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${o}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`;if(h===a&&u==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n[1]*n[2]}, ${n[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`;let A=El(s);return t?`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${f}
${m}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${A});
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${o} +
depth * ${a} + depth2;
vec2 uv = uvFromFlat(${p}, ${h}, index + ${A});
return sampleTexture(${s}, uv);
}
`}function UY(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:c}=v.squeezeShape(t);if(l.length<t.length){let m=ic(e,l),g=["row","col","depth","depth2","depth3"];return`
${ac(m)}
float ${s}(int row, int col, int depth, int depth2, int depth3) {
return ${s}(${lc(g,c)});
}
`}if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${i}, ${o}, ${a}, ${r})) +
depth3;
${oc(e)}
}
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1];if(h===i&&u==null)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${o}, ${a}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(h===r&&u==null)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let f=El(n);return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${o} + depth * ${a} +
depth2 * ${r} + depth3 + ${f};
vec2 uv = uvFromFlat(${p}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function GY(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=v.squeezeShape(t);if(r.length<t.length){let g=ic(e,r),A=["row","col","depth","depth2","depth3","depth4"];return`
${ac(g)}
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${s}(${lc(A,a)});
}
`}let o=t[5],i=t[4]*o,l=t[3]*i,c=t[2]*l,u=t[1]*c;if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${u}, ${c}, ${l}, ${i})) +
dot(
vec2(depth3, depth4),
vec2(${o}, 1)));
${oc(e)}
}
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,h=p[0],f=p[1];if(f===u&&d==null)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${c}, ${l}, ${i}, ${o})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(f===o&&d==null)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let m=El(n);return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${u} + col * ${c} + depth * ${l} +
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
vec2 uv = uvFromFlat(${h}, ${f}, index);
return sampleTexture(${n}, uv);
}
`}function oc(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function HY(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=NI(e.shapeInfo.logicalShape,t.logicalShape),l=yt(o),c=o-a,u,d=["x","y","z","w","u","v"];a===0?u="":o<2&&i.length>=1?u="coords = 0;":u=i.map(x=>`coords.${d[x+c]} = 0;`).join(`
`);let p="";o<2&&a>0?p="coords":p=e.shapeInfo.logicalShape.map((x,y)=>`coords.${d[y+c]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,A=v.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!A)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!A)o===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(i.length){let x=a-2,y=a-1;i.indexOf(x)>-1&&i.indexOf(y)>-1?h="return vec4(outputValue.x);":i.indexOf(x)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${u}
vec4 outputValue = get${s}(${p});
${h}
}
`}function jY(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(o,a))return`
float ${r}() {
return sampleTexture(${n}, resultUV);
}
`;let c=yt(l),u=NI(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,p,h=["x","y","z","w","u","v"];i===0?p="":l<2&&u.length>=1?p="coords = 0;":p=u.map(m=>`coords.${h[m+d]} = 0;`).join(`
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+d]}`).join(", "),`
float ${r}() {
${c} coords = getOutputCoords();
${p}
return get${s}(${f});
}
`}function yt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function ax(e,t,n){let{newShape:s,keptDims:r}=v.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!v.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function ic(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function lc(e,t){return t.map(n=>e[n]).join(", ")}function qY(e,t,n,s){let r=n.map((b,w)=>{let k={logicalShape:b.shape,texShape:b.isUniform?null:b.texData.texShape,isUniform:b.isUniform,isPacked:b.isUniform?!1:b.texData.isPacked,flatOffset:null};return b.texData!=null&&b.texData.slice!=null&&b.texData.slice.flatOffset>0&&(k.flatOffset=b.texData.slice.flatOffset),{name:t.variableNames[w],shapeInfo:k}}),a=r.map(b=>b.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=dY(r,o,t),l=oI(e.gl,i),c=e.createProgram(l),u=null,d=e.getUniformLocation(c,"NAN",!1);K().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let p=!1,h={},f={},m={};for(let b=0;b<t.variableNames.length;b++){let w=t.variableNames[b];h[w]=e.getUniformLocation(c,w,p),h[`offset${w}`]=e.getUniformLocation(c,`offset${w}`,p),t.enableShapeUniforms&&(f[`${w}Shape`]=e.getUniformLocation(c,`${w}Shape`,p),m[`${w}TexShape`]=e.getUniformLocation(c,`${w}TexShape`,p))}let g,A,x;t.enableShapeUniforms&&(g=e.getUniformLocation(c,"outShape",p),x=e.getUniformLocation(c,"outShapeStrides",p),A=e.getUniformLocation(c,"outTexShape",p));let y=[];return t.customUniforms&&t.customUniforms.forEach((b,w)=>{y[w]=e.getUniformLocation(c,b.name,p)}),{program:t,fragmentShader:l,source:i,webGLProgram:c,uniformLocations:h,customUniformLocations:y,inShapeInfos:a,outShapeInfo:o,infLoc:u,nanLoc:d,inShapesLocations:f,inTexShapesLocations:m,outShapeLocation:g,outShapeStridesLocation:x,outTexShapeLocation:A}}function $I(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!v.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!v.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function XY(e,t,n,s,r){t.program.enableShapeUniforms||($I(t.inShapeInfos,n),$I([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),K().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,c)=>{let u=t.program.variableNames[c],d=t.uniformLocations[u],p=t.uniformLocations[`offset${u}`],h=t.inShapesLocations[`${u}Shape`],f=t.inTexShapesLocations[`${u}TexShape`];if(h){let{uniformShape:m}=ax(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}l.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,c)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,c)=>{let u=t.customUniformLocations[c],d=r[c];if(l.type==="float")e.gl.uniform1fv(u,d);else if(l.type==="vec2")e.gl.uniform2fv(u,d);else if(l.type==="vec3")e.gl.uniform3fv(u,d);else if(l.type==="vec4")e.gl.uniform4fv(u,d);else if(l.type==="int")e.gl.uniform1iv(u,d);else if(l.type==="ivec2")e.gl.uniform2iv(u,d);else if(l.type==="ivec3")e.gl.uniform3iv(u,d);else if(l.type==="ivec4")e.gl.uniform4iv(u,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function KY(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:c,uniformShape:u,keptDims:d}=ax(e.packedInputs,o.shape,l),p="",h="",f="";if(u.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];p=`${w[0]>1}_${w[1]>1}`}else if(u.length===2&&!e.packedInputs)h=`${u[0]>1}_${u[1]>1}`;else if(u.length>2&&!e.packedInputs){let w=v.computeStrides(u);f=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let m=o.shape.length,g=u.length===2&&v.arraysEqual(o.shape,l),A=v.sizeFromShape(o.shape)===1,x=E.getBroadcastDims(o.shape,n.shape),y=!e.packedInputs&&m===n.shape.length&&v.arraysEqual(l,n.texData.texShape),b=e.packedInputs||u.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${y}_${c?d:""}_${u.length}_${A}_${x}_${g}_${p}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${K().getNumber("WEBGL_VERSION")}`,a}function Os(e){return K().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var ZY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=lp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Gn();this.outputShape=e,this.enableShapeUniforms=Os(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Om(["r","c","d"],e):Nl(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}},YY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=lp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Gn();this.outputShape=e,this.enableShapeUniforms=Os(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Om(["r","c","d"],e):Nl(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}},JY=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Ps.DOWNLOAD;let t=Gn();this.outputShape=e,this.userCode=`
${TI}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},QY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Ps.DOWNLOAD;let t=Gn();this.outputShape=e,this.userCode=`
${TI}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},eJ=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Gn();this.outputShape=e,this.enableShapeUniforms=Os(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
${this.enableShapeUniforms?rx():sx(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${n.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${n.output} = vec4(${s}, 0., 0., 0.);
}
`}},tJ=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Gn();this.outputShape=e,this.enableShapeUniforms=Os(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
localCoords = coords;
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${o};
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${a};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${n.texture2D}(A, uv);
if (offset == 0) {
result[${i}] = values[0];
} else if (offset == 1) {
result[${i}] = values[1];
} else if (offset == 2) {
result[${i}] = values[2];
} else {
result[${i}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?rx():sx(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${s}
${n.output} = ${r};
}
`}},_I={};Oe(_I,{bindVertexProgramAttributeStreams:()=>WI,createBufferFromOutputTexture:()=>GI,createFloat16MatrixTexture:()=>MI,createFloat16PackedMatrixTexture:()=>BI,createFloat32MatrixTexture:()=>OI,createIndexBuffer:()=>FI,createPackedMatrixTexture:()=>LI,createUnsignedBytesMatrixTexture:()=>zI,createVertexBuffer:()=>PI,createVertexShader:()=>DI,downloadByteEncodedFloatMatrixFromOutputTexture:()=>jI,downloadFloat32MatrixFromBuffer:()=>HI,downloadMatrixFromPackedOutputTexture:()=>XI,downloadPackedMatrixFromBuffer:()=>qI,getInternalFormatForFloat16MatrixTexture:()=>ix,getInternalFormatForFloat16PackedMatrixTexture:()=>cx,getInternalFormatForFloat32MatrixTexture:()=>ox,getInternalFormatForPackedMatrixTexture:()=>ux,getInternalFormatForUnsignedBytesMatrixTexture:()=>lx,uploadDenseMatrixToTexture:()=>VI,uploadPixelDataToTexture:()=>UI});function DI(e){let t=Gn(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return aI(e,n)}function PI(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return uI(e,t)}function FI(e){let t=new Uint16Array([0,1,2,2,1,3]);return cI(e,t)}function hp(e,t,n,s,r,a){pI(t,n);let o=dI(e),i=e.TEXTURE_2D;return Ie(e,()=>e.bindTexture(i,o)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),Ie(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function ox(e){return e.internalFormatFloat}function OI(e,t,n,s){let[r,a]=up(t,n);return hp(e,r,a,ox(s),s.textureFormatFloat,e.FLOAT)}function ix(e){return e.internalFormatHalfFloat}function MI(e,t,n,s){let[r,a]=up(t,n);return hp(e,r,a,ix(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function lx(e){return e.downloadTextureFormat}function zI(e,t,n,s){let[r,a]=up(t,n);return hp(e,r,a,lx(s),e.RGBA,e.UNSIGNED_BYTE)}function ux(e){return e.internalFormatPackedFloat}function LI(e,t,n,s){let[r,a]=sc(t,n);return hp(e,r,a,ux(s),e.RGBA,e.FLOAT)}function cx(e){return e.internalFormatPackedHalfFloat}function BI(e,t,n,s){let[r,a]=sc(t,n);return hp(e,r,a,cx(s),e.RGBA,s.textureTypeHalfFloat)}function WI(e,t,n){let s=0,r=3*4,a=3*4+2*4;return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Qy(e,t,"clipSpacePos",n,3,a,s)&&Qy(e,t,"uv",n,2,a,r)}function VI(e,t,n,s,r,a){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function UI(e,t,n){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function GI(e,t,n,s){let r=e.createBuffer();Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return Ie(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function HI(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function jI(e,t,n,s){let[r,a]=up(t,n),o=4,i=new Uint8Array(ZZ(t*n,o));return Ie(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function qI(e,t,n,s,r,a,o,i){let l=e,c=new Float32Array(YZ(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function XI(e,t,n){let s=new Float32Array(t*n*4);return Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var Mm=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=K().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Nm(t,e)):this.gl=Br(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(K().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=cp(this.gl,r),Fs(this.gl,a))this.textureHalfFloatExtension=cp(this.gl,a);else if(K().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Fs(this.gl,s))this.colorBufferHalfFloatExtension=cp(this.gl,s);else if(K().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Fs(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Fs(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=PI(this.gl),this.indexBuffer=FI(this.gl),this.framebuffer=hI(this.gl),this.textureConfig=Jy(this.gl,this.textureHalfFloatExtension)}get debug(){return K().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ie(e,()=>e.finish()),Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.deleteFramebuffer(this.framebuffer)),Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ie(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),OI(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),MI(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),zI(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),UI(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),VI(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),BI(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),LI(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(ex(this.gl,this.framebuffer),this.outputTexture=null),Ie(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>jI(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return qI(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return HI(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=GI(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(K().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>XI(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=DI(t));let n=iI(t);return Ie(t,()=>t.attachShader(n,this.vertexShader)),Ie(t,()=>t.attachShader(n,e)),lI(t,n),this.debug&&Rm(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=WI(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ie(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Rm(this.gl,this.program),Ie(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?mI(this.gl,e,t):gI(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ie(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),AI(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=sc(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Rm(this.gl,this.program),dp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ie(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=cp(this.gl,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=nJ(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),$m(this.gl,e,this.framebuffer),this.debug&&dp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?($m(this.gl,this.outputTexture,this.framebuffer),this.debug&&dp(this.gl)):ex(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;$m(s,e,this.framebuffer),this.debug&&dp(s),this.outputTexture=e,Ie(s,()=>s.viewport(0,0,t,n)),Ie(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function nJ(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:sJ,bincountImpl:KI,bincountReduceImpl:rJ,ceilImpl:aJ,concatImpl:oJ,equalImpl:iJ,expImpl:lJ,expm1Impl:uJ,floorImpl:cJ,gatherNdImpl:dJ,gatherV2Impl:pJ,greaterImpl:hJ,greaterEqualImpl:fJ,lessImpl:mJ,lessEqualImpl:gJ,linSpaceImpl:AJ,logImpl:yJ,maxImpl:xJ,maximumImpl:bJ,minimumImpl:vJ,multiplyImpl:wJ,negImpl:kJ,notEqualImpl:SJ,prodImpl:IJ,rangeImpl:CJ,rsqrtImpl:TJ,sigmoidImpl:NJ,simpleAbsImpl:ZI,sliceImpl:EJ,sparseFillEmptyRowsImpl:RJ,sparseReshapeImpl:$J,sparseSegmentReductionImpl:YI,sqrtImpl:_J,stridedSliceImpl:DJ,stringNGramsImpl:PJ,stringSplitImpl:FJ,stringToHashBucketFastImpl:OJ,subImpl:MJ,tileImpl:zJ,topKImpl:LJ,transposeImpl:dx,uniqueImpl:BJ}=wm;function JI(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Hn(e,t){return t===1?[e]:JI(e,t)}function WJ(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var VJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let n=Hn("rc",t),s=yt(t),r=GJ(t,e,n),a=HJ(t,e[e.length-1],e[e.length-2],n),o=jJ(e,n);this.userCode=`
void main() {
${s} rc = getOutputCoords();
if(${r}) {
setOutput(vec4(0));
} else {
${a}
setOutput(vec4(${o}));
}
}
`}}};function UJ(e,t){let n=[];for(let s=0;s<=1;s++)for(let r=0;r<=1;r++){let a=`${s===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let o=2;o<e;o++)a=`${t[t.length-1-o]},`+a;n.push(a)}return n}function GJ(e,t,n){if(e===1)return`rc > ${t[0]}`;let s="";for(let r=e-2;r<e;r++)s+=`${n[r]} >= ${t[r]}`,r<e-1&&(s+="||");return s}function HJ(e,t,n,s){if(e===1)return"";let r=s.slice(-2);return`
int r = ${r[0]};
int c = ${r[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${t};
bool rEdge = rp1 >= ${n};
`}function jJ(e,t){let n=e.length,s=UJ(n,t);return n===1?`getA(rc),
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${s[0]}),
cEdge ? 0. : getA(${s[1]}),
rEdge ? 0. : getA(${s[2]}),
rEdge || cEdge ? 0. : getA(${s[3]})`}var QI=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Os(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2==1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
${r}
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${s}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${s>0?"}":""}
`}this.userCode=`
${qJ(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?rx():sx(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${n}
setOutput(result);
}
`}};function qJ(e,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?cY(["r","c","d"],"inputShape"):Nl(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var XJ=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=t4(t,n),r=n4(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=e4(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===Cn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===Cn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===Cn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===Cn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===Cn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=t4(n,s),a=n4(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=e4(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=K().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function KJ(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function e4(e,t,n,s,r){let a=ZJ(t,s),o;if(r){let[l,c]=sc(e[0],e[1]);o=l*c}else{let[l,c]=up(e[0],e[1]);o=l*c}let i=KJ(n,a);return o*i}function ZJ(e,t){switch(e){case Cn.PACKED_2X2_FLOAT32:return ux(t);case Cn.PACKED_2X2_FLOAT16:return cx(t);case Cn.UNPACKED_FLOAT32:return ox(t);case Cn.UNPACKED_FLOAT16:return ix(t);case Cn.PACKED_4X1_UNSIGNED_BYTE:return lx(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function YJ(e){return K().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Cn.PACKED_2X2_FLOAT32:Cn.UNPACKED_FLOAT32:e?Cn.PACKED_2X2_FLOAT16:Cn.UNPACKED_FLOAT16}function t4(e,t){if(e===Ps.UPLOAD)return Cn.PACKED_2X2_FLOAT32;if(e===Ps.RENDER||e==null)return YJ(t);if(e===Ps.DOWNLOAD||e===Ps.PIXELS)return Cn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function n4(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Uo=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Os(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},xr="if (isnan(x)) return x;",JJ="return x;",s4="return abs(x);",QJ="return (x >= 0.0) ? x : (exp(x) - 1.0);",eQ=xr+`
return (x < 0.0) ? 0.0 : x;
`,tQ=xr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,zm="return x;",nQ="return 1.0 / (1.0 + exp(-1.0 * x));",sQ="return x;",rQ=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,aQ=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,oQ=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,iQ="return 1.0 / (1.0 + exp(-1.0 * x));",uc=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Os(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},lQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=Hn("rc",t),s=yt(t),r=WJ(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
void main() {
${s} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${o}));
}
`}},uQ=Ks.whereImpl,cQ=1e-7,dQ=1e-4,Lm={};function pQ(e){return e in Lm||(Lm[e]={}),Lm[e]}var hQ=K().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),fQ=600;function mQ(){return K().global.screen==null?1024:K().global.screen.height*K().global.screen.width*window.devicePixelRatio*fQ/1024/1024}var r4=class extends eu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!K().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Br(K().getNumber("WEBGL_VERSION"));this.binaryCache=pQ(K().getNumber("WEBGL_VERSION")),this.gpgpu=new Mm(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new XJ(this.gpgpu),this.numMBBeforeWarning=mQ(),this.texData=new Yc(this,ss())}nextDataId(){return r4.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((K().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||K().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:Ps.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(K().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:Ps.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new uc(o,zm):d=new Uo(o,zm);let p=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,c;l&&(c=v.now());let u;if(s==="complex64"){let d=this.readSync(r.real.dataId),p=this.readSync(r.imag.dataId);u=E.mergeRealAndImagArrays(d,p)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new uc(s,zm):h=new Uo(s,zm);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(K().getBool("DEBUG")&&!K().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&K().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(a!=="complex64"&&K().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let h=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...Em(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];u=E.mergeRealAndImagArrays(f,m)}else if(l==null)u=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(s);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(c!=null&&this.disposeIntermediateTensorInfo(c),l!=null){let h=this.gpgpu.gl;Ie(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,u),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ss().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!sI(n))throw K().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=v.sizeFromShape(t);if(K().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),p=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(p.texture,...Em(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let a=K().getBool("WEBGL_PACK")&&s===!0,o=a?_m(t):t,i=a?new QY(o):new JY(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),c=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),u}timerAvailable(){return K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=v.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,c)=>({name:a[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=hQ){return K().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){E.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return uQ(e.shape,t)}packedUnaryOp(e,t,n){let s=new uc(e.shape,t),r=this.compileAndRun(s,[e],n);return ss().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=ZI(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(K().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,s4,e.dtype);let t=new Uo(e.shape,s4),n=this.compileAndRun(t,[e]);return ss().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return ss().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new lQ(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new VJ(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Cl(e.shape),...Tl(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[Cl(t),...Tl(t)],a=new QI(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:s,dtype:r}=t,a=_m(s),o,i=Em(a);n?o=new YY(a):o=new ZY(a);let l=!0,c=[i],u=this.runWebGLProgram(o,[{shape:a,dtype:r,dataId:e}],r,c,l);return{dtype:r,shape:s,dataId:u.dataId}}runWebGLProgram(e,t,n,s,r=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===lp.DENSE){let m=Em(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(a.shape)===0)return o.values=v.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&v.sizeFromShape(m.shape)<=K().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}else if(!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!pp(g.shape,m.shape)){let A=m,x=m.shape;m.shape=g.shape,m=this.packedReshape(m,x),i.push(m),g=this.texData.get(m.dataId),A.shape=x}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:o,isUniform:!1},u=KY(e,l,c),d=this.getAndSaveBinary(u,()=>qY(this.gpgpu,e,l,c)),p=this.activeTimers!=null,h;p&&(h=this.startTimer()),XY(this.gpgpu,d,l,c,s),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),p&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let f=K().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=v.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!K().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(K().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=q(()=>{if(!K().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=K().getBool("DEBUG");K().set("DEBUG",!1);let t=this.abs(Re(1e-8)).dataSync()[0];if(K().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?cQ:dQ}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,c;l&&(c=v.now());let u=t.texShape;if(u==null&&(u=bI(n,i),t.texShape=u),r!=null){let d=_m(n),p,h=u[1],f=u[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;i?([h,f]=sc(u[0],u[1]),p=new tJ(d,m)):p=new eJ(d,m);let g=this.makeTensorInfo([f,h],s);m?this.texData.get(g.dataId).usage=Ps.PIXELS:this.texData.get(g.dataId).usage=Ps.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,f,r);let A=[[f,h]],x=!0,y=this.runWebGLProgram(p,[g],s,A,x),b=this.texData.get(y.dataId);t.texture=b.texture,t.texShape=b.texShape,t.isPacked=b.isPacked,t.usage=b.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(y.dataId),t.values=null,l&&(this.uploadWaitMs+=v.now()-c)}else{let d=this.acquireTexture(u,o,s,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=gQ(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}},fp=r4;fp.nextDataId=0;function gQ(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var AQ="0.0.0";function a4(){K().set("WEBGL_FORCE_F16_TEXTURES",!0)}$u.isBrowser()&&ol("webgl",()=>new fp,2);var yQ={forceHalfFloat:a4},o4=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,cc=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Os(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},Bm=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,mp=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=Os(r);let a="";if(s)if(r===0||v.sizeFromShape(this.outputShape)===1)a=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(a=`
${yt(r)} coords = getOutputCoords();
`,r===1)this.enableShapeUniforms?a+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:a+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=Hn("coords",r);this.enableShapeUniforms?a+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= outShape[${r} - 2];
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= outShape[${r} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:a+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${a}
setOutput(result);
}
`}};function ys(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var xQ={kernelName:Ha,backendName:"webgl",kernelFunc:ys};function Go(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=ys({inputs:{x:s},backend:n}),l=ys({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var bQ={kernelName:td,backendName:"webgl",kernelFunc:Go},i4="return (a < 0.) ? b * a : a;",l4=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function vQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),i=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new mp(l4,r.shape,o.shape):new cc(i4,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],"float32");return n.disposeIntermediateTensorInfo(o),l}var wQ={kernelName:Si,backendName:"webgl",kernelFunc:vQ},u4="return (a < 0.) ? b * a : a;",c4=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function kQ(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new mp(c4,s.shape,r.shape):new cc(u4,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var SQ={kernelName:so,backendName:"webgl",kernelFunc:kQ},d4="if (isnan(x)) return x;",IQ=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,CQ=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function st({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),p=n(d.values,l);return i.makeTensorInfo(o.shape,l,p)}let c=K().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new uc(o.shape,t):u=new Uo(o.shape,e),i.runWebGLProgram(u,[o],l)}}function Tn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:c}=o,u=i;if(s&&l.dtype==="complex64"){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[g,A]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(y=>{let[b,w]=y,k={dataId:b.dataId,dtype:b.dtype,shape:l.shape},I={dataId:w.dataId,dtype:w.dtype,shape:c.shape},N=new cc(e,l.shape,c.shape);return u.runWebGLProgram(N,[k,I],Ln(b.dtype,w.dtype))}),x=Go({inputs:{real:g,imag:A},backend:u});return u.disposeIntermediateTensorInfo(g),u.disposeIntermediateTensorInfo(A),x}let d=a||Ln(l.dtype,c.dtype);if((l.dtype==="string"||c.dtype==="string"||u.shouldExecuteOnCPU([l,c]))&&r!=null){let f=u.texData.get(l.dataId).values,m=u.texData.get(c.dataId).values,g=l.dtype==="string"?E.fromUint8ToStringArray(f):f,A=l.dtype==="string"?E.fromUint8ToStringArray(m):m,[x,y]=r(l.shape,c.shape,g,A,d),b=u.makeTensorInfo(y,d),w=u.texData.get(b.dataId);return w.values=x,b}let p=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return p?h=new mp(t,l.shape,c.shape,n):h=new cc(e,l.shape,c.shape),u.runWebGLProgram(h,[l,c],d)}}function Wm(e,t=!1){if(e==="linear")return t?sQ:JJ;if(e==="relu")return t?aQ:eQ;if(e==="elu")return t?rQ:QJ;if(e==="relu6")return t?oQ:tQ;if(e==="prelu")return t?c4:u4;if(e==="leakyrelu")return t?l4:i4;if(e==="sigmoid")return t?iQ:nQ;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var p4=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=Os(this.outputShape.length);let c=s?e[1]:e[2],u=Math.ceil(c/2),d=s?"i * 2, rc.y":"rc.y, i * 2",p=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${o}
}`:l?m=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${o}
}`:m=`vec4 activation(vec4 x) {
${o}
}`,g="result = activation(result);");let A=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let x="rc.x",y="rc.x";e[0]<t[0]?x=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(y=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${m}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${u}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${u}; i++) {
int batchA = ${x};
int batchB = ${y};
vec4 a = getMatrixA(batchA, ${d});
vec4 b = getMatrixB(batchB, ${p});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${f[0]});
result += (${h[1]} * ${f[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${A}
${g}
setOutput(result);
}
`}},h4={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},f4=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},m4="return a * b;";function px(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=E.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),c=new f4(h4.REAL,s.shape,r.shape),u=new f4(h4.IMAG,s.shape,r.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Go({inputs:{real:p,imag:h},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[c,u]=wJ(s.shape,r.shape,i.values,l.values,a),d=n.makeTensorInfo(u,a),p=n.texData.get(d.dataId);return p.values=c,d}let o;return K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new mp(m4,s.shape,r.shape):o=new cc(m4,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var TQ={kernelName:eo,backendName:"webgl",kernelFunc:px};function NQ(e,t,n){let s=[Cl(e.shape),...Tl(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[Cl(t),...Tl(t)],o=new QI(a,s),i=!0,l=[s],c=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:c.dataId,shape:t,dtype:c.dtype}}function ve(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(a,i),c=v.sizeFromShape(l);v.assert(i===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let u=o.texData.get(r.dataId);return u.isPacked&&!pp(r.shape,l)&&!(u.texture!==null&&pp(u.shape,l))?NQ(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var EQ={kernelName:Oi,backendName:"webgl",kernelFunc:ve},g4=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${v.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";r%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${o}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${o};
if (${i===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${i===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${i===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},RQ=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,d=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${i}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${i}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,p="vec4";t==="all"?(o="1.0",d=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,p="bvec4"):t==="any"&&(o="0.0",d=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,p="bvec4");let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${o};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${o});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${d}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
${p} values = ${p}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${d}
} else if (${u===2}) {
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${d}
} else if (${u===3}) {
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${d}
}
setOutput(${l});
}
`}};function $Q(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=E.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function Rl(e,t,n,s){let r=$Q(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:c}=r[o],u,d;n==="mean"?u=o===0?new g4({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},i):new g4({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c}):u=new RQ({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},n),d=a,a=s.runWebGLProgram(u,[a],t),d.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(d)}return a}var _Q=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=yt(this.rank),r=DQ(t);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function DQ(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var PQ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=yt(this.rank),r=JI("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=r[c];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
void main() {
${s} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${i}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${i}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function Vm(e,t,n){let s=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new PQ(e.shape,t):new _Q(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function FQ(e,t,n,s){let r=t,a=e.shape.length,o=v.parseAxisParam(r,e.shape),i=o,l=E.getAxesPermutation(i,a),c=l!=null,u=e;c&&(u=Vm(e,l,s),i=E.getInnerMostAxes(i.length,a)),E.assertAxesAreInnerMostDims("sum",i,a);let[d,p]=E.computeOutAndReduceShapes(u.shape,i),h=d;n&&(h=E.expandShapeToKeepDim(d,o));let f=v.sizeFromShape(p),g=v.sizeFromShape(e.shape)/f,A=ve({inputs:{x:u},attrs:{shape:[g,f]},backend:s}),x=kd(e.dtype),y=Rl(A,x,"sum",s),b=ve({inputs:{x:y},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(A),s.disposeIntermediateTensorInfo(y),c&&s.disposeIntermediateTensorInfo(u),b}function Um(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return FQ(r,a,o,n)}var OQ={kernelName:po,backendName:"webgl",kernelFunc:Um};function jn(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let u=0;u<l.length;u++)l[u]=r.shape[a[u]];let c;if(o.shouldExecuteOnCPU([r])){let d=o.texData.get(r.dataId).values,p=dx(d,r.shape,r.dtype,a,l);c=o.makeTensorInfo(l,r.dtype);let h=o.texData.get(c.dataId);h.values=p}else c=Vm(r,a,o);return c}var MQ={kernelName:Ao,backendName:"webgl",kernelFunc:jn},A4=1e3;function Gm({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,d=n?e.shape[c-2]:e.shape[c-1],p=s?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],f=s?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),A=v.sizeFromShape(m),x=v.sizeFromShape(g),b=sl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[A,d,h]:[A,h,d],k=s?[x,f,p]:[x,p,f],I=ve({inputs:{x:e},backend:r,attrs:{shape:w}}),N=ve({inputs:{x:t},backend:r,attrs:{shape:k}}),$=[I,N],O=Math.max(A,x),D=n?I.shape[1]:I.shape[2],R=a!=null,T=o!=null,F=l==="leakyrelu",U=l!=null?Wm(l,!0):null,j=R||T||F||U!=null,z;if((h===1||f===1)&&D>A4&&j===!1){let Z=I,J=N;n&&(Z=jn({inputs:{x:I},backend:r,attrs:{perm:[0,2,1]}}),$.push(Z)),s&&(J=jn({inputs:{x:N},backend:r,attrs:{perm:[0,2,1]}}),$.push(J));let te=f!==1,re=f===1,Q=Z;te&&(Q=ve({inputs:{x:Z},backend:r,attrs:{shape:[O,D,1]}}),$.push(Q));let ne=f===1?2:1,oe=J;re&&(oe=ve({inputs:{x:J},backend:r,attrs:{shape:[O,1,D]}}),$.push(oe));let fe=px({inputs:{a:Q,b:oe},backend:r});z=Um({inputs:{x:fe},backend:r,attrs:{axis:ne,keepDims:!0}}),$.push(fe)}else{let Z=Ln(e.dtype,t.dtype),J=new p4(w,k,[O,h,f],n,s,R,U,T,F),te=[I,N];if(a!=null&&te.push(a),T&&te.push(o),F){let re=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));te.push(re),$.push(re)}z=r.runWebGLProgram(J,te,Z)}let X=ve({inputs:{x:z},backend:r,attrs:{shape:b}});$.push(z);for(let Z of $)r.disposeIntermediateTensorInfo(Z);return X}function zQ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s;return Gm({a:r,b:a,transposeA:l,transposeB:c,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var LQ={kernelName:xo,backendName:"webgl",kernelFunc:zQ},y4="return abs(x);";function BQ(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=ZI(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return K().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new uc(s.shape,y4):r=new Uo(s.shape,y4),n.runWebGLProgram(r,[s],s.dtype)}var WQ={kernelName:di,backendName:"webgl",kernelFunc:BQ},VQ=xr+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,UQ=st({opSnippet:VQ}),GQ={kernelName:su,backendName:"webgl",kernelFunc:UQ},HQ=xr+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,jQ=st({opSnippet:HQ}),qQ={kernelName:ru,backendName:"webgl",kernelFunc:jQ},x4="return a + b;",XQ=Tn({opSnippet:x4,packedOpSnippet:x4,supportsComplex:!0,cpuKernelImpl:sJ}),KQ={kernelName:Hr,backendName:"webgl",kernelFunc:XQ},ZQ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${s};
setOutput(result);
}
`}},YQ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${s};
setOutput(result);
}
`}};function Hm(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return ys({inputs:{x:s[0]},backend:n});if(s.length>K().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),c=Hm({inputs:s.slice(0,l),backend:n}),u=Hm({inputs:s.slice(l),backend:n});return Hm({inputs:[c,u],backend:n})}let r=s.map(l=>l.dtype).reduce((l,c)=>Ln(l,c)),a=s.map(l=>l.shape),i=K().getBool("WEBGL_PACK")?new YQ(s[0].shape,a):new ZQ(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var JQ={kernelName:Ta,backendName:"webgl",kernelFunc:Hm};function QQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=r;u!=null&&(d=jn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,i)),E.assertAxesAreInnerMostDims("all",c,i);let[p,h]=E.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Rl(m,m.dtype,"all",n),A;if(o){let x=E.expandShapeToKeepDim(p,l);A=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else A=ve({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var eee={kernelName:au,backendName:"webgl",kernelFunc:QQ};function tee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=r;u!=null&&(d=jn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,i)),E.assertAxesAreInnerMostDims("any",c,i);let[p,h]=E.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Rl(m,m.dtype,"any",n),A;if(o){let x=E.expandShapeToKeepDim(p,l);A=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else A=ve({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var nee={kernelName:ou,backendName:"webgl",kernelFunc:tee},see=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${s};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${s}; i++) {
int inIdx = ${i};
float candidate = getA(batch, inIdx);
if (candidate ${o} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},ree=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=yt(i),c=Hn("coords",i),u,d;if(a===1){d=i+1;let I=yt(d);u=`
${I} sourceLocR = ${I}(${c.join()}, 0);
++${c[i-1]};
${I} sourceLocG = ${I}(${c.join()}, 0);
++${c[i-2]};
${I} sourceLocA = ${I}(${c.join()}, 0);
--${c[i-1]};
${I} sourceLocB = ${I}(${c.join()}, 0);
--${c[i-2]};`}else d=i,u=`
${l} sourceLocR = coords;
++${c[i-1]};
${l} sourceLocG = coords;
++${c[i-2]};
${l} sourceLocA = coords;
--${c[i-1]};
${l} sourceLocB = coords;
--${c[i-2]};`;let p=["x","y","z","w","u","v"].slice(0,d),h="."+p[d-1],f=p.map(I=>"int "+I),m=Hn("sourceLocR",d-1).concat("inIdx.r"),g=Hn("sourceLocG",d-1).concat("inIdx.g"),A=Hn("sourceLocB",d-1).concat("inIdx.b"),x=Hn("sourceLocA",d-1).concat("inIdx.a"),y=n==="max"?"greaterThan":"lessThan",b=s?"":`
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${A.join()}),
getBestIndicesAChannel(${x.join()})));`,w=`vec4(
getAChannel(${m.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${A.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${x.join()}) : 0.)`,k=s?"":`
float getBestIndicesAChannel(${f.join()}) {
return getChannel(getBestIndicesA(${p.join()}),
vec2(${p.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${f.join()}) {
return getChannel(getA(${p.join()}),
vec2(${p.slice(-2).join()}));
}
${k}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${c[i-1]} < ${o[i-1]-1};
bool hasNextRow = ${c[i-2]} < ${o[i-2]-1};
${u}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${w};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${b}
vec4 candidate = ${w};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${y}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function b4(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=E.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new see(i,n,s==null),c=[t];s!=null&&c.push(s);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let d=b4(e,t,n,u);return e.disposeIntermediateTensorInfo(u),d}function v4(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=E.computeOptimalWindowSize(a),i=new ree(r,o,n,s==null),l=s==null?[t]:[t,s],c=e.runWebGLProgram(i,l,"int32");if(c.shape.length===t.shape.length){let u=v4(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function w4(e,t,n,s){let r=[n];if(E.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!K().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[c,u]=E.computeOutAndReduceShapes(l.shape,r),d=v.sizeFromShape(u),p=ve({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});a.push(p);let h=b4(e,p,s);a.push(h);let f=ve({inputs:{x:h},backend:e,attrs:{shape:c}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return v4(e,t,s)}function aee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=jn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let u=w4(n,l,o[0],"max");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var oee={kernelName:Na,backendName:"webgl",kernelFunc:aee};function iee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=jn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let u=w4(n,l,o[0],"min");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var lee={kernelName:iu,backendName:"webgl",kernelFunc:iee},uee=xr+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,cee=st({opSnippet:uee}),dee={kernelName:lu,backendName:"webgl",kernelFunc:cee},pee=xr+"return log(x + sqrt(x * x + 1.0));",hee=st({opSnippet:pee}),fee={kernelName:uu,backendName:"webgl",kernelFunc:hee},mee=xr+`
return atan(x);
`,gee=st({opSnippet:mee}),Aee={kernelName:cu,backendName:"webgl",kernelFunc:gee},yee=IQ+`
return atan(a, b);
`,xee=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+CQ+`
return result;
`,bee=Tn({opSnippet:yee,packedOpSnippet:xee}),vee={kernelName:pu,backendName:"webgl",kernelFunc:bee},wee=xr+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,kee=st({opSnippet:wee}),See={kernelName:du,backendName:"webgl",kernelFunc:kee},gp=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,A="0.0";if(f||(A="-1.0 / 1e-20"),n){let I=">=";this.userCode=`
const ivec2 strides = ivec2(${o}, ${i});
const ivec2 pads = ivec2(${p}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${I} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${s?r?m:g:`wR * ${d} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let x="max",y=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(y="avgValue / count");let b=Math.floor(a/4)*4,w=a%4,k=`
if (${f}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${x}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${o}, ${i});
const ivec2 pads = ivec2(${p}, ${h});
const float initializationValue = ${A};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${A});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${b}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${k}
}
int xC = xCCorner + ${b};
if (${w===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${k}
} else if (${w===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${k}
} else if (${w===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${k}
}
}
setOutput(${y});
}
`}},hx=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,d=e.dilationWidth,p=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,A=e.padInfo.left;this.outputShape=e.outShape;let x=t==="avg",y="0.0";if(x||(y="-1.0 / 1e-20"),n){let $=">=";this.userCode=`
const ivec3 strides =
ivec3(${o}, ${i}, ${l});
const ivec3 pads = ivec3(${m}, ${g}, ${A});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${p};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f};
wC += ${d}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${$} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
wR * ${f} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let k=Math.floor(a/4)*4,I=a%4,N=`
if (${x}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${b}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${o}, ${i}, ${l});
const ivec3 pads = ivec3(${m}, ${g}, ${A});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${p};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${k}; wC += 4) {
int xC = xCCorner + wC * ${d};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
);
${N}
}
int xC = xCCorner + ${k};
if (${I===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${N}
} else if (${I===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
initializationValue,
initializationValue
);
${N}
} else if (${I===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
initializationValue
);
${N}
}
}
setOutput(${w});
}
}
`}};function Iee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;rc(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return ys({inputs:{x:r},backend:n});let d=new gp(u,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var Cee={kernelName:Ea,backendName:"webgl",kernelFunc:Iee};function Tee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s,u=[1,1,1],d=E.computePool3DInfo(r.shape,a,o,u,i,l,c),p=new hx(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var Nee={kernelName:ed,backendName:"webgl",kernelFunc:Tee},Eee=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=i-1-e.padInfo.top,u=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${c}, ${u});
const float avgMultiplier = float(${d});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${i};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${o}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},Ree=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,h=u-1-e.padInfo.front,f=d-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
const ivec3 pads = ivec3(${h}, ${f}, ${m});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${u};
wD += ${i}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${d};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${p};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function $ee(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=E.computePool3DInfo(o.shape,i,l,d,c,u),h=new Ree(p);return n.runWebGLProgram(h,[r],o.dtype)}var _ee={kernelName:yh,backendName:"webgl",kernelFunc:$ee};function Dee(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;rc([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=E.computePool2DInfo(o.shape,i,l,1,c),d=new Eee(u);return n.runWebGLProgram(d,[r],o.dtype)}var Pee={kernelName:Ah,backendName:"webgl",kernelFunc:Dee};function Fee(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Gm({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var Oee={kernelName:Ra,backendName:"webgl",kernelFunc:Fee},Mee=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(E.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${o};
float scale = ${i};
float inv = scale * inversesqrt(variance + float(${a}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},zee=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(E.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${o};
vec4 scale = ${i};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
setOutput((x - mean) * inv + offset);
}
`}},Lee=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;v.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[s,r,a],u=null;o!=null&&(u=o.shape,c.push(o));let d=null;i!=null&&(d=i.shape,c.push(i));let p=K().getBool("WEBGL_PACK_NORMALIZATION")?new zee(s.shape,r.shape,a.shape,u,d,l):new Mee(s.shape,r.shape,a.shape,u,d,l);return t.runWebGLProgram(p,c,c[0].dtype)},Bee={kernelName:Ua,backendName:"webgl",kernelFunc:Lee},Wee=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=yt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=Vee(this.rank),s,r=e.map((a,o)=>`sourceLoc.${fx[o]} = start[${o}] + coords.${fx[o]};`);s=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${r.join(`
`)}
`,this.userCode=`
void main() {
${s}
setOutput(getSource(${n}));
}
`}},fx=["x","y","z","w","u","v"];function Vee(e){if(e===1)return"sourceLoc";if(e<=6)return fx.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var Uee=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=yt(this.rank),n=Hn("coords",this.rank),s=Hn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
result.x = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${s[this.rank-1]};
result.y = ${a};
--${s[this.rank-1]};
}
`,i=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${s[this.rank-2]};
result.z = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${s[this.rank-1]};
result.w = ${a};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${s[u]} = ${n[u]} + start[${u}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${o}
${i}
setOutput(result);
}
`}};function Gee(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Ft.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function dc(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Ft.parseSliceParams(r,a,o);if(Ft.assertParamsValid(r,i,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),p=EJ(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}let{isPacked:c}=n.texData.get(r.dataId),u=Ft.isSliceContinous(r.shape,i,l);if(c||!u){let d=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Uee(l):new Wee(l),p=[i];return n.runWebGLProgram(d,[r],r.dtype,p)}return n.uploadToGPU(r.dataId),Gee(r,i,l,n)}var Hee={kernelName:Wi,backendName:"webgl",kernelFunc:dc},jee=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((x,y)=>x*y),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=[],f=ve({inputs:{x:r},backend:n,attrs:{shape:l}}),m=jn({inputs:{x:f},backend:n,attrs:{perm:c}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:u}}),A=dc({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeIntermediateTensorInfo(x)),A},qee={kernelName:pi,backendName:"webgl",kernelFunc:jee};function Xee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),c=KI(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var Kee={kernelName:xh,backendName:"webgl",kernelFunc:Xee};function Zee(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),o=n.readSync(r.dataId),i=E.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var Yee={kernelName:bh,backendName:"webgl",kernelFunc:Zee},Jee="return float(a != b);",k4=Tn({opSnippet:Jee,cpuKernelImpl:SJ,dtype:"bool"}),Qee={kernelName:Ei,backendName:"webgl",kernelFunc:k4};function Ap(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return ys({inputs:{x:r.complexTensorInfos.real},backend:n})}var ete={kernelName:cd,backendName:"webgl",kernelFunc:Ap},tte="return float(int(x));";function nte(e,t){let n=new Uo(e.shape,tte),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function mx(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return ys({inputs:{x:r},backend:n});let o=Gt(r.shape),i=mx({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Go({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Ap({inputs:{input:r},backend:n}),i=mx({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=ys({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return nte(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=k4({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var ste={kernelName:$a,backendName:"webgl",kernelFunc:mx},S4="return ceil(x);",rte=st({opSnippet:S4,packedOpSnippet:S4,cpuKernelImpl:aJ}),ate={kernelName:_a,backendName:"webgl",kernelFunc:rte},ote=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}},ite=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function lte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;K().getBool("WEBGL_PACK_CLIP")?i=new ite(r.shape):i=new ote(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var ute={kernelName:jr,backendName:"webgl",kernelFunc:lte},cte=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function I4(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function dte(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new cte(s.shape),o=[I4(s,r.complexTensorInfos.real),I4(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var pte={kernelName:nd,backendName:"webgl",kernelFunc:dte},hte=class{constructor(e){this.outputShape=[],this.outputShape=E.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},fte=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=E.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=yt(s),a=Hn("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],c=o.slice(-2),u=o.join(),d=`if (${l} < ${i[0]}) {
return getChannel(
getT0(${u}), vec2(${c.join()}));
}`;for(let f=1;f<i.length;f++){let m=i[f-1];d+=`
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
return getChannel(
getT${f}(${jm(o,l,m)}),
vec2(${jm(c,l,m)}));
}`}let p=i.length,h=i[i.length-1];d+=`
return getChannel(
getT${p}(${jm(o,l,h)}),
vec2(${jm(c,l,h)}));`,this.userCode=`
float getValue(${o.map(f=>"int "+f)}) {
${d}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
${a[s-1]} = ${a[s-1]} + 1;
if (${a[s-1]} < ${n[s-1]}) {
result.g = getValue(${a});
}
${a[s-2]} = ${a[s-2]} + 1;
if (${a[s-2]} < ${n[s-2]}) {
result.a = getValue(${a});
}
${a[s-1]} = ${a[s-1]} - 1;
if (${a[s-2]} < ${n[s-2]} &&
${a[s-1]} < ${n[s-1]}) {
result.b = getValue(${a});
}
setOutput(result);
}
`}};function jm(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function qm(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return ys({inputs:{x:r.complexTensorInfos.imag},backend:n})}var mte={kernelName:od,backendName:"webgl",kernelFunc:qm};function pc(e,t,n){let s=e[0].dtype;if(s==="complex64"){let u=e.map(m=>Ap({inputs:{input:m},backend:n})),d=e.map(m=>qm({inputs:{input:m},backend:n})),p=pc(u,t,n),h=pc(d,t,n),f=Go({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let u=e.map(A=>{let x=v.sizeFromShape(A.shape.slice(t));return ve({inputs:{x:A},backend:n,attrs:{shape:[-1,x]}})}),d=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),p=E.computeOutShape(u.map(A=>A.shape),1),h=u[0].shape[0]===1,f=oJ(d,p,s,h),m=E.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(m,s,f);return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),g}if(e.length>K().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),d=pc(e.slice(0,u),t,n),p=pc(e.slice(u),t,n),h=pc([d,p],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),h}if(K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new fte(e.map(d=>d.shape),t);return n.runWebGLProgram(u,e,s)}let{tensors2D:a,outShape:o}=gte(e,t,n),i=new hte(a.map(u=>u.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=ve({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),c}function gte(e,t,n){let s=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ve({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function C4(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=E.computeOutShape(t.map(c=>c.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(c=>v.sizeFromShape(c.shape)>0);if(i.length===1)return ys({inputs:{x:i[0]},backend:n});let l=i.map(c=>c.shape);return E.assertParamsConsistent(l,a),pc(i,a,n)}var Ate={kernelName:hi,backendName:"webgl",kernelFunc:C4},T4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,A=m?2:3,x=m?3:1,y="",b="";n&&(s?y=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?y=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:y=`
float activation(float x) {
${n}
}
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${y}
const ivec2 strides = ivec2(${i}, ${l});
const ivec2 pads = ivec2(${a}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${x}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${A}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${m}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${f===1}) {
if (${m}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${f===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${m}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${f===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${m}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${w}
${b}
setOutput(result);
}
`}},yte=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${a}, ${o});
const ivec3 pads = ivec3(${t}, ${n}, ${s});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${u}; wF++) {
int xF = xFCorner + wF * ${i};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${f===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${f===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${f===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},xte=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Os(this.outputShape.length);let{dataFormat:n}=t,s=Gn(),r=n==="channelsLast",a=r?0:1,o=r?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let c=0;c<=1;c++)for(let u=0;u<=1;u++)l+=`
blockIndex = rc.y + ${u};
pos = rc.x + ${c};
${i}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${a}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${o}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${r}) {
innerDims = vec2(d1, ch);
result[${c*2+u}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${c*2+u}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${s.output} = result;
}
`}};function N4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,c=s.texData.get(e.dataId),u=n.inChannels,d=l[0]*l[1]*l[2],p=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,A=[];if(!((d===1||p===1)&&u>A4)&&c.isPacked&&h&&c.texture!=null&&l[2]%2!=0&&v.arraysEqual(c.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),w={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},k=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,v.assert(pp(c.shape,w.shape),()=>`packed reshape ${c.shape} to ${w.shape} isn't free`);let I=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});A.push(I);let N=Gm({a:w,b:I,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),$=s.texData.get(N.dataId);v.assert($.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=k,$.shape=n.outShape,g=ys({inputs:{x:N},backend:s}),g.shape=n.outShape,A.push(N)}else{let b=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],w=ve({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),k=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),I=Gm({a:w,b:k,transposeA:f,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=ve({inputs:{x:I},backend:s,attrs:{shape:n.outShape}}),A.push(w),A.push(k),A.push(I)}for(let b of A)s.disposeIntermediateTensorInfo(b);return g}function E4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:d,outHeight:p,dataFormat:h}=n,f=h==="channelsLast",m=l*c*u,g=p*d,A=[m,g],x=!0,y=!1,b=[],w=ve({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),k=ve({inputs:{x:t},backend:s,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(w),b.push(k);let I=new xte(A,n),N=[w.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],$=s.runWebGLProgram(I,[w],"float32",N),O=ve({inputs:{x:$},backend:s,attrs:{shape:[1,A[0],A[1]]}});b.push($),b.push(O);let D=r!=null,R=a!=null,T=i==="leakyrelu",F=i?Wm(i,!0):null,U=new p4(O.shape,k.shape,[1,g,n.outChannels],x,y,D,F,R,T),j=[O,k];if(r&&j.push(r),R&&j.push(a),T){let J=s.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));j.push(J),b.push(J)}let z=s.runWebGLProgram(U,j,"float32"),X=f?[1,p,d,n.outChannels]:[1,n.outChannels,p,d],Z=ve({inputs:{x:z},backend:s,attrs:{shape:X}});b.push(z);for(let J of b)s.disposeIntermediateTensorInfo(J);return Z}function bte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s,d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))h=N4({x:r,filter:a,convInfo:p,backend:n});else if(K().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=E4({x:r,filter:a,convInfo:p,backend:n});else{let m=new T4(p);h=n.runWebGLProgram(m,[r,a],"float32")}let f=ve({inputs:{x:h},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(h),f}var vte={kernelName:Da,backendName:"webgl",kernelFunc:bte},wte=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${a}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},kte=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,c=a?2:3,u=a?3:1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${u}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${a}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},Ste=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${s} - ${o};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},Ite=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=s-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${i}, ${l}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${s} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function Cte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s,d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),h=new wte(p);return n.runWebGLProgram(h,[r,a],"float32")}var Tte={kernelName:vh,backendName:"webgl",kernelFunc:Cte};function Nte(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s,d=E.convertConv2DDataFormat(c),p=E.computeConv2DInfo(o,a.shape,i,1,l,u,!1,d),h=new kte(p);return n.runWebGLProgram(h,[r,a],"float32")}var Ete={kernelName:Pa,backendName:"webgl",kernelFunc:Nte};function Rte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=E.computeConv3DInfo(r.shape,a.shape,o,l,i),u=new yte(c);return n.runWebGLProgram(u,[r,a],"float32")}var $te={kernelName:sd,backendName:"webgl",kernelFunc:Rte};function _te(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,c=E.computeConv3DInfo(r.shape,l,o,1,i),u=new Ste(c);return n.runWebGLProgram(u,[r,a],"float32")}var Dte={kernelName:wh,backendName:"webgl",kernelFunc:_te};function Pte(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,c=E.computeConv3DInfo(l,a.shape,i,1,o),u=new Ite(c);return n.runWebGLProgram(u,[r,a],"float32")}var Fte={kernelName:kh,backendName:"webgl",kernelFunc:Pte},Ote=d4+`
return cos(x);
`,Mte=st({opSnippet:Ote}),zte={kernelName:Fa,backendName:"webgl",kernelFunc:Mte},Lte=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,Bte=st({opSnippet:Lte}),Wte={kernelName:Oa,backendName:"webgl",kernelFunc:Bte},Vte=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[c]=t,[u,d]=n;this.outputShape=[c,u,d,l];let p=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,A]=u>1?[`${(o-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[x,y,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
const float height_ratio = float(${m});
const float width_ratio = float(${x});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${a}) {
return;
}
float height_scale = ${g};
float width_scale = ${y};
float in_y = ${A};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${b};
if( in_x < 0.0 || in_x > ${f} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${p} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},Ute=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,u=new Vte(r.shape,a.shape,i,l,c);return n.runWebGLProgram(u,[r,a,o],"float32")},Gte={kernelName:mi,backendName:"webgl",kernelFunc:Ute},R4=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${$4(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${yt(s)} coords = getOutputCoords();
int end = ${_4(s,"coords")};
float val = ${r};
int pow2 = int(pow(2.0, index));
if (${o}) {
int idx = ${i};
${_4(s,"coords")} = idx;
val += getX(${$4(s,"coords")});
}
setOutput(val);
}
`}};function $4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function _4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Hte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,c=E.getAxesPermutation([a],l),u=r;c!=null&&(u=jn({inputs:{x:r},backend:n,attrs:{perm:c}}));let d=E.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let p=u.shape[d],h=ys({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new R4(u.shape,!1,i),g=[[f]],A=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(A)}if(o){let f=new R4(u.shape,o,i),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(c!=null){let f=E.getUndoAxesPermutation(c),m=jn({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),m}return h}var jte={kernelName:fi,backendName:"webgl",kernelFunc:Hte};function qte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=KI(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=rJ(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Xte={kernelName:Sh,backendName:"webgl",kernelFunc:qte},Kte=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Zte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=new Kte(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var Yte={kernelName:gi,backendName:"webgl",kernelFunc:Zte},D4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Os(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",c="";n&&(s?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:l=`
float activation(float x) {
${n}
}
`,c="result = activation(result);");let u=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${i};
int q = d2 - d1 * ${i};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${a}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${o}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${u}
${c}
setOutput(result);
}
`}},P4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Os(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,c=e.filterHeight,u=e.filterWidth,d=u,p=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<u;g++)p+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;p+=`
for (int r = 0; r < ${c}; r++) {
`;for(let g=0;g<u;g++)p+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;p+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(d+1)/2;g++){let A=g*2;if(p+=`
xC = xCCorner + ${A*l};
`,i===1){if(A<u&&(o%2==1?(p+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
xTexelC${A} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${A}.zw = vec2(0.0);
}
xTexelC${A}Ready = 1;
}
`,l===1&&A>0?p+=`
xC${A} = vec4(xTexelC${A-2}.zw, xTexelC${A}.xy);
`:p+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${A} = vec4(previous.zw, xTexelC${A}.xy);
} else {
xC${A} = vec4(0.0, 0.0, xTexelC${A}.xy);
}
`):p+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
xTexelC${A} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${A}.zw = vec2(0.0);
}
xTexelC${A}Ready = 1;
}
xC${A} = xTexelC${A};
`,A+1<u)){let x=o%2==0?v.nearestLargerEven(l):l;l%2==0&&o%2==1||l%2!=0&&o%2!=1?(p+=`
xCOffset = xC + imod(pads[1], 2) + ${x};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${A+1}.zw = vec2(0.0);
}
xTexelC${A+1}Ready = 1;
}
`,l>1&&(p+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
xTexelC${A} = getX(batch, xR, xCOffset, d1);
xTexelC${A}Ready = 1;
}
`),p+=`
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.xy);
`):x===1?p+=`
xC${A+1} = xTexelC${A};
`:p+=`
xCOffset = xC + ${x};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${A+1}.zw = vec2(0.0);
}
xTexelC${A+1}Ready = 1;
}
xC${A+1} = xTexelC${A+1};
`}}else A<u&&(o%2==1?(p+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
xTexelC${A} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${A}.zw = vec2(0.0);
}
xTexelC${A}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${A+1}Ready == 0) {
xTexelC${A+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${A+1}.zw = vec2(0.0);
}
xTexelC${A+1}Ready = 1;
}
xC${A} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
`,A+1<u&&(p+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${A+1} = vec4(xTexelC${A+1}.xy, final.xy);
`)):(p+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
xTexelC${A} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${A}.zw = vec2(0.0);
}
xTexelC${A}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${A+1}.zw = vec2(0.);
}
xTexelC${A+1}Ready = 1;
}
xC${A} = vec4(
xTexelC${A}.xy, xTexelC${A+1}.xy);
`,A+1<u&&(p+=`
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
`)));A<u&&(p+=`
wTexel = getW(r, ${A}, d1, q);
dotProd += xC${A} * vec4(wTexel.xz, wTexel.xz);
`,A+1<u&&(p+=`
wTexel = getW(r, ${A+1}, d1, q);
dotProd += xC${A+1} * vec4(wTexel.xz, wTexel.xz);
`))}p+=`
}
`,p+=`
}
`;let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?h=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:h=`vec4 activation(vec4 x) {
${n}
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${h}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${a};
int q = d2 - d1 * ${a};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${p}
vec4 result = dotProd - vec4(0.000000000000001);
${m}
${f}
setOutput(result);
}
`}};function Jte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s,u=l;u==null&&(u=[1,1]),v.assert(E.eitherStridesOrDilationsAreOne(o,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let d=E.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!0),p;K().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?p=new P4(d):p=new D4(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(p,[r,a],"float32",h)}var Qte={kernelName:Ma,backendName:"webgl",kernelFunc:Jte},ene=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${a} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},tne=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${a}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${i}; dm++) {
int d2 = d1 * ${i} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function nne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s,d=E.computeConv2DInfo(r.shape,u,o,i,l,c,!0),p=new ene(d);return n.runWebGLProgram(p,[r,a],"float32")}var sne={kernelName:Ih,backendName:"webgl",kernelFunc:nne};function rne(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s,d=E.computeConv2DInfo(u,a.shape,o,i,l,c,!0),p=new tne(d);return n.runWebGLProgram(p,[r,a],"float32")}var ane={kernelName:Ch,backendName:"webgl",kernelFunc:rne},one=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function ine(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=v.sizeFromShape(s.shape),o=ve({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new one(a),l=n.runWebGLProgram(i,[o],o.dtype),c=ve({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var lne={kernelName:Th,backendName:"webgl",kernelFunc:ine},une=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:c}=e,{top:u,left:d}=s;this.userCode=`
const ivec2 strides = ivec2(${r}, ${a});
const ivec2 pads = ivec2(${u}, ${d});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${o}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${i}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function cne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=E.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),u,d=new une(c);u=n.runWebGLProgram(d,[r,a],"float32");let p=ve({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),p}var dne={kernelName:rd,backendName:"webgl",kernelFunc:cne};function pne(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=E.decodeEinsumEquation(r,a.length);E.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=E.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:x}=E.getEinsumPermutation(h,l[g]),y;E.isIdentityPermutation(A)?y=a[g]:(y=jn({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(y));let b=y.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(y.shape,b)||(y=ve({inputs:{x:y},backend:n,attrs:{shape:b}}),f.push(y)),p===null?p=y:(p=px({inputs:{a:y,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=Um({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var hne={kernelName:ad,backendName:"webgl",kernelFunc:pne},fne="return (x >= 0.0) ? x : (exp(x) - 1.0);",mne=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,gne=st({opSnippet:fne,packedOpSnippet:mne}),Ane={kernelName:La,backendName:"webgl",kernelFunc:gne},yne="return (b >= 1.0) ? a : a * (b + 1.0);",xne=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,bne=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new mp(xne,s.shape,r.shape):new cc(yne,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},vne={kernelName:Rh,backendName:"webgl",kernelFunc:bne},wne=`
return vec4(equal(a, b));
`,kne="return float(a == b);",Sne=Tn({opSnippet:kne,packedOpSnippet:wne,dtype:"bool",cpuKernelImpl:iJ}),Ine={kernelName:Ai,backendName:"webgl",kernelFunc:Sne},Cne=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${E.ERF_P};
float a1 = ${E.ERF_A1};
float a2 = ${E.ERF_A2};
float a3 = ${E.ERF_A3};
float a4 = ${E.ERF_A4};
float a5 = ${E.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,Tne=st({opSnippet:Cne}),Nne={kernelName:hu,backendName:"webgl",kernelFunc:Tne},F4="return exp(x);",O4=st({opSnippet:F4,packedOpSnippet:F4,cpuKernelImpl:lJ,dtype:"float32"}),Ene={kernelName:Ba,backendName:"webgl",kernelFunc:O4};function gx(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),ve({inputs:{x:a},backend:s,attrs:{shape:i}})}var Rne={kernelName:yi,backendName:"webgl",kernelFunc:gx},M4="return exp(x) - 1.0;",$ne=st({opSnippet:M4,packedOpSnippet:M4,cpuKernelImpl:uJ}),_ne={kernelName:xi,backendName:"webgl",kernelFunc:$ne},z4=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${o}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${s});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${s}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${a};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function L4(e,t,n){let s=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=ve({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,c=new z4("real",l,t),u=new z4("imag",l,t),d=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Go({inputs:{real:p,imag:h},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h);let m=ve({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function Dne(e){let{inputs:t,backend:n}=e,{input:s}=t;return L4(s,!1,n)}var Pne={kernelName:$h,backendName:"webgl",kernelFunc:Dne},Fne=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function yp(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new Fne(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var One={kernelName:fu,backendName:"webgl",kernelFunc:yp},Mne=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},zne={kernelName:bi,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Mne(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},B4="return floor(x);",Lne=st({opSnippet:B4,packedOpSnippet:B4,cpuKernelImpl:cJ}),Bne={kernelName:Wa,backendName:"webgl",kernelFunc:Lne},Wne=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,Vne=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,Une=Tn({opSnippet:Wne,packedOpSnippet:Vne,dtype:"int32"}),Gne={kernelName:Va,backendName:"webgl",kernelFunc:Une},Hne=class{constructor(e){this.variableNames=["A"];let t=Gn(),[n,s]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},jne=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Gn(),[n,s]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},qne={kernelName:fd,backendName:"webgl",kernelFunc:Xne},hc;function Xne(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],u=[c,l],d=[c,l,a];(i||o)&&(hc==null&&(hc=document.createElement("canvas").getContext("2d")),hc.canvas.width=l,hc.canvas.height=c,hc.drawImage(r,0,0,l,c),r=hc.canvas);let p=n.makeTensorInfo(u,"int32");n.texData.get(p.dataId).usage=Ps.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),r);let h=K().getBool("WEBGL_PACK")?new jne(d):new Hne(d),f=n.runWebGLProgram(h,[p],"int32");return n.disposeData(p.dataId),f}function Kne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=E.convertConv2DDataFormat(u),g=E.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!1,m),A,x=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))A=N4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(K().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)A=E4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,w=i!=null,k=h==="leakyrelu",I=h?Wm(h,!1):null,N=new T4(g,b,I,w,k),$=[r,a];if(o&&$.push(o),i&&$.push(i),k){let O=n.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));$.push(O),x.push(O)}A=n.runWebGLProgram(N,$,"float32")}let y=ve({inputs:{x:A},backend:n,attrs:{shape:g.outShape}});return x.push(A),x.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var Zne={kernelName:bo,backendName:"webgl",kernelFunc:Kne};function Yne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:d,activation:p,leakyreluAlpha:h}=s,f=[],m=u;m==null&&(m=[1,1]),v.assert(E.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=E.computeConv2DInfo(r.shape,a.shape,l,m,c,d,!0),A=K().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,x=p?Wm(p,A):null,y=[r,a],b=o!=null,w=i!=null,k=p==="leakyrelu";if(b&&y.push(o),w&&y.push(i),k){let O=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));y.push(O),f.push(O)}let I;A?I=new P4(g,b,x,w,k):I=new D4(g,b,x,w,k);let N=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],$=n.runWebGLProgram(I,y,"float32",N);return f.forEach(O=>n.disposeIntermediateTensorInfo(O)),$}var Jne={kernelName:vo,backendName:"webgl",kernelFunc:Yne},Qne=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=yt(t.length),r=yt(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${s} strides = ${s}(${this.strides});
void main() {
${r} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${a};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function ese(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,c,u,d]=E.prepareAndValidate(s,r),p=ve({inputs:{x:r},backend:n,attrs:{shape:[c,o]}}),h=ve({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/u,u]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let A=n.readSync(r.dataId),x=n.bufferSync(s),y=dJ(A,x,s.dtype,c,o,u,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,y.values)}let f=new Qne(o,d,[c,u]),m=n.runWebGLProgram(f,[h,p],h.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var tse={kernelName:wi,backendName:"webgl",kernelFunc:ese},nse=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=yt(this.rank),s=sse(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function sse(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("int(getIndices(resRC.x, resRC.z))"):s.push(`${n[r]}`);return s.join()}function W4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],c=n.readSync(a.dataId),u=r.shape[l];for(let b=0;b<c.length;++b){let w=c[b];v.assert(w<=u-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${u-1}]`)}let d=E.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=v.sizeFromShape(a.shape),h=[],f=ve({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),m=ve({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,p/d.batchSize]}});h.push(f),h.push(m);let g=[d.batchSize,d.outerSize,p/d.batchSize,d.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let b=n.bufferSync(m),w=n.bufferSync(f),k=pJ(w,b,g);return h.forEach(I=>n.disposeIntermediateTensorInfo(I)),n.makeTensorInfo(d.outputShape,k.dtype,k.values)}let A=new nse(f.shape,g),x=n.runWebGLProgram(A,[f,m],f.dtype);h.push(x);let y=ve({inputs:{x},backend:n,attrs:{shape:d.outputShape}});return h.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var rse={kernelName:vi,backendName:"webgl",kernelFunc:W4},ase="return float(a > b);",ose=`
return vec4(greaterThan(a, b));
`,ise=Tn({opSnippet:ase,packedOpSnippet:ose,cpuKernelImpl:hJ,dtype:"bool"}),lse={kernelName:ki,backendName:"webgl",kernelFunc:ise},use="return float(a >= b);",cse=`
return vec4(greaterThanEqual(a, b));
`,dse=Tn({opSnippet:use,packedOpSnippet:cse,dtype:"bool",cpuKernelImpl:fJ}),pse={kernelName:Ga,backendName:"webgl",kernelFunc:dse};function hse(e){let{inputs:t,backend:n}=e,{input:s}=t;return L4(s,!0,n)}var fse={kernelName:_h,backendName:"webgl",kernelFunc:hse},mse="return float(!isnan(x) && !isinf(x));",gse=st({opSnippet:mse,dtype:"bool"}),Ase={kernelName:mu,backendName:"webgl",kernelFunc:gse},yse="return float(isinf(x));",xse=st({opSnippet:yse,dtype:"bool"}),bse={kernelName:gu,backendName:"webgl",kernelFunc:xse},vse="return float(isnan(x));",wse=st({opSnippet:vse,dtype:"bool"}),kse={kernelName:Au,backendName:"webgl",kernelFunc:wse},Sse="return float(a < b);",Ise=`
return vec4(lessThan(a, b));
`,Cse=Tn({opSnippet:Sse,packedOpSnippet:Ise,cpuKernelImpl:mJ,dtype:"bool"}),Tse={kernelName:Ii,backendName:"webgl",kernelFunc:Cse},Nse="return float(a <= b);",Ese=`
return vec4(lessThanEqual(a, b));
`,Rse=Tn({opSnippet:Nse,packedOpSnippet:Ese,cpuKernelImpl:gJ,dtype:"bool"}),$se={kernelName:Ci,backendName:"webgl",kernelFunc:Rse};function _se(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=AJ(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var Dse={kernelName:Dh,backendName:"webgl",kernelFunc:_se},Pse=`if (x < 0.0) return NAN;
return log(x);`,Fse=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,Ose=st({opSnippet:Pse,packedOpSnippet:Fse,cpuKernelImpl:yJ}),Mse={kernelName:ja,backendName:"webgl",kernelFunc:Ose},zse="return log(1.0 + x);",Lse=st({opSnippet:zse}),Bse={kernelName:yu,backendName:"webgl",kernelFunc:Lse},Wse="return float(a >= 1.0 && b >= 1.0);",Vse=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,Use=Tn({opSnippet:Wse,packedOpSnippet:Vse,dtype:"bool"}),Gse={kernelName:Ti,backendName:"webgl",kernelFunc:Use},Hse="return float(!(x >= 1.0));",jse=st({opSnippet:Hse}),qse={kernelName:xu,backendName:"webgl",kernelFunc:jse},Xse="return float(a >= 1.0 || b >= 1.0);",Kse=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,Zse=Tn({opSnippet:Xse,packedOpSnippet:Kse,dtype:"bool"}),Yse={kernelName:id,backendName:"webgl",kernelFunc:Zse},Jse=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${a}; j <= ${a}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${o}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${i};
setOutput(val);
}
`}},Qse=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${a};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${a}; j <= ${a}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${i};
setOutput(result);
}
`}},ere=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,c=K().getBool("WEBGL_PACK_NORMALIZATION")?new Qse(r.shape,a,o,i,l):new Jse(r.shape,a,o,i,l);return n.runWebGLProgram(c,[r],r.dtype)},tre={kernelName:ld,backendName:"webgl",kernelFunc:ere},nre=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${s}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${s})
* float(${r})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},sre=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s,d=new nre(r.shape,i,l,c,u);return n.runWebGLProgram(d,[r,a,o],r.dtype)},rre={kernelName:Ph,backendName:"webgl",kernelFunc:sre};function are(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Rl(i,e.dtype,"max",s),c=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}function V4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=u!=null,p=n.shouldExecuteOnCPU([r]),h=r;if(d){if(p){let y=n.texData.get(h.dataId).values,b=new Array(i);for(let I=0;I<b.length;I++)b[I]=r.shape[u[I]];let w=dx(y,r.shape,r.dtype,u,b);h=n.makeTensorInfo(b,r.dtype);let k=n.texData.get(h.dataId);k.values=w}else h=Vm(r,u,n);c=E.getInnerMostAxes(c.length,i)}E.assertAxesAreInnerMostDims("max",c,i);let[f,m]=E.computeOutAndReduceShapes(h.shape,c),g=f;o&&(g=E.expandShapeToKeepDim(f,l));let A;if(p){let y=n.texData.get(h.dataId).values,b=xJ(y,v.sizeFromShape(m),g,r.dtype);A=n.makeTensorInfo(g,r.dtype);let w=n.texData.get(A.dataId);w.values=b}else A=are(h,m,g,n);return d&&n.disposeIntermediateTensorInfo(h),A}var ore={kernelName:qa,backendName:"webgl",kernelFunc:V4},ire=o4+`
return max(a, b);
`,lre=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Bm+`
return result;
`,ure=Tn({opSnippet:ire,packedOpSnippet:lre,cpuKernelImpl:bJ}),cre={kernelName:Xa,backendName:"webgl",kernelFunc:ure};function dre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;rc(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(E.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return ys({inputs:{x:r},backend:n});let d=new gp(u,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var pre={kernelName:Ka,backendName:"webgl",kernelFunc:dre};function hre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:c}=s,u=[1,1,1],d=E.computePool3DInfo(r.shape,a,o,u,i,c,l),p=new hx(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var fre={kernelName:ud,backendName:"webgl",kernelFunc:hre},mre=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${a} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},gre=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=i-1-e.padInfo.front,d=l-1-e.padInfo.top,p=c-1-e.padInfo.left,h=i*l*c-1;this.userCode=`
const ivec3 pads = ivec3(${u}, ${d}, ${p});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${i};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${o}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function Are(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=E.computePool3DInfo(o.shape,i,l,d,c,u),h=new hx(p,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new gre(p),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var yre={kernelName:Oh,backendName:"webgl",kernelFunc:Are};function xre(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;rc([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=E.computePool2DInfo(i.shape,l,c,1,u,d),h=!0,f=new gp(p,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new mre(p),A=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var bre={kernelName:Fh,backendName:"webgl",kernelFunc:xre};function vre(e,t,n,s){let r=new gp(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new gp(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var wre={kernelName:Mh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;v.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let c=[1,1];v.assert(E.eitherStridesOrDilationsAreOne(a,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let u=E.computePool2DInfo(s.shape,r,a,c,o),[d,p]=vre(s,i,u,l);return[d,p]}};function kre(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Rl(i,"float32","mean",s),c=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}var Sre={kernelName:Za,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=v.parseAxisParam(a,s.shape),c=l,u=E.getAxesPermutation(c,i),d=u!=null,p=o.shouldExecuteOnCPU([s]),h=[],f=s;if(d){if(p){let b=o.texData.get(f.dataId).values,w=new Array(i);for(let N=0;N<w.length;N++)w[N]=s.shape[u[N]];let k=dx(b,s.shape,s.dtype,u,w);f=o.makeTensorInfo(w,s.dtype);let I=o.texData.get(f.dataId);I.values=k}else f=Vm(s,u,o);h.push(f),c=E.getInnerMostAxes(c.length,i)}E.assertAxesAreInnerMostDims("sum",c,i);let[m,g]=E.computeOutAndReduceShapes(f.shape,c),A=m;r&&(A=E.expandShapeToKeepDim(m,l));let x=kre(f,g,A,o);for(let y of h)o.disposeIntermediateTensorInfo(y);return x}};function Ire(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=E.getAxesPermutation(c,i),d=r;u!=null&&(d=jn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,r.shape.length)),E.assertAxesAreInnerMostDims("min",c,i);let[p,h]=E.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Rl(m,m.dtype,"min",n),A;if(o){let x=E.expandShapeToKeepDim(p,l);A=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else A=ve({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var Cre={kernelName:Ya,backendName:"webgl",kernelFunc:Ire},Tre=o4+`
return min(a, b);
`,Nre=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Bm+`
return result;
`,Ere=Tn({opSnippet:Tre,packedOpSnippet:Nre,cpuKernelImpl:vJ}),Rre={kernelName:Ja,backendName:"webgl",kernelFunc:Ere},$re=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let s=e.length,r=yt(s),a=t.map(c=>c[0]).join(","),o=t.map((c,u)=>c[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
int start = ${a};
int end = ${o};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${a});
${r} end = ${r}(${o});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${s}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${i}));
}
`}},_re=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=yt(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=Hn("rc",s),l=Hn("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,p="";if(s===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${d};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${d};
}
source -= start;
`;p=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${u});
${i[s-1]} += 1;
if(${c}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${u});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${d}) +
gte * ((end - 1) * 2 - source + ${d});
source -= start;
`;p=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${u});
${i[s-1]} += 1;
if(${c}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${u});
}
rc = outputLoc;
${i[s-2]} += 1;
if(${i[s-2]} < ${this.outputShape[s-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${u});
${i[s-1]} += 1;
if(${c}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${u});
}
}
`}this.userCode=`
const ${r} start = ${r}(${a});
const ${r} end = ${r}(${o});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${p}
setOutput(result);
}
`}},Dre=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new _re(s.shape,r,a):new $re(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},Pre={kernelName:Qa,backendName:"webgl",kernelFunc:Dre},Fre=`if (b == 0.0) return NAN;
return mod(a, b);`,Ore=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+Bm+`
return result;
`,Mre=Tn({opSnippet:Fre,packedOpSnippet:Ore}),zre={kernelName:bu,backendName:"webgl",kernelFunc:Mre},Lre=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}},Bre=`
if (a == b) {
return 1.0;
};
return a / b;`,Wre=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,U4=Tn({opSnippet:Bre,packedOpSnippet:Wre,checkOutOfBounds:!0}),Vre={kernelName:za,backendName:"webgl",kernelFunc:U4},G4="return a - b;",H4=Tn({opSnippet:G4,packedOpSnippet:G4,supportsComplex:!0,cpuKernelImpl:MJ}),Ure={kernelName:mo,backendName:"webgl",kernelFunc:H4};function j4(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=V4({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=E.expandShapeToKeepDim(i.shape,o),c=ve({inputs:{x:i},backend:n,attrs:{shape:l}}),u=H4({inputs:{a:r,b:c},backend:n}),d=O4({inputs:{x:u},backend:n}),p=Um({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=ve({inputs:{x:p},backend:n,attrs:{shape:l}}),f=U4({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}var Gre={kernelName:ho,backendName:"webgl",kernelFunc:j4};function Hre(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:j4({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),c=l.shape[0],u=l.shape[1],d=new Lre(c,u,a),p=[[o]],h=n.runWebGLProgram(d,[l],"int32",p);return i||n.disposeIntermediateTensorInfo(l),h}var jre={kernelName:zh,backendName:"webgl",kernelFunc:Hre},q4="return -x;";function qre(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=kJ(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return K().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new uc(s.shape,q4):r=new Uo(s.shape,q4),n.runWebGLProgram(r,[s],s.dtype)}var Xre={kernelName:Ni,backendName:"webgl",kernelFunc:qre},Kre=Ks.nonMaxSuppressionV3Impl;function Zre(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,c=n.readSync(r.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=Kre(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Yre={kernelName:Ri,backendName:"webgl",kernelFunc:Zre},Jre=Ks.nonMaxSuppressionV4Impl;function Qre(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),{selectedIndices:p,validOutputs:h}=Jre(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var eae={kernelName:vu,backendName:"webgl",kernelFunc:Qre},tae=Ks.nonMaxSuppressionV5Impl;function nae(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=tae(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var sae={kernelName:$i,backendName:"webgl",kernelFunc:nae},rae=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${s}), float(${n}),
float(index == coords.y)));
}
`}},aae=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=v.sizeFromShape(r.shape),c=new rae(l,a,o,i),u=ve({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(c,[u],r.dtype);n.disposeIntermediateTensorInfo(u);let p=[...r.shape,a],h=ve({inputs:{x:d},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(d),h},oae={kernelName:Di,backendName:"webgl",kernelFunc:aae};function Xm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Ap({inputs:{input:s},backend:n}),a=Xm({inputs:{x:r},backend:n}),o=qm({inputs:{input:s},backend:n}),i=Xm({inputs:{x:o},backend:n}),l=Go({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return yp({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var iae={kernelName:Zi,backendName:"webgl",kernelFunc:Xm};function X4(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Ap({inputs:{input:s},backend:n}),a=X4({inputs:{x:r},backend:n}),o=qm({inputs:{input:s},backend:n}),i=Xm({inputs:{x:o},backend:n}),l=Go({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return yp({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var lae={kernelName:_i,backendName:"webgl",kernelFunc:X4};function uae(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return gx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=gx({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=C4({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var cae={kernelName:Pi,backendName:"webgl",kernelFunc:uae},dae=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let s=e.length,r=yt(s),a=t.map(l=>l[0]).join(","),o=t.map((l,c)=>l[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
int start = ${a};
int end = ${o};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${a});
${r} end = ${r}(${o});
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${r} coords = outC - start;
setOutput(getX(${i}));
}
}
`}},pae=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=yt(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=Hn("rc",s),l=Hn("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
if(${c}) {
`,s===1?"":`}
rc = outputLoc;
${i[s-2]} += 1;
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
if(${c}) {`],p=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
${d[f]}
if (${p}) {
result[${f}] = float(value);
} else {
${r} source = rc - start;
result[${f}] = getChannel(getX(${l.join()}), ${u});
}
`;h+=s===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${a});
const ${r} end = ${r}(${o});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}},K4=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(v.sizeFromShape(r.shape)===0){let c=a.map((u,d)=>u[0]+r.shape[d]+u[1]);return yp({backend:n,attrs:{shape:c,value:o,dtype:r.dtype}})}let i=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new pae(r.shape,a,o):new dae(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},hae={kernelName:to,backendName:"webgl",kernelFunc:K4},fae=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,mae=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+Bm+`
return result;
`,gae=Tn({opSnippet:fae,packedOpSnippet:mae}),Aae={kernelName:no,backendName:"webgl",kernelFunc:gae};function yae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],c=v.parseAxisParam(a,r.shape),u=c,d=E.getAxesPermutation(u,i),p=r;d!=null&&(p=jn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=E.getInnerMostAxes(u.length,i),l.push(p)),E.assertAxesAreInnerMostDims("prod",u,i);let h;if(n.shouldExecuteOnCPU([p])){let f=n.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:A}=IJ(p.shape,p.dtype,f,u);h=n.makeTensorInfo(g,A,m)}else{let[f,m]=E.computeOutAndReduceShapes(p.shape,u),g=v.sizeFromShape(m),A=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,g]}}),x=kd(r.dtype),y=Rl(A,x,"prod",n);h=ve({inputs:{x:y},backend:n,attrs:{shape:f}}),l.push(A),l.push(y)}if(o){l.push(h);let f=E.expandShapeToKeepDim(h.shape,c);h=ve({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var xae={kernelName:Fi,backendName:"webgl",kernelFunc:yae},Z4=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=CJ(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},bae={kernelName:wu,backendName:"webgl",kernelFunc:Z4},vae="return 1.0 / x;",wae=st({opSnippet:vae}),kae={kernelName:ku,backendName:"webgl",kernelFunc:wae},Sae=xr+`
return (x < 0.0) ? 0.0 : x;
`,Iae=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Cae=st({opSnippet:Sae,packedOpSnippet:Iae}),Tae={kernelName:ro,backendName:"webgl",kernelFunc:Cae},Nae=xr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Eae=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Rae=st({opSnippet:Nae,packedOpSnippet:Eae}),$ae={kernelName:oo,backendName:"webgl",kernelFunc:Rae},_ae=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},Dae=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/u[0]},
${c[1]/u[1]},
${c[1]/u[1]});
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
${i}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function Pae(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=K().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Dae(r.shape,l,c,a,o):new _ae(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],"float32")}var Fae={kernelName:ao,backendName:"webgl",kernelFunc:Pae},Oae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${d});
const float invWidthScale = float(${p});
const int winHeight = int(${h});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Mae(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Oae(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var zae={kernelName:Bh,backendName:"webgl",kernelFunc:Mae},Lae=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${p};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},Bae=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/u[0]},
${c[1]/u[1]},
${c[1]/u[1]});
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
${i}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${p};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function Wae(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=K().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Bae(r.shape,l,c,a,o):new Lae(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],r.dtype)}var Vae={kernelName:Su,backendName:"webgl",kernelFunc:Wae},Uae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${d});
const float invWidthScale = float(${p});
const int winHeight = int(${h});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float sourceFracRow =
float(${i[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${i[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${s}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Gae(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Uae(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Hae={kernelName:Lh,backendName:"webgl",kernelFunc:Gae},jae=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=yt(n);this.userCode=`
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},qae=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=Hn("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=yt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${i(s.slice())};
if(${r}){
result.g = ${l(s.slice())};
}
if(${a}) {
result.b = ${c(s.slice())};
if(${r}) {
result.a = ${u(s.slice())};
}
}
setOutput(result);
}
`;function i(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function c(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let f=e.map((A,x)=>p(x,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function Xae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return ys({inputs:{x:r},backend:n});let l=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new qae(r.shape,i):new jae(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var Kae={kernelName:Mi,backendName:"webgl",kernelFunc:Xae},Zae=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${r}
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},Yae={kernelName:Yi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Zae(s.shape,a),[c,u]=E.getImageCenter(o,s.shape[1],s.shape[2]),d=[[c,u,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,d)}},Jae=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,Qae=st({opSnippet:Jae}),eoe={kernelName:zi,backendName:"webgl",kernelFunc:Qae},toe="return inversesqrt(x);",noe=st({opSnippet:toe,cpuKernelImpl:TJ}),soe={kernelName:io,backendName:"webgl",kernelFunc:noe},Y4=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=yt(r.length),l=yt(a.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,d="";s===1?d="i":s===2&&(d="i, coords[1]");let p=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
${i} strides = ${i}(${r});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${u});
flattenedIndex += index * ${h};
}
if (flattenedIndex == coords[0]) {
sum += ${p};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function roe(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=E.calculateShapes(a,r,o),p=[d/c,c];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=ve({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=ve({inputs:{x:a},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new Y4(l,i,h.shape.length,f.shape.length,u,p),A=n.runWebGLProgram(g,[f,h,m],f.dtype),x=ve({inputs:{x:A},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(m),x}var aoe={kernelName:Li,backendName:"webgl",kernelFunc:roe},ooe=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let c=0;c<t.length;c++)l.push(`${o[c]}`),c<e&&i.push(`${o[c]}`);s=i.join(),r=l.join()}let a=yt(n);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
float cVal = getC(${s});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function ioe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new ooe(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],Ln(r.dtype,a.dtype))}var loe={kernelName:Bi,backendName:"webgl",kernelFunc:ioe},uoe=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${E.SELU_SCALEALPHA};
float scale = ${E.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,coe=st({opSnippet:uoe}),doe={kernelName:Iu,backendName:"webgl",kernelFunc:coe},J4="return 1.0 / (1.0 + exp(-1.0 * x));",poe=st({opSnippet:J4,packedOpSnippet:J4,cpuKernelImpl:NJ}),hoe={kernelName:uo,backendName:"webgl",kernelFunc:poe},foe=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,moe=st({opSnippet:foe}),goe={kernelName:Cu,backendName:"webgl",kernelFunc:moe},Aoe=d4+`
return sin(x);
`,yoe=st({opSnippet:Aoe}),xoe={kernelName:lo,backendName:"webgl",kernelFunc:yoe},boe=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,voe=st({opSnippet:boe}),woe={kernelName:Vi,backendName:"webgl",kernelFunc:voe},koe=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,Soe=st({opSnippet:koe}),Ioe={kernelName:Tu,backendName:"webgl",kernelFunc:Soe},Coe=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((A,x)=>A*x),l=[[0,0]];l.push(...o);for(let A=1+a.length;A<r.shape.length;++A)l.push([0,0]);let c=[],u=K4({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=E.getReshaped(u.shape,a,i,!1),p=E.getPermuted(d.length,a.length,!1),h=E.getReshapedPermuted(u.shape,a,i,!1),f=ve({inputs:{x:u},backend:n,attrs:{shape:d}}),m=jn({inputs:{x:f},backend:n,attrs:{perm:p}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:h}});return c.push(u),c.push(f),c.push(m),c.forEach(A=>n.disposeIntermediateTensorInfo(A)),g},Toe={kernelName:Ui,backendName:"webgl",kernelFunc:Coe};function Noe(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=n.readSync(o.dataId)[0],[d,p,h,f,m]=RJ(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Eoe={kernelName:Wh,backendName:"webgl",kernelFunc:Noe};function Roe(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[c,u,d]=$J(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var $oe={kernelName:Vh,backendName:"webgl",kernelFunc:Roe};function _oe(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=YI(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var Doe={kernelName:Uh,backendName:"webgl",kernelFunc:_oe};function Poe(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=YI(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var Foe={kernelName:Gh,backendName:"webgl",kernelFunc:Poe};function Ooe(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,strides:u,outputSize:d}=E.calculateShapes(a,r,i),p=!1,h=new Y4(c,l,r.shape.length,a.shape.length,u,[d,1],p),f=n.runWebGLProgram(h,[a,r,o],a.dtype),m=ve({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var Moe={kernelName:dd,backendName:"webgl",kernelFunc:Ooe};function zoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=r.shape.length,u=new Array(c).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=dc({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var Loe={kernelName:Gi,backendName:"webgl",kernelFunc:zoe},Q4="return sqrt(x);",Boe=st({opSnippet:Q4,packedOpSnippet:Q4,cpuKernelImpl:_J}),Woe={kernelName:co,backendName:"webgl",kernelFunc:Boe},Voe="return x * x;",Uoe=st({opSnippet:Voe}),Goe={kernelName:Nu,backendName:"webgl",kernelFunc:Uoe},eC="return (a - b) * (a - b);",Hoe=Tn({opSnippet:eC,packedOpSnippet:eC}),joe={kernelName:fo,backendName:"webgl",kernelFunc:Hoe};function qoe({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=xr+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,a=new Uo(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var Xoe={kernelName:yo,backendName:"webgl",kernelFunc:qoe},Koe=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=yt(n.length),a=yt(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,c)=>(i++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${i-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${o}));
}
`}};function Zoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:A,begin:x,end:y,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,c,u,d,p),w;if(m)w=ve({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||A){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let I=Ft.computeOutShape(x,y,b),N=dc({inputs:{x:r},backend:n,attrs:{begin:x,size:I}});w=ve({inputs:{x:N},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(N)}else if(n.shouldExecuteOnCPU([r])){let N=n.readSync(r.dataId),$=ze(r.shape,r.dtype,N),O=DJ(h,$,b,x);w=n.makeTensorInfo(f,r.dtype,O.values)}else{let N=new Koe(x,b,h);w=n.runWebGLProgram(N,[r],r.dtype)}let k=ve({inputs:{x:w},backend:n,attrs:{shape:f}});return n.disposeIntermediateTensorInfo(w),k}var Yoe={kernelName:Hi,backendName:"webgl",kernelFunc:Zoe};function Joe(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=PJ(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Qoe={kernelName:pd,backendName:"webgl",kernelFunc:Joe};function eie(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[c,u,d]=FJ(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var tie={kernelName:Hh,backendName:"webgl",kernelFunc:eie};function nie(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=OJ(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var sie={kernelName:jh,backendName:"webgl",kernelFunc:nie},rie="return tan(x);",aie=st({opSnippet:rie}),oie={kernelName:ji,backendName:"webgl",kernelFunc:aie},iie=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,lie=st({opSnippet:iie}),uie={kernelName:go,backendName:"webgl",kernelFunc:lie},cie=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=yt(this.rank),r=die(e);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function die(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function tC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),c=r.dtype==="string"?l.map(p=>v.decodeString(p)):l,u=ze(r.shape,r.dtype,c),d=zJ(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new cie(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var pie={kernelName:qr,backendName:"webgl",kernelFunc:tC},hie=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},fie=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function $l(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function nC(e){let t=1;for(;t<e;)t*=2;return t}function mie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=K().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=K().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),c=r.shape,u=c[c.length-1];if(n.shouldExecuteOnCPU([r])||u<i||a>l){let O=n.readSync(r.dataId),[D,R]=LJ(O,c,r.dtype,a,o);return[n.makeTensorInfo(D.shape,D.dtype,D.values),n.makeTensorInfo(R.shape,R.dtype,R.values)]}if(a===0)return c[c.length-1]=0,[n.makeTensorInfo(c,r.dtype,[]),n.makeTensorInfo(c,"int32",[])];if(u===1)return[r,yp({attrs:{shape:c,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),p=d!==null&&d.isPacked,h=p?n.unpackTensor(r):r,m=v.sizeFromShape(c)/u,g=ve({inputs:{x:h},attrs:{shape:[m,u]},backend:n});p&&$l(n,h);let A=nC(a),x=nC(u),y=null,b=()=>y===null?[g,g]:[g,y],w=(O,D,R)=>{let T=b(),F=new hie(R),j=[[u],[y===null?1:0],[Number.NEGATIVE_INFINITY],[O],[D]],z=y;y=n.runWebGLProgram(F,T,"int32",j),$l(n,z)};for(let O=1;O<A;O*=2){let D=O*2;for(let R=O;R>=1;R/=2)w(D,R,[m,x])}for(let O=x;O>A;O/=2){let D=b(),R=new fie([m,O/2]),F=[[u],[y===null?1:0],[A]],U=y;y=n.runWebGLProgram(R,D,"int32",F),$l(n,U);let j=A/2,z=j*2;for(let X=j;X>=1;X/=2)w(z,X,y.shape)}let k=y;y=dc({inputs:{x:y},backend:n,attrs:{begin:0,size:[m,a]}}),$l(n,k);let I=W4({inputs:{x:g,indices:y},backend:n,attrs:{axis:1,batchDims:1}});$l(n,g);let N=c.slice(0,-1);N.push(a),k=y,y=ve({inputs:{x:y},attrs:{shape:N},backend:n}),$l(n,k);let $=I;return I=ve({inputs:{x:I},attrs:{shape:N},backend:n}),$l(n,$),[I,y]}var gie={kernelName:qi,backendName:"webgl",kernelFunc:mie},Aie=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${i} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${i} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${i} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${r});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${r});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${o} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function yie(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=new Aie(d,p,o,i,l,g);return n.runWebGLProgram(A,[r,a],"float32")}var xie={kernelName:Xi,backendName:"webgl",kernelFunc:yie};function bie(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;rc(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:c}=BJ(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var vie={kernelName:qh,backendName:"webgl",kernelFunc:bie};function wie(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],c=new Array(i-1),u=0;for(let m=0;m<i;m++)m!==a&&(c[u++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[a]=m;let g=dc({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),A=ve({inputs:{x:g},backend:n,attrs:{shape:c}});f[m]=A,d.push(g)}return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var kie={kernelName:Ki,backendName:"webgl",kernelFunc:wie},Sie=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,d=`
sumValue += dot(values, segFilter);
`,p="";r%n>0&&(p=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${i};
float getValue(int batch, int inIdx) {
${p}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${a})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${a})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${d}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${d}
} else if (${u===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${d}
} else if (${u===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${d}
}
setOutput(${l});
}
`}};function Iie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],c=0,u=E.getAxesPermutation([c],i),d=r;u!=null&&(d=jn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(d),c=E.getInnerMostAxes(1,i)[0]);let p=E.segment_util.computeOutShape(d.shape,c,o),h=v.sizeFromShape([d.shape[c]]),f=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=kd(r.dtype),g=(b,w,k,I,N)=>{let $=b.shape[0],O=b.shape[1],D=E.segment_util.segOpComputeOptimalWindowSize(O,N),R={windowSize:D,inSize:O,batchSize:$,numSegments:N},T=new Sie(R,w),F=n.compileAndRun(T,[b,k],I);if(l.push(F),F.shape[1]===N)return F;let U=Z4({backend:n,attrs:{start:0,stop:N,step:1,dtype:"float32"}}),j=tC({inputs:{x:U},backend:n,attrs:{reps:[O/D]}});return l.push(U),l.push(j),g(F,w,j,I,N)},A=g(f,"unsortedSegmentSum",a,m,o),x=ve({inputs:{x:A},backend:n,attrs:{shape:p}}),y=x;if(u!=null){l.push(x);let b=E.getUndoAxesPermutation(u);y=jn({inputs:{x:y},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var Cie={kernelName:hd,backendName:"webgl",kernelFunc:Iie},Tie=[tre,rre,LQ,WQ,GQ,qQ,KQ,JQ,eee,nee,oee,lee,dee,fee,vee,Aee,See,Nee,Cee,_ee,Pee,Oee,Bee,qee,Kee,Yee,ste,ate,ute,pte,bQ,Ate,Tte,Ete,vte,Dte,Fte,$te,zte,Wte,Gte,jte,Xte,Yte,sne,ane,Qte,lne,dne,hne,Ane,vne,Ine,Nne,Ene,Rne,_ne,Pne,One,zne,Bne,Gne,qne,Zne,Jne,tse,rse,lse,pse,xQ,fse,mte,Ase,bse,kse,wQ,Tse,$se,Dse,Bse,Mse,Gse,qse,Yse,ore,fre,pre,yre,bre,wre,cre,Sre,Cre,Rre,Pre,zre,jre,TQ,Xre,Yre,eae,sae,Qee,oae,lae,cae,hae,Aae,SQ,xae,bae,ete,Vre,kae,$ae,Tae,EQ,Fae,zae,Vae,Hae,Kae,Yae,eoe,soe,aoe,loe,doe,hoe,goe,xoe,woe,Hee,Gre,Ioe,Toe,Eoe,$oe,Doe,Foe,Moe,Loe,Woe,Goe,joe,Xoe,Yoe,Qoe,tie,sie,Ure,OQ,oie,uie,pie,gie,xie,MQ,vie,kie,Cie,iae];for(let e of Tie)or(e);var Wr=K();Wr.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);Wr.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);Wr.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);Wr.registerFlag("WEBGPU_USE_NAIVE_CONV2D",()=>!1);Wr.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);Wr.registerFlag("WEBGPU_CONV_SEPARATE_IM2COL_SHADER",()=>!1);Wr.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);Wr.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);Wr.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);Wr.registerFlag("WEBGPU_USE_IMPORT",()=>!1);function Nie(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function wn(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";throw Error(`GPU for rank ${e} is not yet supported`)}function Km(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function Zm(){return`
[[stage(compute), workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)]]
`}function Ax(){return`
${Zm()}
fn main([[builtin(local_invocation_id)]] localId : vec3<u32>,
[[builtin(global_invocation_id)]] globalId : vec3<u32>,
[[builtin(num_workgroups)]] numWorkgroups: vec3<u32>)
`}function Ho(){return`
${Zm()}
fn main([[builtin(local_invocation_id)]] localId : vec3<u32>,
[[builtin(global_invocation_id)]] globalId : vec3<u32>)
`}function nt(){return`
${Ax()} {
let index = getGlobalIndex(globalId, localId, numWorkgroups);
`}function Eie(e,t,n,s=!1){let r=`
let workGroupSizeX = ${n.workGroupSize[0]}u;
let workGroupSizeY = ${n.workGroupSize[1]}u;
let workGroupSizeZ = ${n.workGroupSize[2]}u;`;if(s===!0){let h=aC(t.shape),f=`
[[block]] struct Matrix0 {
numbers: array<${Km(t.dtype,n.isVec4)}>;
};
[[block]] struct Uniform {
size : i32;
numChannels : i32;
outShapeStrides : vec2<i32>;
dispatchSize : vec3<u32>;
};
[[group(0), binding(0)]] var<storage, write> result : Matrix0;
[[group(0), binding(2)]] var<uniform> uniforms: Uniform;
`;return[sC,f,r,rC,h,n.getUserCode()].join(`
`)}let a=[],o="[[block]] struct Uniforms { NAN : f32; ";n.variableNames.forEach((h,f)=>{o+=`${h.charAt(0).toLowerCase()+h.slice(1)}Shape : ${wn(e[f].shape.length)}; `}),o+=`outShape : ${wn(t.shape.length)} ; `;let i=t.shape.length-1;o+=`
outShapeStrides: ${wn(i)}; `,n.size&&(o+="size : i32; "),n.uniforms&&(o+=n.uniforms),o+="};",a.push(o),n.atomic?a.push(`
[[block]] struct Matrix0 {
numbers: array<atomic<i32>>;
};
[[group(0), binding(0)]] var<storage, read_write> result : Matrix0;
`):a.push(`
[[block]] struct Matrix0 {
numbers: array<${Km(t.dtype,n.isVec4)}>;
};
[[group(0), binding(0)]] var<storage, write> result : Matrix0;
`),n.variableNames.forEach((h,f)=>{a.push(`
[[block]] struct Matrix${1+f} {
numbers: array<${Km(e[f].dtype,n.isVec4)}>;
};
[[group(0), binding(${1+f})]] var<storage, read> ${h} : Matrix${1+f};
`)}),o!==""&&a.push(`
[[group(0), binding(${1+n.variableNames.length})]] var<uniform> uniforms : Uniforms;
`),a.push(r);let[l,c]=Fie(t.shape,n.dispatchLayout),u=aC(t.shape),d=[sC,a.join(`
`),rC,u,l,Rie(t.shape.length)];if(n.atomic||d.push($ie(t.shape,t.dtype,n.isVec4)),c===t.shape.length){let h=e.map(f=>_ie(f,t.shape,n.isVec4,n.dispatchLayout.x.length===t.shape.length)).join(`
`);d.push(h)}return d.push(n.getUserCode()),d.join(`
`)}var sC=`
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
var res: i32 = a / b;
let mod: i32 = a % b;
if (sign < 0. && mod != 0) {
res = res - 1;
}
return res;
}
fn isNanCustom(val : f32) -> bool {
if (val > 0.0) {
return false;
}
if (val < 0.0) {
return false;
}
if (val == 0.0) {
return false;
}
return true;
}
fn isNanCustomVec4F32(val : vec4<f32>) -> vec4<f32> {
var res = vec4<f32> (0.0);
for (var i = 0u; i < 4u; i = i + 1u) {
if (isNanCustom(val[i])) {
res[i] = 1.0;
} else {
res[i] = 0.0;
}
}
return res;
}
// Checks whether coordinates lie within the bounds of the shape.
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
return all(coord >= vec4<i32>(0)) &&
all(coord < shape);
}
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
return all(coord >= vec3<i32>(0)) &&
all(coord < shape);
}
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
return all(coord >= vec2<i32>(0)) &&
all(coord < shape);
}
`,rC=`
fn getFlatIndex1D(coord : i32, shape : i32) -> i32 {
return coord;
}
fn getFlatIndex2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
return i32(dot(vec2<f32>(coords), vec2<f32>(f32(shape.y), 1.0)));
}
fn getFlatIndex3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
return i32(dot(vec3<f32>(coords), vec3<f32>(f32(shape.y) * f32(shape.z), f32(shape.z), 1.0)));
}
fn getFlatIndex4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
return i32(dot(vec4<f32>(coords), vec4<f32>(
f32(shape.y) * f32(shape.z) * f32(shape.w), f32(shape.z) * f32(shape.w), f32(shape.w), 1.0)));
}
// Only used when the y/z dimension of workgroup size is 1.
fn getGlobalIndex(globalId : vec3<u32>, localId : vec3<u32>, numWorkgroups: vec3<u32>) -> i32 {
if (numWorkgroups.y == 1u && numWorkgroups.z == 1u) {
return i32(globalId.x);
}
let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
localId.y * workGroupSizeX + localId.x;
let workGroupID = (globalId - localId)/vec3<u32>(
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +
workGroupID.y * numWorkgroups.x + workGroupID.x) *
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
localInvocationIndex);
}
`;function Rie(e){let t="";switch(e){case 0:case 1:t+=`
fn getOutputFlatIndex(coords : i32) -> i32 {
return coords;
}
`;break;case 2:t+=`
fn getOutputFlatIndex(coords : vec2<i32>) -> i32 {
return i32(dot(vec2<f32>(coords), vec2<f32>(f32(uniforms.outShapeStrides), 1.0)));
}
`;break;case 3:t+=`
fn getOutputFlatIndex(coords : vec3<i32>) -> i32 {
return i32(dot(vec3<f32>(coords), vec3<f32>(f32(uniforms.outShapeStrides.x), f32(uniforms.outShapeStrides.y), 1.0)));
}
`;break;case 4:t+=`
fn getOutputFlatIndex(coords : vec4<i32>) -> i32 {
return i32(dot(vec4<f32>(coords), vec4<f32>(
f32(uniforms.outShapeStrides.x), f32(uniforms.outShapeStrides.y), f32(uniforms.outShapeStrides.z), 1.0)));
}
`;break;default:v.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function $ie(e,t,n){let s=e.length,r=Km(t,n),a;if(n?a=`fn setOutputFlat(flatIndex : i32, value : vec4<f32>) {
result.numbers[flatIndex] = ${r}(value);
}
fn setOutputFlatI32(flatIndex : i32, value : vec4<i32>) {
result.numbers[flatIndex] = ${r}(value);
}`:a=`fn setOutputFlat(flatIndex : i32, value : f32) {
result.numbers[flatIndex] = ${r}(value);
}
fn setOutputFlatI32(flatIndex : i32, value : i32) {
result.numbers[flatIndex] = ${r}(value);
}`,s>=2){let o=["d0","d1","d2","d3"].slice(0,s),i=wn(s);n?a+=`
fn setOutput(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<f32>) {
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
setOutputFlat(flatIndex / 4, value);
}
fn setOutputI32(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<i32>) {
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
setOutputFlatI32(flatIndex / 4, value);
}
`:a+=`
fn setOutput(${o.map(l=>`${l} : i32`).join(", ")}, value : f32) {
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
setOutputFlat(flatIndex, value);
}
fn setOutputI32(${o.map(l=>`${l} : i32`).join(", ")}, value : i32) {
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
setOutputFlatI32(flatIndex, value);
}
`}return a}function _ie(e,t,n,s){let r=Die(e,n);return e.shape.length<=t.length&&(r+=Pie(e,t,n,s)),r}function Die(e,t){let n=e.name,s=e.shape.length,r=wn(s),a="get"+n.charAt(0).toUpperCase()+n.slice(1),o=["d0","d1","d2","d3"].slice(0,s),i=o.map(u=>`${u} : i32`).join(", ");if(s<1)return t?`
fn ${a}() -> vec4<f32> {
return vec4<f32>(${n}.numbers[0]);
}
`:`
fn ${a}() ->f32 {
return f32(${n}.numbers[0]);
}
`;let l=`uniforms.${n.charAt(0).toLowerCase()+n.slice(1)}Shape`,c=`${s}D`;return s===0&&(c="1D"),t?`
fn ${a}(${i}) -> vec4<f32> {
return vec4<f32>(${n}.numbers[getFlatIndex${c}(${r}(${o.join(",")}),
${l}) / 4]);
}
`:`
fn ${a}(${i}) -> f32 {
return f32(${n}.numbers[getFlatIndex${c}(${r}(${o.join(",")}),
${l})]);
}
`}function Pie(e,t,n,s){let r=e.name,a=r.charAt(0).toUpperCase()+r.slice(1),o="get"+a+"AtOutCoords",i=e.shape.length,l=t.length,c=wn(l);if(v.arraysEqual(e.shape,t)&&s)return n?`
fn ${o}ByGlobalIndex(globalIndex : i32) -> vec4<f32> {
return vec4<f32>(${r}.numbers[globalIndex]);
}
fn ${o}ByCoords(coords : ${c}) -> vec4<f32> {
return vec4<f32>(${r}.numbers[${l>1?"getOutputFlatIndex(coords)":"coords"} / 4]);
}
`:`
fn ${o}ByGlobalIndex(globalIndex : i32) -> f32 {
return f32(${r}.numbers[globalIndex]);
}
fn ${o}ByCoords(coords : ${c}) -> f32 {
return f32(${r}.numbers[${l>1?"getOutputFlatIndex(coords)":"coords"}]);
}
`;let u=E.getBroadcastDims(e.shape,t),d=l-i,p="";if(i===0)return n?`
fn ${o}ByGlobalIndex(globalIndex : i32) -> vec4<f32> {
return get${a}();
}
fn ${o}ByCoords(coords : ${c}) -> vec4<f32> {
return get${a}();
}
`:`
fn ${o}ByGlobalIndex(globalIndex : i32) -> f32{
return get${a}();
}
fn ${o}ByCoords(coords : ${c}) -> f32{
return get${a}();
}
`;l<2&&u.length>=1?p="coords = 0;":p=u.map(g=>`coords[${g+d}] = 0;`).join(`
`);let h="";if(l<2&&i>0)h="coords";else if(l>1){let g=wn(i),A=e.shape.map((x,y)=>`coords[${y+d}]`).join(", ");h=`${g}(${A})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${i}D`;return n?`
fn ${o}ByGlobalIndex(globalIndex : i32) -> vec4<f32> {
var coords = getCoordsFromFlatIndex(globalIndex);
${p}
return ${r}.numbers[getFlatIndex${m}(${h}, ${f}) / 4];
}
fn ${o}ByCoords(coordsIn : ${c}) -> vec4<f32> {
var coords = coordsIn;
${p}
return ${r}.numbers[getFlatIndex${m}(${h}, ${f}) / 4];
}
`:`
fn ${o}ByGlobalIndex(globalIndex : i32) -> f32 {
var coords = getCoordsFromFlatIndex(globalIndex);
${p}
return f32(${r}.numbers[getFlatIndex${m}(${h}, ${f})]);
}
fn ${o}ByCoords(coordsIn : ${c}) -> f32 {
var coords = coordsIn;
${p}
return f32(${r}.numbers[getFlatIndex${m}(${h}, ${f})]);
}
`}function Fie(e,t){let{x:n,y:s=[],z:r=[]}=t,a=e.length;if(n.length===a)return[`fn getOutputCoordsWithFlatDispatchLayout(globalId : vec3<u32>, localId : vec3<u32>, numWorkgroups: vec3<u32>) -> ${wn(a)}{
let globalIndex = getGlobalIndex(globalId, localId, numWorkgroups);
return getCoordsFromFlatIndex(globalIndex);
}
`,a];let o="",i=[n,s,r],l=0;for(let p=0;p<i.length;p++){let h=i[p];if(h.length!==0)if(l+=h.length,h.length===1)o+=`let d${h[0]} = i32(globalId[${p}]);`;else{let f=Nie(h,"uniforms.outShape");o+=`var index${p} = i32(globalId[${p}]);`;for(let m=0;m<f.length;m++)o+=`let d${h[m]} = index${p} / ${f[m]};`,m===f.length-1?o+=`let d${h[m+1]} = index${p} - d${h[m]} * ${f[m]};`:o+=`index${p} = index${p} - d${h[m]} * ${f[m]};`}}let c=[];for(let p=0;p<l;p++)c.push(`d${p}`);let u=wn(l),d=`fn getOutputCoordsWithNonFlatDispatchLayout(globalId : vec3<u32>) -> ${u} {
${o}
`;return c.length===0?d+=`return ${u}(0); }`:d+=`return ${u}(${c.join(",")}); }`,[d,l]}function aC(e){let t=e.length;if(t<=1)return"fn getCoordsFromFlatIndex(index : i32) -> i32 { return index; }";let n=v.computeStrides(e),s=wn(t),r=[];for(let o=0;o<t;o++)r.push(`d${o}`);if(n.length===1)return` fn getCoordsFromFlatIndex(index : i32) -> vec2<i32> {
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
return vec2<i32>(d0, d1);
}`;let a="var index2 = index;"+n.map((o,i)=>{let l=`let ${r[i]} = index2 / uniforms.outShapeStrides[${i}]`,c=i===n.length-1?`let ${r[i+1]} = index2 - ${r[i]} * uniforms.outShapeStrides[${i}]`:`index2 = index2 - ${r[i]} * uniforms.outShapeStrides[${i}]`;return`${l}; ${c};`}).join("");return`
fn getCoordsFromFlatIndex(index : i32) -> ${s} {
${a}
return ${s}(${r.join(",")});
}
`}var oC={};Oe(oC,{ArrayBufferToTypedArray:()=>iC,GPUBytesPerElement:()=>vx,computeDispatch:()=>Fe,computeWorkGroupSizeForConv2d:()=>yx,computeWorkGroupSizeForMatMul:()=>xx,computeWorkPerThreadForConv2d:()=>bx,flatDispatchLayout:()=>je,isWebGPUSupported:()=>wx,tilesFitEvenlyIntoShape:()=>aa});var fc=65535,_l=e=>{let t=1;for(let n=0;n<e.length;n++)t*=e[n];return t};function aa(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((n,s)=>n%e[s]==0)}function Fe(e,t,n=[1,1,1],s=[1,1,1]){let[r,a,o]=[Math.ceil(_l(e.x.map(l=>t[l]))/(n[0]*s[0])),e.y?Math.ceil(_l(e.y.map(l=>t[l]))/(n[1]*s[1])):1,e.z?Math.ceil(_l(e.z.map(l=>t[l]))/(n[2]*s[2])):1];if(r<=fc&&a<=fc&&o<=fc)return[r,a,o];v.assert(r>fc&&e.y===void 0&&e.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let i=Math.ceil(Math.sqrt(r));return i>fc?(i=Math.ceil(Math.cbrt(r)),v.assert(i<=fc,()=>"Total dispatch size exceeds WebGPU maximum."),[i,i,i]):[i,i,1]}function yx(e,t){let n=_l(e.x.map(r=>t[r])),s=_l(e.y.map(r=>t[r]));return n<=4?[4,16,1]:s<=4?[16,4,1]:[16,16,1]}function xx(e,t,n){return e===1?[32,1,1]:n===1?[1,32,1]:[8,8,1]}function bx(e,t){let n=_l(e.x.map(r=>t[r])),s=_l(e.y.map(r=>t[r]));return n<=4?[1,2,1]:s<=4?[2,1,1]:[2,2,1]}function je(e){return{x:e.map((t,n)=>n)}}function vx(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function iC(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string"){let n=new Int32Array(e),s=new ArrayBuffer(n.length),r=new Uint8Array(s);for(let a=0;a<n.length;a++)r[a]=n[a];return r}else throw new Error(`Unknown dtype ${t}`)}function wx(){return!!navigator.gpu}var Vt;(function(e){e[e.MUL=0]="MUL",e[e.ADD=1]="ADD",e[e.SUB=2]="SUB",e[e.DIV=3]="DIV",e[e.EQUAL=4]="EQUAL",e[e.GREATER=5]="GREATER",e[e.GREATER_EQUAL=6]="GREATER_EQUAL",e[e.LESS=7]="LESS",e[e.LESS_EQUAL=8]="LESS_EQUAL",e[e.LOGICAL_AND=9]="LOGICAL_AND",e[e.NOT_EQUAL=10]="NOT_EQUAL",e[e.SQUARED_DIFFERENCE=11]="SQUARED_DIFFERENCE",e[e.INT_DIV=12]="INT_DIV",e[e.POW=13]="POW",e[e.PRELU=14]="PRELU",e[e.MAX=15]="MAX",e[e.MIN=16]="MIN",e[e.COMPLEX_MULTIPLY_REAL=17]="COMPLEX_MULTIPLY_REAL",e[e.COMPLEX_MULTIPLY_IMAG=18]="COMPLEX_MULTIPLY_IMAG"})(Vt||(Vt={}));var Oie="return a + b;",Mie="return areal * breal - aimag * bimag;",zie="return areal * bimag + aimag * breal;",Lie="return a / b;",Bie="return a * b;",Wie="return (a - b) * (a - b);",Vie="return a - b;",Uie="return f32(a == b);",Gie="return vec4<f32>(a == b);",Hie="return f32(a > b);",jie="return vec4<f32>(a > b);",qie="return f32(a >= b);",Xie="return vec4<f32>(a >= b);",Kie="return f32(a < b);",Zie="return vec4<f32>(a < b);",Yie="return f32(a <= b);",Jie="return vec4<f32>(a <= b);",Qie="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",ele=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
vec4<f32>(b >= vec4<f32>(1.0)));`,tle=`
if (isNanCustom(a)) { return a; }
if (isNanCustom(b)) { return b; }
`,lC=`
if (isNaN.r > 0.) {
resultTemp.r = uniforms.NAN;
}
if (isNaN.g > 0.) {
resultTemp.g = uniforms.NAN;
}
if (isNaN.b > 0.) {
resultTemp.b = uniforms.NAN;
}
if (isNaN.a > 0.) {
resultTemp.a = uniforms.NAN;
}
`,nle=`
let s = sign(a) * sign(b);
let ia = i32(round(a));
let ib = i32(round(b));
return f32(idiv(ia, ib, s));
`,sle=`
let ia = vec4<i32>(round(a));
let ib = vec4<i32>(round(b));
let cond = ib != vec4<i32>(0);
var resultTemp = vec4<i32>(0);
let s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4<f32>(resultTemp);
`,rle="return f32(a != b);",ale="return vec4<f32>(a != b);",ole=`
if(a < 0.0 && floor(b) < b) {
return uniforms.NAN;
}
if (b == 0.0) {
return 1.0;
}
if (round(abs(b) % 2.0) != 1.0) {
return pow(abs(a), b);
}
return sign(a) * pow(abs(a), b);
`,ile=`
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
let isModRound1 = vec4<f32>(isModRound1Bool);
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
var resultTemp = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
let isExpZero = b == vec4<f32>(0.0);
if (isExpZero.r) {
resultTemp.r = 1.0;
}
if (isExpZero.g) {
resultTemp.g = 1.0;
}
if (isExpZero.b) {
resultTemp.b = 1.0;
}
if (isExpZero.a) {
resultTemp.a = 1.0;
}
let isNaN = vec4<f32>(a < vec4<f32>(0.0)) * vec4<f32>(floor(b) < b);
${lC}
return resultTemp;
`,lle="if (a < 0.0) { return b * a; } return a;",ule=`
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
`;function uC(e,t){let n=t?lC:tle;return t?`
var resultTemp = vec4<f32>(${e}(a, b));
let isNaN = min(vec4<f32>(isNanCustomVec4F32(a)) + vec4<f32>(isNanCustomVec4F32(b)), vec4<f32>(1.0));
`+n+`
return resultTemp;
`:n+`
return ${e}(a, b);
`}function xp(e,t){switch(e){case 0:return Bie;case 1:return Oie;case 2:return Vie;case 3:return Lie;case 4:return t?Gie:Uie;case 5:return t?jie:Hie;case 6:return t?Xie:qie;case 7:return t?Zie:Kie;case 8:return t?Jie:Yie;case 9:return t?ele:Qie;case 10:return t?ale:rle;case 11:return Wie;case 12:return t?sle:nle;case 14:return t?ule:lle;case 15:return uC("max",t);case 16:return uC("min",t);case 13:return t?ile:ole;case 17:return Mie;case 18:return zie;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var xt;(function(e){e[e.ABS=0]="ABS",e[e.CEIL=1]="CEIL",e[e.COS=2]="COS",e[e.COSH=3]="COSH",e[e.ELU=4]="ELU",e[e.EXP=5]="EXP",e[e.EXPM1=6]="EXPM1",e[e.FLOOR=7]="FLOOR",e[e.LINEAR=8]="LINEAR",e[e.LOG=9]="LOG",e[e.LOGICAL_NOT=10]="LOGICAL_NOT",e[e.NEG=11]="NEG",e[e.PRELU=12]="PRELU",e[e.RELU=13]="RELU",e[e.RELU6=14]="RELU6",e[e.RSQRT=15]="RSQRT",e[e.SIN=16]="SIN",e[e.SINH=17]="SINH",e[e.SIGMOID=18]="SIGMOID",e[e.SQRT=19]="SQRT",e[e.SQUARE=20]="SQUARE",e[e.TANH=21]="TANH",e[e.TO_INT=22]="TO_INT"})(xt||(xt={}));var cle="return abs(a);",dle="return ceil(a);",ple="return cos(a);",hle=`
let e2x = exp(-a);
return (e2x + 1.0 / e2x) / 2.0;
`,fle="return exp(a) - 1.0;",mle="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",gle=`
var resFloat = exp(a) - vec4<f32>(1.0);
if (a.r >= 0.0) {
resFloat.r = a.r;
}
if (a.g >= 0.0) {
resFloat.g = a.g;
}
if (a.b >= 0.0) {
resFloat.b = a.b;
}
if (a.a >= 0.0) {
resFloat.a = a.a;
}
return resFloat;
`,Ale="return exp(a);",yle="return floor(a);",xle="return a;",ble=`if (a < 0.0) { return 1.0/0.0; }
return log(a);`,vle="return f32(!(a >= 1.0));",wle="return -a;",kle="return (a < 0.0) ? b * a : a;",Sle="return max(a, 0.0);",Ile="return clamp(a, 0.0, 6.0);",Cle="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",Tle=`
var resFloat = a * vec4<f32>(a >= vec4<f32>(0.0));
let isNaN = isNan(a);
if (isNaN.r) {
resFloat.r = a.r;
}
if (isNaN.g) {
resFloat.g = a.g;
}
if (isNaN.b) {
resFloat.b = a.b;
}
if (isNaN.a) {
resFloat.a = a.a;
}
return resFloat;
`,Nle="return 1.0/sqrt(a);",Ele="return 1.0 / (1.0 + exp(-1.0 * a));",Rle="return sin(a);",$le=`
let e2x = exp(a);
return (e2x - 1.0 / e2x) / 2.0;
`,_le="return sqrt(a);",Dle="return a * a;",Ple=`
let e2x = exp(-2.0 * abs(a));
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
`,Fle="return f32(i32((a)));";function mc(e,t){switch(e){case 0:return cle;case 2:return ple;case 3:return hle;case 1:return dle;case 4:return t?gle:mle;case 5:return Ale;case 6:return fle;case 7:return yle;case 8:return xle;case 9:return ble;case 10:return vle;case 11:return wle;case 12:return kle;case 13:return t?Tle:Sle;case 14:return t?Cle:Ile;case 15:return Nle;case 18:return Ele;case 16:return Rle;case 17:return $le;case 19:return _le;case 20:return Dle;case 21:return Ple;case 22:return Fle;default:throw new Error(`BinaryType ${e} is not implemented!`)}}function oa(e,t=!1){if(e===null)return null;if(e==="linear")return mc(xt.LINEAR);if(e==="relu")return mc(xt.RELU,t);if(e==="elu")return mc(xt.ELU,t);if(e==="relu6")return mc(xt.RELU6,t);if(e==="prelu")return xp(Vt.PRELU,t);if(e==="sigmoid")return mc(xt.SIGMOID);throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`)}function cC(e,t){let n={RowPerThread:e[1],ColPerThread:e[0],TileAOuter:t[1]*e[1],TileBOuter:t[0]*e[0],TileInner:t[0]*e[0]};return`
var<workgroup> mm_Asub : array<array<vec4<f32>, ${n.TileInner/n.ColPerThread}>, ${n.TileAOuter}>;
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${n.TileBOuter/n.ColPerThread}>, ${n.TileInner}>;
let RowPerThread = ${n.RowPerThread};
let ColPerThread = ${n.ColPerThread}; // only support ColPerThread = 4
let TileAOuter = ${n.TileAOuter};
let TileBOuter = ${n.TileBOuter};
let TileInner = ${n.TileInner};
${Ho()} {
let tileRow = i32(localId.y) * RowPerThread;
let tileCol = i32(localId.x);
let globalRow = i32(globalId.y) * RowPerThread;
let globalCol = i32(globalId.x);
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
var acc: array<vec4<f32>, ${n.RowPerThread}>;
var ACached : vec4<f32>;
var BCached : array<vec4<f32>, 4>;
// Loop over shared dimension.
var globalColA = tileCol;
let RowPerThreadB = TileInner / ${t[1]};
let tileRowB = i32(localId.y) * RowPerThreadB;
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
let inputRow = tileRow + innerRow;
let inputCol = tileCol;
mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, globalColA, globalId);
}
globalColA = globalColA + TileInner / ColPerThread;
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol;
mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol, globalId);
}
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < TileInner / ColPerThread; k = k + 1) {
BCached[0] = mm_Bsub[k * ColPerThread][tileCol];
BCached[1] = mm_Bsub[k * ColPerThread + 1][tileCol];
BCached[2] = mm_Bsub[k * ColPerThread + 2][tileCol];
BCached[3] = mm_Bsub[k * ColPerThread + 3][tileCol];
for (var i = 0; i < RowPerThread; i = i + 1) {
ACached = mm_Asub[tileRow + i][k];
acc[i] = BCached[0] * ACached.x + acc[i];
acc[i] = BCached[1] * ACached.y + acc[i];
acc[i] = BCached[2] * ACached.z + acc[i];
acc[i] = BCached[3] * ACached.w + acc[i];
}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
mm_write(globalRow + innerRow,
globalCol,
acc[innerRow], globalId);
}
}`}function Ole(e){return`
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
let tileSize = ${e[0]*4};
${Ho()} {
let tileCol = i32(localId.x);
let globalCol = i32(globalId.x);
let globalRow = i32(globalId.y);
let numTiles = (uniforms.dimInner - 1) / tileSize + 1;
// Without this initialization strange values show up in acc.
var acc = vec4<f32>(0.0);
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
let colA = t * tileSize / 4 + tileCol;
mm_Asub[tileCol] = mm_readA(globalRow, colA, globalId);
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < tileSize / 4; k = k + 1) {
let rowB = t * tileSize + k * 4;
let BCached0 = mm_readB(rowB, globalCol, globalId);
let BCached1 = mm_readB(rowB + 1, globalCol, globalId);
let BCached2 = mm_readB(rowB + 2, globalCol, globalId);
let BCached3 = mm_readB(rowB + 3, globalCol, globalId);
let ACached = mm_Asub[k];
acc = acc + BCached0 * ACached.x;
acc = acc + BCached1 * ACached.y;
acc = acc + BCached2 * ACached.z;
acc = acc + BCached3 * ACached.w;
}
workgroupBarrier();
}
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
mm_write(globalRow, globalCol, acc, globalId);
}
}
`}var Mle=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[16,16,1],this.isVec4=!0,this.vecSize=4,this.outputShape=t,this.workGroupSize=xx(t[1],e[2],t[2]),this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1&&(n=1),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.vecSize,n,1]);let o=s!=null,i=a!=null;o&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`matMulPackedVec4_${n}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(){let e=this.aShape[2],t=this.outputShape[2],n=[this.outputShape[0],e,t],s=this.workGroupSize[1]*this.workPerThread,r=this.workGroupSize[0]*this.vecSize,a=r,o=[s,a],i=[a,r];return[aa(o,this.aShape.slice(1)),aa(i,n.slice(1))]}getUserCode(){let e=this.fitA?"return A.numbers[batch * batchASize + row * uniforms.dimInner / 4 + col]":`if (coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A.numbers[batch * batchASize + row * uniforms.dimInner / 4 + col];
}
return vec4<f32>(0.0)`,t=this.fitB?"return B.numbers[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter / 4 + col];
}
return vec4<f32>(0.0)`,n="",s="";if(this.activation){let o=oa(this.activation,this.isVec4);this.hasPreluActivationWeights?n=`fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${o}
}`:n=`
fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
${o}
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${n}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
let batchASize = uniforms.aShape[1] * uniforms.aShape[2] / ${this.vecSize};
let batch = i32(globalId.z);
${e};
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2] / ${this.vecSize};
let batch = i32(globalId.z);
${t};
}
fn mm_write(row : i32, col : i32, valueIn : vec4<f32>, globalId : vec3<u32>) {
if (row < uniforms.aShape[1] && col * 4 < uniforms.bShape[2])
{
var value = valueIn;
let batch = i32(globalId.z);
let outCoord = vec3<i32>(batch, row, col * 4);
${r}
${s}
setOutput(outCoord[0], outCoord[1], outCoord[2], value);
}
}
${this.outputShape[1]>1?cC([this.vecSize,this.workPerThread,1],this.workGroupSize):Ole(this.workGroupSize)}
`}};function kx(e,t){let n=t[1]*e[1],s=t[0]*e[0],r=n>s?n:s;return`
var<workgroup> mm_Asub : array<array<f32, ${r}>, ${n}>;
var<workgroup> mm_Bsub : array<array<f32, ${s}>, ${r}>;
${Ho()} {
let tileRow = i32(localId.y) * ${e[1]};
let tileCol = i32(localId.x) * ${e[0]};
let globalRow = i32(globalId.y) * ${e[1]};
let globalCol = i32(globalId.x) * ${e[0]};
let numTiles = (uniforms.dimInner - 1) / ${r} + 1;
var acc : array<array<f32, ${e[0]}>, ${e[1]}>;
var ACached : f32;
var BCached : array<f32, ${e[0]}>;
// Without this initialization strange values show up in acc.
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = 0.0;
}
}
let ColPerThreadA = ${r} / ${t[0]};
let tileColA = i32(localId.x) * ColPerThreadA;
let RowPerThreadB = ${r} / ${t[1]};
let tileRowB = i32(localId.y) * RowPerThreadB;
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ColPerThreadA; innerCol = innerCol + 1) {
let inputRow = tileRow + innerRow;
let inputCol = tileColA + innerCol;
mm_Asub[inputRow][inputCol] = mm_readA(
globalRow + innerRow,
t * ${r} + inputCol, globalId);
}
}
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol + innerCol;
mm_Bsub[inputRow][inputCol] = mm_readB(
t * ${r} + inputRow,
globalCol + innerCol, globalId);
}
}
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < ${r}; k = k + 1) {
for (var inner = 0; inner < ${e[0]}; inner = inner + 1) {
BCached[inner] = mm_Bsub[k][tileCol + inner];
}
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
ACached = mm_Asub[tileRow + innerRow][k];
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
}
}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
if ((globalCol + innerCol) < uniforms.dimBOuter &&
(globalRow + innerRow) < uniforms.dimAOuter) {
mm_write(globalRow + innerRow,
globalCol + innerCol,
acc[innerRow][innerCol], globalId);
}
}
}
}
`}function zle(e){return`
let TileSize = ${e[0]*4};
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
${Ho()} {
let tileCol = i32(localId.x);
let globalCol = i32(globalId.x);
let globalRow = i32(globalId.y);
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
// Without this initialization strange values show up in acc.
var acc = 0.0;
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
let colA = t * TileSize + tileCol * 4;
mm_Asub[tileCol] = vec4<f32>(mm_readA(globalRow, colA, globalId),
mm_readA(globalRow, colA + 1, globalId),
mm_readA(globalRow, colA + 2, globalId),
mm_readA(globalRow, colA + 3, globalId));
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < TileSize / 4; k = k + 1) {
let rowB = t * TileSize + k * 4;
let BCached = vec4<f32>(mm_readB(rowB, globalCol, globalId),
mm_readB(rowB + 1, globalCol, globalId),
mm_readB(rowB + 2, globalCol, globalId),
mm_readB(rowB + 3, globalCol, globalId));
let ACached = mm_Asub[k];
acc = acc + dot(ACached, BCached);
}
workgroupBarrier();
}
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
mm_write(globalRow, globalCol, acc, globalId);
}
}
`}var dC=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let l=s?e[1]:e[2];this.workGroupSize=xx(t[1],l,t[2]),(t[1]===1||t[2]===1)&&(n=1),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]),v.arraysEqual(this.dispatch,[1,1,1])&&(n=1,this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]));let c=a!=null,u=i!=null;c&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.transposeA=s,this.transposeB=r,this.addBias=c,this.activation=o,this.hasPreluActivationWeights=u;let d=this.outputShape[2],p=this.transposeB?[this.outputShape[0],d,l]:[this.outputShape[0],l,d];[this.fitA,this.fitB]=this.getShapeFit(p),this.shaderKey=`matMulPacked_${this.workPerThread}_${s}_${r}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(e){let t=this.workGroupSize[1]*this.workPerThread,n=this.workGroupSize[0]*this.workPerThread,s=t>n?t:n;this.outputShape[1]===1&&(s*=4),v.assert(s%this.workGroupSize[0]==0&&s%this.workGroupSize[1]==0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let r=[t,s],a=[s,n];return[aa(r,this.aShape.slice(1)),aa(a,e.slice(1))]}getUserCode(){let e;this.transposeA===!1?e=this.fitA?"return A.numbers[batch * batchASize + row * uniforms.dimInner + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A.numbers[batch * batchASize + row * uniforms.dimInner + col];
}
return 0.0;`:e=this.fitA?"return A.numbers[batch * batchASize + col * uniforms.dimAOuter + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A.numbers[batch* batchASize + col * uniforms.dimAOuter + row];
}
return 0.0;`;let t;this.transposeB===!1?t=this.fitB?"return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];
}
return 0.0;`:t=this.fitB?"return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];
}
return 0.0;`;let n="",s="";if(this.activation){let o=oa(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${o}
}`:n=`
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
${o}
}
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${n}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
let batch = i32(globalId.z);
${e}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let batch = i32(globalId.z);
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
${t}
}
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
var value = valueIn;
let batch = i32(globalId.z);
let outCoord = vec3<i32>(batch, row, col);
${r}
${s}
setOutput(batch, row, col, value);
}
${this.outputShape[1]>1?kx([this.workPerThread,this.workPerThread,1],this.workGroupSize):zle(this.workGroupSize)}
`}};function Lle(){return`
var<workgroup> sumValues : array<f32, workGroupSizeX>;
${Ho()} {
let coords = getOutputCoordsWithNonFlatDispatchLayout(globalId);
let batch = coords[0];
let row = coords[1];
let col = coords[2];
var sum = 0.0;
let Length = uniforms.dimInner;
for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {
let dataA = mm_readA(batch, row, k);
let dataB = mm_readB(batch, k, col);
sum = sum + dataA * dataB;
}
sumValues[localId.x] = sum;
workgroupBarrier();
for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;
currentSize = currentSize / 2u) {
if (localId.x < currentSize)
{
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
}
workgroupBarrier();
}
if (localId.x == 0u) {
sum = sumValues[0] + sumValues[1];
mm_write(batch, row, col, sum);
}
}
`}var Ble=class{constructor(e,t=!1,n=!1,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize);let o=s!=null,i=a!=null;o&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),this.transposeA=t,this.transposeB=n,this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,this.shaderKey=`matMulReduce_${this.activation}_${t}_${n}`}getUserCode(){let e;this.transposeA===!1?e="return A.numbers[batch * batchASize + row * uniforms.dimInner + col];":e="return A.numbers[batch * batchASize + col * uniforms.dimAOuter + row];";let t;this.transposeB===!1?t="return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];":t="return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];";let n="",s="";if(this.activation){let o=oa(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${o}
}`:n=`
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
${o}
}
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${n}
fn mm_readA(batch: i32, row : i32, col : i32) -> f32 {
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
${e}
}
fn mm_readB(batch: i32, row : i32, col : i32) -> f32 {
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
${t}
}
fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) {
var value = valueIn;
let outCoord = vec3<i32>(batch, row, col);
${r}
${s}
setOutput(batch, row, col, value);
}
${Lle()}
`}};function Wle(e){let t=e[1]/2,n=e[0],s=t>n?t:n;return`
var<workgroup> mm_Asub1 : array<array<f32, ${s}>, ${t}>;
var<workgroup> mm_Bsub1 : array<array<f32, ${n}>, ${s}>;
var<workgroup> mm_Asub2 : array<array<f32, ${s}>, ${t}>;
var<workgroup> mm_Bsub2 : array<array<f32, ${n}>, ${s}>;
// If the output size is small for matrix multiplication, avoid to use vec4
// and handle some elements per thread to optimally utilize the ALU.
// Introduces two shared memory buffers, some logical threads could handle
// arithmetic operations and others handle IO operations between barrier api,
// makes ALUs and load/store units work simultaneously, could improves
// the performance.
${Ho()} {
let tileRow = i32(localId.y);
let tileCol = i32(localId.x);
let globalRow = i32(globalId.y);
let globalCol = i32(globalId.x);
// uniforms.dimInner should be greater than 0.
let numTiles = (uniforms.dimInner - 1) / ${s} + 1;
var acc = 0.0;
var globalColA = tileCol;
var globalRowB = tileRow;
for (var t = 0; t < numTiles; t = t + 1) {
if (t == 0) {
if (tileRow < ${t}) {
// Load one tile of A and B into local memory.
// globalRow is always greater than or equal tileRow.
mm_Asub1[tileRow][tileCol] =
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
globalColA = globalColA + ${s};
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
globalRowB = globalRowB + ${s};
}
} else {
if (tileRow < ${t}) {
// Load one tile of A and B into local memory.
// globalRow is always greater than or equal tileRow.
mm_Asub1[tileRow][tileCol] =
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
globalColA = globalColA + ${s};
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
globalRowB = globalRowB + ${s};
} else {
// Compute acc values for a single thread.
for (var k = 0; k < ${s}; k = k + 1) {
let subRow = tileRow - ${t};
if (subRow < 0) {
continue;
}
acc = acc + mm_Asub2[subRow][k] * mm_Bsub2[k][tileCol];
}
}
}
workgroupBarrier();
if (t != 0) {
t = t + 1;
}
if (t < numTiles) {
if (tileRow < ${t}) {
// Load one tile of A and B into local memory.
// globalRow is always greater than or equal tileRow.
mm_Asub2[tileRow][tileCol] =
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
globalColA = globalColA + ${s};
mm_Bsub2[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
globalRowB = globalRowB + ${s};
} else {
// Compute acc values for a single thread.
for (var k = 0; k < ${s}; k = k + 1) {
let subRow = tileRow - ${t};
if (subRow < 0) {
continue;
}
acc = acc + mm_Asub1[subRow][k] * mm_Bsub1[k][tileCol];
}
}
}
workgroupBarrier();
}
let writeCol = (globalRow - tileRow) / 2 + tileRow - ${t};
if (tileRow >= ${t} && writeCol >= 0) {
mm_write(writeCol, globalCol, acc, globalId);
}
}
`}var Vle=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[8,16,1],v.assert(e[1]<=16||t[2]<=16,()=>"This program can be only used when A width or B Height are small"),this.outputShape=n,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(n[2]/this.workGroupSize[0]),Math.ceil(n[1]*2/this.workGroupSize[1]),n[0]];let o=s!=null;o&&this.variableNames.push("bias");let i=a!=null;i&&this.variableNames.push("preluActivationWeights"),this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,this.shaderKey=`matMulSmallOutputSize_${this.activation}`}getUserCode(){let e=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A.numbers[batch * batchASize + row * uniforms.dimInner + col];
}
return 0.0;`,t=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];
}
return 0.0;`,n="",s="";if(this.activation){let o=oa(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${o}
}`:n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
${o}
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${n}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
let batch = i32(globalId.z);
${e}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let batch = i32(globalId.z);
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
${t}
}
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimBOuter))) {
let batch = i32(globalId.z);
let outCoord = vec3<i32>(batch, row, col);
var value = valueIn;
${r}
${s}
setOutput(batch, row, col, value);
}
}
${Wle(this.workGroupSize)}
`}};function Ge(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a),i=v.sizeFromShape(o);return v.assert(a===i,()=>`The new shape (${o}) has ${i} elements and the old shape (${s.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var Ule={kernelName:Oi,backendName:"webgpu",kernelFunc:Ge};function Sx({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,d=n?e.shape[c-2]:e.shape[c-1],p=s?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],f=s?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),A=v.sizeFromShape(m),x=v.sizeFromShape(g),b=sl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[A,d,h]:[A,h,d],k=s?[x,f,p]:[x,p,f],I=Ge({inputs:{x:e},backend:r,attrs:{shape:w}}),N=Ge({inputs:{x:t},backend:r,attrs:{shape:k}}),$=[I,N],O=Math.max(A,x),D=d%4==0&&f%4==0&&!n&&!s&&f>=32,R;h*f<=32?R=new Ble([O,h,f],n,s,a,l,o):!n&&!s&&(h<=16&&(f<=512||p>=2*f)||f<=16&&(h<=512||d>=2*h))?R=new Vle(w,k,[O,h,f],a,l,o):D?R=new Mle(w,[O,h,f],K().get("WEBGPU_MATMUL_WORK_PER_THREAD"),a,l,o):R=new dC(w,[O,h,f],K().get("WEBGPU_MATMUL_WORK_PER_THREAD"),n,s,a,l,o);let T=[I,N];a&&T.push(a),o&&T.push(o);let F=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[d]}],U=r.runWebGPUProgram(R,T,e.dtype,F),j=Ge({inputs:{x:U},backend:r,attrs:{shape:b}});$.push(U);for(let z of $)r.disposeData(z.dataId);return j}function Gle(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s;return Sx({a:r,b:a,transposeA:l,transposeB:c,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var Hle={kernelName:xo,backendName:"webgpu",kernelFunc:Gle},pC=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
fn binaryOpComplex(
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
${xp(this.op,!1)}
}
${nt()}
if(index < uniforms.size) {
let areal = getARealAtOutCoordsByGlobalIndex(index);
let aimag = getAImagAtOutCoordsByGlobalIndex(index);
let breal = getBRealAtOutCoordsByGlobalIndex(index);
let bimag = getBImagAtOutCoordsByGlobalIndex(index);
setOutputFlat(index, binaryOpComplex(areal, aimag, breal, bimag));
}
}
`}},jle=class{constructor(e,t,n,s){this.variableNames=["A","B"],this.size=!0;let r=256;this.workGroupSize=[r,1,1],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=je(this.outputShape),this.lastDimensionSize=s?n[0]:t[0],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4,this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.useSharedMemoryWithB=s,this.op=e,this.shaderKey=`binaryShared_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`}getUserCode(){let e=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",t=this.useSharedMemoryWithB?`let a = getAAtOutCoordsByCoords(coords);
let b = sharedBuf[${e}];`:`let a = sharedBuf[${e}];
let b = getBAtOutCoordsByCoords(coords);`;return`
fn binaryOperation(a : f32, b : f32) -> f32 {
${xp(this.op,!1)}
}
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
${nt()}
// Fill in the shared memory buffer. Here we need a loop to make sure
// that all data in A|B are uploaded when |sharedMemorySize| is larger
// than work group size.
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}.numbers[localIndex]);
}
workgroupBarrier();
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromFlatIndex(flatIndex);
${t}
setOutputFlat(flatIndex, binaryOperation(a, b));
}
}
}
`}},qle=class{constructor(e,t,n){this.variableNames=["A","B"],this.workPerThread=4,this.isVec4=!0,this.size=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.op=e,this.shaderKey=`binaryVec4_${e}`}getUserCode(){return`
fn binaryOperation(a : vec4<f32>, b : vec4<f32>) -> vec4<f32> {
${xp(this.op,this.isVec4)}
}
${nt()}
if (index < uniforms.size) {
let a = getAAtOutCoordsByGlobalIndex(index);
let b = getBAtOutCoordsByGlobalIndex(index);
setOutputFlat(index, binaryOperation(a, b));
}
}
`}},hC=class{constructor(e,t,n){this.variableNames=["A","B"],this.size=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binary_${e}`,this.op=e}getUserCode(){return`
fn binaryOperation(a : f32, b : f32) -> f32 {
${xp(this.op,!1)}
}
${nt()}
if (index < uniforms.size) {
let a = getAAtOutCoordsByGlobalIndex(index);
let b = getBAtOutCoordsByGlobalIndex(index);
setOutputFlat(index, binaryOperation(a, b));
}
}
`}};function fC(e,t,n){if(v.arraysEqual(t,n)&&v.sizeFromShape(t)%4==0)return new qle(e,t,n);let r=t.length===1&&n.length>1&&t[0]<1024,a=n.length===1&&t.length>1&&n[0]<1024;return r||a?new jle(e,t,n,a):new hC(e,t,n)}function Qs(e){let{inputs:t}=e,{x:n}=t;return e.backend.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var Xle={kernelName:Ha,backendName:"webgpu",kernelFunc:Qs};function gc(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.tensorMap.get(a.dataId),i=Qs({inputs:{x:s},backend:n}),l=Qs({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var Kle={kernelName:td,backendName:"webgpu",kernelFunc:gc},Ym=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
fn unaryOperation(a : f32) -> f32 {
${mc(this.op,!1)}
}
${nt()}
if (index < uniforms.size) {
let a = getAAtOutCoordsByGlobalIndex(index);
setOutputFlat(index, unaryOperation(a));
}
}
`}};function Nn({opType:e,cpuKernelImpl:t,dtype:n}){return({inputs:s,backend:r})=>{let{x:a}=s,o=r,i=n||a.dtype;if(o.shouldExecuteOnCPU([a])&&t!=null){let c=o.tensorMap.get(a.dataId),u=t(c.values,i);return o.makeTensorInfo(a.shape,i,u)}let l=new Ym(a.shape,e);return o.runWebGPUProgram(l,[a],i)}}function qn({opSnippet:e,cpuKernelImpl:t,supportsComplex:n=!1,dtype:s}){return({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(n&&o.dtype==="complex64"){let d=l.tensorMap.get(o.dataId),p=l.tensorMap.get(i.dataId),h,f;if(e!==Vt.MUL)[h,f]=[[d.complexTensorInfos.real,p.complexTensorInfos.real],[d.complexTensorInfos.imag,p.complexTensorInfos.imag]].map(g=>{let[A,x]=g,y={dataId:A.dataId,dtype:A.dtype,shape:o.shape},b={dataId:x.dataId,dtype:x.dtype,shape:i.shape},w=fC(e,o.shape,i.shape);return l.runWebGPUProgram(w,[y,b],Ln(A.dtype,x.dtype))});else{let g=new pC(Vt.COMPLEX_MULTIPLY_REAL,o.shape,i.shape),A=new pC(Vt.COMPLEX_MULTIPLY_IMAG,o.shape,i.shape),x=[{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:o.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:i.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:i.shape}];h=l.runWebGPUProgram(g,x,"float32"),f=l.runWebGPUProgram(A,x,"float32")}let m=gc({inputs:{real:h,imag:f},backend:l});return l.disposeData(h.dataId),l.disposeData(f.dataId),m}let c=s||Ln(o.dtype,i.dtype);if((o.dtype==="string"||i.dtype==="string"||l.shouldExecuteOnCPU([o,i]))&&t!=null){let d=l.tensorMap.get(o.dataId).values,p=l.tensorMap.get(i.dataId).values,h=o.dtype==="string"?E.fromUint8ToStringArray(d):d,f=o.dtype==="string"?E.fromUint8ToStringArray(p):p,[m,g]=t(o.shape,i.shape,h,f,c);return l.makeTensorInfo(g,c,m)}let u=fC(e,o.shape,i.shape);return l.runWebGPUProgram(u,[o,i],c)}}var{addImpl:Zle,ceilImpl:Yle,concatImpl:Jle,equalImpl:Qle,expImpl:eue,expm1Impl:tue,floorImpl:nue,gatherNdImpl:sue,gatherV2Impl:rue,greaterEqualImpl:aue,greaterImpl:oue,lessEqualImpl:iue,lessImpl:lue,logImpl:uue,maxImpl:cue,maximumImpl:due,minimumImpl:pue,multiplyImpl:hue,negImpl:fue,notEqualImpl:mue,prodImpl:gue,rangeImpl:Aue,rsqrtImpl:yue,simpleAbsImpl:xue,sliceImpl:bue,stridedSliceImpl:vue,stringNGramsImpl:wue,subImpl:kue,tileImpl:Sue,topKImpl:Iue,transposeImpl:Cue,uniqueImpl:M2e}=wm,Tue=Nn({opType:xt.ABS,cpuKernelImpl:xue}),Nue={kernelName:di,backendName:"webgpu",kernelFunc:Tue},Eue=qn({opSnippet:Vt.ADD,cpuKernelImpl:Zle,supportsComplex:!0}),Rue={kernelName:Hr,backendName:"webgpu",kernelFunc:Eue},$ue=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(s=>{e.push(`let v${s} = get${s}AtOutCoordsByCoords(coords);`)});let t=this.variableNames.map(s=>`v${s}`).join(" + ");return`
${nt()}
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromFlatIndex(flatIndex);
${e.join(`
`)}
setOutputFlat(flatIndex, ${t});
}
}
}
`}};function _ue(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Qs({inputs:{x:s[0]},backend:n});let r=s.map(i=>i.dtype).reduce((i,l)=>Ln(i,l)),a=s.map(i=>i.shape),o=new $ue(a);return n.runWebGPUProgram(o,s,r)}var Due={kernelName:Ta,backendName:"webgpu",kernelFunc:_ue},mC=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="axis : i32;";let s=[t];E.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),s,e.length),this.op=n==="min"?"<":">";let[r,a]=E.computeOutAndReduceShapes(e,s);this.outputShape=r.length===0?[1]:r;let o=v.sizeFromShape(a);this.reductionFactor=2;let i=256,l=Math.min(Math.ceil(o/this.reductionFactor),i);this.workGroupSize=[l,1,1],this.dispatchLayout={x:[],y:this.outputShape.map((c,u)=>u)},this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=this.workGroupSize[0]>1,t=`
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
`,n=`
xBestIndices[localId.x] = bestIndex;
xBestValues[localId.x] = bestValue;
for(var currentSize = WorkGroupSize; currentSize > 1; currentSize = DIV_CEIL(currentSize, ${this.reductionFactor})) {
workgroupBarrier();
for (var w = 0; w < ${this.reductionFactor}; w = w + 1) {
let i = i32(localId.x) * ${this.reductionFactor} + w;
if (i < currentSize) {
let candidateIndex = xBestIndices[i];
let candidate = xBestValues[i];
if(candidate ${this.op} bestValue && !isNanCustom(candidate)) {
bestValue = candidate;
bestIndex = candidateIndex;
}
}
}
xBestIndices[localId.x] = bestIndex;
xBestValues[localId.x] = bestValue;
}
if (localId.x == 0u) {
setOutputFlatI32(flatOutputIndex, i32(bestIndex));
}
`,s=(o,i)=>this.outputShape.length===1?o:`${o}[${i}]`,r=o=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape[${o}]`;return`
fn DIV_CEIL(a : i32, b : i32) -> i32 {
return ((a - 1) / b + 1);
}
let WorkGroupSize = ${this.workGroupSize[0]};
${e?t:""}
// In order to get a flattened index into the input tensor, we need to
// add back the index along the reduced dimension to |outputCoords|.
// This function outputs the offset to the first value along
// |axis| and the stride to get the next value of the input along |axis|.
fn getInputCoordInfo(globalId : vec3<u32>) -> vec2<i32>{
let outputCoords = getOutputCoordsWithNonFlatDispatchLayout(globalId);
var i = ${this.outputShape.length-1};
var stride = 1;
var inputStride = 1;
var offset = 0;
for (var r = 1; r <= ${this.inputShape.length}; r = r + 1) {
let length = ${r(`${this.inputShape.length} - r`)};
if (${this.inputShape.length} - r == uniforms.axis) {
inputStride = stride;
} else {
offset = offset + ${s("outputCoords","i")} * stride;
i = i - 1;
}
stride = stride * length;
}
return vec2<i32>(offset, inputStride);
}
fn getInputIndex(coordInfo : vec2<i32>, index : i32) -> i32{
return coordInfo[0] + coordInfo[1] * index;
}
${Ho()} {
let coordInfo = getInputCoordInfo(globalId);
var bestIndex = 0;
var bestValue = f32(x.numbers[getInputIndex(coordInfo, bestIndex)]);
let Length = ${r("uniforms.axis")};
let WorkPerThread = DIV_CEIL(Length, WorkGroupSize);
for (var w = 0; w < WorkPerThread; w = w + 1) {
let i = i32(globalId.x) * WorkPerThread + w;
if (i < Length) {
let candidate = f32(x.numbers[getInputIndex(coordInfo, i)]);
if (candidate ${this.op} bestValue && !isNanCustom(f32(candidate))) {
bestValue = candidate;
bestIndex = i;
}
}
}
let flatOutputIndex = i32(globalId.y);
${e?n:"setOutputFlatI32(flatOutputIndex, bestIndex);"}
}
`}},Pue=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout={x:[0],y:[1]},this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
let TILE_DIM = ${this.workGroupSize[0]};
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
${Zm()}
fn main([[builtin(local_invocation_id)]] localId : vec3<u32>,
[[builtin(workgroup_id)]] workgroupId : vec3<u32>) {
var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);
var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);
let width = uniforms.outShape[0];
let height = uniforms.outShape[1];
if (x < width && y < height) {
tile[localId.y][localId.x] =
A.numbers[y * width + x];
}
workgroupBarrier();
x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);
y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);
if (x < height && y < width) {
setOutputFlat((y * height + x), tile[localId.x]
[localId.y]);
}
}
`}},Fue=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=wn(this.outputShape.length),t=Oue(this.newDim);return`
${nt()}
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let resRC = getCoordsFromFlatIndex(flatIndex);
setOutputFlat(flatIndex, A.numbers[getFlatIndex${this.outputShape.length}D(
${e}(${t}), uniforms.aShape)]);
}
}
}
`}};function Oue(e){let t=e.length;if(t>4)throw Error(`Transpose for rank ${t} is not yet supported`);let n=new Array(t);for(let s=0;s<e.length;s++)n[e[s]]=`resRC[${s}]`;return n.join()}function Dl(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let u=0;u<l.length;u++)l[u]=r.shape[a[u]];if(n.shouldExecuteOnCPU([r])){let d=o.tensorMap.get(r.dataId).values,p=Cue(d,r.shape,r.dtype,a,l);return n.makeTensorInfo(l,r.dtype,p)}if(r.shape.length===2&&v.arraysEqual(a,[1,0])){let u=new Pue(r.shape,a);return o.runWebGPUProgram(u,[r],r.dtype)}let c=new Fue(r.shape,a);return o.runWebGPUProgram(c,[r],r.dtype)}var Mue={kernelName:Ao,backendName:"webgpu",kernelFunc:Dl};function zue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Dl({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let u=new mC(l.shape,o[0],"max"),d=[{type:"int32",data:[o[0]]}],p=n.runWebGPUProgram(u,[l],"int32",d);return c.forEach(h=>n.disposeData(h.dataId)),p}var Lue={kernelName:Na,backendName:"webgpu",kernelFunc:zue};function Bue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=E.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Dl({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=E.getInnerMostAxes(o.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let u=new mC(l.shape,o[0],"min"),d=[{type:"int32",data:[o[0]]}],p=n.runWebGPUProgram(u,[l],"int32",d);return c.forEach(h=>n.disposeData(h.dataId)),p}var Wue={kernelName:iu,backendName:"webgpu",kernelFunc:Bue},gC=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>; pad : vec2<i32>; dilation : vec2<i32>; convDims : vec2<i32>; filterDims : vec2<i32>;",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
var count = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
let xR = xRCorner + wR;
if (xR < 0 || xR >= uniforms.convDims.x) {
continue;
}
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
let xC = xCCorner + wC;
if (xC < 0 || xC >= uniforms.convDims.y) {
continue;
}
let value = getX(batch, xR, xC, coords[3]);
${e}
}
}
setOutputFlat(index, ${t});
}
}
`}},AC=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>;",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let batch = coords[0];
let d = coords[3];
let xRCCorner = coords.yz * uniforms.stride;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
let value = getX(batch, xRCorner, xCCorner, d);
setOutputFlat(index, value);
}
}
`}};function Vue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1,u=E.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return Qs({inputs:{x:r},backend:n});let d,p=[{type:"int32",data:[u.strideHeight,u.strideWidth]}];return u.filterHeight===1&&u.filterWidth===1?d=new AC(u):(d=new gC(u,"avg"),p.push({type:"int32",data:[u.padInfo.top,u.padInfo.left]},{type:"int32",data:[u.dilationHeight,u.dilationWidth]},{type:"int32",data:[u.inHeight,u.inWidth]},{type:"int32",data:[u.effectiveFilterHeight,u.effectiveFilterWidth]})),n.runWebGPUProgram(d,[r],r.dtype,p)}var Uue={kernelName:Ea,backendName:"webgpu",kernelFunc:Vue};function Gue(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Sx({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var Hue={kernelName:Ra,backendName:"webgpu",kernelFunc:Gue},jue=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${wn(e.length)}; `,this.shaderKey="slice"}getUserCode(){let e=wn(this.rank),t=que(this.rank),n;return this.start.length===1?n=this.outputShape.map((r,a)=>"sourceLoc = uniforms.start + coords;"):n=this.outputShape.map((r,a)=>`sourceLoc.${Ix[a]} = uniforms.start[${a}] + coords.${Ix[a]};`),`
${nt()}
if (index < uniforms.size) {
var sourceLoc : ${e};
let coords = getCoordsFromFlatIndex(index);
${n.join(`
`)}
setOutputFlat(index, getSource(${t}));
}
}
`}},Ix=["x","y","z","w","u","v"];function que(e){if(e===1)return"sourceLoc";if(e<=6)return Ix.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function Ac(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Ft.parseSliceParams(r,a,o);if(Ft.assertParamsValid(r,i,l),n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.tensorMap.get(r.dataId),p=bue(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}if(v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);let c=new jue(i,l),u=[{type:"int32",data:i}];return n.runWebGPUProgram(c,[r],r.dtype,u)}var Xue={kernelName:Wi,backendName:"webgpu",kernelFunc:Ac},Kue=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((x,y)=>x*y),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=[],f=Ge({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Dl({inputs:{x:f},backend:n,attrs:{perm:c}}),g=Ge({inputs:{x:m},backend:n,attrs:{shape:u}}),A=Ac({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeData(x.dataId)),A},Zue={kernelName:pi,backendName:"webgpu",kernelFunc:Kue},yC=qn({opSnippet:Vt.NOT_EQUAL,dtype:"bool",cpuKernelImpl:mue}),Yue={kernelName:Ei,backendName:"webgpu",kernelFunc:yC};function bp(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Qs({inputs:{x:r.complexTensorInfos.real},backend:n})}var Jue={kernelName:cd,backendName:"webgpu",kernelFunc:bp};function Que(e,t){let n=new Ym(e.shape,xt.TO_INT),s=t.runWebGPUProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function Cx(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Qs({inputs:{x:r},backend:n});let o=Gt(r.shape),i=Cx({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=gc({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeData(i.dataId),l}if(r.dtype==="complex64"){let o=bp({inputs:{input:r},backend:n}),i=Cx({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeData(o.dataId),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Qs({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return Que(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=yC({inputs:{a:r,b:o},backend:n});return n.disposeData(o.dataId),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var ece={kernelName:$a,backendName:"webgpu",kernelFunc:Cx},tce=Nn({opType:xt.CEIL,cpuKernelImpl:Yle}),nce={kernelName:_a,backendName:"webgpu",kernelFunc:tce},sce=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32; maxVal : f32;",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
${nt()}
if(index < uniforms.size) {
let value = getAAtOutCoordsByGlobalIndex(index);
var clampedValue : vec4<f32>;
for (var i = 0; i < 4; i = i + 1) {
if (isNanCustom(value[i])) {
clampedValue[i] = value[i];
} else {
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
}
}
setOutputFlat(index, clampedValue);
}
}
`}},rce=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32; maxVal : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return`
${nt()}
if(index < uniforms.size) {
let value = getAAtOutCoordsByGlobalIndex(index);
if (isNanCustom(value)) {
setOutputFlat(index, value);
return;
}
setOutputFlat(index, clamp(value, uniforms.minVal, uniforms.maxVal));
}
}
`}};function ace(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i,l=[{type:"float32",data:[a]},{type:"float32",data:[o]}];return v.sizeFromShape(r.shape)%4==0?i=new sce(r.shape):i=new rce(r.shape),n.runWebGPUProgram(i,[r],r.dtype,l)}var oce={kernelName:jr,backendName:"webgpu",kernelFunc:ace},ice=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=E.computeOutShape(e,1),this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shapes=e,this.shaderKey=`concat${e}`}getUserCode(){let e=new Array(this.shapes.length-1),t=[];if(e.length>0){e[0]=this.shapes[0][1];for(let a=1;a<e.length;a++)e[a]=e[a-1]+this.shapes[a][1];t.push(`if (yC < ${e[0]}){ setOutput(coords.x, coords.y, getT0(yR, yC)); }`);for(let a=1;a<e.length;a++){let o=e[a-1];t.push(`elseif (yC < ${e[a]}){ setOutput(coords.x, coords.y, getT${a}(yR, yC - ${o})); }`)}let s=e.length,r=e[e.length-1];t.push(`else { setOutput(coords.x, coords.y, getT${s}(yR, yC - ${r})); }`)}else t.push("setOutput(coords.x, coords.y, getT0(yR, yC));");return`
${nt()}
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromFlatIndex(flatIndex);
let yR = coords.x;
let yC = coords.y;
${t.join(`
`)}
}
}
}
`}};function Jm(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Qs({inputs:{x:r.complexTensorInfos.imag},backend:n})}var lce={kernelName:od,backendName:"webgpu",kernelFunc:Jm};function Tx(e,t,n){let s=e[0].dtype;if(s==="complex64"){let u=e.map(m=>bp({inputs:{input:m},backend:n})),d=e.map(m=>Jm({inputs:{input:m},backend:n})),p=Tx(u,t,n),h=Tx(d,t,n),f=gc({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeData(m.dataId)),d.forEach(m=>n.disposeData(m.dataId)),n.disposeData(p.dataId),n.disposeData(h.dataId),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let u=e.map(A=>{let x=v.sizeFromShape(A.shape.slice(t));return Ge({inputs:{x:A},backend:n,attrs:{shape:[-1,x]}})}),d=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),p=E.computeOutShape(u.map(A=>A.shape),1),h=u[0].shape[0]===1,f=Jle(d,p,s,h),m=E.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(m,s,f);return u.forEach(A=>n.disposeData(A.dataId)),g}let{tensors2D:a,outShape:o}=uce(e,t,n),i=new ice(a.map(u=>u.shape)),l=n.runWebGPUProgram(i,a,a[0].dtype);a.forEach(u=>n.disposeData(u.dataId));let c=Ge({inputs:{x:l},backend:n,attrs:{shape:o}});return n.disposeData(l.dataId),c}function uce(e,t,n){let s=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>Ge({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape.slice(0,t)),v.sizeFromShape(a.shape.slice(t))]}})),outShape:s}}function xC(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=E.computeOutShape(t.map(c=>c.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(c=>v.sizeFromShape(c.shape)>0);if(i.length===1)return Qs({inputs:{x:i[0]},backend:n});let l=i.map(c=>c.shape);return E.assertParamsConsistent(l,a),Tx(i,a,n)}var cce={kernelName:hi,backendName:"webgpu",kernelFunc:xC},dce=class{constructor(e,t){this.variableNames=["A"],this.uniforms=`pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; outWidth : i32; itemsPerBlockRow : i32;
inChannels : i32;`,this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.isChannelsLast=t,this.shaderKey=`im2col_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?0:1,t=this.isChannelsLast?1:2;return`
${nt()}
for(var i = 0; i<${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
let rc = getCoordsFromFlatIndex(flatIndex);
if(flatIndex < uniforms.size) {
let blockIndex = rc[0];
let pos = rc[1];
let offsetY = blockIndex / uniforms.outWidth * uniforms.stride[1] - uniforms.pad[1];
let d0 = offsetY + uniforms.dilation[1] * pos / uniforms.itemsPerBlockRow;
var value = 0.0;
if(d0 < uniforms.aShape[${e}] && d0 >= 0) {
let offsetX = (blockIndex % uniforms.outWidth) * uniforms.stride[0] -
uniforms.pad[0];
let d1 = offsetX + uniforms.dilation[0] * ((pos %
uniforms.itemsPerBlockRow) / uniforms.inChannels);
let ch = pos % uniforms.inChannels;
if(d1 < uniforms.aShape[${t}] && d1 >= 0) {
value = getA(d0, d1, ch);
}
}
setOutputFlat(flatIndex, value);
}
}
}
`}};function bC({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,c=n.dataFormat==="channelsLast",u=!1,d=!1,p=c?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],h=Ge({inputs:{x:e},backend:s,attrs:{shape:[1,p,n.inChannels]}}),f=Ge({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),m=Sx({a:h,b:f,transposeA:u,transposeB:d,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),g=Ge({inputs:{x:m},backend:s,attrs:{shape:n.outShape}});return s.disposeData(h.dataId),s.disposeData(f.dataId),s.disposeData(m.dataId),g}function pce({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:c,inChannels:u,strideWidth:d,strideHeight:p,padInfo:h,outWidth:f,outHeight:m,dilationWidth:g,dilationHeight:A,dataFormat:x}=n,y=x==="channelsLast",b=l*c*u,w=m*f,k=[w,b],I=!1,N=!1,$=[],O=Ge({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),D=Ge({inputs:{x:t},backend:s,attrs:{shape:[1,b,-1]}});$.push(O),$.push(D);let R=new dce(k,y),T=[{type:"int32",data:[h.left,h.top]},{type:"int32",data:[d,p]},{type:"int32",data:[g,A]},{type:"int32",data:[f]},{type:"int32",data:[u*l]},{type:"int32",data:[u]}],F=s.runWebGPUProgram(R,[O],O.dtype,T),U=Ge({inputs:{x:F},backend:s,attrs:{shape:[1,k[0],k[1]]}});$.push(F),$.push(U);let j=[1,k[0],k[1]],z=new dC(j,[1,w,n.outChannels],K().get("WEBGPU_MATMUL_WORK_PER_THREAD"),I,N),X=j[1],Z=j[2],J=n.outChannels,te=[{type:"int32",data:[X]},{type:"int32",data:[J]},{type:"int32",data:[Z]}],re=s.runWebGPUProgram(z,[U,D],U.dtype,te),Q=y?[1,m,f,n.outChannels]:[1,n.outChannels,m,f],ne=Ge({inputs:{x:re},backend:s,attrs:{shape:Q}});$.push(re);for(let oe of $)s.disposeData(oe.dataId);return ne}var vC=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.uniforms=`filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>;
dimAOuter : i32; dimBOuter : i32; dimInner : i32;`,this.isVec4=!0,this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=[8,8,1];let a=[4,4,1];this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,a),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.hasLeakyreluAlpha=r,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.hasLeakyreluAlpha&&this.variableNames.push("leakyreluAlpha"),[this.fitA,this.fitB]=this.getShapeFit(a),this.shaderKey=`conv2DMMVec4_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(e){let t=this.workGroupSize[1]*e[1],n=this.workGroupSize[0]*e[0],s=n,r=[t,s],a=[s,n],o=this.outputShape[1]*this.outputShape[2],i=this.outputShape[3],l=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[aa(r,[o,l]),aa(a,[l,i])]}getSampleAWithRemainder(e){return`let flatIndex${e} = getFlatIndex4D(coord, uniforms.xShape);
let divBy4Remainder${e} = flatIndex${e} % 4;
let divBy4Index${e} = flatIndex${e} / 4;
let curData${e} = x.numbers[divBy4Index${e}];
if (divBy4Remainder${e} == 0) {
temp = curData${e};
} else {
// TODO: This could end up being a redundant load with another one in
// the same shader invocation. Perhaps there's an opportunity for
// optimization
let nextData${e} = x.numbers[divBy4Index${e} + 1];
if (divBy4Remainder${e} == 1) {
temp = vec4<f32>(curData${e}.yzw, nextData${e}.x);
} elseif (divBy4Remainder${e} == 2) {
temp = vec4<f32>(curData${e}.zw, nextData${e}.xy);
} elseif (divBy4Remainder${e} == 3) {
temp = vec4<f32>(curData${e}.w, nextData${e}.xyz);
}
}
`}getUserCode(){let t=cC([4,4,1],this.workGroupSize),r=`let outRow = r / uniforms.outShape[2];
let outCol = r % uniforms.outShape[2];
let WRow = c / (uniforms.filterDims[1] * uniforms.xShape[3]);
let WCol = c / uniforms.xShape[3] % uniforms.filterDims[1];
let inChCoord = c % uniforms.xShape[3];
var coord = vec4<i32>(
batch,
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
inChCoord);
var resData = vec4<f32>(0.0);
${this.convInfo.inChannels%4===0?`// The bounds checking is always needed since we use it to pad zero for
// the 'same' padding type.
if (coordsInBounds4D(coord, uniforms.xShape)) {
resData = x.numbers[getFlatIndex4D(coord, uniforms.xShape) / 4];
} else {
resData = vec4<f32>(0.0); }`:`var temp = vec4<f32>(0.0);
${this.getSampleAWithRemainder(1)}
resData = temp;
if (WCol == (uniforms.filterDims[1] - 1)) {
coord = vec4<i32>(
coord.x, coord.y + 1, coord.z + 1 - uniforms.filterDims[1], 0);
${this.getSampleAWithRemainder(2)}
if (inChCoord == 0) {
resData = vec4<f32>(resData.xyz, temp.x);
} elseif (inChCoord == 1) {
resData = vec4<f32>(resData.xy, temp.xy);
} else {
resData = vec4<f32>(resData.x, temp.xyz);
}
}
`}
return resData;`,a=this.fitA?`${r}`:`if (r < uniforms.dimAOuter && c < uniforms.dimInner) {
${r}
}
return vec4<f32>(0.0);
`,o=this.fitB?"return W.numbers[row * uniforms.dimBOuter / 4 + col];":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return W.numbers[row * uniforms.dimBOuter / 4 + col];
}
return vec4<f32>(0.0);
`,i="",l="";if(this.activation){let d=oa(this.activation,this.isVec4);if(this.hasPreluActivationWeights)i=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${d}
}`;else{if(this.hasLeakyreluAlpha)throw i=`fn activation(a: vec4<f32>) -> vec4<f32> {
let b = getLeakyreluAlphaAtOutCoords();
${d}
}`,new Error("Leakyrelu is not supported.");i=`
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
${d}
}`}l="value = activation(value, outCoord);"}let c=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${i}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
let r = row;
let c = col * 4;
var batch = i32(globalId.z);
${a}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
${o}
}
fn mm_write(row : i32, col : i32, valueInput : vec4<f32>, globalId : vec3<u32>) {
var batch = i32(globalId.z);
var value = valueInput;
if (row < uniforms.dimAOuter && col * 4 < uniforms.dimBOuter)
{
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col * 4);
${c}
${l}
setOutput(outCoord[0], outCoord[1], outCoord[2], outCoord[3],
value);
}
}
${t}
`}},wC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=yx(this.dispatchLayout,this.outputShape),this.elementsPerThread=bx(this.dispatchLayout,this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(){let e=this.workGroupSize[1]*this.elementsPerThread[1],t=this.workGroupSize[0]*this.elementsPerThread[0],n=e>t?e:t;v.assert(n%this.workGroupSize[0]==0&&n%this.workGroupSize[1]==0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let s=[e,n],r=[n,t],a=this.outputShape[1]*this.outputShape[2],o=this.outputShape[3],i=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[aa(s,[a,i]),aa(r,[i,o])]}getUserCode(){let e=kx(this.elementsPerThread,this.workGroupSize),t=`
let outRow = row / uniforms.outShape[2];
let outCol = row % uniforms.outShape[2];
let WRow = col / (uniforms.filterDims[1] * uniforms.xShape[3]);
let WCol = col / uniforms.xShape[3] % uniforms.filterDims[1];
let coord = vec4<i32>(
batch,
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
col % uniforms.xShape[3]);
// The bounds checking is always needed since we use it to pad zero for the
// 'same' padding type.
if(coordsInBounds4D(coord, uniforms.xShape)) {
return x.numbers[getFlatIndex4D(coord, uniforms.xShape)];
}
return 0.0;`,n=this.fitA?`${t}`:`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
${t}
}
return 0.0;
`,s=this.fitB?"return W.numbers[row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return W.numbers[row * uniforms.dimBOuter + col];
}
return 0.0;
`,r="",a="";if(this.activation){let l=oa(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a: f32, outCoord : vec4<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${l}
}`:r=`
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
${l}
}
`,a="value = activation(value, outCoord);"}let o=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${r}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
var batch = i32(globalId.z);
${n}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
${s}
}
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
var batch = i32(globalId.z);
var value = valueInput;
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col);
${o}
${a}
result.numbers[getFlatIndex4D(outCoord, uniforms.outShape)] = value;
}
${e}
`}},kC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>;",this.workGroupSize=[128,1,1],this.outputShape=e.outShape,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.shaderKey=`conv2DNaive_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let r=oa(this.activation);this.hasPreluActivationWeights?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32{
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${r}
}`:e=`
fn activation(a : f32, outCoord : vec4<i32>) -> f32{
${r}
}
`,t="value = activation(value, outCoord);"}let n=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${e}
fn readInp(batch : i32, row : i32, col : i32, chan : i32) -> f32 {
let coord = vec4<i32>(batch, row, col, chan);
if(coordsInBounds4D(coord, uniforms.xShape)) {
return getX(batch, row, col, chan);
}
return 0.0;
}
fn readFilt(row : i32, col : i32, xChannel : i32, outChannel : i32) -> f32{
let coord = vec4<i32>(row, col, xChannel, outChannel);
if(coordsInBounds4D(coord, uniforms.wShape)) {
return getW(row, col, xChannel, outChannel);
}
return 0.0;
}
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) {
let coord = vec4<i32>(batch, row, col, chan);
if (coordsInBounds4D(coord, uniforms.outShape)) {
${n}
${t}
setOutput(batch, row, col, chan, value);
}
}
${Ax()} {
let coords = getOutputCoordsWithFlatDispatchLayout(globalId, localId, numWorkgroups);
let batch = coords[0];
let outChannel = coords[3];
var acc = 0.0;
for (var row = 0; row < uniforms.filterDims[0]; row = row + 1) {
for (var col = 0; col < uniforms.filterDims[1]; col = col + 1) {
for (var xChannel = 0; xChannel < uniforms.xShape[3]; xChannel = xChannel + 1) {
let coordRow = coords[1] * uniforms.stride[0] + uniforms.dilation[0] * row - uniforms.pad[0];
let coordCol = coords[2] * uniforms.stride[1] + uniforms.dilation[1] * col - uniforms.pad[1];
let v = readInp(batch, coordRow, coordCol, xChannel);
let f = readFilt(row, col, xChannel, outChannel);
acc = acc + v * f;
}
}
}
writeResult(batch, coords[1], coords[2], outChannel, acc);
}
`}};function hce(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=n,d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d);if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))return bC({x:r,filter:a,convInfo:p,backend:s});if(K().getBool("WEBGPU_CONV_SEPARATE_IM2COL_SHADER")&&r.shape[0]===1)return pce({x:r,filter:a,convInfo:p,backend:s});let h,f=[p.padInfo.top,p.padInfo.left],m=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[...f]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.dilationHeight,p.dilationWidth]}],g=K().getBool("WEBGPU_USE_NAIVE_CONV2D");if(g?h=new kC(p):(p.inChannels%4==0||p.inChannels===3&&p.padInfo.type==="VALID")&&p.outChannels%4==0&&p.outChannels>=64?h=new vC(p):h=new wC(p),!g){let A=p.outShape[1]*p.outShape[2],x=p.outShape[3],y=p.filterHeight*p.filterWidth*p.inShape[3];m.push({type:"int32",data:[A]},{type:"int32",data:[x]},{type:"int32",data:[y]})}return s.runWebGPUProgram(h,[r,a],r.dtype,m)}var fce={kernelName:Da,backendName:"webgpu",kernelFunc:hce},mce=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pads : vec2<i32>; stride : vec2<i32>; outBackprop : vec4<i32>; dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=yx(this.dispatchLayout,this.outputShape),this.elementsPerThread=bx(this.dispatchLayout,this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.shaderKey=`conv2DDerInputMM_${this.elementsPerThread}`}getUserCode(){return`
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
var batch = i32(globalId.z);
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
let outRow = row / uniforms.outShape[2];
let outCol = row % uniforms.outShape[2];
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
return 0.0;
}
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
return 0.0;
}
let coord = vec4<i32>(
batch,
i32(xR),
i32(xC),
col % uniforms.outBackprop[3]);
return x.numbers[getFlatIndex4D(coord, uniforms.xShape)];
}
return 0.0;
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let coordX = uniforms.filterDims.x - 1 -
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let coordY = uniforms.filterDims.y - 1 -
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
coordX >= 0 && coordY >= 0) {
let coord = vec4<i32>(coordX, coordY, col,
row % uniforms.outBackprop[3]);
return W.numbers[getFlatIndex4D(coord, uniforms.wShape)];
}
return 0.0;
}
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
var batch = i32(globalId.z);
var value = valueInput;
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col);
result.numbers[getFlatIndex4D(outCoord, uniforms.outShape)] = value;
}
${kx(this.elementsPerThread,this.workGroupSize)}
`}},gce=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>; pads : vec2<i32>; stride : vec2<i32>; outBackprop : vec4<i32>;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,n=this.isChannelsLast?3:1;return`
${nt()} {
if(index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let batch = coords[0];
let d1 = coords[${n}];
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
let dyRCorner = dyCorner.x;
let dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
let wRPerm = uniforms.filterDims.x - 1 - wR;
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
wRPerm < 0) {
continue;
}
let idyR = dyR;
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
let wCPerm = uniforms.filterDims.y - 1 - wC;
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
fract(dyC) > 0.0 || wCPerm < 0) {
continue;
}
let idyC = dyC;
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
if (${this.isChannelsLast}) {
let xValue = getDy(batch, idyR, idyC, d2);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
} else {
let xValue = getDy(batch, d2, idyR, idyC);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
}
}
}
}
setOutputFlat(index, dotProd);
}
}
`}};function Ace(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s,d=E.convertConv2DDataFormat(c),p=E.computeConv2DInfo(o,a.shape,i,1,l,u,!1,d),h=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[p.filterHeight-1-p.padInfo.top,p.filterWidth-1-p.padInfo.left]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.batchSize,p.outHeight,p.outWidth,p.outChannels]}],f;if(K().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new gce(p);else{f=new mce(p);let m=p.inShape[1]*p.inShape[2],g=p.inShape[3],A=p.filterHeight*p.filterWidth*p.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[A]})}return n.runWebGPUProgram(f,[r,a],"float32",h)}var yce={kernelName:Pa,backendName:"webgpu",kernelFunc:Ace},xce=Nn({opType:xt.COS}),bce={kernelName:Fa,backendName:"webgpu",kernelFunc:xce},vce=Nn({opType:xt.COSH}),wce={kernelName:Oa,backendName:"webgpu",kernelFunc:vce},kce=class{constructor(e,t,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32;",this.workGroupSize=[64,1,1],this.size=!0;let[r]=t;this.outputShape=[r,n[0],n[1],e],this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=s==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[n,s,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,o,i]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let height_ratio = f32(${n});
let width_ratio = f32(${a});
let b = coords[0];
let y = coords[1];
let x = coords[2];
let d = coords[3];
// get box vals
let y1 = getBoxes(b, 0);
let x1 = getBoxes(b, 1);
let y2 = getBoxes(b, 2);
let x2 = getBoxes(b, 3);
// get image in batch index
let bInd = i32(round(getBoxInd(b)));
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
return;
}
let height_scale = ${s};
let width_scale = ${o};
let in_y = ${r};
if( in_y < 0.0 || in_y > ${e} ) {
setOutputFlat(index, uniforms.extrapolationValue);
return;
}
let in_x = ${i};
if( in_x < 0.0 || in_x > ${t} ) {
setOutputFlat(index, uniforms.extrapolationValue);
return;
}
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
if(${this.methodId} == 1) {
// Compute the four integer indices.
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
let top = topLeft + (topRight - topLeft) * fracCR.x;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
let newValue = top + (bottom - top) * fracCR.y;
setOutputFlat(index, newValue);
} else {
// Compute the coordinators of nearest neighbor point.
let sourceNearestCR = vec2<i32>(floor(
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
let newValue = getImage(
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
setOutputFlat(index, newValue);
}
}
}
`}},Sce=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,u=new kce(r.shape[3],a.shape,i,l),d=[{type:"float32",data:[c]}];return n.runWebGPUProgram(u,[r,a,o],"float32",d)},Ice={kernelName:mi,backendName:"webgpu",kernelFunc:Sce},Cce=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32;",this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let b = coords[0];
let h = ${this.getHeightCoordString()};
let w = ${this.getWidthCoordString()};
let d = ${this.getDepthCoordString()};
let in_h = h / uniforms.blockSize;
let offset_h = h % uniforms.blockSize;
let in_w = w / uniforms.blockSize;
let offset_w = w % uniforms.blockSize;
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
${this.getOutputDepthSize()};
let in_d = d + offset_d;
let rlt = ${this.getInputSamplingString()};
setOutputFlat(index, rlt);
}
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Tce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=[{type:"int32",data:[a]}],g=new Cce(f,o);return n.runWebGPUProgram(g,[r],r.dtype,m)}var Nce={kernelName:gi,backendName:"webgpu",kernelFunc:Tce},SC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; inDims : vec2<i32>;",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[0,1],y:[2],z:[3]},this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,4,4]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise3x3_${n}`}getUserCode(){let e="",t="";if(this.activation){let r=oa(this.activation,this.isVec4);this.hasPreluActivation?e=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${r}
}`:e=`
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
${r}
}
`,t="dotProd[i] = activation(dotProd[i], coords);"}let n=this.addBias?"dotProd[i] = dotProd[i] + getBiasAtOutCoordsByCoords(coords);":"";return`
${e}
${Zm()}
fn main([[builtin(global_invocation_id)]] globalId: vec3<u32>) {
let batch = 0;
let r = i32(globalId.x);
let c = i32(globalId.y) * 4;
let d2 = i32(globalId.z) * 4;
let xRCCorner = vec2<i32>(r, c) * uniforms.stride - uniforms.pad;
let d1 = d2;
let q = 0;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var wVals : array<vec4<f32>, 9>;
wVals[0] = getW(0, 0, d1, q);
wVals[1] = getW(0, 1, d1, q);
wVals[2] = getW(0, 2, d1, q);
wVals[3] = getW(1, 0, d1, q);
wVals[4] = getW(1, 1, d1, q);
wVals[5] = getW(1, 2, d1, q);
wVals[6] = getW(2, 0, d1, q);
wVals[7] = getW(2, 1, d1, q);
wVals[8] = getW(2, 2, d1, q);
var xVals : array<array<vec4<f32>, 6>, 3>;
for (var wR = 0; wR < 3; wR = wR + 1) {
let xR = xRCorner + wR * uniforms.dilation[0];
for (var wC = 0; wC < 6; wC = wC + 1) {
let xC = xCCorner + wC * uniforms.dilation[1];
if (xR < 0 || xR >= uniforms.inDims[0] || xC < 0 || xC >= uniforms.inDims[1]) {
xVals[wR][wC] = vec4<f32>(0.0);
} else {
xVals[wR][wC] = getX(batch, xR, xC, d1);
}
}
}
var dotProd : array<vec4<f32>, 4>;
dotProd[0] = vec4<f32>(0.0);
dotProd[1] = vec4<f32>(0.0);
dotProd[2] = vec4<f32>(0.0);
dotProd[3] = vec4<f32>(0.0);
for (var wR = 0; wR < 3; wR = wR + 1) {
for (var wC = 0; wC < 3; wC = wC + 1) {
let indexW = wR * 3 + wC;
dotProd[0] = dotProd[0] + xVals[wR][0 + wC] * wVals[indexW];
dotProd[1] = dotProd[1] + xVals[wR][1 + wC] * wVals[indexW];
dotProd[2] = dotProd[2] + xVals[wR][2 + wC] * wVals[indexW];
dotProd[3] = dotProd[3] + xVals[wR][3 + wC] * wVals[indexW];
}
}
for (var i = 0; i < 4; i = i + 1) {
let coords = vec4<i32>(batch, r, c + i, d2);
if (coordsInBounds4D(coords, uniforms.outShape)) {
${n}
${t}
setOutput(coords[0], coords[1], coords[2], coords[3], dotProd[i]);
}
}
}
`}},IC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; inDims : vec2<i32>;",this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}_${this.activation}_${this.convInfo.outChannels/this.convInfo.inChannels}`}getUserCode(){let e=this.convInfo.outChannels/this.convInfo.inChannels,t="",n="";if(this.activation){let a=oa(this.activation,!1);this.hasPreluActivation?t=`fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${a}
}`:t=`
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
${a}
}
`,n="dotProd = activation(dotProd, coords);"}let s=this.addBias?"dotProd = dotProd + getBiasAtOutCoordsByCoords(coords);":"";return`
${t}
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) {
let coord = vec4<i32>(batch, row, col, chan);
if (coordsInBounds4D(coord, uniforms.outShape)) {
setOutput(batch, row, col, chan, value);
}
}
${Ax()} {
let coords = getOutputCoordsWithFlatDispatchLayout(globalId, localId, numWorkgroups);
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
let d2 = coords[3];
let d1 = d2 / ${e};
let q = d2 - d1 * ${e};
let inputRowStart = xRCCorner.x;
let inputColStart = xRCCorner.y;
let inputRowEnd = inputRowStart + ${this.convInfo.filterHeight} * uniforms.dilation[0];
let inputColEnd = inputColStart + ${this.convInfo.filterWidth} * uniforms.dilation[1];
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
// Extract if checking out of for loop for performance.
if (inputRowStart >= 0 && inputColStart >= 0 &&
inputRowEnd < uniforms.inDims[0] && inputColEnd < uniforms.inDims[1]) {
// Here using a constant value |this.convInfo.filterHeight| instead
// of uniform value is in order to loop unrolling.
for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
let xVal = getX(batch, xR, xC, d1);
let wVal = getW(wR, wC, d1, q);
dotProd = dotProd + xVal * wVal;
}
}
} else {
for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
if (xR < 0 || xR >= uniforms.inDims[0]) {
continue;
}
for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
if (xC < 0 || xC >= uniforms.inDims[1]) {
continue;
}
let xVal = getX(batch, xR, xC, d1);
let wVal = getW(wR, wC, d1, q);
dotProd = dotProd + xVal * wVal;
}
}
}
${s}
${n}
writeResult(batch, coords[1], coords[2], d2, dotProd);
}
`}};function Ece(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s,u=l;u==null&&(u=[1,1]);let d=E.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!0),p;d.batchSize===1&&d.inHeight===d.outHeight&&d.inWidth===d.outWidth&&d.strideHeight===1&&d.strideWidth===1&&d.filterHeight===d.filterWidth&&d.inChannels===d.outChannels&&d.filterHeight===3&&d.inChannels%4==0?p=new SC(d):p=new IC(d);let h=[{type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.dilationHeight,d.dilationWidth]},{type:"int32",data:[d.inHeight,d.inWidth]}];return n.runWebGPUProgram(p,[r,a],r.dtype,h)}var Rce={kernelName:Ma,backendName:"webgpu",kernelFunc:Ece},CC=qn({opSnippet:Vt.MUL,cpuKernelImpl:hue,supportsComplex:!0}),$ce={kernelName:eo,backendName:"webgpu",kernelFunc:CC},_ce=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="reduceSize : i32;",this.inputShape=[e.batchSize,e.inSize];let[s]=E.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=s.length===0?[1]:s,this.reductionFactor=2;let r=256,a=Math.min(Math.ceil(e.inSize/this.reductionFactor),r);this.workGroupSize=[a,1,1],this.dispatchLayout={x:[],y:this.outputShape.map((o,i)=>i)},this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.reduceType=t,this.shaderKey=`reduce_${t}_${n}`}getUserCode(){let e=this.workGroupSize[0]>1,t="",n="0.0";this.reduceType==="min"||this.reduceType==="max"?(t=`
if (isNanCustom(candidate)) {
bestValue = uniforms.NAN;
} elseif (candidate ${this.reduceType==="min"?"<":">"}
bestValue)
{ bestValue = candidate; }`,n="f32(x.numbers[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?t=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(t=" bestValue = bestValue * candidate; ",n="1.0");let s=this.reduceType==="mean"?"setOutputFlat(flatOutputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputFlat(flatOutputIndex, bestValue);",r=`
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
`,a=`
xBestValues[localId.x] = bestValue;
${this.reduceType==="sum"||this.reduceType==="mean"||this.reduceType==="prod"?`bestValue = ${n};`:" "}
var currentSize = WorkGroupSize;
for(; currentSize > 1;) {
workgroupBarrier();
for (var w = 0; w < ${this.reductionFactor}; w = w + 1) {
let i = i32(localId.x) * ${this.reductionFactor} + w;
if (i < currentSize) {
let candidate = xBestValues[i];
${t}
}
}
workgroupBarrier();
xBestValues[localId.x] = bestValue;
currentSize = DIV_CEIL(currentSize, ${this.reductionFactor});
${this.reduceType==="sum"||this.reduceType==="mean"||this.reduceType==="prod"?`if(currentSize > 1) { bestValue = ${n}; }`:""}
}
if (localId.x == 0u) {
${s}
}
`;return`
fn DIV_CEIL(a : i32, b : i32) -> i32 {
return ((a - 1) / b + 1);
}
let WorkGroupSize = ${this.workGroupSize[0]};
${e?r:""}
fn getOffset(globalId : vec3<u32>) -> i32 {
let outputCoords = getOutputCoordsWithNonFlatDispatchLayout(globalId);
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
return offset;
}
${Ho()} {
let offset = getOffset(globalId);
var bestValue = ${n};
let Length = uniforms.reduceSize;
let WorkPerThread = DIV_CEIL(Length, WorkGroupSize);
for (var w = 0; w < WorkPerThread; w = w + 1) {
let i = i32(globalId.x) * WorkPerThread + w;
if (i < Length) {
let candidate = f32(x.numbers[offset + i]);
${t}
}
}
let flatOutputIndex = i32(globalId.y);
${e?a:s}
}
`}};function vp(e,t,n,s,r){let a=e.shape.length,o=[],i=v.parseAxisParam(t,e.shape),l=i,c=E.getAxesPermutation(l,a),u=e;c!=null&&(u=Dl({inputs:{x:e},attrs:{perm:c},backend:r}),l=E.getInnerMostAxes(l.length,a),o.push(u)),E.assertAxesAreInnerMostDims(s,l,a);let[d,p]=E.computeOutAndReduceShapes(u.shape,l),h=d;n&&(h=E.expandShapeToKeepDim(d,i));let f;if((s==="max"||s==="prod")&&r.shouldExecuteOnCPU([u])){let m=r.tensorMap.get(u.dataId).values;switch(s){case"max":let g=cue(m,v.sizeFromShape(p),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:A,outShape:x,outDtype:y}=gue(u.shape,u.dtype,m,l);f=r.makeTensorInfo(x,y,A);break;default:throw new Error(`${s} CPU implementation is not yet supported.`)}}else{let m=v.sizeFromShape(p),A=v.sizeFromShape(u.shape)/m,x={windowSize:m,inSize:m,batchSize:A,outSize:1},y=s==="mean"?"float32":kd(e.dtype),b=[{type:"int32",data:[m]}],w=new _ce(x,s,y),k=r.runWebGPUProgram(w,[u],y,b);o.push(k),f=Ge({inputs:{x:k},attrs:{shape:h},backend:r})}return o.forEach(m=>r.disposeData(m.dataId)),f}function Nx(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return vp(r,a,o,"sum",n)}var Dce={kernelName:po,backendName:"webgpu",kernelFunc:Nx};function Pce(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=E.decodeEinsumEquation(r,a.length);E.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=E.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:x}=E.getEinsumPermutation(h,l[g]),y;E.isIdentityPermutation(A)?y=a[g]:(y=Dl({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(y));let b=y.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(y.shape,b)||(y=Ge({inputs:{x:y},backend:n,attrs:{shape:b}}),f.push(y)),p===null?p=y:(p=CC({inputs:{a:y,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=Nx({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeData(m.dataId);return p}var Fce={kernelName:ad,backendName:"webgpu",kernelFunc:Pce},Oce=Nn({opType:xt.ELU}),Mce={kernelName:La,backendName:"webgpu",kernelFunc:Oce},zce=qn({opSnippet:Vt.EQUAL,dtype:"bool",cpuKernelImpl:Qle}),Lce={kernelName:Ai,backendName:"webgpu",kernelFunc:zce},TC=Nn({opType:xt.EXP,cpuKernelImpl:eue,dtype:"float32"}),Bce={kernelName:Ba,backendName:"webgpu",kernelFunc:TC};function Ex(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),Ge({inputs:{x:a},backend:s,attrs:{shape:i}})}var Wce={kernelName:yi,backendName:"webgpu",kernelFunc:Ex},Vce=Nn({opType:xt.EXPM1,cpuKernelImpl:tue}),Uce={kernelName:xi,backendName:"webgpu",kernelFunc:Vce},Gce=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return`
${nt()}
if (index < uniforms.size) {
setOutputFlat(index, uniforms.value);
}
}
`}};function yc(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new Gce(s),i=[{type:"float32",data:[r]}];return t.runWebGPUProgram(o,[],a,i)}}var Hce={kernelName:fu,backendName:"webgpu",kernelFunc:yc},jce=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let coordX = uniforms.xShape[2] - coords[2] - 1;
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
setOutputFlat(index, outputValue);
}
}
`}},qce={kernelName:bi,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new jce(n.shape);return s.runWebGPUProgram(r,[n],n.dtype)}},Xce=Nn({opType:xt.FLOOR,cpuKernelImpl:nue}),Kce={kernelName:Wa,backendName:"webgpu",kernelFunc:Xce},Zce=qn({opSnippet:Vt.INT_DIV,dtype:"int32"}),Yce={kernelName:Va,backendName:"webgpu",kernelFunc:Zce},Jce=(e,t,n,s,r)=>{let a=[s,...n];return r&&a.push(r),e.createBindGroup({layout:t,entries:a.map((o,i)=>({binding:i,resource:o}))})},NC=(e,t,n,s,r,a=!1)=>{let o={dtype:r.dtype,shape:r.shape},i=Eie(s,o,t,a),l=e.createShaderModule({code:i});return e.createComputePipeline({layout:n,compute:{module:l,entryPoint:"main"}})};function EC(e,t,n,s="",r=""){return e.shaderKey+"_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(o=>o.length).join(",")+n.join(",")+e.variableNames.join(",")+s+r}function RC(e){let{externalImage:t,backend:n,attrs:s,outShape:r,useImport:a}=e,{numChannels:o}=s,i=v.sizeFromShape(r),l=v.computeStrides(r),c=n.makeTensorInfo(r,"int32"),u=n.getFromPixelsProgram(a?"import":"copyExternal");u.updateOutputShape(r);let d=[c.shape],p=[c.dtype,a?"import":"copyExternal"],h=EC(u,d,p),f=u.getLayout(n.device),m=n.getAndSavePipeline(h,()=>NC(n.device,u,f.pipelineLayout,[],c,!0));u.setPipeline(m),a||n.queue.copyExternalImageToTexture({source:t,origin:{x:0,y:0}},{texture:u.makeInputTexture(n.device,r[1],r[0])},[r[1],r[0]]);let g=n.tensorMap.get(c.dataId);g.bufferInfo.buffer=n.acquireBuffer(g.bufferInfo.byteSize);let A=[i,o,...l,...u.dispatch];u.setUniform(n.device,A);let x;if(a){let y={source:t};x=n.device.importExternalTexture(y)}else x=u.inputTexture.createView();return n.runFromPixelsProgram(u,g.bufferInfo.buffer,f,x,c.dataId),c}var Qce={kernelName:fd,backendName:"webgpu",kernelFunc:ede},xc;function ede(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s;if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&r instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&r instanceof OffscreenCanvas,c=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[u,d]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[d,u,a];if(K().getBool("WEBGPU_USE_IMPORT")&&o)return RC({externalImage:r,backend:n,attrs:s,outShape:p,useImport:!0});if((o||i)&&(xc==null&&(xc=document.createElement("canvas").getContext("2d")),xc.canvas.width=u,xc.canvas.height=d,xc.drawImage(r,0,0,u,d),r=xc.canvas),c||l||o||i)return RC({externalImage:r,backend:n,attrs:s,outShape:p,useImport:!1});let h=r.data,f=h;if(a!=null&&a!==4){f=new Uint8Array(r.width*r.height*a);let A=h.length,x=0;for(let y=0;y<A;y++)y%4<a&&(f[x++]=h[y])}let m=n.makeTensorInfo(p,"int32"),g=n.tensorMap.get(m.dataId);return g.values=new Int32Array(f),n.maybeReleaseBuffer(m.dataId),n.uploadToGPU(m.dataId),m}var tde=class{constructor(e,t,n,s,r){this.uniforms="varianceEpsilon : f32;",this.workGroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n),this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),s!=null&&(E.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset")),r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale")),this.offsetShape=s,this.scaleShape=r,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetAtOutCoordsByGlobalIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleAtOutCoordsByGlobalIndex(index)"),`
${nt()}
if (index < uniforms.size)
{
let xValue = getXAtOutCoordsByGlobalIndex(index);
let meanValue = getMeanAtOutCoordsByGlobalIndex(index);
let varianValue = getVarianceAtOutCoordsByGlobalIndex(index);
let offsetValue = ${e};
let scaleValue = ${t};
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
setOutputFlat(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
}
}
`}},nde={kernelName:Ua,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s,scale:r,offset:a,mean:o,variance:i}=e,{varianceEpsilon:l}=t,c=n,u=[s,o,i],d=null;a!=null&&(d=a.shape,u.push(a));let p=null;r!=null&&(p=r.shape,u.push(r));let h=new tde(s.shape,o.shape,i.shape,d,p),f=[{type:"float32",data:[l]}];return c.runWebGPUProgram(h,u,s.dtype,f)}};function sde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=E.convertConv2DDataFormat(u),g=E.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!1,m),A=o!=null,x=i!=null,y;if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))return bC({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});let b=K().getBool("WEBGPU_USE_NAIVE_CONV2D"),w=g.inChannels%4==0&&g.outChannels%4==0,k=[g.padInfo.top,g.padInfo.left],I=[{type:"int32",data:[g.filterHeight,g.filterWidth]},{type:"int32",data:[...k]},{type:"int32",data:[g.strideHeight,g.strideWidth]},{type:"int32",data:[g.dilationHeight,g.dilationWidth]}];if(b)y=new kC(g,A,h,x);else{w?y=new vC(g,A,h,x):y=new wC(g,A,h,x);let $=g.outShape[1]*g.outShape[2],O=g.outShape[3],D=g.filterHeight*g.filterWidth*g.inShape[3];I.push({type:"int32",data:[$]},{type:"int32",data:[O]},{type:"int32",data:[D]})}let N=[r,a];return A&&N.push(o),x&&N.push(i),n.runWebGPUProgram(y,N,r.dtype,I)}var rde={kernelName:bo,backendName:"webgpu",kernelFunc:sde};function ade(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:d,activation:p}=s,h=u;h==null&&(h=[1,1]),v.assert(E.eitherStridesOrDilationsAreOne(l,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${h}'`);let f=E.computeConv2DInfo(r.shape,a.shape,l,h,c,d,!0),m=[r,a],g=o!=null,A=i!=null;g&&m.push(o),A&&m.push(i);let x;f.batchSize===1&&f.inHeight===f.outHeight&&f.inWidth===f.outWidth&&f.strideHeight===1&&f.strideWidth===1&&f.filterHeight===f.filterWidth&&f.inChannels===f.outChannels&&f.filterHeight===3&&f.inChannels%4==0?x=new SC(f,g,p,A):x=new IC(f,g,p,A);let y=[{type:"int32",data:[f.padInfo.top,f.padInfo.left]},{type:"int32",data:[f.strideHeight,f.strideWidth]},{type:"int32",data:[f.dilationHeight,f.dilationWidth]},{type:"int32",data:[f.inHeight,f.inWidth]}];return n.runWebGPUProgram(x,m,"float32",y)}var ode={kernelName:vo,backendName:"webgpu",kernelFunc:ade},ide=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32; strides : ${wn(e)};`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
var flattenIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexTemp = i32(round(getIndices(coords[0], j)));
let strideNum = ${e};
flattenIndex = flattenIndex + indexTemp * strideNum;
}
setOutputFlat(index, getA(flattenIndex, coords[1]));
}
}
`}};function lde(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,c,u,d]=E.prepareAndValidate(s,r),p=Ge({inputs:{x:r},backend:n,attrs:{shape:[c,o]}}),h=Ge({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/u,u]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let x=n.readSync(r.dataId),y=n.bufferSync(s),b=sue(x,y,s.dtype,c,o,u,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,b.values)}let f=new ide(o,[c,u]),m=[{type:"int32",data:[o]},{type:"int32",data:d}],g=n.runWebGPUProgram(f,[h,p],h.dtype,m),A=Ge({inputs:{x:g},backend:n,attrs:{shape:l}});return n.disposeData(p.dataId),n.disposeData(h.dataId),n.disposeData(g.dataId),A}var ude={kernelName:wi,backendName:"webgpu",kernelFunc:lde},cde=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=dde(this.aShape,"i32");return`
${nt()}
if (index < uniforms.size) {
let resRC = getCoordsFromFlatIndex(index);
setOutputFlat(index, getA(${e}));
}
}
`}};function dde(e,t="int"){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push(`${t}(getIndices(resRC.x, resRC.z))`):s.push(`${n[r]}`);return s.join()}function $C(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],c=E.segment_util.collectGatherOpShapeInfo(r,a,l,i),u=v.sizeFromShape(a.shape),d=[],p=Ge({inputs:{x:r},backend:n,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),h=Ge({inputs:{x:a},backend:n,attrs:{shape:[c.batchSize,u/c.batchSize]}});d.push(p),d.push(h);let f=[c.batchSize,c.outerSize,u/c.batchSize,c.sliceSize];if(n.shouldExecuteOnCPU([r,a])){let y=n.tensorMap.get(h.dataId).values,b=ze(h.shape,h.dtype,y),k=n.tensorMap.get(p.dataId).values,I=ze(p.shape,p.dtype,k),N=rue(I,b,f);return d.forEach($=>n.disposeData($.dataId)),n.makeTensorInfo(c.outputShape,N.dtype,N.values)}let m=new cde(p.shape,f),g=n.runWebGPUProgram(m,[p,h],p.dtype);d.push(g);let A=Ge({inputs:{x:g},backend:n,attrs:{shape:c.outputShape}});return d.forEach(x=>n.disposeData(x.dataId)),A}var pde={kernelName:vi,backendName:"webgpu",kernelFunc:$C},hde=qn({opSnippet:Vt.GREATER,cpuKernelImpl:oue,dtype:"bool"}),fde={kernelName:ki,backendName:"webgpu",kernelFunc:hde},mde=qn({opSnippet:Vt.GREATER_EQUAL,dtype:"bool",cpuKernelImpl:aue}),gde={kernelName:Ga,backendName:"webgpu",kernelFunc:mde},Ade=qn({opSnippet:Vt.LESS,dtype:"bool",cpuKernelImpl:lue}),yde={kernelName:Ii,backendName:"webgpu",kernelFunc:Ade},xde=qn({opSnippet:Vt.LESS_EQUAL,dtype:"bool",cpuKernelImpl:iue}),bde={kernelName:Ci,backendName:"webgpu",kernelFunc:xde},vde=Nn({opType:xt.LOG,cpuKernelImpl:uue}),wde={kernelName:ja,backendName:"webgpu",kernelFunc:vde},kde=qn({opSnippet:Vt.LOGICAL_AND,dtype:"bool"}),Sde={kernelName:Ti,backendName:"webgpu",kernelFunc:kde},Ide=Nn({opType:xt.LOGICAL_NOT}),Cde={kernelName:xu,backendName:"webgpu",kernelFunc:Ide};function _C(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s;return vp(r,a,o,"max",n)}var Tde={kernelName:qa,backendName:"webgpu",kernelFunc:_C},Nde=qn({opSnippet:Vt.MAX,cpuKernelImpl:due}),Ede={kernelName:Xa,backendName:"webgpu",kernelFunc:Nde};function Rde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1,u=E.computePool2DInfo(r.shape,a,o,c,i,l),d,p=[];if(u.filterHeight===1&&u.filterWidth===1){if(v.arraysEqual(u.inShape,u.outShape))return Qs({inputs:{x:r},backend:n});d=new AC(u),p.push({type:"int32",data:[u.strideHeight,u.strideWidth]})}else d=new gC(u,"max"),p.push({type:"int32",data:[u.strideHeight,u.strideWidth]},{type:"int32",data:[u.padInfo.top,u.padInfo.left]},{type:"int32",data:[u.dilationHeight,u.dilationWidth]},{type:"int32",data:[u.inHeight,u.inWidth]},{type:"int32",data:[u.effectiveFilterHeight,u.effectiveFilterWidth]});return n.runWebGPUProgram(d,[r],r.dtype,p)}var $de={kernelName:Ka,backendName:"webgpu",kernelFunc:Rde};function _de(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{keepDims:a,axis:o}=s;return vp(r,o,a,"mean",n)}var Dde={kernelName:Za,backendName:"webgpu",kernelFunc:_de};function Pde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return vp(r,a,o,"min",n)}var Fde={kernelName:Ya,backendName:"webgpu",kernelFunc:Pde},Ode=qn({opSnippet:Vt.MIN,cpuKernelImpl:pue}),Mde={kernelName:Ja,backendName:"webgpu",kernelFunc:Ode},zde=class{constructor(e,t,n){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((s,r)=>s[0]+e[r]+s[1]),this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((s,r)=>{this.uniforms+=` pad${r} : vec2<i32>;`}),this.offset=n==="reflect"?0:1,this.shaderKey=`mirrorPad_${n}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,c)=>`uniforms.pad${c}[0]`).join(","),n=this.xShape.map((l,c)=>`uniforms.pad${c}[0] + uniforms.xShape${e>1?`[${c}]`:""}`).join(","),s=e===1?"start":"start[i]",r=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",o=wn(e),i=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${nt()}
if (index < uniforms.size) {
let start = ${o}(${t});
let end = ${o}(${n});
var outC = getCoordsFromFlatIndex(index);
for (var i = 0; i < ${e}; i = i + 1) {
if (${a} < ${s}) {
${a} = ${s} * 2 - ${a} - ${this.offset};
} elseif(${a} >= ${r}) {
${a} = (${r} - 1) * 2 - ${a} + ${this.offset};
}
}
let coords = outC - start;
setOutputFlat(index, getX(${i}));
}
}
`}},Lde={kernelName:Qa,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{paddings:r,mode:a}=t,o=n,i=r.map(u=>({type:"int32",data:[u[0],u[1]]})),l=new zde(s.shape,r,a);return o.runWebGPUProgram(l,[s],s.dtype,i)}};function Bde(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.tensorMap.get(s.dataId),[o,i]=fue(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r=new Ym(s.shape,xt.NEG);return n.runWebGPUProgram(r,[s],s.dtype)}var Wde={kernelName:Ni,backendName:"webgpu",kernelFunc:Bde};function Vde(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,c=n.readSync(r.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=Ks.nonMaxSuppressionV3Impl(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Ude={kernelName:Ri,backendName:"webgpu",kernelFunc:Vde};function Gde(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=Ks.nonMaxSuppressionV5Impl(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var Hde={kernelName:$i,backendName:"webgpu",kernelFunc:Gde};function Qm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=bp({inputs:{input:s},backend:n}),a=Qm({inputs:{x:r},backend:n}),o=Jm({inputs:{input:s},backend:n}),i=Qm({inputs:{x:o},backend:n}),l=gc({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return yc({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var jde={kernelName:Zi,backendName:"webgpu",kernelFunc:Qm};function DC(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=bp({inputs:{input:s},backend:n}),a=DC({inputs:{x:r},backend:n}),o=Jm({inputs:{input:s},backend:n}),i=Qm({inputs:{x:o},backend:n}),l=gc({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return yc({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var qde={kernelName:_i,backendName:"webgpu",kernelFunc:DC};function Xde(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Ex({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Ex({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=xC({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeData(u.dataId)),c}var Kde={kernelName:Pi,backendName:"webgpu",kernelFunc:Xde},Zde=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,s)=>n[0]+e[s]+n[1]),this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((n,s)=>{this.uniforms+=` pad${s} : vec2<i32>;`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=wn(e),n=this.xShape.map((u,d)=>`uniforms.pad${d}[0]`).join(","),s=this.xShape.map((u,d)=>`uniforms.pad${d}[0] + uniforms.xShape${e>1?`[${d}]`:""}`).join(","),r=e>1?`${t}(${n})`:`${n}`,a=e>1?`${t}(${s})`:`${s}`,o=e>1?"any(outC < start)":"outC < start",i=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${nt()}
if (index < uniforms.size) {
let start = ${r};
let end = ${a};
let outC = getCoordsFromFlatIndex(index);
if (${o} || ${i}) {
setOutputFlat(index, uniforms.constantValue);
} else {
let coords = outC - start;
setOutputFlat(index, getX(${l}));
}
}
}
`}},PC=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(a.every(c=>v.arraysEqual(c,[0,0])))return Qs({inputs:{x:r},backend:n});if(v.sizeFromShape(r.shape)===0){let c=a.map((u,d)=>u[0]+r.shape[d]+u[1]);return yc({backend:n,attrs:{shape:c,value:o,dtype:r.dtype}})}let i=[{type:"float32",data:[o]}];a.map(c=>i.push({type:"int32",data:[c[0],c[1]]}));let l=new Zde(r.shape,a);return n.runWebGPUProgram(l,[r],r.dtype,i)},Yde={kernelName:to,backendName:"webgpu",kernelFunc:PC},Jde=qn({opSnippet:Vt.POW}),Qde={kernelName:no,backendName:"webgpu",kernelFunc:Jde};function epe(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=new hC(Vt.PRELU,s.shape,r.shape);return n.runWebGPUProgram(a,[s,r],"float32")}var tpe={kernelName:so,backendName:"webgpu",kernelFunc:epe};function npe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return vp(r,a,o,"prod",n)}var spe={kernelName:Fi,backendName:"webgpu",kernelFunc:npe},rpe=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=Aue(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},ape={kernelName:wu,backendName:"webgpu",kernelFunc:rpe},FC=qn({opSnippet:Vt.DIV}),ope={kernelName:za,backendName:"webgpu",kernelFunc:FC},ipe=Nn({opType:xt.RELU}),lpe={kernelName:ro,backendName:"webgpu",kernelFunc:ipe},upe=Nn({opType:xt.RELU6}),cpe={kernelName:oo,backendName:"webgpu",kernelFunc:upe},dpe=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.alignCorners=s,this.halfPixelCenters=r,this.shaderKey=`resizeBilinear_${s}_${r}_${this.outputShape[1]>1}_${this.outputShape[2]>1}`}getUserCode(){let e=this.alignCorners&&this.outputShape[1]>1,t=this.alignCorners&&this.outputShape[2]>1;return`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
${e?"f32(uniforms.xShape.y) - 1.0":"f32(uniforms.xShape.y)"},
${t?"f32(uniforms.xShape.z) - 1.0":"f32(uniforms.xShape.z)"});
let effectiveOutSize = vec2<f32>(
${e?"f32(uniforms.outShape.y) - 1.0":"f32(uniforms.outShape.y)"},
${t?"f32(uniforms.outShape.z) - 1.0":"f32(uniforms.outShape.z)"});
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC = ${this.halfPixelCenters?"(vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC - vec2<f32>(0.5)":"vec2<f32>(rc) * effectiveInputOverOutputRatioRC"};
// Compute the four integer indices.
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
let sourceCeilRC = vec2<i32>(
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
let top = topLeft + (topRight - topLeft) * fracRC.y;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
let newValue = top + (bottom - top) * fracRC.x;
setOutputFlat(index, newValue);
}
}
`}};function ppe(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,size:o,halfPixelCenters:i}=s,[l,c]=o,u=new dpe(r.shape,l,c,a,i);return n.runWebGPUProgram(u,[r],"float32")}var hpe={kernelName:ao,backendName:"webgpu",kernelFunc:ppe},fpe=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.alignCorners=s,this.halfPixelCenters=r,this.shaderKey=`resizeNearest_${s}_${this.outputShape[1]>1}_${this.outputShape[2]>1}_${r}`}getUserCode(){let e=this.alignCorners?"0.5":"0.0",t;this.halfPixelCenters?t="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":t="vec2<f32>(rc) * effectiveInputOverOutputRatioRC";let n=this.alignCorners&&this.outputShape[1]>1,s=this.alignCorners&&this.outputShape[2]>1;return`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
${n?"f32(uniforms.xShape.y) - 1.0":"f32(uniforms.xShape.y)"},
${s?"f32(uniforms.xShape.z) - 1.0":"f32(uniforms.xShape.z)"});
let effectiveOutSize = vec2<f32>(
${n?"f32(uniforms.outShape.y) - 1.0":"f32(uniforms.outShape.y)"},
${s?"f32(uniforms.outShape.z) - 1.0":"f32(uniforms.outShape.z)"});
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC = ${t};
// Compute the coordinators of nearest neighbor point.
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
let sourceNearestRC = vec2<i32>(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${e})));
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutputFlat(index, newValue);
}
}
`}};function mpe(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=new fpe(r.shape,l,c,a,o);return n.runWebGPUProgram(u,[r],r.dtype)}var gpe={kernelName:Su,backendName:"webgpu",kernelFunc:mpe},Ape=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32; centerY : f32; sinRadians : f32;
cosRadians : f32;`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32;",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>;",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
uniforms.sinRadians;
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
uniforms.cosRadians;
let coordX = i32(round(coordXFloat + uniforms.centerX));
let coordY = i32(round(coordYFloat + uniforms.centerY));
${this.fillSnippet}
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
coordY < uniforms.xShape[1]) {
outputValue = getX(coords[0], coordY, coordX, coords[3]);
}
setOutputFlat(index, outputValue);
}
}
`}},ype={kernelName:Yi,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Ape(s.shape,a),[c,u]=E.getImageCenter(o,s.shape[1],s.shape[2]),d=[{type:"float32",data:[c]},{type:"float32",data:[u]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof a=="number"?d.push({type:"float32",data:[Number.parseFloat(a.toFixed(2))]}):d.push({type:"float32",data:a}),i.runWebGPUProgram(l,[s],s.dtype,d)}},xpe=Nn({opType:xt.RSQRT,cpuKernelImpl:yue}),bpe={kernelName:io,backendName:"webgpu",kernelFunc:xpe},vpe=class{constructor(e,t,n,s,r,a,o){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=a,this.type=o,this.dispatchLayout=je(e),this.dispatch=Fe(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${n}_${s}_${this.sliceDimGreaterThanOne}_${o}`;let i=wn(r.length);this.uniforms=`sliceDim : i32; strides: ${i}; size: i32;`,this.updatesRank=s,this.indicesRank=n}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,n=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",s="",r="",a="";this.updatesRank===1?(s="coords[0]",r="flattenedIndex",a=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
return index;
}
`):this.updatesRank===2&&(s="coords[0], coords[1]",r="vec2<i32>(flattenedIndex, coords[1])",a=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
let d0 = index / uniforms.updatesShape[1];
let d1 = index - d0 * uniforms.updatesShape[1];
return vec2<i32>(d0, d1);
}
`);let o=`getUpdates(${s})`,i=this.type==="int32"?"ignore(atomicAdd(&(result.numbers[flatIndex]), i32(updateValue)));":`
var assumed = atomicLoad(&(result.numbers[flatIndex]));
var success = 0;
for (; success == 0;) {
let new = bitcast<f32>(assumed) + updateValue;
let newI32 = bitcast<i32>(new);
let resValue = atomicCompareExchangeWeak(&(result.numbers[flatIndex]), assumed, newI32);
assumed = resValue[0];
success = resValue[1];
}
`;return`
${a}
${nt()}
if (index < uniforms.size) {
let coords = getUpdatesCoordsFromFlatIndex(index);
var flattenedIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexInside = i32(round(${t}));
flattenedIndex = flattenedIndex + indexInside * ${n};
}
let updateValue = ${o};
let flatIndex = getOutputFlatIndex(${r});
${i}
}
}`}};function wpe(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=E.calculateShapes(a,r,o),p=[d/c,c];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=Ge({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=Ge({inputs:{x:a},backend:n,attrs:{shape:[l,c]}}),m=f.dtype,g=yc({backend:n,attrs:{shape:p,value:0,dtype:m}}),A=v.sizeFromShape(f.shape),x=[{type:"int32",data:[i]},{type:"int32",data:u},{type:"int32",data:[A]}],y=new vpe(f.shape,i,h.shape.length,f.shape.length,u,p,m),b=n.runWebGPUProgram(y,[f,h],m,x,g),w=Ge({inputs:{x:b},backend:n,attrs:{shape:o}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(b.dataId),w}var kpe={kernelName:Li,backendName:"webgpu",kernelFunc:wpe},Spe=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=n,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let s=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[],a=[];for(let o=0;o<this.outputShape.length;o++)a.push(`${s[o]}`),o<this.cRank&&r.push(`${s[o]}`);e=r.join(),t=a.join()}return`
${nt()}
if (index < uniforms.size) {
let resRC = getCoordsFromFlatIndex(index);
let cVal = getC(${e});
if (cVal >= 1.0) {
setOutputFlat(index, getA(${t}));
} else {
setOutputFlat(index, getB(${t}));
}
}
}
`}};function Ipe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new Spe(s.shape.length,r.shape,r.shape.length);return n.runWebGPUProgram(o,[s,r,a],Ln(r.dtype,a.dtype))}var Cpe={kernelName:Bi,backendName:"webgpu",kernelFunc:Ipe},Tpe=Nn({opType:xt.SIGMOID}),Npe={kernelName:uo,backendName:"webgpu",kernelFunc:Tpe},Epe=Nn({opType:xt.SIN}),Rpe={kernelName:lo,backendName:"webgpu",kernelFunc:Epe},$pe=Nn({opType:xt.SINH}),_pe={kernelName:Vi,backendName:"webgpu",kernelFunc:$pe},OC=qn({opSnippet:Vt.SUB,cpuKernelImpl:kue,supportsComplex:!0}),Dpe={kernelName:mo,backendName:"webgpu",kernelFunc:OC};function Ppe(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=_C({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=E.expandShapeToKeepDim(i.shape,o),c=Ge({inputs:{x:i},backend:n,attrs:{shape:l}}),u=OC({inputs:{a:r,b:c},backend:n}),d=TC({inputs:{x:u},backend:n}),p=Nx({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=Ge({inputs:{x:p},backend:n,attrs:{shape:l}}),f=FC({inputs:{a:d,b:h},backend:n});return n.disposeData(i.dataId),n.disposeData(c.dataId),n.disposeData(u.dataId),n.disposeData(d.dataId),n.disposeData(p.dataId),n.disposeData(h.dataId),f}var Fpe={kernelName:ho,backendName:"webgpu",kernelFunc:Ppe},Ope=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((A,x)=>A*x),l=[[0,0]];l.push(...o);for(let A=1+a.length;A<r.shape.length;++A)l.push([0,0]);let c=[],u=PC({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=E.getReshaped(u.shape,a,i,!1),p=E.getPermuted(d.length,a.length,!1),h=E.getReshapedPermuted(u.shape,a,i,!1),f=Ge({inputs:{x:u},backend:n,attrs:{shape:d}}),m=Dl({inputs:{x:f},backend:n,attrs:{perm:p}}),g=Ge({inputs:{x:m},backend:n,attrs:{shape:h}});return c.push(u),c.push(f),c.push(m),c.forEach(A=>n.disposeData(A.dataId)),g},Mpe={kernelName:Ui,backendName:"webgpu",kernelFunc:Ope},zpe=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.workGroupSize=[64,1,1],this.workPerThread=4,this.size=!0,this.outputShape=a,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let i=t>1;this.shaderKey=`scatter_${n}_${s}_${i}`;let l=wn(r.length);this.uniforms=`updateSize : i32; sliceDim : i32; strides: ${l};`;let c="";n===1?c="i":n===2&&(c="i, j"),this.indicesSnippet=`getIndices(${c})`;let u="";s===1?u="i":s===2&&(u="i, coords[1]"),this.updatesSnippet=`getUpdates(${u})`,this.strideString=i?"uniforms.strides[j]":"uniforms.strides"}getUserCode(){return`
${nt()}
let globalIndex = index * ${this.workPerThread};
if (globalIndex < uniforms.size) {
var sum = vec4<f32>(0.0);
var found = vec4<bool>(false);
for (var i = 0; i < uniforms.updateSize; i = i + 1) {
var flattenedIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexInside = i32(round(${this.indicesSnippet}));
flattenedIndex = flattenedIndex + indexInside * ${this.strideString};
}
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
let curIndex = globalIndex + innerIndex;
let coords = getCoordsFromFlatIndex(curIndex);
if (flattenedIndex == coords[0]) {
sum[innerIndex] = sum[innerIndex] + ${this.updatesSnippet};
found[innerIndex] = true;
}
}
}
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
let curIndex = globalIndex + innerIndex;
if (curIndex < uniforms.size)
{
setOutputFlat(curIndex, mix(getDefaultValue(), sum[innerIndex], f32(found[innerIndex])));
}
}
}
}`}};function Lpe(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,strides:u,outputSize:d}=E.calculateShapes(a,r,i),p=!1,h=[{type:"int32",data:[c]},{type:"int32",data:[l]},{type:"int32",data:u}],f=new zpe(c,l,r.shape.length,a.shape.length,u,[d,1],p),m=n.runWebGPUProgram(f,[a,r,o],a.dtype,h),g=Ge({inputs:{x:m},backend:n,attrs:{shape:i}});return n.disposeData(m.dataId),g}var Bpe={kernelName:dd,backendName:"webgpu",kernelFunc:Lpe};function Wpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=r.shape.length,u=new Array(c).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=Ac({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var Vpe={kernelName:Gi,backendName:"webgpu",kernelFunc:Wpe},Upe=Nn({opType:xt.SQRT}),Gpe={kernelName:co,backendName:"webgpu",kernelFunc:Upe},Hpe={kernelName:Nu,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t,r=new Ym(n.shape,xt.SQUARE);return s.runWebGPUProgram(r,[n],n.dtype)}},jpe=qn({opSnippet:Vt.SQUARED_DIFFERENCE}),qpe={kernelName:fo,backendName:"webgpu",kernelFunc:jpe},Xpe=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=wn(this.outputShape.length);this.uniforms=`begin : ${t}; strides : ${t}; `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let s=0;t=this.outputShape.map((r,a)=>(s++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${s-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
setOutputFlat(index, getX(${t}));
}
}
`}};function Kpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:A,begin:x,end:y,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,c,u,d,p),w;if(m)w=Ge({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||A){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Ft.computeOutShape(x,y,b),I=Ac({inputs:{x:r},backend:n,attrs:{begin:x,size:k}});w=Ge({inputs:{x:I},backend:n,attrs:{shape:f}}),n.disposeData(I.dataId)}else if(n.shouldExecuteOnCPU([r])){let I=n.readSync(r.dataId),N=ze(r.shape,r.dtype,I),$=vue(h,N,b,x);w=n.makeTensorInfo(f,r.dtype,$.values)}else{let I=new Xpe(h),N=[{type:"int32",data:x},{type:"int32",data:b}],$=n.runWebGPUProgram(I,[r],r.dtype,N);w=Ge({inputs:{x:$},backend:n,attrs:{shape:f}}),n.disposeData($.dataId)}return w}var Zpe={kernelName:Hi,backendName:"webgpu",kernelFunc:Kpe};function Ype(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=wue(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Jpe={kernelName:pd,backendName:"webgpu",kernelFunc:Ype},Qpe=Nn({opType:xt.TANH}),ehe={kernelName:go,backendName:"webgpu",kernelFunc:Qpe},the=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=nhe(this.rank,"uniforms.");return`
${nt()}
if (index < uniforms.size) {
let resRC = getCoordsFromFlatIndex(index);
setOutputFlat(index, getA(${e}));
}
}
`}};function nhe(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e;r++)s.push(`(${n[r]} % ${t}aShape[${r}])`);return s.join()}function she(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(n.shouldExecuteOnCPU([r])||r.dtype==="string"||r.shape.length>=5){let l=n.readSync(r.dataId),c=r.dtype==="string"?l.map(p=>v.decodeString(p)):l,u=ze(r.shape,r.dtype,c),d=Sue(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new the(r.shape,a);return n.runWebGPUProgram(o,[r],r.dtype)}var rhe={kernelName:qr,backendName:"webgpu",kernelFunc:she},ahe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32; firstPass : i32; negativeInf : f32;
dir : i32; inc : i32;`,this.shaderKey="swap"}getUserCode(){return`
${nt()}
if (index < uniforms.size) {
let outC = getCoordsFromFlatIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced
// above, Figure5(a) shows that element[1] is in the second half of
// the group when group size is 2, but it is in the first half of
// the group when group size is 4.
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
var i = 0;
if (isFirstInPair) {
i = elemIdx;
} else {
i = elemIdx - uniforms.inc;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.inc;
} else {
i1 = i32(getIndices(batch, i + uniforms.inc));
}
var x0 = f32(0.0);
var x1 = f32(0.0);
if (i0 < uniforms.inputSize) {
x0 = getX(batch, i0);
} else {
x0 = uniforms.negativeInf;
}
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = uniforms.negativeInf;
}
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) {
// Elements in opposite order of direction
let iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutputFlat(index, f32(i0));
} else {
setOutputFlat(index, f32(i1));
}
}
}
`}},ohe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32; firstPass : i32; k : i32;",this.shaderKey="merge"}getUserCode(){return`
${nt()}
if (index < uniforms.size) {
let outC = getCoordsFromFlatIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
// (k=4), we only need to output the indices at positions |, the
// indices at positions _ can be thrown away, see Figure5(b) After
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
// above.
// For example, the paper shows we only need to output the orange
// bars. The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back to
// the previous sequence to find the corresponding value, we need
// to double the index. When we double the index, we basically
// interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
// position of each 2k positions by - elemIdx % k. E.g. for output
// at index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
var i = 0;
if (elemIdx < uniforms.k) {
i = elemIdx;
} else {
i = elemIdx * 2 - elemIdx % uniforms.k;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.k;
} else {
i1 = i32(getIndices(batch, i + uniforms.k));
}
let x0 = getX(batch, i0);
var x1 = f32(0.0);
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = x0;
}
if (x0 >= x1) {
setOutputFlat(index, f32(i0));
} else {
setOutputFlat(index, f32(i1));
}
}
}
`}};function bc(e,t){t!==null&&e.disposeData(t.dataId)}function MC(e){let t=1;for(;t<e;)t*=2;return t}function ihe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=r.shape,l=i[i.length-1];if(n.shouldExecuteOnCPU([r])){let w=n.readSync(r.dataId),[k,I]=Iue(w,i,r.dtype,a,o);return[n.makeTensorInfo(k.shape,k.dtype,k.values),n.makeTensorInfo(I.shape,I.dtype,I.values)]}if(a===0)return i[i.length-1]=0,[n.makeTensorInfo(i,r.dtype,[]),n.makeTensorInfo(i,"int32",[])];if(l===1)return[r,yc({attrs:{shape:i,dtype:"int32",value:0},backend:n})];let u=v.sizeFromShape(i)/l,d=Ge({inputs:{x:r},attrs:{shape:[u,l]},backend:n}),p=MC(a),h=MC(l),f=null,m=()=>f===null?[d,d]:[d,f],g=(w,k,I)=>{let N=m(),$=new ahe(I),D=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[w]},{type:"int32",data:[k]}],R=f;f=n.runWebGPUProgram($,N,"int32",D),bc(n,R)};for(let w=1;w<p;w*=2){let k=w*2;for(let I=w;I>=1;I/=2)g(k,I,[u,h])}for(let w=h;w>p;w/=2){let k=m(),I=new ohe([u,w/2]),$=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"int32",data:[p]}],O=f;f=n.runWebGPUProgram(I,k,"int32",$),bc(n,O);let D=p/2,R=D*2;for(let T=D;T>=1;T/=2)g(R,T,f.shape)}let A=f;f=Ac({inputs:{x:f},backend:n,attrs:{begin:0,size:[u,a]}}),bc(n,A);let x=$C({inputs:{x:d,indices:f},backend:n,attrs:{axis:1,batchDims:1}});bc(n,d);let y=i.slice(0,-1);y.push(a),A=f,f=Ge({inputs:{x:f},attrs:{shape:y},backend:n}),bc(n,A);let b=x;return x=Ge({inputs:{x},attrs:{shape:y},backend:n}),bc(n,b),[x,f]}var lhe={kernelName:qi,backendName:"webgpu",kernelFunc:ihe},uhe=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32; fillModeId : i32; fillValue : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
fn mapCoord(outCoord : f32, len : f32) -> f32{
var inCoord = outCoord;
if(uniforms.fillModeId == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
inCoord;
}
if (inCoord < -len) {
inCoord = inCoord + sz2;
} else {
inCoord = -inCoord - 1.0;
}
}
} elseif (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} elseif (uniforms.fillModeId == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
}
} elseif (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} elseif (uniforms.fillModeId == 4) {
return clamp(outCoord, 0.0, len - 1.0);
}
return outCoord;
}
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
channel : i32) -> f32 {
var outputValue : f32;
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = uniforms.fillValue;
}
return outputValue;
}
${nt()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
var outputValue : f32;
let batch = coords[0];
let x = coords[2];
let y = coords[1];
let channel = coords[3];
let xf = f32(x);
let yf = f32(y);
let a1 = getTransforms(batch, 0);
let a2 = getTransforms(batch, 1);
let a3 = getTransforms(batch, 2);
let b1 = getTransforms(batch, 3);
let b2 = getTransforms(batch, 4);
let b3 = getTransforms(batch, 5);
let c1 = getTransforms(batch, 6);
let c2 = getTransforms(batch, 7);
let projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = uniforms.fillValue;
} else {
let inX = (a1 * xf + a2 * yf + a3) / projection;
let inY = (b1 * xf + b2 * yf + b3) / projection;
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
if (uniforms.interpolationModeId == 1) {
let coordY = i32(round(mapY));
let coordX = i32(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
let yFloor = floor(mapY);
let xFloor = floor(mapX);
let yCeil = yFloor + 1.0;
let xCeil = xFloor + 1.0;
let valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
let valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutputFlat(index, outputValue);
}
}
`}};function che(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=new uhe(g),x=o==="nearest"?1:2,y;switch(i){case"constant":y=1;break;case"reflect":y=2;break;case"wrap":y=3;break;case"nearest":y=4;break;default:y=1;break}let b=[{type:"int32",data:[x]},{type:"int32",data:[y]},{type:"float32",data:[l]}];return n.runWebGPUProgram(A,[r,a],"float32",b)}var dhe={kernelName:Xi,backendName:"webgpu",kernelFunc:che};function phe(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],c=new Array(i-1),u=0;for(let m=0;m<i;m++)m!==a&&(c[u++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[a]=m;let g=Ac({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),A=Ge({inputs:{x:g},backend:n,attrs:{shape:c}});f[m]=A,d.push(g)}return d.forEach(m=>n.disposeData(m.dataId)),f}var hhe={kernelName:Ki,backendName:"webgpu",kernelFunc:phe},fhe=[Hle,Nue,Rue,Due,Lue,Wue,Uue,Hue,Zue,ece,nce,oce,Kle,cce,fce,yce,bce,wce,Ice,Nce,Rce,Fce,Mce,Lce,Wce,Bce,Uce,Hce,qce,Qce,Kce,Yce,nde,rde,ode,ude,pde,fde,gde,Xle,lce,yde,bde,wde,Sde,Cde,Tde,Ede,$de,Dde,Fde,Mde,Lde,$ce,Wde,Ude,Hde,Yue,qde,Kde,Yde,tpe,spe,Qde,ape,Jue,ope,lpe,cpe,Ule,hpe,gpe,ype,bpe,kpe,Cpe,Npe,Rpe,_pe,Xue,Zpe,Jpe,Fpe,Mpe,Vpe,Bpe,Gpe,Hpe,qpe,Dpe,Dce,ehe,rhe,lhe,dhe,Mue,hhe,jde];for(let e of fhe)or(e);var mhe=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireBuffer(e,t){let n=zC(e,t);if(this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.usedBuffers.has(n)||this.usedBuffers.set(n,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(n).length>0){this.numFreeBuffers--;let r=this.freeBuffers.get(n).shift();return this.usedBuffers.get(n).push(r),r}this.numBytesAllocated+=e;let s=this.device.createBuffer({size:e,usage:t});return this.usedBuffers.get(n).push(s),s}releaseBuffer(e,t,n){if(this.freeBuffers==null)return;let s=zC(t,n);this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.freeBuffers.get(s).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(s),a=r.indexOf(e);if(a<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(a,1),this.numBytesUsed-=t}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}reset(){this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}dispose(){this.freeBuffers==null&&this.usedBuffers==null||(this.freeBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeBuffers=null,this.usedBuffers=null,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0)}};function zC(e,t){return`${e}_${t}`}var LC=class{constructor(){this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.lastUniformData=[],this.inputTexture=null,this.layout=null,this.lastPixelSize={width:0,height:0},this.disposed=!1,this.shaderKey="fromPixels",this.useImport=!1}updateOutputShape(e){v.arraysEqual(this.outputShape,e)||(this.outputShape=e,this.workPerThread=e[2],this.dispatchLayout=je(this.outputShape),this.dispatch=Fe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]))}makeFromPixelsSource(){let e=this.useImport?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
[[binding(1), group(0)]] var src: ${this.useImport?"texture_external":"texture_2d<f32>"};
${nt()}
let flatIndexBase = index * uniforms.numChannels;
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
let flatIndex = flatIndexBase + i;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromFlatIndex(flatIndexBase);
let values = ${e};
result.numbers[flatIndex] = i32(floor(255.0 * values[i]));
}
}
}
`}getUserCode(){return this.makeFromPixelsSource()}setPipeline(e){this.pipeline=e}setUniform(e,t){if(!this.uniform){let n=e.createBuffer({size:t.length*4,usage:GPUBufferUsage.UNIFORM|GPUBufferUsage.COPY_DST});this.uniform=n}!t||t.length===this.lastUniformData.length&&t.every((n,s)=>n===this.lastUniformData[s])||(e.queue.writeBuffer(this.uniform,0,new Uint32Array(t)),this.lastUniformData=t)}makeInputTexture(e,t,n){return(!this.inputTexture||this.lastPixelSize.width!==t||this.lastPixelSize.height!==n)&&(this.inputTexture&&this.inputTexture.destroy(),this.inputTexture=e.createTexture({size:[t,n],format:"rgba8unorm",usage:GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING}),this.lastPixelSize.width=t,this.lastPixelSize.height=n),this.inputTexture}dispose(){this.disposed||(this.uniform&&this.uniform.destroy(),this.inputTexture&&this.inputTexture.destroy(),this.disposed=!0)}getLayout(e){return this.layout===null&&(this.layout=this.createTextureLayout(e)),this.layout}createTextureLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,texture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),s=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}},ghe=class extends LC{constructor(){super(...arguments);this.layout=null,this.useImport=!0}getUserCode(){return this.makeFromPixelsSource()}getLayout(e){return this.layout===null&&(this.layout=this.createTextureImportLayout(e)),this.layout}createTextureImportLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,externalTexture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),s=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}},Ahe=K().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),BC=class extends eu{constructor(e,t=!1){super();if(this.commandQueueOwnedIds=new WeakSet,this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.disposed=!1,this.uploadWaitMs=0,this.downloadWaitMs=0,this.dispatchNumberInEncoder=0,!wx())throw new Error("WebGPU is not supported on this device");this.layoutCache={},this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new mhe(this.device),this.tensorMap=new Yc(this,ss()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),K().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return BC.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}flushDisposalQueue(){this.tensorDisposalQueue.forEach(e=>{this.maybeReleaseBuffer(e),this.tensorMap.delete(e)}),this.uniformDisposalQueue.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.byteSize,e.usage)),this.tensorDisposalQueue=[],this.uniformDisposalQueue=[]}disposeData(e,t=!1){if(this.tensorMap.has(e)){let n=this.tensorMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDisposalQueue.push(e),!1;this.maybeReleaseBuffer(e);let{complexTensorInfos:s}=this.tensorMap.get(e);s!=null&&(this.disposeData(s.real.dataId,!0),this.disposeData(s.imag.dataId,!0)),this.tensorMap.delete(e)}return!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}getBufferManager(){return this.bufferManager}acquireBuffer(e,t=this.defaultGpuBufferUsage()){return this.bufferManager.acquireBuffer(e,t)}maybeReleaseBuffer(e){let t=this.tensorMap.get(e);t!=null&&t.bufferInfo.buffer!=null&&(this.bufferManager.releaseBuffer(t.bufferInfo.buffer,t.bufferInfo.byteSize,t.bufferInfo.usage),t.bufferInfo.buffer=null)}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,n){if(n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()},r=v.sizeFromShape(t)*vx(n);return n==="bool"&&e instanceof Uint8Array&&(e=Int32Array.from(e)),this.tensorMap.set(s,{dtype:n,values:e,bufferInfo:{byteSize:r,usage:this.defaultGpuBufferUsage()},refCount:1}),s}move(e,t,n,s,r){if(s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a=v.sizeFromShape(n)*vx(s);this.tensorMap.set(e,{dtype:s,values:t,bufferInfo:{byteSize:a,usage:this.defaultGpuBufferUsage()},refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.flushDisposalQueue()}getBuffer(e){return this.uploadToGPU(e),this.tensorMap.get(e).bufferInfo.buffer}getFromPixelsProgram(e){switch(e){case"copyExternal":return this.fromPixelProgram||(this.fromPixelProgram=new LC),this.fromPixelProgram;case"import":return this.fromPixelImportProgram||(this.fromPixelImportProgram=new ghe),this.fromPixelImportProgram;default:v.assert(!1,()=>"Unsupported fromPixels shape");return}}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.endPass(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e){if(e.values!=null)return e.values;let t=this.acquireBuffer(e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e.bufferInfo.buffer,0,t,0,e.bufferInfo.byteSize),this.submitQueue(),await t.mapAsync(GPUMapMode.READ);let n=t.getMappedRange().slice(0);return t.unmap(),t!=null&&this.bufferManager.releaseBuffer(t,e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),K().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),n}convertAndCacheOnCPU(e,t){let n=this.tensorMap.get(e);return this.maybeReleaseBuffer(e),n.values=t,n.values}readSync(e){let t=this.tensorMap.get(e),{values:n}=t;if(n==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return n}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:n}=t;if(n!=null)return this.convertAndCacheOnCPU(e,n);let s;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=r[0],o=r[1];s=E.mergeRealAndImagArrays(a,o)}else{let r=await this.getBufferData(t);s=iC(r,t.dtype)}return this.convertAndCacheOnCPU(e,s),s}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,n)}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},i=await Promise.all(r);return o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,c)=>({name:a[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,o}getAndSavePipeline(e,t){return e in this.pipelineCache||(this.pipelineCache[e]=t()),this.pipelineCache[e]}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);return{offset:0,size:t.bufferInfo.byteSize,buffer:t.bufferInfo.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);t.bufferInfo.buffer==null&&(t.bufferInfo.buffer=this.acquireBuffer(t.bufferInfo.byteSize),t.values&&this.queue.writeBuffer(t.bufferInfo.buffer,0,t.values))}makeUniformsDataView(e){let t=this.acquireBuffer(e.byteLength,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);return this.queue.writeBuffer(t,0,e),{offset:0,size:e.byteLength,buffer:t}}arrayToDataView(e,t){let n=4,s=new DataView(new ArrayBuffer(t*n)),r=0;return e.forEach(a=>{let o=a.data;if(a.type!=="int32"&&a.type!=="float32"&&a.type!=="uint32")throw new Error(`${a.type} not supported!`);a.type==="int32"?o.forEach(i=>{s.setInt32(r*n,i,!0),r++}):a.type==="uint32"?o.forEach(i=>{s.setUint32(r*n,i,!0),r++}):o.forEach(i=>{s.setFloat32(r*n,i,!0),r++})}),s}computePadding(e){let t=0,n=0,s=0,r=[];return e.forEach((a,o)=>{a.data.length===0&&(a.data=[1]);let i;switch(a.data.length){case 0:i=1;break;case 1:i=1;break;case 2:i=2;break;case 3:i=4;break;case 4:i=4;break;default:v.assert(!1,()=>`Unsupported ${a.data.length}D shape`)}n=Math.ceil(t/i)*i-t;for(let l=0;l<n;++l)r.push({type:a.type,data:[0]}),s++;r.push({type:a.type,data:a.data}),s=s+a.data.length,t+=a.data.length+n}),this.arrayToDataView(r,s)}createLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}});for(let r=0;r<e;r++)t.push({binding:r+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"read-only-storage"}});t.push({binding:e+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"uniform"}});let n=this.device.createBindGroupLayout({entries:t}),s=this.device.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}getCachedOrCreateLayout(e){return e in this.layoutCache||(this.layoutCache[e]=this.createLayout(e)),this.layoutCache[e]}runWebGPUProgram(e,t,n,s,r){if(!r){if(r=this.makeTensorInfo(e.outputShape,n),v.sizeFromShape(r.shape)===0){let N=this.tensorMap.get(r.dataId);return N.values=v.getTypedArrayFromDType(r.dtype,0),r}this.uploadToGPU(r.dataId)}let a=[{type:"float32",data:[NaN]}],o=t.concat(r).map(N=>N.shape),i="int32";o.map(N=>{a.push({type:i,data:N})});let l=v.computeStrides(r.shape);if(a.push({type:i,data:l}),e.size){let N=v.sizeFromShape(e.outputShape);a.push({type:i,data:[e.isVec4?N/4:N]})}s&&(a=[...a,...s]);let c=null,u=this.computePadding(a),d=u.byteLength;c=this.makeUniformsDataView(u);let p=t.map((N,$)=>{if(N.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(N.dataId),{dtype:this.tensorMap.get(N.dataId).dtype,shape:N.shape,name:e.variableNames[$]}}),h=p.map(N=>N.dtype).concat(r.dtype),f=p.map(N=>E.getBroadcastDims(N.shape,r.shape)),m=p.map(N=>v.arraysEqual(N.shape,r.shape)).join("_"),g=f.map(N=>N.join("_")).join(";"),A=EC(e,o,h,g,m),{bindGroupLayout:x,pipelineLayout:y}=this.getCachedOrCreateLayout(e.variableNames.length),b=this.getAndSavePipeline(A,()=>NC(this.device,e,y,p,r)),w=this.activeTimers!=null,k=Jce(this.device,x,t.map(N=>this.tensorToBinding(N)),this.tensorToBinding(r),c);this.ensureCommandEncoderReady();let I=this.getComputePass();if(w&&this.supportTimeQuery&&I.writeTimestamp(this.querySet,0),I.setPipeline(b),I.setBindGroup(0,k),I.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),w&&this.supportTimeQuery&&I.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(N=>{this.commandQueueOwnedIds.add(N.dataId)}),this.commandQueueOwnedIds.add(r.dataId),c){let N={byteSize:d,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:c.buffer};this.uniformDisposalQueue.push(N)}return K().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),w&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}runFromPixelsProgram(e,t,n,s,r){let a=this.device.createBindGroup({layout:n.bindGroupLayout,entries:[{binding:0,resource:{buffer:t}},{binding:1,resource:s},{binding:2,resource:{buffer:e.uniform}}]});this.ensureCommandEncoderReady();let o=this.getComputePass(),i=this.activeTimers!=null;i&&this.supportTimeQuery&&o.writeTimestamp(this.querySet,0),o.setPipeline(e.pipeline),o.setBindGroup(0,a),o.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),i&&this.supportTimeQuery&&o.writeTimestamp(this.querySet,1),this.commandQueueOwnedIds.add(r),this.submitQueue(),i&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)})}async getTimeFromQuerySet(e){let t=this.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),n=this.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,n,0,16),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=new BigUint64Array(n.getMappedRange()),r=Number(s[1]-s[0]);return n.unmap(),this.bufferManager.releaseBuffer(n,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=Ahe){return K().getBool("WEBGPU_CPU_FORWARD")&&e.every(n=>this.tensorMap.get(n.dataId).bufferInfo.buffer==null&&v.sizeFromShape(n.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDisposalQueue.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.fromPixelProgram&&this.fromPixelProgram.dispose(),this.fromPixelImportProgram&&this.fromPixelImportProgram.dispose(),this.disposed=!0)}},Rx=BC;Rx.nextDataId=0;var WC={};Oe(WC,{WebGPUBackend:()=>Rx,webgpu_util:()=>oC});$u.isBrowser()&&wx()&&ol("webgpu",async()=>{K().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:K().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),n={},s=t.features.has("timestamp-query");s?n={requiredFeatures:["timestamp-query"]}:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let r=await t.requestDevice(n);return new Rx(r,s)},3);var Jt;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Jt||(Jt={}));var wp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(wp||(wp={}));var VC;function yhe(e){VC=e.wasm.cwrap(xo,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function xhe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let N=n.dataIdMap.get(o.dataId);if(N.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${N.shape.length}.`);f=N.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=wp[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let A=l?r.shape[2]:r.shape[1],x=c?a.shape[1]:a.shape[2],y=sl.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)),b=n.makeOutput([...y,A,x],r.dtype),w=n.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),I=new Uint8Array(new Int32Array(a.shape).buffer);return VC(p,k,r.shape.length,h,I,a.shape.length,l,c,g,f,m,d||0,w),b}var bhe={kernelName:xo,backendName:"wasm",setupFunc:yhe,kernelFunc:xhe};function En(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:o,inputs:{x:i}}=a,l=o.dataIdMap.get(i.dataId).id,c=o.makeOutput(i.shape,t||i.dtype),u=o.dataIdMap.get(c.dataId).id;return v.sizeFromShape(c.shape)===0||n(l,Jt[i.dtype],u),c}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var vhe=En(di);function Xn(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:c,b:u}=l,d=i.dataIdMap.get(c.dataId).id,p=i.dataIdMap.get(u.dataId).id,h=n!=null?n:c.dtype,f=E.assertAndGetBroadcastShape(c.shape,u.shape),m=i.makeOutput(f,h);if(v.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(c.shape).buffer),A=new Uint8Array(new Int32Array(u.shape).buffer),x=i.dataIdMap.get(m.dataId).id,y=()=>s(d,g,c.shape.length,p,A,u.shape.length,Jt[c.dtype],x);if(t&&c.dtype==="float32")return y(),m;let b=E.getBroadcastDims(c.shape,f),w=E.getBroadcastDims(u.shape,f),k=b.every((N,$)=>N===$),I=w.every((N,$)=>N===$);if(k&&I)return y(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var whe=!0,khe=Xn(Hr,whe),UC;function She(e){UC=e.wasm.cwrap(Ta,null,["array","number","number","number"])}function Ihe(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return UC(a,r.length,Jt[s.dtype],o),s}var Che={kernelName:Ta,backendName:"wasm",setupFunc:She,kernelFunc:Ihe};function e0(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var The={kernelName:Ha,backendName:"wasm",kernelFunc:e0},GC;function Nhe(e){GC=e.wasm.cwrap(Ao,null,["number","array","number","number","number","array","number"])}function vc(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=Rhe(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=Ehe(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=e0({inputs:t,backend:n});return f.shape=i,f}let c=n.makeOutput(i,l.dtype),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(c.dataId).id,p=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return GC(u,h,l.shape.length,Jt[l.dtype],d,p,a.length),c}function Ehe(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function Rhe(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var $he={kernelName:Ao,backendName:"wasm",kernelFunc:vc,setupFunc:Nhe};function jo(e,t,n){let s=e.shape,r=e.shape.length,a=v.parseAxisParam(t,s),o=a,i=E.getAxesPermutation(o,r),l=null,c=!1;if(i!=null){let u=new Array(r);for(let h=0;h<u.length;h++)u[h]=s[i[h]];o=E.getInnerMostAxes(o.length,r),l=vc({inputs:{x:e},attrs:{perm:i},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(c=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:c}}var HC;function _he(e){HC=e.wasm.cwrap(au,null,["number, number, number"])}function Dhe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=jo(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;c=u,l=y}let f=c.shape.length;E.assertAxesAreInnerMostDims("all",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;HC(l,A,y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var Phe={kernelName:au,backendName:"wasm",setupFunc:_he,kernelFunc:Dhe},jC;function Fhe(e){jC=e.wasm.cwrap(ou,null,["number, number, number"])}function Ohe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=jo(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;c=u,l=y}let f=c.shape.length;E.assertAxesAreInnerMostDims("any",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;jC(l,A,y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var Mhe={kernelName:ou,backendName:"wasm",setupFunc:Fhe,kernelFunc:Ohe},qC;function zhe(e){qC=e.wasm.cwrap(Na,null,["number","number","number","number","number"])}function Lhe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:c,axes:u,inputWasTransposed:d}=jo(a,r,t);if(d){let A=t.dataIdMap.get(c.dataId).id;A!==o&&(l=c,i=A)}let p=l.shape.slice(0,-1),h=t.makeOutput(p,"int32"),f=t.dataIdMap.get(h.dataId).id,m=v.sizeFromShape(h.shape),g=l.shape[u[0]];return qC(i,Jt[l.dtype],m,g,f),d&&t.disposeData(c.dataId),h}var Bhe={kernelName:Na,backendName:"wasm",kernelFunc:Lhe,setupFunc:zhe},XC;function Whe(e){XC=e.wasm.cwrap(Ea,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Vhe(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,A=u.strideHeight,x=u.strideWidth,y=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let b=s.makeOutput(u.outShape,"float32"),w=s.dataIdMap.get(b.dataId).id;return XC(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,x,y,w),b}var Uhe={kernelName:Ea,backendName:"wasm",setupFunc:Whe,kernelFunc:Vhe};function ls(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a);return v.assert(a===v.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var Ghe={kernelName:Oi,backendName:"wasm",kernelFunc:ls},KC;function Hhe(e){KC=e.wasm.cwrap(Ra,null,["number","array","number","number","array","number","number","number","number"])}function jhe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),A=v.sizeFromShape(m),y=sl.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([p,h]);v.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,u,p]:[g,p,u],w=i?[A,h,d]:[A,d,h],k=ls({inputs:{x:r},backend:n,attrs:{shape:b}}),I=ls({inputs:{x:a},backend:n,attrs:{shape:w}}),N=n.dataIdMap.get(k.dataId).id,$=n.dataIdMap.get(I.dataId).id,O=o?k.shape[2]:k.shape[1],D=i?I.shape[1]:I.shape[2],R=Math.max(g,A),T=n.makeOutput([R,O,D],k.dtype),F=n.dataIdMap.get(T.dataId).id,U=new Uint8Array(new Int32Array(k.shape).buffer),j=new Uint8Array(new Int32Array(I.shape).buffer);return KC(N,U,k.shape.length,$,j,I.shape.length,o,i,F),n.disposeData(k.dataId),n.disposeData(I.dataId),T.shape=y,T}var qhe={kernelName:Ra,backendName:"wasm",setupFunc:Hhe,kernelFunc:jhe};function kp(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=Ft.parseSliceParams(t,n,s),i=Ft.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),c=r.makeOutput(o,t.dtype),u=v.computeStrides(t.shape),d=r.dataIdMap.get(c.dataId);if(i){let f=Ft.computeFlatOffset(a,u);return t.dtype==="string"?d.stringBytes=l.slice(f,f+v.sizeFromShape(o)):r.typedArrayFromHeap(c).set(l.subarray(f,f+v.sizeFromShape(o))),c}if(t.dtype==="string"){let f=Im(l,a,o,t.shape,t.dtype);return d.stringBytes=f,c}let p=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)Xhe(l,u[0],p,a,o);else if(h===3)Khe(l,u[0],u[1],p,a,o);else if(h===4)Zhe(l,u[0],u[1],u[2],p,a,o);else{let f=Im(l,a,o,t.shape,t.dtype);p.set(f)}return c}function Xhe(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let c=o;c<l;c++){let u=c*t+i;n.set(e.subarray(u,u+r[1]),a),a+=r[1]}}function Khe(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],c=r[2],u=i+a[0],d=l+a[1];for(let p=i;p<u;p++)for(let h=l;h<d;h++){let f=p*t+h*n+c;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function Zhe(e,t,n,s,r,a,o){let i=0,l=a[0],c=a[1],u=a[2],d=l+o[0],p=c+o[1],h=u+o[2],f=a[3];for(let m=l;m<d;m++)for(let g=c;g<p;g++)for(let A=u;A<h;A++){let x=m*t+g*n+A*s+f;r.set(e.subarray(x,x+o[3]),i),i+=o[3]}}var Yhe={kernelName:Wi,backendName:"wasm",kernelFunc:kp};function Jhe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((A,x)=>A*x),l=E.getReshaped(r.shape,a,i),c=E.getPermuted(l.length,a.length),u=E.getReshapedPermuted(r.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=ls({inputs:{x:r},backend:n,attrs:{shape:l}}),f=vc({inputs:{x:h},backend:n,attrs:{perm:c}}),m=ls({inputs:{x:f},backend:n,attrs:{shape:u}}),g=kp({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var Qhe={kernelName:pi,backendName:"wasm",kernelFunc:Jhe};function Sp(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var efe={kernelName:$a,backendName:"wasm",kernelFunc:Sp},tfe=En(_a),ZC;function nfe(e){ZC=e.wasm.cwrap(jr,null,["number","number","number","number"])}function sfe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return ZC(i,a,o,c),l}var rfe={kernelName:jr,backendName:"wasm",setupFunc:nfe,kernelFunc:sfe};function YC(e){let{inputs:t,backend:n}=e,s=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=E.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>v.sizeFromShape(h.shape)>0);if(a.length===1)return e0({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(v.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(E.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(y=>{let b=v.sizeFromShape(y.shape.slice(s));return ls({inputs:{x:y},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(y=>({vals:n.readSync(y.dataId),shape:y.shape}));r=E.computeOutShape(h.map(y=>y.shape),1);let m=h[0].shape[0]===1,g=Ly(f,r,t[0].dtype,m),A=E.computeOutShape(a.map(y=>y.shape),s);o.shape=A;let x=n.dataIdMap.get(o.dataId);return x.stringBytes=E.fromStringArrayToUint8(g),h.forEach(y=>n.disposeData(y.dataId)),o}let l=v.sizeFromShape(a[0].shape.slice(0,s)),c=0,u=a.map(h=>{let f=v.sizeFromShape(h.shape.slice(s));return c+=f,f}),d=a.map(h=>n.typedArrayFromHeap(h)),p=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*c;for(let m=0;m<d.length;m++){let g=u[m],A=h*g,x=d[m].subarray(A,A+g);p.set(x,f),f+=g}}return o}var afe={kernelName:hi,backendName:"wasm",kernelFunc:YC},JC;function ofe(e){JC=e.wasm.cwrap(Da,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ife(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d,dataFormat:p}=n,h=E.convertConv2DDataFormat(p),f=E.computeConv2DInfo(r.shape,a.shape,l,c,u,d,!1,h),m=f.filterHeight,g=f.filterWidth,A=f.padInfo.top,x=f.padInfo.right,y=f.padInfo.bottom,b=f.padInfo.left,w=f.dilationHeight,k=f.dilationWidth,I=f.strideHeight,N=f.strideWidth,$=f.inChannels,O=f.outChannels,D=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let R=s.makeOutput(f.outShape,"float32"),T=s.dataIdMap.get(R.dataId).id;return JC(o,r.shape[0],r.shape[1],r.shape[2],i,m,g,A,x,y,b,D,w,k,I,N,$,O,T),R}var lfe={kernelName:Da,backendName:"wasm",setupFunc:ofe,kernelFunc:ife},QC;function ufe(e){QC=e.wasm.cwrap(Pa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function cfe(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,inputShape:u}=s,d=1,p=E.convertConv2DDataFormat(l),h=E.computeConv2DInfo(u,a.shape,o,d,i,c,!1,p),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:A,inHeight:x,inWidth:y,outChannels:b,outHeight:w,outWidth:k,strideHeight:I,strideWidth:N}=h,$=m-1-h.padInfo.top,O=g-1-h.padInfo.left,D=h.dataFormat==="channelsLast",R=v.computeStrides(h.inShape),T=v.computeStrides(r.shape),[F,U,j]=v.computeStrides(a.shape),z=R[0],X=D?R[1]:R[2],Z=D?R[2]:1,J=D?1:R[1],te=T[0],re=D?T[1]:T[2],Q=D?T[2]:1,ne=D?1:T[1],oe=t.makeOutput(h.inShape,"float32"),fe=t.dataIdMap.get(oe.dataId).id,be=t.dataIdMap.get(r.dataId).id,we=t.dataIdMap.get(a.dataId).id;return QC(be,we,f,m,g,x,y,A,w,k,b,I,N,$,O,F,U,j,z,X,Z,J,te,re,Q,ne,fe),oe}var dfe={kernelName:Pa,backendName:"wasm",setupFunc:ufe,kernelFunc:cfe},pfe=En(Fa),hfe=En(Oa),$x;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})($x||($x={}));var e6;function ffe(e){e6=e.wasm.cwrap(mi,null,["number","number","number","number","array","number","number","number","number","number"])}function mfe(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:c}=n,u=l.shape[0],[d,p]=o,h=[u,d,p,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=Sp({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,A=t.dataIdMap.get(l.dataId).id,x=t.dataIdMap.get(c.dataId).id,y=t.makeOutput(h,"float32"),b=t.dataIdMap.get(y.dataId).id,w=new Uint8Array(new Int32Array(i.shape).buffer);return e6(g,A,x,u,w,d,p,$x[r],a,b),m!=null&&t.disposeData(m.dataId),y}var gfe={kernelName:mi,backendName:"wasm",setupFunc:ffe,kernelFunc:mfe},t6;function Afe(e){t6=e.wasm.cwrap(fi,null,["number","number","number","number","number","number"])}function yfe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=E.getAxesPermutation([a],l),u=r;c!==null&&(u=vc({inputs:{x:r},attrs:{perm:c},backend:n}));let d=E.getInnerMostAxes(1,l)[0];E.assertAxesAreInnerMostDims("cumsum",[d],l);let p=n.makeOutput(u.shape,u.dtype),h=u.shape[d],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(p.dataId).id;t6(f,o?1:0,i?1:0,h,m,Jt[r.dtype]);let g=p;if(c!==null){let A=E.getUndoAxesPermutation(c);g=vc({inputs:{x:p},attrs:{perm:A},backend:n}),n.disposeData(u.dataId),n.disposeData(p.dataId)}return g}var xfe={kernelName:fi,backendName:"wasm",setupFunc:Afe,kernelFunc:yfe},n6;function bfe(e){n6=e.wasm.cwrap(gi,null,["number","number","number","array","number","array","array","number","number"])}function vfe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(r.dataId).id,x=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),w=t.dataIdMap.get(m.dataId).id;return n6(A,a,o==="NHWC"?1:0,x,r.shape.length-1,y,b,f.length,w),m}var wfe={kernelName:gi,backendName:"wasm",setupFunc:bfe,kernelFunc:vfe},s6;function kfe(e){s6=e.wasm.cwrap(Ma,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Sfe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d}=n,p=c==null?[1,1]:c,h=E.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,A=h.padInfo.right,x=h.padInfo.bottom,y=h.padInfo.left,b=h.dilationHeight,w=h.dilationWidth,k=h.strideHeight,I=h.strideWidth,N=h.inChannels,$=h.outChannels,O=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let D=s.makeOutput(h.outShape,"float32"),R=s.dataIdMap.get(D.dataId).id;return s6(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,A,x,y,O,b,w,k,I,N,$,R),D}var Ife={kernelName:Ma,backendName:"wasm",setupFunc:kfe,kernelFunc:Sfe},Cfe=En(La),Tfe=!1,Nfe=Xn(Ai,Tfe,"bool"),Efe=En(Ba,"float32");function _x(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),ls({inputs:{x:r},backend:s,attrs:{shape:i}})}var Rfe={kernelName:yi,backendName:"wasm",kernelFunc:_x};function r6(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var $fe={kernelName:fu,backendName:"wasm",kernelFunc:r6},a6;function _fe(e){a6=e.wasm.cwrap(bi,null,["number","number","number","number","number","number"])}function Dfe(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,c,u]=s.shape;return a6(a,i,l,c,u,o),r}var Pfe={kernelName:bi,backendName:"wasm",kernelFunc:Dfe,setupFunc:_fe},Ffe=En(Wa),Ofe=!1,Mfe=Xn(Va,Ofe),o6;function zfe(e){o6=e.wasm.cwrap(Ua,null,["number","number","number","number","number","number","number"])}function Lfe(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:c}=n,u=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=c!=null?t.dataIdMap.get(c.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(v.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return o6(u,d,p,h,f,r,g),m}var Bfe={kernelName:Ua,backendName:"wasm",setupFunc:zfe,kernelFunc:Lfe},i6;function Wfe(e){i6=e.wasm.cwrap(bo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Vfe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(r.shape,a.shape,l,u,c,p),g=wp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,y=m.outChannels,b=0;if(o!=null){let Q=s.dataIdMap.get(o.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==y)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${y})`);b=Q.id}let w=m.filterHeight,k=m.filterWidth,I=m.padInfo.top,N=m.padInfo.right,$=m.padInfo.bottom,O=m.padInfo.left,D=m.dilationHeight,R=m.dilationWidth,T=m.strideHeight,F=m.strideWidth,U=m.inChannels,j=m.padInfo.type==="SAME"?1:0,z=m.batchSize,X=m.inHeight,Z=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=s.makeOutput(m.outShape,"float32"),te=s.dataIdMap.get(J.dataId).id,re=i==null?0:s.dataIdMap.get(i.dataId).id;return i6(A,z,X,Z,x,w,k,b,I,N,$,O,j,D,R,T,F,U,y,g,re,f||0,te),J}var Ufe={kernelName:bo,backendName:"wasm",setupFunc:Wfe,kernelFunc:Vfe},l6;function Gfe(e){l6=e.wasm.cwrap(vo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Hfe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(r.shape,a.shape,l,u,c,p,!0),g=wp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,y=m.outChannels,b=0;if(o!=null){let Q=s.dataIdMap.get(o.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==y)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${y})`);b=Q.id}let w=m.filterHeight,k=m.filterWidth,I=m.padInfo.top,N=m.padInfo.right,$=m.padInfo.bottom,O=m.padInfo.left,D=m.dilationHeight,R=m.dilationWidth,T=m.strideHeight,F=m.strideWidth,U=m.inChannels,j=m.padInfo.type==="SAME"?1:0,z=m.batchSize,X=m.inHeight,Z=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=s.makeOutput(m.outShape,"float32"),te=s.dataIdMap.get(J.dataId).id,re=i==null?0:s.dataIdMap.get(i.dataId).id;return l6(A,z,X,Z,x,w,k,b,I,N,$,O,j,D,R,T,F,U,y,g,re,f||0,te),J}var jfe={kernelName:vo,backendName:"wasm",setupFunc:Gfe,kernelFunc:Hfe},u6;function qfe(e){u6=e.wasm.cwrap(wi,null,["number","number","number","number","number","number","array","number"])}function Xfe(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=P2.prepareAndValidate(s,r),c=t.makeOutput(a,s.dtype);if(o===0)return c;let u=r.shape,d=u[u.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),A=t.dataIdMap.get(c.dataId).id;return u6(h,Jt[s.dtype],m,o,d,i,g,A),c}var Kfe={kernelName:wi,backendName:"wasm",setupFunc:qfe,kernelFunc:Xfe},c6;function Zfe(e){c6=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Yfe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],c=t.readSync(a.dataId),u=r.shape[l];for(let $=0;$<c.length;++$){let O=c[$];v.assert(O<=u-1&&O>=0,()=>`GatherV2: the index value ${O} is not in [0, ${u-1}]`)}let d=E.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=ls({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=v.sizeFromShape(a.shape),f=ls({inputs:{x:a},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),m=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(m,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let A=p.shape.length-1,y=t.dataIdMap.get(p.dataId).id,w=t.dataIdMap.get(f.dataId).id,k=t.dataIdMap.get(g.dataId).id,I=new Uint8Array(new Int32Array(v.computeStrides(p.shape)).buffer),N=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer);return c6(y,Jt[r.dtype],I,A,w,d.batchSize,N,k),t.disposeData(p.dataId),t.disposeData(f.dataId),g.shape=d.outputShape,g}var Jfe={kernelName:vi,backendName:"wasm",setupFunc:Zfe,kernelFunc:Yfe},Qfe=!1,eme=Xn(ki,Qfe,"bool"),tme=!1,nme=Xn(Ga,tme,"bool"),d6;function sme(e){d6=e.wasm.cwrap(Si,null,["number","number","number","number"])}function rme(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;d6(r,Jt[t.dtype],n,o)}return a}var ame={kernelName:Si,backendName:"wasm",setupFunc:sme,kernelFunc:rme},ome=!1,ime=Xn(Ii,ome,"bool"),lme=!1,ume=Xn(Ci,lme,"bool"),cme=En(ja),dme=!1,pme=Xn(Ti,dme,"bool"),p6;function hme(e){p6=e.wasm.cwrap(qa,null,["number","number","number","number"])}function fme(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=jo(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;c=u,l=y}let f=c.shape.length;E.assertAxesAreInnerMostDims("max",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;p6(l,Jt[o.dtype],A,y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var mme={kernelName:qa,backendName:"wasm",setupFunc:hme,kernelFunc:fme},gme=!1,Ame=Xn(Xa,gme),h6;function yme(e){h6=e.wasm.cwrap(Ka,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xme(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,A=u.dilationHeight,x=u.dilationWidth,y=u.strideHeight,b=u.strideWidth,w=u.inChannels,k=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let I=s.makeOutput(u.outShape,"float32"),N=s.dataIdMap.get(I.dataId).id;return h6(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,x,y,b,w,k,N),I}var bme={kernelName:Ka,backendName:"wasm",setupFunc:yme,kernelFunc:xme},f6;function vme(e){f6=e.wasm.cwrap(Za,null,["number, number, number"])}function wme(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=jo(o,r,t),f=d;if(h){let b=t.dataIdMap.get(u.dataId).id;b!==i&&(c=u,l=b,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("mean",f,c.shape.length);let[m,g]=E.computeOutAndReduceShapes(c.shape,f),A=v.sizeFromShape(g),x=c;c.dtype!=="float32"&&(x=Sp({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(x.dataId).id);let y=t.makeOutput(m,"float32");if(v.sizeFromShape(c.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;f6(l,A,b)}if(h&&t.disposeData(u.dataId),a){let b=E.expandShapeToKeepDim(y.shape,p);y.shape=b}return c.dtype!=="float32"&&t.disposeData(x.dataId),y}var kme={kernelName:Za,backendName:"wasm",setupFunc:vme,kernelFunc:wme},m6;function Sme(e){m6=e.wasm.cwrap(Ya,null,["number","number","number","number"])}function Ime(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=jo(o,r,t);if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(c=u,l=y)}let f=c.shape.length;E.assertAxesAreInnerMostDims("min",d,f);let[m,g]=E.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),x=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;m6(l,Jt[o.dtype],A,y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var Cme={kernelName:Ya,backendName:"wasm",setupFunc:Sme,kernelFunc:Ime},Tme=!1,Nme=Xn(Ja,Tme),Dx;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Dx||(Dx={}));var g6;function Eme(e){g6=e.wasm.cwrap(Qa,null,["number","array","number","number","array","array","number","number"])}function Rme(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=s.map(f=>f[0]),d=s.map(f=>f[1]),p=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(d).buffer);return g6(o,c,t.shape.length,Jt[t.dtype],p,h,Dx[r],l),i}var $me={kernelName:Qa,backendName:"wasm",kernelFunc:Rme,setupFunc:Eme},_me=!0,Dme=Xn(eo,_me),Pme=En(Ni);function Px(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var A6;function Fme(e){A6=e.wasm.cwrap(Ri,"number",["number","number","number","number","number"])}function Ome(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,c=t.dataIdMap.get(i.dataId).id,u=t.dataIdMap.get(l.dataId).id,d=A6(c,u,a,r,o),{pSelectedIndices:p,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=Px(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",p)}var Mme={kernelName:Ri,backendName:"wasm",setupFunc:Fme,kernelFunc:Ome},y6;function zme(e){y6=e.wasm.cwrap(vu,"number",["number","number","number","number","number","bool"])}function Lme(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=y6(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Px(t,p);t.wasm._free(m);let A=t.makeOutput([f],"int32",h),x=t.makeOutput([],"int32",g);return[A,x]}var Bme={kernelName:vu,backendName:"wasm",setupFunc:zme,kernelFunc:Lme},x6;function Wme(e){x6=e.wasm.cwrap($i,"number",["number","number","number","number","number","number"])}function Vme(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=x6(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Px(t,p);t.wasm._free(g);let A=t.makeOutput([f],"int32",h),x=t.makeOutput([f],"float32",m);return[A,x]}var Ume={kernelName:$i,backendName:"wasm",setupFunc:Wme,kernelFunc:Vme},Gme=!1,Hme=Xn(Ei,Gme,"bool"),b6;function jme(e){b6=e.wasm.cwrap(Di,null,["number","number","number","number","number"])}function qme(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),c=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return b6(d,a,o,i,c),l}var Xme={kernelName:Di,backendName:"wasm",setupFunc:jme,kernelFunc:qme};function Kme(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var Zme={kernelName:_i,backendName:"wasm",kernelFunc:Kme};function Yme(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return _x({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=_x({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=YC({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeData(u.dataId)),c}var Jme={kernelName:Pi,backendName:"wasm",kernelFunc:Yme},v6;function Qme(e){v6=e.wasm.cwrap(to,null,["number","array","number","number","array","array","number","number"])}function e0e(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(v.sizeFromShape(t.shape)===0)return r6({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=s.map(m=>m[0]),p=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(d).buffer),f=new Uint8Array(new Int32Array(p).buffer);return v6(o,u,t.shape.length,Jt[t.dtype],h,f,r,c),i}var w6={kernelName:to,backendName:"wasm",kernelFunc:e0e,setupFunc:Qme},t0e=!1,n0e=Xn(no,t0e),k6;function s0e(e){k6=e.wasm.cwrap(so,null,["number","number","number"])}function r0e(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=a,l=s,c=l;l.dtype!=="float32"&&(c=Sp({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(c.dataId).id);let u=n.makeOutput(s.shape,"float32"),d=n.dataIdMap.get(u.dataId).id;return k6(i,o,d),l.dtype!=="float32"&&n.disposeData(c.dataId),u}var a0e={kernelName:so,backendName:"wasm",setupFunc:s0e,kernelFunc:r0e},S6;function o0e(e){S6=e.wasm.cwrap(Fi,null,["number","number","number","number"])}function i0e(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=jo(o,r,t),f=d;if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(c=u,l=y,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("prod",f,c.shape.length);let[m,g]=E.computeOutAndReduceShapes(c.shape,f),A=v.sizeFromShape(g),x=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;S6(l,A,Jt[x.dtype],y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var l0e={kernelName:Fi,backendName:"wasm",setupFunc:o0e,kernelFunc:i0e},u0e=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=Vy(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},c0e={kernelName:wu,backendName:"wasm",kernelFunc:u0e},d0e=!0,p0e=Xn(za,d0e),h0e=En(ro),f0e=En(oo),I6;function m0e(e){I6=e.wasm.cwrap(ao,null,["number","number","number","number","number","number","number","number","number","number"])}function g0e(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,[u,d,p,h]=r.shape,f=[u,l,c,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=Sp({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let A=m.id,x=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return x;let y=t.dataIdMap.get(x.dataId).id;return I6(A,u,d,p,h,l,c,a?1:0,o?1:0,y),g!=null&&t.disposeData(g.dataId),x}var A0e={kernelName:ao,backendName:"wasm",setupFunc:m0e,kernelFunc:g0e},C6;function y0e(e){C6=e.wasm.cwrap(Mi,null,["number","array","number","array","number","number"])}function x0e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=v.parseAxisParam(a,r.shape);if(r.shape.length===0)return e0({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);C6(l,u,o.length,d,r.shape.length,c);let p=ls({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),p}var b0e={kernelName:Mi,backendName:"wasm",kernelFunc:x0e,setupFunc:y0e},T6;function v0e(e){T6=e.wasm.cwrap(Yi,null,["number","number","number","number","number","number","number","number","array","number","number"])}function w0e(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[d,p,h,f]=r.shape,[m,g]=E.getImageCenter(i,p,h),A=o===0,x=255,y=typeof o=="number"?[o,o,o,A?0:x]:[...o,x],b=new Uint8Array(new Int32Array(y).buffer);return T6(c,d,p,h,f,a,m,g,b,y.length,u),l}var k0e={kernelName:Yi,backendName:"wasm",kernelFunc:w0e,setupFunc:v0e},S0e=En(zi),I0e=En(io),N6;function C0e(e){N6=e.wasm.cwrap(Li,null,["number","number","number","number","number","number","array","number","number"])}function T0e(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(v.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=F2.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,A=new Uint8Array(new Int32Array(d).buffer),x=t.dataIdMap.get(i.dataId).id;return N6(f,g,Jt[a.dtype],l,c,u,A,p,x),i}var N0e={kernelName:Li,backendName:"wasm",setupFunc:C0e,kernelFunc:T0e},E6;function E0e(e){E6=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function R0e(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,d=s.shape.length,p=r.shape.length,h=d===0||d>1||p===1?1:v.sizeFromShape(r.shape.slice(1));return E6(o,i,l,h,u),c}var $0e={kernelName:Bi,backendName:"wasm",kernelFunc:R0e,setupFunc:E0e},R6;function _0e(e){R6=e.wasm.cwrap(uo,null,["number","number"])}function D0e(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||R6(s,a),r}var P0e={kernelName:"Sigmoid",backendName:"wasm",setupFunc:_0e,kernelFunc:D0e},F0e=En(lo),$6;function O0e(e){$6=e.wasm.cwrap(ho,null,["number","number","number","number"])}function M0e(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=v.sizeFromShape(n.shape)/i;return v.sizeFromShape(a.shape)===0||$6(r,o,i,l),a}var z0e={kernelName:ho,backendName:"wasm",setupFunc:O0e,kernelFunc:M0e};function L0e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let c=w6.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=E.getReshaped(c.shape,a,i,!1),d=E.getPermuted(u.length,a.length,!1),p=E.getReshapedPermuted(c.shape,a,i,!1),m=ls({inputs:{x:c},backend:n,attrs:{shape:u}}),x=vc({inputs:{x:m},backend:n,attrs:{perm:d}}),w=ls({inputs:{x},backend:n,attrs:{shape:p}});return n.disposeData(c.dataId),n.disposeData(m.dataId),n.disposeData(x.dataId),w}var B0e={kernelName:Ui,backendName:"wasm",kernelFunc:L0e};function W0e(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=v.parseAxisParam(o,r.shape)[0],l=E.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=kp({inputs:{x:r},attrs:{begin:c,size:p},backend:s});return c[i]+=d,h})}var V0e={kernelName:Gi,backendName:"wasm",kernelFunc:W0e},U0e=En(co),G0e=En(Nu),H0e=!0,j0e=Xn(fo,H0e),_6;function q0e(e){_6=e.wasm.cwrap(yo,null,["number","number","number","number"])}function X0e(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return _6(o,r,Jt[a.dtype],l),i}var K0e={kernelName:yo,backendName:"wasm",setupFunc:q0e,kernelFunc:X0e},D6;function Z0e(e){D6=e.wasm.cwrap(Hi,null,["number","array","number","array","array","array","array","array","number","number"])}function Y0e(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:A,begin:x,end:y,strides:b}=Ft.sliceInfo(r.shape,a,o,i,l,c,u,d,p),w;if(m)w=ls({inputs:{x:r},backend:t,attrs:{shape:f}});else if(g||A){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Ft.computeOutShape(x,y,b),I=kp({inputs:{x:r},backend:t,attrs:{begin:x,size:k}});w=ls({inputs:{x:I},backend:t,attrs:{shape:f}}),t.disposeData(I.dataId)}else{let k=t.makeOutput(h,"float32"),I=t.dataIdMap.get(r.dataId).id,N=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),$=new Uint8Array(new Int32Array(x).buffer),O=new Uint8Array(new Int32Array(y).buffer),D=new Uint8Array(new Int32Array(b).buffer),R=new Uint8Array(new Int32Array(h).buffer),T=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),F=t.dataIdMap.get(k.dataId).id;D6(I,N,r.shape.length,$,O,D,R,T,h.length,F),w=ls({inputs:{x:k},backend:t,attrs:{shape:f}}),t.disposeData(k.dataId)}return w}var J0e={kernelName:Hi,backendName:"wasm",setupFunc:Z0e,kernelFunc:Y0e},Q0e=!0,ege=Xn(mo,Q0e),P6;function tge(e){P6=e.wasm.cwrap(po,null,["number","number","number","number"])}function nge(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=jo(o,r,t),f=d;if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(c=u,l=y,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("sum",f,c.shape.length);let[m,g]=E.computeOutAndReduceShapes(c.shape,f),A=v.sizeFromShape(g),x=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let y=t.dataIdMap.get(x.dataId).id;P6(l,A,Jt[x.dtype],y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(x.shape,p);x.shape=y}return x}var sge={kernelName:po,backendName:"wasm",setupFunc:tge,kernelFunc:nge},rge=En(ji),age=En(go),F6;function oge(e){F6=e.wasm.cwrap(qr,null,["number","array","number","array","number","number"])}function ige(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let p=0;p<i.length;p++)i[p]=r.shape[p]*o[p];let l=new Uint8Array(new Int32Array(r.shape).buffer),c=new Uint8Array(new Int32Array(i).buffer),u=n.makeOutput(i,r.dtype),d=n.dataIdMap.get(u.dataId).id;return F6(a,l,r.shape.length,c,i.length,Jt[u.dtype],d),u}var lge={kernelName:qr,backendName:"wasm",setupFunc:oge,kernelFunc:ige},O6;function uge(e){O6=e.wasm.cwrap(qi,null,["number","array","number","number","number","bool","number","number"])}var cge=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,s.dtype),u=t.dataIdMap.get(c.dataId).id,d=t.makeOutput(l,"int32"),p=t.dataIdMap.get(d.dataId).id;return O6(o,i,s.shape.length,Jt[s.dtype],r,a,u,p),[c,d]},dge={kernelName:qi,backendName:"wasm",setupFunc:uge,kernelFunc:cge},M6;function pge(e){M6=e.wasm.cwrap(Xi,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function hge(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),x=t.makeOutput(g,r.dtype),y=t.dataIdMap.get(x.dataId).id,w=t.dataIdMap.get(r.dataId).id,I=t.dataIdMap.get(a.dataId).id,N=o==="nearest"?1:2,$;switch(i){case"constant":$=1;break;case"reflect":$=2;break;case"wrap":$=3;break;case"nearest":$=4;break;default:$=1;break}return M6(w,I,a.shape[0]>1,u,f,m,h,p,d,A,r.shape.length-1,N,$,l,y),x}var fge={kernelName:Xi,backendName:"wasm",setupFunc:pge,kernelFunc:hge};function mge(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o),d=new Array(i).fill(0),p=r.shape.slice();p[a]=1;for(let h=0;h<u.length;h++)d[a]=h,u[h]=kp({inputs:{x:r},attrs:{begin:d,size:p},backend:n});return u.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var gge={kernelName:Ki,backendName:"wasm",kernelFunc:mge};function Age(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var yge={kernelName:Zi,backendName:"wasm",kernelFunc:Age},xge=[vhe,khe,Che,Phe,Mhe,Bhe,Uhe,qhe,Qhe,efe,tfe,rfe,afe,lfe,dfe,pfe,hfe,gfe,xfe,wfe,Ife,Cfe,Nfe,Efe,Rfe,$fe,Pfe,Ffe,Mfe,bhe,Bfe,Ufe,jfe,Kfe,Jfe,eme,nme,The,ame,ime,ume,cme,pme,mme,Ame,bme,kme,Cme,Nme,$me,Dme,Pme,Mme,Bme,Ume,Hme,Xme,Zme,Jme,w6,n0e,a0e,l0e,c0e,p0e,h0e,f0e,Ghe,A0e,b0e,k0e,I0e,S0e,N0e,$0e,P0e,F0e,Yhe,z0e,B0e,V0e,U0e,G0e,j0e,K0e,J0e,ege,sge,rge,age,lge,dge,fge,$he,gge,yge];for(let e of xge)or(e);var Fx=K();Fx.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Fx.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Fx.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var z6=li(fE()),bge='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',vge=li(mE()),L6=class extends eu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(V6),Mx=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Yc(this,ss())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=v.sizeFromShape(n),i=o*v.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:s,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let a=this.wasm.HEAPU8.slice(t,t+v.sizeFromShape(s)*v.bytesPerElement(n));return Sge(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function wge(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function B6(e,t,n){if(t0!=null)return t0;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),Cp!=null&&Cp[s]!=null?Cp[s]:n+s}async function kge(){let[e,t]=await Promise.all([K().getAsync("WASM_HAS_SIMD_SUPPORT"),K().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let c=bge,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return i.endsWith(".wasm")?B6(e,t,Ip!=null?Ip:l):l+i},Ox&&(r.instantiateWasm=wge(B6(e,t,Ip!=null?Ip:"")));let a=!1;r.onAbort=()=>{if(a||Tp)return;Tp=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&t0==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+z6.default.toString()],{type:"text/javascript"}),o=(0,z6.default)(r)):o=(0,vge.default)(r),o.then(i=>{a=!0,Tp=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function Sge(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Ige=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],t0=null,Ip=null,Cp={},Tp=!1,Ox=!1;function Cge(e,t=!1){if(V2("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Tp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");t0=e,Ox=t}function W6(e,t=!1){if(Tp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Ip=e;else{Cp=e;let n=Ige.filter(s=>Cp[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Ox=t}var V6=-1,Mx=-1;function Tge(e){V6=e}function Nge(){if(Mx===-1)throw new Error("WASM backend not initialized.");return Mx}var Ege="0.0.0",Rge=2;ol("wasm",async()=>{let{wasm:e}=await kge();return new L6(e)},Rge);var qo="3.11.0-20211110",U6={tfjs:qo,"tfjs-core":qo,"tfjs-data":qo,"tfjs-layers":qo,"tfjs-converter":qo,"tfjs-backend-cpu":qo,"tfjs-backend-webgl":qo,"tfjs-backend-wasm":qo},Np=U6["tfjs-core"];var G6=`
precision highp float;
attribute vec2 pos;
attribute vec2 uv;
varying vec2 vUv;
uniform float flipY;
void main(void) {
vUv = uv;
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
}
`;var H6=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform float m[20];
void main(void) {
vec4 c = texture2D(texture, vUv);
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
}
`,j6=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform float m[20];
void main(void) {
vec4 c = texture2D(texture, vUv);
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
gl_FragColor.a = c.a;
}
`,q6=`
precision highp float;
varying vec2 vUv;
uniform vec2 size;
uniform sampler2D texture;
vec2 pixelate(vec2 coord, vec2 size) {
return floor( coord / size ) * size;
}
void main(void) {
gl_FragColor = vec4(0.0);
vec2 coord = pixelate(vUv, size);
gl_FragColor += texture2D(texture, coord);
}
`,X6=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform vec2 px;
void main(void) {
gl_FragColor = vec4(0.0);
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
}
`,K6=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform vec2 px;
uniform float m[9];
void main(void) {
vec4 c11 = texture2D(texture, vUv - px); // top left
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
vec4 c22 = texture2D(texture, vUv); // mid center
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
gl_FragColor =
c11 * m[0] + c12 * m[1] + c22 * m[2] +
c21 * m[3] + c22 * m[4] + c23 * m[5] +
c31 * m[6] + c32 * m[7] + c33 * m[8];
gl_FragColor.a = c22.a;
}
`;var zx=(e,t,n)=>{let s=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(s,(r,a)=>(n[a]=0,r))},Z6=class{constructor(t,n,s){de(this,"uniform",{});de(this,"attribute",{});de(this,"gl");de(this,"id");de(this,"compile",(t,n)=>{let s=this.gl.createShader(n);if(this.gl.shaderSource(s,t),this.gl.compileShader(s),!this.gl.getShaderParameter(s,this.gl.COMPILE_STATUS))throw new Error(`filter: gl compile failed: ${this.gl.getShaderInfoLog(s)}`);return s});this.gl=t;let r=this.compile(n,this.gl.VERTEX_SHADER),a=this.compile(s,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,a),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS))throw new Error(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);this.gl.useProgram(this.id),zx(n,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=this.gl.getAttribLocation(this.id,o);zx(n,"uniform",this.uniform),zx(s,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=this.gl.getUniformLocation(this.id,o)}};function Y6(){let e=0,t=null,n=!1,s=-1,r=[null,null],a=[],o=null,i=null,l=Kn(100,100),c={},u={INTERMEDIATE:1},d=l.getContext("webgl");if(!d)throw new Error("filter: cannot get webgl context");function p(x,y){if(!(x===l.width&&y===l.height)){if(l.width=x,l.height=y,!o){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);o=d.createBuffer(),d.bindBuffer(d.ARRAY_BUFFER,o),d.bufferData(d.ARRAY_BUFFER,b,d.STATIC_DRAW),d.pixelStorei(d.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}d.viewport(0,0,l.width,l.height),r=[null,null]}}function h(x,y){let b=d.createFramebuffer();d.bindFramebuffer(d.FRAMEBUFFER,b);let w=d.createRenderbuffer();d.bindRenderbuffer(d.RENDERBUFFER,w);let k=d.createTexture();return d.bindTexture(d.TEXTURE_2D,k),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,x,y,0,d.RGBA,d.UNSIGNED_BYTE,null),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.framebufferTexture2D(d.FRAMEBUFFER,d.COLOR_ATTACHMENT0,d.TEXTURE_2D,k,0),d.bindTexture(d.TEXTURE_2D,null),d.bindFramebuffer(d.FRAMEBUFFER,null),{fbo:b,texture:k}}function f(x){return r[x]=r[x]||h(l.width,l.height),r[x]}function m(x=0){if(!i)return;let y=null,b=null,w=!1;e===0?y=t:y=f(s).texture||null,e++,n&&!(x&u.INTERMEDIATE)?(b=null,w=e%2==0):(s=(s+1)%2,b=f(s).fbo||null),d.bindTexture(d.TEXTURE_2D,y),d.bindFramebuffer(d.FRAMEBUFFER,b),d.uniform1f(i.uniform.flipY,w?-1:1),d.drawArrays(d.TRIANGLES,0,6)}function g(x){if(c[x])return i=c[x],d.useProgram((i?i.id:null)||null),i;i=new Z6(d,G6,x);let y=Float32Array.BYTES_PER_ELEMENT,b=4*y;return d.enableVertexAttribArray(i.attribute.pos),d.vertexAttribPointer(i.attribute.pos,2,d.FLOAT,!1,b,0*y),d.enableVertexAttribArray(i.attribute.uv),d.vertexAttribPointer(i.attribute.uv,2,d.FLOAT,!1,b,2*y),c[x]=i,i}let A={colorMatrix:x=>{let y=new Float32Array(x);y[4]/=255,y[9]/=255,y[14]/=255,y[19]/=255;let b=y[18]===1&&y[3]===0&&y[8]===0&&y[13]===0&&y[15]===0&&y[16]===0&&y[17]===0&&y[19]===0?j6:H6,w=g(b);d.uniform1fv(w.uniform.m,y),m()},brightness:x=>{let y=(x||0)+1;A.colorMatrix([y,0,0,0,0,0,y,0,0,0,0,0,y,0,0,0,0,0,1,0])},saturation:x=>{let y=(x||0)*2/3+1,b=(y-1)*-.5;A.colorMatrix([y,b,b,0,0,b,y,b,0,0,b,b,y,0,0,0,0,0,1,0])},desaturate:()=>{A.saturation(-1)},contrast:x=>{let y=(x||0)+1,b=-128*(y-1);A.colorMatrix([y,0,0,0,b,0,y,0,0,b,0,0,y,0,b,0,0,0,1,0])},negative:()=>{A.contrast(-2)},hue:x=>{x=(x||0)/180*Math.PI;let y=Math.cos(x),b=Math.sin(x),w=.213,k=.715,I=.072;A.colorMatrix([w+y*(1-w)+b*-w,k+y*-k+b*-k,I+y*-I+b*(1-I),0,0,w+y*-w+b*.143,k+y*(1-k)+b*.14,I+y*-I+b*-.283,0,0,w+y*-w+b*-(1-w),k+y*-k+b*k,I+y*(1-I)+b*I,0,0,0,0,0,1,0])},desaturateLuminance:()=>{A.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{A.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{A.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{A.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{A.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{A.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{A.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{A.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:x=>{let y=new Float32Array(x),b=1/l.width,w=1/l.height,k=g(K6);d.uniform1fv(k.uniform.m,y),d.uniform2f(k.uniform.px,b,w),m()},detectEdges:()=>{A.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{A.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{A.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:x=>{let y=x||1;A.convolution.call(this,[0,-1*y,0,-1*y,1+4*y,-1*y,0,-1*y,0])},emboss:x=>{let y=x||1;A.convolution.call(this,[-2*y,-1*y,0,-1*y,1,1*y,0,1*y,2*y])},blur:x=>{let y=x/7/l.width,b=x/7/l.height,w=g(X6);d.uniform2f(w.uniform.px,0,b),m(u.INTERMEDIATE),d.uniform2f(w.uniform.px,y,0),m()},pixelate:x=>{let y=x/l.width,b=x/l.height,w=g(q6);d.uniform2f(w.uniform.size,y,b),m()}};this.add=function(x){let y=Array.prototype.slice.call(arguments,1),b=A[x];a.push({func:b,args:y})},this.reset=function(){a=[]},this.get=function(){return a},this.apply=function(x){p(x.width,x.height),e=0,t||(t=d.createTexture()),d.bindTexture(d.TEXTURE_2D,t),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.NEAREST),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.NEAREST),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,d.RGBA,d.UNSIGNED_BYTE,x);for(let y=0;y<a.length;y++){n=y===a.length-1;let b=a[y];b.func.apply(this,b.args||[])}return l},this.draw=function(x){return this.add("brightness",0),this.apply(x)}}async function n0(e){let t=e.shape.length===4?ot(e):e,n=sn(t,3,2),s=[Ro(n[0]),Ro(n[1]),Ro(n[2])],r=[An(n[0]),An(n[1]),An(n[2])],a=await Promise.all(r.map(h=>h.data())),o=.99*Math.max(a[0][0],a[1][0],a[2][0]),i=[me(n[0],s[0]),me(n[1],s[1]),me(n[2],s[2])],l=[me(r[0],s[0]),me(r[1],s[1]),me(r[2],s[2])],c=[he(o,l[0]),he(o,l[1]),he(o,l[2])],u=[L(i[0],c[0]),L(i[1],c[1]),L(i[2],c[2])],d=yn([u[0],u[1],u[2]],2),p=G(d,[1,t.shape[0],t.shape[1],3]);return ee([...n,...s,...r,...i,...l,...c,...u,d,t]),p}var s0=2048,it=null,ln=null,wc=null,$t,ia={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function Kn(e,t){let n;if(ge.browser)if(ge.worker)n=new OffscreenCanvas(e,t);else{if(typeof document=="undefined")throw new Error("attempted to run in web worker but offscreenCanvas is not supported");n=document.createElement("canvas"),n.width=e,n.height=t}else typeof ge.Canvas!="undefined"?n=new ge.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t));return n}function Lx(e,t){let n=t||Kn(e.width,e.height);return n.getContext("2d").drawImage(e,0,0),n}async function kc(e,t,n=!0){if(!e)return t.debug&&se("input is missing"),{tensor:null,canvas:null};if(!(e instanceof Je)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ge.Canvas!="undefined"&&e instanceof ge.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input type is not recognized");if(e instanceof Je){let s=null;if(e.isDisposedInternal)throw new Error("input tensor is disposed");if(!e.shape)throw new Error("input tensor has no shape");if(e.shape.length===3){if(e.shape[2]===3)s=Xt(e,0);else if(e.shape[2]===4){let r=dl(e,[0,0,0],[-1,-1,3]);s=Xt(r,0),ee(r)}}else e.shape.length===4&&(e.shape[3]===3?s=Bn(e):e.shape[3]===4&&(s=pl(e,[0,0,0,0],[-1,-1,-1,3])));if(s==null||s.shape.length!==4||s.shape[0]!==1||s.shape[3]!==3)throw new Error(`could not process input tensor with shape: ${e.shape}`);if(s.dtype==="int32"){let r=pe(s,"float32");ee(s),s=r}return{tensor:s,canvas:t.filter.return?ln:null}}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&se("input stream is not ready"),{tensor:null,canvas:it};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&se("cannot determine input dimensions"),{tensor:null,canvas:it};let a=s,o=r;if(a>s0&&(a=s0,o=Math.trunc(a*r/s)),o>s0&&(o=s0,a=Math.trunc(o*s/r)),(t.filter.width||0)>0?a=t.filter.width:(t.filter.height||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input cannot determine dimension");(!it||(it==null?void 0:it.width)!==a||(it==null?void 0:it.height)!==o)&&(it=Kn(a,o));let i=it.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,it==null?void 0:it.width,it==null?void 0:it.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,it==null?void 0:it.width,it==null?void 0:it.height),(!ln||it.width!==ln.width||(it==null?void 0:it.height)!==(ln==null?void 0:ln.height))&&(ln=Kn(it.width,it.height)),t.filter.enabled&&ge.webgl.supported){if($t||($t=ge.browser?new Y6:null),ge.filter=!!$t,!$t)return{tensor:null,canvas:it};$t.reset(),t.filter.brightness!==0&&$t.add("brightness",t.filter.brightness),t.filter.contrast!==0&&$t.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&$t.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&$t.add("blur",t.filter.blur),t.filter.saturation!==0&&$t.add("saturation",t.filter.saturation),t.filter.hue!==0&&$t.add("hue",t.filter.hue),t.filter.negative&&$t.add("negative"),t.filter.sepia&&$t.add("sepia"),t.filter.vintage&&$t.add("brownie"),t.filter.sepia&&$t.add("sepia"),t.filter.kodachrome&&$t.add("kodachrome"),t.filter.technicolor&&$t.add("technicolor"),t.filter.polaroid&&$t.add("polaroid"),t.filter.pixelate!==0&&$t.add("pixelate",t.filter.pixelate),$t.get()>0?ln=$t.apply(it):ln=$t.draw(it)}else Lx(it,ln),$t&&($t=null),ge.filter=!!$t;if(!n)return{tensor:null,canvas:ln};if(!ln)throw new Error("cannot create output canvas");let l,c=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(ge.browser&&Hs)l=Hs?Hs.fromPixels(e):null;else{c=e.data.length/e.height/e.width;let p=new Uint8Array(e.data.buffer);l=Pt(p,[e.height,e.width,c],"int32")}else if((!wc||ln.width!==wc.width||ln.height!==wc.height)&&(wc=Kn(ln.width,ln.height)),Hs&&ge.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=Hs.fromPixels(ln):(wc=Lx(ln),l=Hs.fromPixels(wc));else{let f=Lx(ln).getContext("2d").getImageData(0,0,a,o);c=f.data.length/a/o;let m=new Uint8Array(f.data.buffer);l=Pt(m,[a,o,c])}if(c===4){let p=dl(l,[0,0,0],[-1,-1,3]);ee(l),l=p}if(!l)throw new Error("cannot create tensor from input");let u=pe(l,"float32"),d=t.filter.equalization?await n0(u):Xt(u,0);return ee([l,u]),{tensor:d,canvas:t.filter.return?ln:null}}}async function J6(e,t){let n=!1;if(e.cacheSensitivity===0)return n;if(!ia.inputTensor)ia.inputTensor=Bn(t);else if(ia.inputTensor.shape[1]!==t.shape[1]||ia.inputTensor.shape[2]!==t.shape[2])ee(ia.inputTensor),ia.inputTensor=Bn(t);else{let s={};s.diff=me(t,ia.inputTensor),s.squared=L(s.diff,s.diff),s.sum=Se(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;ee([ia.inputTensor,s.diff,s.squared,s.sum]),ia.inputTensor=Bn(t),n=a<=e.cacheSensitivity}return n}async function Q6(e,t,n){let s={};if(!t||!n||t.shape.length!==4||t.shape.length!==n.shape.length)return e.debug||se("invalid input tensor or tensor shapes do not match:",t.shape,n.shape),0;if(t.shape[0]!==1||n.shape[0]!==1||t.shape[3]!==3||n.shape[3]!==3)return e.debug||se("input tensors must be of shape [1, height, width, 3]:",t.shape,n.shape),0;s.input1=Bn(t),s.input2=t.shape[1]!==n.shape[1]||t.shape[2]!==n.shape[2]?$e.resizeBilinear(n,[t.shape[1],t.shape[2]]):Bn(n),s.diff=me(s.input1,s.input2),s.squared=L(s.diff,s.diff),s.sum=Se(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return ee([s.input1,s.input2,s.diff,s.squared,s.sum]),a}var e8=class{constructor(){de(this,"browser");de(this,"node");de(this,"worker");de(this,"platform","");de(this,"agent","");de(this,"backends",[]);de(this,"initial");de(this,"filter");de(this,"tfjs");de(this,"offscreen");de(this,"perfadd",!1);de(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});de(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});de(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});de(this,"cpu",{model:void 0,flags:[]});de(this,"kernels",[]);de(this,"Canvas");de(this,"Image");de(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined",this.tfjs={version:Np},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);this.platform=n&&n[0]?n[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(ss().registryFactory),this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&Cs()==="wasm"&&(this.wasm.simd=await K().getAsync("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=await K().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let t=Kn(100,100),n=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof n!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(Cs()==="webgl"||Cs()==="humangl")){let s=Er().gpgpu!=="undefined"?await Er().getGPGPUContext().gl:null;s&&(this.webgl.version=s.getParameter(s.VERSION),this.webgl.renderer=s.getParameter(s.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu"),this.webgpu.supported&&(this.webgpu.adapter=(await navigator.gpu.requestAdapter()).name),this.kernels=Xr(Cs()).map(s=>s.kernelName.toLowerCase())}async updateCPU(){let t={model:"",flags:[]};if(this.node&&this.platform.startsWith("linux")){let n=wa("fs");try{let s=n.readFileSync("/proc/cpuinfo").toString();for(let r of s.split(`
`))r.startsWith("model name")&&(t.model=r.match(/:(.*)/g)[0].replace(":","").trim()),r.startsWith("flags")&&(t.flags=r.match(/:(.*)/g)[0].replace(":","").trim().split(" ").sort())}catch(s){}}this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},ge=new e8;var Bx="2.5.1";var Xo;var s1e=Number.MAX_SAFE_INTEGER;async function t8(e){return ge.initial&&(Xo=null),Xo?e.debug&&se("cached model:",Xo.modelUrl):(Xo=await Xe(Ze(e.modelBasePath,e.face.agegenderrace.modelPath)),!Xo||!Xo.modelUrl?se("load model failed:",e.face.agegenderrace.modelPath):e.debug&&se("load model:",Xo.modelUrl)),Xo}var un,r0=[],Wx=Number.MAX_SAFE_INTEGER,n8=0,s8=0;async function r8(e){var t,n;return ge.initial&&(un=null),un?e.debug&&se("cached model:",un.modelUrl):(un=await Xe(Ze(e.modelBasePath,((t=e.face.antispoof)==null?void 0:t.modelPath)||"")),!un||!un.modelUrl?se("load model failed:",(n=e.face.antispoof)==null?void 0:n.modelPath):e.debug&&se("load model:",un.modelUrl)),un}async function Vx(e,t,n,s){var o,i;if(!un)return null;let r=(((o=t.face.antispoof)==null?void 0:o.skipTime)||0)>ce()-s8,a=Wx<(((i=t.face.antispoof)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&n8===s&&r0[n]?(Wx++,r0[n]):(Wx=0,new Promise(async l=>{let c=$e.resizeBilinear(e,[(un==null?void 0:un.inputs[0].shape)?un.inputs[0].shape[2]:0,(un==null?void 0:un.inputs[0].shape)?un.inputs[0].shape[1]:0],!1),u=un==null?void 0:un.execute(c),d=(await u.data())[0];r0[n]=Math.round(100*d)/100,n8=s,s8=ce(),ee([c,u]),l(r0[n])}))}var er={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Ux={count:468,mouth:13,symmetryLine:[13,er.midwayBetweenEyes[0]]},Ep={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Gx=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Rp=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],Fl=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var _ge=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Dge=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Pge=[33,133,362,263,1,78,308],u1e=_ge.map(e=>Rp[e]),c1e=Dge.map(e=>Rp[e]),d1e=Pge.map(e=>Rp[e]);var $p=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],a0=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2],Hx=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],jx=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],a8=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s,landmarks:e.landmarks,confidence:e.confidence}},qx=(e,t,n)=>{let s=t.shape[1],r=t.shape[2],a=$e.cropAndResize(t,[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]],[0],n),o=he(a,255);return ee(a),o},_p=(e,t)=>{let n=a0(e),s=$p(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},Dp=e=>{let t=a0(e),n=$p(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks,confidence:e.confidence}},o0=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},Xx=[[1,0,0],[0,1,0],[0,0,1]],Fge=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),Oge=(e,t)=>Fge(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var o8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Ol=(e,t)=>{let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n},Mge=(e,t)=>{let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n},i8=(e,t)=>{let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(Ol(e[r],Mge(t,a)))}return n},l8=(e,t)=>{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=o8(t[0],t[1]),o=i8(a,r),i=o8(-t[0],-t[1]);return i8(o,i)},zge=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Ol(t[0],n),-Ol(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},Lge=(e,t)=>[Ol(e,t[0]),Ol(e,t[1])];function u8(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let c=r*(l+.5);for(let u=0;u<o;u++){let d=r*(u+.5);for(let p=0;p<i;p++)n.push([d,c])}}}return n}function c8(e,t,n,s,r){let a=$p(t),o=e.map(p=>[a[0]/r*(p[0]-r/2),a[1]/r*(p[1]-r/2),p[2]||0]),i=n&&n!==0&&Math.abs(n)>.2,l=i?l8(n,[0,0]):Xx,c=i?o.map(p=>[...Lge(p,l),p[2]]):o,u=i?zge(s):Xx,d=[...a0({startPoint:t.startPoint,endPoint:t.endPoint}),1];return c.map(p=>[Math.round(p[0]+Ol(d,u[0])),Math.round(p[1]+Ol(d,u[1])),Math.round(p[2]||0)])}function Kx(e,t,n,s){let r=t.landmarks.length>=Ux.count?Ux.symmetryLine:Ep.symmetryLine,a=0,o=Xx,i;if(e&&ge.kernels.includes("rotatewithoffset"))if(a=Oge(t.landmarks[r[0]],t.landmarks[r[1]]),a&&a!==0&&Math.abs(a)>.2){let c=a0({startPoint:t.startPoint,endPoint:t.endPoint}),u=[c[0]/n.shape[2],c[1]/n.shape[1]],d=$e.rotateWithOffset(n,a,0,u);o=l8(-a,c),i=qx(t,d,[s,s]),ee(d)}else i=qx(t,n,[s,s]);else i=qx(t,n,[s,s]);return[a,o,i]}var d8=6,Ms,p8=[],h8=null,zs=0,i0=()=>zs;async function f8(e){var t,n;return ge.initial&&(Ms=null),Ms?e.debug&&se("cached model:",Ms.modelUrl):(Ms=await Xe(Ze(e.modelBasePath,((t=e.face.detector)==null?void 0:t.modelPath)||"")),!Ms||!Ms.modelUrl?se("load model failed:",(n=e.face.detector)==null?void 0:n.modelPath):e.debug&&se("load model:",Ms.modelUrl)),zs=Ms.inputs[0].shape?Ms.inputs[0].shape[2]:0,zs===-1&&(zs=64),p8=u8(zs),h8=cr(p8),Ms}function Bge(e){let t={};t.boxStarts=De(e,[0,1],[-1,2]),t.centers=le(t.boxStarts,h8),t.boxSizes=De(e,[0,3],[-1,2]),t.boxSizesNormalized=he(t.boxSizes,zs),t.centersNormalized=he(t.centers,zs),t.halfBoxSize=he(t.boxSizesNormalized,2),t.starts=me(t.centersNormalized,t.halfBoxSize),t.ends=le(t.centersNormalized,t.halfBoxSize),t.startNormalized=L(t.starts,zs),t.endNormalized=L(t.ends,zs);let n=Mu([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(s=>ee(t[s])),n}async function m8(e,t){var i,l,c,u;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return{boxes:[]};let n={};n.resized=$e.resizeBilinear(e,[zs,zs]),n.div=he(n.resized,127.5),n.normalized=me(n.div,.5);let s=Ms==null?void 0:Ms.execute(n.normalized);if(Array.isArray(s)){let d=s.sort((p,h)=>p.size-h.size);n.concat384=vt([d[0],d[2]],2),n.concat512=vt([d[1],d[3]],2),n.concat=vt([n.concat512,n.concat384],1),n.batch=ot(n.concat,0)}else n.batch=ot(s);ee(s),n.boxes=Bge(n.batch),n.logits=De(n.batch,[0,0],[-1,1]),n.sigmoid=ds(n.logits),n.scores=ot(n.sigmoid),n.nms=await $e.nonMaxSuppressionAsync(n.boxes,n.scores,((i=t.face.detector)==null?void 0:i.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((c=t.face.detector)==null?void 0:c.minConfidence)||0);let r=await n.nms.array(),a=[],o=await n.scores.data();for(let d=0;d<r.length;d++){let p=o[r[d]];if(p>(((u=t.face.detector)==null?void 0:u.minConfidence)||0)){let h={};h.bbox=De(n.boxes,[r[d],0],[1,-1]),h.slice=De(n.batch,[r[d],d8-1],[1,-1]),h.squeeze=ot(h.slice),h.landmarks=G(h.squeeze,[d8,-1]),h.startPoint=De(h.bbox,[0,0],[-1,2]),h.endPoint=De(h.bbox,[0,2],[-1,2]),a.push({box:{startPoint:await h.startPoint.data(),endPoint:await h.endPoint.data()},landmarks:await h.landmarks.array(),confidence:p}),Object.keys(h).forEach(f=>ee(h[f]))}}return Object.keys(n).forEach(d=>ee(n[d])),{boxes:a,scaleFactor:[e.shape[2]/zs,e.shape[1]/zs]}}var Jx={};qc(Jx,{connected:()=>Yx,kpt:()=>Zx});var Zx=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftThumb","leftHand","rightThumb","rightHand"],Yx={leftLeg:["leftHip","leftKnee","leftAnkle","leftHeel","leftFoot"],rightLeg:["rightHip","rightKnee","rightAnkle","rightHeel","rightFoot"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist","leftPalm"],rightArm:["rightShoulder","rightElbow","rightWrist","rightPalm"],leftHand:[],rightHand:[],head:[]};var g8={initial:!0},cn=[null,null],Ko=[[0,0],[0,0]],Qx=Number.MAX_SAFE_INTEGER,eb,l0=null,Zo=[[0,0],[0,0],[0,0],[0,0]],A8=0;async function y8(e){var t,n,s;if(g8.initial&&(cn[0]=null),!cn[0]&&((t=e.body.detector)==null?void 0:t.modelPath)){cn[0]=await Xe(Ze(e.modelBasePath,((n=e.body.detector)==null?void 0:n.modelPath)||""));let r=Object.values(cn[0].modelSignature.inputs);Ko[0][0]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[1].size):0,Ko[0][1]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[2].size):0,!cn[0]||!cn[0].modelUrl?se("load model failed:",(s=e.body.detector)==null?void 0:s.modelPath):e.debug&&se("load model:",cn[0].modelUrl)}else e.debug&&cn[0]&&se("cached model:",cn[0].modelUrl);return cn[0]}async function x8(e){var t;if(g8.initial&&(cn[1]=null),cn[1])e.debug&&se("cached model:",cn[1].modelUrl);else{cn[1]=await Xe(Ze(e.modelBasePath,e.body.modelPath||""));let n=Object.values(cn[1].modelSignature.inputs);Ko[1][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Ko[1][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0,((t=e.body.modelPath)==null?void 0:t.includes("lite"))?eb=["ld_3d","output_segmentation","output_heatmap","world_3d","output_poseflag"]:eb=["Identity","Identity_2","Identity_3","Identity_4","Identity_1"],!cn[1]||!cn[1].modelUrl?se("load model failed:",e.body.modelPath):e.debug&&se("load model:",cn[1].modelUrl)}return cn[1]}function Wge(e,t){let n=e.map(o=>o.position[0]),s=e.map(o=>o.position[1]),r=[Math.min(...n),Math.min(...s),Math.max(...n)-Math.min(...n),Math.max(...s)-Math.min(...s)],a=[r[0]/t[0],r[1]/t[1],r[2]/t[0],r[3]/t[1]];return{keypointsBox:r,keypointsBoxRaw:a}}async function Vge(e){let t={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;Zo=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],t.pad=Xs(e,Zo),t.resize=$e.resizeBilinear(t.pad,[Ko[1][0],Ko[1][1]]);let n=he(t.resize,255);return Object.keys(t).forEach(s=>ee(t[s])),n}function Uge(e,t){for(let n of e)n.position=[n.position[0]*(t[0]+Zo[2][0]+Zo[2][1])/t[0]-Zo[2][0],n.position[1]*(t[1]+Zo[1][0]+Zo[1][1])/t[1]-Zo[1][0],n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],n.position[2]];return e}var b8=e=>1-1/(1+Math.exp(e));async function Gge(e,t,n){var h;let s={};s.input=await Vge(e),[s.ld,s.segmentation,s.heatmap,s.world,s.poseflag]=(h=cn[1])==null?void 0:h.execute(s.input,eb);let r=(await s.poseflag.data())[0],a=Math.max(0,(r-.8)/(1-.8)),o=await s.ld.data(),i=[],l=5;for(let f=0;f<o.length/l;f++){let m=b8(o[l*f+3]),g=b8(o[l*f+4]),A=Math.trunc(100*m*g*a)/100,x=[o[l*f+0]/Ko[1][0],o[l*f+1]/Ko[1][1],o[l*f+2]+0],y=[Math.trunc(n[0]*x[0]),Math.trunc(n[1]*x[1]),x[2]];i.push({part:Zx[f],positionRaw:x,position:y,score:A})}if(a<(t.body.minConfidence||0))return null;let c=Uge(i,n),u=Wge(c,[n[0],n[1]]);Object.keys(s).forEach(f=>ee(s[f]));let d={};for(let[f,m]of Object.entries(Yx)){let g=[];for(let A=0;A<m.length-1;A++){let x=c.find(b=>b.part===m[A]),y=c.find(b=>b.part===m[A+1]);x&&y&&x.score>(t.body.minConfidence||0)&&y.score>(t.body.minConfidence||0)&&g.push([x.position,y.position])}d[f]=g}return{id:0,score:Math.trunc(100*a)/100,box:u.keypointsBox,boxRaw:u.keypointsBoxRaw,keypoints:c,annotations:d}}async function tb(e,t){let n=[e.shape[2]||0,e.shape[1]||0],s=(t.body.skipTime||0)>ce()-A8,r=Qx<(t.body.skipFrames||0);return t.skipAllowed&&s&&r&&l0!==null?Qx++:(l0=await Gge(e,t,n),A8=ce(),Qx=0),l0?[l0]:[]}var Sc=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var tr,Ml=0,nb=[],v8=0,sb=Number.MAX_SAFE_INTEGER;async function w8(e){if(ge.initial&&(tr=null),tr)e.debug&&se("cached model:",tr.modelUrl);else{tr=await Xe(Ze(e.modelBasePath,e.object.modelPath||""));let t=Object.values(tr.modelSignature.inputs);Ml=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,!tr||!tr.modelUrl?se("load model failed:",e.object.modelPath):e.debug&&se("load model:",tr.modelUrl)}return tr}async function Hge(e,t,n){if(!e)return[];let s=[],r=await e.array(),a=ot(e);ee(e);let o=sn(a,6,1);ee(a);let i=yn([o[1],o[0],o[3],o[2]],1),l=ot(i);ee(i);let c=ot(o[4]),u=ot(o[5]);o.forEach(f=>ee(f));let d=await $e.nonMaxSuppressionAsync(l,c,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);ee(l),ee(c),ee(u);let p=await d.data();ee(d);let h=0;for(let f of p){let m=Math.trunc(100*r[0][f][4])/100,g=r[0][f][5],A=Sc[g].label,[x,y]=[r[0][f][0]/Ml,r[0][f][1]/Ml],b=[x,y,r[0][f][2]/Ml-x,r[0][f][3]/Ml-y],w=[Math.trunc(b[0]*t[0]),Math.trunc(b[1]*t[1]),Math.trunc(b[2]*t[0]),Math.trunc(b[3]*t[1])];s.push({id:h++,score:m,class:g,label:A,box:w,boxRaw:b})}return s}async function rb(e,t){let n=(t.object.skipTime||0)>ce()-v8,s=sb<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&nb.length>0?(sb++,nb):(sb=0,new Promise(async r=>{let a=[e.shape[2],e.shape[1]],o=$e.resizeBilinear(e,[Ml,Ml]),i=t.object.enabled?tr==null?void 0:tr.execute(o,["tower_0/detections"]):null;v8=ce(),ee(o);let l=await Hge(i,a,t);nb=l,r(l)}))}var ib={};qc(ib,{connected:()=>ob,kpt:()=>ab});var ab=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],ob={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var dn,k8=0,Zn={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},lb=Number.MAX_SAFE_INTEGER;async function ub(e){return ge.initial&&(dn=null),dn?e.debug&&se("cached model:",dn.modelUrl):(dn=await Xe(Ze(e.modelBasePath,e.body.modelPath||"")),!dn||!dn.modelUrl?se("load model failed:",e.body.modelPath):e.debug&&se("load model:",dn.modelUrl)),dn}function jge(e,t){let[n,s]=e.shape;return q(()=>{let r=G(e,[s*n]),a=An(r,0).dataSync()[0];if(a>t){let o=js(r,0),i=Dd(o,n).dataSync()[0],l=he(o,Re(n,"int32")).dataSync()[0];return[i,l,a]}return[0,0,a]})}async function cb(e,t){let n=(t.body.skipTime||0)>ce()-k8,s=lb<(t.body.skipFrames||0);return t.skipAllowed&&n&&s&&Object.keys(Zn.keypoints).length>0?(lb++,[Zn]):(lb=0,new Promise(async r=>{var d;let a=q(()=>{if(!(dn==null?void 0:dn.inputs[0].shape))return null;let p=$e.resizeBilinear(e,[dn.inputs[0].shape[2],dn.inputs[0].shape[1]],!1);return L(p,2).sub(1)}),o;if(t.body.enabled&&(o=dn==null?void 0:dn.execute(a)),k8=ce(),ee(a),o){Zn.keypoints.length=0;let p=o.squeeze();ee(o);let h=p.unstack(2);ee(p);for(let f=0;f<h.length;f++){let[m,g,A]=jge(h[f],t.body.minConfidence);A>(((d=t.body)==null?void 0:d.minConfidence)||0)&&Zn.keypoints.push({score:Math.round(100*A)/100,part:ab[f],positionRaw:[m/dn.inputs[0].shape[2],g/dn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*m/dn.inputs[0].shape[2]),Math.round(e.shape[1]*g/dn.inputs[0].shape[1])]})}h.forEach(f=>ee(f))}Zn.score=Zn.keypoints.reduce((p,h)=>h.score>p?h.score:p,0);let i=Zn.keypoints.map(p=>p.position[0]),l=Zn.keypoints.map(p=>p.position[1]);Zn.box=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)];let c=Zn.keypoints.map(p=>p.positionRaw[0]),u=Zn.keypoints.map(p=>p.positionRaw[1]);Zn.boxRaw=[Math.min(...c),Math.min(...u),Math.max(...c)-Math.min(...c),Math.max(...u)-Math.min(...u)];for(let[p,h]of Object.entries(ob)){let f=[];for(let m=0;m<h.length-1;m++){let g=Zn.keypoints.find(x=>x.part===h[m]),A=Zn.keypoints.find(x=>x.part===h[m+1]);g&&A&&g.score>(t.body.minConfidence||0)&&A.score>(t.body.minConfidence||0)&&f.push([g.position,A.position])}Zn.annotations[p]=f}r([Zn])}))}var qge=["angry","disgust","fear","happy","sad","surprise","neutral"],Yn,u0=[],S8=0,I8=0,db=Number.MAX_SAFE_INTEGER,pb=[.2989,.587,.114];async function C8(e){var t,n;return ge.initial&&(Yn=null),Yn?e.debug&&se("cached model:",Yn.modelUrl):(Yn=await Xe(Ze(e.modelBasePath,((t=e.face.emotion)==null?void 0:t.modelPath)||"")),!Yn||!Yn.modelUrl?se("load model failed:",(n=e.face.emotion)==null?void 0:n.modelPath):e.debug&&se("load model:",Yn.modelUrl)),Yn}async function hb(e,t,n,s){var o,i;if(!Yn)return null;let r=db<(((o=t.face.emotion)==null?void 0:o.skipFrames)||0),a=(((i=t.face.emotion)==null?void 0:i.skipTime)||0)>ce()-I8;return t.skipAllowed&&a&&r&&S8===s&&u0[n]&&u0[n].length>0?(db++,u0[n]):(db=0,new Promise(async l=>{var u,d;let c=[];if((u=t.face.emotion)==null?void 0:u.enabled){let p={},h=(Yn==null?void 0:Yn.inputs[0].shape)?Yn.inputs[0].shape[2]:0;p.resize=$e.resizeBilinear(e,[h,h],!1),[p.red,p.green,p.blue]=sn(p.resize,3,3),p.redNorm=L(p.red,pb[0]),p.greenNorm=L(p.green,pb[1]),p.blueNorm=L(p.blue,pb[2]),p.grayscale=af([p.redNorm,p.greenNorm,p.blueNorm]),p.grayscaleSub=me(p.grayscale,.5),p.grayscaleMul=L(p.grayscaleSub,2),p.emotion=Yn==null?void 0:Yn.execute(p.grayscaleMul),I8=ce();let f=await p.emotion.data();for(let m=0;m<f.length;m++)f[m]>(((d=t.face.emotion)==null?void 0:d.minConfidence)||0)&&c.push({score:Math.min(.99,Math.trunc(100*f[m])/100),emotion:qge[m]});c.sort((m,g)=>g.score-m.score),Object.keys(p).forEach(m=>ee(p[m]))}u0[n]=c,S8=s,l(c)}))}var nr,Yo=0,Xge=2.3,fb=er.leftEyeLower0,mb=er.rightEyeLower0,Ic={leftBounds:[fb[0],fb[fb.length-1]],rightBounds:[mb[0],mb[mb.length-1]]},Cc={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function T8(e){var t,n;return ge.initial&&(nr=null),nr?e.debug&&se("cached model:",nr.modelUrl):(nr=await Xe(Ze(e.modelBasePath,((t=e.face.iris)==null?void 0:t.modelPath)||"")),!nr||!nr.modelUrl?se("load model failed:",(n=e.face.iris)==null?void 0:n.modelPath):e.debug&&se("load model:",nr.modelUrl)),Yo=nr.inputs[0].shape?nr.inputs[0].shape[2]:0,Yo===-1&&(Yo=64),nr}function c0(e,t,n,s){for(let r=0;r<Gx.length;r++){let{key:a,indices:o}=Gx[r],i=er[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let c=o[l];e[i[l]]=[t[c][0],t[c][1],(t[c][2]+e[i[l]][2])/2]}}}var Kge=e=>{let t=e[Ic.leftBounds[0]][2],n=e[Ic.rightBounds[0]][2];return t-n},N8=(e,t,n,s,r,a=!1)=>{let o=Dp(_p(o0([e[n],e[s]]),Xge)),i=$p(o),l=$e.cropAndResize(t,[[o.startPoint[1]/r,o.startPoint[0]/r,o.endPoint[1]/r,o.endPoint[0]/r]],[0],[Yo,Yo]);if(a&&ge.kernels.includes("flipleftright")){let c=$e.flipLeftRight(l);ee(l),l=c}return{box:o,boxSize:i,crop:l}},E8=(e,t,n,s=!1)=>{let r=[];for(let a=0;a<Cc.numCoordinates;a++){let o=e[a*3],i=e[a*3+1],l=e[a*3+2];r.push([(s?1-o/Yo:o/Yo)*n[0]+t.startPoint[0],i/Yo*n[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice(Cc.index)}},R8=(e,t,n)=>{let s=e[er[`${n}EyeUpper0`][Cc.upperCenter]][2],r=e[er[`${n}EyeLower0`][Cc.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function $8(e,t,n,s){if(!nr)return n.debug&&se("face mesh iris detection requested, but model is not loaded"),e;let{box:r,boxSize:a,crop:o}=N8(e,t,Ic.leftBounds[0],Ic.leftBounds[1],s,!0),{box:i,boxSize:l,crop:c}=N8(e,t,Ic.rightBounds[0],Ic.rightBounds[1],s,!0),u=vt([o,c]);ee(o),ee(c);let d=nr.execute(u);ee(u);let p=await d.data();ee(d);let h=p.slice(0,Cc.numCoordinates*3),{rawCoords:f,iris:m}=E8(h,r,a,!0),g=p.slice(Cc.numCoordinates*3),{rawCoords:A,iris:x}=E8(g,i,l),y=Kge(e);Math.abs(y)<30?(c0(e,f,"left",null),c0(e,A,"right",null)):y<1?c0(e,f,"left",["EyeUpper0","EyeLower0"]):c0(e,A,"right",["EyeUpper0","EyeLower0"]);let b=R8(e,m,"left"),w=R8(e,x,"right");return e.concat(b).concat(w)}var Tc=[],sr=null,la=0,gb=Number.MAX_SAFE_INTEGER,_8=0;async function D8(e,t){var i,l,c,u,d,p,h,f,m,g,A,x;let n=(((i=t.face.detector)==null?void 0:i.skipTime)||0)>ce()-_8,s=gb<(((l=t.face.detector)==null?void 0:l.skipFrames)||0);if(!t.skipAllowed||!n||!s||Tc.length===0){let y=await m8(e,t);_8=ce(),Tc=[];for(let b of y.boxes){let w={startPoint:b.box.startPoint,endPoint:b.box.endPoint,landmarks:b.landmarks,confidence:b.confidence};Tc.push(Dp(_p(a8(w,y.scaleFactor),Math.sqrt(((c=t.face.detector)==null?void 0:c.cropFactor)||1.6))))}gb=0}else gb++;let r=[],a=[],o=0;for(let y=0;y<Tc.length;y++){let b=Tc[y],w=0,k,I={id:o++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if([w,k,I.tensor]=Kx(!((u=t.face.mesh)==null?void 0:u.enabled)&&((d=t.face.detector)==null?void 0:d.rotation),b,e,((p=t.face.mesh)==null?void 0:p.enabled)?la:i0()),(h=t==null?void 0:t.filter)==null?void 0:h.equalization){let N=await n0(I.tensor);ee(I.tensor),I.tensor=N}if(I.boxScore=Math.round(100*b.confidence)/100,(f=t.face.mesh)==null?void 0:f.enabled)if(!sr)t.debug&&se("face mesh detection requested, but model is not loaded");else{let[N,$,O]=sr.execute(I.tensor),D=await $.data();I.faceScore=Math.round(100*D[0])/100;let R=G(O,[-1,3]),T=await R.array();if(ee([O,R,$,N]),I.faceScore<(((m=t.face.detector)==null?void 0:m.minConfidence)||1))b.confidence=I.faceScore;else{((g=t.face.iris)==null?void 0:g.enabled)&&(T=await $8(T,I.tensor,t,la)),I.mesh=c8(T,b,w,k,la),I.meshRaw=I.mesh.map(F=>[F[0]/(e.shape[2]||0),F[1]/(e.shape[1]||0),(F[2]||0)/la]);for(let F of Object.keys(er))I.annotations[F]=er[F].map(U=>I.mesh[U]);b=Dp({..._p(o0(I.mesh),((A=t.face.detector)==null?void 0:A.cropFactor)||1.6),confidence:b.confidence}),I.box=Hx(b,e),I.boxRaw=jx(b,e),I.score=I.faceScore,a.push(b),ee(I.tensor),[w,k,I.tensor]=Kx((x=t.face.detector)==null?void 0:x.rotation,b,e,la)}}else{I.box=Hx(b,e),I.boxRaw=jx(b,e),I.score=I.boxScore,I.mesh=b.landmarks.map(N=>[(b.startPoint[0]+b.endPoint[0])/2+(b.endPoint[0]+b.startPoint[0])*N[0]/i0(),(b.startPoint[1]+b.endPoint[1])/2+(b.endPoint[1]+b.startPoint[1])*N[1]/i0()]),I.meshRaw=I.mesh.map(N=>[N[0]/(e.shape[2]||0),N[1]/(e.shape[1]||0),(N[2]||0)/la]);for(let N of Object.keys(Ep))I.annotations[N]=[I.mesh[Ep[N]]]}r.push(I)}return Tc=[...a],r}async function P8(e){var t,n;return ge.initial&&(sr=null),sr?e.debug&&se("cached model:",sr.modelUrl):(sr=await Xe(Ze(e.modelBasePath,((t=e.face.mesh)==null?void 0:t.modelPath)||"")),!sr||!sr.modelUrl?se("load model failed:",(n=e.face.mesh)==null?void 0:n.modelPath):e.debug&&se("load model:",sr.modelUrl)),la=sr.inputs[0].shape?sr.inputs[0].shape[2]:0,la===-1&&(la=64),sr}var F8=Fl,O8=Rp;var xs,d0=[],M8=0,z8=0,Ab=Number.MAX_SAFE_INTEGER;async function L8(e){var n,s;let t=Ze(e.modelBasePath,((n=e.face.description)==null?void 0:n.modelPath)||"");return ge.initial&&(xs=null),xs?e.debug&&se("cached model:",t):(xs=await Xe(t),xs?e.debug&&se("load model:",t):se("load model failed:",((s=e.face.description)==null?void 0:s.modelPath)||"")),xs}function yb(e){let t=e.image||e.tensor||e;if(!(xs==null?void 0:xs.inputs[0].shape))return t;let n=$e.resizeBilinear(t,[xs.inputs[0].shape[2],xs.inputs[0].shape[1]],!1),s=L(n,255);return ee(n),s}async function xb(e,t,n,s){var o,i,l,c;if(!xs)return null;let r=Ab<(((o=t.face.description)==null?void 0:o.skipFrames)||0),a=(((i=t.face.description)==null?void 0:i.skipTime)||0)>ce()-M8;return t.skipAllowed&&r&&a&&z8===s&&((l=d0[n])==null?void 0:l.age)&&((c=d0[n])==null?void 0:c.age)>0?(Ab++,d0[n]):(Ab=0,new Promise(async u=>{var p,h;let d={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((p=t.face.description)==null?void 0:p.enabled){let f=yb(e),m=xs==null?void 0:xs.execute(f);M8=ce(),ee(f);let A=await(await m.find($=>$.shape[1]===1)).data(),x=Math.trunc(200*Math.abs(A[0]-.5))/100;x>(((h=t.face.description)==null?void 0:h.minConfidence)||0)&&(d.gender=A[0]<=.5?"female":"male",d.genderScore=Math.min(.99,x));let y=js(m.find($=>$.shape[1]===100),1),b=(await y.data())[0];ee(y);let k=await m.find($=>$.shape[1]===100).data();d.age=Math.round(k[b-1]>k[b+1]?10*b-100*k[b-1]:10*b+100*k[b+1])/10;let I=m.find($=>$.shape[1]===1024),N=I?await I.data():[];d.descriptor=Array.from(N),m.forEach($=>ee($))}d0[n]=d,z8=s,u(d)}))}function p0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Pp(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function B8(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return $e.cropAndResize(t,a,[0],n)}function W8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function h0(e,t=1.5){let n=Pp(e),s=p0(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function f0(e){let t=Pp(e),n=p0(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function Zge(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function V8(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Zge(n)}var U8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Jo(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function Yge(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function G8(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(Jo(e[r],Yge(t,a)))}return n}function bb(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=U8(t[0],t[1]),o=G8(a,r),i=U8(-t[0],-t[1]);return G8(o,i)}function H8(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Jo(t[0],n),-Jo(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function vb(e,t){return[Jo(e,t[0]),Jo(e,t[1])]}var j8=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var wb=class{constructor(t){de(this,"model");de(this,"anchors");de(this,"anchorsTensor");de(this,"inputSize");de(this,"inputSizeTensor");de(this,"doubleInputSizeTensor");this.model=t,this.anchors=j8.map(n=>[n.x,n.y]),this.anchorsTensor=cr(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=Kt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Kt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let n={};n.boxOffsets=De(t,[0,0],[-1,2]),n.boxSizes=De(t,[0,2],[-1,2]),n.div=he(n.boxOffsets,this.inputSizeTensor),n.boxCenterPoints=le(n.div,this.anchorsTensor),n.halfBoxSizes=he(n.boxSizes,this.doubleInputSizeTensor),n.sub=me(n.boxCenterPoints,n.halfBoxSizes),n.startPoints=L(n.sub,this.inputSizeTensor),n.add=le(n.boxCenterPoints,n.halfBoxSizes),n.endPoints=L(n.add,this.inputSizeTensor);let s=Mu([n.startPoints,n.endPoints],1);return Object.keys(n).forEach(r=>ee(n[r])),s}normalizeLandmarks(t,n){let s={};s.reshape=G(t,[-1,7,2]),s.div=he(s.reshape,this.inputSizeTensor),s.landmarks=le(s.div,this.anchors[n]);let r=L(s.landmarks,this.inputSizeTensor);return Object.keys(s).forEach(a=>ee(s[a])),r}async predict(t,n){let s={};s.resize=$e.resizeBilinear(t,[this.inputSize,this.inputSize]),s.div=he(s.resize,127.5),s.image=me(s.div,1),s.batched=this.model.execute(s.image),s.predictions=ot(s.batched),s.slice=De(s.predictions,[0,0],[-1,1]),s.sigmoid=ds(s.slice),s.scores=ot(s.sigmoid);let r=await s.scores.data();s.boxes=De(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await $e.nonMaxSuppressionAsync(s.norm,s.scores,3*n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let i of a){let l={};l.box=De(s.norm,[i,0],[1,-1]),l.slice=De(s.predictions,[i,5],[1,14]),l.norm=this.normalizeLandmarks(l.slice,i),l.palmLandmarks=G(l.norm,[-1,2]);let c=await l.box.data(),u=c.slice(0,2),d=c.slice(2,4),p=await l.palmLandmarks.array(),h={startPoint:u,endPoint:d,palmLandmarks:p,confidence:r[i]},f=W8(h,[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]);o.push(f),Object.keys(l).forEach(m=>ee(l[m]))}return Object.keys(s).forEach(i=>ee(s[i])),o}};var Jge=5,q8=1.65,X8=[0,5,9,13,17,1,2],Qge=0,e2e=2,K8=0,kb=class{constructor(t,n){de(this,"handDetector");de(this,"handPoseModel");de(this,"inputSize");de(this,"storedBoxes");de(this,"skipped");de(this,"detectedHands");this.handDetector=t,this.handPoseModel=n,this.inputSize=this.handPoseModel&&this.handPoseModel.inputs[0].shape?this.handPoseModel.inputs[0].shape[2]:0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>vb([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return h0(f0(r),Jge)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=h0(f0(n),q8);s.palmLandmarks=[];for(let r=0;r<X8.length;r++)s.palmLandmarks.push(t[X8[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=p0(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(h=>[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=bb(s,[0,0]),c=i.map(h=>[...vb(h,l),h[2]]),u=H8(r),d=[...Pp(n),1],p=[Jo(d,u[0]),Jo(d,u[1])];return c.map(h=>[Math.trunc(h[0]+p[0]),Math.trunc(h[1]+p[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r,a=(n.hand.skipTime||0)>ce()-K8,o=this.skipped<(n.hand.skipFrames||0);n.skipAllowed&&a&&o&&(r=await this.handDetector.predict(t,n),this.skipped=0),n.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let i=[];for(let l=0;l<this.storedBoxes.length;l++){let c=this.storedBoxes[l];if(!!c)if(n.hand.landmarks){let u=n.hand.rotation?V8(c.palmLandmarks[Qge],c.palmLandmarks[e2e]):0,d=Pp(c),p=[d[0]/t.shape[2],d[1]/t.shape[1]],h=n.hand.rotation&&ge.kernels.includes("rotatewithoffset")?$e.rotateWithOffset(t,u,0,p):t.clone(),f=bb(-u,d),m=s?this.getBoxForPalmLandmarks(c.palmLandmarks,f):c,g=B8(m,h,[this.inputSize,this.inputSize]),A=he(g,255);ee(g),ee(h);let[x,y]=this.handPoseModel.execute(A);K8=ce(),ee(A);let b=(await x.data())[0];if(ee(x),b>=n.hand.minConfidence/4){let w=G(y,[-1,3]),k=await w.array();ee(y),ee(w);let I=this.transformRawCoords(k,m,u,f),N=this.getBoxForHandLandmarks(I);this.storedBoxes[l]={...N,confidence:b};let $={landmarks:I,confidence:b,boxConfidence:c.confidence,fingerConfidence:b,box:{topLeft:N.startPoint,bottomRight:N.endPoint}};i.push($)}else this.storedBoxes[l]=null;ee(y)}else{let u=h0(f0(c),q8),d={confidence:c.confidence,boxConfidence:c.confidence,fingerConfidence:0,box:{topLeft:u.startPoint,bottomRight:u.endPoint},landmarks:[]};i.push(d)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=i.length,i.length>n.hand.maxDetected&&(i.length=n.hand.maxDetected),i}};var Jn={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>Jn.nameMapping[e],getPoints:e=>Jn.pointsMapping[e]},Qo={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>Qo.nameMapping[e]},zt={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>zt.nameMapping[e]},zl=class{constructor(t){de(this,"name");de(this,"curls");de(this,"directions");de(this,"weights");de(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}direction(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}weight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var{thumb:br,index:ua,middle:ca,ring:Ll,pinky:Bl}=Jn,{none:vr,half:t2e,full:wr}=Qo,{verticalUp:Nc,verticalDown:bAe,horizontalLeft:Sb,horizontalRight:n2e,diagonalUpRight:s2e,diagonalUpLeft:Ec,diagonalDownRight:vAe,diagonalDownLeft:wAe}=zt,ei=new zl("thumbs up");ei.curl(br,vr,1);ei.direction(br,Nc,1);ei.direction(br,Ec,.25);ei.direction(br,s2e,.25);for(let e of[Jn.index,Jn.middle,Jn.ring,Jn.pinky])ei.curl(e,wr,1),ei.direction(e,Sb,1),ei.direction(e,n2e,1);var Qt=new zl("victory");Qt.curl(br,t2e,.5);Qt.curl(br,vr,.5);Qt.direction(br,Nc,1);Qt.direction(br,Ec,1);Qt.curl(ua,vr,1);Qt.direction(ua,Nc,.75);Qt.direction(ua,Ec,1);Qt.curl(ca,vr,1);Qt.direction(ca,Nc,1);Qt.direction(ca,Ec,.75);Qt.curl(Ll,wr,1);Qt.direction(Ll,Nc,.2);Qt.direction(Ll,Ec,1);Qt.direction(Ll,Sb,.2);Qt.curl(Bl,wr,1);Qt.direction(Bl,Nc,.2);Qt.direction(Bl,Ec,1);Qt.direction(Bl,Sb,.2);Qt.weight(ua,2);Qt.weight(ca,2);var ti=new zl("point");ti.curl(br,wr,1);ti.curl(ua,vr,.5);ti.curl(ca,wr,.5);ti.curl(Ll,wr,.5);ti.curl(Bl,wr,.5);ti.weight(ua,2);ti.weight(ca,2);var ni=new zl("middle finger");ni.curl(br,vr,1);ni.curl(ua,wr,.5);ni.curl(ca,wr,.5);ni.curl(Ll,wr,.5);ni.curl(Bl,wr,.5);ni.weight(ua,2);ni.weight(ca,2);var Rc=new zl("open palm");Rc.curl(br,vr,.75);Rc.curl(ua,vr,.75);Rc.curl(ca,vr,.75);Rc.curl(Ll,vr,.75);Rc.curl(Bl,vr,.75);var Z8=[ei,Qt,ti,ni,Rc];var r2e=.7,Wl={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function Y8(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function J8(e,t){if(!e||!t)return[0,0];let n=Y8(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=Y8(e[1],e[2],t[1],t[2]);return[n,s]}function Q8(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function a2e(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],c=e[2]-t[2],u=e[2]-n[2],d=t[2]-n[2],p=Math.sqrt(s*s+o*o+c*c),h=Math.sqrt(r*r+i*i+u*u),f=Math.sqrt(a*a+l*l+d*d),m=(f*f+p*p-h*h)/(2*f*p);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let A;return g>Wl.NO_CURL_START_LIMIT?A=Qo.none:g>Wl.HALF_CURL_START_LIMIT?A=Qo.half:A=Qo.full,A}function eT(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=zt.horizontalLeft:r=zt.horizontalRight:s===Math.abs(t)?t>0?r=zt.horizontalLeft:r=zt.horizontalRight:n>0?r=zt.horizontalLeft:r=zt.horizontalRight,r}function tT(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=zt.verticalDown:r=zt.verticalUp:s===Math.abs(t)?t<0?r=zt.verticalDown:r=zt.verticalUp:n<0?r=zt.verticalDown:r=zt.verticalUp,r}function o2e(e,t,n,s,r,a,o,i){let l,c=tT(e,t,n,s),u=eT(r,a,o,i);return c===zt.verticalUp?u===zt.horizontalLeft?l=zt.diagonalUpLeft:l=zt.diagonalUpRight:u===zt.horizontalLeft?l=zt.diagonalDownLeft:l=zt.diagonalDownRight,l}function i2e(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],c=t[1]-n[1],u=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),d=Math.max(Math.abs(i),Math.abs(l),Math.abs(c)),p=0,h=0,f=0,m=d/(u+1e-5);m>1.5?p+=Wl.DISTANCE_VOTE_POWER:m>.66?h+=Wl.DISTANCE_VOTE_POWER:f+=Wl.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),A=Math.sqrt(a*a+l*l),x=Math.sqrt(o*o+c*c),y=Math.max(g,A,x),b=e[0],w=e[1],k=n[0],I=n[1];y===g?(k=n[0],I=n[1]):y===x&&(b=t[0],w=t[1]);let O=J8([b,w],[k,I]),D=Q8(O,Wl.TOTAL_ANGLE_VOTE_POWER);p+=D[0],h+=D[1],f+=D[2];for(let T of s){let F=Q8(T,Wl.SINGLE_ANGLE_VOTE_POWER);p+=F[0],h+=F[1],f+=F[2]}let R;return p===Math.max(p,h,f)?R=tT(l,i,c,d):f===Math.max(h,f)?R=eT(a,r,o,u):R=o2e(l,i,c,d,a,r,o,u),R}function nT(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of Jn.all){let o=Jn.getPoints(a),i=[],l=[];for(let c of o){let u=e[c[0]],d=e[c[1]],p=J8(u,d),h=p[0],f=p[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of Jn.all){let o=a===Jn.thumb?1:0,i=Jn.getPoints(a),l=e[i[o][0]],c=e[i[o+1][1]],u=e[i[3][1]],d=a2e(l,c,u),p=i2e(l,c,u,t[a].slice(o));s[a]=d,r[a]=p}return{curls:s,directions:r}}function m0(e){if(!e||e.length===0)return null;let t=nT(e),n={};for(let s of Jn.all)n[Jn.getName(s)]={curl:Qo.getName(t.curls[s]),direction:zt.getName(t.directions[s])};return n}function sT(e){let t=[];if(!e||e.length===0)return t;let n=nT(e);for(let s of Z8){let r=s.matchAgainst(n.curls,n.directions);r>=r2e&&t.push({name:s.name,confidence:r})}return t}var rT={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},da,pa,aT;async function Ib(e,t){let n=await aT.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let u of Object.keys(rT))a[u]=rT[u].map(d=>n[r].landmarks[d]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let u of o)u[0]<i[0]&&(i[0]=u[0]),u[1]<i[1]&&(i[1]=u[1]),u[0]>i[2]&&(i[2]=u[0]),u[1]>i[3]&&(i[3]=u[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let c=m0(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:c})}return s}async function Cb(e){var n,s,r,a,o,i;ge.initial&&(da=null,pa=null),!da||!pa?([da,pa]=await Promise.all([e.hand.enabled?Xe(Ze(e.modelBasePath,((n=e.hand.detector)==null?void 0:n.modelPath)||""),{fromTFHub:(((s=e.hand.detector)==null?void 0:s.modelPath)||"").includes("tfhub.dev")}):null,e.hand.landmarks?Xe(Ze(e.modelBasePath,((r=e.hand.skeleton)==null?void 0:r.modelPath)||""),{fromTFHub:(((a=e.hand.skeleton)==null?void 0:a.modelPath)||"").includes("tfhub.dev")}):null]),e.hand.enabled&&(!da||!da.modelUrl?se("load model failed:",((o=e.hand.detector)==null?void 0:o.modelPath)||""):e.debug&&se("load model:",da.modelUrl),!pa||!pa.modelUrl?se("load model failed:",((i=e.hand.skeleton)==null?void 0:i.modelPath)||""):e.debug&&se("load model:",pa.modelUrl))):(e.debug&&se("cached model:",da.modelUrl),e.debug&&se("cached model:",pa.modelUrl));let t=new wb(da);return aT=new kb(t,pa),[da,pa]}function Vl(e,t=[1,1]){let n=[e.map(i=>i[0]),e.map(i=>i[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[s[0],s[1],r[0]-s[0],r[1]-s[1]],o=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:o}}function oT(e,t=[1,1]){let n=[e.map(c=>c[0]),e.map(c=>c[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[(s[0]+r[0])/2,(s[1]+r[1])/2],o=Math.max(a[0]-s[0],a[1]-s[1],-a[0]+r[0],-a[1]+r[1]),i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:l}}function g0(e,t){let n=[e[2]*t,e[3]*t];return[e[0]-(n[0]-e[2])/2,e[1]-(n[1]-e[3])/2,n[0],n[1]]}function Tb(e){return[Math.max(0,e[1]),Math.max(0,e[0]),Math.min(1,e[3]+e[1]),Math.min(1,e[2]+e[0])]}var St=[null,null],l2e=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],si=[[0,0],[0,0]],u2e=["hand","fist","pinch","point","face","tip","pinchtip"],iT=4,lT=1.6,c2e=512,d2e=1.4,A0=Number.MAX_SAFE_INTEGER,Nb=0,ha=[0,0],jt={boxes:[],hands:[]},uT={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]};async function cT(e){var t,n;if(ge.initial&&(St[0]=null),St[0])e.debug&&se("cached model:",St[0].modelUrl);else{y0(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),St[0]=await Xe(Ze(e.modelBasePath,((t=e.hand.detector)==null?void 0:t.modelPath)||""));let s=Object.values(St[0].modelSignature.inputs);si[0][0]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[1].size):0,si[0][1]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[2].size):0,!St[0]||!St[0].modelUrl?se("load model failed:",(n=e.hand.detector)==null?void 0:n.modelPath):e.debug&&se("load model:",St[0].modelUrl)}return St[0]}async function dT(e){var t,n;if(ge.initial&&(St[1]=null),St[1])e.debug&&se("cached model:",St[1].modelUrl);else{St[1]=await Xe(Ze(e.modelBasePath,((t=e.hand.skeleton)==null?void 0:t.modelPath)||""));let s=Object.values(St[1].modelSignature.inputs);si[1][0]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[1].size):0,si[1][1]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[2].size):0,!St[1]||!St[1].modelUrl?se("load model failed:",(n=e.hand.skeleton)==null?void 0:n.modelPath):e.debug&&se("load model:",St[1].modelUrl)}return St[1]}async function p2e(e,t){let n=[];if(!e||!St[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,c2e),o=Math.round(a*r/8)*8;s.resize=$e.resizeBilinear(e,[a,o]),s.cast=pe(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await St[0].executeAsync(s.cast,l2e),s.boxes=ot(s.rawBoxes,[0,2]),s.scores=ot(s.rawScores,[0]);let i=rs(s.scores,1);ee(i[iT]),i.splice(iT,1),s.filtered=yn(i,1),ee(i),s.max=An(s.filtered,1),s.argmax=js(s.filtered,1);let l=0;s.nms=await $e.nonMaxSuppressionAsync(s.boxes,s.max,t.hand.maxDetected,t.hand.iouThreshold,t.hand.minConfidence);let c=await s.nms.data(),u=await s.max.data(),d=await s.argmax.data();for(let p of Array.from(c)){let h=De(s.boxes,p,1),f=await h.data();ee(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=g0(m,d2e),A=Tb(g),x=[Math.trunc(m[0]*ha[0]),Math.trunc(m[1]*ha[1]),Math.trunc(m[2]*ha[0]),Math.trunc(m[3]*ha[1])],y=u[p],b=u2e[d[p]],w={id:l++,score:y,box:x,boxRaw:g,boxCrop:A,label:b};n.push(w)}return Object.keys(s).forEach(p=>ee(s[p])),n.sort((p,h)=>h.score-p.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function Eb(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&St[1]&&n.hand.landmarks&&t.score>(n.hand.minConfidence||0)){let r={};r.crop=$e.cropAndResize(e,[t.boxCrop],[0],[si[1][0],si[1][1]],"bilinear"),r.cast=pe(r.crop,"float32"),r.div=he(r.cast,255),[r.score,r.keypoints]=St[1].execute(r.div,["Identity_1","Identity"]);let a=(await r.score.data())[0],o=(100-Math.trunc(100/(1+Math.exp(a))))/100;if(o>=(n.hand.minConfidence||0)){s.fingerScore=o,r.reshaped=G(r.keypoints,[-1,3]);let c=(await r.reshaped.array()).map(u=>[u[0]/si[1][1],u[1]/si[1][0],u[2]||0]).map(u=>[u[0]*t.boxRaw[2],u[1]*t.boxRaw[3],u[2]||0]);s.keypoints=c.map(u=>[ha[0]*(u[0]+t.boxRaw[0]),ha[1]*(u[1]+t.boxRaw[1]),u[2]||0]),s.landmarks=m0(s.keypoints);for(let u of Object.keys(uT))s.annotations[u]=uT[u].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null)}Object.keys(r).forEach(i=>ee(r[i]))}return s}async function Rb(e,t){var r,a;if(!St[0]||!St[1]||!((r=St[0])==null?void 0:r.inputs[0].shape)||!((a=St[1])==null?void 0:a.inputs[0].shape))return[];ha=[e.shape[2]||0,e.shape[1]||0],A0++;let n=(t.hand.skipTime||0)>ce()-Nb,s=A0<(t.hand.skipFrames||0);return t.skipAllowed&&n&&s?jt.hands:new Promise(async o=>{let i=3*(t.hand.skipTime||0)>ce()-Nb,l=A0<3*(t.hand.skipFrames||0);t.skipAllowed&&jt.hands.length===t.hand.maxDetected?jt.hands=await Promise.all(jt.boxes.map(u=>Eb(e,u,t))):t.skipAllowed&&i&&l&&jt.hands.length>0?jt.hands=await Promise.all(jt.boxes.map(u=>Eb(e,u,t))):(jt.boxes=await p2e(e,t),Nb=ce(),jt.hands=await Promise.all(jt.boxes.map(u=>Eb(e,u,t))),A0=0);let c=[...jt.boxes];if(jt.boxes.length=0,t.cacheSensitivity>0)for(let u=0;u<jt.hands.length;u++){let d=oT(jt.hands[u].keypoints,ha);if(d.box[2]/(e.shape[2]||1)>.05&&d.box[3]/(e.shape[1]||1)>.05&&jt.hands[u].fingerScore&&jt.hands[u].fingerScore>(t.hand.minConfidence||0)){let p=g0(d.box,lT),h=g0(d.boxRaw,lT),f=Tb(h);jt.boxes.push({...c[u],box:p,boxRaw:h,boxCrop:f})}}for(let u=0;u<jt.hands.length;u++){let d=Vl(jt.hands[u].keypoints,ha);jt.hands[u].box=d.box,jt.hands[u].boxRaw=d.boxRaw}o(jt.hands)})}var pn,x0=[],$b=Number.MAX_SAFE_INTEGER,pT=0,hT=0;async function fT(e){var t,n;return ge.initial&&(pn=null),pn?e.debug&&se("cached model:",pn.modelUrl):(pn=await Xe(Ze(e.modelBasePath,((t=e.face.liveness)==null?void 0:t.modelPath)||"")),!pn||!pn.modelUrl?se("load model failed:",(n=e.face.liveness)==null?void 0:n.modelPath):e.debug&&se("load model:",pn.modelUrl)),pn}async function _b(e,t,n,s){var o,i;if(!pn)return null;let r=(((o=t.face.liveness)==null?void 0:o.skipTime)||0)>ce()-hT,a=$b<(((i=t.face.liveness)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&pT===s&&x0[n]?($b++,x0[n]):($b=0,new Promise(async l=>{let c=$e.resizeBilinear(e,[(pn==null?void 0:pn.inputs[0].shape)?pn.inputs[0].shape[2]:0,(pn==null?void 0:pn.inputs[0].shape)?pn.inputs[0].shape[1]:0],!1),u=pn==null?void 0:pn.execute(c),d=(await u.data())[0];x0[n]=Math.round(100*d)/100,pT=s,hT=ce(),ee([c,u]),l(x0[n])}))}var Ob={};qc(Ob,{connected:()=>v0,horizontal:()=>Db,kpt:()=>b0,relative:()=>Fb,vertical:()=>Pb});var b0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Db=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],Pb=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],Fb=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],v0={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var mT=.005,bs={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function Mb(e){for(let t of Db){let n=e.keypoints.findIndex(r=>r.part===t[0]),s=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[0]<e.keypoints[s].position[0]){let r=e.keypoints[n];e.keypoints[n]=e.keypoints[s],e.keypoints[s]=r}}for(let t of Pb){let n=e.keypoints.findIndex(r=>r&&r.part===t[0]),s=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[1]<e.keypoints[s].position[1]&&e.keypoints.splice(n,1)}for(let[t,n]of Fb){let s=e.keypoints.findIndex(c=>c&&c.part===t[0]),r=e.keypoints.findIndex(c=>c&&c.part===t[1]),a=e.keypoints.findIndex(c=>c&&c.part===n[0]),o=e.keypoints.findIndex(c=>c&&c.part===n[1]);if(!e.keypoints[a]||!e.keypoints[o])continue;let i=e.keypoints[s]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[s].position[0]),Math.abs(e.keypoints[o].position[0]-e.keypoints[s].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[o].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||l[0]>l[1]){let c=e.keypoints[s];e.keypoints[s]=e.keypoints[r],e.keypoints[r]=c}}}function gT(e){for(let t=0;t<e.length;t++)if(e[t]&&bs.keypoints[t]){let n=[Math.abs(e[t].positionRaw[0]-bs.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-bs.keypoints[t].positionRaw[1])];n[0]<mT&&n[1]<mT?e[t]=bs.keypoints[t]:bs.keypoints[t]=e[t]}else bs.keypoints[t]=e[t];return e}function AT(e,t){let n={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;bs.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],n.pad=Xs(e,bs.padding),n.resize=$e.resizeBilinear(n.pad,[t,t]);let s=pe(n.resize,"int32");return Object.keys(n).forEach(r=>ee(n[r])),s}function yT(e,t){e.keypoints=e.keypoints.filter(s=>s&&s.position);for(let s of e.keypoints)s.position=[s.position[0]*(t[0]+bs.padding[2][0]+bs.padding[2][1])/t[0]-bs.padding[2][0],s.position[1]*(t[1]+bs.padding[1][0]+bs.padding[1][1])/t[1]-bs.padding[1][0]],s.positionRaw=[s.position[0]/t[0],s.position[1]/t[1]];let n=Vl(e.keypoints.map(s=>s.position),t);return e.box=n.box,e.boxRaw=n.boxRaw,e}var Pn,w0=0,zb=Number.MAX_SAFE_INTEGER,Ul={boxes:[],bodies:[],last:0};async function xT(e){return ge.initial&&(Pn=null),Pn?e.debug&&se("cached model:",Pn.modelUrl):(y0(["size"],e),Pn=await Xe(Ze(e.modelBasePath,e.body.modelPath||"")),!Pn||!Pn.modelUrl?se("load model failed:",e.body.modelPath):e.debug&&se("load model:",Pn.modelUrl)),w0=Pn.inputs[0].shape?Pn.inputs[0].shape[2]:0,w0===-1&&(w0=256),Pn}async function h2e(e,t,n,s){let r=e[0][0],a=[],o=0;for(let d=0;d<r.length;d++)if(o=r[d][2],o>t.body.minConfidence){let p=[(s[3]-s[1])*r[d][1]+s[1],(s[2]-s[0])*r[d][0]+s[0]];a.push({score:Math.round(100*o)/100,part:b0[d],positionRaw:p,position:[Math.round((n.shape[2]||0)*p[0]),Math.round((n.shape[1]||0)*p[1])]})}o=a.reduce((d,p)=>p.score>d?p.score:d,0);let i=[],l=Vl(a.map(d=>d.position),[n.shape[2],n.shape[1]]),c={};for(let[d,p]of Object.entries(v0)){let h=[];for(let f=0;f<p.length-1;f++){let m=a.find(A=>A.part===p[f]),g=a.find(A=>A.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}c[d]=h}let u={id:0,score:o,box:l.box,boxRaw:l.boxRaw,keypoints:a,annotations:c};return Mb(u),i.push(u),i}async function f2e(e,t,n,s){let r=[];for(let a=0;a<e[0].length;a++){let o=e[0][a],i=Math.round(100*o[51+4])/100;if(i>t.body.minConfidence){let l=[];for(let p=0;p<17;p++){let h=o[3*p+2];if(h>t.body.minConfidence){let f=[(s[3]-s[1])*o[3*p+1]+s[1],(s[2]-s[0])*o[3*p+0]+s[0]];l.push({part:b0[p],score:Math.round(100*h)/100,positionRaw:f,position:[Math.round((n.shape[2]||0)*f[0]),Math.round((n.shape[1]||0)*f[1])]})}}let c=Vl(l.map(p=>p.position),[n.shape[2],n.shape[1]]),u={};for(let[p,h]of Object.entries(v0)){let f=[];for(let m=0;m<h.length-1;m++){let g=l.find(x=>x.part===h[m]),A=l.find(x=>x.part===h[m+1]);g&&A&&g.score>(t.body.minConfidence||0)&&A.score>(t.body.minConfidence||0)&&f.push([g.position,A.position])}u[p]=f}let d={id:a,score:i,box:c.box,boxRaw:c.boxRaw,keypoints:[...l],annotations:u};Mb(d),r.push(d)}}return r.sort((a,o)=>o.score-a.score),r.length>t.body.maxDetected&&(r.length=t.body.maxDetected),r}async function Lb(e,t){if(!Pn||!(Pn==null?void 0:Pn.inputs[0].shape))return[];t.skipAllowed||(Ul.boxes.length=0),zb++;let n=(t.body.skipTime||0)>ce()-Ul.last,s=zb<(t.body.skipFrames||0);return t.skipAllowed&&n&&s?Ul.bodies:new Promise(async r=>{let a={};zb=0,a.input=AT(e,w0),a.res=Pn==null?void 0:Pn.execute(a.input),Ul.last=ce();let o=await a.res.array();Ul.bodies=a.res.shape[2]===17?await h2e(o,t,e,[0,0,1,1]):await f2e(o,t,e,[0,0,1,1]);for(let i of Ul.bodies)yT(i,[e.shape[2]||1,e.shape[1]||1]),gT(i.keypoints);Object.keys(a).forEach(i=>ee(a[i])),r(Ul.bodies)})}var vs,k0=[],bT=0,Bb=Number.MAX_SAFE_INTEGER,S0=2.5;async function vT(e){if(!vs||ge.initial){vs=await Xe(Ze(e.modelBasePath,e.object.modelPath||""));let t=Object.values(vs.modelSignature.inputs);if(vs.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!vs.inputSize)throw new Error(`cannot determine model inputSize: ${e.object.modelPath}`);!vs||!vs.modelUrl?se("load model failed:",e.object.modelPath):e.debug&&se("load model:",vs.modelUrl)}else e.debug&&se("cached model:",vs.modelUrl);return vs}async function m2e(e,t,n,s){let r=0,a=[];for(let c of[1,2,4])q(async()=>{var g,A;let u=c*13,d=(g=e.find(x=>x.shape[1]===u**2&&x.shape[2]===Sc.length))==null?void 0:g.squeeze(),p=(A=e.find(x=>x.shape[1]===u**2&&x.shape[2]<Sc.length))==null?void 0:A.squeeze(),f=await p.reshape([-1,4,p.shape[1]/4]).argMax(2).array(),m=await d.array();for(let x=0;x<d.shape[0];x++)for(let y=0;y<d.shape[1];y++){let b=m[x][y];if(b>s.object.minConfidence&&y!==61){let w=(.5+Math.trunc(x%u))/u,k=(.5+Math.trunc(x/u))/u,I=f[x].map(U=>U*(u/c/t)),[N,$]=[w-S0/c*I[0],k-S0/c*I[1]],[O,D]=[w+S0/c*I[2]-N,k+S0/c*I[3]-$],R=[N,$,O,D];R=R.map(U=>Math.max(0,Math.min(U,1)));let T=[R[0]*n[0],R[1]*n[1],R[2]*n[0],R[3]*n[1]],F={id:r++,score:Math.round(100*b)/100,class:y+1,label:Sc[y].label,box:T.map(U=>Math.trunc(U)),boxRaw:R};a.push(F)}}});e.forEach(c=>ee(c));let o=a.map(c=>[c.boxRaw[1],c.boxRaw[0],c.boxRaw[3],c.boxRaw[2]]),i=a.map(c=>c.score),l=[];if(o&&o.length>0){let c=await $e.nonMaxSuppressionAsync(o,i,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);l=await c.data(),ee(c)}return a=a.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),a}async function Wb(e,t){let n=(t.object.skipTime||0)>ce()-bT,s=Bb<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&k0.length>0?(Bb++,k0):(Bb=0,!ge.kernels.includes("mod")||!ge.kernels.includes("sparsetodense")?k0:new Promise(async r=>{let a=[e.shape[2],e.shape[1]],o=$e.resizeBilinear(e,[vs.inputSize,vs.inputSize],!1),i=he(o,255),l=i.transpose([0,3,1,2]);ee(i),ee(o);let c;t.object.enabled&&(c=vs.execute(l)),bT=ce(),ee(l);let u=await m2e(c,vs.inputSize,a,t);k0=u,r(u)}))}var Fp=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],g2e=Fp.length,Op=Fp.reduce((e,t,n)=>(e[t]=n,e),{}),A2e=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],uye=A2e.map(([e,t])=>[Op[e],Op[t]]),wT=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function kT(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function ST(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(c,u)=>({id:u,score:c.score,boxRaw:[c.box[0]/r,c.box[1]/s,c.box[2]/r,c.box[3]/s],box:[Math.trunc(c.box[0]*o),Math.trunc(c.box[1]*a),Math.trunc(c.box[2]*o),Math.trunc(c.box[3]*a)],keypoints:c.keypoints.map(({score:d,part:p,position:h})=>({score:d,part:p,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]}))});return e.map((c,u)=>i(c,u))}var Vb=class{constructor(t,n){de(this,"priorityQueue");de(this,"numberOfElements");de(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function Ub(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+g2e)}}function Gb(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=Ub(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function Hb(e,t,n){return e<t?t:e>n?n:e}function IT(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function jb(e,t){return{x:e.x+t.x,y:e.y+t.y}}var ws,y2e=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],I0=1,$c=16,x2e=50**2;function CT(e,t,n,s,r,a,o=2){let i=A=>({y:a.get(A.y,A.x,e),x:a.get(A.y,A.x,a.shape[2]/2+e)}),l=(A,x,y)=>({y:Hb(Math.round(A.y/$c),0,x-1),x:Hb(Math.round(A.x/$c),0,y-1)}),[c,u]=s.shape,d=l(t.position,c,u),p=i(d),f=jb(t.position,p);for(let A=0;A<o;A++){let x=l(f,c,u),y=Ub(x.y,x.x,n,r);f=jb({x:x.x*$c,y:x.y*$c},{x:y.x,y:y.y})}let m=l(f,c,u),g=s.get(m.y,m.x,n);return{position:f,part:Fp[n],score:g}}function b2e(e,t,n,s,r){let a=wT.map(([p,h])=>[Op[p],Op[h]]),o=a.map(([,p])=>p),i=a.map(([p])=>p),l=t.shape[2],c=o.length,u=new Array(l),d=Gb(e.part,$c,n);u[e.part.id]={score:e.score,part:Fp[e.part.id],position:d};for(let p=c-1;p>=0;--p){let h=o[p],f=i[p];u[h]&&!u[f]&&(u[f]=CT(p,u[h],f,t,n,r))}for(let p=0;p<c;++p){let h=i[p],f=o[p];u[h]&&!u[f]&&(u[f]=CT(p,u[h],f,t,n,s))}return u}function v2e(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-I0,0),c=Math.min(n+I0+1,a);for(let u=l;u<c;++u){let d=Math.max(s-I0,0),p=Math.min(s+I0+1,o);for(let h=d;h<p;++h)if(r.get(u,h,e)>t){i=!1;break}if(!i)break}return i}function w2e(e,t){let[n,s,r]=t.shape,a=new Vb(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let c=t.get(o,i,l);c<e||v2e(l,c,o,i,t)&&a.enqueue({score:c,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function TT(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?IT(n,t,a.y,a.x)<=x2e:!1})}function k2e(e,t){return t.reduce((s,{position:r,score:a},o)=>(TT(e,r,o)||(s+=a),s),0)/t.length}function S2e(e,t,n,s,r,a){let o=[],i=w2e(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),c=Gb(l.part,$c,e);if(TT(o,c,l.part.id))continue;let u=b2e(l,t,e,n,s);u=u.filter(h=>h.score>a);let d=k2e(o,u),p=kT(u);d>a&&o.push({keypoints:u,box:p,score:Math.round(100*d)/100})}return o}async function qb(e,t){let n=q(()=>{if(!ws.inputs[0].shape)return[];let o=$e.resizeBilinear(e,[ws.inputs[0].shape[2],ws.inputs[0].shape[1]]),i=me(he(pe(o,"float32"),127.5),1),c=ws.execute(i,y2e).map(u=>ot(u,[0]));return c[1]=c[1].sigmoid(),c}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)ee(o);let r=await S2e(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return ws.inputs[0].shape?ST(r,[e.shape[1],e.shape[2]],[ws.inputs[0].shape[2],ws.inputs[0].shape[1]]):[]}async function NT(e){return!ws||ge.initial?(ws=await Xe(Ze(e.modelBasePath,e.body.modelPath||"")),!ws||!ws.modelUrl?se("load model failed:",e.body.modelPath):e.debug&&se("load model:",ws.modelUrl)):e.debug&&se("cached model:",ws.modelUrl),ws}var Ls,Xb=!1;async function Kb(e){return!Ls||ge.initial?(Ls=await Xe(Ze(e.modelBasePath,e.segmentation.modelPath||"")),!Ls||!Ls.modelUrl?se("load model failed:",e.segmentation.modelPath):e.debug&&se("load model:",Ls.modelUrl)):e.debug&&se("cached model:",Ls.modelUrl),Ls}async function ET(e,t,n){var m,g;if(Xb)return{data:[],canvas:null,alpha:null};Xb=!0,Ls||await Kb(n);let s=await kc(e,n),r=((m=s.tensor)==null?void 0:m.shape[2])||0,a=((g=s.tensor)==null?void 0:g.shape[1])||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=$e.resizeBilinear(s.tensor,[Ls.inputs[0].shape?Ls.inputs[0].shape[1]:0,Ls.inputs[0].shape?Ls.inputs[0].shape[2]:0],!1),ee(s.tensor),o.norm=he(o.resize,255),o.res=Ls.execute(o.norm),o.squeeze=ot(o.res,0),o.squeeze.shape[2]===2?(o.softmax=Gu(o.squeeze),[o.bg,o.fg]=rs(o.softmax,2),o.expand=Xt(o.fg,2),o.pad=Xt(o.expand,0),o.crop=$e.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=ot(o.crop,0)):o.data=$e.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(ge.node&&!ge.Canvas&&typeof ImageData=="undefined")return n.debug&&se("canvas support missing"),Object.keys(o).forEach(A=>ee(o[A])),{data:i,canvas:null,alpha:null};let l=Kn(r,a);await Hs.toPixels(o.data,l);let c=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(c.filter=`blur(${n.segmentation.blur}px)`);let u=c.getImageData(0,0,r,a),d=Kn(r,a),p=d.getContext("2d");s.canvas&&p.drawImage(s.canvas,0,0),p.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(p.filter=`blur(${n.segmentation.blur}px)`),p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none";let h=p.getImageData(0,0,r,a);for(let A=0;A<r*a;A++)h.data[4*A+3]=u.data[4*A+0];p.putImageData(h,0,0);let f=null;if(t&&d){f=Kn(r,a);let A=await kc(t,n);ee(A.tensor);let x=f.getContext("2d");x.drawImage(A.canvas,0,0,f.width,f.height),x.drawImage(d,0,0)}return Object.keys(o).forEach(A=>ee(o[A])),Xb=!1,{data:i,canvas:d,alpha:l}}var Zb=class{constructor(){de(this,"age",null);de(this,"agegenderrace",null);de(this,"blazeposedetect",null);de(this,"blazepose",null);de(this,"centernet",null);de(this,"efficientpose",null);de(this,"embedding",null);de(this,"emotion",null);de(this,"facedetect",null);de(this,"faceiris",null);de(this,"facemesh",null);de(this,"faceres",null);de(this,"gender",null);de(this,"handpose",null);de(this,"handskeleton",null);de(this,"handtrack",null);de(this,"liveness",null);de(this,"movenet",null);de(this,"nanodet",null);de(this,"posenet",null);de(this,"segmentation",null);de(this,"antispoof",null)}};function Yb(e){for(let t of Object.keys(e.models))e.models[t]=null}async function RT(e){var t,n,s,r,a,o,i,l,c,u,d,p,h,f,m,g,A,x,y,b,w,k,I,N,$,O,D,R,T,F,U,j;ge.initial&&Yb(e),e.config.hand.enabled&&(!e.models.handpose&&((n=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:n.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await Cb(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(s=e.config.hand.detector)==null?void 0:s.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await Cb(e.config))),e.config.body.enabled&&!e.models.blazepose&&((o=(a=e.config.body)==null?void 0:a.modelPath)==null?void 0:o.includes("blazepose"))&&(e.models.blazepose=x8(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&((i=e.config.body.detector)==null?void 0:i.modelPath)&&((c=(l=e.config.body)==null?void 0:l.modelPath)==null?void 0:c.includes("blazepose"))&&(e.models.blazeposedetect=y8(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((d=(u=e.config.body)==null?void 0:u.modelPath)==null?void 0:d.includes("efficientpose"))&&(e.models.efficientpose=ub(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((h=(p=e.config.body)==null?void 0:p.modelPath)==null?void 0:h.includes("efficientpose"))&&(e.models.efficientpose=ub(e.config)),e.config.body.enabled&&!e.models.movenet&&((m=(f=e.config.body)==null?void 0:f.modelPath)==null?void 0:m.includes("movenet"))&&(e.models.movenet=xT(e.config)),e.config.body.enabled&&!e.models.posenet&&((A=(g=e.config.body)==null?void 0:g.modelPath)==null?void 0:A.includes("posenet"))&&(e.models.posenet=NT(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=f8(e.config)),e.config.face.enabled&&((x=e.config.face.antispoof)==null?void 0:x.enabled)&&!e.models.antispoof&&(e.models.antispoof=r8(e.config)),e.config.face.enabled&&((y=e.config.face.liveness)==null?void 0:y.enabled)&&!e.models.liveness&&(e.models.liveness=fT(e.config)),e.config.face.enabled&&((b=e.config.face.description)==null?void 0:b.enabled)&&!e.models.faceres&&(e.models.faceres=L8(e.config)),e.config.face.enabled&&((w=e.config.face.emotion)==null?void 0:w.enabled)&&!e.models.emotion&&(e.models.emotion=C8(e.config)),e.config.face.enabled&&((k=e.config.face.iris)==null?void 0:k.enabled)&&!e.models.faceiris&&(e.models.faceiris=T8(e.config)),e.config.face.enabled&&((I=e.config.face.mesh)==null?void 0:I.enabled)&&!e.models.facemesh&&(e.models.facemesh=P8(e.config)),e.config.face.enabled&&((N=e.config.face.agegenderrace)==null?void 0:N.enabled)&&!e.models.agegenderrace&&(e.models.agegenderrace=t8(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((O=($=e.config.hand.detector)==null?void 0:$.modelPath)==null?void 0:O.includes("handtrack"))&&(e.models.handtrack=cT(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((R=(D=e.config.hand.detector)==null?void 0:D.modelPath)==null?void 0:R.includes("handtrack"))&&(e.models.handskeleton=dT(e.config)),e.config.object.enabled&&!e.models.centernet&&((F=(T=e.config.object)==null?void 0:T.modelPath)==null?void 0:F.includes("centernet"))&&(e.models.centernet=w8(e.config)),e.config.object.enabled&&!e.models.nanodet&&((j=(U=e.config.object)==null?void 0:U.modelPath)==null?void 0:j.includes("nanodet"))&&(e.models.nanodet=vT(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=Kb(e.config));for await(let z of Object.keys(e.models))e.models[z]&&typeof e.models[z]!="undefined"&&(e.models[z]=await e.models[z])}async function $T(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let n of Object.keys(e.models))if(e.models[n]){let s=[];Array.isArray(e.models[n])?s=e.models[n].filter(r=>r!==null).map(r=>r&&r.executor?r:r.model):s=[e.models[n]];for(let r of s){if(!r){e.config.debug&&se("model marked as loaded but not defined:",n);continue}let a=[],o=r==null?void 0:r.executor;if(o&&o.graph.nodes)for(let l of Object.values(o.graph.nodes)){let c=l.op.toLowerCase();a.includes(c)||a.push(c)}else!o&&e.config.debug&&se("model signature not determined:",n);let i=[];for(let l of a)!t.includes(l)&&!e.env.kernels.includes(l)&&!e.env.kernels.includes(l.replace("_",""))&&!e.env.kernels.includes(l.replace("native",""))&&!e.env.kernels.includes(l.replace("v2",""))&&i.push(l);i.length>0&&e.config.debug&&se("model validation:",n,i)}}}var It={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function I2e(){let e=It.gl;!e||(It.extensions=e.getSupportedExtensions())}async function _T(e){var t;if(e.config.backend==="humangl"&&(It.name in ss().registry&&(!It.gl||!It.gl.getParameter(It.gl.VERSION))&&(se("error: humangl backend invalid context"),Yb(e)),!U2(It.name))){try{It.canvas=await Kn(100,100)}catch(s){se("error: cannot create canvas:",s);return}try{if(It.gl=(t=It.canvas)==null?void 0:t.getContext("webgl2",It.webGLattr),!It.gl.getParameter(It.gl.VERSION).includes("2.0")){se("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}It.canvas&&(It.canvas.addEventListener("webglcontextlost",async r=>{throw se("error: humangl:",r.type),se("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("browser webgl error")}),It.canvas.addEventListener("webglcontextrestored",r=>{se("error: humangl context restored:",r)}),It.canvas.addEventListener("webglcontextcreationerror",r=>{se("error: humangl context create:",r)}))}catch(s){se("error: cannot get WebGL context:",s);return}try{Nm(2,It.gl)}catch(s){se("error: cannot set WebGL context:",s);return}try{let s=new Mm(It.gl);ol(It.name,()=>new fp(s),It.priority)}catch(s){se("error: cannot register WebGL backend:",s);return}try{Xr("webgl").forEach(r=>{let a={...r,backendName:It.name};or(a)})}catch(s){se("error: cannot update WebGL backend registration:",s);return}let n=Er().getGPGPUContext?Er().getGPGPUContext().gl:null;if(n)se(`humangl webgl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`);else{se("error: no current gl context:",n,It.gl);return}try{Cr.set("WEBGL_VERSION",2)}catch(s){se("error: cannot set WebGL backend flags:",s);return}I2e(),se("backend registered:",It.name)}}function C2e(){if(!ge.kernels.includes("mod")){let e={kernelName:"Mod",backendName:Cs(),kernelFunc:t=>q(()=>me(t.inputs.a,L(he(t.inputs.a,t.inputs.b),t.inputs.b)))};or(e),ge.kernels.push("mod")}if(!ge.kernels.includes("floormod")){let e={kernelName:"FloorMod",backendName:Cs(),kernelFunc:t=>q(()=>rf(t.inputs.a/t.inputs.b)*t.inputs.b+Dd(t.inputs.a,t.inputs.b))};or(e),ge.kernels.push("floormod")}}async function C0(e,t=!1){if(e.state="backend",t||ge.initial||e.config.backend&&e.config.backend.length>0&&Cs()!==e.config.backend){let n=ce();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&se("running inside web worker"),ge.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&se("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),ge.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&se(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),ge.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")se("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();e.config.debug&&se("enumerated webgpu adapter:",r)}e.config.backend==="humangl"&&await _T(e);let s=Object.keys(ss().registryFactory);if(e.config.debug&&se("available backends:",s),s.includes(e.config.backend)||(se(`error: backend ${e.config.backend} not found in registry`),e.config.backend=ge.node?"tensorflow":"webgl",e.config.debug&&se(`override: setting backend ${e.config.backend}`)),e.config.debug&&se("setting backend:",e.config.backend),e.config.backend==="wasm"){if(e.config.debug&&se("wasm path:",e.config.wasmPath),typeof(Pl==null?void 0:Pl.setWasmPaths)!="undefined")await W6(e.config.wasmPath);else throw new Error("wasm backend is not loaded");let r=await K().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await K().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&se(`wasm execution: ${r?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),e.config.debug&&!r&&se("warning: wasm simd support is not enabled")}try{await z3(e.config.backend),await sf()}catch(r){return se("error: cannot set backend:",e.config.backend,r),!1}}if(Cs()==="humangl"&&(Cr.set("CHECK_COMPUTATION_FOR_ERRORS",!1),Cr.set("WEBGL_CPU_FORWARD",!0),Cr.set("WEBGL_USE_SHAPES_UNIFORMS",!0),Cr.set("CPU_HANDOFF_SIZE_THRESHOLD",256),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(se("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),Cr.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),Er().getGPGPUContext)){let s=await Er().getGPGPUContext().gl;e.config.debug&&se(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}Cs()==="webgpu",M3(),await sf(),e.performance.initBackend=Math.trunc(ce()-n),e.config.backend=Cs(),await ge.updateBackend(),C2e()}return!0}function y0(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&se("kernelFunc",n,t.backend)}};or(s)}ge.kernels=Xr(Cs()).map(n=>n.kernelName.toLowerCase())}var fa={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1},Jb=0,Gl=e=>{if(e&&e.getContext)return e.getContext("2d");throw new Error("invalid canvas")},_c=e=>Math.round(e*180/Math.PI);function Qb(e,t,n,s,r){s=s||0,e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function Mp(e,t,n,s,r,a){if(e.beginPath(),a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function DT(e,t,n){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r!==0?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r!==0?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function T2e(e,t,n){if(!(t.length<2)){if(!n.useCurves||t.length<=2){DT(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function PT(e,t,n,s=5){let r,a,o;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(n[0],n[1]),r=Math.atan2(n[1]-t[1],n[0]-t[0]),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.moveTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),e.closePath(),e.stroke(),e.fill()}async function e5(e,t,n){let s=$n(fa,n);if(!(!t||!e)&&s.drawGestures){let r=Gl(e);r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let c=i[1]>0?`#${i[1]}`:"",u=`${i[0]} ${c}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(u,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(u,6,0+a*s.lineHeight),a+=1}}}}async function t5(e,t,n){var a,o,i,l,c;let s=$n(fa,n);if(!t||!e)return;let r=Gl(e);for(let u of t){if(r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&Mp(r,u.box[0],u.box[1],u.box[2],u.box[3],s),s.drawLabels){let d=[];if(d.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&d.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&d.push(`age: ${u.age||""}`),u.iris&&d.push(`distance: ${u.iris}`),u.real&&d.push(`real: ${Math.trunc(100*u.real)}%`),u.live&&d.push(`live: ${Math.trunc(100*u.live)}%`),u.emotion&&u.emotion.length>0){let p=u.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);p.length>3&&(p.length=3),d.push(p.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&d.push(`roll: ${_c(u.rotation.angle.roll)}\xB0 yaw:${_c(u.rotation.angle.yaw)}\xB0 pitch:${_c(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&d.push(`gaze: ${_c(u.rotation.gaze.bearing)}\xB0`)),d.length===0&&d.push("face"),r.fillStyle=s.color;for(let p=d.length-1;p>=0;p--){let h=Math.max(u.box[0],0),f=p*s.lineHeight+u.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(d[p],h+5,f+16)),r.fillStyle=s.labelColor,r.fillText(d[p],h+4,f+15)}}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(s.drawPoints)for(let d of u.mesh)Qb(r,d[0],d[1],d[2],s);if(s.drawPolygons){if(r.lineWidth=1,u.mesh.length>450)for(let d=0;d<Fl.length/3;d++){let p=[Fl[d*3+0],Fl[d*3+1],Fl[d*3+2]].map(h=>u.mesh[h]);DT(r,p,s)}if(u.annotations&&u.annotations.leftEyeIris&&u.annotations.leftEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,p=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris&&u.annotations.rightEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,p=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&((a=u.rotation)==null?void 0:a.angle)&&typeof Path2D!="undefined"){r.strokeStyle="pink";let d=u.box[0]+u.box[2]/2-u.box[3]*_c(u.rotation.angle.yaw)/90,p=u.box[1]+u.box[3]/2+u.box[2]*_c(u.rotation.angle.pitch)/90,h=new Path2D(`
M ${u.box[0]+u.box[2]/2} ${u.box[1]}
C
${d} ${u.box[1]},
${d} ${u.box[1]+u.box[3]},
${u.box[0]+u.box[2]/2} ${u.box[1]+u.box[3]}
`),f=new Path2D(`
M ${u.box[0]} ${u.box[1]+u.box[3]/2}
C
${u.box[0]} ${p},
${u.box[0]+u.box[2]} ${p},
${u.box[0]+u.box[2]} ${u.box[1]+u.box[3]/2}
`);r.stroke(f),r.stroke(h)}if(s.drawGaze&&((i=(o=u.rotation)==null?void 0:o.gaze)==null?void 0:i.strength)&&((c=(l=u.rotation)==null?void 0:l.gaze)==null?void 0:c.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.fillStyle="pink";let d=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];PT(r,[u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]],[d[0],d[1]],4);let p=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];PT(r,[u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]],[p[0],p[1]],4)}}}}}async function n5(e,t,n){var a;let s=$n(fa,n);if(!t||!e)return;let r=Gl(e);r.lineJoin="round";for(let o=0;o<t.length;o++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[o].box&&((a=t[o].box)==null?void 0:a.length)===4&&(Mp(r,t[o].box[0],t[o].box[1],t[o].box[2],t[o].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+3,1+t[o].box[1]+s.lineHeight,t[o].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+2,0+t[o].box[1]+s.lineHeight,t[o].box[2]))),s.drawPoints&&t[o].keypoints)for(let i=0;i<t[o].keypoints.length;i++)r.fillStyle=s.useDepth&&t[o].keypoints[i].position[2]?`rgba(${127.5+2*(t[o].keypoints[i].position[2]||0)}, ${127.5-2*(t[o].keypoints[i].position[2]||0)}, 255, 0.5)`:s.color,Qb(r,t[o].keypoints[i].position[0],t[o].keypoints[i].position[1],0,s);if(s.drawLabels&&t[o].keypoints){r.font=s.font;for(let i of t[o].keypoints)r.fillStyle=s.useDepth&&i.position[2]?`rgba(${127.5+2*i.position[2]}, ${127.5-2*i.position[2]}, 255, 0.5)`:s.color,r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position[0]+4,i.position[1]+4)}if(s.drawPolygons&&t[o].keypoints&&t[o].annotations)for(let i of Object.values(t[o].annotations))for(let l of i)T2e(r,l,s)}}async function s5(e,t,n){let s=$n(fa,n);if(!t||!e)return;let r=Gl(e);r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,Mp(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*(o[2]||0)}, ${127.5-2*(o[2]||0)}, 255, 0.5)`:s.color,Qb(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{!i||i.length===0||!i[0]||(r.fillStyle=s.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4))};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l<i.length;l++)r.beginPath(),r.strokeStyle=s.useDepth?`rgba(${127.5+l*i[l][2]}, ${127.5-l*i[l][2]}, 255, 0.5)`:s.color,r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}async function r5(e,t,n){let s=$n(fa,n);if(!t||!e)return;let r=Gl(e);r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,Mp(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}async function FT(e,t,n){let s=$n(fa,n);if(!t||!e)return;let r=Gl(e);r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,Mp(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}async function OT(e,t){if(!e||!t)return;Gl(t).drawImage(e,0,0)}async function MT(e,t,n){if(!t||!t.performance||!t||!e)return null;let s=ce(),r=$n(fa,n),a=Promise.all([t5(e,t.face,r),n5(e,t.body,r),s5(e,t.hand,r),r5(e,t.object,r),e5(e,t.gesture,r)]);return Jb=ge.perfadd?Jb+Math.round(ce()-s):Math.round(ce()-s),t.performance.draw=Jb,a}var Dc=.1,a5=.5;function N2e(e,t,n){let s=!1,r=n.length-1;for(let a=0;a<n.length;r=a++)n[a].y>t!=n[r].y>t&&e<(n[r].x-n[a].x)*(t-n[a].y)/(n[r].y-n[a].y)+n[a].x&&(s=!s);return s}async function zT(e){if(!e.tensor)return e.tensor;let t=e.tensor.shape[2]||0,n=e.tensor.shape[1]||0,s=await e.tensor.buffer(),r=[];for(let o of er.silhouette)r.push({x:(e.mesh[o][0]-e.box[0])/e.box[2],y:(e.mesh[o][1]-e.box[1])/e.box[3]});Dc&&Dc>0&&(r=r.map(o=>({x:o.x>.5?o.x+Dc:o.x-Dc,y:o.y>.5?o.y+Dc:o.y-Dc})));for(let o=0;o<t;o++)for(let i=0;i<n;i++)N2e(o/t,i/t,r)||(s.set(a5*s.get(0,i,o,0),0,i,o,0),s.set(a5*s.get(0,i,o,1),0,i,o,1),s.set(a5*s.get(0,i,o,2),0,i,o,2));let a=s.toTensor();return ee(s),a}var E2e=e=>{let t=(d,p)=>Math.atan2(d[1]-p[1],d[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=e.mesh[33][2]>e.mesh[263][2],a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],c=Math.sqrt(l[0]**2+l[1]**2);return c=Math.min(c,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:c}},LT=(e,t)=>{let n=g=>{let A=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=A,g[1]/=A,g[2]/=A,g},s=(g,A)=>{let x=g[0]-A[0],y=g[1]-A[1],b=g[2]-A[2];return[x,y,b]},r=(g,A)=>{let x=g[1]*A[2]-g[2]*A[1],y=g[2]*A[0]-g[0]*A[2],b=g[0]*A[1]-g[1]*A[0];return[x,y,b]},a=g=>{let[A,x,y,b,w,k,I,N,$]=g,O,D,R;return b<1?b>-1?(R=Math.asin(b),D=Math.atan2(-I,A),O=Math.atan2(-k,w)):(R=-Math.PI/2,D=-Math.atan2(N,$),O=0):(R=Math.PI/2,D=Math.atan2(N,$),O=0),isNaN(O)&&(O=0),isNaN(D)&&(D=0),isNaN(R)&&(R=0),{pitch:2*-O,yaw:2*-D,roll:2*-R}},o=g=>{let A=(y,b,w,k)=>Math.atan2(k-b,w-y);return{pitch:A(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:A(g[33][0],g[33][2],g[263][0],g[263][2]),roll:A(g[33][0],g[33][1],g[263][0],g[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,c=[i[10],i[152],i[234],i[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),u=n(s(c[1],c[0])),d=n(s(c[3],c[2])),p=n(r(d,u));d=r(u,p);let h=[d[0],d[1],d[2],u[0],u[1],u[2],p[0],p[1],p[2]],f=a(h),m=i.length===478?E2e(e):{bearing:0,strength:0};return{angle:f,matrix:h,gaze:m}};var o5=async(e,t)=>{var h,f,m,g,A,x,y,b,w,k,I,N,$,O,D;let n,s,r,a,o,i,l,c,u,d=[];e.state="run:face",n=ce();let p=await D8(t,e.config);if(e.performance.face=ge.perfadd?(e.performance.face||0)+Math.trunc(ce()-n):Math.trunc(ce()-n),!t.shape||t.shape.length!==4)return[];if(!p)return[];for(let R=0;R<p.length;R++){if(e.analyze("Get Face"),!p[R].tensor||p[R].tensor.isDisposedInternal){se("Face object is disposed:",p[R].tensor);continue}if((h=e.config.face.detector)==null?void 0:h.mask){let j=await zT(p[R]);ee(p[R].tensor),p[R].tensor=j}let T=p[R].mesh&&p[R].mesh.length>200?LT(p[R],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?o=((f=e.config.face.emotion)==null?void 0:f.enabled)?hb(p[R].tensor||Pt([]),e.config,R,p.length):null:(e.state="run:emotion",n=ce(),o=((m=e.config.face.emotion)==null?void 0:m.enabled)?await hb(p[R].tensor||Pt([]),e.config,R,p.length):null,e.performance.emotion=ge.perfadd?(e.performance.emotion||0)+Math.trunc(ce()-n):Math.trunc(ce()-n)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?l=((g=e.config.face.antispoof)==null?void 0:g.enabled)?Vx(p[R].tensor||Pt([]),e.config,R,p.length):null:(e.state="run:antispoof",n=ce(),l=((A=e.config.face.antispoof)==null?void 0:A.enabled)?await Vx(p[R].tensor||Pt([]),e.config,R,p.length):null,e.performance.antispoof=ge.perfadd?(e.performance.antispoof||0)+Math.trunc(ce()-n):Math.trunc(ce()-n)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?c=((x=e.config.face.liveness)==null?void 0:x.enabled)?_b(p[R].tensor||Pt([]),e.config,R,p.length):null:(e.state="run:liveness",n=ce(),c=((y=e.config.face.liveness)==null?void 0:y.enabled)?await _b(p[R].tensor||Pt([]),e.config,R,p.length):null,e.performance.antispoof=ge.perfadd?(e.performance.antispoof||0)+Math.trunc(ce()-n):Math.trunc(ce()-n)),e.analyze("End Liveness:"),e.analyze("Start Description:"),e.config.async?u=((b=e.config.face.description)==null?void 0:b.enabled)?xb(p[R].tensor||Pt([]),e.config,R,p.length):null:(e.state="run:description",n=ce(),u=((w=e.config.face.description)==null?void 0:w.enabled)?await xb(p[R].tensor||Pt([]),e.config,R,p.length):null,e.performance.description=ge.perfadd?(e.performance.description||0)+Math.trunc(ce()-n):Math.trunc(ce()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,u,r,l,c]=await Promise.all([s,a,o,i,u,r,l,c])),e.analyze("Finish Face:"),!((k=e.config.face.iris)==null?void 0:k.enabled)&&((N=(I=p[R])==null?void 0:I.annotations)==null?void 0:N.leftEyeIris)&&((O=($=p[R])==null?void 0:$.annotations)==null?void 0:O.rightEyeIris)&&(delete p[R].annotations.leftEyeIris,delete p[R].annotations.rightEyeIris);let F=p[R].annotations&&p[R].annotations.leftEyeIris&&p[R].annotations.leftEyeIris[0]&&p[R].annotations.rightEyeIris&&p[R].annotations.rightEyeIris[0]&&p[R].annotations.leftEyeIris.length>0&&p[R].annotations.rightEyeIris.length>0&&p[R].annotations.leftEyeIris[0]!==null&&p[R].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(p[R].annotations.leftEyeIris[3][0]-p[R].annotations.leftEyeIris[1][0]),Math.abs(p[R].annotations.rightEyeIris[4][1]-p[R].annotations.rightEyeIris[2][1]))/t.shape[2]:0,U=((D=e.config.face.detector)==null?void 0:D.return)?ot(p[R].tensor):null;ee(p[R].tensor),p[R].tensor&&delete p[R].tensor,d.push({...p[R],id:R,age:u==null?void 0:u.age,gender:u==null?void 0:u.gender,genderScore:u==null?void 0:u.genderScore,embedding:u==null?void 0:u.descriptor,emotion:o,real:l,live:c,iris:F!==0?Math.trunc(500/F/11.7)/100:0,rotation:T,tensor:U}),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),d};var BT=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position[1]<a.position[1]&&r.position[1]<a.position[1]?t.push({body:n,gesture:"i give up"}):a&&s&&s.position[1]<a.position[1]?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position[1]<a.position[1]&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&Math.abs(o.positionRaw[1]-i.positionRaw[1])>.1&&t.push({body:n,gesture:`leaning ${o.position[1]>i.position[1]?"left":"right"}`})}return t},WT=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>450){let s=e[n].mesh[33][2]-e[n].mesh[263][2],r=e[n].mesh[33][0]-e[n].mesh[263][0];Math.abs(s/r)<=.15?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let l=e[n].mesh[152][2];Math.abs(l)>10&&t.push({face:n,gesture:`head ${l<0?"up":"down"}`})}return t},VT=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.leftEyeIris[0]||!e[n].annotations.rightEyeIris||!e[n].annotations.rightEyeIris[0])continue;let s=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],a=Math.abs(s*r),o=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],i=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(o*i),c=!1;Math.abs(a-l)/Math.max(a,l)<.25&&(c=!0,t.push({iris:n,gesture:"facing center"}));let d=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2],p=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2];(d>.06||p>.06)&&(c=!1),d>p?d>.05&&t.push({iris:n,gesture:"looking right"}):p>.05&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||h<.01||f>.022||h>.022)&&(c=!1),(f<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},UT=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];if(e[n].annotations)for(let[r,a]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(a)&&a[0]&&s.push({name:r.toLowerCase(),position:a[0]});if(s&&s.length>0){let r=s.reduce((o,i)=>o.position[2]<i.position[2]?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]<i.position[1]?o:i);t.push({hand:n,gesture:`${a.name} up`})}if(e[n].keypoints){let r=sT(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}}return t};var Pe={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0},i5=0;function GT(e,t){var o,i,l,c,u,d,p,h,f,m,g,A,x,y,b,w,k,I,N,$,O,D,R,T,F,U,j;let n=ce();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};let s=Date.now()-e.timestamp,r=s<1e3?8-Math.log(s+1):1;if(Pe.canvas=e.canvas,!Pe.body||e.body.length!==Pe.body.length)Pe.body=JSON.parse(JSON.stringify(e.body));else for(let z=0;z<e.body.length;z++){let X=e.body[z].box.map((Q,ne)=>((r-1)*Pe.body[z].box[ne]+Q)/r),Z=e.body[z].boxRaw.map((Q,ne)=>((r-1)*Pe.body[z].boxRaw[ne]+Q)/r),J=e.body[z].keypoints.map((Q,ne)=>({score:Q.score,part:Q.part,position:[Pe.body[z].keypoints[ne]?((r-1)*Pe.body[z].keypoints[ne].position[0]+Q.position[0])/r:Q.position[0],Pe.body[z].keypoints[ne]?((r-1)*Pe.body[z].keypoints[ne].position[1]+Q.position[1])/r:Q.position[1]],positionRaw:[Pe.body[z].keypoints[ne]?((r-1)*Pe.body[z].keypoints[ne].positionRaw[0]+Q.positionRaw[0])/r:Q.position[0],Pe.body[z].keypoints[ne]?((r-1)*Pe.body[z].keypoints[ne].positionRaw[1]+Q.positionRaw[1])/r:Q.position[1]]})),te={},re={connected:{}};((i=(o=t.body)==null?void 0:o.modelPath)==null?void 0:i.includes("efficientpose"))?re=ib:((c=(l=t.body)==null?void 0:l.modelPath)==null?void 0:c.includes("blazepose"))?re=Jx:((d=(u=t.body)==null?void 0:u.modelPath)==null?void 0:d.includes("movenet"))&&(re=Ob);for(let[Q,ne]of Object.entries(re.connected)){let oe=[];for(let fe=0;fe<ne.length-1;fe++){let be=J.find(Ce=>Ce.part===ne[fe]),we=J.find(Ce=>Ce.part===ne[fe+1]);be&&we&&be.score>(t.body.minConfidence||0)&&we.score>(t.body.minConfidence||0)&&oe.push([be.position,we.position])}te[Q]=oe}Pe.body[z]={...e.body[z],box:X,boxRaw:Z,keypoints:J,annotations:te}}if(!Pe.hand||e.hand.length!==Pe.hand.length)Pe.hand=JSON.parse(JSON.stringify(e.hand));else for(let z=0;z<e.hand.length;z++){let X=e.hand[z].box.map((re,Q)=>((r-1)*Pe.hand[z].box[Q]+re)/r),Z=e.hand[z].boxRaw.map((re,Q)=>((r-1)*Pe.hand[z].boxRaw[Q]+re)/r);Pe.hand[z].keypoints.length!==e.hand[z].keypoints.length&&(Pe.hand[z].keypoints=e.hand[z].keypoints);let J=e.hand[z].keypoints&&e.hand[z].keypoints.length>0?e.hand[z].keypoints.map((re,Q)=>re.map((ne,oe)=>((r-1)*(Pe.hand[z].keypoints[Q][oe]||1)+(ne||0))/r)):[],te={};if(Object.keys(Pe.hand[z].annotations).length!==Object.keys(e.hand[z].annotations).length)Pe.hand[z].annotations=e.hand[z].annotations,te=Pe.hand[z].annotations;else if(e.hand[z].annotations)for(let re of Object.keys(e.hand[z].annotations))te[re]=e.hand[z].annotations[re]&&e.hand[z].annotations[re][0]?e.hand[z].annotations[re].map((Q,ne)=>Q.map((oe,fe)=>((r-1)*Pe.hand[z].annotations[re][ne][fe]+oe)/r)):null;Pe.hand[z]={...e.hand[z],box:X,boxRaw:Z,keypoints:J,annotations:te}}if(!Pe.face||e.face.length!==Pe.face.length)Pe.face=JSON.parse(JSON.stringify(e.face));else for(let z=0;z<e.face.length;z++){let X=e.face[z].box.map((J,te)=>((r-1)*Pe.face[z].box[te]+J)/r),Z=e.face[z].boxRaw.map((J,te)=>((r-1)*Pe.face[z].boxRaw[te]+J)/r);if(e.face[z].rotation){let J={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};J.matrix=(p=e.face[z].rotation)==null?void 0:p.matrix,J.angle={roll:((r-1)*(((f=(h=Pe.face[z].rotation)==null?void 0:h.angle)==null?void 0:f.roll)||0)+(((g=(m=e.face[z].rotation)==null?void 0:m.angle)==null?void 0:g.roll)||0))/r,yaw:((r-1)*(((x=(A=Pe.face[z].rotation)==null?void 0:A.angle)==null?void 0:x.yaw)||0)+(((b=(y=e.face[z].rotation)==null?void 0:y.angle)==null?void 0:b.yaw)||0))/r,pitch:((r-1)*(((k=(w=Pe.face[z].rotation)==null?void 0:w.angle)==null?void 0:k.pitch)||0)+(((N=(I=e.face[z].rotation)==null?void 0:I.angle)==null?void 0:N.pitch)||0))/r},J.gaze={bearing:((r-1)*(((O=($=Pe.face[z].rotation)==null?void 0:$.gaze)==null?void 0:O.bearing)||0)+(((R=(D=e.face[z].rotation)==null?void 0:D.gaze)==null?void 0:R.bearing)||0))/r,strength:((r-1)*(((F=(T=Pe.face[z].rotation)==null?void 0:T.gaze)==null?void 0:F.strength)||0)+(((j=(U=e.face[z].rotation)==null?void 0:U.gaze)==null?void 0:j.strength)||0))/r},Pe.face[z]={...e.face[z],rotation:J,box:X,boxRaw:Z}}Pe.face[z]={...e.face[z],box:X,boxRaw:Z}}if(!Pe.object||e.object.length!==Pe.object.length)Pe.object=JSON.parse(JSON.stringify(e.object));else for(let z=0;z<e.object.length;z++){let X=e.object[z].box.map((J,te)=>((r-1)*Pe.object[z].box[te]+J)/r),Z=e.object[z].boxRaw.map((J,te)=>((r-1)*Pe.object[z].boxRaw[te]+J)/r);Pe.object[z]={...e.object[z],box:X,boxRaw:Z}}if(e.persons){let z=e.persons;if(!Pe.persons||z.length!==Pe.persons.length)Pe.persons=JSON.parse(JSON.stringify(z));else for(let X=0;X<z.length;X++)Pe.persons[X].box=z[X].box.map((Z,J)=>((r-1)*Pe.persons[X].box[J]+Z)/r)}e.gesture&&(Pe.gesture=e.gesture);let a=ce();return i5=ge.perfadd?i5+Math.round(a-n):Math.round(a-n),e.performance&&(Pe.performance={...e.performance,interpolate:i5}),Pe}function T0(e,t,n={order:2,multiplier:25}){let s=0;for(let r=0;r<e.length;r++){let a=!n.order||n.order===2?e[r]-t[r]:Math.abs(e[r]-t[r]);s+=!n.order||n.order===2?a*a:a**n.order}return(n.multiplier||20)*s}var HT=(e,t,n,s)=>{if(e===0)return 1;let r=t===2?Math.sqrt(e):e**(1/t),a=(1-r/100-n)/(s-n);return Math.max(Math.min(a,1),0)};function jT(e,t,n={order:2,multiplier:25,min:.2,max:.8}){let s=T0(e,t,n);return HT(s,n.order||2,n.min||0,n.max||1)}function qT(e,t,n={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0||e.length!==t[0].length)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let s=Number.MAX_SAFE_INTEGER,r=-1;for(let o=0;o<t.length;o++){let i=T0(e,t[o],n);if(i<s&&(s=i,r=o),s<(n.threshold||0))break}let a=HT(s,n.order||2,n.min||0,n.max||1);return{index:r,distance:s,similarity:a}}function XT(e,t,n,s,r){var i,l,c,u,d,p,h,f,m,g,A,x,y,b,w,k;let a=0,o=[];for(let I of e){let N={id:a++,face:I,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let F of t)I.box[0]>F.box[0]&&I.box[0]<F.box[0]+F.box[2]&&I.box[1]+I.box[3]>F.box[1]&&I.box[1]+I.box[3]<F.box[1]+F.box[3]&&(N.body=F);if(N.body)for(let F of n)F.box[0]+F.box[2]>N.body.box[0]&&F.box[0]+F.box[2]<N.body.box[0]+N.body.box[2]&&F.box[1]+F.box[3]>N.body.box[1]&&F.box[1]+F.box[3]<N.body.box[1]+N.body.box[3]&&N.hands&&(N.hands.left=F),F.box[0]<N.body.box[0]+N.body.box[2]&&F.box[0]>N.body.box[0]&&F.box[1]+F.box[3]>N.body.box[1]&&F.box[1]+F.box[3]<N.body.box[1]+N.body.box[3]&&N.hands&&(N.hands.right=F);for(let F of s)F.face!==void 0&&F.face===I.id?(i=N.gestures)==null||i.push(F):F.iris!==void 0&&F.iris===I.id?(l=N.gestures)==null||l.push(F):F.body!==void 0&&F.body===((c=N.body)==null?void 0:c.id)?(u=N.gestures)==null||u.push(F):F.hand!==void 0&&F.hand===((p=(d=N.hands)==null?void 0:d.left)==null?void 0:p.id)?(h=N.gestures)==null||h.push(F):F.hand!==void 0&&F.hand===((m=(f=N.hands)==null?void 0:f.right)==null?void 0:m.id)&&((g=N.gestures)==null||g.push(F));let $=[],O=[],D=F=>{F&&F.length===4&&($.push(F[0],F[0]+F[2]),O.push(F[1],F[1]+F[3]))};D((A=N.face)==null?void 0:A.box),D((x=N.body)==null?void 0:x.box),D((b=(y=N.hands)==null?void 0:y.left)==null?void 0:b.box),D((k=(w=N.hands)==null?void 0:w.right)==null?void 0:k.box);let R=Math.min(...$),T=Math.min(...O);N.box=[R,T,Math.max(...$)-R,Math.max(...O)-T],r&&r[1]&&r[2]&&(N.boxRaw=[N.box[0]/r[2],N.box[1]/r[1],N.box[2]/r[2],N.box[3]/r[1]]),o.push(N)}return o}var N0=`
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,E0=`
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
2Q==`;async function R2e(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(N0);break;case"body":case"full":n=await t(E0);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function $2e(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+N0;break;case"full":case"body":n="data:image/jpeg;base64,"+E0;break;default:n=null}let s;typeof Image!="undefined"?s=new Image:ge.Image&&(s=new ge.Image),s.onload=async()=>{let r=Kn(s.naturalWidth,s.naturalHeight);if(!r)se("Warmup: Canvas not found"),t({});else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=await e.detect(o.tensor,e.config);t(i)}},n?s.src=n:t(null)})}async function _2e(e){let t=r=>Buffer.from(r,"base64"),n;if(e.config.warmup==="face"&&(n=t(N0)),(e.config.warmup==="body"||e.config.warmup==="full")&&(n=t(E0)),!n)return null;let s;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&se("Warmup tfjs-node not loaded");return s}async function KT(e,t){let n=ce();if(e.state="warmup",t&&(e.config=$n(e.config,t)),!e.config.warmup||e.config.warmup==="none")return{error:"null"};let s;return new Promise(async r=>{typeof createImageBitmap=="function"?s=await R2e(e):typeof Image!="undefined"||ge.Canvas!==void 0?s=await $2e(e):s=await _2e(e);let a=ce();e.config.debug&&se("Warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),r(s)})}var Pc,zp,Lp,R0,YT=class{constructor(t){de(this,"version");de(this,"config");de(this,"result");de(this,"state");de(this,"process");de(this,"tf");de(this,"env");de(this,"draw");de(this,"models");de(this,"events");de(this,"faceTriangulation");de(this,"faceUVMap");de(this,"performance");Kc(this,Pc,void 0);Kc(this,zp,void 0);Kc(this,Lp,void 0);de(this,"gl");de(this,"analyze",(...t)=>{if(!Xc(this,zp))return;let n=this.tf.engine().state.numTensors,s=Xc(this,Pc);Zc(this,Pc,n);let r=n-s;r!==0&&se(...t,r)});Kc(this,R0,t=>{if(!Xc(this,Lp))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof Je))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});de(this,"similarity",jT);de(this,"distance",T0);de(this,"match",qT);de(this,"emit",t=>{var n;this.events&&this.events.dispatchEvent&&((n=this.events)==null||n.dispatchEvent(new Event(t)))});this.env=ge,ka.wasmPath=Np.includes("-")?"https://vladmandic.github.io/tfjs/dist/":`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${Np}/dist/`,ka.modelBasePath=ge.browser?"../models/":"file://models/",ka.backend=ge.browser?"humangl":"tensorflow",this.version=Bx,Object.defineProperty(this,"version",{value:Bx}),this.config=JSON.parse(JSON.stringify(ka)),Object.seal(this.config),t&&(this.config=$n(this.config,t)),this.tf=Pl,this.state="idle",Zc(this,Pc,0),Zc(this,zp,!1),Zc(this,Lp,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new Zb,this.draw={options:fa,canvas:(n,s)=>OT(n,s),face:(n,s,r)=>t5(n,s,r),body:(n,s,r)=>n5(n,s,r),hand:(n,s,r)=>s5(n,s,r),gesture:(n,s,r)=>e5(n,s,r),object:(n,s,r)=>r5(n,s,r),person:(n,s,r)=>FT(n,s,r),all:(n,s,r)=>MT(n,s,r)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.process={tensor:null,canvas:null},this.faceTriangulation=F8,this.faceUVMap=O8,this.gl=It,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(ka)),this.config.backend=t}validate(t){return e2(ka,t||this.config)}now(){return ce()}image(t,n=!0){return kc(t,this.config,n)}async segmentation(t,n){return ET(t,n,this.config)}enhance(t){return yb(t)}compare(t,n){return Q6(this.config,t,n)}async init(){await C0(this,!0),await this.tf.ready()}async load(t){this.state="load";let n=ce(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=$n(this.config,t)),this.env.initial&&(this.config.debug&&se(`version: ${this.version}`),this.config.debug&&se(`tfjs version: ${this.tf.version_core}`),await C0(this)||se("error: backend check failed"),await sf(),this.env.browser&&(this.config.debug&&se("configuration:",this.config),this.config.debug&&se("environment:",this.env),this.config.debug&&se("tf flags:",this.tf.ENV.flags))),await RT(this),this.env.initial&&this.config.debug&&se("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(await $T(this),this.emit("load"));let a=Math.trunc(ce()-n);a>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+a:a)}next(t=this.result){return GT(t,this.config)}async warmup(t){let n=ce(),s=await KT(this,t),r=ce();return this.performance.warmup=Math.trunc(r-n),s}async profile(t,n){let s=await this.tf.profile(()=>this.detect(t,n)),r={};for(let i of s.kernels)r[i.name]?r[i.name]+=i.kernelTimeMs:r[i.name]=i.kernelTimeMs;let a=[];Object.entries(r).forEach(i=>a.push({name:i[0],ms:i[1]})),a.sort((i,l)=>l.ms-i.ms),a.length=20;let o={};for(let i of a)o[i.name]=i.ms;return o}async detect(t,n){return this.state="detect",new Promise(async s=>{var g,A,x,y,b,w,k,I,N,$,O,D,R,T,F,U,j,z,X,Z,J,te;this.state="config";let r;this.config=$n(this.config,n),this.state="check";let a=Xc(this,R0).call(this,t);a&&(se(a,t),s({error:a}));let o=ce();await C0(this),await this.load(),r=ce(),this.state="image";let i=await kc(t,this.config);if(this.process=i,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(ce()-r):Math.trunc(ce()-r),this.analyze("Get Image:"),!i.tensor){this.config.debug&&se("could not convert input to tensor"),s({error:"could not convert input to tensor"});return}this.emit("image"),r=ce(),this.config.skipAllowed=await J6(this.config,i.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(ce()-r):Math.trunc(ce()-r),this.analyze("Check Changed:");let l=[],c=[],u=[],d=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?o5(this,i.tensor):[],this.performance.face&&delete this.performance.face):(r=ce(),l=this.config.face.enabled?await o5(this,i.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(ce()-r):Math.trunc(ce()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let p=this.config.body.maxDetected===-1?$n(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?(((g=this.config.body.modelPath)==null?void 0:g.includes("posenet"))?c=this.config.body.enabled?qb(i.tensor,p):[]:((A=this.config.body.modelPath)==null?void 0:A.includes("blazepose"))?c=this.config.body.enabled?tb(i.tensor,p):[]:((x=this.config.body.modelPath)==null?void 0:x.includes("efficientpose"))?c=this.config.body.enabled?cb(i.tensor,p):[]:((y=this.config.body.modelPath)==null?void 0:y.includes("movenet"))&&(c=this.config.body.enabled?Lb(i.tensor,p):[]),this.performance.body&&delete this.performance.body):(r=ce(),((b=this.config.body.modelPath)==null?void 0:b.includes("posenet"))?c=this.config.body.enabled?await qb(i.tensor,p):[]:((w=this.config.body.modelPath)==null?void 0:w.includes("blazepose"))?c=this.config.body.enabled?await tb(i.tensor,p):[]:((k=this.config.body.modelPath)==null?void 0:k.includes("efficientpose"))?c=this.config.body.enabled?await cb(i.tensor,p):[]:((I=this.config.body.modelPath)==null?void 0:I.includes("movenet"))&&(c=this.config.body.enabled?await Lb(i.tensor,p):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(ce()-r):Math.trunc(ce()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let h=this.config.hand.maxDetected===-1?$n(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((($=(N=this.config.hand.detector)==null?void 0:N.modelPath)==null?void 0:$.includes("handdetect"))?u=this.config.hand.enabled?Ib(i.tensor,h):[]:((D=(O=this.config.hand.detector)==null?void 0:O.modelPath)==null?void 0:D.includes("handtrack"))&&(u=this.config.hand.enabled?Rb(i.tensor,h):[]),this.performance.hand&&delete this.performance.hand):(r=ce(),((T=(R=this.config.hand.detector)==null?void 0:R.modelPath)==null?void 0:T.includes("handdetect"))?u=this.config.hand.enabled?await Ib(i.tensor,h):[]:((U=(F=this.config.hand.detector)==null?void 0:F.modelPath)==null?void 0:U.includes("handtrack"))&&(u=this.config.hand.enabled?await Rb(i.tensor,h):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(ce()-r):Math.trunc(ce()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?(((j=this.config.object.modelPath)==null?void 0:j.includes("nanodet"))?d=this.config.object.enabled?Wb(i.tensor,this.config):[]:((z=this.config.object.modelPath)==null?void 0:z.includes("centernet"))&&(d=this.config.object.enabled?rb(i.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=ce(),((X=this.config.object.modelPath)==null?void 0:X.includes("nanodet"))?d=this.config.object.enabled?await Wb(i.tensor,this.config):[]:((Z=this.config.object.modelPath)==null?void 0:Z.includes("centernet"))&&(d=this.config.object.enabled?await rb(i.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(ce()-r):Math.trunc(ce()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,c,u,d]=await Promise.all([l,c,u,d])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=ce(),f=[...WT(l),...BT(c),...UT(u),...VT(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(ce()-r):Math.trunc(ce()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(ce()-o):Math.trunc(ce()-o);let m=((te=(J=this.process)==null?void 0:J.tensor)==null?void 0:te.shape)||[];this.result={face:l,body:c,hand:u,gesture:f,object:d,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),get persons(){return XT(l,c,u,f,m)}},ee(i.tensor),this.emit("detect"),this.state="idle",s(this.result)})}};Pc=new WeakMap,zp=new WeakMap,Lp=new WeakMap,R0=new WeakMap;return D2e;})();
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use backend file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* Human main module
* @default Human Library
* @summary <https://github.com/vladmandic/human>
* @author <https://github.com/vladmandic>
* @copyright <https://github.com/vladmandic>
* @license MIT
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */