mirror of https://github.com/vladmandic/human
5648 lines
1.4 MiB
5648 lines
1.4 MiB
/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var Human=(()=>{var Dg=Object.defineProperty;var PC=(e,t,n)=>t in e?Dg(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var MC=e=>Dg(e,"__esModule",{value:!0});var ra=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var lc=(e,t)=>{MC(e);for(var n in t)Dg(e,n,{get:t[n],enumerable:!0})};var he=(e,t,n)=>(PC(e,typeof t!="symbol"?t+"":t,n),n),$5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var uc=(e,t,n)=>($5(e,t,"read from private field"),n?n.call(e):t.get(e)),cc=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},dc=(e,t,n,s)=>($5(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var Ece={};lc(Ece,{Env:()=>_0,Human:()=>VS,Models:()=>rp,default:()=>VS,defaults:()=>aa,env:()=>xe});function tt(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: ${r} expecting json file`);return r}function oe(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var Pe=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function _g(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")_g(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&oe("invalid configuration",s),s}function Sn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=Sn(a,o):n[r]=o}),n),{})}var aa={backend:"",modelBasePath:"",wasmPath:"",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:11,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:12,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:13,minConfidence:.1},antispoof:{enabled:!1,skipFrames:14,modelPath:"antispoof.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",detector:{modelPath:""},maxDetected:-1,minConfidence:.3,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:2,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:15},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Ri={};lc(Ri,{Abs:()=>Xi,Acos:()=>Ki,Acosh:()=>Zi,AdadeltaOptimizer:()=>ff,AdagradOptimizer:()=>mf,AdamOptimizer:()=>gf,AdamaxOptimizer:()=>Af,Add:()=>la,AddN:()=>Za,All:()=>Yi,Any:()=>Ji,ArgMax:()=>Ya,ArgMin:()=>gc,Asin:()=>Qi,Asinh:()=>el,Atan:()=>tl,Atan2:()=>sl,Atanh:()=>nl,AvgPool:()=>Ja,AvgPool3D:()=>Ac,AvgPool3DGrad:()=>Wp,AvgPoolGrad:()=>Bp,BackendWasm:()=>j8,BatchMatMul:()=>Qa,BatchToSpaceND:()=>rl,Bincount:()=>Vp,BroadcastArgs:()=>Up,BroadcastTo:()=>Q5,Callback:()=>Uw,CallbackList:()=>Ov,Cast:()=>eo,Ceil:()=>to,ClipByValue:()=>ua,Complex:()=>Gp,ComplexAbs:()=>yc,Concat:()=>al,Conv2D:()=>no,Conv2DBackpropFilter:()=>Hp,Conv2DBackpropInput:()=>so,Conv3D:()=>xc,Conv3DBackpropFilterV2:()=>jp,Conv3DBackpropInputV2:()=>qp,Cos:()=>ro,Cosh:()=>ao,CropAndResize:()=>ol,Cumsum:()=>oo,CustomCallback:()=>Mv,DataStorage:()=>Op,DenseBincount:()=>Xp,DepthToSpace:()=>il,DepthwiseConv2dNative:()=>io,DepthwiseConv2dNativeBackpropFilter:()=>Kp,DepthwiseConv2dNativeBackpropInput:()=>Zp,Diag:()=>Yp,Dilation2D:()=>bc,Dilation2DBackpropFilter:()=>Qp,Dilation2DBackpropInput:()=>Jp,ENV:()=>fr,EarlyStopping:()=>Hw,Einsum:()=>eh,Elu:()=>uo,EluGrad:()=>th,Environment:()=>Y5,Equal:()=>ul,Erf:()=>ll,Exp:()=>co,ExpandDims:()=>cl,Expm1:()=>dl,FFT:()=>nh,Fill:()=>vc,FlipLeftRight:()=>pl,Floor:()=>po,FloorDiv:()=>ho,FromPixels:()=>kh,FusedBatchNorm:()=>fo,FusedConv2D:()=>Xo,FusedDepthwiseConv2D:()=>Ko,GPGPUContext:()=>A0,GatherNd:()=>fl,GatherV2:()=>hl,GraphModel:()=>k7,Greater:()=>ml,GreaterEqual:()=>mo,History:()=>Pv,IFFT:()=>sh,Identity:()=>go,Imag:()=>rh,InputSpec:()=>qt,IsFinite:()=>gl,IsInf:()=>Al,IsNan:()=>yl,KernelBackend:()=>hc,LRN:()=>Ic,LRNGrad:()=>oh,LayerVariable:()=>Rv,LayersModel:()=>Ur,LeakyRelu:()=>Ao,Less:()=>xl,LessEqual:()=>bl,LinSpace:()=>ah,Log:()=>yo,Log1p:()=>vl,LogSoftmax:()=>eb,LogicalAnd:()=>wl,LogicalNot:()=>wc,LogicalOr:()=>kc,MathBackendWebGL:()=>Pu,Max:()=>xo,MaxPool:()=>vo,MaxPool3D:()=>Sc,MaxPool3DGrad:()=>lh,MaxPoolGrad:()=>ih,MaxPoolWithArgmax:()=>uh,Maximum:()=>bo,Mean:()=>wo,Min:()=>ko,Minimum:()=>Io,MirrorPad:()=>So,Mod:()=>kl,MomentumOptimizer:()=>yf,Multinomial:()=>ch,Multiply:()=>Co,Neg:()=>Il,NonMaxSuppressionV3:()=>Cl,NonMaxSuppressionV4:()=>Tl,NonMaxSuppressionV5:()=>Nl,NotEqual:()=>Sl,OP_SCOPE_SUFFIX:()=>mb,OneHot:()=>To,OnesLike:()=>El,Optimizer:()=>Br,OptimizerConstructors:()=>Rue,Pack:()=>Rl,PadV2:()=>No,Pool:()=>FT,Pow:()=>Eo,Prelu:()=>Ro,Prod:()=>Dl,RMSPropOptimizer:()=>xf,RNN:()=>Cr,Range:()=>Cc,Rank:()=>Ug,Real:()=>dh,RealDiv:()=>lo,Reciprocal:()=>_l,Reduction:()=>Pn,Relu:()=>Do,Relu6:()=>Fo,Reshape:()=>Fl,ResizeBilinear:()=>_o,ResizeBilinearGrad:()=>hh,ResizeNearestNeighbor:()=>Tc,ResizeNearestNeighborGrad:()=>ph,Reverse:()=>$o,RotateWithOffset:()=>Xl,Round:()=>Oo,Rsqrt:()=>Po,SGDOptimizer:()=>od,ScatterNd:()=>$l,Select:()=>Ol,Selu:()=>Pl,Sequential:()=>wu,Sigmoid:()=>zo,Sign:()=>Ll,Sin:()=>Mo,Sinh:()=>zl,Slice:()=>Ml,Softmax:()=>Wo,Softplus:()=>Bl,SpaceToBatchND:()=>Wl,SparseFillEmptyRows:()=>fh,SparseReshape:()=>mh,SparseSegmentMean:()=>gh,SparseSegmentSum:()=>Ah,SparseToDense:()=>yh,SplitV:()=>Vl,Sqrt:()=>Lo,Square:()=>Nc,SquaredDifference:()=>Vo,Step:()=>da,StridedSlice:()=>Ul,StringNGrams:()=>xh,StringSplit:()=>bh,StringToHashBucketFast:()=>vh,Sub:()=>Uo,Sum:()=>Bo,SymbolicTensor:()=>rr,Tan:()=>Go,Tanh:()=>Ho,Tensor:()=>Ge,TensorBuffer:()=>Jt,Tile:()=>ca,TopK:()=>Gl,Transform:()=>Hl,Transpose:()=>jo,Unique:()=>wh,Unpack:()=>jl,UnsortedSegmentSum:()=>Ec,Variable:()=>Mc,ZerosLike:()=>ql,_FusedMatMul:()=>qo,abs:()=>Gt,acos:()=>yA,acosh:()=>xA,add:()=>le,addN:()=>Ph,all:()=>Mh,any:()=>Uc,argMax:()=>vs,argMin:()=>bA,asin:()=>vA,asinh:()=>wA,atan:()=>kA,atan2:()=>IA,atanh:()=>SA,avgPool:()=>Hc,avgPool3d:()=>NA,backend:()=>Ar,backend_util:()=>R,basicLSTMCell:()=>hE,batchNorm:()=>ri,batchNorm2d:()=>r3,batchNorm3d:()=>a3,batchNorm4d:()=>o3,batchToSpaceND:()=>jc,bincount:()=>EA,booleanMaskAsync:()=>b_,broadcastArgs:()=>i3,broadcastTo:()=>ru,browser:()=>Ms,buffer:()=>He,callbacks:()=>$B,cast:()=>de,ceil:()=>RA,clipByValue:()=>Zn,clone:()=>Zs,complex:()=>fa,concat:()=>gt,concat1d:()=>l3,concat2d:()=>au,concat3d:()=>u3,concat4d:()=>c3,constraints:()=>uv,conv1d:()=>Lh,conv2d:()=>Mr,conv2dTranspose:()=>Bh,conv3d:()=>_A,conv3dTranspose:()=>p3,copyRegisteredKernels:()=>PT,cos:()=>qc,cosh:()=>Wh,cosineWindow:()=>a1,cumsum:()=>Vh,customGrad:()=>xr,data:()=>I7,denseBincount:()=>h3,deprecationWarn:()=>gA,depthToSpace:()=>FA,depthwiseConv2d:()=>ou,deregisterOp:()=>PB,device_util:()=>Lc,diag:()=>UE,dilation2d:()=>$A,disableDeprecationWarnings:()=>EN,dispose:()=>Y,disposeVariables:()=>RN,div:()=>fe,divNoNan:()=>OA,dot:()=>f3,dropout:()=>O3,einsum:()=>m3,elu:()=>iu,enableDebugMode:()=>NN,enableProdMode:()=>Qb,enclosingPowerOfTwo:()=>P3,engine:()=>as,env:()=>se,equal:()=>os,erf:()=>PA,exp:()=>is,expandDims:()=>Bt,expm1:()=>MA,eye:()=>zA,fft:()=>sd,fill:()=>lu,findBackend:()=>AA,findBackendFactory:()=>$N,floor:()=>uu,floorDiv:()=>Oh,forceHalfFloat:()=>Y4,fused:()=>va,gather:()=>ai,gatherND:()=>$3,gather_util:()=>uA,getBackend:()=>Ys,getGradient:()=>Lg,getKernel:()=>Ih,getKernelsForBackend:()=>Or,getThreadsCount:()=>yue,gpgpu_util:()=>S4,grad:()=>xR,grads:()=>bR,greater:()=>Yn,greaterEqual:()=>xa,ifft:()=>fu,imag:()=>Uh,image:()=>De,inTopKAsync:()=>D_,initializers:()=>gv,input:()=>ow,io:()=>Xn,irfft:()=>sf,isFinite:()=>g3,isInf:()=>A3,isNaN:()=>LA,keep:()=>dn,kernel_impls:()=>vr,layers:()=>Tv,leakyRelu:()=>Xc,less:()=>Gh,lessEqual:()=>ba,linalg:()=>X3,linspace:()=>y3,loadGraphModel:()=>Qe,loadLayersModel:()=>Gz,localResponseNormalization:()=>BA,log:()=>ls,log1p:()=>Kc,logSigmoid:()=>b3,logSoftmax:()=>jh,logSumExp:()=>UA,logicalAnd:()=>zs,logicalNot:()=>Zc,logicalOr:()=>qh,logicalXor:()=>I3,losses:()=>h$,matMul:()=>Ve,math:()=>Fb,max:()=>$n,maxPool:()=>Yc,maxPool3d:()=>GA,maxPoolWithArgmax:()=>S3,maximum:()=>br,mean:()=>Ft,memory:()=>Fh,meshgrid:()=>VR,metrics:()=>Bw,min:()=>Jc,minimum:()=>cu,mirrorPad:()=>HA,mod:()=>jA,model:()=>Vz,models:()=>Ww,moments:()=>Xh,movingAverage:()=>k_,mul:()=>B,multiRNNCell:()=>ZR,multinomial:()=>C3,neg:()=>Tt,nextFrame:()=>K3,norm:()=>lf,notEqual:()=>li,oneHot:()=>eu,ones:()=>us,onesLike:()=>cs,op:()=>V,outerProduct:()=>tD,pad:()=>ks,pad1d:()=>rD,pad2d:()=>oD,pad3d:()=>lD,pad4d:()=>cD,pool:()=>T3,pow:()=>zr,prelu:()=>ed,print:()=>Tb,prod:()=>Kh,profile:()=>DN,rand:()=>xD,randomGamma:()=>kD,randomNormal:()=>N3,randomUniform:()=>du,range:()=>pu,ready:()=>$h,real:()=>td,reciprocal:()=>KA,registerBackend:()=>nu,registerCallbackConstructor:()=>Hz,registerGradient:()=>tb,registerKernel:()=>pa,registerOp:()=>OB,regularizers:()=>Vw,relu:()=>Js,relu6:()=>Zh,removeBackend:()=>FN,reshape:()=>U,reverse:()=>ds,reverse1d:()=>_D,reverse2d:()=>$D,reverse3d:()=>PD,reverse4d:()=>zD,rfft:()=>rd,round:()=>Yh,rsqrt:()=>Jh,scalar:()=>Ee,scatterND:()=>F3,scatter_util:()=>cA,selu:()=>Qh,separableConv2d:()=>ZA,sequential:()=>Uz,serialization:()=>ue,setBackend:()=>e3,setPlatform:()=>ON,setThreadsCount:()=>Aue,setWasmPath:()=>gue,setWasmPaths:()=>X8,setWebGLContext:()=>l0,setdiff1dAsync:()=>E3,sigmoid:()=>Kn,sign:()=>YA,signal:()=>p$,sin:()=>ef,sinh:()=>tf,slice:()=>_e,slice1d:()=>nf,slice2d:()=>JA,slice3d:()=>hu,slice4d:()=>nd,slice_util:()=>Fn,softmax:()=>ui,softplus:()=>oi,spaceToBatchND:()=>Qc,sparse:()=>ad,sparseToDense:()=>r1,spectral:()=>d$,split:()=>pn,sqrt:()=>xn,square:()=>ft,squaredDifference:()=>rf,squeeze:()=>rt,stack:()=>bn,step:()=>mu,stridedSlice:()=>QA,string:()=>hf,sub:()=>ye,sum:()=>Ie,sumOutType:()=>Eh,tan:()=>e1,tanh:()=>si,tensor:()=>Lt,tensor1d:()=>jt,tensor2d:()=>Qs,tensor3d:()=>$b,tensor4d:()=>c_,tensor5d:()=>d_,tensor6d:()=>p_,tensor_util:()=>Xs,test_util:()=>Zb,tidy:()=>j,tile:()=>ws,time:()=>_N,topk:()=>t1,train:()=>di,transpose:()=>Ke,truncatedNormal:()=>af,unique:()=>of,unregisterGradient:()=>OT,unregisterKernel:()=>$T,unsortedSegmentSum:()=>n1,unstack:()=>On,upcastType:()=>Ps,util:()=>w,valueAndGrad:()=>vR,valueAndGrads:()=>wR,variable:()=>R3,variableGrads:()=>x3,version:()=>Eue,version_converter:()=>LW,version_core:()=>Vc,version_layers:()=>B1,version_wasm:()=>xue,version_webgl:()=>YZ,webgl:()=>JZ,webgl_util:()=>K6,where:()=>Tn,whereAsync:()=>s1,zeros:()=>Ht,zerosLike:()=>Ze});var zC=Object.create,$p=Object.defineProperty,LC=Object.getOwnPropertyDescriptor,BC=Object.getOwnPropertyNames,WC=Object.getPrototypeOf,VC=Object.prototype.hasOwnProperty,O5=e=>$p(e,"__esModule",{value:!0}),Hi=(e=>typeof ra!="undefined"?ra:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof ra!="undefined"?ra:t)[n]}):e)(function(e){if(typeof ra!="undefined")return ra.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),Ct=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},ze=(e,t)=>{O5(e);for(var n in t)$p(e,n,{get:t[n],enumerable:!0})},UC=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of BC(t))!VC.call(e,s)&&s!=="default"&&$p(e,s,{get:()=>t[s],enumerable:!(n=LC(t,s))||n.enumerable});return e},qa=e=>UC(O5($p(e!=null?zC(WC(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),GC=Ct({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(F){}function s(F,T,M){this.low=F|0,this.high=T|0,this.unsigned=!!M}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(F){return(F&&F.__isLong__)===!0}s.isLong=r;var a={},o={};function i(F,T){var M,G,H;return T?(F>>>=0,(H=0<=F&&F<256)&&(G=o[F],G)?G:(M=c(F,(F|0)<0?-1:0,!0),H&&(o[F]=M),M)):(F|=0,(H=-128<=F&&F<128)&&(G=a[F],G)?G:(M=c(F,F<0?-1:0,!1),H&&(a[F]=M),M))}s.fromInt=i;function l(F,T){if(isNaN(F))return T?b:x;if(T){if(F<0)return b;if(F>=g)return $}else{if(F<=-A)return O;if(F+1>=A)return N}return F<0?l(-F,T).neg():c(F%m|0,F/m|0,T)}s.fromNumber=l;function c(F,T,M){return new s(F,T,M)}s.fromBits=c;var u=Math.pow;function d(F,T,M){if(F.length===0)throw Error("empty string");if(F==="NaN"||F==="Infinity"||F==="+Infinity"||F==="-Infinity")return x;if(typeof T=="number"?(M=T,T=!1):T=!!T,M=M||10,M<2||36<M)throw RangeError("radix");var G;if((G=F.indexOf("-"))>0)throw Error("interior hyphen");if(G===0)return d(F.substring(1),T,M).neg();for(var H=l(u(M,8)),z=x,X=0;X<F.length;X+=8){var Q=Math.min(8,F.length-X),Z=parseInt(F.substring(X,X+Q),M);if(Q<8){var ne=l(u(M,Q));z=z.mul(ne).add(l(Z))}else z=z.mul(H),z=z.add(l(Z))}return z.unsigned=T,z}s.fromString=d;function p(F,T){return typeof F=="number"?l(F,T):typeof F=="string"?d(F,T):c(F.low,F.high,typeof T=="boolean"?T:F.unsigned)}s.fromValue=p;var h=1<<16,f=1<<24,m=h*h,g=m*m,A=g/2,y=i(f),x=i(0);s.ZERO=x;var b=i(0,!0);s.UZERO=b;var v=i(1);s.ONE=v;var I=i(1,!0);s.UONE=I;var C=i(-1);s.NEG_ONE=C;var N=c(4294967295|0,2147483647|0,!1);s.MAX_VALUE=N;var $=c(4294967295|0,4294967295|0,!0);s.MAX_UNSIGNED_VALUE=$;var O=c(0,2147483648|0,!1);s.MIN_VALUE=O;var E=s.prototype;E.toInt=function(){return this.unsigned?this.low>>>0:this.low},E.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},E.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(O)){var M=l(T),G=this.div(M),H=G.mul(M).sub(this);return G.toString(T)+H.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var z=l(u(T,6),this.unsigned),X=this,Q="";;){var Z=X.div(z),ne=X.sub(Z.mul(z)).toInt()>>>0,te=ne.toString(T);if(X=Z,X.isZero())return te+Q;for(;te.length<6;)te="0"+te;Q=""+te+Q}},E.getHighBits=function(){return this.high},E.getHighBitsUnsigned=function(){return this.high>>>0},E.getLowBits=function(){return this.low},E.getLowBitsUnsigned=function(){return this.low>>>0},E.getNumBitsAbs=function(){if(this.isNegative())return this.eq(O)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,M=31;M>0&&(T&1<<M)==0;M--);return this.high!=0?M+33:M+1},E.isZero=function(){return this.high===0&&this.low===0},E.eqz=E.isZero,E.isNegative=function(){return!this.unsigned&&this.high<0},E.isPositive=function(){return this.unsigned||this.high>=0},E.isOdd=function(){return(this.low&1)==1},E.isEven=function(){return(this.low&1)==0},E.equals=function(T){return r(T)||(T=p(T)),this.unsigned!==T.unsigned&&this.high>>>31==1&&T.high>>>31==1?!1:this.high===T.high&&this.low===T.low},E.eq=E.equals,E.notEquals=function(T){return!this.eq(T)},E.neq=E.notEquals,E.ne=E.notEquals,E.lessThan=function(T){return this.comp(T)<0},E.lt=E.lessThan,E.lessThanOrEqual=function(T){return this.comp(T)<=0},E.lte=E.lessThanOrEqual,E.le=E.lessThanOrEqual,E.greaterThan=function(T){return this.comp(T)>0},E.gt=E.greaterThan,E.greaterThanOrEqual=function(T){return this.comp(T)>=0},E.gte=E.greaterThanOrEqual,E.ge=E.greaterThanOrEqual,E.compare=function(T){if(r(T)||(T=p(T)),this.eq(T))return 0;var M=this.isNegative(),G=T.isNegative();return M&&!G?-1:!M&&G?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},E.comp=E.compare,E.negate=function(){return!this.unsigned&&this.eq(O)?O:this.not().add(v)},E.neg=E.negate,E.add=function(T){r(T)||(T=p(T));var M=this.high>>>16,G=this.high&65535,H=this.low>>>16,z=this.low&65535,X=T.high>>>16,Q=T.high&65535,Z=T.low>>>16,ne=T.low&65535,te=0,J=0,ee=0,ce=0;return ce+=z+ne,ee+=ce>>>16,ce&=65535,ee+=H+Z,J+=ee>>>16,ee&=65535,J+=G+Q,te+=J>>>16,J&=65535,te+=M+X,te&=65535,c(ee<<16|ce,te<<16|J,this.unsigned)},E.subtract=function(T){return r(T)||(T=p(T)),this.add(T.neg())},E.sub=E.subtract,E.multiply=function(T){if(this.isZero())return x;if(r(T)||(T=p(T)),n){var M=n.mul(this.low,this.high,T.low,T.high);return c(M,n.get_high(),this.unsigned)}if(T.isZero())return x;if(this.eq(O))return T.isOdd()?O:x;if(T.eq(O))return this.isOdd()?O:x;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(y)&&T.lt(y))return l(this.toNumber()*T.toNumber(),this.unsigned);var G=this.high>>>16,H=this.high&65535,z=this.low>>>16,X=this.low&65535,Q=T.high>>>16,Z=T.high&65535,ne=T.low>>>16,te=T.low&65535,J=0,ee=0,ce=0,pe=0;return pe+=X*te,ce+=pe>>>16,pe&=65535,ce+=z*te,ee+=ce>>>16,ce&=65535,ce+=X*ne,ee+=ce>>>16,ce&=65535,ee+=H*te,J+=ee>>>16,ee&=65535,ee+=z*ne,J+=ee>>>16,ee&=65535,ee+=X*Z,J+=ee>>>16,ee&=65535,J+=G*te+H*ne+z*Z+X*Q,J&=65535,c(ce<<16|pe,J<<16|ee,this.unsigned)},E.mul=E.multiply,E.divide=function(T){if(r(T)||(T=p(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return c(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var G,H,z;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return I;z=b}else{if(this.eq(O)){if(T.eq(v)||T.eq(C))return O;if(T.eq(O))return v;var X=this.shr(1);return G=X.div(T).shl(1),G.eq(x)?T.isNegative()?v:C:(H=this.sub(T.mul(G)),z=G.add(H.div(T)),z)}else if(T.eq(O))return this.unsigned?b:x;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();z=x}for(H=this;H.gte(T);){G=Math.max(1,Math.floor(H.toNumber()/T.toNumber()));for(var Q=Math.ceil(Math.log(G)/Math.LN2),Z=Q<=48?1:u(2,Q-48),ne=l(G),te=ne.mul(T);te.isNegative()||te.gt(H);)G-=Z,ne=l(G,this.unsigned),te=ne.mul(T);ne.isZero()&&(ne=v),z=z.add(ne),H=H.sub(te)}return z},E.div=E.divide,E.modulo=function(T){if(r(T)||(T=p(T)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return c(M,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},E.mod=E.modulo,E.rem=E.modulo,E.not=function(){return c(~this.low,~this.high,this.unsigned)},E.and=function(T){return r(T)||(T=p(T)),c(this.low&T.low,this.high&T.high,this.unsigned)},E.or=function(T){return r(T)||(T=p(T)),c(this.low|T.low,this.high|T.high,this.unsigned)},E.xor=function(T){return r(T)||(T=p(T)),c(this.low^T.low,this.high^T.high,this.unsigned)},E.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?c(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):c(0,this.low<<T-32,this.unsigned)},E.shl=E.shiftLeft,E.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?c(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):c(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},E.shr=E.shiftRight,E.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var M=this.high;if(T<32){var G=this.low;return c(G>>>T|M<<32-T,M>>>T,this.unsigned)}else return T===32?c(M,0,this.unsigned):c(M>>>T-32,0,this.unsigned)},E.shru=E.shiftRightUnsigned,E.shr_u=E.shiftRightUnsigned,E.toSigned=function(){return this.unsigned?c(this.low,this.high,!1):this},E.toUnsigned=function(){return this.unsigned?this:c(this.low,this.high,!0)},E.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},E.toBytesLE=function(){var T=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},E.toBytesBE=function(){var T=this.high,M=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},s.fromBytes=function(T,M,G){return G?s.fromBytesLE(T,M):s.fromBytesBE(T,M)},s.fromBytesLE=function(T,M){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,M)},s.fromBytesBE=function(T,M){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],M)}}}),HC=Ct({"(disabled):node_modules/.pnpm/node-fetch@2.6.5/node_modules/node-fetch/browser.js"(){}}),jC=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(c){var u=this,d=l();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=d(" "),u.s1=d(" "),u.s2=d(" "),u.s0-=d(c),u.s0<0&&(u.s0+=1),u.s1-=d(c),u.s1<0&&(u.s1+=1),u.s2-=d(c),u.s2<0&&(u.s2+=1),d=null}function o(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function i(c,u){var d=new a(c),p=u&&u.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var c=4022871197,u=function(d){d=d.toString();for(var p=0;p<d.length;p++){c+=d.charCodeAt(p);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),qC=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),XC=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,d==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),KC=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.x,p=c.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,c.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}u(c,l)}function o(l,c){return c.x=l.x.slice(),c.i=l.i,c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),ZC=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.w,p=c.X,h=c.i,f,m;return c.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,c.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,A,y=[],x=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,x=Math.max(x,p.length)),m=0,g=-32;g<x;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(A=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,h=y[g&127]^=f+A,m=h==0?m+1:0);for(m>=128&&(y[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;d.w=A,d.X=y,d.i=m}u(c,l)}function o(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),YC=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.b,h=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^h,c.c=h=h-f|0,c.d=f<<16^h>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var d=0;d<u.length+20;d++)c.b^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),P5=Ct({"(disabled):crypto"(){}}),JC=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s){var r=this,a=256,o=6,i=52,l="random",c=s.pow(a,o),u=s.pow(2,i),d=u*2,p=a-1,h;function f(v,I,C){var N=[];I=I==!0?{entropy:!0}:I||{};var $=y(A(I.entropy?[v,b(n)]:v==null?x():v,3),N),O=new m(N),E=function(){for(var F=O.g(o),T=c,M=0;F<u;)F=(F+M)*a,T*=a,M=O.g(1);for(;F>=d;)F/=2,T/=2,M>>>=1;return(F+M)/T};return E.int32=function(){return O.g(4)|0},E.quick=function(){return O.g(4)/4294967296},E.double=E,y(b(O.S),n),(I.pass||C||function(F,T,M,G){return G&&(G.S&&g(G,O),F.state=function(){return g(O,{})}),M?(s[l]=F,T):F})(E,$,"global"in I?I.global:this==s,I.state)}s["seed"+l]=f;function m(v){var I,C=v.length,N=this,$=0,O=N.i=N.j=0,E=N.S=[];for(C||(v=[C++]);$<a;)E[$]=$++;for($=0;$<a;$++)E[$]=E[O=p&O+v[$%C]+(I=E[$])],E[O]=I;(N.g=function(F){for(var T,M=0,G=N.i,H=N.j,z=N.S;F--;)T=z[G=p&G+1],M=M*a+z[p&(z[G]=z[H=p&H+T])+(z[H]=T)];return N.i=G,N.j=H,M})(a)}function g(v,I){return I.i=v.i,I.j=v.j,I.S=v.S.slice(),I}function A(v,I){var C=[],N=typeof v,$;if(I&&N=="object")for($ in v)try{C.push(A(v[$],I-1))}catch(O){}return C.length?C:N=="string"?v:v+"\0"}function y(v,I){for(var C=v+"",N,$=0;$<C.length;)I[p&$]=p&(N^=I[p&$]*19)+C.charCodeAt($++);return b(I)}function x(){try{var v;return h&&(v=h.randomBytes)?v=v(a):(v=new Uint8Array(a),(r.crypto||r.msCrypto).getRandomValues(v)),b(v)}catch(N){var I=r.navigator,C=I&&I.plugins;return[+new Date,r,C,r.screen,b(n)]}}function b(v){return String.fromCharCode.apply(0,v)}if(y(s.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{h=P5()}catch(v){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}}),M5=Ct({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js"(e,t){var n=jC(),s=qC(),r=XC(),a=KC(),o=ZC(),i=YC(),l=JC();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),QC=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(c){var u=this,d=l();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=d(" "),u.s1=d(" "),u.s2=d(" "),u.s0-=d(c),u.s0<0&&(u.s0+=1),u.s1-=d(c),u.s1<0&&(u.s1+=1),u.s2-=d(c),u.s2<0&&(u.s2+=1),d=null}function o(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function i(c,u){var d=new a(c),p=u&&u.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var c=4022871197,u=function(d){d=String(d);for(var p=0;p<d.length;p++){c+=d.charCodeAt(p);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),eT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),tT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,d==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),nT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.x,p=c.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,c.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}u(c,l)}function o(l,c){return c.x=l.x.slice(),c.i=l.i,c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),sT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.w,p=c.X,h=c.i,f,m;return c.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,c.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,A,y=[],x=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,x=Math.max(x,p.length)),m=0,g=-32;g<x;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(A=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,h=y[g&127]^=f+A,m=h==0?m+1:0);for(m>=128&&(y[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;d.w=A,d.X=y,d.i=m}u(c,l)}function o(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),rT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.b,h=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^h,c.c=h=h-f|0,c.d=f<<16^h>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var d=0;d<u.length+20;d++)c.b^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),aT=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",c=r.pow(a,o),u=r.pow(2,i),d=u*2,p=a-1,h;function f(v,I,C){var N=[];I=I==!0?{entropy:!0}:I||{};var $=y(A(I.entropy?[v,b(s)]:v==null?x():v,3),N),O=new m(N),E=function(){for(var F=O.g(o),T=c,M=0;F<u;)F=(F+M)*a,T*=a,M=O.g(1);for(;F>=d;)F/=2,T/=2,M>>>=1;return(F+M)/T};return E.int32=function(){return O.g(4)|0},E.quick=function(){return O.g(4)/4294967296},E.double=E,y(b(O.S),s),(I.pass||C||function(F,T,M,G){return G&&(G.S&&g(G,O),F.state=function(){return g(O,{})}),M?(r[l]=F,T):F})(E,$,"global"in I?I.global:this==r,I.state)}function m(v){var I,C=v.length,N=this,$=0,O=N.i=N.j=0,E=N.S=[];for(C||(v=[C++]);$<a;)E[$]=$++;for($=0;$<a;$++)E[$]=E[O=p&O+v[$%C]+(I=E[$])],E[O]=I;(N.g=function(F){for(var T,M=0,G=N.i,H=N.j,z=N.S;F--;)T=z[G=p&G+1],M=M*a+z[p&(z[G]=z[H=p&H+T])+(z[H]=T)];return N.i=G,N.j=H,M})(a)}function g(v,I){return I.i=v.i,I.j=v.j,I.S=v.S.slice(),I}function A(v,I){var C=[],N=typeof v,$;if(I&&N=="object")for($ in v)try{C.push(A(v[$],I-1))}catch(O){}return C.length?C:N=="string"?v:v+"\0"}function y(v,I){for(var C=v+"",N,$=0;$<C.length;)I[p&$]=p&(N^=I[p&$]*19)+C.charCodeAt($++);return b(I)}function x(){try{var v;return h&&(v=h.randomBytes)?v=v(a):(v=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(v)),b(v)}catch(N){var I=n.navigator,C=I&&I.plugins;return[+new Date,n,C,n.screen,b(s)]}}function b(v){return String.fromCharCode.apply(0,v)}if(y(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=P5()}catch(v){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),z5=Ct({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=QC(),s=eT(),r=tT(),a=nT(),o=sT(),i=rT(),l=aT();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),L5=Ct({"(disabled):node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js"(){}}),pc=Ct({"(disabled):path"(){}}),oT=Ct({"(disabled):worker_threads"(){}}),iT=Ct({"(disabled):perf_hooks"(){}}),lT=Ct({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.10.0_@tensorflow+tfjs-core@3.10.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return ee.buffer!=It&&An(ee.buffer),Dt}function o(){return ee.buffer!=It&&An(ee.buffer),Hn}function i(){return ee.buffer!=It&&An(ee.buffer),En}function l(){return ee.buffer!=It&&An(ee.buffer),ss}function c(){return ee.buffer!=It&&An(ee.buffer),xs}var u=typeof r!="undefined"?r:{},d,p;u.ready=new Promise(function(S,D){d=S,p=D});var h={},f;for(f in u)u.hasOwnProperty(f)&&(h[f]=u[f]);var m=[],g="./this.program",A=function(S,D){throw D},y=!1,x=!1,b=!1,v=!1;y=typeof window=="object",x=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",v=!y&&!b&&!x;var I=u.ENVIRONMENT_IS_PTHREAD||!1;I&&(It=u.buffer);var C="";function N(S){return u.locateFile?u.locateFile(S,C):C+S}var $,O,E,F,T,M;if(b){x?C=pc().dirname(C)+"/":C=__dirname+"/",$=function(D,L){return T||(T=Hi("fs")),M||(M=pc()),D=M.normalize(D),T.readFileSync(D,L?null:"utf8")},E=function(D){var L=$(D,!0);return L.buffer||(L=new Uint8Array(L)),we(L.buffer),L},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(S){if(!(S instanceof ic))throw S}),process.on("unhandledRejection",Dr),A=function(S){process.exit(S)},u.inspect=function(){return"[Emscripten Module object]"};var G;try{G=oT()}catch(S){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),S}global.Worker=G.Worker}else v?(typeof read!="undefined"&&($=function(D){return read(D)}),E=function(D){var L;return typeof readbuffer=="function"?new Uint8Array(readbuffer(D)):(L=read(D,"binary"),we(typeof L=="object"),L)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(A=function(S){quit(S)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(y||x)&&(x?C=self.location.href:typeof document!="undefined"&&document.currentScript&&(C=document.currentScript.src),typeof s!="undefined"&&s&&(C=s),C.indexOf("blob:")!==0?C=C.substr(0,C.lastIndexOf("/")+1):C="",b?($=function(D,L){return T||(T=Hi("fs")),M||(M=pc()),D=M.normalize(D),T.readFileSync(D,L?null:"utf8")},E=function(D){var L=$(D,!0);return L.buffer||(L=new Uint8Array(L)),we(L.buffer),L}):($=function(S){var D=new XMLHttpRequest;return D.open("GET",S,!1),D.send(null),D.responseText},x&&(E=function(S){var D=new XMLHttpRequest;return D.open("GET",S,!1),D.responseType="arraybuffer",D.send(null),new Uint8Array(D.response)}),O=function(S,D,L){var K=new XMLHttpRequest;K.open("GET",S,!0),K.responseType="arraybuffer",K.onload=function(){if(K.status==200||K.status==0&&K.response){D(K.response);return}L()},K.onerror=L,K.send(null)}),F=function(S){document.title=S});b&&typeof performance=="undefined"&&(global.performance=iT().performance);var H=u.print||console.log.bind(console),z=u.printErr||console.warn.bind(console);for(f in h)h.hasOwnProperty(f)&&(u[f]=h[f]);h=null,u.arguments&&(m=u.arguments),u.thisProgram&&(g=u.thisProgram),u.quit&&(A=u.quit);function X(S){X.shown||(X.shown={}),X.shown[S]||(X.shown[S]=1,z(S))}var Q=Atomics.load,Z=Atomics.store,ne=Atomics.compareExchange,te;u.wasmBinary&&(te=u.wasmBinary);var J=u.noExitRuntime||!0;typeof WebAssembly!="object"&&Dr("no native wasm support detected");var ee,ce,pe=!1,be;function we(S,D){S||Dr("Assertion failed: "+D)}function Ce(S){var D=u["_"+S];return we(D,"Cannot call unknown function "+S+", make sure it is exported"),D}function Oe(S,D,L,K,Ae){var me={string:function(Rn){var Gi=0;if(Rn!=null&&Rn!==0){var F5=(Rn.length<<2)+1;Gi=Wi(F5),ot(Rn,Gi,F5)}return Gi},array:function(Rn){var Gi=Wi(Rn.length);return ht(Rn,Gi),Gi}};function ge(Rn){return D==="string"?et(Rn):D==="boolean"?Boolean(Rn):Rn}var Te=Ce(S),ut=[],ln=0;if(K)for(var Yt=0;Yt<K.length;Yt++){var sa=me[L[Yt]];sa?(ln===0&&(ln=oc()),ut[Yt]=sa(K[Yt])):ut[Yt]=K[Yt]}var Ui=Te.apply(null,ut);return Ui=ge(Ui),ln!==0&&Bi(ln),Ui}function Be(S,D,L,K){L=L||[];var Ae=L.every(function(ge){return ge==="number"}),me=D!=="string";return me&&Ae&&!K?Ce(S):function(){return Oe(S,D,L,arguments,K)}}function Ue(S,D,L){for(var K=D+L,Ae="";!(D>=K);){var me=S[D++];if(!me)return Ae;if(!(me&128)){Ae+=String.fromCharCode(me);continue}var ge=S[D++]&63;if((me&224)==192){Ae+=String.fromCharCode((me&31)<<6|ge);continue}var Te=S[D++]&63;if((me&240)==224?me=(me&15)<<12|ge<<6|Te:me=(me&7)<<18|ge<<12|Te<<6|S[D++]&63,me<65536)Ae+=String.fromCharCode(me);else{var ut=me-65536;Ae+=String.fromCharCode(55296|ut>>10,56320|ut&1023)}}return Ae}function et(S,D){return S?Ue(o(),S,D):""}function ct(S,D,L,K){if(!(K>0))return 0;for(var Ae=L,me=L+K-1,ge=0;ge<S.length;++ge){var Te=S.charCodeAt(ge);if(Te>=55296&&Te<=57343){var ut=S.charCodeAt(++ge);Te=65536+((Te&1023)<<10)|ut&1023}if(Te<=127){if(L>=me)break;D[L++]=Te}else if(Te<=2047){if(L+1>=me)break;D[L++]=192|Te>>6,D[L++]=128|Te&63}else if(Te<=65535){if(L+2>=me)break;D[L++]=224|Te>>12,D[L++]=128|Te>>6&63,D[L++]=128|Te&63}else{if(L+3>=me)break;D[L++]=240|Te>>18,D[L++]=128|Te>>12&63,D[L++]=128|Te>>6&63,D[L++]=128|Te&63}}return D[L]=0,L-Ae}function ot(S,D,L){return ct(S,o(),D,L)}function it(S){for(var D=0,L=0;L<S.length;++L){var K=S.charCodeAt(L);K>=55296&&K<=57343&&(K=65536+((K&1023)<<10)|S.charCodeAt(++L)&1023),K<=127?++D:K<=2047?D+=2:K<=65535?D+=3:D+=4}return D}function ht(S,D){a().set(S,D)}function mt(S,D){return S%D>0&&(S+=D-S%D),S}var It,Dt,Hn,gn,js,En,ss,_s,xs;function An(S){It=S,u.HEAP8=Dt=new Int8Array(S),u.HEAP16=gn=new Int16Array(S),u.HEAP32=En=new Int32Array(S),u.HEAPU8=Hn=new Uint8Array(S),u.HEAPU16=js=new Uint16Array(S),u.HEAPU32=ss=new Uint32Array(S),u.HEAPF32=_s=new Float32Array(S),u.HEAPF64=xs=new Float64Array(S)}var cr=u.INITIAL_MEMORY||16777216;if(I)ee=u.wasmMemory,It=u.buffer;else if(u.wasmMemory)ee=u.wasmMemory;else if(ee=new WebAssembly.Memory({initial:cr/65536,maximum:2147483648/65536,shared:!0}),!(ee.buffer instanceof SharedArrayBuffer))throw z("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");ee&&(It=ee.buffer),cr=It.byteLength,An(It);var In,dr=[],pr=[],Yr=[],Zu=[],qs=[],lp=!1,om=!1;I||pr.push({func:function(){Cp()}});function up(){if(!I){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)im(u.preRun.shift());Mi(dr)}}function cp(){lp=!0,!I&&Mi(pr)}function dp(){I||Mi(Yr)}function jn(){I||(om=!0)}function pp(){if(!I){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)lm(u.postRun.shift());Mi(qs)}}function im(S){dr.unshift(S)}function lm(S){qs.unshift(S)}var Fs=0,Yu=null,Ua=null;function um(S){we(!I,"addRunDependency cannot be used in a pthread worker"),Fs++,u.monitorRunDependencies&&u.monitorRunDependencies(Fs)}function cm(S){if(Fs--,u.monitorRunDependencies&&u.monitorRunDependencies(Fs),Fs==0&&(Yu!==null&&(clearInterval(Yu),Yu=null),Ua)){var D=Ua;Ua=null,D()}}u.preloadedImages={},u.preloadedAudios={};function Dr(S){u.onAbort&&u.onAbort(S),I&&console.error("Pthread aborting at "+new Error().stack),S+="",z(S),pe=!0,be=1,S="abort("+S+"). Build with -s ASSERTIONS=1 for more info.";var D=new WebAssembly.RuntimeError(S);throw p(D),D}function Ga(S,D){return String.prototype.startsWith?S.startsWith(D):S.indexOf(D)===0}var dm="data:application/octet-stream;base64,";function hp(S){return Ga(S,dm)}var pm="file://";function fp(S){return Ga(S,pm)}var qn="tfjs-backend-wasm-threaded-simd.wasm";hp(qn)||(qn=N(qn));function mp(S){try{if(S==qn&&te)return new Uint8Array(te);if(E)return E(S);throw"both async and sync fetching of the wasm failed"}catch(D){Dr(D)}}function hm(){if(!te&&(y||x)){if(typeof fetch=="function"&&!fp(qn))return fetch(qn,{credentials:"same-origin"}).then(function(S){if(!S.ok)throw"failed to load wasm binary file at '"+qn+"'";return S.arrayBuffer()}).catch(function(){return mp(qn)});if(O)return new Promise(function(S,D){O(qn,function(L){S(new Uint8Array(L))},D)})}return Promise.resolve().then(function(){return mp(qn)})}function fm(){var S={a:og};function D(ge,Te){var ut=ge.exports;if(u.asm=ut,In=u.asm.I,ce=Te,!I){var ln=Re.unusedWorkers.length;Re.unusedWorkers.forEach(function(Yt){Re.loadWasmModuleToWorker(Yt,function(){--ln||cm("wasm-instantiate")})})}}I||um("wasm-instantiate");function L(ge){D(ge.instance,ge.module)}function K(ge){return hm().then(function(Te){return WebAssembly.instantiate(Te,S)}).then(ge,function(Te){z("failed to asynchronously prepare wasm: "+Te),Dr(Te)})}function Ae(){return!te&&typeof WebAssembly.instantiateStreaming=="function"&&!hp(qn)&&!fp(qn)&&typeof fetch=="function"?fetch(qn,{credentials:"same-origin"}).then(function(ge){var Te=WebAssembly.instantiateStreaming(ge,S);return Te.then(L,function(ut){return z("wasm streaming compile failed: "+ut),z("falling back to ArrayBuffer instantiation"),K(L)})}):K(L)}if(u.instantiateWasm)try{var me=u.instantiateWasm(S,D);return me}catch(ge){return z("Module.instantiateWasm callback failed with error: "+ge),!1}return Ae().catch(p),{}}var mm={10520:function(){throw"Canceled!"},10538:function(S,D){setTimeout(function(){T5(S,D)},0)}};function gp(){Re.initRuntime()}function Mi(S){for(;S.length>0;){var D=S.shift();if(typeof D=="function"){D(u);continue}var L=D.func;typeof L=="number"?D.arg===void 0?In.get(L)():In.get(L)(D.arg):L(D.arg===void 0?null:D.arg)}}var Jr={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135};function Ju(S,D){if(S<=0||S>a().length||S&!0||D<0)return-28;if(D==0)return 0;D>=2147483647&&(D=1/0);var L=Atomics.load(i(),Vi>>2),K=0;if(L==S){var Ae=Atomics.compareExchange(i(),Vi>>2,L,0);if(Ae==L&&(--D,K=1,D<=0))return 1}var me=Atomics.notify(i(),S>>2,D);if(me>=0)return me+K;throw"Atomics.notify returned an unexpected value "+me}u._emscripten_futex_wake=Ju;function gm(S){if(I)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in killThread!";i()[S+12>>2]=0;var D=Re.pthreads[S];D.worker.terminate(),Re.freeThreadData(D),Re.runningWorkers.splice(Re.runningWorkers.indexOf(D.worker),1),D.worker.pthread=void 0}function Am(S){if(I)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cancelThread!";var D=Re.pthreads[S];D.worker.postMessage({cmd:"cancel"})}function Ap(S){if(I)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cleanupThread!";var D=Re.pthreads[S];if(D){i()[S+12>>2]=0;var L=D.worker;Re.returnWorkerToPool(L)}}var Re={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var S=8,D=0;D<S;++D)Re.allocateUnusedWorker()},initRuntime:function(){for(var S=ja(228),D=0;D<228/4;++D)l()[S/4+D]=0;i()[S+12>>2]=S;var L=S+152;i()[L>>2]=L;for(var K=ja(512),D=0;D<128;++D)l()[K/4+D]=0;Atomics.store(l(),S+100>>2,K),Atomics.store(l(),S+40>>2,S),Eg(S,!x,1),S5(S)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Re.threadExitHandlers.length>0;)Re.threadExitHandlers.pop()();I&&na()&&I5()},runExitHandlersAndDeinitThread:function(S,D){Atomics.store(l(),S+56>>2,1),Atomics.store(l(),S+60>>2,0),Re.runExitHandlers(),Atomics.store(l(),S+4>>2,D),Atomics.store(l(),S+0>>2,1),Ju(S+0,2147483647),Eg(0,0,0)},threadExit:function(S){var D=na();D&&(Re.runExitHandlersAndDeinitThread(D,S),I&&postMessage({cmd:"exit"}))},threadCancel:function(){Re.runExitHandlersAndDeinitThread(na(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var S in Re.pthreads){var D=Re.pthreads[S];D&&D.worker&&Re.returnWorkerToPool(D.worker)}Re.pthreads={};for(var L=0;L<Re.unusedWorkers.length;++L){var K=Re.unusedWorkers[L];K.terminate()}Re.unusedWorkers=[];for(var L=0;L<Re.runningWorkers.length;++L){var K=Re.runningWorkers[L],D=K.pthread;Re.freeThreadData(D),K.terminate()}Re.runningWorkers=[]},freeThreadData:function(S){if(!!S){if(S.threadInfoStruct){var D=i()[S.threadInfoStruct+100>>2];i()[S.threadInfoStruct+100>>2]=0,ac(D),ac(S.threadInfoStruct)}S.threadInfoStruct=0,S.allocatedOwnStack&&S.stackBase&&ac(S.stackBase),S.stackBase=0,S.worker&&(S.worker.pthread=null)}},returnWorkerToPool:function(S){Re.runWithoutMainThreadQueuedCalls(function(){delete Re.pthreads[S.pthread.threadInfoStruct],Re.unusedWorkers.push(S),Re.runningWorkers.splice(Re.runningWorkers.indexOf(S),1),Re.freeThreadData(S.pthread),S.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(S){i()[_5>>2]=0;try{S()}finally{i()[_5>>2]=1}},receiveObjectTransfer:function(S){},loadWasmModuleToWorker:function(S,D){S.onmessage=function(L){var K=L.data,Ae=K.cmd;if(S.pthread&&(Re.currentProxiedOperationCallerThread=S.pthread.threadInfoStruct),K.targetThread&&K.targetThread!=na()){var me=Re.pthreads[K.targetThread];me?me.worker.postMessage(L.data,K.transferList):console.error('Internal error! Worker sent a message "'+Ae+'" to target pthread '+K.targetThread+", but that thread no longer exists!"),Re.currentProxiedOperationCallerThread=void 0;return}if(Ae==="processQueuedMainThreadWork")_p();else if(Ae==="spawnThread")Ip(L.data);else if(Ae==="cleanupThread")Ap(K.thread);else if(Ae==="killThread")gm(K.thread);else if(Ae==="cancelThread")Am(K.thread);else if(Ae==="loaded")S.loaded=!0,D&&D(S),S.runPthread&&(S.runPthread(),delete S.runPthread);else if(Ae==="print")H("Thread "+K.threadId+": "+K.text);else if(Ae==="printErr")z("Thread "+K.threadId+": "+K.text);else if(Ae==="alert")alert("Thread "+K.threadId+": "+K.text);else if(Ae==="exit"){var ge=S.pthread&&Atomics.load(l(),S.pthread.threadInfoStruct+64>>2);ge&&Re.returnWorkerToPool(S)}else if(Ae==="exitProcess")try{OC(K.returnCode)}catch(Te){if(Te instanceof ic)return;throw Te}else Ae==="cancelDone"?Re.returnWorkerToPool(S):Ae==="objectTransfer"?Re.receiveObjectTransfer(L.data):L.data.target==="setimmediate"?S.postMessage(L.data):z("worker sent an unknown command "+Ae);Re.currentProxiedOperationCallerThread=void 0},S.onerror=function(L){z("pthread sent an error! "+L.filename+":"+L.lineno+": "+L.message)},b&&(S.on("message",function(L){S.onmessage({data:L})}),S.on("error",function(L){S.onerror(L)}),S.on("exit",function(L){})),S.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||s,wasmMemory:ee,wasmModule:ce})},allocateUnusedWorker:function(){var S=N("tfjs-backend-wasm-threaded-simd.worker.js");Re.unusedWorkers.push(new Worker(S))},getNewWorker:function(){return Re.unusedWorkers.length==0&&(Re.allocateUnusedWorker(),Re.loadWasmModuleToWorker(Re.unusedWorkers[0])),Re.unusedWorkers.length>0?Re.unusedWorkers.pop():null},busySpinWait:function(S){for(var D=performance.now()+S;performance.now()<D;);}};function ym(S,D){R5(S,D),Bi(S)}u.establishStackSpace=ym;function xm(){return J}u.getNoExitRuntime=xm;function bm(S,D){return In.get(S)(D)}u.invokeEntryPoint=bm;function vm(S,D,L,K){Dr("Assertion failed: "+et(S)+", at: "+[D?et(D):"unknown filename",L,K?et(K):"unknown function"])}function wm(S,D){var L=_main(S,D)}var Ha;b?Ha=function(){var S=process.hrtime();return S[0]*1e3+S[1]/1e6}:I?Ha=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?Ha=dateNow:Ha=function(){return performance.now()};function km(S){return i()[w5()>>2]=S,S}function Im(S,D){if(I)return Qr(1,1,S,D)}function Sm(S,D){if(S==D)postMessage({cmd:"processQueuedMainThreadWork"});else if(I)postMessage({targetThread:S,cmd:"processThreadQueue"});else{var L=Re.pthreads[S],K=L&&L.worker;if(!K)return;K.postMessage({cmd:"processThreadQueue"})}return 1}function Cm(){Dr()}function Tm(S,D,L){var K=Dm(D,L);return mm[S].apply(null,K)}function Nm(S,D){}function yp(S,D,L){if(S<=0||S>a().length||S&!0)return-28;if(y){if(Atomics.load(i(),S>>2)!=D)return-6;for(var Ae=performance.now(),me=Ae+L,ge=Atomics.exchange(i(),Vi>>2,S);;){if(Ae=performance.now(),Ae>me)return ge=Atomics.exchange(i(),Vi>>2,0),-73;if(ge=Atomics.exchange(i(),Vi>>2,0),ge==0)break;if(_p(),Atomics.load(i(),S>>2)!=D)return-6;ge=Atomics.exchange(i(),Vi>>2,S)}return 0}else{var K=Atomics.wait(i(),S>>2,D,L);if(K==="timed-out")return-73;if(K==="not-equal")return-6;if(K==="ok")return 0;throw"Atomics.wait returned an unexpected value "+K}}function Em(S,D,L){o().copyWithin(S,D,D+L)}function Rm(){return b?Hi("os").cpus().length:navigator.hardwareConcurrency}function Qr(S,D){for(var L=arguments.length-2,K=oc(),Ae=L,me=Wi(Ae*8),ge=me>>3,Te=0;Te<L;Te++){var ut=arguments[2+Te];c()[ge+Te]=ut}var ln=E5(S,Ae,me,D);return Bi(K),ln}var Qu=[],ec=[];function Dm(S,D){ec.length=0;var L;for(D>>=2;L=o()[S++];){var K=L<105;K&&D&1&&D++,ec.push(K?c()[D++>>1]:i()[D]),++D}return ec}function _m(S,D,L){Qu.length=D;for(var K=L>>3,Ae=0;Ae<D;Ae++)Qu[Ae]=c()[K+Ae];var me=S<0,ge=me?mm[-S-1]:ag[S];return ge.apply(null,Qu)}function Fm(){return o().length}function $m(S){try{return ee.grow(S-It.byteLength+65535>>>16),An(ee.buffer),1}catch(D){}}function Om(S){var D=Fm();if(S<=D)return!1;var L=2147483648;if(S>L)return!1;for(var K=1;K<=4;K*=2){var Ae=D*(1+.2/K);Ae=Math.min(Ae,S+100663296);var me=Math.min(L,mt(Math.max(S,Ae),65536)),ge=$m(me);if(ge)return!0}return!1}var We={inEventHandler:0,removeAllEventListeners:function(){for(var S=We.eventHandlers.length-1;S>=0;--S)We._removeHandler(S);We.eventHandlers=[],We.deferredCalls=[]},registerRemoveEventListeners:function(){We.removeEventListenersRegistered||(Zu.push(We.removeAllEventListeners),We.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(S,D,L){function K(ge,Te){if(ge.length!=Te.length)return!1;for(var ut in ge)if(ge[ut]!=Te[ut])return!1;return!0}for(var Ae in We.deferredCalls){var me=We.deferredCalls[Ae];if(me.targetFunction==S&&K(me.argsList,L))return}We.deferredCalls.push({targetFunction:S,precedence:D,argsList:L}),We.deferredCalls.sort(function(ge,Te){return ge.precedence<Te.precedence})},removeDeferredCalls:function(S){for(var D=0;D<We.deferredCalls.length;++D)We.deferredCalls[D].targetFunction==S&&(We.deferredCalls.splice(D,1),--D)},canPerformEventHandlerRequests:function(){return We.inEventHandler&&We.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!We.canPerformEventHandlerRequests())for(var S=0;S<We.deferredCalls.length;++S){var D=We.deferredCalls[S];We.deferredCalls.splice(S,1),--S,D.targetFunction.apply(null,D.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(S,D){for(var L=0;L<We.eventHandlers.length;++L)We.eventHandlers[L].target==S&&(!D||D==We.eventHandlers[L].eventTypeString)&&We._removeHandler(L--)},_removeHandler:function(S){var D=We.eventHandlers[S];D.target.removeEventListener(D.eventTypeString,D.eventListenerFunc,D.useCapture),We.eventHandlers.splice(S,1)},registerOrRemoveHandler:function(S){var D=function(Ae){++We.inEventHandler,We.currentEventHandler=S,We.runDeferredCalls(),S.handlerFunc(Ae),We.runDeferredCalls(),--We.inEventHandler};if(S.callbackfunc)S.eventListenerFunc=D,S.target.addEventListener(S.eventTypeString,D,S.useCapture),We.eventHandlers.push(S),We.registerRemoveEventListeners();else for(var L=0;L<We.eventHandlers.length;++L)We.eventHandlers[L].target==S.target&&We.eventHandlers[L].eventTypeString==S.eventTypeString&&We._removeHandler(L--)},queueEventHandlerOnThread_iiii:function(S,D,L,K,Ae){var me=oc(),ge=Wi(12);i()[ge>>2]=L,i()[ge+4>>2]=K,i()[ge+8>>2]=Ae,Ng(0,S,637534208,D,K,ge),Bi(me)},getTargetThreadForEventCallback:function(S){switch(S){case 1:return 0;case 2:return Re.currentProxiedOperationCallerThread;default:return S}},getNodeNameForTarget:function(S){return S?S==window?"#window":S==screen?"#screen":S&&S.nodeName?S.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Pm(S){var D=it(S)+1,L=ja(D);return ot(S,L,D),L}function Mm(S,D,L,K){var Ae=oc(),me=Wi(12),ge=0;D&&(ge=Pm(D)),i()[me>>2]=ge,i()[me+4>>2]=L,i()[me+8>>2]=K,Ng(0,S,657457152,0,ge,me),Bi(Ae)}function zm(S,D,L,K){D=D?et(D):"",Mm(S,D,L,K)}function Lm(S){return S>2?et(S):S}var Bm=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Wm(S){S=Lm(S);var D=Bm[S]||(typeof document!="undefined"?document.querySelector(S):void 0);return D}function tc(S){return Wm(S)}function xp(S,D,L){var K=tc(S);if(!K)return-4;if(K.canvasSharedPtr&&(i()[K.canvasSharedPtr>>2]=D,i()[K.canvasSharedPtr+4>>2]=L),K.offscreenCanvas||!K.controlTransferredOffscreen){K.offscreenCanvas&&(K=K.offscreenCanvas);var Ae=!1;if(K.GLctxObject&&K.GLctxObject.GLctx){var me=K.GLctxObject.GLctx.getParameter(2978);Ae=me[0]===0&&me[1]===0&&me[2]===K.width&&me[3]===K.height}K.width=D,K.height=L,Ae&&K.GLctxObject.GLctx.viewport(0,0,D,L)}else if(K.canvasSharedPtr){var ge=i()[K.canvasSharedPtr+8>>2];return zm(ge,S,D,L),1}else return-4;return 0}function bp(S,D,L){return I?Qr(2,1,S,D,L):xp(S,D,L)}function Vm(S,D,L){var K=tc(S);return K?xp(S,D,L):bp(S,D,L)}function Um(S){}function Gm(S,D){}function Hm(S){var D=S.getExtension("ANGLE_instanced_arrays");if(D)return S.vertexAttribDivisor=function(L,K){D.vertexAttribDivisorANGLE(L,K)},S.drawArraysInstanced=function(L,K,Ae,me){D.drawArraysInstancedANGLE(L,K,Ae,me)},S.drawElementsInstanced=function(L,K,Ae,me,ge){D.drawElementsInstancedANGLE(L,K,Ae,me,ge)},1}function jm(S){var D=S.getExtension("OES_vertex_array_object");if(D)return S.createVertexArray=function(){return D.createVertexArrayOES()},S.deleteVertexArray=function(L){D.deleteVertexArrayOES(L)},S.bindVertexArray=function(L){D.bindVertexArrayOES(L)},S.isVertexArray=function(L){return D.isVertexArrayOES(L)},1}function qm(S){var D=S.getExtension("WEBGL_draw_buffers");if(D)return S.drawBuffers=function(L,K){D.drawBuffersWEBGL(L,K)},1}function Xm(S){return!!(S.multiDrawWebgl=S.getExtension("WEBGL_multi_draw"))}var lt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(D){lt.lastError||(lt.lastError=D)},getNewId:function(S){for(var D=lt.counter++,L=S.length;L<D;L++)S[L]=null;return D},getSource:function(S,D,L,K){for(var Ae="",me=0;me<D;++me){var ge=K?i()[K+me*4>>2]:-1;Ae+=et(i()[L+me*4>>2],ge<0?void 0:ge)}return Ae},createContext:function(S,D){var L=S.getContext("webgl",D);if(!L)return 0;var K=lt.registerContext(L,D);return K},registerContext:function(S,D){var L=ja(8);i()[L+4>>2]=na();var K={handle:L,attributes:D,version:D.majorVersion,GLctx:S};return S.canvas&&(S.canvas.GLctxObject=K),lt.contexts[L]=K,(typeof D.enableExtensionsByDefault=="undefined"||D.enableExtensionsByDefault)&<.initExtensions(K),L},makeContextCurrent:function(S){return lt.currentContext=lt.contexts[S],u.ctx=ea=lt.currentContext&<.currentContext.GLctx,!(S&&!ea)},getContext:function(S){return lt.contexts[S]},deleteContext:function(S){lt.currentContext===lt.contexts[S]&&(lt.currentContext=null),typeof We=="object"&&We.removeAllHandlersOnTarget(lt.contexts[S].GLctx.canvas),lt.contexts[S]&<.contexts[S].GLctx.canvas&&(lt.contexts[S].GLctx.canvas.GLctxObject=void 0),ac(lt.contexts[S].handle),lt.contexts[S]=null},initExtensions:function(S){if(S||(S=lt.currentContext),!S.initExtensionsDone){S.initExtensionsDone=!0;var D=S.GLctx;Hm(D),jm(D),qm(D),D.disjointTimerQueryExt=D.getExtension("EXT_disjoint_timer_query"),Xm(D);var L=D.getSupportedExtensions()||[];L.forEach(function(K){K.indexOf("lose_context")<0&&K.indexOf("debug")<0&&D.getExtension(K)})}},populateUniformTable:function(S){for(var D=lt.programs[S],L=lt.programInfos[S]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},K=L.uniforms,Ae=ea.getProgramParameter(D,35718),me=0;me<Ae;++me){var ge=ea.getActiveUniform(D,me),Te=ge.name;L.maxUniformLength=Math.max(L.maxUniformLength,Te.length+1),Te.slice(-1)=="]"&&(Te=Te.slice(0,Te.lastIndexOf("[")));var ut=ea.getUniformLocation(D,Te);if(ut){var ln=lt.getNewId(lt.uniforms);K[Te]=[ge.size,ln],lt.uniforms[ln]=ut;for(var Yt=1;Yt<ge.size;++Yt){var sa=Te+"["+Yt+"]";ut=ea.getUniformLocation(D,sa),ln=lt.getNewId(lt.uniforms),lt.uniforms[ln]=ut}}}}},Km=["default","low-power","high-performance"];function Zm(S,D){var L=D>>2,K=i()[L+(24>>2)],Ae={alpha:!!i()[L+(0>>2)],depth:!!i()[L+(4>>2)],stencil:!!i()[L+(8>>2)],antialias:!!i()[L+(12>>2)],premultipliedAlpha:!!i()[L+(16>>2)],preserveDrawingBuffer:!!i()[L+(20>>2)],powerPreference:Km[K],failIfMajorPerformanceCaveat:!!i()[L+(28>>2)],majorVersion:i()[L+(32>>2)],minorVersion:i()[L+(36>>2)],enableExtensionsByDefault:i()[L+(40>>2)],explicitSwapControl:i()[L+(44>>2)],proxyContextToMainThread:i()[L+(48>>2)],renderViaOffscreenBackBuffer:i()[L+(52>>2)]},me=tc(S);if(!me||Ae.explicitSwapControl)return 0;var ge=lt.createContext(me,Ae);return ge}function Ym(S,D){return Zm(S,D)}var zi={mappings:{},buffers:[null,[],[]],printChar:function(S,D){var L=zi.buffers[S];D===0||D===10?((S===1?H:z)(Ue(L,0)),L.length=0):L.push(D)},varargs:void 0,get:function(){zi.varargs+=4;var S=i()[zi.varargs-4>>2];return S},getStr:function(S){var D=et(S);return D},get64:function(S,D){return S}};function vp(S){return I?Qr(3,1,S):0}function wp(S,D,L,K,Ae){if(I)return Qr(4,1,S,D,L,K,Ae)}function kp(S,D,L,K){if(I)return Qr(5,1,S,D,L,K);for(var Ae=0,me=0;me<L;me++){for(var ge=i()[D+me*8>>2],Te=i()[D+(me*8+4)>>2],ut=0;ut<Te;ut++)zi.printChar(S,o()[ge+ut]);Ae+=Te}return i()[K>>2]=Ae,0}function Jm(S){var D=Re.threadExitHandlers.pop();S&&D()}function Qm(S,D){Re.threadExitHandlers.push(function(){In.get(S)(D)})}function Ip(S){if(I)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var D=Re.getNewWorker();if(D.pthread!==void 0)throw"Internal error!";if(!S.pthread_ptr)throw"Internal error, no pthread ptr!";Re.runningWorkers.push(D);for(var L=ja(128*4),K=0;K<128;++K)i()[L+K*4>>2]=0;var Ae=S.stackBase+S.stackSize,me=Re.pthreads[S.pthread_ptr]={worker:D,stackBase:S.stackBase,stackSize:S.stackSize,allocatedOwnStack:S.allocatedOwnStack,threadInfoStruct:S.pthread_ptr},ge=me.threadInfoStruct>>2;Atomics.store(l(),ge+(64>>2),S.detached),Atomics.store(l(),ge+(100>>2),L),Atomics.store(l(),ge+(40>>2),me.threadInfoStruct),Atomics.store(l(),ge+(80>>2),S.stackSize),Atomics.store(l(),ge+(76>>2),Ae),Atomics.store(l(),ge+(104>>2),S.stackSize),Atomics.store(l(),ge+(104+8>>2),Ae),Atomics.store(l(),ge+(104+12>>2),S.detached);var Te=k5(),ut=Te+40;Atomics.store(l(),ge+(172>>2),ut),D.pthread=me;var ln={cmd:"run",start_routine:S.startRoutine,arg:S.arg,threadInfoStruct:S.pthread_ptr,stackBase:S.stackBase,stackSize:S.stackSize};D.runPthread=function(){ln.time=performance.now(),D.postMessage(ln,S.transferList)},D.loaded&&(D.runPthread(),delete D.runPthread)}function eg(S,D,L,K){if(typeof SharedArrayBuffer=="undefined")return z("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!S)return z("pthread_create called with a null thread pointer!"),28;var Ae=[],me=0;if(I&&(Ae.length===0||me))return N5(687865856,S,D,L,K);if(me)return me;var ge=0,Te=0,ut=0;D&&D!=-1?(ge=i()[D>>2],ge+=81920,Te=i()[D+8>>2],ut=i()[D+12>>2]!==0):ge=2097152;var ln=Te==0;ln?Te=D5(16,ge):(Te-=ge,we(Te>0));for(var Yt=ja(228),sa=0;sa<228>>2;++sa)l()[(Yt>>2)+sa]=0;i()[S>>2]=Yt,i()[Yt+12>>2]=Yt;var Ui=Yt+152;i()[Ui>>2]=Ui;var Rn={stackBase:Te,stackSize:ge,allocatedOwnStack:ln,detached:ut,startRoutine:L,pthread_ptr:Yt,arg:K,transferList:Ae};return I?(Rn.cmd="spawnThread",postMessage(Rn,Ae)):Ip(Rn),0}function tg(){if(!!I){var S=na();if(!!S){var D=Atomics.load(l(),S+56>>2);if(!D){var L=Atomics.load(l(),S+0>>2);if(L==2)throw"Canceled!"}}}}function ng(){b||x||X("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function sg(S,D,L){if(!S)return z("pthread_join attempted on a null thread pointer!"),Jr.ESRCH;if(I&&na()==S)return z("PThread "+S+" is attempting to join to itself!"),Jr.EDEADLK;if(!I&&C5()==S)return z("Main thread "+S+" is attempting to join to itself!"),Jr.EDEADLK;var K=i()[S+12>>2];if(K!==S)return z("pthread_join attempted on thread "+S+", which does not point to a valid thread, or does not exist anymore!"),Jr.ESRCH;var Ae=Atomics.load(l(),S+64>>2);if(Ae)return z("Attempted to join thread "+S+", which was already detached!"),Jr.EINVAL;for(L&&ng();;){var me=Atomics.load(l(),S+0>>2);if(me==1){var ge=Atomics.load(l(),S+4>>2);return D&&(i()[D>>2]=ge),Atomics.store(l(),S+64>>2,1),I?postMessage({cmd:"cleanupThread",thread:S}):Ap(S),0}if(!L)return Jr.EBUSY;tg(),I||_p(),yp(S+0,me,I?100:1)}}function rg(S,D){return sg(S,D,!0)}function Sp(S){if(I)return Qr(6,1,S);switch(S){case 30:return 16384;case 85:var D=2147483648;return D/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return km(28),-1}I||Re.initMainThreadBlock();var ea,ag=[null,Im,bp,vp,wp,kp,Sp],og={e:vm,r:wm,x:Sm,b:Cm,y:Tm,j:Nm,d:yp,c:Ju,f:Ha,p:Em,A:Rm,u:_m,q:Om,v:Vm,i:Um,s:Gm,w:Ym,l:vp,n:wp,g:kp,o:gp,a:ee||u.wasmMemory,z:Jm,k:Qm,h:eg,m:rg,t:Sp},v5=fm(),Cp=u.___wasm_call_ctors=function(){return(Cp=u.___wasm_call_ctors=u.asm.B).apply(null,arguments)},ig=u._init=function(){return(ig=u._init=u.asm.C).apply(null,arguments)},lg=u._init_with_threads_count=function(){return(lg=u._init_with_threads_count=u.asm.D).apply(null,arguments)},ug=u._get_threads_count=function(){return(ug=u._get_threads_count=u.asm.E).apply(null,arguments)},cg=u._register_tensor=function(){return(cg=u._register_tensor=u.asm.F).apply(null,arguments)},dg=u._dispose_data=function(){return(dg=u._dispose_data=u.asm.G).apply(null,arguments)},pg=u._dispose=function(){return(pg=u._dispose=u.asm.H).apply(null,arguments)},hg=u._Abs=function(){return(hg=u._Abs=u.asm.J).apply(null,arguments)},fg=u._Add=function(){return(fg=u._Add=u.asm.K).apply(null,arguments)},mg=u._AddN=function(){return(mg=u._AddN=u.asm.L).apply(null,arguments)},gg=u._All=function(){return(gg=u._All=u.asm.M).apply(null,arguments)},Ag=u._Any=function(){return(Ag=u._Any=u.asm.N).apply(null,arguments)},yg=u._ArgMax=function(){return(yg=u._ArgMax=u.asm.O).apply(null,arguments)},xg=u._AvgPool=function(){return(xg=u._AvgPool=u.asm.P).apply(null,arguments)},bg=u._BatchMatMul=function(){return(bg=u._BatchMatMul=u.asm.Q).apply(null,arguments)},vg=u._Ceil=function(){return(vg=u._Ceil=u.asm.R).apply(null,arguments)},wg=u._ClipByValue=function(){return(wg=u._ClipByValue=u.asm.S).apply(null,arguments)},kg=u._Conv2D=function(){return(kg=u._Conv2D=u.asm.T).apply(null,arguments)},Ig=u._Conv2DBackpropInput=function(){return(Ig=u._Conv2DBackpropInput=u.asm.U).apply(null,arguments)},Sg=u._Cos=function(){return(Sg=u._Cos=u.asm.V).apply(null,arguments)},Cg=u._Cosh=function(){return(Cg=u._Cosh=u.asm.W).apply(null,arguments)},Tp=u._CropAndResize=function(){return(Tp=u._CropAndResize=u.asm.X).apply(null,arguments)},Np=u._Cumsum=function(){return(Np=u._Cumsum=u.asm.Y).apply(null,arguments)},Ep=u._DepthToSpace=function(){return(Ep=u._DepthToSpace=u.asm.Z).apply(null,arguments)},nc=u._DepthwiseConv2dNative=function(){return(nc=u._DepthwiseConv2dNative=u.asm._).apply(null,arguments)},Li=u._Elu=function(){return(Li=u._Elu=u.asm.$).apply(null,arguments)},Tg=u._Equal=function(){return(Tg=u._Equal=u.asm.aa).apply(null,arguments)},sc=u._Exp=function(){return(sc=u._Exp=u.asm.ba).apply(null,arguments)},re=u._FlipLeftRight=function(){return(re=u._FlipLeftRight=u.asm.ca).apply(null,arguments)},ie=u._Floor=function(){return(ie=u._Floor=u.asm.da).apply(null,arguments)},ke=u._FloorDiv=function(){return(ke=u._FloorDiv=u.asm.ea).apply(null,arguments)},st=u._FusedBatchNorm=function(){return(st=u._FusedBatchNorm=u.asm.fa).apply(null,arguments)},Pt=u._FusedConv2D=function(){return(Pt=u._FusedConv2D=u.asm.ga).apply(null,arguments)},St=u._FusedDepthwiseConv2D=function(){return(St=u._FusedDepthwiseConv2D=u.asm.ha).apply(null,arguments)},Xe=u._Gather=function(){return(Xe=u._Gather=u.asm.ia).apply(null,arguments)},Ye=u._GatherNd=function(){return(Ye=u._GatherNd=u.asm.ja).apply(null,arguments)},yn=u._Greater=function(){return(yn=u._Greater=u.asm.ka).apply(null,arguments)},_r=u._GreaterEqual=function(){return(_r=u._GreaterEqual=u.asm.la).apply(null,arguments)},Fr=u._LeakyRelu=function(){return(Fr=u._LeakyRelu=u.asm.ma).apply(null,arguments)},Rp=u._Less=function(){return(Rp=u._Less=u.asm.na).apply(null,arguments)},rc=u._LessEqual=function(){return(rc=u._LessEqual=u.asm.oa).apply(null,arguments)},rs=u._Log=function(){return(rs=u._Log=u.asm.pa).apply(null,arguments)},ta=u._LogicalAnd=function(){return(ta=u._LogicalAnd=u.asm.qa).apply(null,arguments)},Dp=u._Max=function(){return(Dp=u._Max=u.asm.ra).apply(null,arguments)},US=u._MaxPool=function(){return(US=u._MaxPool=u.asm.sa).apply(null,arguments)},GS=u._Maximum=function(){return(GS=u._Maximum=u.asm.ta).apply(null,arguments)},HS=u._Mean=function(){return(HS=u._Mean=u.asm.ua).apply(null,arguments)},jS=u._Min=function(){return(jS=u._Min=u.asm.va).apply(null,arguments)},qS=u._Minimum=function(){return(qS=u._Minimum=u.asm.wa).apply(null,arguments)},XS=u._MirrorPad=function(){return(XS=u._MirrorPad=u.asm.xa).apply(null,arguments)},KS=u._Multiply=function(){return(KS=u._Multiply=u.asm.ya).apply(null,arguments)},ZS=u._Neg=function(){return(ZS=u._Neg=u.asm.za).apply(null,arguments)},YS=u._NonMaxSuppressionV3=function(){return(YS=u._NonMaxSuppressionV3=u.asm.Aa).apply(null,arguments)},JS=u._NonMaxSuppressionV4=function(){return(JS=u._NonMaxSuppressionV4=u.asm.Ba).apply(null,arguments)},QS=u._NonMaxSuppressionV5=function(){return(QS=u._NonMaxSuppressionV5=u.asm.Ca).apply(null,arguments)},eC=u._NotEqual=function(){return(eC=u._NotEqual=u.asm.Da).apply(null,arguments)},tC=u._OneHot=function(){return(tC=u._OneHot=u.asm.Ea).apply(null,arguments)},nC=u._PadV2=function(){return(nC=u._PadV2=u.asm.Fa).apply(null,arguments)},sC=u._Pow=function(){return(sC=u._Pow=u.asm.Ga).apply(null,arguments)},rC=u._Prelu=function(){return(rC=u._Prelu=u.asm.Ha).apply(null,arguments)},aC=u._Prod=function(){return(aC=u._Prod=u.asm.Ia).apply(null,arguments)},oC=u._RealDiv=function(){return(oC=u._RealDiv=u.asm.Ja).apply(null,arguments)},iC=u._Relu=function(){return(iC=u._Relu=u.asm.Ka).apply(null,arguments)},lC=u._Relu6=function(){return(lC=u._Relu6=u.asm.La).apply(null,arguments)},uC=u._ResizeBilinear=function(){return(uC=u._ResizeBilinear=u.asm.Ma).apply(null,arguments)},cC=u._Reverse=function(){return(cC=u._Reverse=u.asm.Na).apply(null,arguments)},dC=u._RotateWithOffset=function(){return(dC=u._RotateWithOffset=u.asm.Oa).apply(null,arguments)},pC=u._Round=function(){return(pC=u._Round=u.asm.Pa).apply(null,arguments)},hC=u._Rsqrt=function(){return(hC=u._Rsqrt=u.asm.Qa).apply(null,arguments)},fC=u._ScatterNd=function(){return(fC=u._ScatterNd=u.asm.Ra).apply(null,arguments)},mC=u._SelectV2=function(){return(mC=u._SelectV2=u.asm.Sa).apply(null,arguments)},gC=u._Sigmoid=function(){return(gC=u._Sigmoid=u.asm.Ta).apply(null,arguments)},AC=u._Sin=function(){return(AC=u._Sin=u.asm.Ua).apply(null,arguments)},yC=u._Softmax=function(){return(yC=u._Softmax=u.asm.Va).apply(null,arguments)},xC=u._Sqrt=function(){return(xC=u._Sqrt=u.asm.Wa).apply(null,arguments)},bC=u._Square=function(){return(bC=u._Square=u.asm.Xa).apply(null,arguments)},vC=u._SquaredDifference=function(){return(vC=u._SquaredDifference=u.asm.Ya).apply(null,arguments)},wC=u._Step=function(){return(wC=u._Step=u.asm.Za).apply(null,arguments)},kC=u._StridedSlice=function(){return(kC=u._StridedSlice=u.asm._a).apply(null,arguments)},IC=u._Sub=function(){return(IC=u._Sub=u.asm.$a).apply(null,arguments)},SC=u._Sum=function(){return(SC=u._Sum=u.asm.ab).apply(null,arguments)},CC=u._Tan=function(){return(CC=u._Tan=u.asm.bb).apply(null,arguments)},TC=u._Tanh=function(){return(TC=u._Tanh=u.asm.cb).apply(null,arguments)},NC=u._Tile=function(){return(NC=u._Tile=u.asm.db).apply(null,arguments)},EC=u._TopK=function(){return(EC=u._TopK=u.asm.eb).apply(null,arguments)},RC=u._Transform=function(){return(RC=u._Transform=u.asm.fb).apply(null,arguments)},DC=u._Transpose=function(){return(DC=u._Transpose=u.asm.gb).apply(null,arguments)},_C=u.__FusedMatMul=function(){return(_C=u.__FusedMatMul=u.asm.hb).apply(null,arguments)},ja=u._malloc=function(){return(ja=u._malloc=u.asm.ib).apply(null,arguments)},ac=u._free=function(){return(ac=u._free=u.asm.jb).apply(null,arguments)},w5=u.___errno_location=function(){return(w5=u.___errno_location=u.asm.kb).apply(null,arguments)},k5=u._emscripten_get_global_libc=function(){return(k5=u._emscripten_get_global_libc=u.asm.lb).apply(null,arguments)},na=u._pthread_self=function(){return(na=u._pthread_self=u.asm.mb).apply(null,arguments)},I5=u.___pthread_tsd_run_dtors=function(){return(I5=u.___pthread_tsd_run_dtors=u.asm.nb).apply(null,arguments)},_p=u._emscripten_main_thread_process_queued_calls=function(){return(_p=u._emscripten_main_thread_process_queued_calls=u.asm.ob).apply(null,arguments)},FC=u._emscripten_current_thread_process_queued_calls=function(){return(FC=u._emscripten_current_thread_process_queued_calls=u.asm.pb).apply(null,arguments)},S5=u._emscripten_register_main_browser_thread_id=function(){return(S5=u._emscripten_register_main_browser_thread_id=u.asm.qb).apply(null,arguments)},C5=u._emscripten_main_browser_thread_id=function(){return(C5=u._emscripten_main_browser_thread_id=u.asm.rb).apply(null,arguments)},T5=u.__emscripten_do_dispatch_to_thread=function(){return(T5=u.__emscripten_do_dispatch_to_thread=u.asm.sb).apply(null,arguments)},N5=u._emscripten_sync_run_in_main_thread_4=function(){return(N5=u._emscripten_sync_run_in_main_thread_4=u.asm.tb).apply(null,arguments)},E5=u._emscripten_run_in_main_runtime_thread_js=function(){return(E5=u._emscripten_run_in_main_runtime_thread_js=u.asm.ub).apply(null,arguments)},Ng=u.__emscripten_call_on_thread=function(){return(Ng=u.__emscripten_call_on_thread=u.asm.vb).apply(null,arguments)},$C=u._emscripten_tls_init=function(){return($C=u._emscripten_tls_init=u.asm.wb).apply(null,arguments)},Eg=u.__emscripten_thread_init=function(){return(Eg=u.__emscripten_thread_init=u.asm.xb).apply(null,arguments)},oc=u.stackSave=function(){return(oc=u.stackSave=u.asm.yb).apply(null,arguments)},Bi=u.stackRestore=function(){return(Bi=u.stackRestore=u.asm.zb).apply(null,arguments)},Wi=u.stackAlloc=function(){return(Wi=u.stackAlloc=u.asm.Ab).apply(null,arguments)},R5=u._emscripten_stack_set_limits=function(){return(R5=u._emscripten_stack_set_limits=u.asm.Bb).apply(null,arguments)},D5=u._memalign=function(){return(D5=u._memalign=u.asm.Cb).apply(null,arguments)},_5=u.__emscripten_allow_main_runtime_queued_calls=10512,Vi=u.__emscripten_main_thread_futex=12148;u.cwrap=Be,u.PThread=Re,u.PThread=Re,u.wasmMemory=ee,u.ExitStatus=ic;var Fp;function ic(S){this.name="ExitStatus",this.message="Program terminated with exit("+S+")",this.status=S}Ua=function S(){Fp||Rg(),Fp||(Ua=S)};function Rg(S){if(S=S||m,Fs>0)return;if(I){d(u),cp(),postMessage({cmd:"loaded"});return}if(up(),Fs>0)return;function D(){Fp||(Fp=!0,u.calledRun=!0,!pe&&(cp(),dp(),d(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),pp()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),D()},1)):D()}u.run=Rg;function OC(S,D){if(!(D&&J&&S===0)){if(!D&&I)throw postMessage({cmd:"exitProcess",returnCode:S}),new ic(S);J||(Re.terminateAllThreads(),be=S,jn(),u.onExit&&u.onExit(S),pe=!0),A(S,new ic(S))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return I&&(J=!1,Re.initWorker()),Rg(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),uT=Ct({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.10.0_@tensorflow+tfjs-core@3.10.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(re,ie){o=re,i=ie});var l={},c;for(c in a)a.hasOwnProperty(c)&&(l[c]=a[c]);var u=[],d="./this.program",p=function(re,ie){throw ie},h=!1,f=!1,m=!1,g=!1;h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!m&&!f;var A="";function y(re){return a.locateFile?a.locateFile(re,A):A+re}var x,b,v,I,C,N;m?(f?A=pc().dirname(A)+"/":A=__dirname+"/",x=function(ie,ke){return C||(C=Hi("fs")),N||(N=pc()),ie=N.normalize(ie),C.readFileSync(ie,ke?null:"utf8")},v=function(ie){var ke=x(ie,!0);return ke.buffer||(ke=new Uint8Array(ke)),H(ke.buffer),ke},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(re){if(!(re instanceof Tg))throw re}),process.on("unhandledRejection",qs),p=function(re){process.exit(re)},a.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(ie){return read(ie)}),v=function(ie){var ke;return typeof readbuffer=="function"?new Uint8Array(readbuffer(ie)):(ke=read(ie,"binary"),H(typeof ke=="object"),ke)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(p=function(re){quit(re)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||f)&&(f?A=self.location.href:typeof document!="undefined"&&document.currentScript&&(A=document.currentScript.src),s&&(A=s),A.indexOf("blob:")!==0?A=A.substr(0,A.lastIndexOf("/")+1):A="",x=function(re){var ie=new XMLHttpRequest;return ie.open("GET",re,!1),ie.send(null),ie.responseText},f&&(v=function(re){var ie=new XMLHttpRequest;return ie.open("GET",re,!1),ie.responseType="arraybuffer",ie.send(null),new Uint8Array(ie.response)}),b=function(re,ie,ke){var st=new XMLHttpRequest;st.open("GET",re,!0),st.responseType="arraybuffer",st.onload=function(){if(st.status==200||st.status==0&&st.response){ie(st.response);return}ke()},st.onerror=ke,st.send(null)},I=function(re){document.title=re});var $=a.print||console.log.bind(console),O=a.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(a[c]=l[c]);l=null,a.arguments&&(u=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(p=a.quit);var E;a.wasmBinary&&(E=a.wasmBinary);var F=a.noExitRuntime||!0;typeof WebAssembly!="object"&&qs("no native wasm support detected");var T,M=!1,G;function H(re,ie){re||qs("Assertion failed: "+ie)}function z(re){var ie=a["_"+re];return H(ie,"Cannot call unknown function "+re+", make sure it is exported"),ie}function X(re,ie,ke,st,Pt){var St={string:function(rs){var ta=0;if(rs!=null&&rs!==0){var Dp=(rs.length<<2)+1;ta=nc(Dp),ee(rs,ta,Dp)}return ta},array:function(rs){var ta=nc(rs.length);return ce(rs,ta),ta}};function Xe(rs){return ie==="string"?te(rs):ie==="boolean"?Boolean(rs):rs}var Ye=z(re),yn=[],_r=0;if(st)for(var Fr=0;Fr<st.length;Fr++){var Rp=St[ke[Fr]];Rp?(_r===0&&(_r=Np()),yn[Fr]=Rp(st[Fr])):yn[Fr]=st[Fr]}var rc=Ye.apply(null,yn);return rc=Xe(rc),_r!==0&&Ep(_r),rc}function Q(re,ie,ke,st){ke=ke||[];var Pt=ke.every(function(Xe){return Xe==="number"}),St=ie!=="string";return St&&Pt&&!st?z(re):function(){return X(re,ie,ke,arguments,st)}}var Z=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ne(re,ie,ke){for(var st=ie+ke,Pt=ie;re[Pt]&&!(Pt>=st);)++Pt;if(Pt-ie>16&&re.subarray&&Z)return Z.decode(re.subarray(ie,Pt));for(var St="";ie<Pt;){var Xe=re[ie++];if(!(Xe&128)){St+=String.fromCharCode(Xe);continue}var Ye=re[ie++]&63;if((Xe&224)==192){St+=String.fromCharCode((Xe&31)<<6|Ye);continue}var yn=re[ie++]&63;if((Xe&240)==224?Xe=(Xe&15)<<12|Ye<<6|yn:Xe=(Xe&7)<<18|Ye<<12|yn<<6|re[ie++]&63,Xe<65536)St+=String.fromCharCode(Xe);else{var _r=Xe-65536;St+=String.fromCharCode(55296|_r>>10,56320|_r&1023)}}return St}function te(re,ie){return re?ne(Ce,re,ie):""}function J(re,ie,ke,st){if(!(st>0))return 0;for(var Pt=ke,St=ke+st-1,Xe=0;Xe<re.length;++Xe){var Ye=re.charCodeAt(Xe);if(Ye>=55296&&Ye<=57343){var yn=re.charCodeAt(++Xe);Ye=65536+((Ye&1023)<<10)|yn&1023}if(Ye<=127){if(ke>=St)break;ie[ke++]=Ye}else if(Ye<=2047){if(ke+1>=St)break;ie[ke++]=192|Ye>>6,ie[ke++]=128|Ye&63}else if(Ye<=65535){if(ke+2>=St)break;ie[ke++]=224|Ye>>12,ie[ke++]=128|Ye>>6&63,ie[ke++]=128|Ye&63}else{if(ke+3>=St)break;ie[ke++]=240|Ye>>18,ie[ke++]=128|Ye>>12&63,ie[ke++]=128|Ye>>6&63,ie[ke++]=128|Ye&63}}return ie[ke]=0,ke-Pt}function ee(re,ie,ke){return J(re,Ce,ie,ke)}function ce(re,ie){we.set(re,ie)}function pe(re,ie){return re%ie>0&&(re+=ie-re%ie),re}var be,we,Ce,Oe,Be,Ue,et,ct,ot;function it(re){be=re,a.HEAP8=we=new Int8Array(re),a.HEAP16=Oe=new Int16Array(re),a.HEAP32=Ue=new Int32Array(re),a.HEAPU8=Ce=new Uint8Array(re),a.HEAPU16=Be=new Uint16Array(re),a.HEAPU32=et=new Uint32Array(re),a.HEAPF32=ct=new Float32Array(re),a.HEAPF64=ot=new Float64Array(re)}var ht=a.INITIAL_MEMORY||16777216,mt,It=[],Dt=[],Hn=[],gn=[],js=!1;Dt.push({func:function(){gp()}});function En(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)An(a.preRun.shift());Fs(It)}function ss(){js=!0,Fs(Dt)}function _s(){Fs(Hn)}function xs(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)cr(a.postRun.shift());Fs(gn)}function An(re){It.unshift(re)}function cr(re){gn.unshift(re)}var In=0,dr=null,pr=null;function Yr(re){In++,a.monitorRunDependencies&&a.monitorRunDependencies(In)}function Zu(re){if(In--,a.monitorRunDependencies&&a.monitorRunDependencies(In),In==0&&(dr!==null&&(clearInterval(dr),dr=null),pr)){var ie=pr;pr=null,ie()}}a.preloadedImages={},a.preloadedAudios={};function qs(re){a.onAbort&&a.onAbort(re),re+="",O(re),M=!0,G=1,re="abort("+re+"). Build with -s ASSERTIONS=1 for more info.";var ie=new WebAssembly.RuntimeError(re);throw i(ie),ie}function lp(re,ie){return String.prototype.startsWith?re.startsWith(ie):re.indexOf(ie)===0}var om="data:application/octet-stream;base64,";function up(re){return lp(re,om)}var cp="file://";function dp(re){return lp(re,cp)}var jn="tfjs-backend-wasm.wasm";up(jn)||(jn=y(jn));function pp(re){try{if(re==jn&&E)return new Uint8Array(E);if(v)return v(re);throw"both async and sync fetching of the wasm failed"}catch(ie){qs(ie)}}function im(){if(!E&&(h||f)){if(typeof fetch=="function"&&!dp(jn))return fetch(jn,{credentials:"same-origin"}).then(function(re){if(!re.ok)throw"failed to load wasm binary file at '"+jn+"'";return re.arrayBuffer()}).catch(function(){return pp(jn)});if(b)return new Promise(function(re,ie){b(jn,function(ke){re(new Uint8Array(ke))},ie)})}return Promise.resolve().then(function(){return pp(jn)})}function lm(){var re={a:fm};function ie(Xe,Ye){var yn=Xe.exports;a.asm=yn,T=a.asm.j,it(T.buffer),mt=a.asm.r,Zu("wasm-instantiate")}Yr("wasm-instantiate");function ke(Xe){ie(Xe.instance)}function st(Xe){return im().then(function(Ye){return WebAssembly.instantiate(Ye,re)}).then(Xe,function(Ye){O("failed to asynchronously prepare wasm: "+Ye),qs(Ye)})}function Pt(){return!E&&typeof WebAssembly.instantiateStreaming=="function"&&!up(jn)&&!dp(jn)&&typeof fetch=="function"?fetch(jn,{credentials:"same-origin"}).then(function(Xe){var Ye=WebAssembly.instantiateStreaming(Xe,re);return Ye.then(ke,function(yn){return O("wasm streaming compile failed: "+yn),O("falling back to ArrayBuffer instantiation"),st(ke)})}):st(ke)}if(a.instantiateWasm)try{var St=a.instantiateWasm(re,ie);return St}catch(Xe){return O("Module.instantiateWasm callback failed with error: "+Xe),!1}return Pt().catch(i),{}}function Fs(re){for(;re.length>0;){var ie=re.shift();if(typeof ie=="function"){ie(a);continue}var ke=ie.func;typeof ke=="number"?ie.arg===void 0?mt.get(ke)():mt.get(ke)(ie.arg):ke(ie.arg===void 0?null:ie.arg)}}function Yu(){qs()}function Ua(re,ie,ke){Ce.copyWithin(re,ie,ie+ke)}function um(){return Ce.length}function cm(re){try{return T.grow(re-be.byteLength+65535>>>16),it(T.buffer),1}catch(ie){}}function Dr(re){var ie=um(),ke=2147483648;if(re>ke)return!1;for(var st=1;st<=4;st*=2){var Pt=ie*(1+.2/st);Pt=Math.min(Pt,re+100663296);var St=Math.min(ke,pe(Math.max(re,Pt),65536)),Xe=cm(St);if(Xe)return!0}return!1}var Ga={mappings:{},buffers:[null,[],[]],printChar:function(re,ie){var ke=Ga.buffers[re];ie===0||ie===10?((re===1?$:O)(ne(ke,0)),ke.length=0):ke.push(ie)},varargs:void 0,get:function(){Ga.varargs+=4;var re=Ue[Ga.varargs-4>>2];return re},getStr:function(re){var ie=te(re);return ie},get64:function(re,ie){return re}};function dm(re){return 0}function hp(re,ie,ke,st,Pt){}function pm(re,ie,ke,st){for(var Pt=0,St=0;St<ke;St++){for(var Xe=Ue[ie+St*8>>2],Ye=Ue[ie+(St*8+4)>>2],yn=0;yn<Ye;yn++)Ga.printChar(re,Ce[Xe+yn]);Pt+=Ye}return Ue[st>>2]=Pt,0}function fp(){return 6}function qn(){return 28}function mp(re){return Ue[Tp()>>2]=re,re}function hm(re){switch(re){case 30:return 16384;case 85:var ie=2147483648;return ie/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return mp(28),-1}var fm={a:Yu,d:Ua,e:Dr,f:dm,c:hp,b:pm,h:fp,g:qn,i:hm},mm=lm(),gp=a.___wasm_call_ctors=function(){return(gp=a.___wasm_call_ctors=a.asm.k).apply(null,arguments)},Mi=a._init=function(){return(Mi=a._init=a.asm.l).apply(null,arguments)},Jr=a._init_with_threads_count=function(){return(Jr=a._init_with_threads_count=a.asm.m).apply(null,arguments)},Ju=a._get_threads_count=function(){return(Ju=a._get_threads_count=a.asm.n).apply(null,arguments)},gm=a._register_tensor=function(){return(gm=a._register_tensor=a.asm.o).apply(null,arguments)},Am=a._dispose_data=function(){return(Am=a._dispose_data=a.asm.p).apply(null,arguments)},Ap=a._dispose=function(){return(Ap=a._dispose=a.asm.q).apply(null,arguments)},Re=a._Abs=function(){return(Re=a._Abs=a.asm.s).apply(null,arguments)},ym=a._Add=function(){return(ym=a._Add=a.asm.t).apply(null,arguments)},xm=a._AddN=function(){return(xm=a._AddN=a.asm.u).apply(null,arguments)},bm=a._All=function(){return(bm=a._All=a.asm.v).apply(null,arguments)},vm=a._Any=function(){return(vm=a._Any=a.asm.w).apply(null,arguments)},wm=a._ArgMax=function(){return(wm=a._ArgMax=a.asm.x).apply(null,arguments)},Ha=a._AvgPool=function(){return(Ha=a._AvgPool=a.asm.y).apply(null,arguments)},km=a._BatchMatMul=function(){return(km=a._BatchMatMul=a.asm.z).apply(null,arguments)},Im=a._Ceil=function(){return(Im=a._Ceil=a.asm.A).apply(null,arguments)},Sm=a._ClipByValue=function(){return(Sm=a._ClipByValue=a.asm.B).apply(null,arguments)},Cm=a._Conv2D=function(){return(Cm=a._Conv2D=a.asm.C).apply(null,arguments)},Tm=a._Conv2DBackpropInput=function(){return(Tm=a._Conv2DBackpropInput=a.asm.D).apply(null,arguments)},Nm=a._Cos=function(){return(Nm=a._Cos=a.asm.E).apply(null,arguments)},yp=a._Cosh=function(){return(yp=a._Cosh=a.asm.F).apply(null,arguments)},Em=a._CropAndResize=function(){return(Em=a._CropAndResize=a.asm.G).apply(null,arguments)},Rm=a._Cumsum=function(){return(Rm=a._Cumsum=a.asm.H).apply(null,arguments)},Qr=a._DepthToSpace=function(){return(Qr=a._DepthToSpace=a.asm.I).apply(null,arguments)},Qu=a._DepthwiseConv2dNative=function(){return(Qu=a._DepthwiseConv2dNative=a.asm.J).apply(null,arguments)},ec=a._Elu=function(){return(ec=a._Elu=a.asm.K).apply(null,arguments)},Dm=a._Equal=function(){return(Dm=a._Equal=a.asm.L).apply(null,arguments)},_m=a._Exp=function(){return(_m=a._Exp=a.asm.M).apply(null,arguments)},Fm=a._FlipLeftRight=function(){return(Fm=a._FlipLeftRight=a.asm.N).apply(null,arguments)},$m=a._Floor=function(){return($m=a._Floor=a.asm.O).apply(null,arguments)},Om=a._FloorDiv=function(){return(Om=a._FloorDiv=a.asm.P).apply(null,arguments)},We=a._FusedBatchNorm=function(){return(We=a._FusedBatchNorm=a.asm.Q).apply(null,arguments)},Pm=a._FusedConv2D=function(){return(Pm=a._FusedConv2D=a.asm.R).apply(null,arguments)},Mm=a._FusedDepthwiseConv2D=function(){return(Mm=a._FusedDepthwiseConv2D=a.asm.S).apply(null,arguments)},zm=a._Gather=function(){return(zm=a._Gather=a.asm.T).apply(null,arguments)},Lm=a._GatherNd=function(){return(Lm=a._GatherNd=a.asm.U).apply(null,arguments)},Bm=a._Greater=function(){return(Bm=a._Greater=a.asm.V).apply(null,arguments)},Wm=a._GreaterEqual=function(){return(Wm=a._GreaterEqual=a.asm.W).apply(null,arguments)},tc=a._LeakyRelu=function(){return(tc=a._LeakyRelu=a.asm.X).apply(null,arguments)},xp=a._Less=function(){return(xp=a._Less=a.asm.Y).apply(null,arguments)},bp=a._LessEqual=function(){return(bp=a._LessEqual=a.asm.Z).apply(null,arguments)},Vm=a._Log=function(){return(Vm=a._Log=a.asm._).apply(null,arguments)},Um=a._LogicalAnd=function(){return(Um=a._LogicalAnd=a.asm.$).apply(null,arguments)},Gm=a._Max=function(){return(Gm=a._Max=a.asm.aa).apply(null,arguments)},Hm=a._MaxPool=function(){return(Hm=a._MaxPool=a.asm.ba).apply(null,arguments)},jm=a._Maximum=function(){return(jm=a._Maximum=a.asm.ca).apply(null,arguments)},qm=a._Mean=function(){return(qm=a._Mean=a.asm.da).apply(null,arguments)},Xm=a._Min=function(){return(Xm=a._Min=a.asm.ea).apply(null,arguments)},lt=a._Minimum=function(){return(lt=a._Minimum=a.asm.fa).apply(null,arguments)},Km=a._MirrorPad=function(){return(Km=a._MirrorPad=a.asm.ga).apply(null,arguments)},Zm=a._Multiply=function(){return(Zm=a._Multiply=a.asm.ha).apply(null,arguments)},Ym=a._Neg=function(){return(Ym=a._Neg=a.asm.ia).apply(null,arguments)},zi=a._NonMaxSuppressionV3=function(){return(zi=a._NonMaxSuppressionV3=a.asm.ja).apply(null,arguments)},vp=a._NonMaxSuppressionV4=function(){return(vp=a._NonMaxSuppressionV4=a.asm.ka).apply(null,arguments)},wp=a._NonMaxSuppressionV5=function(){return(wp=a._NonMaxSuppressionV5=a.asm.la).apply(null,arguments)},kp=a._NotEqual=function(){return(kp=a._NotEqual=a.asm.ma).apply(null,arguments)},Jm=a._OneHot=function(){return(Jm=a._OneHot=a.asm.na).apply(null,arguments)},Qm=a._PadV2=function(){return(Qm=a._PadV2=a.asm.oa).apply(null,arguments)},Ip=a._Pow=function(){return(Ip=a._Pow=a.asm.pa).apply(null,arguments)},eg=a._Prelu=function(){return(eg=a._Prelu=a.asm.qa).apply(null,arguments)},tg=a._Prod=function(){return(tg=a._Prod=a.asm.ra).apply(null,arguments)},ng=a._RealDiv=function(){return(ng=a._RealDiv=a.asm.sa).apply(null,arguments)},sg=a._Relu=function(){return(sg=a._Relu=a.asm.ta).apply(null,arguments)},rg=a._Relu6=function(){return(rg=a._Relu6=a.asm.ua).apply(null,arguments)},Sp=a._ResizeBilinear=function(){return(Sp=a._ResizeBilinear=a.asm.va).apply(null,arguments)},ea=a._Reverse=function(){return(ea=a._Reverse=a.asm.wa).apply(null,arguments)},ag=a._RotateWithOffset=function(){return(ag=a._RotateWithOffset=a.asm.xa).apply(null,arguments)},og=a._Round=function(){return(og=a._Round=a.asm.ya).apply(null,arguments)},v5=a._Rsqrt=function(){return(v5=a._Rsqrt=a.asm.za).apply(null,arguments)},Cp=a._ScatterNd=function(){return(Cp=a._ScatterNd=a.asm.Aa).apply(null,arguments)},ig=a._SelectV2=function(){return(ig=a._SelectV2=a.asm.Ba).apply(null,arguments)},lg=a._Sigmoid=function(){return(lg=a._Sigmoid=a.asm.Ca).apply(null,arguments)},ug=a._Sin=function(){return(ug=a._Sin=a.asm.Da).apply(null,arguments)},cg=a._Softmax=function(){return(cg=a._Softmax=a.asm.Ea).apply(null,arguments)},dg=a._Sqrt=function(){return(dg=a._Sqrt=a.asm.Fa).apply(null,arguments)},pg=a._Square=function(){return(pg=a._Square=a.asm.Ga).apply(null,arguments)},hg=a._SquaredDifference=function(){return(hg=a._SquaredDifference=a.asm.Ha).apply(null,arguments)},fg=a._Step=function(){return(fg=a._Step=a.asm.Ia).apply(null,arguments)},mg=a._StridedSlice=function(){return(mg=a._StridedSlice=a.asm.Ja).apply(null,arguments)},gg=a._Sub=function(){return(gg=a._Sub=a.asm.Ka).apply(null,arguments)},Ag=a._Sum=function(){return(Ag=a._Sum=a.asm.La).apply(null,arguments)},yg=a._Tan=function(){return(yg=a._Tan=a.asm.Ma).apply(null,arguments)},xg=a._Tanh=function(){return(xg=a._Tanh=a.asm.Na).apply(null,arguments)},bg=a._Tile=function(){return(bg=a._Tile=a.asm.Oa).apply(null,arguments)},vg=a._TopK=function(){return(vg=a._TopK=a.asm.Pa).apply(null,arguments)},wg=a._Transform=function(){return(wg=a._Transform=a.asm.Qa).apply(null,arguments)},kg=a._Transpose=function(){return(kg=a._Transpose=a.asm.Ra).apply(null,arguments)},Ig=a.__FusedMatMul=function(){return(Ig=a.__FusedMatMul=a.asm.Sa).apply(null,arguments)},Sg=a._malloc=function(){return(Sg=a._malloc=a.asm.Ta).apply(null,arguments)},Cg=a._free=function(){return(Cg=a._free=a.asm.Ua).apply(null,arguments)},Tp=a.___errno_location=function(){return(Tp=a.___errno_location=a.asm.Va).apply(null,arguments)},Np=a.stackSave=function(){return(Np=a.stackSave=a.asm.Wa).apply(null,arguments)},Ep=a.stackRestore=function(){return(Ep=a.stackRestore=a.asm.Xa).apply(null,arguments)},nc=a.stackAlloc=function(){return(nc=a.stackAlloc=a.asm.Ya).apply(null,arguments)};a.cwrap=Q;var Li;function Tg(re){this.name="ExitStatus",this.message="Program terminated with exit("+re+")",this.status=re}pr=function re(){Li||sc(),Li||(pr=re)};function sc(re){if(re=re||u,In>0||(En(),In>0))return;function ie(){Li||(Li=!0,a.calledRun=!0,!M&&(ss(),_s(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),xs()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),ie()},1)):ie()}if(a.run=sc,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return sc(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),cT=1e-7,dT=1e-4,Op=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},hc=class{refCount(e){return $s("refCount")}incRef(e){return $s("incRef")}timerAvailable(){return!0}time(e){return $s("time")}read(e){return $s("read")}readSync(e){return $s("readSync")}numDataIds(){return $s("numDataIds")}disposeData(e,t){return $s("disposeData")}write(e,t,n){return $s("write")}move(e,t,n,s,r){return $s("move")}memory(){return $s("memory")}floatPrecision(){return $s("floatPrecision")}epsilon(){return this.floatPrecision()===32?cT:dT}dispose(){return $s("dispose")}};function $s(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function B5(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Pp(e,t,n)}function pT(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,Pp(e,n,s),Pp(t,n,s)}function fc(e,t,n){return Math.max(e,Math.min(t,n))}function hT(e){return e%2==0?e:e+1}function Pp(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function fT(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function mT(e,t){let n=Math.random();return t*n+(1-n)*e}function gT(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function P(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Dn(e,t,n=""){P($r(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Xa(e){P(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Ka(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||Cn(e)&&!n)for(let s=0;s<e.length;++s)Ka(e[s],t,n);else t.push(e);return t}function zt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function AT(e){return e.length===0}function $r(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function un(e){return e%1==0}function yT(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function xT(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function bT(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return B5(t),t}function mc(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function vT(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function wT(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function Os(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),P(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),P(e.every(s=>un(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function W5(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:Os(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function V5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function U5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function G5(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function H5(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function kT(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Cn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function Fg(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function j5(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function oa(e){return typeof e=="string"||e instanceof String}function q5(e){return typeof e=="boolean"}function X5(e){return typeof e=="number"}function Mp(e){return Array.isArray(e)?Mp(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":X5(e)?"float32":oa(e)?"string":q5(e)?"bool":"float32"}function ia(e){return!!(e&&e.constructor&&e.call&&e.apply)}function zp(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function ji(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function K5(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,c)=>l*c)*(s?2:1);for(let l=0;l<a;l++)r[l]=K5(e+l*i,o,n,s)}return r}function qi(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return K5(0,e,t,n)}function $g(e,t){let n=Lp(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function Lp(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function IT(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return qi(e,new Float32Array(n));if(t==="int32")return qi(e,new Int32Array(n));if(t==="bool")return qi(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Og(e){e.forEach(t=>{P(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function ST(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function CT(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function Pg(e){return e&&e.then&&typeof e.then=="function"}function hr(...e){se().getBool("IS_TEST")||se().getBool("PROD")||console.warn(...e)}function TT(...e){se().getBool("IS_TEST")||se().getBool("PROD")||console.log(...e)}var Z5="tfjsflags",Y5=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=NT,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&hr(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];hr(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Pg(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);Z5 in e&&e[Z5].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=RT(s,r)})}};function NT(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(ET(t,s[0],s[1]),s.join("="))),t}function ET(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function RT(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function se(){return fr}var fr=null;function DT(e){fr=e}var Mg;function J5(){if(Mg==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Mg=e}return Mg}function _T(){let e=J5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function zg(e,t){let n=_T();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var Xi="Abs",Ki="Acos",Zi="Acosh",la="Add",Za="AddN",Yi="All",Ji="Any",Ya="ArgMax",gc="ArgMin",Qi="Asin",el="Asinh",tl="Atan",nl="Atanh",sl="Atan2",Ja="AvgPool",Bp="AvgPoolGrad",Ac="AvgPool3D",Wp="AvgPool3DGrad",Qa="BatchMatMul",rl="BatchToSpaceND",Vp="Bincount",Q5="BroadcastTo",Up="BroadcastArgs",eo="Cast",to="Ceil",ua="ClipByValue",Gp="Complex",yc="ComplexAbs",al="Concat",no="Conv2D",Hp="Conv2DBackpropFilter",so="Conv2DBackpropInput",xc="Conv3D",jp="Conv3DBackpropFilterV2",qp="Conv3DBackpropInputV2",ro="Cos",ao="Cosh",oo="Cumsum",ol="CropAndResize",Xp="DenseBincount",il="DepthToSpace",io="DepthwiseConv2dNative",Kp="DepthwiseConv2dNativeBackpropFilter",Zp="DepthwiseConv2dNativeBackpropInput",Yp="Diag",bc="Dilation2D",Jp="Dilation2DBackpropInput",Qp="Dilation2DBackpropFilter",lo="RealDiv",eh="Einsum",uo="Elu",th="EluGrad",ll="Erf",ul="Equal",co="Exp",cl="ExpandDims",dl="Expm1",nh="FFT",vc="Fill",pl="FlipLeftRight",po="Floor",ho="FloorDiv",fo="FusedBatchNorm",hl="GatherV2",fl="GatherNd",ml="Greater",mo="GreaterEqual",go="Identity",sh="IFFT",rh="Imag",gl="IsFinite",Al="IsInf",yl="IsNan",Ao="LeakyRelu",xl="Less",bl="LessEqual",ah="LinSpace",yo="Log",vl="Log1p",wl="LogicalAnd",wc="LogicalNot",kc="LogicalOr",eb="LogSoftmax",Ic="LRN",oh="LRNGrad",xo="Max",bo="Maximum",vo="MaxPool",ih="MaxPoolGrad",Sc="MaxPool3D",lh="MaxPool3DGrad",uh="MaxPoolWithArgmax",wo="Mean",ko="Min",Io="Minimum",So="MirrorPad",kl="Mod",ch="Multinomial",Co="Multiply",Il="Neg",Sl="NotEqual",Cl="NonMaxSuppressionV3",Tl="NonMaxSuppressionV4",Nl="NonMaxSuppressionV5",El="OnesLike",To="OneHot",Rl="Pack",No="PadV2",FT="Pool",Eo="Pow",Ro="Prelu",Dl="Prod",Cc="Range",dh="Real",_l="Reciprocal",Do="Relu",Fl="Reshape",Tc="ResizeNearestNeighbor",ph="ResizeNearestNeighborGrad",_o="ResizeBilinear",hh="ResizeBilinearGrad",Fo="Relu6",$o="Reverse",Oo="Round",Po="Rsqrt",$l="ScatterNd",Ol="Select",Pl="Selu",Ml="Slice",Mo="Sin",zl="Sinh",Ll="Sign",zo="Sigmoid",Bl="Softplus",Lo="Sqrt",Bo="Sum",Wl="SpaceToBatchND",Vl="SplitV",Wo="Softmax",fh="SparseFillEmptyRows",mh="SparseReshape",gh="SparseSegmentMean",Ah="SparseSegmentSum",yh="SparseToDense",Vo="SquaredDifference",Nc="Square",Ul="StridedSlice",xh="StringNGrams",bh="StringSplit",vh="StringToHashBucketFast",Uo="Sub",Go="Tan",Ho="Tanh",ca="Tile",Gl="TopK",Hl="Transform",jo="Transpose",wh="Unique",jl="Unpack",Ec="UnsortedSegmentSum",ql="ZerosLike",da="Step",kh="FromPixels",Xl="RotateWithOffset",qo="_FusedMatMul",Xo="FusedConv2D",Ko="FusedDepthwiseConv2D",Kl=zg("kernelRegistry",()=>new Map),Rc=zg("gradRegistry",()=>new Map);function Ih(e,t){let n=Bg(e,t);return Kl.get(n)}function Lg(e){return Rc.get(e)}function Or(e){let t=Kl.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function pa(e){let{kernelName:t,backendName:n}=e,s=Bg(t,n);Kl.has(s)&&hr(`The kernel '${t}' for backend '${n}' is already registered`),Kl.set(s,e)}function tb(e){let{kernelName:t}=e;Rc.has(t)&&se().getBool("DEBUG")&&hr(`Overriding the gradient for '${t}'`),Rc.set(t,e)}function $T(e,t){let n=Bg(e,t);if(!Kl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Kl.delete(n)}function OT(e){if(!Rc.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Rc.delete(e)}function PT(e,t){Or(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});pa(r)})}function Bg(e,t){return`${t}_${e}`}var w={};ze(w,{arraysEqual:()=>$r,assert:()=>P,assertNonNegativeIntegerDimensions:()=>Og,assertNonNull:()=>Xa,assertShapesMatch:()=>Dn,bytesFromStringArray:()=>j5,bytesPerElement:()=>Fg,checkConversionForErrors:()=>G5,clamp:()=>fc,computeStrides:()=>ji,createScalarValue:()=>VT,createShuffledIndices:()=>bT,decodeString:()=>Th,distSquared:()=>gT,encodeString:()=>Fc,fetch:()=>GT,fingerPrint64:()=>WT,flatten:()=>Ka,getArrayFromDType:()=>U5,getTypedArrayFromDType:()=>V5,hasEncodingLoss:()=>kT,hexToLong:()=>Dc,indexToLoc:()=>CT,inferDtype:()=>Mp,inferFromImplicitShape:()=>wT,isBoolean:()=>q5,isFunction:()=>ia,isInt:()=>un,isNumber:()=>X5,isPromise:()=>Pg,isScalarShape:()=>AT,isString:()=>oa,isTypedArray:()=>Cn,isValidDtype:()=>H5,locToIndex:()=>ST,makeOnesTypedArray:()=>$g,makeZerosNestedTypedArray:()=>IT,makeZerosTypedArray:()=>Lp,nearestDivisor:()=>zp,nearestLargerEven:()=>hT,now:()=>_c,parseAxisParam:()=>Os,randUniform:()=>mT,repeatedTry:()=>vT,rightPad:()=>mc,shuffle:()=>B5,shuffleCombo:()=>pT,sizeFromShape:()=>zt,sizeToSquarishShape:()=>xT,squeezeShape:()=>W5,sum:()=>fT,swap:()=>Pp,tanh:()=>yT,toNestedArray:()=>qi,toTypedArray:()=>Ch});var nb=qa(GC()),Zo=nb.default||nb;function Dc(e){return Zo.fromString(e,!0,16)}var sb=Dc("c3a5c85c97cb3127"),Yo=Dc("b492b66fbe98f273"),_n=Dc("9ae16a3b2f90404f");function Wg(e){return e.xor(e.shru(47))}function rb(e,t,n){let s=e.slice(t,t+n);return Zo.fromBytes(Array.from(s),!0,!0)}function xt(e,t){return rb(e,t,8)}function ab(e,t){return rb(e,t,4)}function cn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function ha(e,t,n=Dc("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function MT(e,t,n,s,r,a){r=r.add(e),a=cn(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(cn(r,44)),[r.add(s),a.add(o)]}function Sh(e,t,n,s){return MT(xt(e,t),xt(e,t+8),xt(e,t+16),xt(e,t+24),n,s)}function zT(e,t=e.length){if(t>=8){let n=_n.add(t*2),s=xt(e,0).add(_n),r=xt(e,t-8),a=cn(r,37).mul(n).add(s),o=cn(s,25).add(r).mul(n);return ha(a,o,n)}if(t>=4){let n=_n.add(t*2),s=ab(e,0);return ha(s.shl(3).add(t),ab(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return Wg(_n.mul(a).xor(sb.mul(o))).mul(_n)}return _n}function LT(e,t=e.length){let n=_n.add(t*2),s=xt(e,0).mul(Yo),r=xt(e,8),a=xt(e,t-8).mul(n),o=xt(e,t-16).mul(_n);return ha(cn(s.add(r),43).add(cn(a,30)).add(o),s.add(cn(r.add(_n),18)).add(a),n)}function BT(e,t=e.length){let n=_n.add(t*2),s=xt(e,0).mul(_n),r=xt(e,8),a=xt(e,t-8).mul(n),o=xt(e,t-16).mul(_n),i=cn(s.add(r),43).add(cn(a,30)).add(o),l=ha(i,s.add(cn(r.add(_n),18)).add(a),n),c=xt(e,16).mul(n),u=xt(e,24),d=i.add(xt(e,t-32)).mul(n),p=l.add(xt(e,t-24)).mul(n);return ha(cn(c.add(u),43).add(cn(d,30)).add(p),c.add(cn(u.add(s),18)).add(d),n)}function WT(e,t=e.length){let n=Zo.fromNumber(81,!0);if(t<=32)return t<=16?zT(e,t):LT(e,t);if(t<=64)return BT(e,t);let s=n,r=n.mul(Yo).add(113),a=Wg(r.mul(_n).add(113)).mul(_n),o=[Zo.UZERO,Zo.UZERO],i=[Zo.UZERO,Zo.UZERO];s=s.mul(_n).add(xt(e,0));let l=0,c=(t-1>>6)*64,u=c+(t-1&63)-63;do s=cn(s.add(r).add(o[0]).add(xt(e,l+8)),37).mul(Yo),r=cn(r.add(o[1]).add(xt(e,l+48)),42).mul(Yo),s=s.xor(i[1]),r=r.add(o[0]).add(xt(e,l+40)),a=cn(a.add(i[0]),33).mul(Yo),o=Sh(e,l,o[1].mul(Yo),s.add(i[0])),i=Sh(e,l+32,a.add(i[1]),r.add(xt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==c);let d=Yo.add(a.and(255).shl(1));return l=u,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=cn(s.add(r).add(o[0]).add(xt(e,l+8)),37).mul(d),r=cn(r.add(o[1]).add(xt(e,l+48)),42).mul(d),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(xt(e,l+40))),a=cn(a.add(i[0]),33).mul(d),o=Sh(e,l,o[1].mul(d),s.add(i[0])),i=Sh(e,l+32,a.add(i[1]),r.add(xt(e,l+16))),[a,s]=[s,a],ha(ha(o[0],i[0],d).add(Wg(r).mul(sb)).add(a),ha(o[1],i[1],d).add(s),d)}function VT(e,t){return t==="string"?Fc(e):Ch([e],t)}function UT(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Ch(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Ka(e)),se().getBool("DEBUG")&&G5(e,t),UT(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function _c(){return se().platform.now()}function GT(e,t){return se().platform.fetch(e,t)}function Fc(e,t="utf-8"){return t=t||"utf-8",se().platform.encode(e,t)}function Th(e,t="utf-8"){return t=t||"utf-8",se().platform.decode(e,t)}var HT=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new qT)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=_c();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:_c()-o})}if(se().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let c=s[l];c.data().then(u=>{jT(u,c.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function jT(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var qT=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?mc(`${s}ms`,9):s.error,i=mc(e,25),l=t.rank,c=t.size,u=mc(t.shape.toString(),14),d="";for(let p in r){let h=r[p];if(h!=null){let f=h.shape||t.shape,m=f.length;d+=`${p}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${u} %c${c} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function XT(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let c=e[l],u=c.inputs;for(let d in u){let p=u[d],h=!1;for(let f=0;f<t.length;f++)if(s[p.id]){c.outputs.forEach(m=>s[m.id]=!0),h=!0,r[c.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let d=0;d<c.outputs.length;d++)if(a[c.outputs[d].id]){for(let p in u)a[u[p].id]=!0,o[c.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let c=e[l];if(r[c.id]&&o[c.id]){let u={};for(let p in c.inputs){let h=c.inputs[p];s[h.id]&&(u[p]=h)}let d=Object.assign({},c);d.inputs=u,d.outputs=c.outputs,i.push(d)}}return i}function KT(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let c=e[l.id];c!=null?o.push(c):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let c=n(()=>i[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=a.inputs[l];if(!$r(c.shape,u.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let d=e[u.id];e[u.id]=s(d,c),d.dispose()}}}}var ob=20,$c=3,Vg=7;function ZT(e,t,n,s){let r=ji(t),a=YT(e,t,n,r),o=t.length,i=Nh(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(c=>" "+c).join(`
|
|
`)),l.join(`
|
|
`)}function YT(e,t,n,s){let r=zt(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?Pc(e):e;if(i>1)for(let c=0;c<r/a;c++){let u=c*a;for(let d=0;d<a;d++)o[d]=Math.max(o[d],Oc(l[u+d],0,n).length)}return o}function Oc(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(Vg))} + ${parseFloat(e[1].toFixed(Vg))}j`:oa(e)?s=`'${e}'`:n==="bool"?s=ib(e):s=parseFloat(e.toFixed(Vg)).toString(),mc(s,t)}function ib(e){return e===0?"false":"true"}function Nh(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=Pc(e);return[Oc(m[0],0,n)]}return n==="bool"?[ib(e[0])]:[e[0].toString()]}if(l===1){if(i>ob){let g=$c*o,A=Array.from(e.slice(0,g)),y=Array.from(e.slice((i-$c)*o,i*o));return n==="complex64"&&(A=Pc(A),y=Pc(y)),["["+A.map((x,b)=>Oc(x,r[b],n)).join(", ")+", ..., "+y.map((x,b)=>Oc(x,r[i-$c+b],n)).join(", ")+"]"]}let m=n==="complex64"?Pc(e):Array.from(e);return["["+m.map((g,A)=>Oc(g,r[A],n)).join(", ")+"]"]}let c=t.slice(1),u=s.slice(1),d=s[0]*o,p=[];if(i>ob){for(let m=0;m<$c;m++){let g=m*d,A=g+d;p.push(...Nh(e.slice(g,A),c,n,u,r,!1))}p.push("...");for(let m=i-$c;m<i;m++){let g=m*d,A=g+d;p.push(...Nh(e.slice(g,A),c,n,u,r,m===i-1))}}else for(let m=0;m<i;m++){let g=m*d,A=g+d;p.push(...Nh(e.slice(g,A),c,n,u,r,m===i-1))}let h=l===2?",":"";p[0]="["+p[0]+h;for(let m=1;m<p.length-1;m++)p[m]=" "+p[m]+h;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(a?"":f),p}function Pc(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Jt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=zt(e),n!=null){let s=n.length;P(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||U5(t,this.size),this.strides=ji(e)}set(e,...t){t.length===0&&(t=[0]),P(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return mr().makeTensor(this.values,this.shape,this.dtype)}},mr=null,Zl=null,JT=null;function QT(e){mr=e}function e9(e){Zl=e}function t9(e){JT=e}var Ge=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=zt(e),this.strides=ji(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Zl.buffer(this.shape,this.dtype,e)}bufferSync(){return Zl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return qi(this.shape,e,this.dtype==="complex64")}arraySync(){return qi(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=mr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Th(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=mr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Th(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await mr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(mr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Zl.print(this,e)}clone(){return this.throwIfDisposed(),Zl.clone(this)}toString(e=!1){let t=this.dataSync();return ZT(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Zl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),mr().makeVariable(this,e,t,n)}};Object.defineProperty(Ge,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function ae(){return zg("Tensor",()=>Ge)}ae();var Mc=class extends Ge{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!$r(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);mr().disposeTensor(this),this.dataId=e.dataId,mr().incRef(this,null)}dispose(){mr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Mc,Symbol.hasInstance,{value:e=>e instanceof Ge&&e.assign!=null&&e.assign instanceof Function});var Xs={};ze(Xs,{assertTypesMatch:()=>lb,getTensorsInContainer:()=>Xg,isTensorInList:()=>s9,makeTypesMatch:()=>_t});var Ug;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Ug||(Ug={}));var Gg;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Gg||(Gg={}));var Hg;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Hg||(Hg={}));var jg;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(jg||(jg={}));var qg;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(qg||(qg={}));var n9={float32:jg,int32:Gg,bool:Hg,complex64:qg};function Ps(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return n9[e][t]}function Eh(e){return Ps(e,"int32")}function _t(e,t){if(e.dtype===t.dtype)return[e,t];let n=Ps(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function lb(e,t){P(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function s9(e,t){return t.some(n=>n.id===e.id)}function Xg(e){let t=[],n=new Set;return ub(e,t,n),t}function ub(e,t,n){if(e==null)return;if(e instanceof Ge){t.push(e);return}if(!r9(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),ub(a,t,n))}}function r9(e){return Array.isArray(e)||typeof e=="object"}function Kg(e){return e.kernelName!=null}var cb=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},zc=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new cb}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(hr(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new HT(this.backendInstance),!0}setupRegisteredKernels(){Or(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Or(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof hc)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,hr(`Initialization of backend ${e} failed`),hr(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return hr(`Initialization of backend ${e} failed`),hr(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return zc.nextTensorId++}nextVariableId(){return zc.nextVariableId++}clone(e){let t=W.runKernel(go,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return W.runKernel(eo,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(Ih(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=Kg(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Kg(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=Ih(h,this.backendName);P(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let A=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let y=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,A,y);let x=y.map(b=>{if(b.rank!=null)return b;let{dataId:v,shape:I,dtype:C}=b;return this.makeTensorFromDataId(v,I,C)});if(s){let b=this.getTensorsForGradient(h,f,x);n=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:c,attrs:u}=e,d=Kg(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(p=this.profiler.profileKernel(l,c,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),s&&this.addTapeNode(l,c,t,d,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(h=>c[h]!=null?c[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=Lg(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(P(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,c)=>a[c]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&oa(e[0])&&(r=e.map(i=>Fc(i)));let a=s.write(r,t,n),o=new Ge(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=j5(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new Ge(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new Mc(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Fg(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Mc||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Fg(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=Lg(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((c,u)=>{if(c==null){let d=n[u],p=Lp(d.size,d.dtype);return this.makeTensor(p,d.shape,d.dtype)}return c}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Xg(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(P(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));P(r instanceof Ge,()=>"The result y returned by f() must be a tensor.");let a=XT(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?a9(r.shape):n,KT(o,a,l=>this.tidy(l),o9);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return P(ia(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{P(t.every(o=>o instanceof Ge),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),P(n.value instanceof Ge,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),P(ia(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),c=Array.isArray(l)?l:[l];P(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),P(c.every(d=>d instanceof Ge),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((d,p)=>{u[p]=()=>d}),u};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=_c(),n=await this.backend.time(e);return n.wallMs=_c()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new cb;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};zc.nextTensorId=0;zc.nextVariableId=0;function a9(e){let t=$g(zt(e),"float32");return W.makeTensor(t,e,"float32")}function db(){let e=J5();if(e._tfengine==null){let t=new Y5(e);e._tfengine=new zc(t)}return DT(e._tfengine.ENV),QT(()=>e._tfengine),e._tfengine}var W=db();function o9(e,t){let n={a:e,b:t};return W.runKernel(la,n)}var Lc={};ze(Lc,{isBrowser:()=>pb,isMobile:()=>u9,mockIsMobile:()=>l9});function i9(){return typeof navigator!="undefined"&&navigator!=null}var Zg;function l9(e){Zg=e}function u9(e){if(Zg!==void 0)return Zg;if(e||i9()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function pb(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ks=se();Ks.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ks.registerFlag("IS_BROWSER",()=>pb());Ks.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ks.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ks.registerFlag("PROD",()=>!1);Ks.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ks.getBool("DEBUG"));Ks.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ks.registerFlag("IS_TEST",()=>!1);Ks.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Ks.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function gr(e,t){let n=e;if(Cn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||Cn(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&se().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&hb(e,s,[]),s}function hb(e,t,n){if(n=n||[],!Array.isArray(e)&&!Cn(e)){P(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}P(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),P(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)hb(e[r],s,n.concat(r))}function fb(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function _(e,t,n,s="numeric"){if(e instanceof Ge)return fb(s,e.dtype,t,n),e;let r=Mp(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),fb(s,r,t,n),e==null||!Cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=gr(e,r);!Cn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Ch(e,r):Ka(e,[],!0);return W.makeTensor(i,a,r)}function Bc(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>_(a,`${t}[${o}]`,n,s))}var mb="__op";function V(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+mb;let r=(...a)=>{W.startScope(n);try{let o=s(...a);return Pg(o)&&console.error("Cannot return a Promise inside of tidy."),W.endScope(o),o}catch(o){throw W.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function c9(e,t){let n=_(e,"real","complex"),s=_(t,"imag","complex");Dn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return W.runKernel(Gp,r)}var fa=V({complex_:c9});function ma(e,t,n,s){if(s==null&&(s=Mp(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Og(t);let r=zt(t),a=zt(n);P(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==zt(t.slice(o)):!0;P(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!Cn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?Ch(e,s):Ka(e,[],!0),W.makeTensor(e,t,s)}function Lt(e,t,n){let s=gr(e,n);return ma(e,t,s,n)}var Yg={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Rh=4;async function d9(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let c={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async d=>{let p=await l.bytes(),h=p.reduce((g,A)=>g+A.length,0)+Rh*p.length,f=new Uint8Array(h),m=0;for(let g=0;g<p.length;g++){let A=p[g],y=new Uint8Array(new Uint32Array([A.length]).buffer);f.set(y,m),m+=Rh,f.set(A,m),m+=A.length}d(f)});s.push(u)}else s.push(l.data());t!=null&&(c.group=t),n.push(c)}let a=await Promise.all(s);return{data:p9(a),specs:n}}function gb(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,c=zt(l),u;if("quantization"in a){let d=a.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${a.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=Yg[d.dtype],h=e.slice(r,r+c*p),f=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){u=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=g*d.scale+d.min}}else if(d.dtype==="float16")s===void 0&&(s=y9()),u=s(f);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(i==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);u=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*p}else if(i==="string"){let d=zt(a.shape);u=[];for(let p=0;p<d;p++){let h=new Uint32Array(e.slice(r,r+Rh))[0];r+=Rh;let f=new Uint8Array(e.slice(r,r+h));u.push(f),r+=h}}else{let d=Yg[i],p=e.slice(r,r+c*d);if(i==="float32")u=new Float32Array(p);else if(i==="int32")u=new Int32Array(p);else if(i==="bool")u=new Uint8Array(p);else if(i==="complex64"){u=new Float32Array(p);let h=new Float32Array(u.length/2),f=new Float32Array(u.length/2);for(let A=0;A<h.length;A++)h[A]=u[A*2],f[A]=u[A*2+1];let m=Lt(h,l,"float32"),g=Lt(f,l,"float32");n[o]=fa(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*d}i!=="complex64"&&(n[o]=Lt(u,l,i))}return n}function p9(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var Jg=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Ab(e){return Jg?Buffer.byteLength(e):new Blob([e]).size}function h9(e){if(Jg)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function f9(e){if(Jg){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function Qg(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function yb(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function xb(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function eA(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Wc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Ab(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Ab(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function m9(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)==0;)r-=8388608,s<<=1;return s&=~8388608,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function g9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function A9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function y9(){let e=m9(),t=g9(),n=A9();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Mt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Mt.instance==null&&(Mt.instance=new Mt),Mt.instance}static registerSaveRouter(e){Mt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Mt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Mt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Mt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Mt.getInstance().loadRouters:Mt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},x9=e=>Mt.registerSaveRouter(e),b9=e=>Mt.registerLoadRouter(e),v9=e=>Mt.getSaveHandlers(e),w9=(e,t)=>Mt.getLoadHandlers(e,t),tA="tensorflowjs",nA=1,Jo="models_store",ga="model_info_store";function bb(){if(!se().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function sA(e){let t=e.result;t.createObjectStore(Jo,{keyPath:"modelPath"}),t.createObjectStore(ga,{keyPath:"modelPath"})}var Qo=class{constructor(e){if(this.indexedDB=bb(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(tA,nA);r.onupgradeneeded=()=>sA(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(Jo,"readonly"),l=o.objectStore(Jo).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=c=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=Wc(t),i=a.transaction(ga,"readwrite"),l=i.objectStore(ga),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),u;c.onsuccess=()=>{u=a.transaction(Jo,"readwrite");let p=u.objectStore(Jo).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});p.onsuccess=()=>n({modelArtifactsInfo:o}),p.onerror=h=>{l=i.objectStore(ga);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(p.error)),f.onerror=m=>(a.close(),s(p.error))}},c.onerror=d=>(a.close(),s(c.error)),i.oncomplete=()=>{u==null?a.close():u.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};Qo.URL_SCHEME="indexeddb://";var vb=e=>se().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Qo.URL_SCHEME)?k9(e.slice(Qo.URL_SCHEME.length)):null;Mt.registerSaveRouter(vb);Mt.registerLoadRouter(vb);function k9(e){return new Qo(e)}function I9(e){return e.startsWith(Qo.URL_SCHEME)?e.slice(Qo.URL_SCHEME.length):e}var S9=class{constructor(){this.indexedDB=bb()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(tA,nA);n.onupgradeneeded=()=>sA(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(ga,"readonly"),o=r.objectStore(ga).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=I9(e),new Promise((t,n)=>{let s=this.indexedDB.open(tA,nA);s.onupgradeneeded=()=>sA(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(ga,"readwrite"),o=a.objectStore(ga),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=o.delete(e),u=()=>{l=r.transaction(Jo,"readwrite");let p=l.objectStore(Jo).delete(e);p.onsuccess=()=>t(i.result.modelArtifactsInfo),p.onerror=h=>n(i.error)};c.onsuccess=u,c.onerror=d=>(u(),r.close(),n(i.error))}},i.onerror=c=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},Pr="/",Yl="tensorflowjs_models",wb="info",C9="model_topology",T9="weight_specs",N9="weight_data",E9="model_metadata";function kb(e){return{info:[Yl,e,wb].join(Pr),topology:[Yl,e,C9].join(Pr),weightSpecs:[Yl,e,T9].join(Pr),weightData:[Yl,e,N9].join(Pr),modelMetadata:[Yl,e,E9].join(Pr)}}function Ib(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function R9(e){let t=e.split(Pr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Pr)}function D9(e){return e.startsWith(ei.URL_SCHEME)?e.slice(ei.URL_SCHEME.length):e}var ei=class{constructor(e){if(!se().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=kb(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=Wc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,h9(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw Ib(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=f9(a),t}};ei.URL_SCHEME="localstorage://";var Sb=e=>se().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ei.URL_SCHEME)?_9(e.slice(ei.URL_SCHEME.length)):null;Mt.registerSaveRouter(Sb);Mt.registerLoadRouter(Sb);function _9(e){return new ei(e)}var F9=class{constructor(){P(se().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),P(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Yl+Pr,n=Pr+wb;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=R9(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=D9(e);let t=kb(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return Ib(t),n}},Jl="://",bs=class{constructor(){this.managers={}}static getInstance(){return bs.instance==null&&(bs.instance=new bs),bs.instance}static registerManager(e,t){P(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Jl)&&(e=e.slice(0,e.indexOf(Jl))),P(e.length>0,()=>"scheme must not be an empty string.");let n=bs.getInstance();P(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Dh(e){if(e.indexOf(Jl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${bs.getSchemes().join(",")}`);return{scheme:e.split(Jl)[0],path:e.split(Jl)[1]}}async function Cb(e,t,n=!1){P(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Mt.getLoadHandlers(e);P(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),P(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Mt.getSaveHandlers(t);P(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),P(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=Dh(e).scheme,l=Dh(e).path,c=i===Dh(e).scheme,u=await r.load();n&&c&&await bs.getManager(i).removeModel(l);let d=await o.save(u);return n&&!c&&await bs.getManager(i).removeModel(l),d.modelArtifactsInfo}async function $9(){let e=bs.getSchemes(),t={};for(let n of e){let s=await bs.getManager(n).listModels();for(let r in s){let a=n+Jl+r;t[a]=s[r]}}return t}async function O9(e){let t=Dh(e);return bs.getManager(t.scheme).removeModel(t.path)}async function P9(e,t){return Cb(e,t,!1)}async function M9(e,t){return Cb(e,t,!0)}var z9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(se().get("IS_BROWSER")){se().setPlatform("browser",new z9);try{bs.registerManager(ei.URL_SCHEME,new F9)}catch(e){}try{bs.registerManager(Qo.URL_SCHEME,new S9)}catch(e){}}var L9={importFetch:()=>HC()},rA,B9=class{constructor(){this.util=Hi("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return se().global.fetch!=null?se().global.fetch(e,t):(rA==null&&(rA=L9.importFetch()),rA(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};se().get("IS_NODE")&&se().setPlatform("node",new B9);function He(e,t="float32",n){return t=t||"float32",Og(e),new Jt(e,t,n)}function W9(e,t){let n=_(e,"x","cast");if(!H5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return W.runKernel(eo,s,r)}var de=V({cast_:W9});function V9(e){let n={x:_(e,"x","clone","string_or_numeric")};return W.runKernel(go,n)}var Zs=V({clone_:V9});function Tb(e,t=!1){console.log(e.toString(t))}db();var U9={buffer:He,cast:de,clone:Zs,print:Tb};e9(U9);var Xn={};ze(Xn,{browserFiles:()=>Z9,browserHTTPRequest:()=>tN,concatenateArrayBuffers:()=>Qg,copyModel:()=>P9,decodeWeights:()=>gb,encodeWeights:()=>d9,fromMemory:()=>sN,getLoadHandlers:()=>w9,getModelArtifactsForJSON:()=>eA,getModelArtifactsInfoForJSON:()=>Wc,getSaveHandlers:()=>v9,http:()=>iA,isHTTPScheme:()=>oA,listModels:()=>$9,loadWeights:()=>Y9,moveModel:()=>M9,registerLoadRouter:()=>b9,registerSaveRouter:()=>x9,removeModel:()=>O9,weightsLoaderFactory:()=>Db,withSaveHandler:()=>rN});var G9="model",H9=".json",j9=".weights.bin";function Nb(e){return new Promise(t=>setTimeout(t)).then(e)}var Ql=class{constructor(e){if(!se().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Ql.URL_SCHEME)&&(e=e.slice(Ql.URL_SCHEME.length)),(e==null||e.length===0)&&(e=G9),this.modelJsonFileName=e+H9,this.weightDataFileName=e+j9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=xb(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await Nb(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await Nb(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Wc(e)}}}};Ql.URL_SCHEME="downloads://";var q9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=eA(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,Qg(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>yb(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=yb(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},X9=e=>se().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ql.URL_SCHEME)?K9(e.slice(Ql.URL_SCHEME.length)):null;Mt.registerSaveRouter(X9);function K9(e="model"){return new Ql(e)}function Z9(e){return new q9(e)}function Eb(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(c=>{let u=n+ ++r/e.length*(s-n);return t(u),c}),l);function o(l){P(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,c){P(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),P(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),P(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(a))}async function Rb(e,t){t==null&&(t={});let n=t.fetchFunc==null?se().platform.fetch:t.fetchFunc,s=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await Eb(s,t.onProgress,r,a)).map(d=>d.arrayBuffer()),l=.5,c=1;return t.onProgress==null?await Promise.all(i):await Eb(i,t.onProgress,l,c)}async function Y9(e,t="",n,s){return Db(o=>Rb(o,{requestInit:s}))(e,t,n)}function Db(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let A="quantization"in g?g.quantization.dtype:g.dtype,y=Yg[A]*zt(g.shape),x=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:y})};s!=null?s.forEach((b,v)=>{b===g.name&&(x(),o[v]=!0)}):x(),i.push(g.name),m+=y})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),c=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;c.push(m)})});let u=await e(c),d={},p=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b<f;b++)m+=u[p+b].byteLength;let g=new ArrayBuffer(m),A=new Uint8Array(g),y=0;for(let b=0;b<f;b++){let v=new Uint8Array(u[p+b]);A.set(v,y),y+=v.byteLength}a[h].forEach(b=>{let v=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),I=gb(v,[b.manifestEntry]);for(let C in I)d[C]=I[C]}),p+=f}),d}}var J9="application/octet-stream",Q9="application/json",aA=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(P(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=se().platform.fetch,P(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&P(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=xb(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:Q9}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:J9}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Wc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return eA(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=eN(t),r=this.weightPathPrefix||n,a=[];for(let c of e)a.push(...c.weights);let o=[],i=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(u)):o.push(r+u+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await Rb(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Qg(l)]}};aA.URL_SCHEME_REGEX=/^https?:\/\//;function eN(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function oA(e){return e.match(aA.URL_SCHEME_REGEX)!=null}var _b=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>oA(s)):n=oA(e),n)return iA(e,t)}return null};Mt.registerSaveRouter(_b);Mt.registerLoadRouter(_b);function iA(e,t){return new aA(e,t)}function tN(e,t){return iA(e,t)}var lA=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},nN=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function sN(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new lA(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new lA({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new lA({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function rN(e){return new nN(e)}var Fb={};ze(Fb,{confusionMatrix:()=>uN});function aN(e,t,n=!1,s=!1){let r=_(e,"a","matMul"),a=_(t,"b","matMul");[r,a]=_t(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return W.runKernel(Qa,o,i)}var Ve=V({matMul_:aN});function oN(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:_(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return W.runKernel(To,a,o)}var eu=V({oneHot_:oN});function iN(e,t){let n=_(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),P(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{P(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return W.runKernel(jo,s,r)}var Ke=V({transpose_:iN});function lN(e,t,n){let s=_(e,"labels","confusionMatrix"),r=_(t,"predictions","confusionMatrix");P(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),P(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),P(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),P(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),P(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=eu(de(s,"int32"),n),o=eu(de(r,"int32"),n),i=Ke(a),l=Ve(i,o);return de(l,"int32")}var uN=V({confusionMatrix_:lN}),Ms={};ze(Ms,{fromPixels:()=>gN,fromPixelsAsync:()=>fN,toPixels:()=>mN});function $b(e,t,n){if(Xa(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=gr(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return ma(e,t,s,n)}var tu;function Ob(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let f=2;if(r&&e.readyState<f)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Ih(kh,W.backendName)!=null){let f={pixels:e},m={numChannels:t};return W.runKernel(kh,f,m)}let[c,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;o?d=e.getContext("2d").getImageData(0,0,c,u).data:s||n?d=e.data:(a||r||i)&&(tu==null&&(tu=document.createElement("canvas").getContext("2d")),tu.canvas.width=c,tu.canvas.height=u,tu.drawImage(e,0,0,c,u),d=tu.getImageData(0,0,c,u).data);let p;if(t===4)p=new Int32Array(d);else{let f=c*u;p=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)p[m*t+g]=d[m*4+g]}return $b(p,[u,c,t],"int32")}function cN(e){return e!=null&&e.data instanceof Uint8Array}function dN(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function pN(e){return e!=null&&e.width!==0&&e.height!==0}function hN(e){return dN()&&!(e instanceof ImageBitmap)&&pN(e)&&!cN(e)}async function fN(e,t=3){let n=null;if(se().getBool("WRAP_TO_IMAGEBITMAP")&&hN(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return Ob(n,t)}async function mN(e,t){let n=_(e,"img","toPixels");if(!(e instanceof Ge)){let c=n;n=de(c,"int32"),c.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let c=0;c<s*r;++c){let u=[0,0,0,255];for(let p=0;p<a;p++){let h=o[c*a+p];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(u[0]=h*i,u[1]=h*i,u[2]=h*i):u[p]=h*i}let d=c*4;l[d+0]=Math.round(u[0]),l[d+1]=Math.round(u[1]),l[d+2]=Math.round(u[2]),l[d+3]=Math.round(u[3])}if(t!=null){t.width=r,t.height=s;let c=t.getContext("2d"),u=new ImageData(l,r,s);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var gN=V({fromPixels_:Ob}),uA={};ze(uA,{prepareAndValidate:()=>Pb});function Pb(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(zt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let d=0;d<r.length-1;++d)o*=r[d];let i=e.shape,l=r.slice();l.pop();let c=1;for(let d=a;d<n;++d)c*=i[d],l.push(i[d]);let u=[...ji(e.shape).map(d=>d/c),1].slice(0,a);return[l,o,c,u]}var cA={};ze(cA,{calculateShapes:()=>Mb,validateInput:()=>pA,validateUpdateShape:()=>dA});function dA(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function pA(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}dA(n,t,e)}function Mb(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let d=r;d<a;++d)o*=n[d];let i=r<1?1:r,l=zt(t.shape)/i,c=[...ji(n.slice(0,r)),1],u=zt(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:c,outputSize:u}}var Fn={};ze(Fn,{assertParamsValid:()=>AN,computeFlatOffset:()=>xN,computeOutShape:()=>zb,getNormalizedAxes:()=>Vb,isSliceContinous:()=>yN,maskToAxes:()=>_h,parseSliceParams:()=>Xb,sliceInfo:()=>bN,startForAxis:()=>jb,startIndicesWithElidedDims:()=>Ub,stopForAxis:()=>qb,stopIndicesWithElidedDims:()=>Gb,stridesForAxis:()=>Hb,stridesWithElidedDims:()=>Lb});function AN(e,t,n){let s=e.shape.length;P(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),P(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)P(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function _h(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function zb(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function Lb(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function Bb(e,t,n){return n<=e?n:n-(t-1)}function Wb(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function Vb(e,t,n,s,r,a,o,i,l){let c=e.length,u=new Array(c),d=new Array(c),p=new Array(c);if(t.length&&n>0){let h=t[0],f=n+1;u=Ub(o,h,f,s,e),d=Gb(i,h,f,r,e),p=Lb(a,h,f,e)}else for(let h=0;h<c;h++)u[h]=jb(o,s,a,e,h,l),d[h]=qb(i,r,a,e,h,l),p[h]=Hb(a,h,l);return{begin:u,end:d,strides:p}}function Ub(e,t,n,s,r){let a=[...r],o=Wb(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=Bb(t,n,i),c=s[l];e&1<<l&&(c=0),a[i]=c}return a}function Gb(e,t,n,s,r){let a=[...r],o=Wb(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=Bb(t,n,i),c=s[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),a[i]=c}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=fc(0,a[i],r[i])}return a}function Hb(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function jb(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=fc(0,o,l-1),o}function qb(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=fc(0,o,l):o=fc(-1,o,l-1),o}function yN(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function xN(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function Xb(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{P(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(P(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function bN(e,t,n,s,r,a,o,i,l){let c=t.slice(),u=n.slice(),d=s;s==null&&(d=new Array(c.length));let p=_h(o);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-c.length,f=_h(i),m=e.slice();f.forEach(C=>{c[C]=0,u[C]=1,m.splice(C,0,1)});let{begin:g,end:A,strides:y}=Vb(m,p,h,c,u,d,r,a,o);c=g,u=A,d=y;let x=_h(l);x.forEach(C=>{u[C]=c[C]+1,d[C]=1});let b=zb(c,u,d),v=b.filter((C,N)=>x.indexOf(N)===-1);return{nonStrided:d.every(C=>C===1),$begin:c,$end:u,$strides:d,size:b,newShape:m,outShape:v}}var ue={};ze(ue,{Serializable:()=>Kb,SerializationMap:()=>ti,registerClass:()=>Aa});var Kb=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},ti=class{constructor(){this.classNameMap={}}static getMap(){return ti.instance==null&&(ti.instance=new ti),ti.instance}static register(e){ti.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Aa(e){P(e.className!=null,()=>"Class being registered does not have the static className property defined."),P(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),P(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),ti.register(e)}var Zb={};ze(Zb,{TEST_EPSILON_FLOAT16:()=>Yb,encodeStrings:()=>Jb,expectArrayBuffersEqual:()=>TN,expectArraysClose:()=>wN,expectArraysEqual:()=>IN,expectNumbersClose:()=>SN,expectPromiseToFail:()=>kN,expectValuesInRange:()=>CN,testEpsilon:()=>hA});var vN=.001,Yb=.1;function wN(e,t,n){return n==null&&(n=hA()),fA(e,t,(s,r)=>mA(s,r,n))}function hA(){return W.backend.floatPrecision()===32?vN:Yb}function fA(e,t,n){let s=!0;if((Cn(e)||Cn(t))&&(s=!1),Cn(e)&&Cn(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=gr(e),i=gr(t);if(!$r(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=Cn(e)?e:Ka(e),a=Cn(t)?t:Ka(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`)}}function kN(e,t){e().then(()=>t.fail(),()=>t())}function IN(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return oa(e)||oa(e[0])||oa(t)||oa(t[0])?fA(e,n,(s,r)=>s==r):fA(e,t,(s,r)=>mA(s,r,0))}function SN(e,t,n){if(n==null&&(n=hA()),!mA(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function mA(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function CN(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function TN(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function Jb(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?Jb(n):e[t]=Fc(n)}return e}var Vc="3.10.0";function Qb(){se().set("PROD",!0)}function NN(){se().set("DEBUG",!0)}function EN(){se().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function gA(e){se().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}t9(gA);function RN(){W.disposeVariables()}function as(){return W}function Fh(){return W.memory()}function DN(e){return W.profile(e)}function j(e,t){return W.tidy(e,t)}function Y(e){Xg(e).forEach(n=>n.dispose())}function dn(e){return W.keep(e)}function _N(e){return W.time(e)}function e3(e){return W.setBackend(e)}function $h(){return W.ready()}function Ys(){return W.backendName}function FN(e){W.removeBackend(e)}function AA(e){return W.findBackend(e)}function $N(e){return W.findBackendFactory(e)}function nu(e,t,n=1){return W.registerBackend(e,t,n)}function Ar(){return W.backend}function ON(e,t){se().setPlatform(e,t)}function PN(e,t){let n=_(e,"a","add"),s=_(t,"b","add");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(la,r)}var le=V({add_:PN});function MN(e,t){let n=_(e,"a","floorDiv"),s=_(t,"b","floorDiv");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(ho,r)}var Oh=V({floorDiv_:MN});function zN(e,t){let n=_(e,"a","div"),s=_(t,"b","div");if([n,s]=_t(n,s),n.dtype==="int32"&&s.dtype==="int32")return Oh(n,s);let r={a:n,b:s},a={};return W.runKernel(lo,r,a)}var fe=V({div_:zN});function LN(e,t){let n=_(e,"a","mul"),s=_(t,"b","mul");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(Co,r)}var B=V({mul_:LN});function BN(e){let t=_(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return W.runKernel(yc,n)}else{let n={x:t};return W.runKernel(Xi,n)}}var Gt=V({abs_:BN});function WN(e){let n={x:_(e,"x","acos")};return W.runKernel(Ki,n)}var yA=V({acos_:WN});function VN(e){let n={x:_(e,"x","acosh")};return W.runKernel(Zi,n)}var xA=V({acosh_:VN});function UN(e){P(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),P(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>_(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!$r(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return W.runKernel(Za,s)}var Ph=V({addN_:UN});function GN(e,t=null,n=!1){let r={x:_(e,"x","all","bool")},a={axis:t,keepDims:n};return W.runKernel(Yi,r,a)}var Mh=V({all_:GN});function HN(e,t=null,n=!1){let r={x:_(e,"x","any","bool")},a={axis:t,keepDims:n};return W.runKernel(Ji,r,a)}var Uc=V({any_:HN});function jN(e,t=0){let s={x:_(e,"x","argMax")},r={axis:t};return W.runKernel(Ya,s,r)}var vs=V({argMax_:jN});function qN(e,t=0){let s={x:_(e,"x","argMin")},r={axis:t};return W.runKernel(gc,s,r)}var bA=V({argMin_:qN});function XN(e){let n={x:_(e,"x","asin")};return W.runKernel(Qi,n)}var vA=V({asin_:XN});function KN(e){let n={x:_(e,"x","asinh")};return W.runKernel(el,n)}var wA=V({asinh_:KN});function ZN(e){let n={x:_(e,"x","atan")};return W.runKernel(tl,n)}var kA=V({atan_:ZN});function YN(e,t){let n=_(e,"a","atan2"),s=_(t,"b","atan2");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(sl,r)}var IA=V({atan2_:YN});function JN(e){let n={x:_(e,"x","atanh")};return W.runKernel(nl,n)}var SA=V({atanh_:JN});function QN(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=s3(r);return Gc(e,i,n,a,s,null,null,l)}function t3(e,t,n,s,r,a,o="channelsLast"){let[i,l]=zh(t),c;if(o==="channelsLast")c=[i,l,e[3],e[3]];else if(o==="channelsFirst")c=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Gc(e,c,n,s,r,a,!1,o)}function eE(e,t,n,s,r,a,o="NDHWC"){let[i,l,c]=TA(t),u,d;if(o==="NDHWC")d="channelsLast",u=[i,l,c,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",u=[i,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return n3(e,u,n,s,r,!1,d,a)}function Gc(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,c,u,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,d]=e;else if(i==="channelsFirst")[l,d,c,u]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,h,,f]=t,[m,g]=zh(n),[A,y]=zh(s),x=su(p,A),b=su(h,y),{padInfo:v,outHeight:I,outWidth:C}=sE(r,c,u,m,g,x,b,a,i),N=o?f*d:f,$;return i==="channelsFirst"?$=[l,N,I,C]:i==="channelsLast"&&($=[l,I,C,N]),{batchSize:l,dataFormat:i,inHeight:c,inWidth:u,inChannels:d,outHeight:I,outWidth:C,outChannels:N,padInfo:v,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:A,dilationWidth:y,inShape:e,outShape:$,filterShape:t}}function n3(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,c,u,d,p]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,d,p]=e;else if(o==="channelsFirst")[l,p,c,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[A,y,x]=TA(n),[b,v,I]=TA(s),C=su(h,b),N=su(f,v),$=su(m,I),{padInfo:O,outDepth:E,outHeight:F,outWidth:T}=rE(r,c,u,d,A,y,x,C,N,$,i),M=a?g*p:g,G;return o==="channelsFirst"?G=[l,M,E,F,T]:o==="channelsLast"&&(G=[l,E,F,T,M]),{batchSize:l,dataFormat:o,inDepth:c,inHeight:u,inWidth:d,inChannels:p,outDepth:E,outHeight:F,outWidth:T,outChannels:M,padInfo:O,strideDepth:A,strideHeight:y,strideWidth:x,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:C,effectiveFilterHeight:N,effectiveFilterWidth:$,dilationDepth:b,dilationHeight:v,dilationWidth:I,inShape:e,outShape:G,filterShape:t}}function tE(e,t,n,s,r){s==null&&(s=CA(e,t,n));let a=e[0],o=e[1],i=ni((a-t+2*s)/n+1,r),l=ni((o-t+2*s)/n+1,r);return[i,l]}function nE(e,t,n,s,r,a){r==null&&(r=CA(e,t,s));let o=e[0],i=e[1],l=e[2],c=ni((o-t+2*r)/s+1,a),u=ni((i-t+2*r)/s+1,a),d=ni((l-t+2*r)/s+1,a);return[c,u,d,n]}function CA(e,t,n,s=1){let r=su(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function zh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function TA(e){return typeof e=="number"?[e,e,e]:e}function su(e,t){return t<=1?e:e+(e-1)*(t-1)}function sE(e,t,n,s,r,a,o,i,l){let c,u,d;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=tE([t,n],a,s,e,i);u=h[0],d=h[1]}else if(e==="same"){u=Math.ceil(t/s),d=Math.ceil(n/r);let p=Math.max(0,(u-1)*s+a-t),h=Math.max(0,(d-1)*r+o-n),f=Math.floor(p/2),m=p-f,g=Math.floor(h/2),A=h-g;c={top:f,bottom:m,left:g,right:A,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-a+1)/s),d=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];c={top:p,bottom:h,left:f,right:m,type:p===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=ni((t-a+p+h)/s+1,i),d=ni((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:d}}function rE(e,t,n,s,r,a,o,i,l,c,u){let d,p,h,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=nE([t,n,s,1],i,1,r,e,u);p=g[0],h=g[1],f=g[2]}else if(e==="same"){p=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(p-1)*r+i-t,g=(h-1)*a+l-n,A=(f-1)*o+c-s,y=Math.floor(m/2),x=m-y,b=Math.floor(g/2),v=g-b,I=Math.floor(A/2),C=A-I;d={top:b,bottom:v,left:I,right:C,front:y,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-c+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:p,outHeight:h,outWidth:f}}function ni(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function ya(e){let[t,n,s]=zh(e);return t===1&&n===1&&s===1}function yr(e,t){return ya(e)||ya(t)}function s3(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function aE(e,t){let s={x:_(e,"x","reshape","string_or_numeric")},r={shape:t};return W.runKernel(Fl,s,r)}var U=V({reshape_:aE});function oE(e,t,n,s,r){let a=_(e,"x","avgPool","float32"),o=1;P(yr(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),P(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),r!=null&&P(un(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=W.runKernel(Ja,c,u);return d=de(d,a.dtype),l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Hc=V({avgPool_:oE});function iE(e,t,n,s,r,a="NDHWC"){let o=_(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),P(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),P(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&P(un(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=W.runKernel(Ac,c,u);return d=de(d,i.dtype),l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var NA=V({avgPool3d_:iE});function lE(e,t=0){P(e.length>=1,()=>"Pass at least one tensor to concat");let n=Bc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)}),n.length===1)return Zs(n[0]);let s=n,r={axis:t};return W.runKernel(al,s,r)}var gt=V({concat_:lE});function uE(e){let n={x:_(e,"x","sigmoid","float32")};return W.runKernel(zo,n)}var Kn=V({sigmoid_:uE});function cE(e,t,n){let s=_(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return W.runKernel(Ml,r,a)}var _e=V({slice_:cE});function dE(e){let n={x:_(e,"x","tanh","float32")};return W.runKernel(Ho,n)}var si=V({tanh_:dE});function pE(e,t,n,s,r,a){let o=_(e,"forgetBias","basicLSTMCell"),i=_(t,"lstmKernel","basicLSTMCell"),l=_(n,"lstmBias","basicLSTMCell"),c=_(s,"data","basicLSTMCell"),u=_(r,"c","basicLSTMCell"),d=_(a,"h","basicLSTMCell"),p=gt([c,d],1),h=Ve(p,i),f=le(h,l),m=f.shape[0],g=f.shape[1]/4,A=[m,g],y=_e(f,[0,0],A),x=_e(f,[0,g],A),b=_e(f,[0,g*2],A),v=_e(f,[0,g*3],A),I=le(B(Kn(y),si(x)),B(u,Kn(le(o,b)))),C=B(si(I),Kn(v));return[I,C]}var hE=V({basicLSTMCell_:pE});function fE(e,t,n){let s=_(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);P(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),P(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),P(s.shape[0]%r==0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return W.runKernel(rl,a,o)}var jc=V({batchToSpaceND_:fE});function mE(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function gE(e,t,n,s,r,a){a==null&&(a=.001);let o=_(e,"x","batchNorm"),i=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),c;r!=null&&(c=_(r,"scale","batchNorm"));let u;s!=null&&(u=_(s,"offset","batchNorm")),P(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),P(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),P(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:mE(o),scale:c,offset:u,mean:i,variance:l},h={varianceEpsilon:a},f=W.runKernel(fo,p,h);return U(f,o.shape)}var ri=V({batchNorm_:gE});function AE(e,t,n,s,r,a){let o=_(e,"x","batchNorm"),i=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),c;r!=null&&(c=_(r,"scale","batchNorm"));let u;return s!=null&&(u=_(s,"offset","batchNorm")),P(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),P(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),P(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&P(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&P(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),ri(o,i,l,u,c,a)}var r3=V({batchNorm2d_:AE});function yE(e,t,n,s,r,a){let o=_(e,"x","batchNorm"),i=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),c;r!=null&&(c=_(r,"scale","batchNorm"));let u;return s!=null&&(u=_(s,"offset","batchNorm")),P(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),P(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),P(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&P(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&P(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),ri(o,i,l,u,c,a)}var a3=V({batchNorm3d_:yE});function xE(e,t,n,s,r,a){let o=_(e,"x","batchNorm"),i=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),c;r!=null&&(c=_(r,"scale","batchNorm"));let u;return s!=null&&(u=_(s,"offset","batchNorm")),P(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),P(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),P(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&P(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&P(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),ri(o,i,l,u,c,a)}var o3=V({batchNorm4d_:xE});function bE(e,t,n){let s=_(e,"x","bincount"),r=_(t,"weights","bincount");P(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),P(n>=0,()=>`size must be non-negative, but got ${n}.`),P(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return W.runKernel(Vp,a,o)}var EA=V({bincount_:bE});function vE(e,t){let n=_(e,"s0","broadcastArgs","int32"),s=_(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return W.runKernel(Up,r)}var i3=V({broadcastArgs_:vE});function wE(e,t){let n=_(e,"broadcastTo","x"),s=n.shape;if(t.some(c=>!(c>0)||c%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let c=n.shape.slice();for(;c.length<t.length;)c.unshift(1);n=U(n,c)}let r=n.shape,a=Array.from(t);for(let c=t.length-1;c>=0;c--)if(r[c]===t[c])a[c]=1;else if(n.shape[c]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((c,u)=>c>1?u:-1).filter(c=>c>=0).length===0)return Zs(n);let i={x:n},l={reps:a};return W.runKernel(ca,i,l)}var ru=V({broadcastTo_:wE});function kE(e){let n={x:_(e,"x","ceil","float32")};return W.runKernel(to,n)}var RA=V({ceil_:kE});function IE(e,t,n){let s=_(e,"x","clipByValue");P(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return W.runKernel(ua,r,a)}var Zn=V({clipByValue_:IE});function SE(e){return gt(e,0)}var l3=V({concat1d_:SE});function CE(e,t){return gt(e,t)}var au=V({concat2d_:CE});function TE(e,t){return gt(e,t)}var u3=V({concat3d_:TE});function NE(e,t){return gt(e,t)}var c3=V({concat4d_:NE});function EE(e,t,n,s,r="NHWC",a=[1,1],o){let i=_(e,"x","conv2d","float32"),l=_(t,"filter","conv2d","float32"),c=i,u=!1;i.rank===3&&(u=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),P(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),P(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&P(un(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d=r==="NHWC"?c.shape[3]:c.shape[1];P(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),P(yr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let p={x:c,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=W.runKernel(no,p,h);return u?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Mr=V({conv2d_:EE});function RE(e,t,n,s,r="NWC",a=1,o){let i=_(e,"x","conv1d"),l=_(t,"filter","conv1d"),c=i,u=!1;i.rank===2&&(u=!0,c=U(i,[1,i.shape[0],i.shape[1]])),P(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),P(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&P(un(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),P(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),P(yr(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),P(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=U(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=U(c,[c.shape[0],1,c.shape[1],c.shape[2]]),g=Mr(p,d,[1,n],s,"NHWC",[1,a],o);return u?U(g,[g.shape[2],g.shape[3]]):U(g,[g.shape[0],g.shape[2],g.shape[3]])}var Lh=V({conv1d_:RE});function DE(e,t,n,s,r,a="NHWC",o){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,c=!1;t.rank===3&&(c=!0,l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),P(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),P(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),P(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];P(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),P(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&P(un(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let p={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=W.runKernel(so,p,h);return c?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var DA=V({conv2DBackpropInput_:DE});function _E(e,t,n,s,r,a){let o=_(e,"x","conv2dTranspose"),i=_(t,"filter","conv2dTranspose");return DA(n,o,i,s,r,"NHWC",a)}var Bh=V({conv2dTranspose_:_E});function FE(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=_(e,"x","conv3d"),i=_(t,"filter","conv3d"),l=o,c=!1;o.rank===4&&(c=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),P(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),P(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),P(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),P(yr(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),P(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let u={x:l,filter:i},d={strides:n,pad:s,dataFormat:r,dilations:a},p=W.runKernel(xc,u,d);return c?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var _A=V({conv3d_:FE});function $E(e,t,n,s,r){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],c=o.shape[4];P(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),P(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),P(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),P(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),P(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:o,filter:n},d={pad:r,strides:s,inputShape:a},p=W.runKernel(qp,u,d);return i?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var d3=V({conv3DBackpropInput_:$E});function OE(e,t,n,s,r){let a=_(e,"x","conv3dTranspose"),o=_(t,"filter","conv3dTranspose");return d3(n,a,o,s,r)}var p3=V({conv3dTranspose_:OE});function PE(e){let n={x:_(e,"x","cos","float32")};return W.runKernel(ro,n)}var qc=V({cos_:PE});function ME(e){let n={x:_(e,"x","cosh","float32")};return W.runKernel(ao,n)}var Wh=V({cosh_:ME});function zE(e,t=0,n=!1,s=!1){let a={x:_(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return W.runKernel(oo,a,o)}var Vh=V({cumsum_:zE});function LE(e,t,n,s=!1){let r=_(e,"x","denseBincount"),a=_(t,"weights","denseBincount");P(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),P(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),P(n>=0,()=>`size must be non-negative, but got ${n}.`),P(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return W.runKernel(Xp,o,i)}var h3=V({denseBincount_:LE});function BE(e,t,n="NHWC"){let s=_(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];P(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),P(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),P(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),P(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return W.runKernel(il,i,l)}var FA=V({depthToSpace_:BE});function WE(e,t,n,s,r="NHWC",a=[1,1],o){let i=_(e,"x","depthwiseConv2d","float32"),l=_(t,"filter","depthwiseConv2d","float32"),c=i,u=!1;i.rank===3&&(u=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),P(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),P(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),P(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&P(un(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:c,filter:l},p={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},h=W.runKernel(io,d,p);return u?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var ou=V({depthwiseConv2d_:WE});function VE(e){let n={x:_(e,"x","diag")};return W.runKernel(Yp,n)}var UE=V({diag_:VE});function GE(e,t,n,s,r=[1,1],a="NHWC"){let o=_(e,"x","dilation2d"),i=_(t,"filter","dilation2d");P(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),P(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),P(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,c=!1;o.rank===3&&(l=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),c=!0);let u={x:l,filter:i},d={strides:n,pad:s,dilations:r},p=W.runKernel(bc,u,d);return c?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var $A=V({dilation2d_:GE});function HE(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function Qt(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function bt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}function jE(e,t){let n=_(e,"a","equal","string_or_numeric"),s=_(t,"b","equal","string_or_numeric");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(ul,r)}var os=V({equal_:jE});function qE(e,t,n){let s=_(t,"a","where"),r=_(n,"b","where"),a=_(e,"condition","where","bool"),o=bt(bt(a.shape,s.shape),r.shape),i=ru(a,o),l=ru(s,o),c=ru(r,o),u={condition:i,t:l,e:c};return W.runKernel(Ol,u)}var Tn=V({where_:qE});function XE(e){let n={x:_(e,"x","zerosLike")};return W.runKernel(ql,n)}var Ze=V({zerosLike_:XE});function KE(e,t){let n=_(e,"a","div"),s=_(t,"b","div");[n,s]=_t(n,s);let r=fe(n,s),a=Ze(r),o=os(s,a);return Tn(o,a,r)}var OA=V({divNoNan_:KE});function ZE(e,t){let n=_(e,"t1","dot"),s=_(t,"t2","dot");P((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(P(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=U(n,[1,-1]),i=U(s,[-1,1]),l=Ve(o,i);return U(l,[])}else if(n.rank===1&&s.rank===2){let o=U(n,[1,-1]),i=U(s,[s.shape[0],s.shape[1]]),l=Ve(o,i);return U(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=U(s,[-1,1]),i=Ve(n,o);return U(i,[i.size])}else{let o=U(s,[s.shape[0],s.shape[1]]);return Ve(n,o)}}var f3=V({dot_:ZE});function YE(e,...t){let n=t.map((r,a)=>_(r,`tensors${a}`,"einsum")),s={equation:e};return W.runKernel(eh,n,s)}var m3=V({einsum_:YE});function JE(e){let n={x:_(e,"x","elu","float32")};return W.runKernel(uo,n)}var iu=V({elu_:JE});function QE(e){let t=_(e,"x","erf");P(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=de(t,"float32"));let n={x:t};return W.runKernel(ll,n)}var PA=V({erf_:QE});function eR(e){let n={x:_(e,"x","exp")};return W.runKernel(co,n)}var is=V({exp_:eR});function tR(e,t=0){let n=_(e,"x","expandDims","string_or_numeric");P(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return W.runKernel(cl,s,r)}var Bt=V({expandDims_:tR});function nR(e){let n={x:_(e,"x","expm1")};return W.runKernel(dl,n)}var MA=V({expm1_:nR});function sR(e,t){let n=_(e,"x","tile","string_or_numeric");P(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return W.runKernel(ca,s,r)}var ws=V({tile_:sR});function rR(e,t,n,s="float32"){t==null&&(t=e);let r=He([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=U(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return ws(Bt(o,0),[n[0],1,1]);if(n.length===2)return ws(Bt(Bt(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return ws(Bt(Bt(Bt(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var zA=V({eye_:rR});function lu(e,t,n){let s={shape:e,value:t,dtype:n};return W.runKernel(vc,{},s)}function aR(e){let n={x:_(e,"x","floor","float32")};return W.runKernel(po,n)}var uu=V({floor_:aR});function oR(e,t,n=0,s=0){let r=_(e,"x","gather"),a=_(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return W.runKernel(hl,o,i)}var ai=V({gather_:oR});function iR(e,t){let n=_(e,"a","greater","string_or_numeric"),s=_(t,"b","greater","string_or_numeric");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(ml,r)}var Yn=V({greater_:iR});function lR(e,t){let n=_(e,"a","greaterEqual","string_or_numeric"),s=_(t,"b","greaterEqual","string_or_numeric");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(mo,r)}var xa=V({greaterEqual_:lR});function uR(e){let n={input:_(e,"input","imag")};return W.runKernel(rh,n)}var Uh=V({imag_:uR});function cR(e){let n={x:_(e,"x","isFinite")};return W.runKernel(gl,n)}var g3=V({isFinite_:cR});function dR(e){let n={x:_(e,"x","isInf")};return W.runKernel(Al,n)}var A3=V({isInf_:dR});function pR(e){let n={x:_(e,"x","isNaN")};return W.runKernel(yl,n)}var LA=V({isNaN_:pR});function hR(e,t=.2){let s={x:_(e,"x","leakyRelu")},r={alpha:t};return W.runKernel(Ao,s,r)}var Xc=V({leakyRelu_:hR});function fR(e,t){let n=_(e,"a","less","string_or_numeric"),s=_(t,"b","less","string_or_numeric");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(xl,r)}var Gh=V({less_:fR});function mR(e,t){let n=_(e,"a","lessEqual","string_or_numeric"),s=_(t,"b","lessEqual","string_or_numeric");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(bl,r)}var ba=V({lessEqual_:mR});function y3(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return W.runKernel(ah,{},s)}function gR(e,t=5,n=1,s=1,r=.5){let a=_(e,"x","localResponseNormalization");P(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${a.rank}.`),P(un(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},c={depthRadius:t,bias:n,alpha:s,beta:r},u=W.runKernel(Ic,l,c);return i?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var BA=V({localResponseNormalization_:gR});function AR(e){let n={x:_(e,"x","log","float32")};return W.runKernel(yo,n)}var ls=V({log_:AR});function yR(e){let n={x:_(e,"x","log1p")};return W.runKernel(vl,n)}var Kc=V({log1p_:yR});function xR(e){return P(ia(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=_(t,"x","tf.grad","string_or_numeric"),r=n!=null?_(n,"dy","tf.grad"):null;return W.tidy(()=>{let{value:a,grads:o}=W.gradients(()=>e(s),[s],r);return r!=null&&Dn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Hh(o),o[0]})}}function bR(e){return P(ia(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{P(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=Bc(t,"args","tf.grads","string_or_numeric"),r=n!=null?_(n,"dy","tf.grads"):null;return W.tidy(()=>{let{value:a,grads:o}=W.gradients(()=>e(...s),s,r);return r!=null&&Dn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Hh(o),o})}}function vR(e){return P(ia(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{P(t instanceof Ge,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),P(n==null||n instanceof Ge,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=W.gradients(()=>e(t),[t],n);return Hh(s),{grad:s[0],value:r}}}function wR(e){return P(ia(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{P(Array.isArray(t)&&t.every(r=>r instanceof Ge),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),P(n==null||n instanceof Ge,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=W.gradients(()=>e(...t),t,n);return n!=null&&Dn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Hh(s.grads),s}}function x3(e,t){P(ia(e),()=>"The f passed in variableGrads(f) must be a function"),P(t==null||Array.isArray(t)&&t.every(c=>c instanceof Mc),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in W.registeredVariables)t.push(W.registeredVariables[c])}let s=n?t.filter(c=>!c.trainable):null,r=t.length;t=t.filter(c=>c.trainable),P(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=W.gradients(e,t,null,a);P(i.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),P(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((c,u)=>{i[u]!=null&&(l[c.name]=i[u])}),s!=null&&s.forEach(c=>l[c.name]=null),{value:o,grads:l}}function xr(e){return W.customGrad(e)}function Hh(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function kR(e){let n={x:_(e,"x","neg")};return W.runKernel(Il,n)}var Tt=V({neg_:kR});function IR(e){let n={x:_(e,"x","softplus")};return W.runKernel(Bl,n)}var oi=V({softplus_:IR});function SR(e){let t=_(e,"x","logSigmoid");return xr(s=>({value:Tt(oi(Tt(s))),gradFunc:o=>B(o,Kn(Tt(s)))}))(t)}var b3=V({logSigmoid_:SR});function CR(e,t=null,n=!1){let r={x:_(e,"x","max")},a={reductionIndices:t,keepDims:n};return W.runKernel(xo,r,a)}var $n=V({max_:CR});function TR(e,t){let n=_(e,"a","sub"),s=_(t,"b","sub");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(Uo,r)}var ye=V({sub_:TR});function NR(e,t=null,n=!1){let s=_(e,"x","sum");s.dtype==="bool"&&(s=de(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return W.runKernel(Bo,r,a)}var Ie=V({sum_:NR});function ER(e,t=-1){let n=_(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return xr((r,a)=>{let o=!0,i=$n(r,t,!0),l=ye(r,i),c=ye(de(l,"float32"),ls(Ie(is(l),t,o)));return a([c]),{value:c,gradFunc:(d,p)=>{let[h]=p,f=!0,m=is(h);return ye(d,B(Ie(d,t,f),m))}}})(n)}var jh=V({logSoftmax_:ER});function WA(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function v3(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function w3(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function ii(e,t){let n=t.map(s=>1);return v3(e,n,t)}function RR(e,t,n){P(WA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function k3(e,t){if(WA(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function VA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function DR(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function _R(e,t=null,n=!1){let s=_(e,"x","logSumExp"),r=Os(t,s.shape),a=$n(s,r,!0),o=ye(s,a),i=is(o),l=Ie(i,r),c=ls(l),u=le(U(a,c.shape),c);if(n){let d=ii(u.shape,r);return U(u,d)}return u}var UA=V({logSumExp_:_R});function FR(e,t){let n=_(e,"a","logicalAnd","bool"),s=_(t,"b","logicalAnd","bool");bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(wl,r)}var zs=V({logicalAnd_:FR});function $R(e){let n={x:_(e,"x","logicalNot","bool")};return W.runKernel(wc,n)}var Zc=V({logicalNot_:$R});function OR(e,t){let n=_(e,"a","logicalOr","bool"),s=_(t,"b","logicalOr","bool");bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(kc,r)}var qh=V({logicalOr_:OR});function PR(e,t){let n=_(e,"a","logicalXor","bool"),s=_(t,"b","logicalXor","bool");return bt(n.shape,s.shape),zs(qh(e,t),Zc(zs(e,t)))}var I3=V({logicalXor_:PR});function MR(e,t,n,s,r){let a=_(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),P(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),P(yr(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),r!=null&&P(un(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=W.runKernel(vo,c,u);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Yc=V({maxPool_:MR});function zR(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=_(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),P(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),P(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&P(un(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=W.runKernel(Sc,c,u);return l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var GA=V({maxPool3d_:zR});function LR(e,t,n,s,r=!1){let o={x:_(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=W.runKernel(uh,o,i);return{result:l[0],indexes:l[1]}}var S3=V({maxPoolWithArgmax_:LR});function BR(e,t){let n=_(e,"a","maximum"),s=_(t,"b","maximum");[n,s]=_t(n,s),n.dtype==="bool"&&(n=de(n,"int32"),s=de(s,"int32")),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(bo,r)}var br=V({maximum_:BR});function WR(e,t=null,n=!1){let r={x:_(e,"x","mean")},a={axis:t,keepDims:n};return W.runKernel(wo,r,a)}var Ft=V({mean_:WR});function Ht(e,t="float32"){if(t==="complex64"){let s=Ht(e,"float32"),r=Ht(e,"float32");return fa(s,r)}let n=Lp(zt(e),t);return W.makeTensor(n,e,t)}function us(e,t="float32"){if(t==="complex64"){let s=us(e,"float32"),r=Ht(e,"float32");return fa(s,r)}let n=$g(zt(e),t);return W.makeTensor(n,e,t)}function VR(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=_(e,"x","meshgrid",e instanceof Ge?e.dtype:"float32");if(t===void 0)return[s];let r=_(t,"y","meshgrid",t instanceof Ge?t.dtype:"float32"),a=zt(s.shape),o=zt(r.shape);return n==="xy"?(s=U(s,[1,-1]),r=U(r,[-1,1]),[Ve(us([o,1],s.dtype),s),Ve(r,us([1,a],r.dtype))]):(s=U(s,[-1,1]),r=U(r,[1,-1]),[Ve(s,us([1,o],s.dtype)),Ve(us([a,1],r.dtype),r)])}function UR(e,t=null,n=!1){let r={x:_(e,"x","min")},a={axis:t,keepDims:n};return W.runKernel(ko,r,a)}var Jc=V({min_:UR});function GR(e,t){let n=_(e,"a","minimum"),s=_(t,"b","minimum");[n,s]=_t(n,s),n.dtype==="bool"&&(n=de(n,"int32"),s=de(s,"int32")),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Io,r)}var cu=V({minimum_:GR});function HR(e,t,n){P(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=_(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");P(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)P(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),P(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return W.runKernel(So,o,a)}var HA=V({mirrorPad_:HR});function jR(e,t){let n=_(e,"a","mod"),s=_(t,"b","mod");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(kl,r)}var jA=V({mod_:jR});function qR(e){let t=_(e,"x","square"),n={};return W.runKernel("Square",{x:t},n)}var ft=V({square_:qR});function XR(e,t=null,n=!1){e=_(e,"x","moments");let s=Os(t,e.shape),r=Ft(e,s,n),a=r.shape;n||(a=ii(r.shape,s));let o=ft(ye(de(e,"float32"),U(r,a))),i=Ft(o,s,n);return{mean:r,variance:i}}var Xh=V({moments_:XR});function KR(e,t,n,s){let r=_(t,"data","multiRNNCell"),a=Bc(n,"c","multiRNNCell"),o=Bc(s,"h","multiRNNCell"),i=r,l=[];for(let d=0;d<e.length;d++){let p=e[d](i,a[d],o[d]);l.push(p[0]),l.push(p[1]),i=p[1]}let c=[],u=[];for(let d=0;d<l.length;d+=2)c.push(l[d]),u.push(l[d+1]);return[c,u]}var ZR=V({multiRNNCell_:KR});function YR(e,t,n,s=!1){let r=_(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?U(r,[1,-1]):r},c={numSamples:t,seed:n,normalized:s},u=W.runKernel(ch,l,c);return o===1?U(u,[u.size]):u}var C3=V({multinomial_:YR});function JR(e,t){let n=_(e,"a","notEqual","string_or_numeric"),s=_(t,"b","notEqual","string_or_numeric");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Sl,r)}var li=V({notEqual_:JR});function QR(e){let n={x:_(e,"x","onesLike")};return W.runKernel(El,n)}var cs=V({onesLike_:QR});function eD(e,t){let n=_(e,"v1","outerProduct"),s=_(t,"v2","outerProduct");P(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=U(n,[-1,1]),a=U(s,[1,-1]);return Ve(r,a)}var tD=V({outerProduct_:eD});function nD(e,t,n=0){let s=_(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return W.runKernel(No,a,r)}var ks=V({pad_:nD});function sD(e,t,n=0){return P(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ks(e,[t],n)}var rD=V({pad1d_:sD});function aD(e,t,n=0){return P(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ks(e,t,n)}var oD=V({pad2d_:aD});function iD(e,t,n=0){return P(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ks(e,t,n)}var lD=V({pad3d_:iD});function uD(e,t,n=0){return P(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ks(e,t,n)}var cD=V({pad4d_:uD});function dD(e,t,n){let s=_(e,"x","spaceToBatchND");P(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),P(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),P(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return W.runKernel(Wl,r,a)}var Qc=V({spaceToBatchND_:dD});function pD(e,t,n,s,r,a){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=_(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(yr(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=t3(i.shape,t,a,r,s),u=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=fD([c.filterHeight,c.filterWidth],u):d=[[0,0],[0,0]];let p=u[0]===1&&u[1]===1,[h,f]=hD([c.inHeight,c.inWidth],u,d),m=p?s:"valid",g=p?i:Qc(i,u,h),y=(n==="avg"?()=>Hc(g,t,a,m):()=>Yc(g,t,a,m))(),x=p?y:jc(y,u,f);return l?U(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function hD(e,t,n){let s=n.map(u=>u[0]),r=n.map(u=>u[1]),a=e.concat(s,r),o=t.map((u,d)=>(u-a[d]%u)%u),i=r.map((u,d)=>u+o[d]),l=t.map((u,d)=>[s[d],i[d]]),c=t.map((u,d)=>[0,o[d]]);return[l,c]}function fD(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var T3=V({pool_:pD});function mD(e,t){let n=_(e,"base","pow"),s=_(t,"exp","pow");[n,s]=_t(n,s);let r={a:n,b:s};return W.runKernel(Eo,r)}var zr=V({pow_:mD});function gD(e,t){let n=_(e,"x","prelu"),s=_(t,"alpha","prelu"),r={x:n,alpha:s};return W.runKernel(Ro,r)}var ed=V({prelu_:gD});function AD(e,t=null,n=!1){let s=_(e,"x","prod");s.dtype==="bool"&&(s=de(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return W.runKernel(Dl,r,a)}var Kh=V({prod_:AD});function yD(e,t,n){let s=zt(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return W.makeTensor(r,e,n)}var xD=V({rand_:yD}),qA=qa(M5()),XA=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=qA.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},bD=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=qA.alea(r.toString()),this.randn=new XA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},vD=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=qA.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function wD(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new bD(t,n,s,r),o=He(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var kD=V({randomGamma_:wD});function ID(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new XA(t,n,s,!1,r),o=He(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var N3=V({randomNormal_:ID});function SD(e,t=0,n=1,s="float32",r){let a=He(e,s),o=new vD(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var du=V({randomUniform_:SD});function pu(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return W.runKernel(Cc,{},r)}function CD(e){let n={input:_(e,"input","real")};return W.runKernel(dh,n)}var td=V({real_:CD});function TD(e){let n={x:_(e,"x","reciprocal")};return W.runKernel(_l,n)}var KA=V({reciprocal_:TD});function ND(e){let n={x:_(e,"x","relu")};return W.runKernel(Do,n)}var Js=V({relu_:ND});function ED(e){let n={x:_(e,"x","relu6")};return W.runKernel(Fo,n)}var Zh=V({relu6_:ED});function RD(e,t){let s={x:_(e,"x","reverse")},r={dims:t};return W.runKernel($o,s,r)}var ds=V({reverse_:RD});function DD(e){let t=_(e,"x","reverse");return P(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),ds(t,0)}var _D=V({reverse1d_:DD});function FD(e,t){let n=_(e,"x","reverse");return P(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),ds(n,t)}var $D=V({reverse2d_:FD});function OD(e,t){let n=_(e,"x","reverse");return P(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),ds(n,t)}var PD=V({reverse3d_:OD});function MD(e,t){let n=_(e,"x","reverse");return P(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),ds(n,t)}var zD=V({reverse4d_:MD});function LD(e){let n={x:_(e,"x","round")};return W.runKernel(Oo,n)}var Yh=V({round_:LD});function BD(e){let n={x:_(e,"x","rsqrt","float32")};return W.runKernel(Po,n)}var Jh=V({rsqrt_:BD});function Ee(e,t){if((Cn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Cn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return ma(e,[],[],t)}function WD(e){let n={x:_(e,"x","selu")};return W.runKernel(Pl,n)}var Qh=V({selu_:WD});function VD(e,t,n,s,r,a=[1,1],o="NHWC"){let i=_(e,"x","separableConv2d"),l=_(t,"depthwiseFilter","separableConv2d"),c=_(n,"pointwiseFilter","separableConv2d"),u=i,d=!1;if(i.rank===3&&(d=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");P(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),P(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),P(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),P(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let p=l.shape[2],h=l.shape[3];P(c.shape[2]===p*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*h}, but got ${c.shape[2]}.`);let f=ou(u,l,s,r,o,a),g=Mr(f,c,1,"valid",o);return d?U(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var ZA=V({separableConv2d_:VD});async function UD(e,t){let n=_(e,"x","setdiff1d"),s=_(t,"y","setdiff1d");P(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),P(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),P(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let u=0;u<r.length;u++)o.has(r[u])||i++;let l=new Jt([i],n.dtype),c=new Jt([i],"int32");for(let u=0,d=0;u<r.length;u++)o.has(r[u])||(l.values[d]=r[u],c.values[d]=u,d++);return[l.toTensor(),c.toTensor()]}var E3=UD;function GD(e){let n={x:_(e,"x","sign")};return W.runKernel(Ll,n)}var YA=V({sign_:GD});function HD(e){let n={x:_(e,"x","sin","float32")};return W.runKernel(Mo,n)}var ef=V({sin_:HD});function jD(e){let n={x:_(e,"x","sinh")};return W.runKernel(zl,n)}var tf=V({sinh_:jD});function qD(e,t,n){let s=_(e,"x","slice1d");return P(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),_e(s,[t],[n])}var nf=V({slice1d_:qD});function XD(e,t,n){let s=_(e,"x","slice2d");return P(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var JA=V({slice2d_:XD});function KD(e,t,n){let s=_(e,"x","slice3d");return P(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var hu=V({slice3d_:KD});function ZD(e,t,n){let s=_(e,"x","slice4d");return P(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var nd=V({slice4d_:ZD});function YD(e,t=-1){let n=_(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return W.runKernel(Wo,s,r)}var ui=V({softmax_:YD});function JD(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return W.runKernel(nh,t)}var sd=V({fft_:JD});function QD(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return W.runKernel(sh,t)}var fu=V({ifft_:QD});function e_(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=U(e,[n,t]);s=fu(r)}else{let r=[n,2*(t-1)],a=U(td(e),[n,t]),o=U(Uh(e),[n,t]),i=ds(_e(a,[0,1],[n,t-2]),1),l=B(ds(_e(o,[0,1],[n,t-2]),1),Ee(-1)),c=gt([a,i],1),u=gt([o,l],1),d=U(fa(c,u),[r[0],r[1]]);s=fu(d)}if(s=td(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=U(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var sf=V({irfft_:e_});function t_(e,t,n=0){let r={x:_(e,"x","split")},a={numOrSizeSplits:t,axis:n};return W.runKernel(Vl,r,a)}var pn=V({split_:t_});function n_(e,t){P(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=_e(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=gt([e,Ht(f)],e.shape.length-1),n=t}else r=e;let a=Ze(r),o=U(fa(r,a),[s,n]),i=sd(o),l=Math.floor(n/2)+1,c=td(i),u=Uh(i),d=pn(c,[l,n-l],c.shape.length-1),p=pn(u,[l,n-l],u.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,U(fa(d[0],p[0]),h)}var rd=V({rfft_:n_});function s_(e){let n={x:_(e,"x","sqrt","float32")};return W.runKernel(Lo,n)}var xn=V({sqrt_:s_});function r_(e,t){let n=_(e,"a","squaredDifference"),s=_(t,"b","squaredDifference");[n,s]=_t(n,s),bt(n.shape,s.shape);let r={a:n,b:s},a={};return W.runKernel(Vo,r,a)}var rf=V({squaredDifference_:r_});function a_(e,t){let n=_(e,"x","squeeze");return U(n,W5(n.shape,t).newShape)}var rt=V({squeeze_:a_});function o_(e,t=0){let n=Bc(e,"tensors","stack","string_or_numeric");P(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&P(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return W.runKernel(Rl,s,r)}var bn=V({stack_:o_});function i_(e,t=0){let s={x:_(e,"x","step")},r={alpha:t};return W.runKernel(da,s,r)}var mu=V({step_:i_});function l_(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let u={x:_(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return W.runKernel(Ul,u,d)}var QA=V({stridedSlice_:l_});function u_(e){let n={x:_(e,"x","tan","float32")};return W.runKernel(Go,n)}var e1=V({tan_:u_});function jt(e,t){Xa(e);let n=gr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return ma(e,null,n,t)}function Qs(e,t,n){if(Xa(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=gr(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return ma(e,t,s,n)}function c_(e,t,n){if(Xa(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=gr(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return ma(e,t,s,n)}function d_(e,t,n){if(Xa(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=gr(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return ma(e,t,s,n)}function p_(e,t,n){if(Xa(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=gr(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,ma(e,t,s,n)}function h_(e,t=1,n=!0){let s=_(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=W.runKernel(Gl,a,o);return{values:i,indices:l}}var t1=V({topk_:h_});function f_(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new XA(t,n,s,!0,r),o=He(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var af=V({truncatedNormal_:f_});function m_(e,t=0){let n=_(e,"x","unique","string_or_numeric");P(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=W.runKernel(wh,s,r);return{values:a,indices:o}}var of=V({unique_:m_});function g_(e,t,n){let s=_(e,"x","unsortedSegmentSum"),r=_(t,"segmentIds","unsortedSegmentSum","int32");P(un(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return W.runKernel(Ec,a,o)}var n1=V({unsortedSegmentSum_:g_});function A_(e,t=0){let n=_(e,"x","unstack","string_or_numeric");P(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return W.runKernel(jl,s,r)}var On=V({unstack_:A_});function R3(e,t=!0,n,s){return W.makeVariable(e,t,n,s)}function D3(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=He(e,"int32"),r=He([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function y_(e){let t=_(e,"condition","whereAsync","bool"),n=await t.data(),s=D3(t.shape,n);return e!==t&&t.dispose(),s}var s1=y_;async function x_(e,t,n){let s=_(e,"tensor","boolMask"),r=_(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;P(o>0,()=>"mask cannot be scalar"),Dn(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let c=i.slice(0,a).concat([l],i.slice(a+o)),u=U(s,c),d=U(r,[-1]),p=await s1(d),h=rt(p,[1]),f=ai(u,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),u.dispose(),d.dispose(),p.dispose(),f}var b_=x_;function v_(e,t="euclidean",n=null,s=!1){e=_(e,"x","norm");let r=_3(e,t,n),a=r.shape;if(s){let o=Os(n,e.shape);a=ii(r.shape,o)}return U(r,a)}function _3(e,t,n=null){if(e.rank===0)return Gt(e);if(e.rank!==1&&n===null)return _3(U(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Ie(Gt(e),n);if(t===1/0)return $n(Gt(e),n);if(t===-1/0)return Jc(Gt(e),n);if(t==="euclidean"||t===2)return xn(Ie(zr(Gt(e),Ee(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return $n(Ie(Gt(e),n[0]),n[1]-1);if(t===1/0)return $n(Ie(Gt(e),n[1]),n[0]);if(t===-1/0)return Jc(Ie(Gt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return xn(Ie(ft(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var lf=V({norm_:v_});function w_(e,t,n,s,r=!0){let a=_(e,"v","movingAverage"),o=_(t,"x","movingAverage"),i=_(n,"decay","movingAverage");lb(a,o),P($r(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Ee(1),c=ye(l,i),u=B(ye(o,a),c);if(r){P(s!=null,()=>"When using zeroDebias: true, step is required.");let d=_(s,"step","movingAverage");u=fe(u,ye(l,zr(i,d)))}return le(a,u)}var k_=V({movingAverage_:w_});function I_(e,t,n){let s=_(e,"indices","scatterND","int32"),r=_(t,"updates","scatterND");pA(r,s,n);let a={indices:s,updates:r},o={shape:n};return W.runKernel($l,a,o)}var F3=V({scatterND_:I_});function S_(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function C_(e,t,n,s=0){let r=_(e,"sparseIndices","sparseToDense","int32"),a=_(t,"sparseValues","sparseToDense"),o=_(s,"defaultValue","sparseToDense",a.dtype);S_(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return W.runKernel(yh,i,l)}var r1=V({sparseToDense_:C_});function T_(e,t){let n=_(t,"indices","gatherND","int32"),r={params:_(e,"x","gatherND","string_or_numeric"),indices:n};return W.runKernel(fl,r)}var $3=V({gatherND_:T_});function N_(e,t){if(t==null)return e.shape.slice();if($r(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function E_(e,t,n,s){let r=_(e,"x","dropout");if(P(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),P(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ge?r.clone():r;let a=N_(r,n),o=1-t,i=fe(uu(le(du(a,0,1,"float32",s),o)),o);return B(r,i)}var O3=V({dropout_:E_});function P3(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function a1(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return jt(r,"float32")}async function R_(e,t,n=1){let s=_(e,"predictions","inTopK"),r=_(t,"targets","inTopK");P(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),P(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),Dn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];P(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,c]=[o.length/a,a],u=V5("bool",l);for(let d=0;d<l;d++){let p=d*c,h=o.subarray(p,p+c),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),u[d]=0;for(let m=0;m<n;m++)if(f[m].index===i[d]){u[d]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),Lt(u,r.shape,"bool")}var D_=R_,va={};ze(va,{conv2d:()=>$_,depthwiseConv2d:()=>z_,matMul:()=>B_});function __(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),P(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),P(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),P(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=a==="NHWC"?i.shape[3]:i.shape[1],u=a==="NHWC"?l.shape[3]:l.shape[1];P(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),P(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),o!=null&&P(un(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:i,dy:l},p={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return W.runKernel(Hp,d,p)}var o1=V({conv2DBackpropFilter_:__});function uf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return B(e,mu(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function cf(e,t){let n=t,s=Qt(e.shape,t.shape);return s.length>0&&(n=Ie(n,s)),U(n,e.shape)}function df(e,t,n,s){if(t==="linear")return e;if(t==="relu")return Js(e);if(t==="elu")return iu(e);if(t==="relu6")return Zh(e);if(t==="prelu")return ed(e,n);if(t==="leakyrelu")return Xc(e,s);if(t==="sigmoid")return Kn(e);throw new Error(`Unknown fused activation ${t}.`)}var pf=(e,t)=>!(e>0)||t==="linear";function F_({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",pf(W.state.gradientDepth,l)===!1){let v=Mr(e,t,n,s,r,a,o);return i!=null&&(v=le(v,i)),df(v,l,c,u)}let d=_(e,"x","conv2d","float32"),p=_(t,"filter","conv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),P(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),P(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),o!=null&&P(un(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),P(h.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${p.shape[2]}.`),P(yr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),P(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let m=Gc(h.shape,p.shape,n,a,s,o),g;i!=null&&(g=_(i,"bias","fused conv2d"),[g]=_t(g,d),bt(m.outShape,g.shape));let A;c!=null&&(A=_(c,"prelu weights","fused conv2d"));let y=(v,I)=>{let[C,N,$,O]=I,E=uf(v,$,l);P(ya(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let F=DA(N.shape,E,C,n,s),T=o1(N,E,C.shape,n,s),M=[F,T];if(O!=null){let G=cf(O,E);M.push(G)}return M},x={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?xr((I,C,N)=>{let $=W.runKernel(Xo,x,b);return N([C,I,$]),f&&($=U($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:y}})(h,p):xr((I,C,N,$)=>{let O=W.runKernel(Xo,x,b);return $([C,I,O,N]),f&&(O=U(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:y}})(h,p,g)}var $_=V({fusedConv2d_:F_});function O_(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:i,dy:l},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return W.runKernel(Kp,c,u)}var M3=V({depthwiseConv2dNativeBackpropFilter_:O_});function P_(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:i,filter:n},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},d=W.runKernel(Zp,c,u);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var z3=V({depthwiseConv2dNativeBackpropInput_:P_});function M_({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(pf(W.state.gradientDepth,l)===!1){let v=ou(e,t,n,s,r,a,o);return i!=null&&(v=le(v,i)),df(v,l,c,u)}let d=_(e,"x","depthwiseConv2d","float32"),p=_(t,"filter","depthwiseConv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),P(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),P(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),P(h.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),a==null&&(a=[1,1]),P(yr(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&P(un(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${s}.`);let m=Gc(h.shape,p.shape,n,a,s,o,!0),g;i!=null&&(g=_(i,"bias","fused conv2d"),[g]=_t(g,d),bt(m.outShape,g.shape));let A;c!=null&&(A=_(c,"prelu weights","fused depthwiseConv2d"));let y=(v,I)=>{P(ya(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[C,N,$,O]=I,E=uf(v,$,l),F=z3(N.shape,E,C,n,s,a,o),T=M3(N,E,C.shape,n,s,a,o);if(O!=null){let M=cf(g,E);return[F,T,M]}return[F,T]},x={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?xr((I,C,N)=>{let $=W.runKernel(Ko,x,b);return N([C,I,$]),f&&($=U($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:y}})(h,p):xr((I,C,N,$)=>{let O=W.runKernel(Ko,x,b);return $([C,I,O,N]),f&&(O=U(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:y}})(h,p,g)}var z_=V({fusedDepthwiseConv2d_:M_});function L_({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(pf(W.state.gradientDepth,a)===!1){let O=Ve(e,t,n,s);return r!=null&&(O=le(O,r)),df(O,a,o,i)}let l=_(e,"a","fused matMul"),c=_(t,"b","fused matMul");[l,c]=_t(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=s?c.shape[c.rank-1]:c.shape[c.rank-2],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?c.shape[c.rank-2]:c.shape[c.rank-1],f=l.shape.slice(0,-2),m=c.shape.slice(0,-2),g=zt(f),A=zt(m);P(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),P($r(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),P(u===d,()=>`Error in fused matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${s} must match.`);let y=l.shape.slice(0,-2).concat([p,h]),x=n?U(l,[g,u,p]):U(l,[g,p,u]),b=s?U(c,[A,h,d]):U(c,[A,d,h]),v;r!=null&&(v=_(r,"bias","fused matMul"),[v]=_t(v,l),bt(y,v.shape));let I;o!=null&&(I=_(o,"prelu weights","fused matMul"));let C=(O,E)=>{let[F,T,M,G]=E,H=uf(U(O,M.shape),M,a),z,X;if(!n&&!s?(z=Ve(H,T,!1,!0),X=Ve(F,H,!0,!1)):!n&&s?(z=Ve(H,T,!1,!1),X=Ve(H,F,!0,!1)):n&&!s?(z=Ve(T,H,!1,!0),X=Ve(F,H,!1,!1)):(z=Ve(T,H,!0,!0),X=Ve(H,F,!0,!0)),r!=null){let Q=cf(G,H);return[z,X,Q]}else return[z,X]},N={a:x,b,bias:v,preluActivationWeights:I},$={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?xr((E,F,T)=>{let M=W.runKernel(qo,N,$);return T([E,F,M]),{value:U(M,y),gradFunc:C}})(x,b):xr((E,F,T,M)=>{let G=W.runKernel(qo,N,$);return M([E,F,G,T]),{value:U(G,y),gradFunc:C}})(x,b,v)}var B_=V({fusedMatMul_:L_});function W_(e){return a1(e,.54,.46)}var V_=V({hammingWindow_:W_});function U_(e){return a1(e,.5,.5)}var L3=V({hannWindow_:U_});function G_(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(_e(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=gt([_e(e,a,t-i),lu([i],r)]);o.push(l),a+=n}return o.length===0?Qs([],[0,t]):U(gt(o),[o.length,t])}var B3=V({frame_:G_});function H_(e,t,n,s,r=L3){s==null&&(s=P3(t));let a=B3(e,t,n),o=B(a,r(t));return rd(o,s)}var j_=V({stft_:H_});function q_(e,t,n,s,r="bilinear",a=0){let o=_(e,"image","cropAndResize"),i=_(t,"boxes","cropAndResize","float32"),l=_(n,"boxInd","cropAndResize","int32"),c=i.shape[0];P(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),P(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${i.shape}.`),P(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${i.shape}.`),P(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),P(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),P(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let u={image:o,boxes:i,boxInd:l},d={method:r,extrapolationValue:a,cropSize:s};return W.runKernel(ol,u,d)}var X_=V({cropAndResize_:q_});function K_(e){let t=_(e,"image","flipLeftRight","float32");P(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return W.runKernel(pl,n,{})}var Z_=V({flipLeftRight_:K_});function Y_(e){let t=_(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];P(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),P(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,ws(t,r)}var J_=V({grayscaleToRGB_:Y_});function Q_(e,t,n=0,s=.5){let r=_(e,"image","rotateWithOffset","float32");P(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return W.runKernel(Xl,a,o)}var eF=V({rotateWithOffset_:Q_});function gu(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),P(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),P(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),P(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),P(t.rank===1,()=>"scores must be a 1D tensor"),P(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),P(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function tF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=_(e,"boxes","nonMaxSuppression","float32"),o=_(t,"scores","nonMaxSuppression","float32"),i=gu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return W.runKernel(Cl,{boxes:a,scores:o},l)}var nF=V({nonMaxSuppression_:tF});function sF(e,t,n){let s=rF(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function rF(e,t,n){return oF(e,t,n||aF)}function aF(e,t){return e>t?1:e<t?-1:0}function oF(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function W3(e,t,n,s,r){return i1(e,t,n,s,r,0)}function V3(e,t,n,s,r,a){return i1(e,t,n,s,r,0,!1,a,!0)}function U3(e,t,n,s,r,a){return i1(e,t,n,s,r,a,!0)}function i1(e,t,n,s,r,a,o=!1,i=!1,l=!1){let c=[];for(let g=0;g<t.length;g++)t[g]>r&&c.push({score:t[g],boxIndex:g,suppressBeginIndex:0});c.sort(G3);let u=a>0?-.5/a:0,d=[],p=[];for(;d.length<n&&c.length>0;){let g=c.pop(),{score:A,boxIndex:y,suppressBeginIndex:x}=g;if(A<r)break;let b=!1;for(let v=d.length-1;v>=x;--v){let I=iF(e,y,d[v]);if(I>=s){b=!0;break}if(g.score=g.score*lF(s,u,I),g.score<=r)break}g.suppressBeginIndex=d.length,b||(g.score===A?(d.push(y),p.push(g.score)):g.score>r&&sF(c,g,G3))}let h=d.length,f=n-h;i&&f>0&&(d.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=p),l&&(m.validOutputs=h),m}function iF(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),c=Math.min(r[0],r[2]),u=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),p=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(d-c)*(p-u);if(h<=0||f<=0)return 0;let m=Math.max(a,c),g=Math.max(o,u),A=Math.min(i,d),y=Math.min(l,p),x=Math.max(A-m,0)*Math.max(y-g,0);return x/(h+f-x)}function lF(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function G3(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function uF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),i=gu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),c=l[0],u=l[1],{selectedIndices:d}=W3(c,u,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),jt(d,"int32")}var cF=uF;function dF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=_(e,"boxes","nonMaxSuppression"),i=_(t,"scores","nonMaxSuppression"),l=gu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c={boxes:o,scores:i},u={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},d=W.runKernel(Nl,c,u);return{selectedIndices:d[0],selectedScores:d[1]}}var pF=V({nonMaxSuppressionWithScore_:dF});async function hF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=_(e,"boxes","nonMaxSuppressionAsync"),i=_(t,"scores","nonMaxSuppressionAsync"),l=gu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c=await Promise.all([o.data(),i.data()]),u=c[0],d=c[1],{selectedIndices:p,selectedScores:h}=U3(u,d,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:jt(p,"int32"),selectedScores:jt(h)}}var fF=hF;function mF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=_(e,"boxes","nonMaxSuppression"),i=_(t,"scores","nonMaxSuppression"),l=gu(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,p={boxes:o,scores:i},h={maxOutputSize:c,iouThreshold:u,scoreThreshold:d,padToMaxOutputSize:a},f=W.runKernel(Tl,p,h);return{selectedIndices:f[0],validOutputs:f[1]}}var gF=V({nonMaxSuppressionPadded_:mF});async function AF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=_(e,"boxes","nonMaxSuppressionAsync"),i=_(t,"scores","nonMaxSuppressionAsync"),l=gu(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,[p,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=V3(p,h,c,u,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:jt(f,"int32"),validOutputs:Ee(m,"int32")}}var yF=AF;function xF(e,t,n=!1,s=!1){let r=_(e,"images","resizeBilinear");P(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),P(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),P(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=W.runKernel(_o,i,l);return o?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var H3=V({resizeBilinear_:xF});function bF(e,t,n=!1,s=!1){let r=_(e,"images","resizeNearestNeighbor");P(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),P(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),P(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),P(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=W.runKernel(Tc,i,l);return o?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var j3=V({resizeNearestNeighbor_:bF});function vF(e,t="binary",n=!1,s=.5){let r=_(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],c=B(jt([s]),255),u,d,p,h;if(P(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),P(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),P(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),P(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[u,d,p]=pn(r,[1,1,1],-1);let g=B(u,a),A=B(d,o),y=B(p,i);h=le(le(g,A),y)}else h=e;if(t==="otsu"){let g=EA(de(Yh(h),"int32"),Lt([]),256);c=wF(g,l)}let f=n?ba(h,c):Yn(h,c);return de(B(f,255),"int32")}function wF(e,t){let n=jt([-1]),s=jt([0]),r=jt([0]),a,o,i,l,c,u;for(let d=0;d<e.size-1;d++){a=_e(e,0,d+1),o=_e(e,d+1),c=fe(Ie(a),t),u=fe(Ie(o),t);let p=Ie(B(a,pu(0,a.size)));i=fe(p,Ie(a));let h=lu(o.shape,a.size),f=le(pu(0,o.size),h),m=B(o,f);l=fe(Ie(m),Ie(o));let g=ye(i,l),A=ye(i,l),y=B(c,u);r=B(B(y,g),A);let x=Yn(r,s);s=Tn(x,r,s),n=Tn(x,jt([d]),n)}return n}var kF=V({threshold_:vF});function IF(e,t,n="nearest",s="constant",r=0,a){let o=_(e,"image","transform","float32"),i=_(t,"transforms","transform","float32");P(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),P(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),P(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},c={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return W.runKernel(Hl,l,c)}var SF=V({transform_:IF});function CF(e,t,n){P(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),P(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=_(e,"a","bandPart");P(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=U(pu(0,a,1,"int32"),[-1,1]),l=pu(0,o,1,"int32"),c=ye(i,l),u=zs(ba(c,Ee(+t,"int32")),xa(c,Ee(-n,"int32"))),d=Ht([a,o],s.dtype);return U(bn(On(U(s,[-1,a,o])).map(p=>Tn(u,p,d))),r)}var TF=V({bandPart_:CF});function NF(e){let t;if(Array.isArray(e)){t=!1,P(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)P(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=pn(e,e.shape[0],0).map(r=>rt(r,[0]));P(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(W.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=B(Ie(B(n[o],a)),n[o]);a=ye(a,i)}return fe(a,lf(a,"euclidean"))}));return t?bn(n,0):n}var EF=V({gramSchmidt_:NF});function RF(e,t=!1){if(P(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return q3(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),s=On(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[c,u]=q3(l,t);r.push(c),a.push(u)});let o=U(bn(r,0),e.shape),i=U(bn(a,0),e.shape);return[o,i]}}function q3(e,t=!1){return W.tidy(()=>{P(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=zA(n),a=Zs(e),o=Qs([[1]],[1,1]),i=Zs(o),l=n>=s?s:n;for(let c=0;c<l;++c){let u=a,d=i,p=r;[i,a,r]=W.tidy(()=>{let h=_e(a,[c,c],[n-c,1]),f=lf(h),m=_e(a,[c,c],[1,1]),g=Tn(Yn(m,0),Qs([[-1]]),Qs([[1]])),A=ye(m,B(g,f)),y=fe(h,A);y.shape[0]===1?i=Zs(o):i=gt([o,_e(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let x=Tt(fe(Ve(g,A),f)),b=_e(a,[c,0],[n-c,s]),v=B(x,i),I=Ke(i);if(c===0)a=ye(b,Ve(v,Ve(I,b)));else{let $=ye(b,Ve(v,Ve(I,b)));a=gt([_e(a,[0,0],[c,s]),$],0)}let C=Ke(v),N=_e(r,[0,c],[n,r.shape[1]-c]);if(c===0)r=ye(N,Ve(Ve(N,i),C));else{let $=ye(N,Ve(Ve(N,i),C));r=gt([_e(r,[0,0],[n,c]),$],1)}return[i,a,r]}),Y([u,d,p])}return!t&&n>s&&(r=_e(r,[0,0],[n,s]),a=_e(a,[0,0],[s,s])),[r,a]})}var DF=V({qr_:RF}),Pn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Pn||(Pn={}));function _F(e,t,n=Pn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=_(t,"weights","computeWeightedLoss"));let a=r==null?s:B(s,r);if(n===Pn.NONE)return a;if(n===Pn.SUM)return Ie(a);if(n===Pn.MEAN){if(r==null)return Ft(a);{let o=s.size/r.size,i=fe(Ie(a),Ie(r));return o>1?fe(i,Ee(o)):i}}if(n===Pn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return fe(Ie(a),Ee(s.size));{let o=B(r,us(s.shape)),i=de(Ie(li(o,Ee(0))),"float32");return fe(Ie(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Lr=V({computeWeightedLoss_:_F});function FF(e,t,n,s=Pn.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","absoluteDifference"),a=_(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=_(n,"weights","absoluteDifference")),Dn(r.shape,a.shape,"Error in absoluteDifference: ");let i=Gt(ye(r,a));return Lr(i,o,s)}var $F=V({absoluteDifference_:FF});function OF(e,t,n,s,r=Pn.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"labels","cosineDistance"),o=_(t,"predictions","cosineDistance"),i=null;s!=null&&(i=_(s,"weights","cosineDistance")),Dn(a.shape,o.shape,"Error in cosineDistance: ");let l=Ee(1),c=ye(l,Ie(B(a,o),n,!0));return Lr(c,i,r)}var PF=V({cosineDistance_:OF});function MF(e,t,n,s=Pn.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","hingeLoss"),a=_(t,"predictions","hingeLoss"),o=null;n!=null&&(o=_(n,"weights","hingeLoss")),Dn(r.shape,a.shape,"Error in hingeLoss: ");let i=Ee(1);r=ye(B(Ee(2),r),i);let l=Js(ye(i,B(r,a)));return Lr(l,o,s)}var zF=V({hingeLoss_:MF});function LF(e,t,n,s=1,r=Pn.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"labels","huberLoss"),o=_(t,"predictions","huberLoss"),i=null;n!=null&&(i=_(n,"weights","huberLoss")),Dn(a.shape,o.shape,"Error in huberLoss: ");let l=Ee(s),c=Gt(ye(o,a)),u=cu(c,l),d=ye(c,u),p=le(B(Ee(.5),ft(u)),B(l,d));return Lr(p,i,r)}var BF=V({huberLoss_:LF});function WF(e,t,n,s=1e-7,r=Pn.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"labels","logLoss"),o=_(t,"predictions","logLoss"),i=null;n!=null&&(i=_(n,"weights","logLoss")),Dn(a.shape,o.shape,"Error in logLoss: ");let l=Ee(1),c=Ee(s),u=Tt(B(a,ls(le(o,c)))),d=B(ye(l,a),ls(le(ye(l,o),c))),p=ye(u,d);return Lr(p,i,r)}var VF=V({logLoss_:WF});function UF(e,t,n,s=Pn.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","meanSquaredError"),a=_(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=_(n,"weights","meanSquaredError")),Dn(r.shape,a.shape,"Error in meanSquaredError: ");let i=rf(r,a);return Lr(i,o,s)}var GF=V({meanSquaredError_:UF});function HF(e,t){let n=_(e,"labels","sigmoidCrossEntropyWithLogits"),s=_(t,"logits","sigmoidCrossEntropyWithLogits");Dn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Js(s),a=B(s,n),o=Kc(is(Tt(Gt(s))));return le(ye(r,a),o)}function jF(e,t,n,s=0,r=Pn.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"multiClassLabels","sigmoidCrossEntropy"),o=_(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=_(n,"weights","sigmoidCrossEntropy")),Dn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let c=Ee(s),u=Ee(1),d=Ee(.5);a=le(B(a,ye(u,c)),B(d,c))}let l=HF(a,o);return Lr(l,i,r)}var qF=V({sigmoidCrossEntropy_:jF});function XF(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return xr((r,a,o)=>{let l=UA(a,[n],!0),c=ye(de(a,"float32"),l);o([r,c]);let u=Tt(B(c,r));return{value:Ie(u,[n]),gradFunc:(h,f)=>{let[m,g]=f,A=ii(h.shape,[n]);return[B(U(h,A),ye(de(m,"float32"),is(g))),B(U(h,A),ye(is(g),de(m,"float32")))]}}})(e,t)}function KF(e,t,n,s=0,r=Pn.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"onehotLabels","softmaxCrossEntropy"),o=_(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=_(n,"weights","softmaxCrossEntropy")),Dn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let c=Ee(s),u=Ee(1),d=Ee(a.shape[1]);a=le(B(a,ye(u,c)),fe(c,d))}let l=XF(a,o);return Lr(l,i,r)}var ZF=V({softmaxCrossEntropy_:KF});function YF(e,t,n,s){let r=_(e,"indices","sparseFillEmptyRows"),a=_(t,"values","sparseFillEmptyRows"),o=_(n,"denseShape","sparseFillEmptyRows"),i=_(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},c=W.runKernel(fh,l);return{outputIndices:c[0],outputValues:c[1],emptyRowIndicator:c[2],reverseIndexMap:c[3]}}var JF=V({sparseFillEmptyRows_:YF});function QF(e,t,n){let s=_(e,"inputIndices","sparseReshape"),r=_(t,"inputShape","sparseReshape"),a=_(n,"newShape","sparseReshape");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=W.runKernel(mh,o);return{outputIndices:i[0],outputShape:i[1]}}var e$=V({sparseReshape_:QF});function t$(e,t,n){let s=_(e,"data","sparseSegmentMean"),r=_(t,"indices","sparseSegmentMean"),a=_(n,"segmentIds","sparseSegmentMean");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return W.runKernel(gh,o)}var n$=V({sparseSegmentMean_:t$});function s$(e,t,n){let s=_(e,"data","sparseSegmentSum"),r=_(t,"indices","sparseSegmentSum"),a=_(n,"segmentIds","sparseSegmentSum");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return W.runKernel(Ah,o)}var r$=V({sparseSegmentSum_:s$});function a$(e,t,n,s,r,a,o,i){let l=_(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let c=_(t,"dataSplits","stringNGrams");if(c.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let u={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:c},p=W.runKernel(xh,d,u);return{nGrams:p[0],nGramsSplits:p[1]}}var o$=V({stringNGrams_:a$});function i$(e,t,n=!0){let s=_(e,"input","stringSplit","string"),r=_(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=W.runKernel(bh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var l$=V({stringSplit_:i$});function u$(e,t){let n=_(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return W.runKernel(vh,r,s)}var c$=V({stringToHashBucketFast_:u$}),d$={fft:sd,ifft:fu,rfft:rd,irfft:sf},p$={hammingWindow:V_,hannWindow:L3,frame:B3,stft:j_},De={flipLeftRight:Z_,grayscaleToRGB:J_,resizeNearestNeighbor:j3,resizeBilinear:H3,rotateWithOffset:eF,cropAndResize:X_,nonMaxSuppression:nF,nonMaxSuppressionAsync:cF,nonMaxSuppressionWithScore:pF,nonMaxSuppressionWithScoreAsync:fF,nonMaxSuppressionPadded:gF,nonMaxSuppressionPaddedAsync:yF,threshold:kF,transform:SF},X3={bandPart:TF,gramSchmidt:EF,qr:DF},h$={absoluteDifference:$F,computeWeightedLoss:Lr,cosineDistance:PF,hingeLoss:zF,huberLoss:BF,logLoss:VF,meanSquaredError:GF,sigmoidCrossEntropy:qF,softmaxCrossEntropy:ZF},ad={sparseFillEmptyRows:JF,sparseReshape:e$,sparseSegmentMean:n$,sparseSegmentSum:r$},hf={stringNGrams:o$,stringSplit:l$,stringToHashBucketFast:c$},Br=class extends Kb{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return Y(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return x3(e,t)}dispose(){this.iterations_!=null&&Y(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ee(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Br,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var ff=class extends Br{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:j(()=>Ze(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:j(()=>Ze(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;j(()=>{let c=le(B(i,this.rho),B(ft(o),1-this.rho)),u=B(fe(xn(le(l,this.epsilon)),xn(le(i,this.epsilon))),o),d=le(B(l,this.rho),B(ft(u),1-this.rho));i.assign(c),l.assign(d);let p=le(B(u,-this.learningRate),r);r.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Y(this.accumulatedGrads.map(e=>e.variable)),Y(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};ff.className="Adadelta";Aa(ff);var mf=class extends Br{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n];if(this.accumulatedGrads[s]==null){let i=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:j(()=>lu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;j(()=>{let i=le(o,ft(a));o.assign(i);let l=le(B(fe(a,xn(le(i,W.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Y(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};mf.className="Adagrad";Aa(mf);var gf=class extends Br{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],j(()=>{this.accBeta1=Ee(t).variable(),this.accBeta2=Ee(n).variable()}),s==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);j(()=>{let n=ye(1,this.accBeta1),s=ye(1,this.accBeta2);t.forEach((r,a)=>{let o=W.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:j(()=>Ze(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:j(()=>Ze(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedSecondMoment[a].variable,d=le(B(c,this.beta1),B(l,1-this.beta1)),p=le(B(u,this.beta2),B(ft(l),1-this.beta2)),h=fe(d,n),f=fe(p,s);c.assign(d),u.assign(p);let m=le(B(fe(h,le(xn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(B(this.accBeta1,this.beta1)),this.accBeta2.assign(B(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Y(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Y(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),j(()=>{this.accBeta1.assign(zr(this.beta1,this.iterations_+1)),this.accBeta2.assign(zr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};gf.className="Adam";Aa(gf);var Af=class extends Br{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],j(()=>{this.iteration=Ee(0).variable(),this.accBeta1=Ee(t).variable()}),s==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);j(()=>{let n=ye(1,this.accBeta1),s=fe(-this.learningRate,le(B(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=W.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:Ze(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:Ze(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedWeightedInfNorm[a].variable,d=le(B(c,this.beta1),B(l,1-this.beta1)),p=B(u,this.beta2),h=Gt(l),f=br(p,h);c.assign(d),u.assign(f);let m=le(B(fe(s,n),fe(d,le(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(le(this.iteration,1)),this.accBeta1.assign(B(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Y(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Y(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Af.className="Adamax";Aa(Af);var od=class extends Br{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=W.registeredVariables[n];j(()=>{let o=le(B(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=dn(Ee(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};od.className="SGD";Aa(od);var yf=class extends od{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ee(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n];if(this.accumulations[s]==null){let i=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:j(()=>Ze(r).variable(i))}}let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&j(()=>{let i,l=le(B(this.m,a),o);this.useNesterov?i=le(B(this.c,le(o,B(l,this.m))),r):i=le(B(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Y(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};yf.className="Momentum";Aa(yf);var xf=class extends Br{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=W.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:j(()=>Ze(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:j(()=>Ze(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:j(()=>Ze(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;j(()=>{let c=le(B(i,this.decay),B(ft(o),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[s].variable,d=le(B(u,this.decay),B(o,1-this.decay)),p=fe(B(o,this.learningRate),xn(ye(c,le(ft(d),this.epsilon)))),h=le(B(l,this.momentum),p);i.assign(c),u.assign(d),l.assign(h);let f=ye(r,h);r.assign(f)}else{let u=le(B(i,this.decay),B(ft(o),1-this.decay)),d=le(B(l,this.momentum),fe(B(o,this.learningRate),xn(le(u,this.epsilon))));i.assign(u),l.assign(d);let p=ye(r,d);r.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Y(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Y(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Y(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};xf.className="RMSProp";Aa(xf);var ci=class{static sgd(e){return new od(e)}static momentum(e,t,n=!1){return new yf(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new xf(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new gf(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new ff(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new Af(e,t,n,s,r)}static adagrad(e,t=.1){return new mf(e,t)}},di={sgd:ci.sgd,momentum:ci.momentum,adadelta:ci.adadelta,adagrad:ci.adagrad,rmsprop:ci.rmsprop,adamax:ci.adamax,adam:ci.adam},f$=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function K3(){return new Promise(e=>f$(()=>e()))}var R={};ze(R,{ERF_A1:()=>S$,ERF_A2:()=>C$,ERF_A3:()=>T$,ERF_A4:()=>N$,ERF_A5:()=>E$,ERF_P:()=>I$,PARALLELIZE_THRESHOLD:()=>l1,SELU_SCALE:()=>Y3,SELU_SCALEALPHA:()=>Z3,applyActivation:()=>df,assertAndGetBroadcastShape:()=>bt,assertAxesAreInnerMostDims:()=>RR,assertParamsConsistent:()=>m$,assignToTypedArray:()=>O$,axesAreInnerMostDims:()=>WA,calculateShapes:()=>Mb,checkEinsumDimSizes:()=>W$,combineLocations:()=>v3,complexWithEvenIndex:()=>_$,complexWithOddIndex:()=>F$,computeConv2DInfo:()=>Gc,computeConv3DInfo:()=>n3,computeDefaultPad:()=>CA,computeDilation2DInfo:()=>QN,computeOptimalWindowSize:()=>A$,computeOutAndReduceShapes:()=>w3,computeOutShape:()=>g$,computePool2DInfo:()=>t3,computePool3DInfo:()=>eE,convertConv2DDataFormat:()=>s3,decodeEinsumEquation:()=>L$,eitherStridesOrDilationsAreOne:()=>yr,expandShapeToKeepDim:()=>ii,exponent:()=>M$,exponents:()=>P$,fromStringArrayToUint8:()=>Z$,fromUint8ToStringArray:()=>K$,getAxesPermutation:()=>k3,getBroadcastDims:()=>HE,getComplexWithIndex:()=>$$,getEinsumComputePath:()=>V$,getEinsumPermutation:()=>B$,getFusedBiasGradient:()=>cf,getFusedDyActivation:()=>uf,getImageCenter:()=>y$,getInnerMostAxes:()=>DR,getPermuted:()=>b$,getReductionAxes:()=>Qt,getReshaped:()=>x$,getReshapedPermuted:()=>v$,getSliceBeginCoords:()=>w$,getSliceSize:()=>k$,getUndoAxesPermutation:()=>VA,isIdentityPermutation:()=>U$,log:()=>TT,mergeRealAndImagArrays:()=>R$,prepareAndValidate:()=>Pb,prepareSplitSize:()=>H$,segment_util:()=>ev,shouldFuse:()=>pf,slice_util:()=>Fn,splitRealAndImagArrays:()=>D$,tupleValuesAreOne:()=>ya,upcastType:()=>Ps,validateInput:()=>pA,validateUpdateShape:()=>dA,warn:()=>hr});function m$(e,t){let n=e[0].length;e.forEach((r,a)=>{P(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),P(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)P(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function g$(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var l1=30;function A$(e){return e<=l1?e:zp(e,Math.floor(Math.sqrt(e)))}function y$(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function x$(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function b$(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2==1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function v$(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function w$(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function k$(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var Z3=1.7580993408473768,Y3=1.0507009873554805,I$=.3275911,S$=.254829592,C$=-.284496736,T$=1.421413741,N$=-1.453152027,E$=1.061405429;function R$(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function D$(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function _$(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function F$(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function $$(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function O$(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function P$(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function M$(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var u1="->",z$=/->/g,J3=",",Q3="...";function L$(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(z$,"").length)/u1.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${u1}").`);let[s,r]=e.split(u1);P(s.indexOf(Q3)===-1,()=>`The ellipsis notation ("${Q3}") is not supported yet.`);let a=s.split(J3),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let p=0;p<r.length;++p){let h=r[p];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let p=0;p<s.length;++p){let h=s[p];i.indexOf(h)===-1&&h!==J3&&i.push(h)}let l=new Array(a.length);for(let p=0;p<o;++p){if(new Set(a[p].split("")).size!==a[p].length)throw new Error(`Found duplicate axes in input component ${a[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let h=0;h<a[p].length;++h)l[p].push(i.indexOf(a[p][h]))}let c=i.length,u=r.length,d=[];for(let p=u;p<c;++p)d.push(p);return{allDims:i,summedDims:d,idDims:l}}function B$(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function W$(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:P(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function V$(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=G$(t,i);for(let c of l)a.indexOf(c)===-1&&(s[o].push(c),a.push(c))}return{path:n,steps:s}}function U$(e){return e.every((t,n)=>t===n)}function G$(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function H$(e,t,n=0){let s=[];if(typeof t=="number")P(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);P(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}P(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}var ev={};ze(ev,{collectGatherOpShapeInfo:()=>X$,computeOutShape:()=>q$,segOpComputeOptimalWindowSize:()=>j$});function j$(e,t){let n=!1,s;for(e<=l1?(s=e,n=!0):s=zp(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=zp(e,s+1);return s}function q$(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function X$(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
|
|
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let d=0;d<s;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let o=e.shape[n],i=[],l=1,c=1,u=1;for(let d=0;d<s;++d)i.push(e.shape[d]),l*=e.shape[d];for(let d=s;d<n;d++)i.push(e.shape[d]),c*=e.shape[d];for(let d=s;d<r;d++)i.push(t.shape[d]);for(let d=n+1;d<a;d++)i.push(e.shape[d]),u*=e.shape[d];return{batchSize:l,sliceSize:u,outerSize:c,dimSize:o,outputShape:i}}function K$(e){try{return e.map(t=>Th(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function Z$(e){return e.map(t=>Fc(t))}var vr={};ze(vr,{nonMaxSuppressionV3Impl:()=>W3,nonMaxSuppressionV4Impl:()=>V3,nonMaxSuppressionV5Impl:()=>U3,whereImpl:()=>D3});var tv={kernelName:Xi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,mu(de(n,"float32"),-1))}}},Y$={kernelName:Ki,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ft(de(n,"float32")),r=xn(ye(Ee(1),s));return Tt(fe(e,r))}}}},J$={kernelName:Zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=xn(ye(ft(de(n,"float32")),1));return fe(e,s)}}}},Q$={kernelName:la,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=e,l=Qt(n.shape,r);return l.length>0&&(i=Ie(i,l)),U(i,n.shape)},b:()=>{let i=e,l=Qt(s.shape,r);return l.length>0&&(i=Ie(i,l)),U(i,s.shape)}}}},eO={kernelName:Za,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},tO={kernelName:Ya,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ze(n)}}},nO={kernelName:gc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ze(n)}}},sO={kernelName:Qi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,xn(ye(Ee(1),ft(de(n,"float32")))))}}},rO={kernelName:el,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=xn(le(Ee(1),ft(de(n,"float32"))));return fe(e,s)}}}},aO={kernelName:sl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=le(ft(n),ft(s)),l=B(e,fe(s,i)),c=Qt(n.shape,r);return c.length>0&&(l=Ie(l,c)),U(l,n.shape)},b:()=>{let i=le(ft(n),ft(s)),l=Tt(B(e,fe(n,i))),c=Qt(s.shape,r);return c.length>0&&(l=Ie(l,c)),U(l,s.shape)}}}},oO={kernelName:tl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,le(ft(de(n,"float32")),1))}}},iO={kernelName:nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ye(Ee(1),ft(de(n,"float32"))))}}};function lO(e,t,n,s,r,a){let o=_(e,"dy","avgPool3dGrad"),i=_(t,"input","avgPool3dGrad"),l=o,c=i,u=!1;i.rank===4&&(u=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),c=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),P(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),a!=null&&P(un(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let d={dy:l,input:c},p={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=W.runKernel(Wp,d,p);return u?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var uO=V({avgPool3dGrad_:lO}),cO={kernelName:Ac,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>uO(e,s,r,a,o,i)}}};function dO(e,t,n,s,r){let a=_(e,"dy","avgPoolGrad"),o=_(t,"input","avgPoolGrad");P(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,c=!1;o.rank===3&&(c=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),P(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),P(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let u={dy:l,input:i},d={filterSize:n,strides:s,pad:r},p=W.runKernel(Bp,u,d);return c?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var pO=V({avgPoolGrad_:dO}),hO={kernelName:Ja,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>pO(e,s,r,a,o)}}},fO={kernelName:Qa,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Ve(e,r,!1,!0),b:()=>Ve(s,e,!0,!1)}:!a&&o?{a:()=>Ve(e,r,!1,!1),b:()=>Ve(e,s,!0,!1)}:a&&!o?{a:()=>Ve(r,e,!1,!0),b:()=>Ve(s,e,!1,!1)}:{a:()=>Ve(r,e,!0,!0),b:()=>Ve(e,s,!0,!0)}}},mO={kernelName:rl,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>Qc(e,s,r)}}},gO={kernelName:Q5,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>Ie(e,i,!0)}}},AO={kernelName:eo,gradFunc:e=>({x:()=>e.clone()})},yO={kernelName:to,gradFunc:e=>({x:()=>Ze(e)})},xO={kernelName:ua,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>Tn(zs(xa(s,r),ba(s,a)),e,Ze(e))}}},bO={kernelName:yc,inputsToSave:["x"],gradFunc:tv.gradFunc},vO={kernelName:al,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=Os(r,t[0].shape)[0],o=s.map(l=>l[a]);return pn(e,o,a).map(l=>()=>l)}},wO={kernelName:no,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return P(ya(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>DA(s.shape,e,r,o,i,l),filter:()=>o1(s,e,r.shape,o,i,l)}}},kO={kernelName:so,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Mr(e,r,a,o,i,1,l),filter:()=>o1(e,s,r.shape,a,o,i,l)}}};function IO(e,t,n,s,r){let a=e;e.rank===4&&(a=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),P(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),P(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),P(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),P(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),P(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return W.runKernel(jp,i,l)}var SO=V({conv3DBackpropFilter_:IO}),CO={kernelName:xc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;P(ya(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>d3(o.shape,e,i,r,a),filter:()=>SO(o,e,i.shape,r,a)}}},TO={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Tt(ef(de(n,"float32"))),e)}}},NO={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(tf(de(n,"float32")),e)}}},EO={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=k3([r],s.rank),l=Vh(e,r,a,!o);return i!=null&&(l=Ke(l,i)),l}}}},RO={kernelName:io,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;P(ya(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,c]=t;return P(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),P(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),P(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),P(yr(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),o!=null&&P(un(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>z3(l.shape,e,c,r,a,i,o),filter:()=>M3(l,e,c.shape,r,a,i,o)}}},DO={kernelName:bc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>W.runKernel(Jp,a,n),filter:()=>W.runKernel(Qp,o,n)}}},_O={kernelName:uo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>W.runKernel(th,s)}}},FO={kernelName:ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=B(is(Tt(ft(n))),2/Math.sqrt(Math.PI));return{x:()=>B(e,s)}}},$O={kernelName:co,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,n)}}},OO={kernelName:cl,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},PO={kernelName:dl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,is(n))}}},MO={kernelName:po,gradFunc:e=>({x:()=>Ze(e)})},zO={kernelName:ho,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=fe(e,de(s,"float32")),l=Qt(n.shape,r);return l.length>0?U(Ie(i,l),n.shape):i},b:()=>{let i=B(e,de(n,"float32")),l=Qt(s.shape,r);l.length>0&&(i=U(Ie(i,l),s.shape));let c=ft(s);return Tt(fe(i,de(c,"float32")))}}}},LO={kernelName:fo,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Ee(1):i,c=Qt(a.shape,r.shape),u=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)u.push(r.shape[b]);u.push(1)}let d=ye(r,a),p=B(e,l),h=Jh(le(o,Ee(s))),f=B(B(B(h,h),h),Ee(-.5));return{x:()=>a.rank===1?U(B(B(e,ws(U(h,[1,1,1,a.shape[0]]),u)),l),r.shape):U(B(B(e,h),l),r.shape),mean:()=>{let b=B(B(h,Ee(-1)),p);return a.rank===1&&(b=Ie(b,c)),U(b,a.shape)},variance:()=>{let b=B(B(f,d),p);return a.rank===1&&(b=Ie(b,c)),U(b,a.shape)},scale:()=>{let b=B(d,h),v=B(e,b);return a.rank===1&&(v=Ie(v,c)),U(v,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=Ie(b,c)),U(b,a.shape)}}}},BO={kernelName:hl,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=Os(a,s.shape)[0];return{x:()=>{let l=s.shape,c=r.size,u=l.slice(0,o),d=u.length,p=l.slice(a,l.length).slice(1),h=p.length,f=nv(0,d),m=nv(d+1,d+1+h),g=sv([u,[c],p]),A=U(e,g),y=U(r,[c]),x=sv([[d],f,m]),b=Ke(A,x),v=n1(b,y,s.shape[o]),I=VA(x);return v=Ke(v,I),v},indices:()=>r}}};function nv(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function sv(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var WO={kernelName:mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>Ze(n),b:()=>Ze(s)}}},VO={kernelName:go,gradFunc:e=>({x:()=>de(e,"float32")})},UO={kernelName:gl,gradFunc:e=>({x:()=>Ze(e)})},GO={kernelName:Al,gradFunc:e=>({x:()=>Ze(e)})},HO={kernelName:yl,gradFunc:e=>({x:()=>Ze(e)})},jO={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=Yn(s,0);return{x:()=>Tn(a,e,B(e,r))}}},qO={kernelName:vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,le(n,1))}}},XO={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,de(n,"float32"))}}},KO={kernelName:eb,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let a=!0,o=is(s);return ye(e,B(Ie(e,r,a),o))}}}};function ZO(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return W.runKernel(oh,i,l)}var YO=V({localResponseNormalizationBackprop_:ZO}),JO={kernelName:Ic,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>YO(s,r,e,a,o,i,l)}}};function rv(e,t,n,s){return t.rank<n.rank&&(t=U(t,ii(t.shape,s))),e.rank<n.rank&&(e=U(e,ii(e.shape,s))),{x:()=>B(e,de(os(n,t),e.dtype))}}var av={kernelName:xo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=Os(r,a.shape),l=rv(e,o,a,i);return{x:()=>l.x()}}},QO={kernelName:bo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>B(e,de(xa(n,s),"float32")),b:()=>B(e,de(Gh(n,s),"float32"))}}};function eP(e,t,n,s,r,a,o){let i=_(e,"dy","maxPool3dGrad"),l=_(t,"input","maxPool3dGrad"),c=_(n,"output","maxPool3dGrad"),u=i,d=l,p=c,h=!1;l.rank===4&&(h=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=U(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),P(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),P(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),P(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),o!=null&&P(un(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:u,input:d,output:p},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=W.runKernel(lh,f,m);return h?U(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var tP=V({maxPool3dGrad_:eP}),nP={kernelName:Sc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>tP(e,s,r,a,o,i,l)}}};function sP(e,t,n,s,r,a,o){let i=_(e,"dy","maxPoolGrad"),l=_(t,"input","maxPoolGrad"),c=_(n,"output","maxPoolGrad");P(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),P(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),P(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&P(un(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let u={dy:i,input:l,output:c},d={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return W.runKernel(ih,u,d)}var rP=V({maxPoolGrad_:sP}),aP={kernelName:vo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>rP(e,s,r,a,o,i)}}},oP={kernelName:wo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=Os(r,s.shape),i=w3(s.shape,a)[1],l=zt(i);return{x:()=>{let u=s.shape.slice();a.forEach(h=>{u[h]=1});let d=U(e,u);return fe(B(d,us(s.shape,"float32")),l)}}}},iP={kernelName:ko,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=Os(r,a.shape),l=rv(e,o,a,i);return{x:()=>l.x()}}},lP={kernelName:Io,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>B(e,de(ba(n,s),"float32")),b:()=>B(e,de(Yn(n,s),"float32"))}}},uP={kernelName:So,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>_e(e,a,s.shape)}}},cP={kernelName:kl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=Qt(n.shape,r);return i.length>0?U(Ie(e,i),n.shape):e},b:()=>{let i=B(e,Tt(uu(fe(n,s)))),l=Qt(s.shape,r);return l.length>0?U(Ie(i,l),s.shape):i}}}},dP={kernelName:Co,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=B(e,de(s,"float32")),l=Qt(n.shape,r);return l.length>0?U(Ie(i,l),n.shape):i},b:()=>{let i=B(e,de(n,"float32")),l=Qt(s.shape,r);return l.length>0?U(Ie(i,l),s.shape):i}}}},pP={kernelName:Il,gradFunc:e=>({x:()=>Tt(e)})},hP={kernelName:To,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Ht(n.shape,"float32")}}},fP={kernelName:El,gradFunc:e=>({x:()=>Ze(e)})},mP={kernelName:Rl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return On(e,s).map(a=>()=>a)}},ov={kernelName:No,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>_e(e,a,s.shape)}}},gP={kernelName:Eo,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=bt(a.shape,o.shape);return{a:()=>{let u=de(o,"float32"),d=B(e,B(u,zr(a,ye(u,Ee(1))))),p=Qt(a.shape,i);return p.length>0&&(d=Ie(d,p)),U(d,a.shape)},b:()=>{let u=Yn(a,0),d=Tn(u,ls(a),Ze(a)),p=B(e,B(r,d)),h=Qt(o.shape,i);return h.length>0&&(p=Ie(p,h)),U(p,o.shape)}}}},AP={kernelName:Ro,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=Yn(n,0);return{x:()=>Tn(r,e,B(e,s)),alpha:()=>{let a=Tn(r,Ze(e),B(e,n)),o=Qt(s.shape,e.shape);return o.length>0&&(a=Ie(a,o)),U(a,s.shape)}}}},yP={kernelName:lo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=fe(e,de(s,"float32")),l=Qt(n.shape,r);return l.length>0?U(Ie(i,l),n.shape):i},b:()=>{let i=B(e,de(n,"float32")),l=Qt(s.shape,r);l.length>0&&(i=U(Ie(i,l),s.shape));let c=ft(s);return Tt(fe(i,de(c,"float32")))}}}},xP={kernelName:_l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,Tt(ft(n)))}}},bP={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=B(ba(n,6),mu(n));return{x:()=>B(e,de(s,"float32"))}}},vP={kernelName:Do,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,de(mu(n),"float32"))}}},wP={kernelName:Fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},kP={kernelName:_o,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>W.runKernel(hh,r,n)}}},IP={kernelName:Tc,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>W.runKernel(ph,r,n)}}},SP={kernelName:$o,gradFunc:(e,t,n)=>{let{dims:s}=n,r=Os(s,e.shape);return{x:()=>ds(e,r)}}},CP={kernelName:Oo,gradFunc:e=>({x:()=>Ze(e)})},TP={kernelName:Po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Tt(fe(e,B(zr(n,1.5),2)))}}},NP={kernelName:Ol,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>de(Ze(n),"float32"),t:()=>B(e,de(n,e.dtype)),e:()=>B(e,de(Zc(n),e.dtype))}}},EP={kernelName:Pl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Yn(n,Ee(0)),r=Ee(Z3),a=Ee(Y3),o=B(e,a),i=B(B(e,r),is(de(n,"float32")));return Tn(s,o,i)}}}},RP={kernelName:zo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(n,ye(Ee(1),n)))}}},DP={kernelName:Ll,gradFunc:e=>({x:()=>Ze(e)})},_P={kernelName:Mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(qc(de(n,"float32")),e)}}},FP={kernelName:zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Wh(de(n,"float32")),e)}}},$P={kernelName:Ml,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=Xb(s,r,a),c=[];for(let u=0;u<e.rank;u++)c.push([i[u],o[u]-i[u]-l[u]]);return{x:()=>ks(e,c)}}},OP={kernelName:Wo,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=B(e,s);return{logits:()=>ye(o,B(Ie(o,[r],a),s))}}},PP={kernelName:Bl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Kn(n))}}},iv={kernelName:Wl,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>jc(e,s,r)}}},lv={kernelName:Vl,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>gt(e,s)}}},MP={kernelName:Lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,B(xn(de(n,"float32")),2))}}},zP={kernelName:Nc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(de(n,"float32"),2))}}},LP={kernelName:Vo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ee(2);return{a:()=>B(e,B(r,ye(n,s))),b:()=>B(e,B(r,ye(s,n)))}}},BP={kernelName:da,gradFunc:e=>({x:()=>Ze(e)})},WP={kernelName:Uo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=e,l=Qt(n.shape,r);return l.length>0&&(i=Ie(i,l)),U(i,n.shape)},b:()=>{let i=e,l=Qt(s.shape,r);return l.length>0&&(i=Ie(i,l)),U(Tt(i),s.shape)}}}},VP={kernelName:Bo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;Os(a,s.shape).forEach(c=>{r[c]=1});let i=U(e,r),l=B(i,us(s.shape,"float32"));return{x:()=>l}}},UP={kernelName:Go,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ft(qc(n)))}}},GP={kernelName:Ho,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(ye(Ee(1),ft(n)),e)}}},HP={kernelName:ca,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=Ze(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=le(o,_e(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=le(o,_e(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)o=le(o,_e(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)for(let u=0;u<r[3];++u)o=le(o,_e(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2],u*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},jP={kernelName:jo,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=VA(r);return{x:()=>Ke(e,a)}}},qP={kernelName:jl,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>bn(e,r)}}},XP={kernelName:Ec,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>KP(e,n)}}};function KP(e,t){let n=br(t,Ze(t)),s=ai(e,n),r=xa(t,Ee(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=Bt(r,i+1);r=zs(r,us(s.shape,"bool"));let o=Ze(s);return Tn(r,s,o)}var ZP={kernelName:ql,gradFunc:e=>({x:()=>Ze(e)})},YP=[tv,Y$,J$,Q$,eO,tO,nO,sO,rO,aO,oO,iO,cO,hO,fO,mO,gO,AO,yO,xO,bO,vO,kO,wO,CO,TO,NO,EO,RO,DO,yP,_O,FO,$O,OO,PO,zO,MO,LO,BO,WO,VO,UO,GO,HO,jO,qO,XO,KO,JO,av,av,QO,nP,aP,oP,iP,lP,uP,cP,dP,pP,hP,fP,mP,ov,ov,gP,AP,xP,bP,vP,wP,kP,IP,SP,CP,TP,NP,EP,RP,DP,_P,FP,$P,OP,PP,iv,iv,lv,lv,MP,LP,zP,BP,WP,VP,UP,GP,HP,jP,qP,XP,ZP];for(let e of YP)tb(e);ae().prototype.abs=function(){return this.throwIfDisposed(),Gt(this)};ae().prototype.acos=function(){return this.throwIfDisposed(),yA(this)};ae().prototype.acosh=function(){return this.throwIfDisposed(),xA(this)};ae().prototype.add=function(e){return this.throwIfDisposed(),le(this,e)};ae().prototype.all=function(e,t){return this.throwIfDisposed(),Mh(this,e,t)};ae().prototype.any=function(e,t){return this.throwIfDisposed(),Uc(this,e,t)};ae().prototype.argMax=function(e){return this.throwIfDisposed(),vs(this,e)};ae().prototype.argMin=function(e){return this.throwIfDisposed(),bA(this,e)};ae().prototype.asScalar=function(){return this.throwIfDisposed(),P(this.size===1,()=>"The array must have only 1 element."),U(this,[])};ae().prototype.asType=function(e){return this.throwIfDisposed(),de(this,e)};ae().prototype.as1D=function(){return this.throwIfDisposed(),U(this,[this.size])};ae().prototype.as2D=function(e,t){return this.throwIfDisposed(),U(this,[e,t])};ae().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),U(this,[e,t,n])};ae().prototype.as4D=function(e,t,n,s){return this.throwIfDisposed(),U(this,[e,t,n,s])};ae().prototype.as5D=function(e,t,n,s,r){return this.throwIfDisposed(),U(this,[e,t,n,s,r])};ae().prototype.asin=function(){return this.throwIfDisposed(),vA(this)};ae().prototype.asinh=function(){return this.throwIfDisposed(),wA(this)};ae().prototype.atan=function(){return this.throwIfDisposed(),kA(this)};ae().prototype.atan2=function(e){return this.throwIfDisposed(),IA(this,e)};ae().prototype.atanh=function(){return this.throwIfDisposed(),SA(this)};ae().prototype.avgPool=function(e,t,n,s){return this.throwIfDisposed(),Hc(this,e,t,n,s)};ae().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),jc(this,e,t)};ae().prototype.batchNorm=function(e,t,n,s,r){return this.throwIfDisposed(),ri(this,e,t,n,s,r)};ae().prototype.broadcastTo=function(e){return this.throwIfDisposed(),ru(this,e)};ae().prototype.cast=function(e){return this.throwIfDisposed(),de(this,e)};ae().prototype.ceil=function(){return this.throwIfDisposed(),RA(this)};ae().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),Zn(this,e,t)};ae().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ge&&(e=[e]),gt([this,...e],t)};ae().prototype.conv1d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Lh(this,e,t,n,s,r,a)};ae().prototype.conv2dTranspose=function(e,t,n,s,r){return this.throwIfDisposed(),Bh(this,e,t,n,s,r)};ae().prototype.conv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Mr(this,e,t,n,s,r,a)};ae().prototype.cos=function(){return this.throwIfDisposed(),qc(this)};ae().prototype.cosh=function(){return this.throwIfDisposed(),Wh(this)};ae().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Vh(this,e,t,n)};ae().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),FA(this,e,t)};ae().prototype.depthwiseConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),ou(this,e,t,n,s,r,a)};ae().prototype.dilation2d=function(e,t,n,s,r){return this.throwIfDisposed(),$A(this,e,t,n,s,r)};ae().prototype.divNoNan=function(e){return this.throwIfDisposed(),OA(this,e)};ae().prototype.div=function(e){return this.throwIfDisposed(),fe(this,e)};ae().prototype.dot=function(e){return this.throwIfDisposed(),f3(this,e)};ae().prototype.elu=function(){return this.throwIfDisposed(),iu(this)};ae().prototype.equal=function(e){return this.throwIfDisposed(),os(this,e)};ae().prototype.erf=function(){return this.throwIfDisposed(),PA(this)};ae().prototype.exp=function(){return this.throwIfDisposed(),is(this)};ae().prototype.expandDims=function(e){return this.throwIfDisposed(),Bt(this,e)};ae().prototype.expm1=function(){return this.throwIfDisposed(),MA(this)};ae().prototype.fft=function(){return this.throwIfDisposed(),sd(this)};ae().prototype.flatten=function(){return this.throwIfDisposed(),U(this,[this.size])};ae().prototype.floor=function(){return this.throwIfDisposed(),uu(this)};ae().prototype.floorDiv=function(e){return this.throwIfDisposed(),Oh(this,e)};ae().prototype.gather=function(e,t){return this.throwIfDisposed(),ai(this,e,t)};ae().prototype.greaterEqual=function(e){return this.throwIfDisposed(),xa(this,e)};ae().prototype.greater=function(e){return this.throwIfDisposed(),Yn(this,e)};ae().prototype.ifft=function(){return this.throwIfDisposed(),fu(this)};ae().prototype.irfft=function(){return this.throwIfDisposed(),sf(this)};ae().prototype.isFinite=function(){return this.throwIfDisposed(),g3(this)};ae().prototype.isInf=function(){return this.throwIfDisposed(),A3(this)};ae().prototype.isNaN=function(){return this.throwIfDisposed(),LA(this)};ae().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Xc(this,e)};ae().prototype.lessEqual=function(e){return this.throwIfDisposed(),ba(this,e)};ae().prototype.less=function(e){return this.throwIfDisposed(),Gh(this,e)};ae().prototype.localResponseNormalization=function(e,t,n,s){return this.throwIfDisposed(),BA(this,e,t,n,s)};ae().prototype.logSigmoid=function(){return this.throwIfDisposed(),b3(this)};ae().prototype.logSoftmax=function(e){return this.throwIfDisposed(),jh(this,e)};ae().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),UA(this,e,t)};ae().prototype.log=function(){return this.throwIfDisposed(),ls(this)};ae().prototype.log1p=function(){return this.throwIfDisposed(),Kc(this)};ae().prototype.logicalAnd=function(e){return this.throwIfDisposed(),zs(this,e)};ae().prototype.logicalNot=function(){return this.throwIfDisposed(),Zc(this)};ae().prototype.logicalOr=function(e){return this.throwIfDisposed(),qh(this,e)};ae().prototype.logicalXor=function(e){return this.throwIfDisposed(),I3(this,e)};ae().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ve(this,e,t,n)};ae().prototype.maxPool=function(e,t,n,s){return this.throwIfDisposed(),Yc(this,e,t,n,s)};ae().prototype.max=function(e,t){return this.throwIfDisposed(),$n(this,e,t)};ae().prototype.maximum=function(e){return this.throwIfDisposed(),br(this,e)};ae().prototype.mean=function(e,t){return this.throwIfDisposed(),Ft(this,e,t)};ae().prototype.min=function(e,t){return this.throwIfDisposed(),Jc(this,e,t)};ae().prototype.minimum=function(e){return this.throwIfDisposed(),cu(this,e)};ae().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),HA(this,e,t)};ae().prototype.mod=function(e){return this.throwIfDisposed(),jA(this,e)};ae().prototype.mul=function(e){return this.throwIfDisposed(),B(this,e)};ae().prototype.neg=function(){return this.throwIfDisposed(),Tt(this)};ae().prototype.norm=function(e,t,n){return this.throwIfDisposed(),lf(this,e,t,n)};ae().prototype.notEqual=function(e){return this.throwIfDisposed(),li(this,e)};ae().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),eu(this,e,t,n)};ae().prototype.onesLike=function(){return this.throwIfDisposed(),cs(this)};ae().prototype.pad=function(e,t){return this.throwIfDisposed(),ks(this,e,t)};ae().prototype.pool=function(e,t,n,s,r){return this.throwIfDisposed(),T3(this,e,t,n,s,r)};ae().prototype.pow=function(e){return this.throwIfDisposed(),zr(this,e)};ae().prototype.prelu=function(e){return this.throwIfDisposed(),ed(this,e)};ae().prototype.prod=function(e,t){return this.throwIfDisposed(),Kh(this,e,t)};ae().prototype.reciprocal=function(){return this.throwIfDisposed(),KA(this)};ae().prototype.relu=function(){return this.throwIfDisposed(),Js(this)};ae().prototype.relu6=function(){return this.throwIfDisposed(),Zh(this)};ae().prototype.reshapeAs=function(e){return this.throwIfDisposed(),U(this,e.shape)};ae().prototype.reshape=function(e){return this.throwIfDisposed(),U(this,e)};ae().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),H3(this,e,t,n)};ae().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),j3(this,e,t,n)};ae().prototype.reverse=function(e){return this.throwIfDisposed(),ds(this,e)};ae().prototype.rfft=function(){return this.throwIfDisposed(),rd(this)};ae().prototype.round=function(){return this.throwIfDisposed(),Yh(this)};ae().prototype.rsqrt=function(){return this.throwIfDisposed(),Jh(this)};ae().prototype.selu=function(){return this.throwIfDisposed(),Qh(this)};ae().prototype.separableConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),ZA(this,e,t,n,s,r,a)};ae().prototype.sigmoid=function(){return this.throwIfDisposed(),Kn(this)};ae().prototype.sign=function(){return this.throwIfDisposed(),YA(this)};ae().prototype.sin=function(){return this.throwIfDisposed(),ef(this)};ae().prototype.sinh=function(){return this.throwIfDisposed(),tf(this)};ae().prototype.slice=function(e,t){return this.throwIfDisposed(),_e(this,e,t)};ae().prototype.softmax=function(e){return this.throwIfDisposed(),ui(this,e)};ae().prototype.softplus=function(){return this.throwIfDisposed(),oi(this)};ae().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Qc(this,e,t)};ae().prototype.split=function(e,t){return this.throwIfDisposed(),pn(this,e,t)};ae().prototype.sqrt=function(){return this.throwIfDisposed(),xn(this)};ae().prototype.square=function(){return this.throwIfDisposed(),ft(this)};ae().prototype.squaredDifference=function(e){return this.throwIfDisposed(),rf(this,e)};ae().prototype.squeeze=function(e){return this.throwIfDisposed(),rt(this,e)};ae().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ge?[this,e]:[this,...e];return bn(n,t)};ae().prototype.step=function(e){return this.throwIfDisposed(),mu(this,e)};ae().prototype.stridedSlice=function(e,t,n,s,r,a,o,i){return this.throwIfDisposed(),QA(this,e,t,n,s,r,a,o,i)};ae().prototype.sub=function(e){return this.throwIfDisposed(),ye(this,e)};ae().prototype.sum=function(e,t){return this.throwIfDisposed(),Ie(this,e,t)};ae().prototype.tan=function(){return this.throwIfDisposed(),e1(this)};ae().prototype.tanh=function(){return this.throwIfDisposed(),si(this)};ae().prototype.tile=function(e){return this.throwIfDisposed(),ws(this,e)};ae().prototype.toBool=function(){return this.throwIfDisposed(),de(this,"bool")};ae().prototype.toFloat=function(){return this.throwIfDisposed(),de(this,"float32")};ae().prototype.toInt=function(){return this.throwIfDisposed(),de(this,"int32")};ae().prototype.topk=function(e,t){return this.throwIfDisposed(),t1(this,e,t)};ae().prototype.transpose=function(e){return this.throwIfDisposed(),Ke(this,e)};ae().prototype.unique=function(e){return this.throwIfDisposed(),of(this,e)};ae().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),n1(this,e,t)};ae().prototype.unstack=function(e){return this.throwIfDisposed(),On(this,e)};ae().prototype.where=function(e,t){return this.throwIfDisposed(),Tn(e,this,t)};ae().prototype.zerosLike=function(){return this.throwIfDisposed(),Ze(this)};var uv={};ze(uv,{maxNorm:()=>tM,minMaxNorm:()=>rM,nonNeg:()=>sM,unitNorm:()=>nM});var c1;function en(){return c1==null&&(c1=Ar().epsilon()),c1}function er(){return"channelsLast"}var Wr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Wr.prototype)}},tr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,tr.prototype)}},q=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,q.prototype)}},Me=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Me.prototype)}},cv=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,cv.prototype)}};function pi(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function wr(e,t){if(!e)throw new cv(t)}function dv(e,t){let n=0;for(let s of e)s===t&&n++;return n}function Jn(e){return e.length===1?e[0]:e}function vt(e){return Array.isArray(e)?e:[e]}function Vr(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function hi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Ls={};function d1(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function p1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>p1(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:p1(s))}}}function id(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Ls)o=Ls[a];else if(o=t[a],o==null)throw new q(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new q(`${s}: Improper config format: ${JSON.stringify(a)}.
|
|
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in Ls?[i,l]=Ls.className:o in t&&([i,l]=t[o]),i==null)throw new q(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let h of Object.keys(Ls))c[h]=Ls[h];for(let h of Object.keys(n))c[h]=n[h];let u=a.config;u.customObjects=c;let d=Object.assign({},Ls);for(let h of Object.keys(n))Ls[h]=n[h];p1(a.config);let p=l(i,a.config,n,r);return Ls=Object.assign({},d),p}else{let c=Object.assign({},Ls);for(let d of Object.keys(n))Ls[d]=n[d];let u=new i(a.config);return Ls=Object.assign({},c),u}}}function JP(e,t){return e<t?-1:e>t?1:0}function bf(e,t){return-1*JP(e,t)}function wa(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function QP(e){if(e==null)throw new q(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function fi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new q(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function h1(e,t,n=0,s=1/0){return wr(n>=0),wr(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function hn(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>hn(n,`element ${s+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${pv(e)}.`)}function pv(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>pv(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function eM(e,t,n){let s=n!=null?n():w.now(),r;return(...o)=>{let i=n!=null?n():w.now();return i-s<t||(s=i,r=e(...o)),r}}function hv(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function f1(e,t){return j(()=>xn(Ie(B(e,e),t,!0)))}var ld=class extends ue.Serializable{getConfig(){return{}}},m1=class extends ld{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>{let t=f1(e,this.axis),n=Zn(t,0,this.maxValue);return B(e,fe(n,le(en(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};m1.className="MaxNorm";ue.registerClass(m1);var g1=class extends ld{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>fe(e,le(en(),f1(e,this.axis))))}getConfig(){return{axis:this.axis}}};g1.className="UnitNorm";ue.registerClass(g1);var A1=class extends ld{apply(e){return Js(e)}};A1.className="NonNeg";ue.registerClass(A1);var y1=class extends ld{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>{let t=f1(e,this.axis),n=le(B(this.rate,Zn(t,this.minValue,this.maxValue)),B(1-this.rate,t));return B(e,fe(n,le(en(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};y1.className="MinMaxNorm";ue.registerClass(y1);var fv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function tn(e){return d1(e)}function mv(e,t={}){return id(e,ue.SerializationMap.getMap().classNameMap,t,"constraint")}function nn(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in fv?fv[e]:e,config:{}};return mv(n)}else return e instanceof ld?e:mv(e)}function tM(e){return new m1(e)}function nM(e){return new g1(e)}function sM(){return new A1}function rM(e){return new y1(e)}var gv={};ze(gv,{constant:()=>TM,glorotNormal:()=>$M,glorotUniform:()=>FM,heNormal:()=>OM,heUniform:()=>PM,identity:()=>DM,leCunNormal:()=>MM,leCunUniform:()=>zM,ones:()=>CM,orthogonal:()=>LM,randomNormal:()=>EM,randomUniform:()=>NM,truncatedNormal:()=>RM,varianceScaling:()=>_M,zeros:()=>SM});var aM=["channelsFirst","channelsLast"],oM=["nearest","bilinear"],iM=["valid","same","causal"],lM=["max","avg"],uM=["sum","mul","concat","ave"],Au=new Map;function Wt(e){fi(aM,"DataFormat",e)}function cM(e){fi(oM,"InterpolationFormat",e)}function Is(e){fi(iM,"PaddingMode",e)}function Av(e){fi(lM,"PoolMode",e)}var ud=[],yv="/";function mi(e,t){ud.push(e);try{let n=t();return ud.pop(),n}catch(n){throw ud.pop(),n}}function dM(){return ud.length===0?"":ud.join(yv)+yv}function xv(e){if(!vv(e))throw new Error("Not a valid tensor name: '"+e+"'");return dM()+e}function bv(e){if(!vv(e))throw new Error("Not a valid tensor name: '"+e+"'");Au.has(e)||Au.set(e,0);let t=Au.get(e);if(Au.set(e,Au.get(e)+1),t>0){let n=`${e}_${t}`;return Au.set(n,1),n}else return e}var pM=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function vv(e){return!!e.match(pM)}function hM(e){return e===parseInt(e.toString(),10)}function ka(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function yu(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function Ia(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function nr(e,t){if(t<e)throw new q(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}function vf(e,t){return de(e,t)}function cd(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),U(e,n)}function fM(e,t){return j(()=>{if(e.shape.length!==2)throw new q(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=cd(e,1);return v1(n,[1,t,1])})}function mM(e){let t=[ka(e.shape)];return U(e,t)}function gM(e){if(e.rank<=1)throw new q(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],ka(e.shape,1)];return U(e,t)}function gi(e,t,n){return j(()=>{switch(e.rank){case 1:return nf(e,t,n);case 2:return JA(e,[t,0],[n,e.shape[1]]);case 3:return hu(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return nd(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return _e(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return _e(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new q(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function x1(e,t,n){return j(()=>{switch(e.rank){case 1:return nf(e,t,n);case 2:return JA(e,[0,t],[e.shape[0],n]);case 3:return hu(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return nd(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function wf(e,t,n,s){return j(()=>{switch(e.rank){case 1:return nf(e,t,n);case 2:switch(s){case 1:return gi(e,t,n);case 2:return x1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return gi(e,t,n);case 2:return hu(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return x1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return gi(e,t,n);case 2:return nd(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return nd(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return x1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function b1(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),gt(e,t)}function wv(e,t){switch(e.rank){case 1:return l3([e,t]);case 2:return au([e,t],0);case 3:return u3([e,t],0);case 4:return c3([e,t],0);default:throw new q(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function v1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new q(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return ws(e,t)}function kf(e,t=0,n=1,s,r){return N3(e,t,n,s,r)}function kr(e,t,n,s){if(e.rank<2||t.rank<2)throw new Me(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Me(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,a=!1;return va.matMul({a:e,b:t,transposeA:r,transposeB:a,bias:s?w1(e.rank,s,er()):null,activation:n})}else{let r=e.shape.slice(),a=r.pop();e=U(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),c=[...o,i],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=U(Ke(t,u),[l,-1]);let d=[...r,...c],p=!1,h=!1;return U(va.matMul({a:e,b:t,transposeA:p,transposeB:h,bias:s?w1(e.rank,s,er()):null,activation:n}),d)}}function kv(e,t,n){return j(()=>(Array.isArray(t)?t=jt(t,"int32"):t=de(t,"int32"),ai(e,t,n)))}function dd(e){return B(e,e)}function w1(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new q(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1,1]):U(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1]):U(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1]):U(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,s[0]]):U(t,[1].concat(s))}else if(e<3)return t;throw new q(`Unsupported input rank by biasAdd: ${t.rank}`)}function sr(e,t,n){return j(()=>(n==null&&(n=er()),Wt(n),le(e,w1(e.rank,t,n))))}function AM(e,t=1){if(t!==1)throw new Me(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return iu(e)}function yM(e){return j(()=>fe(e,le(Gt(e),1)))}function Iv(e,t,n,s){return j(()=>O3(e,t,n,s))}function xM(e){return j(()=>{let t=le(.5,B(.2,e));return Zn(t,0,1)})}function pd(e,t,n=!1){return n?e():t()}var bM=["fanIn","fanOut","fanAvg"],vM=["normal","uniform","truncatedNormal"];function wM(e){fi(bM,"FanMode",e)}function kM(e){fi(vM,"Distribution",e)}var Bs=class extends ue.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},k1=class extends Bs{apply(e,t){return Ht(e,t)}};k1.className="Zeros";ue.registerClass(k1);var If=class extends Bs{apply(e,t){return us(e,t)}};If.className="Ones";ue.registerClass(If);var I1=class extends Bs{constructor(e){super();if(typeof e!="object")throw new q(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new q(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return j(()=>B(Ee(this.value),us(e,t)))}getConfig(){return{value:this.value}}};I1.className="Constant";ue.registerClass(I1);var S1=class extends Bs{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return du(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};S1.className="RandomUniform";ue.registerClass(S1);var C1=class extends Bs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`randomNormal does not support dType ${t}.`);return kf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};C1.className="RandomNormal";ue.registerClass(C1);var T1=class extends Bs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`truncatedNormal does not support dType ${t}.`);return af(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};T1.className="TruncatedNormal";ue.registerClass(T1);var N1=class extends Bs{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return j(()=>{if(e.length!==2||e[0]!==e[1])throw new q("Identity matrix initializer can only be used for 2D square matrices.");return B(this.gain,zA(e[0]))})}getConfig(){return{gain:this.gain}}};N1.className="Identity";ue.registerClass(N1);function IM(e,t="channelsLast"){let n,s;if(Wt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=ka(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=ka(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=ka(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var Qn=class extends Bs{constructor(e){super();if(e.scale<0)throw new q(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,wM(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,kM(this.distribution),this.seed=e.seed}apply(e,t){let n=IM(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`${this.getClassName()} does not support dType ${t}.`);return af(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return du(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Qn.className="VarianceScaling";ue.registerClass(Qn);var Sf=class extends Qn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Sf.className="GlorotUniform";ue.registerClass(Sf);var Cf=class extends Qn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Cf.className="GlorotNormal";ue.registerClass(Cf);var Tf=class extends Qn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Tf.className="HeNormal";ue.registerClass(Tf);var Nf=class extends Qn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Nf.className="HeUniform";ue.registerClass(Nf);var Ef=class extends Qn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Ef.className="LeCunNormal";ue.registerClass(Ef);var Rf=class extends Qn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Rf.className="LeCunNormal";ue.registerClass(Rf);var E1=class extends Bs{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Me("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return j(()=>{if(e.length<2)throw new Me("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=kf(n,0,1,"float32"),r=X3.gramSchmidt(s);return e[0]>e[1]&&(r=Ke(r)),B(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};E1.className="Orthogonal";ue.registerClass(E1);var Sv={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Cv(e,t={}){return id(e,ue.SerializationMap.getMap().classNameMap,t,"initializer")}function $t(e){return d1(e)}function Nt(e){if(typeof e=="string"){let t=e in Sv?Sv[e]:e;if(t==="GlorotNormal")return new Cf;if(t==="GlorotUniform")return new Sf;if(t==="HeNormal")return new Tf;if(t==="HeUniform")return new Nf;if(t==="LeCunNormal")return new Ef;if(t==="LeCunUniform")return new Rf;{let n={};return n.className=t,n.config={},Cv(n)}}else return e instanceof Bs?e:Cv(e)}function SM(){return new k1}function CM(){return new If}function TM(e){return new I1(e)}function NM(e){return new S1(e)}function EM(e){return new C1(e)}function RM(e){return new T1(e)}function DM(e){return new N1(e)}function _M(e){return new Qn(e)}function FM(e){return new Sf(e)}function $M(e){return new Cf(e)}function OM(e){return new Tf(e)}function PM(e){return new Nf(e)}function MM(e){return new Ef(e)}function zM(e){return new Rf(e)}function LM(e){return new E1(e)}var Tv={};ze(Tv,{Layer:()=>Je,RNN:()=>Cr,RNNCell:()=>vd,activation:()=>vL,add:()=>RL,alphaDropout:()=>hB,average:()=>DL,averagePooling1d:()=>qy,averagePooling2d:()=>Xy,averagePooling3d:()=>Ky,avgPool1d:()=>BL,avgPool2d:()=>VL,avgPool3d:()=>GL,avgPooling1d:()=>WL,avgPooling2d:()=>UL,avgPooling3d:()=>HL,batchNormalization:()=>ML,bidirectional:()=>aB,concatenate:()=>_L,conv1d:()=>pL,conv2d:()=>hL,conv2dTranspose:()=>fL,conv3d:()=>mL,conv3dTranspose:()=>gL,convLstm2d:()=>tB,convLstm2dCell:()=>nB,cropping2D:()=>yL,dense:()=>wL,depthwiseConv2d:()=>bL,dot:()=>PL,dropout:()=>kL,elu:()=>oL,embedding:()=>EL,flatten:()=>SL,gaussianDropout:()=>pB,gaussianNoise:()=>dB,globalAveragePooling1d:()=>jL,globalAveragePooling2d:()=>qL,globalMaxPool1d:()=>iB,globalMaxPool2d:()=>lB,globalMaxPooling1d:()=>Pw,globalMaxPooling2d:()=>Mw,gru:()=>KL,gruCell:()=>ZL,input:()=>ow,inputLayer:()=>aL,layerNormalization:()=>zL,leakyReLU:()=>lL,lstm:()=>YL,lstmCell:()=>JL,masking:()=>fB,maxPool1d:()=>uB,maxPool2d:()=>cB,maxPooling1d:()=>zw,maxPooling2d:()=>Lw,maxPooling3d:()=>XL,maximum:()=>FL,minimum:()=>$L,multiply:()=>OL,permute:()=>NL,prelu:()=>uL,reLU:()=>iL,repeatVector:()=>CL,reshape:()=>TL,rnn:()=>sB,separableConv2d:()=>AL,simpleRNN:()=>QL,simpleRNNCell:()=>eB,softmax:()=>cL,spatialDropout1d:()=>IL,stackedRNNCells:()=>rB,thresholdedReLU:()=>dL,timeDistributed:()=>oB,upSampling2d:()=>xL,zeroPadding2d:()=>LL});var BM=0;function Nv(){return BM++}var Df={};function _f(e=""){return e in Df||(Df[e]=0),Df[e]+=1,e+Df[e].toString()}function R1(e){return Array.isArray(e)&&Array.isArray(e[0])}function Ff(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Le(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new q(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function dt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new q(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function $f(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var Ev="Variable",Rv=class{constructor(e,t="float32",n=Ev,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Nv(),n=n==null?Ev:n,this.originalName=xv(n),this.name=bv(this.originalName),this.trainable_=s,this.constraint=r,this.val=R3(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),WM(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function WM(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function D1(e){return e.map(t=>t.read())}function _1(e){e.forEach(t=>{t[0].write(t[1])})}var qt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},rr=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=Nv(),a!=null&&(this.originalName=xv(a),this.name=bv(this.originalName)),this.rank=t.length}},VM=0,Of=class{constructor(e,t){this.callArgs=t,this.id=VM++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},UM=0,Je=class extends ue.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=UM++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Vr(n)+"_"+_f(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new tr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new q(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Jn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Jn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Wr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Wr(`Layer ${this.name} is not connected, no input to return.`);return Jn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Wr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Wr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Jn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=vt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=vt(this.inputSpec);if(e.length!==t.length)throw new q(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new q(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),c=r.axes[i],u=l>=0?o[l]:o[o.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=vt(e),s=!0;for(let a of n)if(!(a instanceof rr)){s=!1;break}let r=!0;for(let a of n)if(a instanceof rr){r=!1;break}if(s===r)throw new q("Arguments to apply() must be all SymbolicTensors or all Tensors");return mi(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of vt(e))a.push(o.shape);this.build(Jn(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=vt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=Jn(i),this.activityRegularizer!=null)throw new Me("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=GM(e),o=this.computeOutputShape(a),i,l=HM(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((c,u)=>new rr(l,c,this,vt(e),t,this.name,u)):i=new rr(l,o,this,vt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Me("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Wr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Wr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new tr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return $f(this.weights)}build(e){this.built=!0}getWeights(e=!1){return D1(e?this.trainableWeights:this.weights)}setWeights(e){j(()=>{let t=this.weights;if(t.length!==e.length)throw new q(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=D1(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!w.arraysEqual(a.shape,i.shape))throw new q(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}_1(n)})}addWeight(e,t,n,s,r,a,o,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new q(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=i!=null?i():Nt("zeros"));let l=s.apply(t,n),c=new Rv(l,n,e,a,o);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(c.read())),a==null&&(a=!0),a?this._trainableWeights.push(c):this._nonTrainableWeights.push(c),c}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=vt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=vt(e);t=vt(t),n=vt(n),s=vt(s),r=Ff(r),a=Ff(a);let l=[],c=[],u=[];for(let d of i)l.push(d.sourceLayer),c.push(d.nodeIndex),u.push(d.tensorIndex);new Of({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function GM(e){e=vt(e);let t=[];for(let n of e)t.push(n.shape);return Jn(t)}function HM(e){return"float32"}function Dv(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],c=Dv(o,i,l);for(let u of c)r.indexOf(u)===-1&&r.push(u)}return r}}}var xu=class extends Je{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:_f("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new q("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new q("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new q("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new rr(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new Of({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new q(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};xu.className="InputLayer";ue.registerClass(xu);function _v(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new q("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new xu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Sa(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];Y(s)}}function Fv(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var $v;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})($v||($v={}));var jM=125,bu=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Ov=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},qM=class extends bu{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=j(()=>le(this.totals[s],B(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:j(()=>{let s=B(fe(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),dn(t[n])}))}},Pv=class extends bu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},Mv=class extends bu{constructor(e,t){super();if(this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||K3,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=jM),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=eM(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await Sa(n),s.push(this.yield(e,t,n))),s.push(this.nextFrameFunc()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Sa(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Sa(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Sa(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Sa(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Sa(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Sa(e),await this.trainEnd(e))}};function zv(e,t){return e==null&&(e={}),e instanceof bu?[e]:Array.isArray(e)&&e[0]instanceof bu?e:vt(e).map(s=>new Mv(s,t))}var Ws=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ws.checkForDuplicate(t),Ws.constructors[e]==null&&(Ws.constructors[e]=[]),Ws.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Ws.constructors)Ws.constructors[+t].forEach(s=>{if(s===e)throw new q("Duplicate callback constructor.")})}static clear(){Ws.constructors={}}static createCallbacks(e){let t=[];for(let n in Ws.constructors){let s=+n;e>=s&&t.push(...Ws.constructors[s])}return t.map(n=>new n)}};Ws.constructors={};function Lv(e,t,n,s,r,a,o,i,l){let c=new Pv,u=[new qM,...Ws.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let d=new Ov(u);return d.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:c}}function ar(e,t={},n=!1){return id(e,ue.SerializationMap.getMap().classNameMap,t,"layer",n)}function Pf(e,t){return j(()=>{e.dtype!=="float32"&&(e=de(e,"float32"));let n=Ie(dd(e),t,!0),s=lu(n.shape,en()),r=xn(br(n,s));return fe(e,r)})}function Ai(e,t){return j(()=>Ft(dd(ye(t,e)),-1))}function Mf(e,t){return j(()=>Ft(Gt(ye(t,e)),-1))}function vu(e,t){return j(()=>{let n=ye(e,t),s=Zn(Gt(e),en(),Number.MAX_VALUE),r=Gt(fe(n,s));return B(100,Ft(r,-1))})}function XM(e,t){return j(()=>{let n=Zn(t,en(),Number.MAX_VALUE),s=ls(le(1,n)),r=Zn(e,en(),Number.MAX_VALUE),a=ls(le(1,r));return Ft(dd(ye(s,a)),-1)})}function KM(e,t){return j(()=>{let n=br(0,ye(1,B(e,t)));return Ft(dd(n),-1)})}function ZM(e,t){return j(()=>{let n=br(0,ye(1,B(e,t)));return Ft(n,-1)})}function YM(e,t){return j(()=>{let n=Ie(B(e,t),-1),s=$n(B(ye(1,e),t),-1);return br(0,le(1,ye(s,n)))})}function JM(e,t){return j(()=>{let n=Math.log(2),s=ye(t,e),r=ye(le(s,oi(B(-2,s))),n);return Ft(r,-1)})}function hd(e,t,n=!1){return j(()=>{if(n)t=ui(t);else{let s=Ie(t,t.shape.length-1,!0);t=fe(t,s)}return t=Zn(t,en(),1-en()),Tt(Ie(B(de(e,"float32"),ls(t)),t.shape.length-1))})}function zf(e,t,n=!1){return j(()=>{let s=de(uu(mM(e)),"int32");t=Zn(t,en(),1-en());let r=t.shape,a=U(eu(s,r[r.length-1]),r);return hd(a,t,n)})}function QM(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new q(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return j(()=>{let n=Js(t),s=Tt(Gt(t));return le(ye(n,B(t,e)),Kc(is(s)))})}function Lf(e,t){return j(()=>{let n;return n=Zn(t,en(),1-en()),n=ls(fe(n,ye(1,n))),Ft(QM(e,n),-1)})}function ez(e,t){return j(()=>{let n=Zn(e,en(),1),s=Zn(t,en(),1);return Ie(B(e,ls(fe(n,s))),-1)})}function tz(e,t){return j(()=>{let n=ls(le(en(),t));return Ft(ye(t,B(e,n)),-1)})}function F1(e,t){return j(()=>{let n=Pf(e,-1),s=Pf(t,-1),r=B(n,s);return Tt(Ie(r,-1))})}var Bf={meanSquaredError:Ai,meanAbsoluteError:Mf,meanAbsolutePercentageError:vu,meanSquaredLogarithmicError:XM,squaredHinge:KM,hinge:ZM,categoricalHinge:YM,logcosh:JM,categoricalCrossentropy:hd,sparseCategoricalCrossentropy:zf,binaryCrossentropy:Lf,kullbackLeiblerDivergence:ez,poisson:tz,cosineProximity:F1};function $1(e){if(typeof e=="string"){if(e in Bf)return Bf[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new q(t)}else return e}function O1(e,t){return j(()=>{let n=B(.5,cs(t)),s=vf(Yn(t,n),e.dtype);return Ft(os(e,s),-1)})}function P1(e,t){return j(()=>vf(os(vs(e,-1),vs(t,-1)),"float32"))}function Bv(e,t){return j(()=>de(Ie(zs(os(e,1),os(t,1))),"float32"))}function nz(e,t){return j(()=>de(Ie(zs(os(e,1),os(t,0))),"float32"))}function sz(e,t){return j(()=>de(Ie(zs(os(e,0),os(t,1))),"float32"))}function Wv(e,t){return j(()=>{let n=Bv(e,t),s=sz(e,t),r=le(n,s);return de(Tn(Yn(r,0),fe(n,r),0),"float32")})}function rz(e,t){return j(()=>{let n=Bv(e,t),s=nz(e,t),r=le(n,s);return de(Tn(Yn(r,0),fe(n,r),0),"float32")})}function Vv(e,t){return Lf(e,t)}function Uv(e,t){return e.rank===t.rank&&(e=rt(e,[e.rank-1])),t=vs(t,-1),t.dtype!==e.dtype&&(t=de(t,e.dtype)),de(os(e,t),"float32")}var az=Ai,oz=Ai,iz=Mf,lz=Mf,uz=vu,cz=vu,M1=hd,dz=F1,Gv=zf,Wf={binaryAccuracy:O1,categoricalAccuracy:P1,precision:Wv,categoricalCrossentropy:M1,sparseCategoricalCrossentropy:Gv,mse:az,MSE:oz,mae:iz,MAE:lz,mape:uz,MAPE:cz,cosine:dz};function pz(e){if(typeof e=="string"&&e in Wf)return Wf[e];if(typeof e!="string"&&e!=null)return e;throw new q(`Unknown metric ${e}`)}function Vf(e){if(wr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Bf))if(Bf[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Wf))if(Wf[n]===e){t=n;break}return t!==void 0?t:e.name}}function hz(e){let t={Adagrad:()=>di.adagrad(.01),Adadelta:()=>di.adadelta(1,.95,en()),Adam:()=>di.adam(.001,.9,.999,en()),Adamax:()=>di.adamax(.002,.9,.999,en(),0),RMSProp:()=>di.rmsprop(.001,.9,0,en()),SGD:()=>di.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new q(`Unknown Optimizer ${e}`)}var Hv=1*1024*1024;function jv(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!z1(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>Hv&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${Hv}.`)}}function z1(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!z1(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!z1(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function fz(e,t,n,s=console.log){let r=gz(e),a=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let o;if(!r){a.push("Receives inputs"),o=[];for(let u in e.nodesByDepth)o.push(...e.nodesByDepth[u])}s("_".repeat(t)),Uf(a,n,s),s("=".repeat(t));let i=e.layers;for(let u=0;u<i.length;++u)r?Az(i[u],n,s):yz(i[u],n,o,s),s((u===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=mz(e),c=$f(e.nonTrainableWeights);s(`Total params: ${l+c}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${c}`),s("_".repeat(t))}function mz(e){let t;return e.collectedTrainableWeights!=null?t=$f(e.collectedTrainableWeights):t=$f(e.trainableWeights),t}function gz(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Uf(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function Az(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch(i){s="multiple"}let r=e.name,a=e.getClassName(),o=[`${r} (${a})`,s,e.countParams().toString()];Uf(o,t,n)}function yz(e,t,n,s){let r;try{r=JSON.stringify(e.outputShape)}catch(u){r="multiple"}let a=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let d=0;d<u.inboundLayers.length;++d){let p=u.inboundLayers[d].name,h=u.nodeIndices[d],f=u.tensorIndices[d];a.push(`${p}[${h}][${f}]`)}let o=e.name,i=e.getClassName(),l=a.length===0?"":a[0],c=[`${o} (${i})`,r,e.countParams().toString(),l];Uf(c,t,s);for(let u=1;u<a.length;++u)Uf(["","","",a[u]],t,s)}function qv(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function fd(e,t){if(e===null)return null;if(typeof e=="string")return hi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];qv(t,r,a)?n.push(a):n.push(fd(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=hi(s);n[a]=fd(r,a)}}return n}}function L1(e,t){if(e==null)return null;if(typeof e=="string")return Vr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];qv(t,r,a)?n.push(a):n.push(L1(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=Vr(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=L1(r,s)}return n}}var B1="3.10.0";function xz(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return de(t,e.dtype)}catch(n){throw new q(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var yi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof yi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=xz(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new q(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof rr){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof rr){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Y(this.id2Mask)}},W1={},Xv={};function md(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],c=t.names();for(let f of i)c.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let u=i.join(",")+"|"+t.names().join(","),d,p;if(W1[u]==null){let f=bz(o,t);d=f.sorted,p=f.recipientCounts,W1[u]=d,Xv[u]=p}d=W1[u],p={},r||Object.assign(p,Xv[u]);let h=new yi(t);for(let f=0;f<d.length;++f){if(s!=null){let $=Fh().numTensors;$>s.maxNumTensors&&(s.maxNumTensors=$),$<s.minNumTensors&&(s.minNumTensors=$)}let m=d[f],g=m.sourceLayer;if(g instanceof xu)continue;let A=[],y=[],x=[],b=!1;for(let $ of m.inputs){let O=h.getValue($),E=h.getMask($);A.push(O),y.push(E),E!=null&&(b=!0),r||(p[$.name]--,p[$.name]===0&&!t.hasKey($)&&i.indexOf($.name)===-1&&!O.isDisposed&&$.sourceLayer.stateful!==!0&&x.push(O))}b&&(n=n||{},n.mask=y[0]);let v=vt(g.apply(A,n)),I=null;g.supportsMasking&&(I=g.computeMask(A,y));let C=wz(m),N=Array.isArray(C)?C:[C];for(let $=0;$<N.length;++$){h.hasKey(N[$])||h.add(N[$],v[$],Array.isArray(I)?I[0]:I);let O=i.indexOf(N[$].name);O!==-1&&(l[O]=v[$])}r||Y(x)}return h.disposeMasks(),a?l:l[0]}function bz(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=Kv(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=Kv(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(c=>s[l].add(c))}}return{sorted:n,recipientCounts:vz(s)}}function vz(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Kv(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let c of i.inputs)r[c.name]==null&&(r[c.name]=new Set),r[c.name].add(i.name),!n.has(c.name)&&a.push(c)}}return{sorted:s,recipientMap:r}}function wz(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var Ir=class extends Je{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let A=this.getClassName().toLowerCase();this.name=_f(A)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],wa(this.inputs).length!==this.inputs.length)throw new q(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(A=>A.name)}`);wa(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(A=>A.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let A of this.outputs){let y=A.sourceLayer,x=A.nodeIndex,b=A.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let A of this.inputs){let y=A.sourceLayer,x=A.nodeIndex,b=A.tensorIndex;wr(x===0,"input layer has >1 nodes"),wr(b===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let A=0;A<this.inputLayers.length;A++){let y=this.inputLayers[A];if(!(y instanceof xu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${A} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let A of this.outputLayers)this.outputNames.push(A.name);this.internalInputShapes=this.inputs.map(A=>A.shape),this.internalOutputShapes=this.outputs.map(A=>A.shape);let t={},n={},s={},r={},a={},o=[],i=(A,y,x,b,v,I)=>{(b==null||v==null||I==null)&&(b=A.sourceLayer,v=A.nodeIndex,I=A.tensorIndex);let C=b.inboundNodes[v];if(x.indexOf(C)!==-1)throw new tr(`The tensor ${A.name} at layer "${b.name}" is part of a cycle.`);if(y.indexOf(C)!==-1)return;this.containerNodes.add(Ir.nodeKey(b,v)),b.id in a||(a[b.id]=Object.keys(a).length),x.indexOf(C)===-1&&x.push(C);let N=C.inboundLayers.length;for(let $=0;$<N;$++){let O=C.inputTensors[$],E=C.inboundLayers[$],F=C.nodeIndices[$],T=C.tensorIndices[$];i(O,y,x,E,F,T)}for(y.push(C);x.indexOf(C)>=0;)x.splice(x.indexOf(C),1);o.push(C)},l=[],c=[];for(let A of this.outputs)i(A,l,c);let u=o.slice().reverse();for(let A of u){n[A.id]=A,A.id in t||(t[A.id]=0);let y=t[A.id],x=s[A.outboundLayer.id]==null?0:s[A.outboundLayer.id];y=Math.max(y,x),s[A.outboundLayer.id]=y,r[A.outboundLayer.id]=A.outboundLayer,t[A.id]=y;for(let b=0;b<A.inboundLayers.length;b++){let v=A.inboundLayers[b],I=A.nodeIndices[b],C=v.inboundNodes[I],N=t[C.id]==null?0:t[C.id];t[C.id]=Math.max(y+1,N),n[C.id]=C}}let d={};for(let A in t){let y=t[A];y in d||(d[y]=[]),d[y].push(n[A])}let p={};for(let A in s){let y=s[A];y in p||(p[y]=[]),p[y].push(r[A])}let h=Object.keys(p).map(A=>parseInt(A,10)).sort(bf);this.layers=[];for(let A of h){let y=p[A];y.sort((x,b)=>{let v=a[x.id],I=a[b.id];return v<I?-1:v>I?1:0});for(let x of y)x instanceof Ir&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=p,h=Object.keys(d).map(A=>parseInt(A,10)).sort(bf);let f=this.inputs.slice(),m=[];for(let A of h)for(let y of d[A]){let x=y.outboundLayer;if(x!=null){for(let b of y.inputTensors)if(f.indexOf(b)===-1)throw new tr(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let b of y.outputTensors)f.push(b);m.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(A=>A.name);for(let A of g){let y=g.filter(x=>x===A).length;if(y!==1)throw new tr(`The name "${A}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Of({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(A=>null),outputMasks:this.outputs.map(A=>null),inputShapes:this.inputs.map(A=>A.shape),outputShapes:this.outputs.map(A=>A.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new q("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new q(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new q(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new q(`${a.length} of ${s} weights are not set: ${a}`)}_1(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${B1}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=L1(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return j(()=>{e=vt(e);let n=new yi;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return md(this.outputs,n,t)})}computeMask(e,t){return j(()=>{e=vt(e);let n;return t==null?n=pi(null,e.length):n=vt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Ff(e);if(t.length!==this.inputLayers.length)throw new q(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],c=i.name+"_0_0";n[c]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(bf);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let c=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(c.id)!==-1)continue;let u=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],A=l.tensorIndices[f],y=`${m.name}_${g}_${A}`,x=n[y];u.push(x)}let d=c.computeOutputShape(Jn(u)),p=Ff(d),h=c.inboundNodes.indexOf(l);for(let f=0;f<p.length;f++){let m=`${c.name}_${h}_${f}`;n[m]=p[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],c=this.outputLayersTensorIndices[o],u=`${i.name}_${l}_${c}`;a.push(u)}for(let o=0;o<a.length;o++){let i=a[o];wr(i in n),r.push(n[i])}return Jn(r)}runInternalGraph(e,t){t==null&&(t=pi(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],c=e[i],u=t[i];n[l.id]=[c,u]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(bf);for(let i of s){let l=this.nodesByDepth[i];for(let c of l){let u=c.outboundLayer,d=c.inputTensors,p=c.outputTensors,h=new Array;for(let f of d)f.id in n&&h.push(n[f.id]);if(h.length===d.length){let f={},m,g,A,y;if(c.callArgs!=null&&(f=c.callArgs),h.length===1){let[x,b]=h[0];f.mask==null&&(f.mask=b),A=vt(u.call(x,f)),y=vt(u.computeMask(x,b)),m=[x],g=[b]}else m=h.map(x=>x[0]),g=h.map(x=>x[1]),f.mask==null&&(f.mask=g),A=vt(u.call(m,f)),y=vt(u.computeMask(m,g));if(u.activityRegularizer)throw new Me("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<p.length;++x){let b=p[x],v=A[x],I=y[x];n[b.id]=[v,I]}}}}let r=[],a=[],o=[];for(let i of this.outputs){wr(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,c]=n[i.id];o.push(l.shape),r.push(l),a.push(c)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof Ir?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=Ir.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new q(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new q("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new q(`No such layer: ${e}`)}calculateLosses(){return j(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=Ir.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let u=0;u<a.inboundNodes.length;u++){let d=a.inboundNodes[u],p=Ir.nodeKey(a,u),h={};if(this.containerNodes.has(p)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let f=[];for(let m=0;m<d.inboundLayers.length;m++){let g=d.inboundLayers[m],A=d.nodeIndices[m],y=d.tensorIndices[m],x=Ir.nodeKey(g,A),b=t[x];b==null&&(b=0),f.push([g.name,b,y,h])}l.push(f)}}}let c={};c.name=a.name,c.className=o,c.config=i,c.inboundNodes=l,n.push(c)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=Ir.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.inputLayersTensorIndices[a];s.push([o.name,c,u])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=Ir.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.outputLayersTensorIndices[a];r.push([o.name,c,u])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let A=[],y;for(let x of g){let b=x[0],v=x[1],I=x[2];if(y=x[3]==null?{}:x[3],!(b in r)){o(m,g);return}let C=r[b];if(C.inboundNodes.length<=v){o(m,g);return}let N=C.inboundNodes[v];A.push(N.outputTensors[I])}A.length>0&&m.apply(Jn(A),y)}function l(m){let g=m.name,A=ar(m,t.customObjects!=null?t.customObjects:{});A.setFastWeightInitDuringBuild(s),r[g]=A,m.inboundNodes.forEach(x=>{if(!(x instanceof Array))throw new q(`Corrupted configuration, expected array for nodeData: ${x}`);o(A,x)})}let c=t.name,u=t.layers;for(let m of u)l(m);for(;!QP(a);)for(let m of u){let g=r[m.name];if(g.name in a){let A=a[g.name];delete a[g.name];for(let y of A)i(g,y)}}let d=[],p=[],h=t.inputLayers;for(let m of h){let g=m[0],A=m[1],y=m[2];wr(g in r);let b=r[g].inboundNodes[A].outputTensors;d.push(b[y])}let f=t.outputLayers;for(let m of f){let g=m[0],A=m[1],y=m[2];wr(g in r);let b=r[g].inboundNodes[A].outputTensors;p.push(b[y])}return new e({inputs:d,outputs:p,name:c})}get stateful(){if(this._stateful)throw new q("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){j(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function kz(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function Zv(e,t){return kz(e,t,"classWeight")}async function Yv(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=j(()=>{if(e.shape.length===1)return Zs(e);if(e.shape.length===2){if(e.shape[1]>1)return vs(e,1);if(e.shape[1]===1)return U(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());Y(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),jt(o,"float32")}else return null}function Iz(e,t){return B(e,t)}var Sz=32;function Jv(e,t){let n,s,r=t;n=r.xs,s=r.ys,w.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=Qv("input",e.inputNames,n),o=Qv("output",e.outputNames,s),i=a[0].shape[0];w.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)w.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)w.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function Qv(e,t,n){if(n instanceof Ge)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new q(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function Cz(e){if(e.length===3)throw new Me("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function Tz(e,t,n){let s=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(ew(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=Cz(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;r?c=l.slice().concat(l.map(g=>"val_"+g)):c=l.slice();let u=zv(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:p,history:h}=Lv(u,d,n.epochs,null,null,Nz(t,n),null,r,c);p.setModel(e),e.history=h,await p.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await p.onEpochBegin(f);let A=0,y=0;for(s||(m=await t.iterator());s?A<n.batchesPerEpoch:!0;){let x=await m.next();if(s&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${A} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:b,ys:v}=Jv(e,x.value),I={};I.batch=y,I.size=b[0].shape[0],await p.onBatchBegin(y,I);let C=[];if(n.classWeight!=null){let O=Zv(n.classWeight,e.outputNames);for(let E=0;E<O.length;++E)C.push(await Yv(v[E],null,O[E]))}let N=b.concat(v).concat(C),$=i(N);Y(N);for(let O=0;O<l.length;++O){let E=l[O],F=$[O];I[E]=F,dn(F)}await p.onBatchEnd(y,I),Fv(I),y++,A++}if(s?A>=n.batchesPerEpoch:x.done){if(r){let b;ew(n.validationData)?b=vt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=vt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?Sz:n.validationBatchSize,verbose:0}));for(let v=0;v<e.metricsNames.length;++v)g[`val_${e.metricsNames[v]}`]=b[v]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(f,g),f++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function Nz(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function ew(e){return typeof e.iterator=="function"}function Ez(e){return typeof e.next=="function"}async function Rz(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Me("Verbose mode is not implemented yet.");w.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=Ez(t)?t:await t.iterator(),i=0,l=0;for(;s?l<n.batches:!0;){let c=await o.next();if(a=j(()=>{if(c.value){let{xs:u,ys:d}=Jv(e,c.value),p=u.concat(d),h=j(()=>r(p));if(Y(p),l===0)for(let m=0;m<h.length;++m)a.push(Ee(0));let f=p[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],A=a[m];a[m]=j(()=>le(a[m],B(f,g))),l>0&&Y(A)}Y(h),i+=f,++l}return a}),c.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<a.length;++c){let u=a[c];a[c]=fe(a[c],i),Y(u)}return Jn(a)}function V1(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function gd(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>gi(s,t,n-t)):gi(e,t,n-t)}function U1(e,t){return j(()=>e==null?null:Array.isArray(e)?e.map(n=>U1(n,t)):kv(e,t.dtype==="int32"?t:de(t,"int32")))}function G1(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function Dz(e,t,n,s,r,a,o,i,l,c,u,d,p,h,f){r==null&&(r=32),a==null&&(a=1),u==null&&(u=!0),p==null&&(p=0);let m=!1;if(l!=null&&c!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new q("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),A;g!=null&&(A=nr(0,g)),o==null&&(o=1);let{callbackList:y,history:x}=Lv(i,o,a,p,g,h,r,m,d);y.setModel(e),e.history=x,await y.onTrainBegin(),e.stopTraining_=!1;for(let b=p;b<a;++b){await y.onEpochBegin(b);let v={};if(h!=null)throw new Me("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new Me("batch shuffling is not implemneted yet");u&&w.shuffle(A);let I=jt(A),C=G1(g,r);for(let N=0;N<C.length;++N){let $={};if(await y.onBatchBegin(N,$),j(()=>{let O=C[N][0],E=C[N][1],F=gi(I,O,E-O);$.batch=N,$.size=E-O;let T=U1(n,F),M=t(T);for(let G=0;G<s.length;++G){let H=s[G],z=M[G];$[H]=z,dn(z)}if(N===C.length-1&&m){let G=e.testLoop(l,c,r);for(let H=0;H<s.length;++H){let z=s[H],X=G[H];dn(X),v["val_"+z]=X}}}),await y.onBatchEnd(N,$),Fv($),e.stopTraining_)break}I.dispose()}if(await y.onEpochEnd(b,v),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function _z(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,c,u;try{let d=s.batchSize==null?32:s.batchSize;V1(d);let p=!1,h=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,p,d);r=h[0],a=h[1],u=h[2];let f=!1,m;if(s.validationData!=null&&s.validationData.length>0){if(f=!0,s.validationData.length===2)o=s.validationData[0],i=s.validationData[1];else throw s.validationData.length===3?new Me("validationData including sample weights is not supported yet."):new q(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let C=!0,N=await e.standardizeUserData(o,i,null,null,C,d);l=N[0],c=N[1],m=l.concat(c)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){f=!0;let C=Math.floor(r[0].shape[0]*(1-s.validationSplit)),N=r[0].shape[0];l=gd(r,C,N),r=gd(r,0,C),c=gd(a,C,N),a=gd(a,0,C),m=l.concat(c)}else s.validationSteps!=null&&(f=!0);let g=r.concat(a).concat(u);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),y=e.getDedupedMetricsNames(),x,b;f?(e.makeTestFunction(),x=e.testFunction,b=y.slice().concat(y.map(C=>"val_"+C))):(x=null,m=[],b=y.slice());let v=zv(s.callbacks,s.yieldEvery);return await Dz(e,A,g,y,d,s.epochs,s.verbose,v,x,m,s.shuffle,b,s.initialEpoch,null,null)}finally{e.isTraining=!1,xi(r,t),xi(a,n),xi(l,o),xi(c,i),u!=null&&Y(u)}}function tw(e){let t=[];e instanceof Ge&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(cd(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function xi(e,t){if(e==null)return;let n=[];if(t instanceof Ge)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof Ge)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function Fz(e){return e instanceof Ge}function H1(e){return Array.isArray(e)}function nw(e){return!Fz(e)&&!H1(e)}function sw(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(H1(e)&&e.length>0)o=!0;else if(nw(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new q(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(nw(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new q(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(H1(e)){if(e=e,e.length!==t.length)throw new q(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new q(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=tw(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new q(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u>=0&&c!==u)throw new q(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function $z(e,t,n){let s=wa(e.map(a=>a.shape[0]));s.sort();let r=wa(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new q(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new q(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!w.arraysEqual(s,r))throw new q(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function Oz(e,t,n){let s=[Ai,Lf,hd];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===hd&&a.shape[a.shape.length-1]===1)throw new q(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),c=i.slice(1);for(let u=0;u<l.length;++u){let d=l[u],p=c[u];if(p!=null&&d!==p)throw new q(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function rw(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new q(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new q(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new q(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u!==c)throw new q(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function Pz(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var Mz="layers-model",Ur=class extends Ir{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new q("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");fz(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=hz(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Br))throw new q("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new q(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push($1(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new q(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>$1(o))}else{let a=$1(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],mi("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=Pz(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};mi("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let c="",u,d,p;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===Lf?["accuracy","acc"].indexOf(h)!==-1?d=O1:["crossentropy","ce"].indexOf(h)!==-1&&(d=Vv):this.lossFunctions[a]===zf?["accuracy","acc"].indexOf(h)!==-1?d=Uv:["crossentropy","ce"].indexOf(h)!==-1&&(d=Gv):["accuracy","acc"].indexOf(h)!==-1?d=P1:["crossentropy","ce"].indexOf(h)!==-1&&(d=M1);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),p=d,u=c+g}else p=pz(h),u=c+Vf(h);let f;mi(u,()=>{f=p}),r(a,u,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;V1(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return Jn(l)}finally{xi(a[0],e),xi(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Rz(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new q(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new q(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new q("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new yi;if(e instanceof Ge&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new q(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new q(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=md(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=pi(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new q(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return j(()=>{let s=this.checkNumSamples(e);if(n)throw new Me("Verbose predictLoop() is not implemented yet.");let r=G1(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)j(()=>{let l=r[o][0],c=r[o][1],u=gd(e,l,c),d=[];if(Array.isArray(u))for(let h=0;h<u.length;++h)d.push({key:this.inputs[h],value:u[h]});else d.push({key:this.inputs[0],value:u});let p=new yi(d);return md(this.outputs,p)}).forEach((l,c)=>a[c].push(l));return Jn(a.map(o=>gt(o,0)))})}predict(e,t={}){let n=tw(e);rw(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return V1(s),this.predictLoop(n,s)}finally{xi(n,e)}}predictOnBatch(e){rw(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new tr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===zf?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=sw(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=sw(t,this.feedOutputNames,r,!1,"target"),$z(e,t,null),Oz(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!=0)throw new q(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let c=Zv(s,this.outputNames);l=[];for(let u=0;u<c.length;++u)l.push(await Yv(i[u],null,c[u]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return j(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Me("Verbose mode is not implemented yet.");if(r!=null)throw new Me("steps mode in testLoop() is not implemented yet");{let i=G1(a,n),l=jt(nr(0,a));for(let c=0;c<i.length;++c){let u=i[c][0],d=i[c][1],p=gi(l,u,d-u),h=U1(t,p),f=e(h);if(c===0)for(let m=0;m<f.length;++m)o.push(Ee(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=le(o[m],B(d-u,g))}}for(let c=0;c<o.length;++c)o[c]=fe(o[c],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;dv(e,s)>1&&(r+=`_${dv(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let u=[];for(let f=0;f<this.inputs.length;++f)u.push({key:this.inputs[f],value:n[f]});let d=new yi(u),p=md(this.outputs,d,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](s[f],p[f]);r[f]!=null&&(g=Iz(g,r[f]));let A=Ft(g);t.push(A),f===0?h=g:h=le(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],A=this.metricsTensors[f][1];m=Ft(g(s[A],p[A]))}dn(m),a.push(m)}return h=Ft(h),this.calculateLosses().forEach(f=>{h=le(h,f)}),h},i=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>j(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new yi(a),i=md(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],u=Ft(c(r[l],i[l]));l===0?n=u:n=le(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],u=this.metricsTensors[l][1],d=Ft(c(r[u],i[u]));t.push(d)}return t})}async fit(e,t,n={}){return _z(this,e,t,n)}async fitDataset(e,t){return Tz(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let c=await l.data();i.push(c[0])}return Y(o),Jn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Fh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Fh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Vr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Vr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=Vr(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Vr(Vf(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Vr(Vf(e)));{let e={};for(let t in this.metrics)e[t]=Vr(Vf(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=fd(e.optimizer_config),n=ar(t),s;if(typeof e.loss=="string")s=hi(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>hi(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=hi(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>hi(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=hi(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=Xn.getSaveHandlers(e);if(l.length===0)throw new q(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new q(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new q("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Xn.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:Mz,generatedBy:`TensorFlow.js tfjs-layers v${B1}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:c,specs:u}=await Xn.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...u),n.data=Xn.concatenateArrayBuffers([n.data,c])}if(this.userDefinedMetadata!=null){let l=!0;jv(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){jv(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Ur.className="Model";ue.registerClass(Ur);var aw=class extends Ur{};aw.className="Functional";ue.registerClass(aw);async function zz(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=fd(n),r=ar(s,t);if(e.weightsManifest!=null){let a=await Xn.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),Y(a)}return r}async function Lz(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Xn.getLoadHandlers(e,t);if(n.length===0)n.push(Xn.browserHTTPRequest(e,t));else if(n.length>1)throw new q(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Bz(e,void 0,t)}async function Bz(e,t,n){if(n==null&&(n={}),e.load==null)throw new q("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=ar(fd(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new q("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=Wz(s.weightData,s.weightSpecs);i.loadWeights(c,a),i.optimizer!=null&&u.length>0&&await i.optimizer.setWeights(u),Y(c),Y(u.map(d=>d.tensor))}return i}function Wz(e,t){let n=Xn.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var wu=class extends Ur{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:_f("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new q(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof wu||e instanceof Ur,n;if(t){if(n=e,n.outputs.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new q("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new q("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=_v({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new q(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=Dv(this.outputs[0])}this.inboundNodes=[],new Of({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:pi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(dt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Ur({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new tr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new tr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new tr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new tr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new q("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof wu))throw new Me(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let c=ar(i,void 0,s);s&&c.setFastWeightInitDuringBuild(!0),o.add(c)}return o}set stopTraining(e){if(this.model==null)throw new q("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new q("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};wu.className="Sequential";ue.registerClass(wu);function Vz(e){return new Ur(e)}function Uz(e){return new wu(e)}function Gz(e,t){return t==null&&(t={}),Lz(e,t)}function ow(e){return _v(e)}function Hz(e,t){Ws.registerCallbackConstructor(e,t)}var es=class extends ue.Serializable{getConfig(){return{}}},iw=class extends es{apply(e,t=1){return AM(e,t)}};iw.className="elu";ue.registerClass(iw);var lw=class extends es{apply(e){return Qh(e)}};lw.className="selu";ue.registerClass(lw);var uw=class extends es{apply(e){return Js(e)}};uw.className="relu";ue.registerClass(uw);var cw=class extends es{apply(e){return j(()=>cu(6,Js(e)))}};cw.className="relu6";ue.registerClass(cw);var dw=class extends es{apply(e){return e}};dw.className="linear";ue.registerClass(dw);var pw=class extends es{apply(e){return Kn(e)}};pw.className="sigmoid";ue.registerClass(pw);var hw=class extends es{apply(e){return xM(e)}};hw.className="hardSigmoid";ue.registerClass(hw);var fw=class extends es{apply(e){return oi(e)}};fw.className="softplus";ue.registerClass(fw);var mw=class extends es{apply(e){return yM(e)}};mw.className="softsign";ue.registerClass(mw);var gw=class extends es{apply(e){return si(e)}};gw.className="tanh";ue.registerClass(gw);var j1=class extends es{apply(e,t=-1){return ui(e,t)}};j1.className="softmax";ue.registerClass(j1);var Aw=class extends es{apply(e,t=-1){return jh(e,t)}};Aw.className="logSoftmax";ue.registerClass(Aw);var yw=class extends es{apply(e,t=1){return j(()=>B(Kn(B(e,t)),e))}};yw.className="swish";ue.registerClass(yw);var xw=class extends es{apply(e){return j(()=>B(e,si(oi(e))))}};xw.className="mish";ue.registerClass(xw);function Ca(e){return e.getClassName()}function q1(e,t={}){return id(e,ue.SerializationMap.getMap().classNameMap,t,"activation")}function Ta(e){if(e==null){let t={};return t.className="linear",t.config={},q1(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},q1(t)}else return e instanceof es?e:q1(e)}function X1(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var bw=class extends ue.Serializable{},Ad=class extends bw{constructor(e){super();X1(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return j(()=>{let t=Ht([1]);return this.hasL1&&(t=le(t,Ie(B(this.l1,Gt(e))))),this.hasL2&&(t=le(t,Ie(B(this.l2,dd(e))))),U(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Ad.className="L1L2";ue.registerClass(Ad);function jz(e){return X1(e),new Ad({l1:e!=null?e.l1:null,l2:0})}function qz(e){return X1(e),new Ad({l2:e!=null?e.l2:null,l1:0})}var vw={l1l2:"L1L2"};function At(e){return d1(e)}function ww(e,t={}){return id(e,ue.SerializationMap.getMap().classNameMap,t,"regularizer")}function Et(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in vw?vw[e]:e,config:{}};return ww(n)}else return e instanceof bw?e:ww(e)}var K1=class extends Je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Le(e);let n=Js(e);return this.maxValue!=null&&(n=Zn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};K1.className="ReLU";ue.registerClass(K1);var Z1=class extends Je{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Le(e);return Xc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Z1.className="LeakyReLU";ue.registerClass(Z1);var Y1=class extends Je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Nt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Et(e.alphaRegularizer),this.alphaConstraint=nn(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new q(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=dt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new qt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Le(e),ed(e,this.alpha.read())}getConfig(){let e={alphaInitializer:$t(this.alphaInitializer),alphaRegularizer:At(this.alphaRegularizer),alphaConstraint:tn(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};Y1.className="PReLU";ue.registerClass(Y1);var J1=class extends Je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Me(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Le(e);return iu(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};J1.className="ELU";ue.registerClass(J1);var Q1=class extends Je{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Le(e);return B(n,de(Yn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};Q1.className="ThresholdedReLU";ue.registerClass(Q1);var ey=class extends Je{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new j1().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Le(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};ey.className="Softmax";ue.registerClass(ey);function ku(e,t,n){if(typeof e=="number")return pi(e,t);if(e.length!==t)throw new q(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!hM(r))throw new q(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function or(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function Sr(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+Ia([n-t,0]);else if(s==="same")e=e*t;else throw new q(`Unsupport padding mode: ${s}.`);return e}function ty(e,t){return j(()=>(Wt(t),t==="channelsFirst"?Ke(e,[0,2,3,1]):e))}function kw(e,t){return j(()=>(Wt(t),t==="channelsFirst"?Ke(e,[0,2,3,4,1]):e))}function Xz(e,t,n,s=1,r="valid",a,o=1){return j(()=>{if(a==null&&(a=er()),Wt(a),e.shape.length!==3)throw new q(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new q(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new q(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=Ke(e,[0,2,1])),r==="causal")throw new Me("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=Lh(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=sr(i,n)),i})}function Iw(e,t,n,s=[1,1],r="valid",a,o,i=null){return j(()=>{if(a==null&&(a=er()),Wt(a),e.rank!==3&&e.rank!==4)throw new q(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new q(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=ty(e,a);if(r==="causal")throw new Me("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=va.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=Ke(l,[0,3,1,2])),l})}function Kz(e,t,n,s=[1,1,1],r="valid",a,o){return j(()=>{if(a==null&&(a=er()),Wt(a),e.rank!==4&&e.rank!==5)throw new q(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new q(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=kw(e,a);if(r==="causal")throw new Me("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=_A(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=sr(i,n)),a==="channelsFirst"&&(i=Ke(i,[0,4,1,2,3])),i})}var ny=class extends Je{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",ny.verifyArgs(t),this.rank=e,hn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Me(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=ku(t.kernelSize,e,"kernelSize"),this.strides=ku(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Is(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Wt(this.dataFormat),this.activation=Ta(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Nt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=nn(t.biasConstraint),this.biasRegularizer=Et(t.biasRegularizer),this.activityRegularizer=Et(t.activityRegularizer),this.dilationRate=ku(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new q(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new q(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new q(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(wr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!h1(e.kernelSize,"number",1,3))throw new q(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Ca(this.activation),useBias:this.useBias,biasInitializer:$t(this.biasInitializer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),biasConstraint:tn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},yd=class extends ny{constructor(e,t){super(e,t);this.kernel=null,yd.verifyArgs(t),this.filters=t.filters,hn(this.filters,"filters"),this.kernelInitializer=Nt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=nn(t.kernelConstraint),this.kernelRegularizer=Et(t.kernelRegularizer)}build(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return j(()=>{e=Le(e);let n,s=this.bias==null?null:this.bias.read(),r=hv(this.activation.getClassName());if(r!=null&&this.rank===2)n=Iw(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=Xz(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=Iw(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=Kz(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Me("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=dt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=or(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:$t(this.kernelInitializer),kernelRegularizer:At(this.kernelRegularizer),kernelConstraint:tn(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new q(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},xd=class extends yd{constructor(e){super(2,e);xd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!h1(e.kernelSize,"number",1,2))throw new q(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};xd.className="Conv2D";ue.registerClass(xd);var bd=class extends yd{constructor(e){super(3,e);bd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new q(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};bd.className="Conv3D";ue.registerClass(bd);var sy=class extends xd{constructor(e){super(e);if(this.inputSpec=[new qt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=dt(e),e.length!==4)throw new q("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new qt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{let n=Le(e);if(n.shape.length!==4)throw new q(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],c=this.kernelSize[0],u=this.kernelSize[1],d=this.strides[0],p=this.strides[1],h=Sr(i,d,c,this.padding),f=Sr(l,p,u,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Ke(n,[0,2,3,1]));let g=Bh(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ke(g,[0,3,1,2])),this.bias!=null&&(g=sr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=dt(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=Sr(t[s],i,a,this.padding),t[r]=Sr(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};sy.className="Conv2DTranspose";ue.registerClass(sy);var ry=class extends bd{constructor(e){super(e);if(this.inputSpec=[new qt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=dt(e),e.length!==5)throw new q("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new qt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{let n=Le(e);if(n.shape.length!==5)throw new q(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],c=s[a],u=s[o],d=this.kernelSize[0],p=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],A=Sr(l,f,d,this.padding),y=Sr(c,m,p,this.padding),x=Sr(u,g,h,this.padding),b=[r,A,y,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Ke(n,[0,2,3,4,1]));let v=p3(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(v=Ke(v,[0,4,1,2,3])),this.bias!==null&&(v=sr(v,this.bias.read(),this.dataFormat)),this.activation!==null&&(v=this.activation.apply(v)),v})}computeOutputShape(e){e=dt(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[s]=Sr(t[s],c,o,this.padding),t[r]=Sr(t[r],u,i,this.padding),t[a]=Sr(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};ry.className="Conv3DTranspose";ue.registerClass(ry);var Sw=class extends yd{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new q("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new q("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new q(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Nt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Et(t.depthwiseRegularizer),this.depthwiseConstraint=nn(t.depthwiseConstraint),this.pointwiseInitializer=Nt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Et(t.pointwiseRegularizer),this.pointwiseConstraint=nn(t.pointwiseConstraint)}build(e){if(e=dt(e),e.length<this.rank+2)throw new q(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new qt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{e=Le(e);let n;if(this.rank===1)throw new Me("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ke(e,[0,2,3,1])),n=ZA(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=sr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ke(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=$t(this.depthwiseInitializer),e.pointwiseInitializer=$t(this.pointwiseInitializer),e.depthwiseRegularizer=At(this.depthwiseRegularizer),e.pointwiseRegularizer=At(this.pointwiseRegularizer),e.depthwiseConstraint=tn(this.depthwiseConstraint),e.pointwiseConstraint=tn(this.pointwiseConstraint),e}};Sw.className="SeparableConv";var ay=class extends Sw{constructor(e){super(2,e)}};ay.className="SeparableConv2D";ue.registerClass(ay);var Gf=class extends yd{constructor(e){super(1,e);Gf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!h1(e.kernelSize,"number",1,1))throw new q(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Gf.className="Conv1D";ue.registerClass(Gf);var oy=class extends Je{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return j(()=>{if(e=Le(e),this.dataFormat==="channelsLast"){let n=wf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return wf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=wf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return wf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};oy.className="Cropping2D";ue.registerClass(oy);var iy=class extends Je{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Wt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,cM(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return j(()=>{let n=Le(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=Ke(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?De.resizeNearestNeighbor(n,[r,a]):De.resizeBilinear(n,[r,a]);return Ke(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?De.resizeNearestNeighbor(n,[r,a]):De.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};iy.className="UpSampling2D";ue.registerClass(iy);function Zz(e,t,n=[1,1],s="valid",r,a){return j(()=>{r==null&&(r=er()),Wt(r);let o=ty(e,r);if(e.rank!==4)throw new q(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new q(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=ou(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=Ke(o,[0,3,1,2])),o})}var ly=class extends ny{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Nt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=nn(e.depthwiseConstraint),this.depthwiseRegularizer=Et(e.depthwiseRegularizer)}build(e){if(e=dt(e),e.length<4)throw new q(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{e=Le(e);let n=Zz(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=sr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=or(t,this.kernelSize[0],this.padding,this.strides[0]),a=or(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=$t(this.depthwiseInitializer),e.depthwiseRegularizer=At(this.depthwiseRegularizer),e.depthwiseConstraint=tn(this.depthwiseRegularizer),e}};ly.className="DepthwiseConv2D";ue.registerClass(ly);function Cw(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new q("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function Tw(e,t,n,s=!1,r,a,o=!1,i=!1){return j(()=>{let l=t.shape.length;if(l<3)throw new q(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(nr(2,l));if(t=Ke(t,c),a!=null)throw new Me("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=de(de(r,"bool"),"float32"),r.rank===l-1&&(r=Bt(r,-1)),r=Ke(r,c)),s&&(t=ds(t,0),r!=null&&(r=ds(r,0)));let u=[],d,p=n,h=t.shape[0],f=On(t),m;r!=null&&(m=On(r));for(let A=0;A<h;++A){let y=f[A],x=j(()=>e(y,p));if(r==null)d=x[0],p=x[1];else{let b=j(()=>{let v=m[A],I=ye(cs(v),v),C=le(B(x[0],v),B(p[0],I)),N=p.map(($,O)=>le(B(x[1][O],v),B($,I)));return{output:C,newStates:N}});d=b.output,p=b.newStates}i&&u.push(d)}let g;return i&&(g=bn(u,1)),[d,g,p]})}var Cr=class extends Je{constructor(e){super(e);let t;if(e.cell==null)throw new q("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new qf({cells:e.cell}):t=e.cell,t.stateSize==null)throw new q("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new qt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return nr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){R1(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return j(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Me("Constants support is not implemented in RNN yet.");R1(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new qt({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new Me("Constants support is not implemented in RNN yet.");this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new q(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new qt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){j(()=>{if(!this.stateful)throw new Wr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ht([n,s])):this.states_=[Ht([n,this.cell.stateSize])];else if(e==null)Y(this.states_),this.keptStates!=null&&(Y(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ht([n,s])):this.states_[0]=Ht([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Y(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!w.arraysEqual(r.shape,o))throw new q(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>dn(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=Cw(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new qt({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof rr){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return j(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Le(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new q(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=Tw((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),c=l[0],u=l[1],d=l[2];this.stateful&&this.resetStates(d,s);let p=this.returnSequences?u:c;return this.returnState?[p].concat(d):p})}getInitialState(e){return j(()=>{let t=Ht(e.shape);return t=Ie(t,[1,2]),t=cd(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?v1(t,[1,n]):t):this.cell.stateSize>1?[v1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Cr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=ar(s,n);return new e(Object.assign(t,{cell:r}))}};Cr.className="RNN";ue.registerClass(Cr);var vd=class extends Je{},Hf=class extends vd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,hn(this.units,"units"),this.activation=Ta(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Et(e.kernelRegularizer),this.recurrentRegularizer=Et(e.recurrentRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.kernelConstraint=nn(e.kernelConstraint),this.recurrentConstraint=nn(e.recurrentConstraint),this.biasConstraint=nn(e.biasConstraint),this.dropout=yu([1,Ia([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=yu([1,Ia([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=dt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{if(e=e,e.length!==2)throw new q(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Na({ones:()=>cs(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Na({ones:()=>cs(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=kr(B(e,a),this.kernel.read()):r=kr(e,this.kernel.read()),this.bias!=null&&(r=sr(r,this.bias.read())),o!=null&&(n=B(n,o));let i=le(r,kr(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ca(this.activation),useBias:this.useBias,kernelInitializer:$t(this.kernelInitializer),recurrentInitializer:$t(this.recurrentInitializer),biasInitializer:$t(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),recurrentRegularizer:At(this.recurrentRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:tn(this.kernelConstraint),recurrentConstraint:tn(this.recurrentConstraint),biasConstraint:tn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Hf.className="SimpleRNNCell";ue.registerClass(Hf);var uy=class extends Cr{constructor(e){e.cell=new Hf(e);super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&(Y(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Y(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};uy.className="SimpleRNN";ue.registerClass(uy);var jf=class extends vd{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new q("GRUCell does not support reset_after parameter set to true.");this.units=e.units,hn(this.units,"units"),this.activation=Ta(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ta(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Et(e.kernelRegularizer),this.recurrentRegularizer=Et(e.recurrentRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.kernelConstraint=nn(e.kernelConstraint),this.recurrentConstraint=nn(e.recurrentConstraint),this.biasConstraint=nn(e.biasConstraint),this.dropout=yu([1,Ia([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=yu([1,Ia([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=dt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{if(e=e,e.length!==2)throw new q(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Na({ones:()=>cs(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Na({ones:()=>cs(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=B(e,r[0]));let c=kr(e,this.kernel.read());this.useBias&&(c=sr(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=B(s,a[0]));let u=this.recurrentKernel.read(),[d,p]=pn(u,[2*this.units,this.units],u.rank-1),h=kr(s,d),[f,m,g]=pn(c,3,c.rank-1),[A,y]=pn(h,2,h.rank-1);o=this.recurrentActivation.apply(le(f,A)),i=this.recurrentActivation.apply(le(m,y));let x=kr(B(i,s),p);l=this.activation.apply(le(g,x));let b=le(B(o,s),B(le(1,Tt(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ca(this.activation),recurrentActivation:Ca(this.recurrentActivation),useBias:this.useBias,kernelInitializer:$t(this.kernelInitializer),recurrentInitializer:$t(this.recurrentInitializer),biasInitializer:$t(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),recurrentRegularizer:At(this.recurrentRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:tn(this.kernelConstraint),recurrentConstraint:tn(this.recurrentConstraint),biasConstraint:tn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};jf.className="GRUCell";ue.registerClass(jf);var cy=class extends Cr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new jf(e);super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&(Y(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Y(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};cy.className="GRU";ue.registerClass(cy);var wd=class extends vd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,hn(this.units,"units"),this.activation=Ta(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ta(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Et(e.kernelRegularizer),this.recurrentRegularizer=Et(e.recurrentRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.kernelConstraint=nn(e.kernelConstraint),this.recurrentConstraint=nn(e.recurrentConstraint),this.biasConstraint=nn(e.biasConstraint),this.dropout=yu([1,Ia([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=yu([1,Ia([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=dt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends Bs{apply(i,l){let c=r.apply([a]),u=new If().apply([a]),d=r.apply([a*2]);return wv(wv(c,u),d)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return j(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new q(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Na({ones:()=>cs(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Na({ones:()=>cs(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,c,u;0<this.dropout&&this.dropout<1&&(e=B(e,a[0]));let d=kr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=B(s,o[0])),d=le(d,kr(s,this.recurrentKernel.read())),this.useBias&&(d=sr(d,this.bias.read()));let[p,h,f,m]=pn(d,4,d.rank-1);i=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(h),c=le(B(l,r),B(i,this.activation.apply(f))),u=this.recurrentActivation.apply(m);let g=B(u,this.activation.apply(c));return[g,g,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ca(this.activation),recurrentActivation:Ca(this.recurrentActivation),useBias:this.useBias,kernelInitializer:$t(this.kernelInitializer),recurrentInitializer:$t(this.recurrentInitializer),biasInitializer:$t(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:At(this.kernelRegularizer),recurrentRegularizer:At(this.recurrentRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:tn(this.kernelConstraint),recurrentConstraint:tn(this.recurrentConstraint),biasConstraint:tn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};wd.className="LSTMCell";ue.registerClass(wd);var dy=class extends Cr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new wd(e);super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&(Y(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Y(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};dy.className="LSTM";ue.registerClass(dy);var qf=class extends vd{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return j(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){R1(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{mi(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(ar(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return D1(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}_1(t)}};qf.className="StackedRNNCells";ue.registerClass(qf);function Na(e){let{ones:t,rate:n,training:s=!1,count:r=1,dropoutFunc:a}=e,o=()=>a!=null?a(t(),n):Iv(t(),n),i=()=>pd(o,t,s);return!r||r<=1?dn(i().clone()):Array(r).fill(void 0).map(i).map(c=>dn(c.clone()))}var Yz=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r<s.length;r++)t.indexOf(s[r])<0&&Object.prototype.propertyIsEnumerable.call(e,s[r])&&(n[s[r]]=e[s[r]]);return n},Nw=class extends Cr{constructor(e){if(e.unroll)throw new Me("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Me("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new qt({ndim:5})]}call(e,t){return j(()=>{if(this.cell.dropoutMask!=null&&(Y(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Y(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new q("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return j(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Ht(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){j(()=>{if(!this.stateful)throw new Wr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ht(r)):this.states_=[Ht(r)];else if(e==null)Y(this.states_),this.keptStates!=null&&(Y(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ht(r)):this.states_[0]=Ht(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Y(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!w.arraysEqual(i.shape,l))throw new q(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>dn(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],c=e[i?4:3],u=or(l,s[0],r,a[0],o[0]),d=or(c,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,u,d]:[u,d,n]]}};Nw.className="ConvRNN2D";var Xf=class extends wd{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t}));this.filters=t,hn(this.filters,"filters"),this.kernelSize=ku(n,2,"kernelSize"),this.kernelSize.forEach(i=>hn(i,"kernelSize")),this.strides=ku(s||1,2,"strides"),this.strides.forEach(i=>hn(i,"strides")),this.padding=r||"valid",Is(this.padding),this.dataFormat=a||"channelsLast",Wt(this.dataFormat),this.dilationRate=ku(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>hn(i,"dilationRate"))}build(e){var t;e=dt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;i=new(t=class extends Bs{apply(d,p){let h=l.apply([c]),f=us([c]),m=l.apply([c*2]);return b1([h,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return j(()=>{if(e.length!==3)throw new q(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Na({ones:()=>cs(s),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,l=(Q,Z,ne)=>!Z||!Z[ne]?Q:B(Z[ne],Q),c=l(s,i,0),u=l(s,i,1),d=l(s,i,2),p=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Na({ones:()=>cs(r),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),A=l(r,h,3),y=3,[x,b,v,I]=pn(this.kernel.read(),o,y),[C,N,$,O]=this.useBias?pn(this.bias.read(),o):[null,null,null,null];c=this.inputConv(c,x,C,this.padding),u=this.inputConv(u,b,N,this.padding),d=this.inputConv(d,v,$,this.padding),p=this.inputConv(p,I,O,this.padding);let[E,F,T,M]=pn(this.recurrentKernel.read(),o,y);f=this.recurrentConv(f,E),m=this.recurrentConv(m,F),g=this.recurrentConv(g,T),A=this.recurrentConv(A,M);let G=this.recurrentActivation.apply(le(c,f)),H=this.recurrentActivation.apply(le(u,m)),z=le(B(H,a),B(G,this.activation.apply(le(d,g)))),X=B(this.recurrentActivation.apply(le(p,A)),this.activation.apply(z));return[X,X,z]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=Yz(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=Mr(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?sr(r,n,this.dataFormat):r}recurrentConv(e,t){return Mr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Xf.className="ConvLSTM2DCell";ue.registerClass(Xf);var py=class extends Nw{constructor(e){let t=new Xf(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};py.className="ConvLSTM2D";ue.registerClass(py);var Kf=class extends Je{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return pd(()=>Iv(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Kf.className="Dropout";ue.registerClass(Kf);var hy=class extends Kf{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};hy.className="SpatialDropout1D";ue.registerClass(hy);var fy=class extends Je{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,hn(this.units,"units"),this.activation=Ta(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=nn(e.kernelConstraint),this.biasConstraint=nn(e.biasConstraint),this.kernelRegularizer=Et(e.kernelRegularizer),this.biasRegularizer=Et(e.biasRegularizer),this.activityRegularizer=Et(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=dt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=dt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e),s=hv(this.activation.getClassName()),r;return s!=null?r=kr(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=kr(n,this.kernel.read()),this.bias!=null&&(r=sr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:Ca(this.activation),useBias:this.useBias,kernelInitializer:$t(this.kernelInitializer),biasInitializer:$t(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:tn(this.kernelConstraint),biasConstraint:tn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};fy.className="Dense";ue.registerClass(fy);var my=class extends Je{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=dt(e);for(let t of e.slice(1))if(t==null)throw new q(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],ka(e,1)]}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=Ke(n,s)}return gM(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};my.className="Flatten";ue.registerClass(my);var gy=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.activation=Ta(e.activation)}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);return this.activation.apply(n)})}getConfig(){let e={activation:Ca(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};gy.className="Activation";ue.registerClass(gy);var Ay=class extends Je{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return j(()=>(e=Le(e),fM(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Ay.className="RepeatVector";ue.registerClass(Ay);var yy=class extends Je{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new q("Can only specifiy one unknown dimension.");else r*=l}let o=ka(e);if(a!==null){if(r===0||o%r!=0)throw new q(n);s[a]=o/r}else if(o!==r)throw new q(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return U(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};yy.className="Reshape";ue.registerClass(yy);var xy=class extends Je{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=nr(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new qt({ndim:this.dims.length+1})]}computeOutputShape(e){e=dt(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return Ke(Le(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};xy.className="Permute";ue.registerClass(xy);var by=class extends Je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Le(e),s=-1;return Uc(li(n,this.maskValue),s)}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e),s=-1,r=!0,a=Uc(li(n,this.maskValue),s,r);return B(n,de(a,n.dtype))})}};by.className="Masking";ue.registerClass(by);var vy=class extends Je{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(vt(e.inputLength))}this.inputDim=e.inputDim,hn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,hn(this.outputDim,"outputDim"),this.embeddingsInitializer=Nt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Et(e.embeddingsRegularizer),this.activityRegularizer=Et(e.activityRegularizer),this.embeddingsConstraint=nn(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return j(()=>this.maskZero?(e=Le(e),li(e,Ze(e))):null)}computeOutputShape(e){if(e=dt(e),this.inputLength==null)return[...e,this.outputDim];let t=vt(this.inputLength);if(t.length!==e.length-1)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);n.dtype!=="int32"&&(n=vf(n,"int32"));let s=kv(this.embeddings.read(),U(n,[n.size]));return U(s,dt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:$t(this.embeddingsInitializer),embeddingsRegularizer:At(this.embeddingsRegularizer),activityRegularizer:At(this.activityRegularizer),embeddingsConstraint:tn(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};vy.className="Embedding";ue.registerClass(vy);var bi=class extends Je{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Me}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new q("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[dt(e)]),e=e,e.length<2)throw new q(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=wa(t),t.length>1)throw new q(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&wa(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return j(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=Ia(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=cd(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let c=i.shape,u=c[0],d=c.slice(1).concat([u]),p=U(i,[u].concat(ka(c.slice(1))));p=Ke(p,[1,0]),p=U(p,d),n.push(p),r=!0}else if(l>1){let c=nr(1,l).concat([0]);n.push(Ke(i,c)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,c=i[l-1],u=[c].concat(i.slice(0,i.length-1));a=U(Ke(U(a,[-1,c]),[1,0]),u)}else if(o>1){let i=[o-1].concat(nr(0,o-1));a=Ke(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=wa(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return j(()=>{if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an Array");if(!Array.isArray(e))throw new q("`inputs` should be an Array");if(t.length!==e.length)throw new q(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Bt(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=zs(n,t[s]);return n})}},wy=class extends bi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=le(t,e[n]);return t})}};wy.className="Add";ue.registerClass(wy);var ky=class extends bi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=B(t,e[n]);return t})}};ky.className="Multiply";ue.registerClass(ky);var Iy=class extends bi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=le(t,e[n]);return B(1/e.length,t)})}};Iy.className="Average";ue.registerClass(Iy);var Sy=class extends bi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=br(t,e[n]);return t})}};Sy.className="Maximum";ue.registerClass(Sy);var Cy=class extends bi{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=cu(t,e[n]);return t})}};Cy.className="Minimum";ue.registerClass(Cy);var Ty=class extends bi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new q("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(w.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new q("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return j(()=>b1(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new q("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new q("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new q(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return j(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(de(cs(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Bt(t[a],-1)):s.push(t[a]);let r=gt(s,this.axis);return Mh(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Ty.className="Concatenate";ue.registerClass(Ty);function kd(e,t){for(;e<0;)e+=t;return e}function Jz(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Me("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Me("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return j(()=>{let o;if(s>r){o=s-r;let l=[];for(let c=0;c<o;++c)l.push(1);t=U(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let c=0;c<o;++c)l.push(1);e=U(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=Ie(B(e,t),a[0]):i=Ie(B(Ke(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,c=a[1]===t.shape.length-1;i=Ve(e,t,l,c)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let c=[];for(let u=l;u<l+o;++u)c.push(u);i=rt(i,c)}return i.shape.length===1&&(i=Bt(i,1)),i})}var Ny=class extends bi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Me("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new q(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new q(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>kd(r,e[a].shape.length)):s=[kd(this.axes,t.shape.length),kd(this.axes,n.shape.length)],this.normalize&&(t=Pf(t,s[0]),n=Pf(n,s[1])),Jz(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[kd(this.axes,e.length),kd(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Me("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Ny.className="Dot";ue.registerClass(Ny);var Ey=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);return pd(()=>le(kf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};Ey.className="GaussianNoise";ue.registerClass(Ey);var Ry=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Le(e);return this.rate>0&&this.rate<1?pd(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return B(n,kf(n.shape,1,r))},()=>n,t.training||!1):n})}};Ry.className="GaussianDropout";ue.registerClass(Ry);var Dy=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Le(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return j(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return pd(()=>{let r=Le(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=xa(du(n),this.rate);l=vf(l,"float32");let c=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-c*i*this.rate,d=le(B(r,l),B(le(l,-1),i));return le(B(d,c),u)},()=>Le(e),t.training||!1)}return e})}};Dy.className="AlphaDropout";ue.registerClass(Dy);function Id(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=r3(e,t,n,s,r,a);else if(e.rank===3)o=a3(e,t,n,s,r,a);else if(e.rank===4)o=o3(e,t,n,s,r,a);else throw new Me(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function Qz(e,t,n,s,r=.001){return j(()=>{let a=Xh(e,s),o=a.mean,i=a.variance;return[Id(e,o,i,n,t,r),o,i]})}function eL(e,t,n,s,r=.001){return j(()=>{let a=Xh(e,s),o=a.mean,i=a.variance,l=[];for(let f of nr(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let c=U(o,l),u=U(i,l),d=t==null?null:U(t,l),p=n==null?null:U(n,l);return[Id(e,c,u,p,d,r),o,i]})}function tL(e,t,n,s,r=.001){return w.arraysEqual(s.slice().sort(),nr(0,e.rank-1))?Qz(e,t,n,s,r):eL(e,t,n,s,r)}var _y=class extends Je{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Nt(e.betaInitializer||"zeros"),this.gammaInitializer=Nt(e.gammaInitializer||"ones"),this.movingMeanInitializer=Nt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Nt(e.movingVarianceInitializer||"ones"),this.betaConstraint=nn(e.betaConstraint),this.gammaConstraint=nn(e.gammaConstraint),this.betaRegularizer=Et(e.betaRegularizer),this.gammaRegularizer=Et(e.gammaRegularizer)}build(e){e=dt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new q(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new qt({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return j(()=>{let n=t.training==null?!1:t.training,s=Le(e),r=s.shape,a=r.length,o=nr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=pi(1,a);l[i]=r[i];let c=o.slice();c.sort();let u=!w.arraysEqual(c,nr(0,a).slice(0,a-1)),d=()=>{if(u){let A=U(this.movingMean.read(),l),y=U(this.movingVariance.read(),l),x=this.center?U(this.beta.read(),l):null,b=this.scale?U(this.gamma.read(),l):null;return Id(s,A,y,x,b,this.epsilon)}else return Id(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[p,h,f]=tL(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(A,y,x)=>{j(()=>{let b=1-x,v=A.read(),I=B(ye(v,y),b);A.write(ye(v,I))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:$t(this.betaInitializer),gammaInitializer:$t(this.gammaInitializer),movingMeanInitializer:$t(this.movingMeanInitializer),movingVarianceInitializer:$t(this.movingVarianceInitializer),betaRegularizer:At(this.betaRegularizer),gammaRegularizer:At(this.gammaRegularizer),betaConstraint:tn(this.betaConstraint),gammaConstraint:tn(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};_y.className="BatchNormalization";ue.registerClass(_y);var Fy=class extends Je{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Nt(e.betaInitializer||"zeros"),this.gammaInitializer=Nt(e.gammaInitializer||"ones"),this.betaRegularizer=Et(e.betaRegularizer),this.gammaRegularizer=Et(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=dt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==wa(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Le(e),s=n.shape,r=s.length;return j(()=>{let a=!0,{mean:o,variance:i}=Xh(n,this.axis,a),l=pi(1,r);for(let f of this.axis)l[f]=s[f];let c=f=>f!=null&&f.shape.length!==r?U(f,l):f,u=c(this.gamma.read()),d=c(this.beta.read()),p=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(p.push(s[f]),h.push(1)):(p.push(1),h.push(s[f]));return o=ws(o,p),i=ws(i,p),u=ws(u,h),d=ws(d,h),Id(n,o,i,d,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:$t(this.betaInitializer),gammaInitializer:$t(this.gammaInitializer),betaRegularizer:At(this.betaRegularizer),gammaRegularizer:At(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Fy.className="LayerNormalization";ue.registerClass(Fy);function nL(e,t,n){return j(()=>{if(e.rank!==4)throw new q(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new q("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=er()),n!=="channelsLast"&&n!=="channelsFirst")throw new q(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],ks(e,s)})}var $y=class extends Je{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?er():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new q(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new q(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new q(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new qt({ndim:4})]}computeOutputShape(e){e=dt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return j(()=>nL(Le(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};$y.className="ZeroPadding2D";ue.registerClass($y);function Zf(e,t,n,s,r,a){return j(()=>{Wt(r),Av(a),Is(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=er()),a==null&&(a="max"),e=ty(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=Yc(e,t,n,i):o=Hc(e,t,n,i),r==="channelsFirst"&&(o=Ke(o,[0,3,1,2])),o})}function Ew(e,t,n,s,r,a){return j(()=>{Wt(r),Av(a),Is(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=er()),a==null&&(a="max"),e=kw(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=GA(e,t,n,i):o=NA(e,t,n,i),r==="channelsFirst"&&(o=Ke(o,[0,4,1,2,3])),o})}var Rw=class extends Je{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new q(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(hn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new q(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);hn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Is(this.padding),this.inputSpec=[new qt({ndim:3})]}computeOutputShape(e){e=dt(e);let t=or(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return j(()=>{this.invokeCallHook(e,t),e=cd(Le(e),2);let n=this.poolingFunction(Le(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return rt(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Oy=class extends Rw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Wt(r),Is(s),Zf(e,t,n,s,r,"max")}};Oy.className="MaxPooling1D";ue.registerClass(Oy);var Py=class extends Rw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Wt(r),Is(s),Zf(e,t,n,s,r,"avg")}};Py.className="AveragePooling1D";ue.registerClass(Py);var Dw=class extends Je{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new q(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];hn(this.poolSize,"poolSize"),hn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Wt(this.dataFormat),Is(this.padding),this.inputSpec=[new qt({ndim:4})]}computeOutputShape(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=or(t,this.poolSize[0],this.padding,this.strides[0]),n=or(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return j(()=>(this.invokeCallHook(e,t),this.poolingFunction(Le(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},My=class extends Dw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Wt(r),Is(s),Zf(e,t,n,s,r,"max")}};My.className="MaxPooling2D";ue.registerClass(My);var zy=class extends Dw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Wt(r),Is(s),Zf(e,t,n,s,r,"avg")}};zy.className="AveragePooling2D";ue.registerClass(zy);var _w=class extends Je{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new q(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];hn(this.poolSize,"poolSize"),hn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Wt(this.dataFormat),Is(this.padding),this.inputSpec=[new qt({ndim:5})]}computeOutputShape(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=or(t,this.poolSize[0],this.padding,this.strides[0]),n=or(n,this.poolSize[1],this.padding,this.strides[1]),s=or(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return j(()=>(this.invokeCallHook(e,t),this.poolingFunction(Le(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ly=class extends _w{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Wt(r),Is(s),Ew(e,t,n,s,r,"max")}};Ly.className="MaxPooling3D";ue.registerClass(Ly);var By=class extends _w{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Wt(r),Is(s),Ew(e,t,n,s,r,"avg")}};By.className="AveragePooling3D";ue.registerClass(By);var Fw=class extends Je{constructor(e){super(e);this.inputSpec=[new qt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Me}},Wy=class extends Fw{constructor(e){super(e||{})}call(e,t){return j(()=>{let n=Le(e);return Ft(n,1)})}};Wy.className="GlobalAveragePooling1D";ue.registerClass(Wy);var Vy=class extends Fw{constructor(e){super(e||{})}call(e,t){return j(()=>{let n=Le(e);return $n(n,1)})}};Vy.className="GlobalMaxPooling1D";ue.registerClass(Vy);var $w=class extends Je{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Wt(this.dataFormat),this.inputSpec=[new qt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Me}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Uy=class extends $w{call(e,t){return j(()=>{let n=Le(e);return this.dataFormat==="channelsLast"?Ft(n,[1,2]):Ft(n,[2,3])})}};Uy.className="GlobalAveragePooling2D";ue.registerClass(Uy);var Gy=class extends $w{call(e,t){return j(()=>{let n=Le(e);return this.dataFormat==="channelsLast"?$n(n,[1,2]):$n(n,[2,3])})}};Gy.className="GlobalMaxPooling2D";ue.registerClass(Gy);var Ow=class extends Je{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=ar(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},Hy=class extends Ow{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=dt(e),e.length<3)throw new q(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=dt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return j(()=>(e=Le(e),Tw((a,o)=>[Le(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Hy.className="TimeDistributed";ue.registerClass(Hy);function sL(e){fi(uM,"BidirectionalMergeMode",e)}var rL="concat",jy=class extends Ow{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=ar(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=ar(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?rL:e.mergeMode,sL(this.mergeMode),e.weights)throw new Me("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Jn(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=Cw(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new q("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let c=n.map(u=>new qt({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),o.push(...c)}if(s!=null)throw new Me("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof rr;for(let l of a)if(l instanceof rr!==i)throw new q("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return j(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=ds(r,1));let o;return this.mergeMode==="concat"?o=b1([s,r]):this.mergeMode==="sum"?o=le(s,r):this.mergeMode==="ave"?o=B(.5,le(s,r)):this.mergeMode==="mul"?o=B(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){mi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),mi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=ar(t.layer);if(delete t.layer,t.numConstants!=null)throw new Me("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};jy.className="Bidirectional";ue.registerClass(jy);function aL(e){return new xu(e)}function oL(e){return new J1(e)}function iL(e){return new K1(e)}function lL(e){return new Z1(e)}function uL(e){return new Y1(e)}function cL(e){return new ey(e)}function dL(e){return new Q1(e)}function pL(e){return new Gf(e)}function hL(e){return new xd(e)}function fL(e){return new sy(e)}function mL(e){return new bd(e)}function gL(e){return new ry(e)}function AL(e){return new ay(e)}function yL(e){return new oy(e)}function xL(e){return new iy(e)}function bL(e){return new ly(e)}function vL(e){return new gy(e)}function wL(e){return new fy(e)}function kL(e){return new Kf(e)}function IL(e){return new hy(e)}function SL(e){return new my(e)}function CL(e){return new Ay(e)}function TL(e){return new yy(e)}function NL(e){return new xy(e)}function EL(e){return new vy(e)}function RL(e){return new wy(e)}function DL(e){return new Iy(e)}function _L(e){return new Ty(e)}function FL(e){return new Sy(e)}function $L(e){return new Cy(e)}function OL(e){return new ky(e)}function PL(e){return new Ny(e)}function ML(e){return new _y(e)}function zL(e){return new Fy(e)}function LL(e){return new $y(e)}function qy(e){return new Py(e)}function BL(e){return qy(e)}function WL(e){return qy(e)}function Xy(e){return new zy(e)}function VL(e){return Xy(e)}function UL(e){return Xy(e)}function Ky(e){return new By(e)}function GL(e){return Ky(e)}function HL(e){return Ky(e)}function jL(e){return new Wy(e)}function qL(e){return new Uy(e)}function Pw(e){return new Vy(e)}function Mw(e){return new Gy(e)}function zw(e){return new Oy(e)}function Lw(e){return new My(e)}function XL(e){return new Ly(e)}function KL(e){return new cy(e)}function ZL(e){return new jf(e)}function YL(e){return new dy(e)}function JL(e){return new wd(e)}function QL(e){return new uy(e)}function eB(e){return new Hf(e)}function tB(e){return new py(e)}function nB(e){return new Xf(e)}function sB(e){return new Cr(e)}function rB(e){return new qf(e)}function aB(e){return new jy(e)}function oB(e){return new Hy(e)}var iB=Pw,lB=Mw,uB=zw,cB=Lw;function dB(e){return new Ey(e)}function pB(e){return new Ry(e)}function hB(e){return new Dy(e)}function fB(e){return new by(e)}var Bw={};ze(Bw,{MAPE:()=>SB,MSE:()=>NB,binaryAccuracy:()=>mB,binaryCrossentropy:()=>gB,categoricalAccuracy:()=>yB,categoricalCrossentropy:()=>xB,cosineProximity:()=>wB,mape:()=>CB,meanAbsoluteError:()=>kB,meanAbsolutePercentageError:()=>IB,meanSquaredError:()=>TB,mse:()=>EB,precision:()=>bB,recall:()=>vB,sparseCategoricalAccuracy:()=>AB});function mB(e,t){return O1(e,t)}function gB(e,t){return Vv(e,t)}function AB(e,t){return Uv(e,t)}function yB(e,t){return P1(e,t)}function xB(e,t){return M1(e,t)}function bB(e,t){return Wv(e,t)}function vB(e,t){return rz(e,t)}function wB(e,t){return F1(e,t)}function kB(e,t){return Mf(e,t)}function IB(e,t){return vu(e,t)}function SB(e,t){return vu(e,t)}function CB(e,t){return vu(e,t)}function TB(e,t){return Ai(e,t)}function NB(e,t){return Ai(e,t)}function EB(e,t){return Ai(e,t)}var Ww={};ze(Ww,{modelFromJSON:()=>zz});var Vw={};ze(Vw,{l1:()=>DB,l1l2:()=>RB,l2:()=>_B});function RB(e){return new Ad(e)}function DB(e){return jz(e)}function _B(e){return qz(e)}var Uw=class extends bu{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Ur))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Yf(e,t){return e<t}function Gw(e,t){return e>t}var Hw=class extends Uw{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Me("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Yf:this.mode==="max"?this.monitorFunc=Gw:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Gw:this.monitorFunc=Yf,this.monitorFunc===Yf&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Yf?1/0:-1/0}async onEpochEnd(e,t){await Sa(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function FB(e){return new Hw(e)}var $B={earlyStopping:FB},ir;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(ir||(ir={}));var jw;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(jw||(jw={}));var Zy={};function OB(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Zy[e]=n}function qw(e){return Zy[e]}function PB(e){delete Zy[e]}function k(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return Mn(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(p=>Mn(p,n,s,r));let c=Mn(t.inputNames.slice(i)[0],n,s,r),u=c.dataSync();return a.type==="number"?u[0]:w.toNestedArray(c.shape,u)}let o=t.attrParams[e];return o&&o.value}function Mn(e,t,n,s){let[r,a]=ps(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[Jf(r,i)]);return o!==void 0?t[Jf(r,o)][a]:void 0}function MB(e,t,n){return t[Jf(e,n.currentContextId)]}function Gr(e,t){let[n,s,r]=ps(e);return[Jf(n,t&&t.currentContextId),s,r]}function Jf(e,t){return t?`${e}-${t}`:e}function ps(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function Qf(e,t,n){let s=k("pad",e,t,n);if(s==="explicit"){s=k("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function Hr(e){return e.kept?e:Zs(e)}var Xw={};ze(Xw,{json:()=>zB});var zB=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Kw={};ze(Kw,{json:()=>LB});var LB=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Zw={};ze(Zw,{json:()=>BB});var BB=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],Yw={};ze(Yw,{json:()=>WB});var WB=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],Jw={};ze(Jw,{json:()=>VB});var VB=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],Qw={};ze(Qw,{json:()=>UB});var UB=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],e7={};ze(e7,{json:()=>GB});var GB=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],t7={};ze(t7,{json:()=>HB});var HB=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],n7={};ze(n7,{json:()=>jB});var jB=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],s7={};ze(s7,{json:()=>qB});var qB=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],r7={};ze(r7,{json:()=>XB});var XB=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],a7={};ze(a7,{json:()=>KB});var KB=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],o7={};ze(o7,{json:()=>ZB});var ZB=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],i7={};ze(i7,{json:()=>YB});var YB=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],l7={};ze(l7,{json:()=>JB});var JB=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],u7={};ze(u7,{json:()=>QB});var QB=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],c7={};ze(c7,{json:()=>eW});var eW=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],d7={};ze(d7,{json:()=>tW});var tW=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],p7={};ze(p7,{json:()=>nW});var nW=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],h7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Xw,Kw,Zw,Yw,Jw,Qw,e7,t7,n7,s7,r7,a7,o7,i7,l7,u7,c7,d7,p7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,A)=>{let[y,,x]=Gr(g),b=o[y];if(b.outputs!=null){let v=b.outputs.indexOf(x);if(v!==-1){let I=`${y}:${v}`;m.inputNames[A]=I}}m.inputs.push(b),b.children.push(m)})}),Object.keys(u).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(u).forEach(f=>{let[m]=Gr(f),g=o[m];g!=null&&(g.signatureKey=u[f],l.push(g))}),Object.keys(c).length>0?Object.keys(c).forEach(f=>{let[m]=Gr(f),g=o[m];g&&(g.signatureKey=c[f],i.push(g))}):i=s;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:p};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=qw(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=Yy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Yy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=a2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=a2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=Qy(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=Qy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=r2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=r2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=Jy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Jy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=i2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=i2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=s2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=s2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=o2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=o2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=t2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=t2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=n2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=n2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=m7(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=m7(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&s.push(u[d.name]),u),{}));let a=[],o=[];e.signature.inputArg.forEach(u=>{let[d]=Gr(u.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:e2(u.type),type:"dtype"}},children:[]};p.signatureKey=u.name,a.push(p),r[d]=p}),Object.keys(r).forEach(u=>{let d=r[u];d.inputNames.forEach((p,h)=>{let[f,,m]=Gr(p),g=r[f];if(g.outputs!=null){let A=g.outputs.indexOf(m);if(A!==-1){let y=`${f}:${A}`;d.inputNames[h]=y}}d.inputs.push(g),g.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(u=>{let[d,p]=Gr(l[u.name]),h=r[d];h!=null&&(h.defaultOutput=p,o.push(h))});let c=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function sW(e){let t=se().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function f7(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):sW(e);return t?n:n.toLowerCase()}function Yy(e,t,n,s=!1){let r=e[t];return r!=null?f7(r.s,s):n}function Jy(e,t,n){let s=e[t];return s?s.b:n}function Qy(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function e2(e){switch(typeof e=="string"&&(e=ir[e]),e){case ir.DT_FLOAT:return"float32";case ir.DT_INT32:case ir.DT_INT64:case ir.DT_INT8:case ir.DT_UINT8:return"int32";case ir.DT_BOOL:return"bool";case ir.DT_DOUBLE:return"float32";case ir.DT_STRING:return"string";default:return null}}function m7(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function t2(e,t,n){let s=e[t];return s&&s.type?e2(s.type):n}function n2(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>e2(r)):n}function g7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function s2(e,t,n){let s=e[t];return s&&s.shape?g7(s.shape):n}function r2(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function a2(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>f7(a,s)):n}function o2(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>g7(r)):n}function i2(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var rW=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return Mn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Mn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Qy(this.node.rawAttrs,e,t);if(n.s!=null)return Yy(this.node.rawAttrs,e,t);if(n.b!=null)return Jy(this.node.rawAttrs,e,t);if(n.shape!=null)return s2(this.node.rawAttrs,e,t);if(n.type!=null)return t2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return r2(this.node.rawAttrs,e,t);if(n.list.s!=null)return a2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return o2(this.node.rawAttrs,e,t);if(n.list.b!=null)return i2(this.node.rawAttrs,e,t);if(n.list.type!=null)return n2(this.node.rawAttrs,e,t)}return t}},aW=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[le(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[Ph(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[jA(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[B(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[fe(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[OA(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[Oh(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[ye(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[cu(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[br(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[zr(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[rf(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},oW=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Gt(k("x",e,t,n))];case"Acos":return[yA(k("x",e,t,n))];case"Acosh":return[xA(k("x",e,t,n))];case"Asin":return[vA(k("x",e,t,n))];case"Asinh":return[wA(k("x",e,t,n))];case"Atan":return[kA(k("x",e,t,n))];case"Atan2":return[IA(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[SA(k("x",e,t,n))];case"Ceil":return[RA(k("x",e,t,n))];case"Complex":return[fa(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[qc(k("x",e,t,n))];case"Cosh":return[Wh(k("x",e,t,n))];case"Elu":return[iu(k("x",e,t,n))];case"Erf":return[PA(k("x",e,t,n))];case"Exp":return[is(k("x",e,t,n))];case"Expm1":return[MA(k("x",e,t,n))];case"Floor":return[uu(k("x",e,t,n))];case"Log":return[ls(k("x",e,t,n))];case"Log1p":return[Kc(k("x",e,t,n))];case"Imag":return[Uh(k("x",e,t,n))];case"Neg":return[Tt(k("x",e,t,n))];case"Reciprocal":return[KA(k("x",e,t,n))];case"Real":return[td(k("x",e,t,n))];case"Relu":return[Js(k("x",e,t,n))];case"Round":return[Yh(k("x",e,t,n))];case"Selu":return[Qh(k("x",e,t,n))];case"Sigmoid":return[Kn(k("x",e,t,n))];case"Sin":return[ef(k("x",e,t,n))];case"Sign":return[YA(k("x",e,t,n))];case"Sinh":return[tf(k("x",e,t,n))];case"Softplus":return[oi(k("x",e,t,n))];case"Sqrt":return[xn(k("x",e,t,n))];case"Square":return[ft(k("x",e,t,n))];case"Tanh":return[si(k("x",e,t,n))];case"Tan":return[e1(k("x",e,t,n))];case"ClipByValue":return[Zn(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[Zh(k("x",e,t,n))];case"Rsqrt":return[Jh(Mn(e.inputNames[0],t,n))];case"Prod":return[Kh(k("x",e,t,n),k("axes",e,t,n))];case"LeakyRelu":return[Xc(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[ed(k("x",e,t,n),k("alpha",e,t,n))];case"IsNan":return[LA(Mn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Vs(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];w.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function A7(e){return!(typeof e=="number"||e.some(t=>t<0))}function Sd(e,t,n){let s=l2(e,n),r=!A7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=l2(a.shape,s)}),!A7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function l2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var iW=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ee(0),dn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Vs(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,dn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return Lt([],[0].concat(this.elementShape));let n=this.readMany(e);return Vs(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),bn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Lt([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return Vs(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),gt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,On(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];j(()=>{t=U(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],c=[0,l,0],u=[1,e[i],r];a[i]=U(_e(t,c,u),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},Cd=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Vs(t,r.shape,"TensorList shape mismatch: "),dn(r)}),this.idTensor=Ee(0),this.maxNumElements=s,dn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Cd([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Vs(e,this.elementShape,"TensorList shape mismatch: ");let s=Sd(this.elementShape,this.tensors,e);return j(()=>{let r=this.tensors.map(a=>U(a,s));return bn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Sd(this.elementShape,this.tensors,e),s=this.tensors.pop();return Vs(s.shape,e,"TensorList shape mismatch: "),U(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Vs(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");dn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Vs(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=Sd(this.elementShape,this.tensors,t);return U(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Vs(this.elementShape,t.shape,"TensorList shape mismatch: "),dn(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Vs(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=Sd(this.elementShape,this.tensors,n);return e.length===0?Lt([],[0].concat(s)):j(()=>{let r=e.map(a=>U(this.tensors[a],s));return bn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Vs(this.elementShape,t,"TensorList shape mismatch: ");let n=Sd(this.elementShape,this.tensors,t);return this.size()===0?Lt([],[0].concat(n)):j(()=>{let s=this.tensors.map(r=>U(r,n));return gt(s,0)})}};function lW(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Vs(r,t,"TensorList shape mismatch: ");let a=On(e);return new Cd(a,t,s)}function uW(e,t,n){return new Cd([],e,t,n)}function cW(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new Cd([],n,e.dtype,s),o=On(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function dW(e,t,n){let s=0,r=t.map(u=>(s+=u,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=l2(a,n),i=s===0?0:e.size/s,l=j(()=>{let u=[];e=U(e,[1,s,i]);for(let d=0;d<t.length;++d){let p=d===0?0:r[d-1],h=[0,p,0],f=[1,t[d],i];u[d]=U(_e(e,h,f),o)}return e.dispose(),u}),c=new Cd([],n,e.dtype,t.length);for(let u=0;u<l.length;u++)c.setItem(u,l[u]);return c}var pW=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=k("thenBranch",e,t,n),r=k("elseBranch",e,t,n),a=k("cond",e,t,n),o=k("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=k("body",e,t,n),r=k("cond",e,t,n),a=k("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(u=>u.id),l=await o[0].data();o.forEach(u=>{!u.kept&&i.indexOf(u.id)===-1&&u.dispose()});let c=a;for(;l[0];){let u=c;c=await n.functionMap[s].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let d=c.map(h=>h.id);u.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let p=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await p[0].data(),p.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return c}case"LoopCond":{let s=k("pred",e,t,n);return[Hr(s)]}case"Switch":{let s=k("pred",e,t,n),r=k("data",e,t,n);return r.kept||(r=Hr(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>Mn(r,t,n)!==void 0);if(s){let r=Mn(s,t,n);return[Hr(r)]}return}case"Enter":{let s=k("frameName",e,t,n),r=k("tensor",e,t,n);return n.enterFrame(s),[Hr(r)]}case"Exit":{let s=k("tensor",e,t,n);return n.exitFrame(),[Hr(s)]}case"NextIteration":{let s=k("tensor",e,t,n);return n.nextIteration(),[Hr(s)]}case"TensorArrayV3":{let s=k("size",e,t,n),r=k("dtype",e,t,n),a=k("elementShape",e,t,n),o=k("dynamicSize",e,t,n),i=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),c=k("name",e,t,n),u=new iW(c,r,s,a,l,o,i);return n.addTensorArray(u),[u.idTensor,Ee(1)]}case"TensorArrayWriteV3":{let s=k("tensorArrayId",e,t,n),r=k("index",e,t,n),a=k("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=k("tensorArrayId",e,t,n),r=k("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),a=k("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),a=k("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=k("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=k("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=k("tensorArrayId",e,t,n),r=k("tensor",e,t,n),a=k("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=k("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ee(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=k("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=k("tensorListId",e,t,n),r=k("index",e,t,n),a=k("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=k("tensorListId",e,t,n),r=k("index",e,t,n),a=k("elementShape",e,t,n),o=k("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=k("indices",e,t,n),r=k("tensor",e,t,n),a=k("elementShape",e,t,n),o=k("numElements",e,t,n),i=cW(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=k("elementShape",e,t,n),r=k("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=k(a,e,t,n),i=uW(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=k("tensorListId",e,t,n),r=k("indices",e,t,n),a=k("elementShape",e,t,n),o=k("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),a=k("elementDType",e,t,n),o=k("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=k("tensor",e,t,n),r=k("elementShape",e,t,n),a=k("elementDType",e,t,n),o=lW(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=k("tensorListId",e,t,n),r=n.getTensorList(s.id),a=k("dtype",e,t,n),o=k("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=k("tensorListId",e,t,n),r=k("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),a=k("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=k("tensor",e,t,n),r=k("elementShape",e,t,n),a=k("lengths",e,t,n),o=dW(s,a,r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function y7(e,t,n){let[s,r]=k("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",c=k("numArgs",e,t,n);if(a){if(i&&c!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&c!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let u=k("strides",e,t,n),d=Qf(e,t,n),p=k("dataFormat",e,t,n).toUpperCase(),h=k("dilations",e,t,n),[f,m]=k("args",e,t,n);o&&(m=f,f=void 0);let g=k("leakyreluAlpha",e,t,n);return{stride:u,pad:d,dataFormat:p,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var hW=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=k("stride",e,t,n),r=k("pad",e,t,n),a=k("dataFormat",e,t,n).toUpperCase(),o=k("dilation",e,t,n);return[Lh(k("x",e,t,n),k("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=k("strides",e,t,n),r=Qf(e,t,n),a=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[Mr(k("x",e,t,n),k("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=y7(e,t,n);return[va.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=y7(e,t,n);return[va.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=k("outputShape",e,t,n),r=k("strides",e,t,n),a=Qf(e,t,n);return[Bh(k("x",e,t,n),k("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=k("strides",e,t,n),r=Qf(e,t,n),a=k("dilations",e,t,n),o=k("dataFormat",e,t,n).toUpperCase();return[ou(k("input",e,t,n),k("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[_A(k("x",e,t,n),k("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n);return[Hc(k("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n);return[Yc(k("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n),o=k("includeBatchInIndex",e,t,n),{result:i,indexes:l}=S3(k("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n);return[NA(k("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("kernelSize",e,t,n);return[GA(k("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=k("strides",e,t,n),r=k("pad",e,t,n),a=k("dilations",e,t,n),o=s[1],i=s[2],l=a[1],c=a[2];return[$A(k("x",e,t,n),k("filter",e,t,n),[o,i],r,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},fW=(e,t,n)=>{switch(e.op){case"Fill":{let s=k("shape",e,t,n),r=k("dtype",e,t,n),a=k("value",e,t,n);return[lu(s,a,r)]}case"LinSpace":{let s=k("start",e,t,n),r=k("stop",e,t,n),a=k("num",e,t,n);return[y3(s,r,a)]}case"Multinomial":{let s=k("logits",e,t,n),r=k("numSamples",e,t,n),a=k("seed",e,t,n);return[C3(s,r,a)]}case"OneHot":{let s=k("indices",e,t,n),r=k("depth",e,t,n),a=k("onValue",e,t,n),o=k("offValue",e,t,n);return[eu(s,r,a,o)]}case"Ones":return[us(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[cs(k("x",e,t,n))];case"RandomUniform":return[du(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"Range":{let s=k("start",e,t,n),r=k("stop",e,t,n),a=k("step",e,t,n);return[pu(s,r,a,k("dtype",e,t,n))]}case"TruncatedNormal":{let s=k("shape",e,t,n),r=k("mean",e,t,n),a=k("stdDev",e,t,n),o=k("seed",e,t,n);return[af(s,r,a,k("dtype",e,t,n),o)]}case"Zeros":return[Ht(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[Ze(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function u2(e,t,n){let s=k("boxes",e,t,n),r=k("scores",e,t,n),a=k("maxOutputSize",e,t,n),o=k("iouThreshold",e,t,n),i=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var mW=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=u2(e,t,n),c=await De.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=u2(e,t,n),l=k("padToMaxOutputSize",e,t,n),c=await De.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=u2(e,t,n);return[await De.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=de(k("condition",e,t,n),"bool"),r=[await s1(s)];return s.dispose(),r}case"ListDiff":return E3(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},gW=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=k("x",e,t,n),r=k("k",e,t,n),a=k("sorted",e,t,n),o=t1(s,r,a);return[o.values,o.indices]}case"Unique":{let s=k("x",e,t,n),r=of(s);return[r.values,r.indices]}case"UniqueV2":{let s=k("x",e,t,n),r=k("axis",e,t,n),a=of(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},AW=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=k("default",e,t,n);return[Mn(e.name,t,n)||s];case"Placeholder":return[Mn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=k("x",e,t,n);return[Hr(c)]}case"IdentityN":return k("x",e,t,n).map(c=>Hr(c));case"Snapshot":let r=k("x",e,t,n);return[Hr(r)];case"Shape":return[jt(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(c=>jt(c.shape));case"Size":return[Ee(k("x",e,t,n).size,"int32")];case"Rank":return[Ee(k("x",e,t,n).rank,"int32")];case"NoOp":return[Ee(1)];case"Print":let a=k("x",e,t,n),o=k("data",e,t,n),i=k("message",e,t,n),l=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let c=0;c<o.length;c++)console.log(Array.prototype.slice.call(o[c].dataSync()).slice(0,l));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},yW=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ee(0),this.tensorMap=new Map,dn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ee(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),j(()=>{let s=On(t),r=n.length,a=s.length;w.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];dn(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return j(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return bn(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},xW=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=k("keyDType",e,t,n),a=k("valueDType",e,t,n),o=new yW(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=k("tableHandle",e,t,n,s),a=k("keys",e,t,n),o=k("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=k("tableHandle",e,t,n,s),a=k("keys",e,t,n),o=k("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=k("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},bW=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=k("images",e,t,n),r=k("size",e,t,n),a=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[De.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=k("images",e,t,n),r=k("size",e,t,n),a=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[De.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=k("image",e,t,n),r=k("boxes",e,t,n),a=k("boxInd",e,t,n),o=k("cropSize",e,t,n),i=k("method",e,t,n),l=k("extrapolationValue",e,t,n);return[De.cropAndResize(s,r,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},vW=(e,t,n)=>{switch(e.op){case"Equal":return[os(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[li(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[Yn(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[xa(k("a",e,t,n),k("b",e,t,n))];case"Less":return[Gh(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[ba(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[zs(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[Zc(k("a",e,t,n))];case"LogicalOr":return[qh(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[Tn(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},wW=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ve(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Einsum":return[m3(k("equation",e,t,n),...k("tensors",e,t,n))];case"Transpose":return[Ke(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[s,r]=k("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=k("numArgs",e,t,n),l=k("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=k("args",e,t,n);return[va.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:c,activation:r,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},kW=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[ri(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[ri(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[BA(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[ui(k("x",e,t,n))];case"LogSoftmax":return[jh(k("x",e,t,n))];case"SparseToDense":return[r1(k("sparseIndices",e,t,n),k("outputShape",e,t,n),k("sparseValues",e,t,n),k("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},IW=(e,t,n)=>{switch(e.op){case"Max":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[$n(k("x",e,t,n),o,i)]}case"Mean":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[Ft(k("x",e,t,n),o,i)]}case"Min":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[Jc(k("x",e,t,n),o,i)]}case"Sum":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[Ie(k("x",e,t,n),o,i)]}case"All":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[Mh(k("x",e,t,n),o,i)]}case"Any":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[Uc(k("x",e,t,n),o,i)]}case"ArgMax":{let o=k("axis",e,t,n);return[vs(k("x",e,t,n),o)]}case"ArgMin":{let o=k("axis",e,t,n);return[bA(k("x",e,t,n),o)]}case"Prod":{let o=k("axis",e,t,n),i=k("keepDims",e,t,n);return[Kh(k("x",e,t,n),o,i)]}case"Cumsum":{let o=k("axis",e,t,n),i=k("exclusive",e,t,n),l=k("reverse",e,t,n);return[Vh(k("x",e,t,n),o,i,l)]}case"Bincount":let s=k("x",e,t,n),r=k("weights",e,t,n),a=k("size",e,t,n);return[EA(s,r,a)];case"DenseBincount":{let o=k("x",e,t,n),i=k("weights",e,t,n),l=k("size",e,t,n),c=k("binaryOutput",e,t,n);return[h3(o,i,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},SW=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=k("n",e,t,n),r=k("axis",e,t,n),a=k("tensors",e,t,n);return a=a.slice(0,s),[gt(a,r)]}case"Gather":{let s=k("x",e,t,n),r=k("indices",e,t,n);return[ai(s,de(r,"int32"),0)]}case"GatherV2":{let s=k("axis",e,t,n),r=k("batchDims",e,t,n),a=k("x",e,t,n),o=k("indices",e,t,n);return[ai(a,de(o,"int32"),s,r)]}case"Reverse":{let s=k("dims",e,t,n),r=[];for(let o=0;o<s.length;o++)s[o]&&r.push(o);let a=k("x",e,t,n);return[ds(a,r)]}case"ReverseV2":{let s=k("axis",e,t,n),r=k("x",e,t,n);return[ds(r,s)]}case"Slice":{let s=k("begin",e,t,n),r=k("size",e,t,n);return[_e(k("x",e,t,n),s,r)]}case"StridedSlice":{let s=k("begin",e,t,n),r=k("end",e,t,n),a=k("strides",e,t,n),o=k("beginMask",e,t,n),i=k("endMask",e,t,n),l=k("ellipsisMask",e,t,n),c=k("newAxisMask",e,t,n),u=k("shrinkAxisMask",e,t,n),d=k("x",e,t,n);return[QA(d,s,r,a,o,i,l,c,u)]}case"Pack":return j(()=>{let s=k("axis",e,t,n),r=k("tensors",e,t,n),a=r[0].shape,o=rt(r[0]).shape,i=r.map(l=>{let c=w.arraysEqual(l.shape,a);if(!c&&!w.arraysEqual(rt(l).shape,o))throw new Error("the input tensors shape does not match");return c?l:U(l,a)});return[bn(i,s)]});case"Unpack":{let s=k("axis",e,t,n),r=k("tensor",e,t,n);return On(r,s)}case"Tile":{let s=k("reps",e,t,n);return[ws(k("x",e,t,n),s)]}case"Split":case"SplitV":{let s=k("axis",e,t,n),r=k("numOrSizeSplits",e,t,n),a=k("x",e,t,n);return pn(a,r,s)}case"ScatterNd":{let s=k("indices",e,t,n),r=k("values",e,t,n),a=k("shape",e,t,n);return[F3(s,r,a)]}case"GatherNd":{let s=k("x",e,t,n),r=k("indices",e,t,n);return[$3(s,r)]}case"SparseToDense":{let s=k("sparseIndices",e,t,n),r=k("outputShape",e,t,n),a=k("sparseValues",e,t,n),o=k("defaultValue",e,t,n);return[r1(s,a,r,a.dtype===o.dtype?o:de(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},CW=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=ad.sparseFillEmptyRows(k("indices",e,t,n),k("values",e,t,n),k("denseShape",e,t,n),k("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=ad.sparseReshape(k("inputIndices",e,t,n),k("inputShape",e,t,n),k("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[ad.sparseSegmentMean(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];case"SparseSegmentSum":return[ad.sparseSegmentSum(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},TW=(e,t,n)=>{switch(e.op){case"FFT":return[sd(k("x",e,t,n))];case"IFFT":return[fu(k("x",e,t,n))];case"RFFT":return[rd(k("x",e,t,n))];case"IRFFT":return[sf(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},NW=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=hf.stringNGrams(k("data",e,t,n),k("dataSplits",e,t,n),k("separator",e,t,n),k("nGramWidths",e,t,n),k("leftPad",e,t,n),k("rightPad",e,t,n),k("padWidth",e,t,n),k("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=hf.stringSplit(k("input",e,t,n),k("delimiter",e,t,n),k("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[hf.stringToHashBucketFast(k("input",e,t,n),k("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},EW=(e,t,n)=>{switch(e.op){case"Cast":return[de(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let s=k("axis",e,t,n);return[Bt(k("x",e,t,n),s)]}case"Squeeze":{let s=k("axis",e,t,n);return[rt(k("x",e,t,n),s)]}case"Reshape":return[U(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[HA(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[ks(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let s=k("blockShape",e,t,n),r=k("paddings",e,t,n);return[Qc(k("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=k("blockShape",e,t,n),r=k("crops",e,t,n);return[jc(k("x",e,t,n),s,r)]}case"DepthToSpace":{let s=k("blockSize",e,t,n),r=k("dataFormat",e,t,n).toUpperCase();return[FA(k("x",e,t,n),s,r)]}case"BroadcastTo":return[ru(k("x",e,t,n),k("shape",e,t,n))];case"BroadcastArgs":return[i3(k("s0",e,t,n),k("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function x7(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return j(()=>aW(a,o,i));case"basic_math":return j(()=>oW(a,o,i));case"control":return pW(a,o,i);case"convolution":return j(()=>hW(a,o,i));case"creation":return j(()=>fW(a,o,i));case"dynamic":return mW(a,o,i);case"evaluation":return j(()=>gW(a,o,i));case"image":return j(()=>bW(a,o,i));case"graph":return j(()=>AW(a,o,i));case"logical":return j(()=>vW(a,o,i));case"matrices":return j(()=>wW(a,o,i));case"normalization":return j(()=>kW(a,o,i));case"reduction":return j(()=>IW(a,o,i));case"slice_join":return j(()=>SW(a,o,i));case"sparse":return j(()=>CW(a,o,i));case"spectral":return j(()=>TW(a,o,i));case"string":return j(()=>NW(a,o,i));case"transformation":return j(()=>EW(a,o,i));case"hash_table":return xW(a,o,i,s);case"custom":let l=qw(a.op);if(l&&l.customExecutor)return l.customExecutor(new rW(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var b7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function v7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,c=Object.keys(e).map(p=>ps(p)[0]),u=[];s!=null&&(u=s.map(p=>ps(p.name)[0]));let d=[...t];for(;d.length>0;){let p=d.pop();if((w7(p)||$W(p)||OW(p))&&o==null&&(o=p,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(p.name),n[p.name]==null&&c.indexOf(p.name)===-1&&u.indexOf(p.name)===-1){if(p.inputs.length===0){a.push(p.name);continue}p.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function RW(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(u=>ps(u)[0]).map(u=>e.nodes[u]),i=e.initNodes;o.forEach(u=>{s.has(u.name)&&a.push(u)}),e.weights.forEach(u=>{s.has(u.name)&&a.push(u)}),i!=null&&i.forEach(u=>{s.has(u.name)&&a.push(u)});let l=new Set,c=[];for(;a.length>0;){let u=a.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(d=>{!l.has(d.name)&&s.has(d.name)&&d.inputs.every(p=>l.has(p.name))&&a.push(d)})}return c}var DW=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],_W=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],FW=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function w7(e){return DW.indexOf(e.op)>=0}function $W(e){return _W.indexOf(e.op)>=0}function OW(e){return FW.indexOf(e.op)>=0}var c2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new c2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=v7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return RW(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(u=>this.graph.nodes[ps(u)[0]]),r=t.map(u=>ps(u)[0]),a=r.map(u=>this.graph.nodes[u]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},c={};return j(()=>{let u=new b7(this.weightMap,l,c,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=ps(f),A=[];A[g]=e[f],d[m]=A});let p=this.getFrozenTensorIds(d),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!d[m.name]){let g=x7(m,d,u,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);d[m.name]=g,this.checkTensorForDisposal(m.name,m,d,u,p,r,h)}}return this.parent==null&&u.dispose(p),t.map(f=>Mn(f,d,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=MB(i.name,n,s);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!r.has(c.id)){let u=o[c.id];u===1?(c.dispose(),delete o[c.id]):u!=null&&o[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new b7(this.weightMap,s,r,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>Mn(d,o,a)),l=i.map(d=>d.id),c=Object.keys(e).map(d=>e[d].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(h=>{h&&!h.kept&&!h.isDisposed&&!u.has(h.id)&&h.dispose()})}),this.parent==null&&a.dispose(u),i}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(y=>this.graph.nodes[ps(y)[0]]),o=n.map(y=>ps(y)[0]),i=o.map(y=>this.graph.nodes[y]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:d}=v7(e,i,this.weightMap,this._initNodes),p=[...a,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[x,b]=ps(y),v=[];v[b]=e[y],h[x]=v});let f={},m=this.getFrozenTensorIds(h),g={};for(;p.length>0;){let y=this.processStack(a,p,t,h,g,m,o,f,l);await Promise.all(y)}u==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let A=i.filter(y=>!w7(y)&&!Mn(y.name,h,t)).map(y=>y.name);if(A.length>0){let y="";throw u!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${A}] from the provided inputs [${r}]. Consider providing the following inputs: [${c}]. ${y}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let d="";if(u.node.op==="Enter"&&k("isConstant",u.node,s,n)&&([d]=Gr(u.node.name,n)),s[u.node.name]==null){let p=x7(u.node,s,n,this._resourceManager);d||([d]=Gr(u.node.name,n));let h=n.currentContext;w.isPromise(p)?c.push(p.then(f=>(s[d]=f,n.currentContext=h,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l),f))):(s[d]=p,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l))}else this.processChildNodes(u.node,t,n,s,r,l)}return c}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=Gr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!Mn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!Mn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=ps(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);w.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=ps(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=ps(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},PW=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},MW="?tfjs-format=file",zW="model.json",k7=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new PW}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Xn.browserHTTPRequest(e,this.loadOptions);else{let t=Xn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Xn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=Xn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new c2(h7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=h7.Instance.transformGraph(e.modelInitializer);this.initializer=new c2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Xn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ge)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Qe(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${zW}${MW}`);let n=new k7(e,t);return await n.load(),n}var LW="3.10.0",I7={};ze(I7,{CSVDataset:()=>P7,Dataset:()=>Su,FileDataSource:()=>U7,TextLineDataset:()=>F7,URLDataSource:()=>G7,array:()=>lV,csv:()=>xV,func:()=>bV,generator:()=>vV,microphone:()=>kV,version_data:()=>IV,webcam:()=>wV,zip:()=>uV});var BW=qa(z5()),WW=qa(z5());function VW(e,t){return e0(e,t)}function e0(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Iu(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=e0(i,t,n,s);a[o]=l}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function UW(e,t=C7){return S7(e,t)}function S7(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Iu(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(c=>c[o]),l=S7(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function C7(e){return e===null?null:Iu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function T7(e,t){let n=new Map;e0(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(w.isPromise(a)){let o=await a;n.set(r,o)}}return e0(e,t,n)}function Iu(e){let t=!1;if(se().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=L5();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ge)&&!(e instanceof Promise)&&!t)}function GW(e){return e==null||HW(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ge||w.isTypedArray(e)}function HW(e){return e===null||typeof e!="object"&&typeof e!="function"}function jW(e){return VW(e,qW)}function qW(e){return e instanceof Ge?{value:e.clone(),recurse:!1}:Iu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var N7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},d2=class extends N7{constructor(){super(d2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};d2.INITIAL_CAPACITY=32;function E7(e){return new ZW(e)}function p2(e){return new YW(e)}function XW(e,t){return new D7(e,t)}function KW(e,t=Ea.FAIL){return new oV(e,t)}var fn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new rV(this,e)}filter(e){return new nV(this,e)}map(e){return new sV(this,e)}mapAsync(e){return new R7(this,e)}serialMapAsync(e){return new R7(this,e).serial()}flatmap(e){return new aV(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new tV(this,e,t)}columnMajorBatch(e,t=!0,n=C7){return this.rowMajorBatch(e,t).map(r=>UW(r,n))}concatenate(e,t){return new D7(E7([this,e]),t)}take(e){return e<0||e==null?this:new eV(this,e)}skip(e){return e<0||e==null?this:new QW(this,e)}prefetch(e){return new _7(this,e)}shuffle(e,t){return new iV(this,e,t)}serial(){return new JW(this)}},ZW=class extends fn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:jW(e),done:!1}}},YW=class extends fn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},JW=class extends fn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},QW=class extends fn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Y(e.value)}return this.upstream.next()}},eV=class extends fn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},tV=class extends fn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},nV=class extends fn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Y(e.value)}}},sV=class extends fn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Xs.getTensorsInContainer(e.value),n=this.transform(e.value),s=Xs.getTensorsInContainer(n);for(let r of t)Xs.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},rV=class extends fn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},R7=class extends fn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Xs.getTensorsInContainer(e.value),n=await this.transform(e.value),s=Xs.getTensorsInContainer(n);for(let r of t)Xs.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},h2=class extends fn{constructor(){super();this.outputQueue=new d2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},aV=class extends h2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Xs.getTensorsInContainer(e.value),n=this.transform(e.value),s=Xs.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Xs.isTensorInList(r,s)||r.dispose();return!0}},D7=class extends fn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Ea;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Ea||(Ea={}));var oV=class extends fn{constructor(e,t=Ea.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof fn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await T7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Ea.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Ea.SHORTEST:return{value:null,done:!0};case Ea.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},_7=class extends fn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new N7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},iV=class extends _7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=WW.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Su=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),hs(async()=>(await n.iterator()).columnMajorBatch(e,t,cV),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,hs(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,hs(async()=>(await t.iterator()).filter(s=>j(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return hs(async()=>(await t.iterator()).map(n=>j(()=>e(n))),this.size)}mapAsync(e){let t=this;return hs(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return hs(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,hs(async()=>{let s=p2(async()=>({value:await t.iterator(),done:!1}));return XW(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,hs(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=BW.alea(t||w.now().toString());return hs(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,hs(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Su.MAX_BUFFER_SIZE=1e4;function hs(e,t=null){return new class extends Su{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function lV(e){return hs(async()=>E7(e),e.length)}function uV(e){if(!Iu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return hs(async()=>{let n=await T7(e,s=>{if(s instanceof Su)return{value:s.iterator(),recurse:!1};if(Iu(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return KW(n,Ea.SHORTEST)},t)}function cV(e){if(e===null)return null;let t=e[0];return GW(t)?{value:dV(e),recurse:!1}:{value:null,recurse:!0}}function dV(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ge?bn(e):Lt(e)}var F7=class extends Su{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},t0='"',Td=Symbol("out"),$7=Symbol("field"),n0=Symbol("quote"),f2=Symbol("quoteafterquote"),O7=Symbol("quoteinquote"),P7=class extends Su{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new F7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let c=Number(i);if(isNaN(c))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=c;else switch(o.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(i);break;default:l=c}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=Td;for(let o=0;o<r;o++)switch(a){case Td:switch(e.charAt(o)){case t0:s=o+1,a=n0;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=Td;break;default:a=$7,s=o;break}break;case $7:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=Td,s=o+1;break;default:}break;case n0:switch(e.charAt(o)){case t0:a=f2;break;default:}break;case f2:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=Td,s=o+1;break;case t0:a=n0;break;default:a=O7;break}break;case O7:switch(e.charAt(o)){case t0:a=n0;break;default:}break;default:}if(a===f2?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},M7=class extends fn{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(se().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new M7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),Lt(n,t)}},z7=class extends fn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=jt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=Qs([a,r,i,o],[1,4])}else this.cropBox=Qs([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(se().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new z7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Ms.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return j(()=>{let t=Bt(de(e,"float32"),0),n;n=De.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return U(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},L7=class{},B7=class extends fn{split(e){return new pV(this,e)}},pV=class extends B7{constructor(e,t){super();this.upstream=e,this.impl=new hV(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},hV=class extends h2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},fV=class extends fn{decodeUTF8(){return new mV(this)}},mV=class extends B7{constructor(e){super();this.upstream=e,this.impl=new gV(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},gV=class extends h2{constructor(e){super();if(this.upstream=e,se().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=L5();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return se().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},W7=class extends fV{constructor(e,t={}){super();this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(se().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function AV(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=yV(e));let a=await(n||w.fetch)(s,r);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new W7(o,t)}else throw new Error(a.statusText)}var yV=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function V7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var U7=class extends L7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(V7(this.input)&&se().get("IS_NODE")){let e=Hi("fs");this.input=e.readFileSync(this.input.substr(7))}return new W7(this.input,this.options)}},G7=class extends L7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return V7(this.url)?new U7(this.url,this.fileOptions).iterator():AV(this.url,this.fileOptions)}};function xV(e,t={}){return new P7(new G7(e),t)}function bV(e){let t=p2(e);return hs(async()=>t)}function vV(e){return hs(async()=>{let t=await e();return p2(()=>t.next())})}async function wV(e,t){return z7.create(e,t)}async function kV(e){return M7.create(e)}var IV="3.10.0";function Ne(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var SV=vr.whereImpl,m2=class extends hc{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Op(this,as())}nextDataId(){return m2.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,se().get("IS_NODE")&&R.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return R.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>w.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return He(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return as().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ne([e],"where");let t=this.readSync(e.dataId);return SV(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};m2.nextDataId=0;var H7={};ze(H7,{addImpl:()=>q7,bincountImpl:()=>A2,bincountReduceImpl:()=>X7,ceilImpl:()=>K7,concatImpl:()=>y2,equalImpl:()=>Z7,expImpl:()=>J7,expm1Impl:()=>e6,floorImpl:()=>t6,gatherNdImpl:()=>n6,gatherV2Impl:()=>s6,greaterEqualImpl:()=>a6,greaterImpl:()=>r6,lessEqualImpl:()=>i6,lessImpl:()=>o6,linSpaceImpl:()=>l6,logImpl:()=>u6,maxImpl:()=>c6,maximumImpl:()=>d6,minimumImpl:()=>p6,multiplyImpl:()=>x2,negImpl:()=>h6,notEqualImpl:()=>f6,prodImpl:()=>m6,rangeImpl:()=>v2,rsqrtImpl:()=>g6,sigmoidImpl:()=>hU,simpleAbsImpl:()=>j7,sliceImpl:()=>a0,sparseFillEmptyRowsImpl:()=>y6,sparseReshapeImpl:()=>x6,sparseSegmentReductionImpl:()=>w2,sqrtImpl:()=>gU,squaredDifferenceImpl:()=>b6,stridedSliceImpl:()=>v6,stringNGramsImpl:()=>w6,stringSplitImpl:()=>k6,stringToHashBucketFastImpl:()=>I6,subImpl:()=>S6,tileImpl:()=>C6,topKImpl:()=>N6,transposeImpl:()=>b2,uniqueImpl:()=>E6});function j7(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var CV=e=>{let{x:t}=e.inputs,n=e.backend;Ne(t,"abs");let s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=j7(r),n.makeOutput(s,t.shape,t.dtype)},TV={kernelName:Xi,backendName:"cpu",kernelFunc:CV};function Xt(e){return(t,n,s,r,a)=>{let o=R.assertAndGetBroadcastShape(t,n),i=o.length,l=w.computeStrides(o),c=w.sizeFromShape(o),u=w.getTypedArrayFromDType(a,c),d=t.length,p=n.length,h=w.computeStrides(t),f=w.computeStrides(n),m=R.getBroadcastDims(t,o),g=R.getBroadcastDims(n,o);if(m.length+g.length===0)for(let A=0;A<u.length;++A)u[A]=e(s[A%s.length],r[A%r.length]);else for(let A=0;A<u.length;++A){let y=w.indexToLoc(A,i,l),x=y.slice(-d);m.forEach(C=>x[C]=0);let b=w.locToIndex(x,d,h),v=y.slice(-p);g.forEach(C=>v[C]=0);let I=w.locToIndex(v,p,f);u[A]=e(s[b],r[I])}return[u,o]}}function fs(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var NV={kernelName:Gp,backendName:"cpu",kernelFunc:fs};function s0(e,t,n="float32"){if(n==="complex64"){let r=s0(e,t,"float32"),a=s0(e,t,"float32");return fs({inputs:{real:r,imag:a},backend:e})}let s=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function Tr(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var EV={kernelName:go,backendName:"cpu",kernelFunc:Tr};function vi(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var RV={kernelName:dh,backendName:"cpu",kernelFunc:vi};function Ra(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Tr({inputs:{x:r},backend:n});let o=s0(n,r.shape,r.dtype),i=Ra({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=fs({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=vi({inputs:{input:r},backend:n}),i=Ra({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(r.dtype,a)){let o=Tr({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=w.toTypedArray([0],r.dtype),[l,c]=Xt((u,d)=>u!==d?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var DV={kernelName:eo,backendName:"cpu",kernelFunc:Ra};function mn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Ne([o,i],e);let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=o.dtype==="string"?R.fromUint8ToStringArray(c):c,p=o.dtype==="string"?R.fromUint8ToStringArray(u):u,h=s||o.dtype,[f,m]=t(o.shape,i.shape,d,p,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let c=Ra({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),d=u.complexTensorInfos.real,p=u.complexTensorInfos.imag,h=l.data.get(d.dataId).values,f=l.data.get(p.dataId).values,m=Ra({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),A=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,x=l.data.get(A.dataId).values,b=l.data.get(y.dataId).values,[v,I,C]=n(o.shape,i.shape,h,f,x,b),N=l.makeTensorInfo(C,"float32",v),$=l.makeTensorInfo(C,"float32",I),O=fs({inputs:{real:N,imag:$},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(N),l.disposeIntermediateTensorInfo($),O}else{let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=s||o.dtype,[p,h]=t(o.shape,i.shape,c,u,d);return l.makeTensorInfo(h,d,p)}}}function g2(e){return(t,n,s,r,a,o)=>{let i=R.assertAndGetBroadcastShape(t,n),l=w.sizeFromShape(i),c=i.length,u=w.computeStrides(i),d=w.getTypedArrayFromDType("float32",l),p=w.getTypedArrayFromDType("float32",l),h=R.getBroadcastDims(t,i),f=R.getBroadcastDims(n,i),m=R.mergeRealAndImagArrays(s,r),g=R.mergeRealAndImagArrays(a,o),A=t.length,y=w.computeStrides(t),x=n.length,b=w.computeStrides(n);if(h.length+f.length===0)for(let v=0;v<d.length;v++){let I=v%m.length,C=v%g.length,N=e(m[I*2],m[I*2+1],g[C*2],g[C*2+1]);d[v]=N.real,p[v]=N.imag}else for(let v=0;v<d.length;v++){let I=w.indexToLoc(v,c,u),C=I.slice(-A);h.forEach(F=>C[F]=0);let N=w.locToIndex(C,A,y),$=I.slice(-x);f.forEach(F=>$[F]=0);let O=w.locToIndex($,x,b),E=e(m[N*2],m[N*2+1],g[O*2],g[O*2+1]);d[v]=E.real,p[v]=E.imag}return[d,p,i]}}var q7=Xt((e,t)=>e+t),_V=g2((e,t,n,s)=>({real:e+n,imag:t+s})),Nd=mn(la,q7,_V),FV={kernelName:la,backendName:"cpu",kernelFunc:Nd};function A2(e,t,n,s,r){let a=w.sizeFromShape(s),o=w.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function X7(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=He([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let c=e.get(i,l);if(c<0)throw new Error("Input x must be non-negative!");c>=n||(s?o.set(1,i,c):t.size>0?o.set(o.get(i,c)+t.get(i,l),i,c):o.set(o.get(i,c)+1,i,c))}return o}function Da(e){return(t,n,s)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function pt(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ne(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=w.sizeFromShape(o.shape),u=n||o.dtype,d=w.getArrayFromDType(u,c);for(let p=0;p<c;++p)d[p]=t(l[p],r);return i.makeTensorInfo(o.shape,u,d)}}function Cu(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ne(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=n||o.dtype,u=t(l,c,r);return i.makeTensorInfo(o.shape,c,u)}}var K7=Da(e=>Math.ceil(e)),$V=Cu(to,K7),OV={kernelName:to,backendName:"cpu",kernelFunc:$V};function y2(e,t,n,s){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=w.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?R.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let c=0;c<o.shape[0];++c){let u=c*t[1]+a;for(let d=0;d<o.shape[1];++d)r[u+d]=i[l++]}a+=o.shape[1]})}return r}var Z7=Xt((e,t)=>e===t?1:0),Y7=mn(ul,Z7,null,"bool"),PV={kernelName:ul,backendName:"cpu",kernelFunc:Y7},J7=Da(e=>Math.exp(e)),Q7=Cu(co,J7,"float32"),MV={kernelName:co,backendName:"cpu",kernelFunc:Q7},e6=Da(e=>Math.expm1(e)),zV=Cu(dl,e6),LV={kernelName:dl,backendName:"cpu",kernelFunc:zV},t6=Da(e=>Math.floor(e)),BV=Cu(po,t6),WV={kernelName:po,backendName:"cpu",kernelFunc:BV};function n6(e,t,n,s,r,a,o,i,l){let c=He([s,a],n);for(let u=0;u<s;u++){let d=[],p=0;for(let h=0;h<r;h++){let f=e[u*r+h];p+=f*o[h],d.push(f)}if(p<0||p>=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let h=0;h<a;h++)c.values[u*a+h]=t.get(...t.indexToLoc(p*a+h))}return c}function s6(e,t,n){let s=He(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],c=t.locToIndex([i,l]);o[2]=t.values[c];let u=e.locToIndex(o);s.values[r]=e.values[u]}return s}var r6=Xt((e,t)=>e>t?1:0),VV=mn(ml,r6,null,"bool"),UV={kernelName:ml,backendName:"cpu",kernelFunc:VV},a6=Xt((e,t)=>e>=t?1:0),GV=mn(mo,a6,null,"bool"),HV={kernelName:mo,backendName:"cpu",kernelFunc:GV},o6=Xt((e,t)=>e<t?1:0),jV=mn(xl,o6,null,"bool"),qV={kernelName:xl,backendName:"cpu",kernelFunc:jV},i6=Xt((e,t)=>e<=t?1:0),XV=mn(bl,i6,null,"bool"),KV={kernelName:bl,backendName:"cpu",kernelFunc:XV};function l6(e,t,n){let s=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var u6=Da(e=>Math.log(e)),ZV=Cu(yo,u6),YV={kernelName:yo,backendName:"cpu",kernelFunc:ZV};function c6(e,t,n,s){let r=w.getTypedArrayFromDType(s,w.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let c=e[o+l];(Number.isNaN(c)||c>i)&&(i=c)}r[a]=i}return r}var d6=Xt((e,t)=>Math.max(e,t)),JV=mn(bo,d6),QV={kernelName:bo,backendName:"cpu",kernelFunc:JV},p6=Xt((e,t)=>Math.min(e,t)),eU=mn(Io,p6),tU={kernelName:Io,backendName:"cpu",kernelFunc:eU},x2=Xt((e,t)=>e*t),nU=g2((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),r0=mn(Co,x2,nU),sU={kernelName:Co,backendName:"cpu",kernelFunc:r0};function h6(e,t,n){let s=w.createScalarValue(-1,n);return x2([],t,s,e,n)}function rU(e){let{inputs:t,backend:n}=e,{x:s}=t;Ne(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=h6(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var aU={kernelName:Il,backendName:"cpu",kernelFunc:rU},f6=Xt((e,t)=>e!==t?1:0),oU=mn(Sl,f6,null,"bool"),iU={kernelName:Sl,backendName:"cpu",kernelFunc:oU};function b2(e,t,n,s,r){let a=t.length,o=w.sizeFromShape(t),i=w.computeStrides(t),l=w.computeStrides(r),c=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let u=0;u<o;++u){let d=w.indexToLoc(u,a,i),p=new Array(d.length);for(let f=0;f<p.length;f++)p[f]=d[s[f]];let h=w.locToIndex(p,a,l);c[h]=e[u]}return c}function Ss(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;Ne(r,"transpose");let o=r.shape.length,i=new Array(o);for(let d=0;d<i.length;d++)i[d]=r.shape[a[d]];let l=s.data.get(r.dataId).values,c=b2(l,r.shape,r.dtype,a,i);return{dataId:s.write(c,i,r.dtype),shape:i,dtype:r.dtype}}var lU={kernelName:jo,backendName:"cpu",kernelFunc:Ss};function m6(e,t,n,s){let[r,a]=R.computeOutAndReduceShapes(e,s),o=Ps(t,"int32"),i=w.makeZerosTypedArray(w.sizeFromShape(r),o),l=w.sizeFromShape(a);for(let c=0;c<i.length;++c){let u=c*l,d=1;for(let p=0;p<l;++p)d*=n[u+p];i[c]=d}return{outVals:i,outShape:r,outDtype:o}}function uU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"prod");let i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=R.getAxesPermutation(l,i),u=l,d=r,p=[];c!=null&&(d=Ss({inputs:{x:r},backend:n,attrs:{perm:c}}),p.push(d),u=R.getInnerMostAxes(u.length,i));let h=n.data.get(d.dataId).values,{outVals:f,outShape:m,outDtype:g}=m6(d.shape,d.dtype,h,u),A=m;return o&&(A=R.expandShapeToKeepDim(m,l)),p.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(A,g,f)}var cU={kernelName:Dl,backendName:"cpu",kernelFunc:uU};function v2(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return w.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}var g6=Da(e=>1/Math.sqrt(e)),dU=Cu(Po,g6),pU={kernelName:Po,backendName:"cpu",kernelFunc:dU},hU=Da(e=>1/(1+Math.exp(-e))),A6=pt(zo,e=>1/(1+Math.exp(-e))),fU={kernelName:zo,backendName:"cpu",kernelFunc:A6};function a0(e,t,n,s,r){let a=Fn.isSliceContinous(s,t,n),o=w.sizeFromShape(n),i=w.computeStrides(s);if(a){let d=Fn.computeFlatOffset(t,i);return r==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=r==="string"?R.fromUint8ToStringArray(e):e,c=He(s,r,l),u=He(n,r);for(let d=0;d<u.size;++d){let p=u.indexToLoc(d),h=p.map((f,m)=>f+t[m]);u.set(c.get(...h),...p)}return r==="string"?R.fromStringArrayToUint8(u.values):u.values}function wi(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Ne(r,"slice");let[i,l]=Fn.parseSliceParams(r,a,o);Fn.assertParamsValid(r,i,l);let c=n.data.get(r.dataId).values,u=a0(c,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,u)}var mU={kernelName:Ml,backendName:"cpu",kernelFunc:wi};function y6(e,t,n,s,r,a,o){let i=t[0],l=a[0],c=new Array(l),u=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${i}`);let g=w.getArrayFromDType(n,0),A=w.getArrayFromDType(r,0);return[g,[0,d],A,c,u]}let p=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let A=e[g*d];if(A<0)throw new Error(`indices(${g}, 0) is invalid: ${A} < 0`);if(A>=l)throw new Error(`indices(${g}, 0) is invalid: ${A} >= ${l}`);++f[A],p=p&&A>=h,h=A}let m=!0;for(let g=0;g<l;++g){let A=f[g]===0;c[g]=A,m=m&&!A,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&p){let g=e,A=s;for(let y=0;y<i;++y)u[y]=y;return[g,[i,d],A,c,u]}else{let g=f[l-1],A=w.getArrayFromDType(n,g*d),y=w.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let b=0;b<i;++b){let v=e[b*d],I=x[v],C=(v===0?0:f[v-1])+I;x[v]++;for(let N=0;N<d;++N)A[C*d+N]=e[b*d+N];y[C]=s[b],u[b]=C}for(let b=0;b<l;++b)if(x[b]===0){let I=b===0?0:f[b-1];A[I*d+0]=b;for(let C=1;C<d;++C)A[I*d+C]=0;y[I]=o}return[A,[g,d],y,c,u]}}function x6(e,t,n,s,r){let a=w.sizeFromShape(s),o=t[0],i=r.length,l=[],c=1,u=-1;for(let g=0;g<i;++g){let A=r[g];if(A===-1){if(u!==-1)throw new Error(`only one output dimension may be -1, not both ${u} and ${g}`);u=g,l.push(1)}else{if(A<0)throw new Error(`size ${g} must be non-negative, not ${A}`);c*=A,l.push(A)}}if(u!==-1){if(c<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(a/c);if(c*g!==a)throw new Error(`Input to reshape is a SparseTensor with ${a}
|
|
dense values, but the requested shape requires a multiple of ${c}. inputShape=${s} outputShape= ${l}`);l[u]=g}let d=w.sizeFromShape(l);if(d!==a)throw new Error(`Input to reshape is a tensor with ${a} dense values, but the requested shape has ${d}. inputShape=${s} outputShape=${l}`);let p=s.length,h=[];if(p>0){h[p-1]=1;for(let g=p-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=w.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let A=0;for(let y=0;y<p;++y)A+=e[g*p+y]*h[y];for(let y=0;y<i;++y)m[g*i+y]=Math.trunc(A/f[y]),A%=f[y]}return[m,[o,i],l]}function w2(e,t,n,s,r,a=!1,o=0){let i=s.length;if(i!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],c=l[1],d=i>0?r[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let p=t.slice();p[0]=d;let h=p.reduce((x,b)=>x*b,1),f=w.getArrayFromDType(n,h);if(i===0)return d>0&&f.fill(o),[f,p];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,A=0,y=r[m];for(;;){let x=0;if(g<i){if(x=r[g],y===x){++g;continue}if(y>=x)throw new Error("segment ids are not increasing")}if(y<0||y>=d)throw new Error(`Segment id ${y} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);y>A&&f.fill(o,A*c,y*c);for(let b=m;b<g;++b){let v=s[b];if(v<0||v>=l[0])throw new Error(`Bad: indices[${b}] == ${s[b]} out of range [0, ${l[0]})`);for(let I=0;I<c;I++)f[y*c+I]+=e[v*c+I]}if(a)for(let b=0;b<c;b++)f[y*c+b]/=g-m;if(m=g,++g,A=y+1,y=x,g>i)break}return A<d&&f.fill(o,A*c,d*c),[f,p]}var gU=Da(e=>Math.sqrt(e)),AU=pt(Lo,e=>Math.sqrt(e)),yU={kernelName:Lo,backendName:"cpu",kernelFunc:AU},b6=Xt((e,t)=>{let n=e-t;return n*n}),xU=mn(Vo,b6),bU={kernelName:Vo,backendName:"cpu",kernelFunc:xU};function v6(e,t,n,s){let r=He(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var vU=class{constructor(e,t,n,s,r,a){this.separator=w.encodeString(e),this.nGramWidths=t,this.leftPad=w.encodeString(n),this.rightPad=w.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),c=Math.max(0,i-(r-(o+1))),u=a-(l+c),d=t+(l>0?0:o-i),p=0;p+=l*this.leftPad.length;for(let A=0;A<u;++A)p+=e[d+A].length;p+=c*this.rightPad.length,p+=(l+c+u-1)*this.separator.length,n[s+o]=new Uint8Array(p);let f=n[s+o],m=0,g=A=>A.forEach(y=>f[m++]=y);for(let A=0;A<l;++A)g(this.leftPad),g(this.separator);for(let A=0;A<u-1;++A)g(e[d+A]),g(this.separator);if(u>0){g(e[d+u-1]);for(let A=0;A<c;++A)g(this.separator),g(this.rightPad)}else{for(let A=0;A<c-1;++A)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let c=t[l]>=i;if(c=c&&t[l]<=n,!c)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=w.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],c=0;this.nGramWidths.forEach(u=>{c+=this.getNumNGrams(l,u)}),this.preserveShort&&l>0&&c===0&&(c=1),a[i]=a[i-1]+c}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],c=a[i];if(this.nGramWidths.forEach(u=>{let d=t[i+1]-t[i],p=this.getNumNGrams(d,u);this.createNGrams(e,l,o,c,p,u),c+=p}),this.preserveShort&&c===a[i]){let u=t[i+1]-t[i];if(u===0)continue;let d=u+2*this.padWidth,p=1;this.createNGrams(e,l,o,c,p,d)}}return[o,a]}};function w6(e,t,n,s,r,a,o,i){return new vU(n,s,r,a,o,i).compute(e,t)}function wU(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function k6(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let p=0;p<s;++p){let h=r.length;wU(e[p],t,n,r);let f=r.length-h;i[p]=f,a+=f,o=Math.max(o,f)}let l=w.getArrayFromDType("int32",a*2),c=new Array(a),u=[s,o],d=0;for(let p=0;p<s;++p)for(let h=0;h<i[p];++h)l[d*2]=p,l[d*2+1]=h,c[d]=r[d],++d;return[l,c,u]}function I6(e,t){let n=w.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=w.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var S6=Xt((e,t)=>e-t),kU=g2((e,t,n,s)=>({real:e-n,imag:t-s})),k2=mn(Uo,S6,kU),IU={kernelName:Uo,backendName:"cpu",kernelFunc:k2};function C6(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=He(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var Ed=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function T6(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,c=Math.log(i),u=.5*Math.exp(2*c/3),d=.5*Math.sqrt(c*u*(i-u)/i)*Math.sign(l-i/2),p=Math.max(n,Math.floor(t-l*u/i+d)),h=Math.min(s,Math.floor(t+(i-l)*u/i+d));T6(e,t,p,h)}let r=e[t],a=n,o=s;for(w.swap(e,n,t),Ed(e[s],r)>0&&w.swap(e,n,s);a<o;){for(w.swap(e,a,o),a++,o--;Ed(e[a],r)<0;)a=a+1;for(;Ed(e[o],r)>0;)o=o-1}Ed(e[n],r)===0?w.swap(e,n,o):(o=o+1,w.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function N6(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=w.getTypedArrayFromDType(n,o*s),c=w.getTypedArrayFromDType("int32",o*s);for(let d=0;d<o;d++){let p=d*i,h=e.subarray(p,p+i),f=new Array(h.length);h.forEach((y,x)=>f[x]={value:y,index:x}),s<f.length&&(T6(f,s),f=f.slice(0,s)),r&&f.sort(Ed);let m=d*s,g=l.subarray(m,m+s),A=c.subarray(m,m+s);for(let y=0;y<s;y++)g[y]=f[y].value,A[y]=f[y].index}let u=t.slice();return u[u.length-1]=s,[He(u,n,l),He(u,"int32",c)]}function E6(e,t,n,s){let r=w.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new Jt(a,s,e),c=[],u=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(u)m=e[f].toString();else{let g=[];for(let A=0;A<a[0];A++)for(let y=0;y<a[2];y++)g.push(l.get(A,f,y));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,c.push(f)}}let d=a.slice();d[1]=Object.keys(o).length;let p=new Jt(d,s);c.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let A=0;A<a[2];A++)p.set(l.get(g,f,A),g,m,A)});let h=n.slice();return h[r]=d[1],{outputValues:p.values,outputShape:h,indices:i}}nu("cpu",()=>new m2,1);var R6=pt(uo,e=>e>=0?e:Math.exp(e)-1),SU={kernelName:uo,backendName:"cpu",kernelFunc:R6};function D6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Ne([r],"leakyRelu");let o=w.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=w.getTypedArrayFromDType("float32",o);for(let c=0;c<i.length;c++)l[c]=i[c]<0?a*i[c]:i[c];return n.makeTensorInfo(r.shape,"float32",l)}var CU={kernelName:Ao,backendName:"cpu",kernelFunc:D6},TU=Xt((e,t)=>e<0?t*e:e);function _6(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Ne([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=TU(s.shape,r.shape,a,o,"float32");return n.makeTensorInfo(l,"float32",i)}var NU={kernelName:Ro,backendName:"cpu",kernelFunc:_6},F6=pt(Do,e=>Math.max(0,e)),EU={kernelName:Do,backendName:"cpu",kernelFunc:F6},$6=pt(Fo,e=>Math.min(Math.max(0,e),6)),RU={kernelName:Fo,backendName:"cpu",kernelFunc:$6};function I2(e,t,n,s,r){if(n==="linear")return Tr({inputs:{x:t},backend:e});if(n==="relu")return F6({inputs:{x:t},backend:e});if(n==="elu")return R6({inputs:{x:t},backend:e});if(n==="relu6")return $6({inputs:{x:t},backend:e});if(n==="prelu")return _6({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return D6({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return A6({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function wt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=w.sizeFromShape(r.shape),i=w.inferFromImplicitShape(a,o),l=w.sizeFromShape(i);w.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let c=n.data.get(r.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,d=c.complexTensorInfos.imag;u.shape=i,d.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var DU={kernelName:Fl,backendName:"cpu",kernelFunc:wt};function O6(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Ne([r,a],"matMul");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),A=w.sizeFromShape(m),y=g===A||g===1||A===1;w.assert(l>=2&&c>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);w.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,u,p]:[g,p,u],I=i?[A,h,d]:[A,d,h],C=wt({inputs:{x:r},backend:n,attrs:{shape:v}}),N=wt({inputs:{x:a},backend:n,attrs:{shape:I}}),$=o?C.shape[1]:C.shape[2],O=o?C.shape[2]:C.shape[1],E=i?N.shape[1]:N.shape[2],F=Math.max(g,A),T=n.data.get(C.dataId).values,M=n.data.get(N.dataId).values,G=w.computeStrides(C.shape),H=w.computeStrides(N.shape),[z,X,Q]=o?[G[0],1,G[1]]:[G[0],G[1],1],[Z,ne,te]=i?[1,H[1],H[0]]:[H[1],1,H[0]],J=O*E,ee=He([F,O,E],C.dtype),ce=ee.values,pe=n.blockSize;for(let be=0;be<F;be++)for(let we=0;we<O;we+=pe)for(let Ce=0;Ce<E;Ce+=pe)for(let Oe=0;Oe<$;Oe+=pe){let Be=Math.min(we+pe,O),Ue=Math.min(Ce+pe,E),et=Math.min(Oe+pe,$);for(let ct=we;ct<Be;ct++)for(let ot=Ce;ot<Ue;ot++){let it=0;for(let ht=Oe;ht<et;ht++){let mt=Math.min(be,g-1)*z,It=Math.min(be,A-1)*te,Dt=T[mt+ct*X+ht*Q],Hn=M[ht*Z+ot*ne+It];it+=Dt*Hn}ce[be*J+(ct*E+ot)]+=it}}return n.disposeIntermediateTensorInfo(C),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(b,ee.dtype,ee.values)}var _U={kernelName:Qa,backendName:"cpu",kernelFunc:O6};function FU(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p,h,f,m=[];p=O6({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:c},backend:n}),o&&(h=Nd({inputs:{a:p,b:o},backend:n}),m.push(p),p=h),u&&(f=I2(n,p,u,i,d),m.push(p),p=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return p}var $U={kernelName:qo,backendName:"cpu",kernelFunc:FU},OU=pt(Ki,e=>Math.acos(e)),PU={kernelName:Ki,backendName:"cpu",kernelFunc:OU},MU=pt(Zi,e=>Math.acosh(e)),zU={kernelName:Zi,backendName:"cpu",kernelFunc:MU};function LU(e){let{inputs:t,backend:n}=e,s=t;Ne(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=He(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let c=0;c<o.length;c++)o[c]+=l[c]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var BU={kernelName:Za,backendName:"cpu",kernelFunc:LU};function WU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"all");let i=w.parseAxisParam(a,r.shape),l=i,c=R.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ss({inputs:{x:r},backend:n,attrs:{perm:c}}),l=R.getInnerMostAxes(l.length,r.shape.length)),R.assertAxesAreInnerMostDims("all",l,u.shape.length);let[d,p]=R.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let y=A*h,x=m[y];for(let b=0;b<h;++b){let v=m[y+b];x=x&&v}f[A]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=R.expandShapeToKeepDim(d,i),y=wt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var VU={kernelName:Yi,backendName:"cpu",kernelFunc:WU};function UU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"any");let i=w.parseAxisParam(a,r.shape),l=i,c=R.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ss({inputs:{x:r},backend:n,attrs:{perm:c}}),l=R.getInnerMostAxes(l.length,r.shape.length)),R.assertAxesAreInnerMostDims("any",l,u.shape.length);let[d,p]=R.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let y=A*h,x=m[y];for(let b=0;b<h;++b){let v=m[y+b];x=x||v}f[A]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=R.expandShapeToKeepDim(d,i),y=wt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var GU={kernelName:Ji,backendName:"cpu",kernelFunc:UU};function HU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ne(r,"argMax");let o=w.parseAxisParam(a,r.shape),i=R.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Ss({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=R.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],R.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[u,d]=R.computeOutAndReduceShapes(l.shape,o),p=w.sizeFromShape(u),h=w.makeZerosTypedArray(p,"int32"),f=w.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,y=m[A],x=0;for(let b=0;b<f;++b){let v=m[A+b];v>y&&(y=v,x=b)}h[g]=x}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var jU={kernelName:Ya,backendName:"cpu",kernelFunc:HU};function qU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ne(r,"argMin");let o=w.parseAxisParam(a,r.shape),i=R.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Ss({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=R.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],R.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[u,d]=R.computeOutAndReduceShapes(l.shape,o),p=w.sizeFromShape(u),h=w.makeZerosTypedArray(p,"int32"),f=w.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,y=m[A],x=0;for(let b=0;b<f;++b){let v=m[A+b];v<y&&(y=v,x=b)}h[g]=x}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var XU={kernelName:gc,backendName:"cpu",kernelFunc:qU},KU=pt(Qi,e=>Math.asin(e)),ZU={kernelName:Qi,backendName:"cpu",kernelFunc:KU},YU=pt(el,e=>Math.asinh(e)),JU={kernelName:el,backendName:"cpu",kernelFunc:YU},QU=pt(tl,e=>Math.atan(e)),eG={kernelName:tl,backendName:"cpu",kernelFunc:QU},tG=Xt((e,t)=>Math.atan2(e,t)),nG=mn(sl,tG),sG={kernelName:sl,backendName:"cpu",kernelFunc:nG},rG=pt(nl,e=>Math.atanh(e)),aG={kernelName:nl,backendName:"cpu",kernelFunc:rG};function S2(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,c=r.dilationWidth,u=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=He(r.outShape,n),g=m.values,A=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let b=0;b<r.batchSize;++b){let v=b*A,I=b*s[0];for(let C=0;C<r.inChannels;++C)for(let N=0;N<r.outHeight;++N){let $=N*o-p,O=Math.max(0,$),E=Math.min(r.inHeight,u+$),F=v+N*y;for(let T=0;T<r.outWidth;++T){let M=T*i-h,G=Math.max(0,M),H=Math.min(r.inWidth,d+M),z=f,X=0,Q=0;for(let ne=O;ne<E;ne+=l){let te=I+ne*s[1];for(let J=G;J<H;J+=c){let ee=te+J*s[2],ce=e[ee+C];a==="max"&&ce>z?z=ce:a==="avg"&&(X+=ce,Q++)}if(isNaN(z))break}let Z=F+T*x+C;g[Z]=a==="avg"?X/Q:z}}}return m}function P6(e,t,n,s,r=!1,a=!1){let o=He(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,c=s.dilationHeight,u=s.dilationWidth,d=s.effectiveFilterHeight,p=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=He(t,n,e);for(let g=0;g<s.batchSize;++g)for(let A=0;A<s.inChannels;++A)for(let y=0;y<s.outHeight;++y){let x=y*i-h,b=x;for(;b<0;)b+=c;let v=Math.min(s.inHeight,d+x);for(let I=0;I<s.outWidth;++I){let C=I*l-f,N=C;for(;N<0;)N+=u;let $=Math.min(s.inWidth,p+C),O=Number.NEGATIVE_INFINITY,E=-1;for(let F=b;F<v;F+=c){let T=F-x;for(let M=N;M<$;M+=u){let G=M-C,H=m.get(g,F,M,A);H>O&&(O=H,r?E=a?((g*s.inHeight+F)*s.inWidth+M)*s.inChannels+A:(F*s.inWidth+M)*s.inChannels+A:E=T*p+G)}}o.set(E,g,y,I,A)}}return o}function M6(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,c=r.dilationDepth,u=r.dilationHeight,d=r.dilationWidth,p=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,A=r.padInfo.left,y=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=He(r.outShape,n),b=x.values,v=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],I=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],N=r.outShape[4];for(let $=0;$<r.batchSize;++$){let O=$*v,E=$*s[0];for(let F=0;F<r.inChannels;++F)for(let T=0;T<r.outDepth;++T){let M=T*o-m,G=M;for(;G<0;)G+=c;let H=Math.min(r.inDepth,p+M),z=O+T*I;for(let X=0;X<r.outHeight;++X){let Q=X*i-g,Z=Q;for(;Z<0;)Z+=u;let ne=Math.min(r.inHeight,h+Q),te=z+X*C;for(let J=0;J<r.outWidth;++J){let ee=J*l-A,ce=ee;for(;ce<0;)ce+=d;let pe=Math.min(r.inWidth,f+ee),be=te+J*N,we=y,Ce=0,Oe=0;for(let Ue=G;Ue<H;Ue+=c){let et=E+Ue*s[1];for(let ct=Z;ct<ne;ct+=u){let ot=et+ct*s[2];for(let it=ce;it<pe;it+=d){let ht=ot+it*s[3],mt=e[ht+F];if(a==="max"&&mt>we?we=mt:a==="avg"&&(Ce+=mt,Oe++),isNaN(we))break}if(isNaN(we))break}if(isNaN(we))break}let Be=be+F;b[Be]=a==="avg"?Ce/Oe:we}}}}return x}function oG(e,t){let n=He(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,d=t.effectiveFilterWidth,p=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let A=0;A<t.outDepth;++A){let y=A*s-p,x=y;for(;x<0;)x+=o;let b=Math.min(t.inDepth,c+y);for(let v=0;v<t.outHeight;++v){let I=v*r-h,C=I;for(;C<0;)C+=i;let N=Math.min(t.inHeight,u+I);for(let $=0;$<t.outWidth;++$){let O=$*a-f,E=O;for(;E<0;)E+=l;let F=Math.min(t.inWidth,d+O),T=Number.NEGATIVE_INFINITY,M=-1;for(let G=x;G<b;G+=o){let H=G-y;for(let z=C;z<N;z+=i){let X=z-I;for(let Q=E;Q<F;Q+=l){let Z=Q-O,ne=e.get(m,G,z,Q,g);ne>=T&&(T=ne,M=H*u*d+X*u+Z)}}}n.set(M,m,A,v,$,g)}}}return n}function iG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ne(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;w.assert(R.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=R.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))d=Tr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),f=S2(p,r.shape,r.dtype,h,u,"avg");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var lG={kernelName:Ja,backendName:"cpu",kernelFunc:iG};function uG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Ne(r,"avgPool3d");let u=R.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=M6(d,r.shape,r.dtype,w.computeStrides(r.shape),u,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var cG={kernelName:Ac,backendName:"cpu",kernelFunc:uG};function dG(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Ne([r,a],"avgPool3DGrad");let u=R.computePool3DInfo(a.shape,o,i,1,l,c),d=u.strideDepth,p=u.strideHeight,h=u.strideWidth,f=u.filterDepth,m=u.filterHeight,g=u.filterWidth,A=u.dilationDepth,y=u.dilationHeight,x=u.dilationWidth,b=u.effectiveFilterDepth,v=u.effectiveFilterHeight,I=u.effectiveFilterWidth,C=b-1-u.padInfo.front,N=I-1-u.padInfo.left,$=v-1-u.padInfo.top,O=He(a.shape,"float32"),E=1/(f*m*g),F=n.bufferSync(r);for(let T=0;T<u.batchSize;++T)for(let M=0;M<u.inChannels;++M)for(let G=0;G<u.inDepth;++G)for(let H=0;H<u.inHeight;++H)for(let z=0;z<u.inWidth;++z){let X=G-C,Q=H-$,Z=z-N,ne=0;for(let te=0;te<b;te+=A){let J=(X+te)/d;if(!(J<0||J>=u.outDepth||Math.floor(J)!==J))for(let ee=0;ee<v;ee+=y){let ce=(Q+ee)/p;if(!(ce<0||ce>=u.outHeight||Math.floor(ce)!==ce))for(let pe=0;pe<I;pe+=x){let be=(Z+pe)/h;if(be<0||be>=u.outWidth||Math.floor(be)!==be)continue;ne+=F.get(T,J,ce,be,M)}}}O.set(ne*E,T,G,H,z,M)}return n.makeTensorInfo(O.shape,O.dtype,O.values)}var pG={kernelName:Wp,backendName:"cpu",kernelFunc:dG};function hG(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Ne([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=R.computePool2DInfo(o.shape,i,l,1,c),d=u.strideHeight,p=u.strideWidth,h=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,g=u.dilationWidth,A=u.effectiveFilterHeight,y=u.effectiveFilterWidth,x=y-1-u.padInfo.left,b=A-1-u.padInfo.top,v=He(o.shape,"float32"),I=1/(h*f),C=n.data.get(r.dataId).values,N=He(r.shape,"float32",C);for(let $=0;$<u.batchSize;++$)for(let O=0;O<u.inChannels;++O)for(let E=0;E<u.inHeight;++E)for(let F=0;F<u.inWidth;++F){let T=E-b,M=F-x,G=0;for(let H=0;H<A;H+=m){let z=(T+H)/d;if(!(z<0||z>=u.outHeight||Math.floor(z)!==z))for(let X=0;X<y;X+=g){let Q=(M+X)/p;if(Q<0||Q>=u.outWidth||Math.floor(Q)!==Q)continue;G+=N.get($,z,Q,O)}}v.set(G*I,$,E,F,O)}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var fG={kernelName:Bp,backendName:"cpu",kernelFunc:hG};function mG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;w.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ne([r,i,l,a,o],"batchNorm");let{varianceEpsilon:c}=s;c==null&&(c=.001);let u=n.data.get(r.dataId).values,d=n.data.get(i.dataId).values,p=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),g=f.length,A=h.length,y=p.length,x=d.length,b=0,v=0,I=0,C=0;for(let N=0;N<u.length;++N)m[N]=f[b++]+(u[N]-d[v++])*h[I++]/Math.sqrt(p[C++]+c),b>=g&&(b=0),v>=x&&(v=0),I>=A&&(I=0),C>=y&&(C=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var gG={kernelName:fo,backendName:"cpu",kernelFunc:mG};function AG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Ne([r],"batchToSpaceND");let i=a.reduce((A,y)=>A*y),l=R.getReshaped(r.shape,a,i),c=R.getPermuted(l.length,a.length),u=R.getReshapedPermuted(r.shape,a,i),d=R.getSliceBeginCoords(o,a.length),p=R.getSliceSize(u,o,a.length),h=wt({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Ss({inputs:{x:h},backend:n,attrs:{perm:c}}),m=wt({inputs:{x:f},backend:n,attrs:{shape:u}}),g=wi({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var yG={kernelName:rl,backendName:"cpu",kernelFunc:AG};function xG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=A2(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var bG={kernelName:Vp,backendName:"cpu",kernelFunc:xG};function vG(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=R.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var wG={kernelName:Up,backendName:"cpu",kernelFunc:vG},kG=pt(ua,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),IG={kernelName:ua,backendName:"cpu",kernelFunc:kG},SG=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let c=0;c<i.length;c++){let u=i[c],d=l[c];s[c]=Math.hypot(u,d)}return n.makeOutput(s,t.shape,"float32")},CG={kernelName:yc,backendName:"cpu",kernelFunc:SG};function Tu(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var TG={kernelName:rh,backendName:"cpu",kernelFunc:Tu};function Nu(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],o=R.computeOutShape(t.map(m=>m.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>w.sizeFromShape(m.shape)>0);if(i.length===1)return Tr({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(R.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>vi({inputs:{input:b},backend:n})),g=i.map(b=>Tu({inputs:{input:b},backend:n})),A=Nu({inputs:m,backend:n,attrs:{axis:a}}),y=Nu({inputs:g,backend:n,attrs:{axis:a}}),x=fs({inputs:{real:A,imag:y},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(y),x}let c=i.map(m=>{let g=w.sizeFromShape(m.shape.slice(a));return wt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),u=c.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=R.computeOutShape(c.map(m=>m.shape),1);let d=c[0].shape[0]===1,p=y2(u,o,t[0].dtype,d),h=R.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,p);return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var NG={kernelName:al,backendName:"cpu",kernelFunc:Nu};function z6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s;Ne([r,a],"conv2d");let d=R.convertConv2DDataFormat(l),p=R.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,A=p.padInfo.left,y=p.padInfo.top,x=p.dataFormat==="channelsLast",b=new Jt(p.outShape,r.dtype),v=w.computeStrides(r.shape),I=w.computeStrides(a.shape),C=v[0],N=x?v[1]:v[2],$=x?v[2]:1,O=x?1:v[1],E=b.strides[0],F=x?b.strides[1]:b.strides[2],T=x?b.strides[2]:1,M=x?1:b.strides[1],G=n.data.get(r.dataId).values,H=n.data.get(a.dataId).values,z=b.values;for(let X=0;X<p.batchSize;++X){let Q=X*C,Z=X*E;for(let ne=0;ne<p.outHeight;++ne){let te=Z+ne*F,J=ne*p.strideHeight-y;for(let ee=0;ee<h;++ee){let ce=J+ee*m;if(ce<0||ce>=p.inHeight)continue;let pe=ee*I[0],be=Q+ce*N;for(let we=0;we<p.outWidth;++we){let Ce=te+we*T,Oe=we*p.strideWidth-A;for(let Be=0;Be<f;++Be){let Ue=Oe+Be*g;if(Ue<0||Ue>=p.inWidth)continue;let et=pe+Be*I[1],ct=be+Ue*$,ot=et;for(let it=0;it<p.inChannels;++it){let ht=G[ct+it*O];for(let mt=0;mt<p.outChannels;++mt)z[Ce+mt*M]+=ht*H[ot+mt];ot+=p.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,z)}var EG={kernelName:no,backendName:"cpu",kernelFunc:z6};function RG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s;Ne([r,a],"conv2dBackpropFilter");let d=R.convertConv2DDataFormat(l),p=R.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=p,A=p.dataFormat==="channelsLast",y=new Jt(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,v=n.data.get(r.dataId).values,I=n.data.get(a.dataId).values,C=new Jt(r.shape,r.dtype,v),N=new Jt(a.shape,a.dtype,I);for(let $=0;$<m;++$){let O=Math.max(0,Math.ceil((b-$)/h)),E=Math.min(p.outHeight,(p.inHeight+b-$)/h);for(let F=0;F<g;++F){let T=Math.max(0,Math.ceil((x-F)/f)),M=Math.min(p.outWidth,(p.inWidth+x-F)/f);for(let G=0;G<p.inChannels;++G)for(let H=0;H<p.outChannels;++H){let z=0;for(let X=0;X<p.batchSize;++X)for(let Q=O;Q<E;++Q){let Z=$+Q*h-b;for(let ne=T;ne<M;++ne){let te=F+ne*f-x;A?z+=C.get(X,Z,te,G)*N.get(X,Q,ne,H):z+=C.get(X,G,Z,te)*N.get(X,H,Q,ne)}}y.set(z,$,F,G,H)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var DG={kernelName:Hp,backendName:"cpu",kernelFunc:RG};function _G(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s;Ne([r,a],"conv2dBackpropInput");let d=w.computeStrides(a.shape),p=w.computeStrides(r.shape),h=R.convertConv2DDataFormat(c),f=R.computeConv2DInfo(o,a.shape,i,1,l,u,!1,h),m=new Jt(f.inShape,"float32"),g=m.values,A=n.data.get(r.dataId).values,y=n.data.get(a.dataId).values,[x,b,v]=d,{batchSize:I,filterHeight:C,filterWidth:N,inChannels:$,inHeight:O,inWidth:E,outChannels:F,outHeight:T,outWidth:M,strideHeight:G,strideWidth:H}=f;h=f.dataFormat;let z=C-1-f.padInfo.top,X=N-1-f.padInfo.left,Q=h==="channelsLast",Z=m.strides[0],ne=Q?m.strides[1]:m.strides[2],te=Q?m.strides[2]:1,J=Q?1:m.strides[1],ee=p[0],ce=Q?p[1]:p[2],pe=Q?p[2]:1,be=Q?1:p[1];for(let we=0;we<I;++we)for(let Ce=0;Ce<$;++Ce)for(let Oe=0;Oe<O;++Oe){let Be=Oe-z,Ue=Math.max(0,Math.ceil(Be/G)),et=Math.min(T,(C+Be)/G);for(let ct=0;ct<E;++ct){let ot=ct-X,it=Math.max(0,Math.ceil(ot/H)),ht=Math.min(M,(N+ot)/H),mt=0;for(let Dt=Ue;Dt<et;++Dt){let Hn=Dt*G-Be;for(let gn=it;gn<ht;++gn){let js=gn*H-ot,En=ee*we+ce*Dt+pe*gn,ss=x*(C-1-Hn)+b*(N-1-js)+v*Ce;for(let _s=0;_s<F;++_s){let xs=A[En+be*_s],An=y[ss+_s];mt+=xs*An}}}let It=Z*we+ne*Oe+te*ct+J*Ce;g[It]=mt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var FG={kernelName:so,backendName:"cpu",kernelFunc:_G};function $G(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;Ne([r,a],"conv3d");let c=R.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:u,filterHeight:d,filterWidth:p,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=c,A=g.front,y=g.left,x=g.top,b=new Jt(c.outShape,r.dtype),v=n.data.get(r.dataId).values,I=n.data.get(a.dataId).values,C=b.values,N=w.computeStrides(r.shape),$=w.computeStrides(a.shape);for(let O=0;O<c.batchSize;++O){let E=O*N[0],F=O*b.strides[0];for(let T=0;T<c.outDepth;++T){let M=F+T*b.strides[1],G=T*c.strideDepth-A;for(let H=0;H<u;++H){let z=G+H*h;if(z<0||z>=c.inDepth)continue;let X=H*$[0],Q=E+z*N[1];for(let Z=0;Z<c.outHeight;++Z){let ne=M+Z*b.strides[2],te=Z*c.strideHeight-x;for(let J=0;J<d;++J){let ee=te+J*f;if(ee<0||ee>=c.inHeight)continue;let ce=X+J*$[1],pe=Q+ee*N[2];for(let be=0;be<c.outWidth;++be){let we=ne+be*c.outChannels,Ce=be*c.strideWidth-y;for(let Oe=0;Oe<p;++Oe){let Be=Ce+Oe*m;if(Be<0||Be>=c.inWidth)continue;let Ue=ce+Oe*$[2],et=pe+Be*c.inChannels,ct=Ue;for(let ot=0;ot<c.inChannels;++ot){let it=v[et+ot];for(let ht=0;ht<c.outChannels;++ht)C[we+ht]+=it*I[ct+ht];ct+=c.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var OG={kernelName:xc,backendName:"cpu",kernelFunc:$G};function PG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;Ne([r,a],"conv3dBackpropFilterV2");let c=w.computeStrides(r.shape),u=w.computeStrides(a.shape),d=R.computeConv3DInfo(r.shape,l,o,1,i),p=d.strideDepth,h=d.strideHeight,f=d.strideWidth,m=d.filterDepth,g=d.filterHeight,A=d.filterWidth,y=new Jt(d.filterShape,"float32"),x=y.values,[b,v,I,C]=y.strides,N=n.data.get(a.dataId).values,[$,O,E,F]=u,T=n.data.get(r.dataId).values,[M,G,H,z]=c,X=d.padInfo.front,Q=d.padInfo.left,Z=d.padInfo.top;for(let ne=0;ne<m;++ne){let te=Math.max(0,Math.ceil((X-ne)/p)),J=Math.min(d.outDepth,(d.inDepth+X-ne)/p),ee=ne*b;for(let ce=0;ce<g;++ce){let pe=Math.max(0,Math.ceil((Z-ce)/h)),be=Math.min(d.outHeight,(d.inHeight+Z-ce)/h),we=ce*v+ee;for(let Ce=0;Ce<A;++Ce){let Oe=Math.max(0,Math.ceil((Q-Ce)/f)),Be=Math.min(d.outWidth,(d.inWidth+Q-Ce)/f),Ue=Ce*I+we;for(let et=0;et<d.inChannels;++et){let ct=et*C+Ue;for(let ot=0;ot<d.outChannels;++ot){let it=0;for(let ht=0;ht<d.batchSize;++ht){let mt=ht*M,It=ht*$;for(let Dt=te;Dt<J;++Dt){let gn=(ne+Dt*p-X)*G+mt,js=Dt*O+It;for(let En=pe;En<be;++En){let _s=(ce+En*h-Z)*H+gn,xs=En*E+js;for(let An=Oe;An<Be;++An){let In=(Ce+An*f-Q)*z+_s,dr=An*F+xs;it+=T[In+et]*N[dr+ot]}}}}x[ct+ot]=it}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var MG={kernelName:jp,backendName:"cpu",kernelFunc:PG};function zG(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;Ne([r],"conv3dBackpropInputV2");let c=w.computeStrides(r.shape),u=w.computeStrides(a.shape),d=R.computeConv3DInfo(l,a.shape,i,1,o),p=new Jt(d.inShape,"float32"),h=p.values,[f,m,g,A]=p.strides,y=n.data.get(r.dataId).values,[x,b,v,I]=c,C=n.data.get(a.dataId).values,[N,$,O,E]=u,{batchSize:F,filterDepth:T,filterHeight:M,filterWidth:G,inChannels:H,inDepth:z,inHeight:X,inWidth:Q,outChannels:Z,outDepth:ne,outHeight:te,outWidth:J,strideDepth:ee,strideHeight:ce,strideWidth:pe}=d,be=T-1-d.padInfo.front,we=M-1-d.padInfo.top,Ce=G-1-d.padInfo.left;for(let Oe=0;Oe<F;++Oe)for(let Be=0;Be<H;++Be)for(let Ue=0;Ue<z;++Ue){let et=Ue-be,ct=Math.max(0,Math.ceil(et/ee)),ot=Math.min(ne,(T+et)/ee);for(let it=0;it<X;++it){let ht=it-we,mt=Math.max(0,Math.ceil(ht/ce)),It=Math.min(te,(M+ht)/ce);for(let Dt=0;Dt<Q;++Dt){let Hn=Dt-Ce,gn=Math.max(0,Math.ceil(Hn/pe)),js=Math.min(J,(G+Hn)/pe),En=0;for(let ss=ct;ss<ot;++ss){let _s=ss*ee-et;for(let xs=mt;xs<It;++xs){let An=xs*ce-ht;for(let cr=gn;cr<js;++cr){let In=cr*pe-Hn,dr=x*Oe+b*ss+v*xs+I*cr,pr=N*(T-1-_s)+$*(M-1-An)+O*(G-1-In)+E*Be;for(let Yr=0;Yr<Z;++Yr){let Zu=y[dr+Yr],qs=C[pr+Yr];En+=Zu*qs}}}}h[f*Oe+m*Ue+g*it+A*Dt+Be]=En}}}return n.makeTensorInfo(p.shape,p.dtype,p.values)}var LG={kernelName:qp,backendName:"cpu",kernelFunc:zG},BG=pt(ro,e=>Math.cos(e)),WG={kernelName:ro,backendName:"cpu",kernelFunc:BG},VG=pt(ao,e=>Math.cosh(e)),UG={kernelName:ao,backendName:"cpu",kernelFunc:VG};function GG(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,[u,d,p,h]=r.shape,f=a.shape[0],[m,g]=i,A=He([f,m,g,h],"float32"),y=n.data.get(a.dataId).values,x=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,v=w.computeStrides(r.shape),I=w.computeStrides(A.shape);for(let C=0;C<f;C++){let N=C*4,$=y[N],O=y[N+1],E=y[N+2],F=y[N+3],T=x[C];if(T>=u)continue;let M=m>1?(E-$)*(d-1)/(m-1):0,G=g>1?(F-O)*(p-1)/(g-1):0;for(let H=0;H<m;H++){let z=m>1?$*(d-1)+H*M:.5*($+E)*(d-1);if(z<0||z>d-1){for(let X=0;X<g;X++)for(let Q=0;Q<h;Q++){let Z=Q+X*I[2]+H*I[1]+C*I[0];A.values[Z]=c}continue}if(l==="bilinear"){let X=Math.floor(z),Q=Math.ceil(z),Z=z-X;for(let ne=0;ne<g;ne++){let te=g>1?O*(p-1)+ne*G:.5*(O+F)*(p-1);if(te<0||te>p-1){for(let pe=0;pe<h;pe++){let be=pe+ne*I[2]+H*I[1]+C*I[0];A.values[be]=c}continue}let J=Math.floor(te),ee=Math.ceil(te),ce=te-J;for(let pe=0;pe<h;pe++){let be=pe+J*v[2]+X*v[1]+T*v[0],we=b[be];be=pe+ee*v[2]+X*v[1]+T*v[0];let Ce=b[be];be=pe+J*v[2]+Q*v[1]+T*v[0];let Oe=b[be];be=pe+ee*v[2]+Q*v[1]+T*v[0];let Be=b[be],Ue=we+(Ce-we)*ce,et=Oe+(Be-Oe)*ce;be=pe+ne*I[2]+H*I[1]+C*I[0],A.values[be]=Ue+(et-Ue)*Z}}}else for(let X=0;X<g;++X){let Q=g>1?O*(p-1)+X*G:.5*(O+F)*(p-1);if(Q<0||Q>p-1){for(let te=0;te<h;te++){let J=te+X*I[2]+H*I[1]+C*I[0];A.values[J]=c}continue}let Z=Math.round(Q),ne=Math.round(z);for(let te=0;te<h;te++){let J=te+Z*v[2]+ne*v[1]+T*v[0],ee=te+X*I[2]+H*I[1]+C*I[0];A.values[ee]=b[J]}}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var HG={kernelName:ol,backendName:"cpu",kernelFunc:GG};function jG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Ne(r,"cumsum");let l=R.getAxesPermutation([a],r.shape.length),c=r;l!=null&&(c=Ss({inputs:{x:r},backend:n,attrs:{perm:l}}));let u=R.getInnerMostAxes(1,r.shape.length)[0];if(u!==c.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${c.shape.length-1} but got axis=${u}`);let d=Ps(c.dtype,"int32"),p=w.makeZerosTypedArray(w.sizeFromShape(c.shape),d),h=n.data.get(c.dataId).values,f=c.shape[c.shape.length-1],m=i?(A,y)=>A+f-y-1:(A,y)=>A+y;for(let A=0;A<h.length;A+=f)for(let y=0;y<f;y++){let x=m(A,y);if(y===0)p[x]=o?0:h[x];else{let b=m(A,y-1);p[x]=o?h[b]+p[b]:h[x]+p[b]}}let g=n.makeTensorInfo(c.shape,d,p);if(l!=null){let A=R.getUndoAxesPermutation(l),y=Ss({inputs:{x:g},backend:n,attrs:{perm:A}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(c),y}return g}var qG={kernelName:oo,backendName:"cpu",kernelFunc:jG};function XG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=A2(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=X7(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var KG={kernelName:Xp,backendName:"cpu",kernelFunc:XG};function ZG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;w.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=r.shape[0],l=r.shape[1],c=r.shape[2],u=r.shape[3],d=l*a,p=c*a,h=u/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*d*p*h),g=0;for(let A=0;A<i;++A)for(let y=0;y<d;++y){let x=Math.floor(y/a),b=y%a;for(let v=0;v<p;++v){let I=Math.floor(v/a),C=v%a,N=(b*a+C)*h;for(let $=0;$<h;++$){let E=$+N+u*(I+c*(x+l*A));m[g++]=f[E]}}}return n.makeTensorInfo([i,d,p,h],r.dtype,m)}var YG={kernelName:il,backendName:"cpu",kernelFunc:ZG};function L6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s;Ne([r,a],"depthwiseConv2DNative");let u=w.computeStrides(r.shape),d=w.computeStrides(a.shape),p=l;p==null&&(p=[1,1]),w.assert(R.eitherStridesOrDilationsAreOne(o,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${p}'`);let h=R.computeConv2DInfo(r.shape,a.shape,o,p,i,c,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:A,padInfo:y}=h,x=y.left,b=y.top,v=h.outChannels/h.inChannels,I=new Jt(h.outShape,r.dtype),C=n.data.get(r.dataId).values,N=n.data.get(a.dataId).values,$=I.values;for(let O=0;O<h.batchSize;++O){let E=O*u[0],F=O*I.strides[0];for(let T=0;T<h.outHeight;++T){let M=F+T*I.strides[1],G=T*h.strideHeight-b;for(let H=0;H<f;++H){let z=G+H*g;if(z<0||z>=h.inHeight)continue;let X=H*d[0],Q=E+z*u[1];for(let Z=0;Z<h.outWidth;++Z){let ne=M+Z*I.strides[2],te=Z*h.strideWidth-x;for(let J=0;J<m;++J){let ee=te+J*A;if(ee<0||ee>=h.inWidth)continue;let ce=X+J*d[1],pe=Q+ee*h.inChannels,be=ne,we=ce;for(let Ce=0;Ce<h.inChannels;++Ce){let Oe=C[pe+Ce];for(let Be=0;Be<v;++Be)$[be+Be]+=Oe*N[we+Be];be+=v,we+=v}}}}}}return n.makeTensorInfo(I.shape,I.dtype,I.values)}var JG={kernelName:io,backendName:"cpu",kernelFunc:L6};function QG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s;Ne([r,a],"depthwiseConv2dNativeBackpropFilter");let d=R.computeConv2DInfo(r.shape,u,o,i,l,c,!0),{strideHeight:p,strideWidth:h,filterHeight:f,filterWidth:m}=d,g=new Jt(d.filterShape,"float32"),A=d.padInfo.left,y=d.padInfo.top,x=d.outChannels/d.inChannels,b=n.data.get(r.dataId).values,v=new Jt(r.shape,r.dtype,b),I=n.data.get(a.dataId).values,C=new Jt(a.shape,a.dtype,I);for(let N=0;N<f;++N){let $=Math.max(0,Math.ceil((y-N)/p)),O=Math.min(d.outHeight,(d.inHeight+y-N)/p);for(let E=0;E<m;++E){let F=Math.max(0,Math.ceil((A-E)/h)),T=Math.min(d.outWidth,(d.inWidth+A-E)/h);for(let M=0;M<d.outChannels;++M){let G=Math.trunc(M/x),H=M%x,z=0;for(let X=0;X<d.batchSize;++X)for(let Q=$;Q<O;++Q){let Z=N+Q*p-y;for(let ne=F;ne<T;++ne){let te=E+ne*h-A;z+=v.get(X,Z,te,G)*C.get(X,Q,ne,M)}}g.set(z,N,E,G,H)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var eH={kernelName:Kp,backendName:"cpu",kernelFunc:QG};function tH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s;Ne([r,a],"depthwiseConv2DNativeBackpropInput");let d=w.computeStrides(r.shape),p=w.computeStrides(a.shape),h=R.computeConv2DInfo(u,a.shape,o,i,l,c,!0),f=new Jt(h.inShape,"float32"),m=f.values,[g,A,y]=f.strides,x=n.data.get(r.dataId).values,[b,v,I]=d,C=n.data.get(a.dataId).values,[N,$,O]=p,{batchSize:E,filterHeight:F,filterWidth:T,inChannels:M,inHeight:G,inWidth:H,outChannels:z,outHeight:X,outWidth:Q,strideHeight:Z,strideWidth:ne}=h,te=F-1-h.padInfo.top,J=T-1-h.padInfo.left,ee=z/M;for(let ce=0;ce<E;++ce)for(let pe=0;pe<M;++pe)for(let be=0;be<G;++be){let we=be-te,Ce=Math.max(0,Math.ceil(we/Z)),Oe=Math.min(X,(F+we)/Z);for(let Be=0;Be<H;++Be){let Ue=Be-J,et=Math.max(0,Math.ceil(Ue/ne)),ct=Math.min(Q,(T+Ue)/ne),ot=0;for(let it=Ce;it<Oe;++it){let ht=it*Z-we;for(let mt=et;mt<ct;++mt){let It=mt*ne-Ue,Dt=b*ce+v*it+I*mt,Hn=N*(F-1-ht)+$*(T-1-It)+O*pe;for(let gn=0;gn<ee;++gn){let js=pe*ee+gn,En=x[Dt+js],ss=C[Hn+gn];ot+=En*ss}}}m[g*ce+A*be+y*Be+pe]=ot}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var nH={kernelName:Zp,backendName:"cpu",kernelFunc:tH};function sH(e){let{inputs:t,backend:n}=e,{x:s}=t,r=w.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=He([r,r],s.dtype),i=o.values;for(let c=0;c<a.length;c++)i[c*r+c]=a[c];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var rH={kernelName:Yp,backendName:"cpu",kernelFunc:sH},aH={kernelName:bc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,c=l.data.get(s.dataId).values,u=s.shape.length,d=l.data.get(r.dataId).values,p=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:A,outWidth:y,padInfo:x,strideHeight:b,strideWidth:v,filterHeight:I,filterWidth:C,dilationHeight:N,dilationWidth:$,outShape:O}=R.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),E=w.sizeFromShape(O),F=O.length,T=w.getArrayFromDType(s.dtype,E);for(let G=0;G<h;++G)for(let H=0;H<A;++H){let z=H*b-x.top;for(let X=0;X<y;++X){let Q=X*v-x.left;for(let Z=0;Z<g;++Z){let ne=Number.MIN_SAFE_INTEGER;for(let J=0;J<I;++J){let ee=z+J*N;if(ee>=0&&ee<f)for(let ce=0;ce<C;++ce){let pe=Q+ce*$;if(pe>=0&&pe<m){let be=w.locToIndex([G,ee,pe,Z],u,w.computeStrides(s.shape)),we=w.locToIndex([J,ce,Z],p,w.computeStrides(r.shape)),Ce=c[be]+d[we];Ce>ne&&(ne=Ce)}}}let te=w.locToIndex([G,H,X,Z],F,w.computeStrides(O));T[te]=ne}}}return{dataId:l.write(w.toTypedArray(T,s.dtype),O,s.dtype),shape:O,dtype:s.dtype}}},oH={kernelName:Qp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=w.toNestedArray(s.shape,c.data.get(s.dataId).values),d=w.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:I,dilationHeight:C,dilationWidth:N,outShape:$}=R.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);w.assert(a.rank===$.length,()=>`Error in ${Qp}, dy must have the same rank as output ${$.length}, but got ${a.rank}`);let O=w.toNestedArray($,c.data.get(a.dataId).values),E=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<p;++T)for(let M=0;M<g;++M){let G=M*x-y.top;for(let H=0;H<A;++H){let z=H*b-y.left;for(let X=0;X<m;++X){let Q=Number.MIN_SAFE_INTEGER,Z=0,ne=0;for(let te=0;te<v;++te){let J=G+te*C;if(J>=0&&J<h)for(let ee=0;ee<I;++ee){let ce=z+ee*N;if(ce>=0&&ce<f){let pe=u[T][J][ce][X]+d[te][ee][X];pe>Q&&(Q=pe,Z=te,ne=ee)}}}E[Z][ne][X]+=O[T][M][H][X]}}}return{dataId:c.write(w.toTypedArray(E,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},iH={kernelName:Jp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=w.toNestedArray(s.shape,c.data.get(s.dataId).values),d=w.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:I,dilationHeight:C,dilationWidth:N,outShape:$}=R.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);w.assert(a.rank===$.length,()=>`Error in ${Jp}, dy must have the same rank as output ${$.length}, but got ${a.rank}`);let O=w.toNestedArray($,c.data.get(a.dataId).values),E=w.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<p;++T)for(let M=0;M<g;++M){let G=M*x-y.top;for(let H=0;H<A;++H){let z=H*b-y.left;for(let X=0;X<m;++X){let Q=Number.MIN_SAFE_INTEGER,Z=G<0?0:G,ne=z<0?0:z;for(let te=0;te<v;++te){let J=G+te*C;if(J>=0&&J<h)for(let ee=0;ee<I;++ee){let ce=z+ee*N;if(ce>=0&&ce<f){let pe=u[T][J][ce][X]+d[te][ee][X];pe>Q&&(Q=pe,Z=J,ne=ce)}}}E[T][Z][ne][X]+=O[T][M][H][X]}}}return{dataId:c.write(w.toTypedArray(E,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Rd(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"sum");let i;r.dtype==="bool"?i=Ra({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=Tr({inputs:{x:r},backend:n});let l=i.shape.length,c=w.parseAxisParam(a,i.shape),u=R.getAxesPermutation(c,l),d=c,p=i;u!=null&&(p=Ss({inputs:{x:i},backend:n,attrs:{perm:u}}),d=R.getInnerMostAxes(d.length,l)),R.assertAxesAreInnerMostDims("sum",d,p.shape.length);let[h,f]=R.computeOutAndReduceShapes(p.shape,d),m=R.upcastType(p.dtype,"int32"),g=s0(n,h,m),A=w.sizeFromShape(f),y=n.data.get(g.dataId).values,x=n.data.get(p.dataId).values;for(let b=0;b<y.length;++b){let v=b*A,I=0;for(let C=0;C<A;++C)I+=x[v+C];y[b]=I}if(o){let b=R.expandShapeToKeepDim(g.shape,c),v=g;g=wt({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(v)}return n.disposeIntermediateTensorInfo(i),u!=null&&n.disposeIntermediateTensorInfo(p),g}var lH={kernelName:Bo,backendName:"cpu",kernelFunc:Rd};function uH(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=R.decodeEinsumEquation(r,a.length);R.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=R.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:y}=R.getEinsumPermutation(h,l[g]),x;R.isIdentityPermutation(A)?x=a[g]:(x=Ss({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(x));let b=x.shape.slice();for(let v=0;v<y.length;++v)b.splice(y[v],0,1);w.arraysEqual(x.shape,b)||(x=wt({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=r0({inputs:{a:x,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=Rd({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var cH={kernelName:eh,backendName:"cpu",kernelFunc:uH};function dH(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Ne([s,r],"eluGrad");let a=new Float32Array(w.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let c=o[l];c>=1?a[l]=i[l]:a[l]=i[l]*(c+1)}return n.makeTensorInfo(r.shape,"float32",a)}var pH={kernelName:th,backendName:"cpu",kernelFunc:dH},hH=R.ERF_P,fH=R.ERF_A1,mH=R.ERF_A2,gH=R.ERF_A3,AH=R.ERF_A4,yH=R.ERF_A5,xH=pt(ll,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+hH*n);return t*(1-((((yH*s+AH)*s+gH)*s+mH)*s+fH)*s*Math.exp(-n*n))}),bH={kernelName:ll,backendName:"cpu",kernelFunc:xH};function o0(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),wt({inputs:{x:r},backend:n,attrs:{shape:i}})}var vH={kernelName:cl,backendName:"cpu",kernelFunc:o0},wH=Xt((e,t)=>e/t),C2=mn(lo,wH),T2={kernelName:lo,backendName:"cpu",kernelFunc:C2};function B6(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,c=[r,a],u=w.sizeFromShape(c),d=w.getTypedArrayFromDType("float32",u),p=w.getTypedArrayFromDType("float32",u);for(let g=0;g<r;g++){let A=wi({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),y=wi({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=fs({inputs:{real:A,imag:y},backend:n}),{real:b,imag:v}=kH(x,t,n),I=R.mergeRealAndImagArrays(b,v);for(let C=0;C<a;C++){let N=R.getComplexWithIndex(I,C);d[g*a+C]=N.real,p[g*a+C]=N.imag}n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(c,"float32",d),f=n.makeTensorInfo(c,"float32",p),m=fs({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function kH(e,t,n){let s=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(IH(s)){let i=N2(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let c=n.makeTensorInfo(l,"float32",i.real),u=n.makeTensorInfo(l,"float32",i.imag),d=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),p=Tr({inputs:{x:d},backend:n}),h=T2.kernelFunc({inputs:{a:c,b:d},backend:n}),f=T2.kernelFunc({inputs:{a:u,b:p},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=R.mergeRealAndImagArrays(a,o),l=SH(i,s,t);return R.splitRealAndImagArrays(l)}}function IH(e){return(e&e-1)==0}function N2(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=R.mergeRealAndImagArrays(e,t),o=n/2,i=R.complexWithEvenIndex(a),l=i.real,c=i.imag,u=[l.length],d=r.makeTensorInfo(u,"float32",l),p=r.makeTensorInfo(u,"float32",c),h=fs({inputs:{real:d,imag:p},backend:r}),f=R.complexWithOddIndex(a),m=f.real,g=f.imag,A=[m.length],y=r.makeTensorInfo(A,"float32",m),x=r.makeTensorInfo(A,"float32",g),b=fs({inputs:{real:y,imag:x},backend:r}),v=N2(l,c,o,s,r),I=v.real,C=v.imag,N=[I.length],$=r.makeTensorInfo(N,"float32",I),O=r.makeTensorInfo(N,"float32",C),E=fs({inputs:{real:$,imag:O},backend:r}),F=N2(m,g,o,s,r),T=F.real,M=F.imag,G=[T.length],H=r.makeTensorInfo(G,"float32",T),z=r.makeTensorInfo(G,"float32",M),X=fs({inputs:{real:H,imag:z},backend:r}),Q=R.exponents(n,s),Z=[Q.real.length],ne=r.makeTensorInfo(Z,"float32",Q.real),te=r.makeTensorInfo(Z,"float32",Q.imag),J=fs({inputs:{real:ne,imag:te},backend:r}),ee=r0({inputs:{a:J,b:X},backend:r}),ce=Nd({inputs:{a:E,b:ee},backend:r}),pe=k2({inputs:{a:E,b:ee},backend:r}),be=vi({inputs:{input:ce},backend:r}),we=vi({inputs:{input:pe},backend:r}),Ce=Tu({inputs:{input:ce},backend:r}),Oe=Tu({inputs:{input:pe},backend:r}),Be=Nu({inputs:[be,we],backend:r,attrs:{axis:0}}),Ue=Nu({inputs:[Ce,Oe],backend:r,attrs:{axis:0}}),et=r.data.get(Be.dataId).values,ct=r.data.get(Ue.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(O),r.disposeIntermediateTensorInfo(E),r.disposeIntermediateTensorInfo(H),r.disposeIntermediateTensorInfo(z),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(J),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(ce),r.disposeIntermediateTensorInfo(pe),r.disposeIntermediateTensorInfo(be),r.disposeIntermediateTensorInfo(Ce),r.disposeIntermediateTensorInfo(we),r.disposeIntermediateTensorInfo(Oe),r.disposeIntermediateTensorInfo(Be),r.disposeIntermediateTensorInfo(Ue),{real:et,imag:ct}}function SH(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=R.exponent(r*i,t,n),c=R.getComplexWithIndex(e,i);a+=c.real*l.real-c.imag*l.imag,o+=c.real*l.imag+c.imag*l.real}n&&(a/=t,o/=t),R.assignToTypedArray(s,a,o,r)}return s}function CH(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=wt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=B6(i,!1,n),c=wt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var TH={kernelName:nh,backendName:"cpu",kernelFunc:CH};function E2(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||w.inferDtype(r),i=w.getArrayFromDType(o,w.sizeFromShape(s));return EH(i,r,o),t.makeTensorInfo(s,o,i)}var NH={kernelName:vc,backendName:"cpu",kernelFunc:E2};function EH(e,t,n){e.fill(t)}var RH={kernelName:pl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[o,i,l,c]=s.shape,u=r.data.get(s.dataId).values;for(let p=0;p<o;p++){let h=p*l*i*c;for(let f=0;f<i;f++){let m=f*(l*c);for(let g=0;g<l;g++){let A=g*c;for(let y=0;y<c;y++){let x=Math.round(l-g-1),b=h+m+A+y,v=u[b];if(x>=0&&x<l){let I=x*c,C=h+m+I+y;v=u[C]}a[b]=v}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},DH=Xt((e,t)=>Math.floor(e/t)),_H=mn(ho,DH,null,"int32"),FH={kernelName:ho,backendName:"cpu",kernelFunc:_H};function $H(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=z6({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Nd({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=I2(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var OH={kernelName:Xo,backendName:"cpu",kernelFunc:$H};function PH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=L6({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Nd({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=I2(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var MH={kernelName:Ko,backendName:"cpu",kernelFunc:PH};function zH(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=w.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,c,u,d]=R.prepareAndValidate(s,r);if(c===0)return n.makeTensorInfo(l,s.dtype,[]);let p=n.data.get(r.dataId).values,h=n.bufferSync(s),f=n6(p,h,s.dtype,c,i,u,d,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var LH={kernelName:fl,backendName:"cpu",kernelFunc:zH};function BH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Ne([r,a],"gatherV2");let l=w.parseAxisParam(o,r.shape)[0],c=n.data.get(a.dataId).values,u=r.shape[l];for(let b=0;b<c.length;++b){let v=c[b];w.assert(v<=u-1&&v>=0,()=>`GatherV2: the index value ${v} is not in [0, ${u-1}]`)}let d=i;i==null&&(d=0);let p=w.sizeFromShape(a.shape),h=R.segment_util.collectGatherOpShapeInfo(r,a,l,d),f=wt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=wt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,p/h.batchSize]}}),g=[h.batchSize,h.outerSize,p/h.batchSize,h.sliceSize],A=n.bufferSync(m),y=n.bufferSync(f),x=s6(y,A,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,x.dtype,x.values)}var WH={kernelName:hl,backendName:"cpu",kernelFunc:BH};function VH(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=wt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=B6(i,!0,n),c=wt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var UH={kernelName:sh,backendName:"cpu",kernelFunc:VH},GH=pt(gl,e=>Number.isFinite(e)?1:0,"bool"),HH={kernelName:gl,backendName:"cpu",kernelFunc:GH},jH=pt(Al,e=>Math.abs(e)===1/0?1:0,"bool"),qH={kernelName:Al,backendName:"cpu",kernelFunc:jH},XH=pt(yl,e=>Number.isNaN(e)?1:0,"bool"),KH={kernelName:yl,backendName:"cpu",kernelFunc:XH};function ZH(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=l6(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var YH={kernelName:ah,backendName:"cpu",kernelFunc:ZH},JH=pt(vl,e=>Math.log1p(e)),QH={kernelName:vl,backendName:"cpu",kernelFunc:JH},ej=Xt((e,t)=>e&&t),tj=mn(wl,ej,null,"bool"),nj={kernelName:wl,backendName:"cpu",kernelFunc:tj},sj=pt(wc,e=>e?0:1,"bool"),rj={kernelName:wc,backendName:"cpu",kernelFunc:sj},aj=Xt((e,t)=>e||t),oj=mn(kc,aj,null,"bool"),ij={kernelName:kc,backendName:"cpu",kernelFunc:oj};function lj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Ne(r,"LRN");let c=r.shape[3],u=c-1,d=n.data.get(r.dataId).values,p=w.sizeFromShape(r.shape),h=new Float32Array(p);function f(m){let g=m%c,A=m-g+Math.max(0,g-a),y=m-g+Math.min(g+a,u),x=0;for(;A<=y;A++){let b=d[A];x+=b*b}return x}for(let m=0;m<p;m++){let g=f(m),A=d[m]*Math.pow(o+i*g,-l);h[m]=A}return n.makeTensorInfo(r.shape,r.dtype,h)}var uj={kernelName:Ic,backendName:"cpu",kernelFunc:lj};function cj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s;Ne(o,"LRNGrad");let d=w.sizeFromShape(o.shape),p=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(d),A=d;for(let y=0;y<A;y++){let x=y%p,b=y-x+Math.max(0,x-i),v=y-x+Math.min(p,x+i+1),I=0;for(let C=b;C<v;C++)I+=Math.pow(f[C],2);I=c*I+l;for(let C=b;C<v;C++){let N=-2*c*u*f[C]*m[y]/I;y===C&&(N+=Math.pow(I,-u)),N*=h[y],g[C]+=N}}return n.makeTensorInfo(o.shape,r.dtype,g)}var dj={kernelName:oh,backendName:"cpu",kernelFunc:cj};function W6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,c=l.length,u=w.parseAxisParam(a,l),d=u,p=R.getAxesPermutation(d,c),h=i.data.get(r.dataId).values;if(p!=null){let b=new Array(c);for(let v=0;v<b.length;v++)b[v]=l[p[v]];h=b2(h,l,r.dtype,p,b),d=R.getInnerMostAxes(d.length,c),l=b}Ne(r,"max"),R.assertAxesAreInnerMostDims("max",d,c);let[f,m]=R.computeOutAndReduceShapes(l,d),g=w.sizeFromShape(m),A=c6(h,g,f,r.dtype),y=i.write(A,f,r.dtype),x=f;return o&&(x=R.expandShapeToKeepDim(f,u)),{dataId:y,shape:x,dtype:r.dtype}}var pj={kernelName:xo,backendName:"cpu",kernelFunc:W6};function hj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ne(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;w.assert(R.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=R.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))d=Tr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),f=S2(p,r.shape,r.dtype,h,u,"max");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var fj={kernelName:vo,backendName:"cpu",kernelFunc:hj};function mj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Ne(r,"maxPool3d");let u=R.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=M6(d,r.shape,r.dtype,w.computeStrides(r.shape),u,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var gj={kernelName:Sc,backendName:"cpu",kernelFunc:mj};function Aj(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Ne([r,a],"maxPool3DGrad");let u=R.computePool3DInfo(a.shape,o,i,1,l,c),d=n.bufferSync(a),p=oG(d,u),h=u.strideDepth,f=u.strideHeight,m=u.strideWidth,g=u.dilationDepth,A=u.dilationHeight,y=u.dilationWidth,x=u.effectiveFilterDepth,b=u.effectiveFilterHeight,v=u.effectiveFilterWidth,I=x-1-u.padInfo.front,C=v-1-u.padInfo.left,N=b-1-u.padInfo.top,$=He(a.shape,"float32"),O=n.bufferSync(r);for(let E=0;E<u.batchSize;++E)for(let F=0;F<u.inChannels;++F)for(let T=0;T<u.inDepth;++T)for(let M=0;M<u.inHeight;++M)for(let G=0;G<u.inWidth;++G){let H=T-I,z=M-N,X=G-C,Q=0;for(let Z=0;Z<x;Z+=g){let ne=(H+Z)/h;if(!(ne<0||ne>=u.outDepth||Math.floor(ne)!==ne))for(let te=0;te<b;te+=A){let J=(z+te)/f;if(!(J<0||J>=u.outHeight||Math.floor(J)!==J))for(let ee=0;ee<v;ee+=y){let ce=(X+ee)/m;if(ce<0||ce>=u.outWidth||Math.floor(ce)!==ce)continue;let pe=x*b*v-1-p.get(E,ne,J,ce,F),be=Z*b*v+te*v+ee,we=pe===be?1:0;if(we===0)continue;Q+=O.get(E,ne,J,ce,F)*we}}}$.set(Q,E,T,M,G,F)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var yj={kernelName:lh,backendName:"cpu",kernelFunc:Aj};function xj(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Ne([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=R.computePool2DInfo(i.shape,l,c,1,u,d),h=n.data.get(i.dataId).values,f=He(p.outShape,i.dtype,P6(h,i.shape,i.dtype,p).values),m=p.strideHeight,g=p.strideWidth,A=p.dilationHeight,y=p.dilationWidth,x=p.effectiveFilterHeight,b=p.effectiveFilterWidth,v=b-1-p.padInfo.left,I=x-1-p.padInfo.top,C=He(i.shape,"float32"),N=n.data.get(r.dataId).values,$=He(r.shape,"float32",N);for(let O=0;O<p.batchSize;++O)for(let E=0;E<p.inChannels;++E)for(let F=0;F<p.inHeight;++F)for(let T=0;T<p.inWidth;++T){let M=F-I,G=T-v,H=0;for(let z=0;z<x;z+=A){let X=(M+z)/m;if(!(X<0||X>=p.outHeight||Math.floor(X)!==X))for(let Q=0;Q<b;Q+=y){let Z=(G+Q)/g;if(Z<0||Z>=p.outWidth||Math.floor(Z)!==Z)continue;let ne=x*b-1-f.get(O,X,Z,E),te=z*b+Q,J=ne===te?1:0;if(J===0)continue;H+=$.get(O,X,Z,E)*J}}C.set(H,O,F,T,E)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var bj={kernelName:ih,backendName:"cpu",kernelFunc:xj};function vj(e,t,n,s,r){let a=w.computeStrides(t),o=S2(e,t,n,a,r,"max"),i=P6(e,t,n,r,!0,s);return[o.values,i.values]}var wj={kernelName:uh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Ne(s,"MaxPoolWithArgmax");let c=l.data.get(s.dataId).values,u=R.computePool2DInfo(s.shape,r,a,[1,1],o),[d,p]=vj(c,s.shape,s.dtype,i,u),h=l.write(d,u.outShape,s.dtype),f=l.write(p,u.outShape,s.dtype);return[{dataId:h,shape:u.outShape,dtype:s.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function kj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=w.parseAxisParam(a,r.shape),c=R.computeOutAndReduceShapes(r.shape,i)[1],u=w.sizeFromShape(c),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([u]));d.push(p);let h=Ra({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(h);let f=C2({inputs:{a:h,b:p},backend:n});d.push(f);let m=Rd({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var Ij={kernelName:wo,backendName:"cpu",kernelFunc:kj};function Sj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"min");let i=w.parseAxisParam(a,r.shape),l=i,c=R.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ss({inputs:{x:r},backend:n,attrs:{perm:c}}),l=R.getInnerMostAxes(l.length,r.shape.length)),R.assertAxesAreInnerMostDims("min",l,u.shape.length);let[d,p]=R.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let y=A*h,x=m[y];for(let b=0;b<h;++b){let v=m[y+b];(Number.isNaN(v)||v<x)&&(x=v)}f[A]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=R.expandShapeToKeepDim(d,i),y=wt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var Cj={kernelName:ko,backendName:"cpu",kernelFunc:Sj};function Tj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;Ne(r,"mirrorPad");let i=a.map((x,b)=>x[0]+r.shape[b]+x[1]),l=a.map(x=>x[0]),c=a.map((x,b)=>x[0]+r.shape[b]),u=o==="reflect"?0:1,d=n.data.get(r.dataId).values,p=r.shape.length,h=w.computeStrides(r.shape),f=w.sizeFromShape(i),m=i.length,g=w.computeStrides(i),A=w.getTypedArrayFromDType(r.dtype,f);for(let x=0;x<f;x++){let b=w.indexToLoc(x,m,g);for(let I=0;I<m;I++)b[I]<l[I]?b[I]=l[I]*2-b[I]-u:b[I]>=c[I]&&(b[I]=(c[I]-1)*2-b[I]+u);b=b.map((I,C)=>I-l[C]);let v=w.locToIndex(b,p,h);A[x]=d[v]}return{dataId:n.write(A,i,r.dtype),shape:i,dtype:r.dtype}}var Nj={kernelName:So,backendName:"cpu",kernelFunc:Tj},Ej=Xt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),Rj=mn(kl,Ej),Dj={kernelName:kl,backendName:"cpu",kernelFunc:Rj},_j=qa(M5());function V6(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=w.parseAxisParam([i],r.shape),c=W6({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=R.expandShapeToKeepDim(c.shape,l),d=wt({inputs:{x:c},backend:n,attrs:{shape:u}}),p=k2({inputs:{a:r,b:d},backend:n}),h=Q7({inputs:{x:p},backend:n}),f=Rd({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=wt({inputs:{x:f},backend:n,attrs:{shape:u}}),g=C2({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var Fj={kernelName:Wo,backendName:"cpu",kernelFunc:V6};function $j(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Ne(r,"multinomial");let l=i?r:V6({inputs:{logits:r},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],d=n.data.get(l.dataId).values,p=[c,a],h=w.makeZerosTypedArray(w.sizeFromShape(p),"int32");for(let f=0;f<c;++f){let m=f*u,g=new Float32Array(u-1);g[0]=d[m];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[m+x];let A=_j.alea(o.toString()),y=f*a;for(let x=0;x<a;++x){let b=A();h[y+x]=g.length;for(let v=0;v<g.length;v++)if(b<g[v]){h[y+x]=v;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(p,"int32",h)}var Oj={kernelName:ch,backendName:"cpu",kernelFunc:$j},Pj=vr.nonMaxSuppressionV3Impl;function Mj(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;Ne(r,"NonMaxSuppression");let c=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,{selectedIndices:d}=Pj(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var zj={kernelName:Cl,backendName:"cpu",kernelFunc:Mj},Lj=vr.nonMaxSuppressionV4Impl;function Bj(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s;Ne(r,"NonMaxSuppressionPadded");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,{selectedIndices:p,validOutputs:h}=Lj(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Wj={kernelName:Tl,backendName:"cpu",kernelFunc:Bj},Vj=vr.nonMaxSuppressionV5Impl;function Uj(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s;Ne(r,"NonMaxSuppressionWithScore");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=Vj(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var Gj={kernelName:Nl,backendName:"cpu",kernelFunc:Uj};function Hj(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s;Ne(r,"oneHot");let l=w.sizeFromShape(r.shape),c=new Float32Array(l*a);c.fill(i);let u=n.data.get(r.dataId).values;for(let d=0;d<l;++d)u[d]>=0&&u[d]<a&&(c[d*a+u[d]]=o);return n.makeTensorInfo([...r.shape,a],"int32",c)}var jj={kernelName:To,backendName:"cpu",kernelFunc:Hj};function i0(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=vi({inputs:{input:s},backend:n}),a=i0({inputs:{x:r},backend:n}),o=Tu({inputs:{input:s},backend:n}),i=i0({inputs:{x:o},backend:n}),l=fs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return E2({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var qj={kernelName:ql,backendName:"cpu",kernelFunc:i0};function U6(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=vi({inputs:{input:s},backend:n}),a=U6({inputs:{x:r},backend:n}),o=Tu({inputs:{input:s},backend:n}),i=i0({inputs:{x:o},backend:n}),l=fs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return E2({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var Xj={kernelName:El,backendName:"cpu",kernelFunc:U6};function G6(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return o0({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=o0({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=Nu({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var Kj={kernelName:Rl,backendName:"cpu",kernelFunc:G6};function Zj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Ne(r,"pad");let i=a.map((y,x)=>y[0]+r.shape[x]+y[1]),l=a.map(y=>y[0]),c=n.data.get(r.dataId).values,u=w.sizeFromShape(r.shape),d=r.shape.length,p=w.computeStrides(r.shape),h=w.sizeFromShape(i),f=i.length,m=w.computeStrides(i),g=w.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let y=0;y<u;y++){let b=w.indexToLoc(y,d,p).map((I,C)=>I+l[C]),v=w.locToIndex(b,f,m);g[v]=c[y]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var H6={kernelName:No,backendName:"cpu",kernelFunc:Zj},Yj=Xt((e,t)=>Math.pow(e,t)),Jj=mn(Eo,Yj),Qj={kernelName:Eo,backendName:"cpu",kernelFunc:Jj};function eq(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=v2(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var tq={kernelName:Cc,backendName:"cpu",kernelFunc:eq},nq=pt(_l,e=>1/e),sq={kernelName:_l,backendName:"cpu",kernelFunc:nq};function rq(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ne(r,"resizeBilinear");let l=w.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(w.sizeFromShape([d,c,u,f])),A=[a&&c>1?p-1:p,a&&u>1?h-1:h],y=[a&&c>1?c-1:c,a&&u>1?u-1:u],x=0,b=A[0]/y[0],v=A[1]/y[1];for(let I=0;I<d;I++)for(let C=0;C<c;C++){let N;o?N=b*(C+.5)-.5:N=b*C;let $=Math.max(0,Math.floor(N)),O=N-$,E=Math.min(p-1,Math.ceil(N)),F=I*l[0]+$*l[1],T=I*l[0]+E*l[1];for(let M=0;M<u;M++){let G;o?G=v*(M+.5)-.5:G=v*M;let H=Math.max(0,Math.floor(G)),z=G-H,X=Math.min(h-1,Math.ceil(G)),Q=F+H*l[2],Z=T+H*l[2],ne=F+X*l[2],te=T+X*l[2];for(let J=0;J<f;J++){let ee=m[Q+J],ce=m[Z+J],pe=m[ne+J],be=m[te+J],we=ee+(pe-ee)*z,Ce=ce+(be-ce)*z,Oe=we+(Ce-we)*O;g[x++]=Oe}}}return n.makeTensorInfo([d,c,u,f],"float32",g)}var aq={kernelName:_o,backendName:"cpu",kernelFunc:rq};function oq(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ne([a,r],"resizeBilinearGrad");let i=w.computeStrides(r.shape),[l,c,u,d]=r.shape,[,p,h]=a.shape,f=new Float32Array(l*c*u*d),m=[o&&p>1?c-1:c,o&&h>1?u-1:u],g=[o&&p>1?p-1:p,o&&h>1?h-1:h],A=m[0]/g[0],y=m[1]/g[1],x=n.data.get(a.dataId).values,b=0;for(let v=0;v<l;v++){let I=v*i[0];for(let C=0;C<p;C++){let N=C*A,$=Math.floor(N),O=Math.min(Math.ceil(N),c-1),E=I+$*i[1],F=I+O*i[1],T=N-$,M=1-T;for(let G=0;G<h;G++){let H=G*y,z=Math.floor(H),X=Math.min(Math.ceil(H),u-1),Q=H-z,Z=1-Q,ne=E+z*i[2],te=E+X*i[2],J=F+z*i[2],ee=F+X*i[2],ce=M*Z,pe=M*Q,be=T*Z,we=T*Q;for(let Ce=0;Ce<d;Ce++){let Oe=x[b++];f[ne+Ce]+=Oe*ce,f[te+Ce]+=Oe*pe,f[J+Ce]+=Oe*be,f[ee+Ce]+=Oe*we}}}}return n.makeTensorInfo([l,u,c,d],"float32",f)}var iq={kernelName:hh,backendName:"cpu",kernelFunc:oq};function lq(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ne(r,"resizeNearestNeighbor");let l=w.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(d*c*u*f),A=[a&&c>1?p-1:p,a&&u>1?h-1:h],y=[a&&c>1?c-1:c,a&&u>1?u-1:u],x=A[0]/y[0],b=A[1]/y[1],v=0;for(let I=0;I<d;I++){let C=I*l[0];for(let N=0;N<c;N++){let $=o?x*(N+.5):x*N,O=Math.min(p-1,a?Math.round($):Math.floor($));o&&(O=Math.max(0,O));let E=C+O*l[1];for(let F=0;F<u;F++){let T=o?b*(F+.5):b*F,M=Math.min(h-1,a?Math.round(T):Math.floor(T));o&&(M=Math.max(0,M));let G=E+M*l[2];for(let H=0;H<f;H++){let z=m[G+H];g[v++]=z}}}}return n.makeTensorInfo([d,c,u,f],r.dtype,g)}var uq={kernelName:Tc,backendName:"cpu",kernelFunc:lq};function cq(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ne([a,r],"resizeNearestNeighborGrad");let i=w.computeStrides(r.shape),l=w.computeStrides(a.shape),[c,u,d,p]=r.shape,[,h,f]=a.shape,m=new Float32Array(c*u*d*p),g=n.data.get(a.dataId).values,A=[o&&h>1?u-1:u,o&&f>1?d-1:d],y=[o&&h>1?h-1:h,o&&f>1?f-1:f],x=A[0]/y[0],b=A[1]/y[1],v=1/x,I=1/b,C=Math.ceil(v)*2+2,N=Math.ceil(I)*2+2;for(let $=0;$<c;$++){let O=$*i[0];for(let E=0;E<u;E++){let F=O+E*i[1],T=Math.floor(E*v),M=Math.floor(T-C/2);for(let G=0;G<d;G++){let H=F+G*i[2],z=Math.floor(G*I),X=Math.floor(z-N/2);for(let Q=0;Q<p;Q++){let Z=0;for(let ne=0;ne<C;ne++){let te=ne+M;if(te<0||te>=h)continue;let J=O+te*l[1],ee=te*x,ce=Math.min(u-1,o?Math.round(ee):Math.floor(ee));if(E===ce)for(let pe=0;pe<N;pe++){let be=pe+X;if(be<0||be>=f)continue;let we=J+be*l[2],Ce=be*b,Oe=Math.min(d-1,o?Math.round(Ce):Math.floor(Ce));G===Oe&&(Z+=g[we+Q])}}m[H+Q]=Z}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var dq={kernelName:ph,backendName:"cpu",kernelFunc:cq};function pq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Ne(r,"reverse");let o=r.shape.length,i=w.parseAxisParam(a,r.shape);if(o===0)return Tr({inputs:{x:r},backend:n});let l=new Jt(r.shape,r.dtype),c=n.bufferSync(r);for(let u=0;u<l.size;u++){let d=l.indexToLoc(u),p=d.slice();i.forEach(h=>p[h]=r.shape[h]-1-p[h]),l.set(c.get(...p),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var hq={kernelName:$o,backendName:"cpu",kernelFunc:pq},fq={kernelName:Xl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[c,u,d,p]=s.shape,[h,f]=R.getImageCenter(o,u,d),m=255,g=Math.sin(r),A=Math.cos(r),y=i.data.get(s.dataId).values;for(let b=0;b<c;b++){let v=b*d*u*p;for(let I=0;I<u;I++){let C=I*(d*p);for(let N=0;N<d;N++){let $=N*p;for(let O=0;O<p;O++){let E=[c,I,N,O],F=E[2],T=E[1],M=(F-h)*A-(T-f)*g,G=(F-h)*g+(T-f)*A;M=Math.round(M+h),G=Math.round(G+f);let H=a;if(typeof a!="number"&&(O===3?H=m:H=a[O]),M>=0&&M<d&&G>=0&&G<u){let X=G*(d*p),Q=M*p,Z=v+X+Q+O;H=y[Z]}let z=v+C+$+O;l[z]=H}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},mq=pt(Oo,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),gq={kernelName:Oo,backendName:"cpu",kernelFunc:mq};function j6(e,t,n,s,r,a,o,i,l,c){let u=[s/r,r],d=e.values,p=t.values;if(s===0)return He(n,t.dtype);let h=He(u,t.dtype);h.values.fill(l);for(let f=0;f<a;f++){let m=[],g=0;for(let A=0;A<o;A++){let y=d[f*o+A];m.push(y),g+=y*i[A]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let A=0;A<r;A++)c?h.values[g*r+A]+=p[f*r+A]:h.values[g*r+A]=t.rank===0?p[0]:p[f*r+A]}return h}function Aq(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=R.calculateShapes(a,r,o),p=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=j6(h,f,o,d,c,l,i,u,0,p);return n.makeTensorInfo(o,m.dtype,m.values)}var yq={kernelName:$l,backendName:"cpu",kernelFunc:Aq};function xq(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;Ne([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=Ps(r.dtype,a.dtype),d=w.makeZerosTypedArray(w.sizeFromShape(r.shape),u),p=0,h=o===0||o>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?d[p++]=l[f]:d[p++]=c[f];return n.makeTensorInfo(r.shape,u,d)}var bq={kernelName:Ol,backendName:"cpu",kernelFunc:xq},vq=R.SELU_SCALEALPHA,wq=R.SELU_SCALE,kq=pt(Pl,e=>e>=0?wq*e:vq*(Math.exp(e)-1)),Iq={kernelName:Pl,backendName:"cpu",kernelFunc:kq},Sq=pt(Ll,e=>e<0?-1:e>0?1:0),Cq={kernelName:Ll,backendName:"cpu",kernelFunc:Sq},Tq=pt(Mo,e=>Math.sin(e)),Nq={kernelName:Mo,backendName:"cpu",kernelFunc:Tq},Eq=pt(zl,e=>Math.sinh(e)),Rq={kernelName:zl,backendName:"cpu",kernelFunc:Eq},Dq=11920928955078125e-23,q6=Math.log(Dq)+2,_q=pt(Bl,e=>{let t=e>-q6,n=e<q6,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),Fq={kernelName:Bl,backendName:"cpu",kernelFunc:_q};function $q(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Ne([r],"spaceToBatchND");let i=w.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let I=1+a.length;I<r.shape.length;++I)l.push([0,0]);let c=H6.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=R.getReshaped(c.shape,a,i,!1),d=R.getPermuted(u.length,a.length,!1),p=R.getReshapedPermuted(c.shape,a,i,!1),m=wt({inputs:{x:c},backend:n,attrs:{shape:u}}),y=Ss({inputs:{x:m},backend:n,attrs:{perm:d}}),v=wt({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),v}var Oq={kernelName:Wl,backendName:"cpu",kernelFunc:$q};function Pq(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=n.data.get(o.dataId).values[0],[d,p,h,f,m]=y6(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Mq={kernelName:fh,backendName:"cpu",kernelFunc:Pq};function zq(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[c,u,d]=x6(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var Lq={kernelName:mh,backendName:"cpu",kernelFunc:zq};function Bq(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=w2(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var Wq={kernelName:gh,backendName:"cpu",kernelFunc:Bq};function Vq(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=w2(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var Uq={kernelName:Ah,backendName:"cpu",kernelFunc:Vq};function Gq(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=R.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],A=j6(f,m,i,p,u,c,l,d,g,h);return n.makeTensorInfo(i,A.dtype,A.values)}var Hq={kernelName:yh,backendName:"cpu",kernelFunc:Gq};function jq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=w.parseAxisParam(o,r.shape)[0],l=R.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=wi({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});return c[i]+=d,h})}var qq={kernelName:Vl,backendName:"cpu",kernelFunc:jq},Xq={kernelName:Nc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Ne(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},Kq=pt(da,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),Zq={kernelName:da,backendName:"cpu",kernelFunc:Kq};function Yq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s;Ne(r,"stridedSlice");let{nonStrided:h,$begin:f,$strides:m,size:g,newShape:A,outShape:y}=Fn.sliceInfo(r.shape,a,o,i,l,c,u,d,p),x=wt({inputs:{x:r},backend:n,attrs:{shape:A}}),b;if(h){let I=wi({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=wt({inputs:{x:I},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(I)}else if(y.some(I=>I===0))b=n.makeTensorInfo(y,r.dtype,[]);else{let I=n.bufferSync(x),C=v6(y,I,m,f);b=n.makeTensorInfo(C.shape,C.dtype,C.values)}let v=wt({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var Jq={kernelName:Ul,backendName:"cpu",kernelFunc:Yq};function Qq(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.data.get(u.dataId).values,h=n.data.get(d.dataId).values,[f,m]=w6(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var eX={kernelName:xh,backendName:"cpu",kernelFunc:Qq};function tX(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[c,u,d]=k6(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var nX={kernelName:bh,backendName:"cpu",kernelFunc:tX};function sX(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=I6(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var rX={kernelName:vh,backendName:"cpu",kernelFunc:sX},aX=pt(Go,e=>Math.tan(e)),oX={kernelName:Go,backendName:"cpu",kernelFunc:aX},iX=pt(Ho,e=>Math.tanh(e)),lX={kernelName:Ho,backendName:"cpu",kernelFunc:iX};function uX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Ne(r,"tile");let o=C6(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var cX={kernelName:ca,backendName:"cpu",kernelFunc:uX};function dX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Ne(r,"topk");let i=n.data.get(r.dataId).values,[l,c]=N6(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var pX={kernelName:Gl,backendName:"cpu",kernelFunc:dX};function hX(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=n,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=w.computeStrides(r.shape),y=A[0],x=A[1],b=A[2],v=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(g));v.fill(l);let I=s.data.get(r.dataId).values,C=s.data.get(a.dataId).values;for(let $=0;$<u;++$){let O=a.shape[0]===1?C:C.subarray($*8,$*8+8);for(let E=0;E<f;++E)for(let F=0;F<m;++F)for(let T=0;T<h;++T){let M,G=O[6]*F+O[7]*E+1;if(G===0)continue;let H=(O[0]*F+O[1]*E+O[2])/G,z=(O[3]*F+O[4]*E+O[5])/G,X=X6(H,p,i),Q=X6(z,d,i);switch(o){case"nearest":M=xX(I,d,p,y,x,b,$,Q,X,T,l);break;case"bilinear":M=bX(I,d,p,y,x,b,$,Q,X,T,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let Z=$*y+E*x+F*b+T;v[Z]=M}return s.makeTensorInfo(g,r.dtype,v)}return{dataId:s.write(v,g,r.dtype),shape:r.shape,dtype:r.dtype}}var fX={kernelName:Hl,backendName:"cpu",kernelFunc:hX};function X6(e,t,n){switch(n){case"reflect":return mX(e,t);case"wrap":return gX(e,t);case"nearest":return yX(e,t);case"constant":default:return AX(e,t)}}function mX(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return w.clamp(0,n,t-1)}function gX(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return w.clamp(0,n,t-1)}function AX(e,t){return e}function yX(e,t){return w.clamp(0,e,t-1)}function Dd(e,t,n,s,r,a,o,i,l,c,u){let d=o*s+i*r+l*a+c;return 0<=i&&i<t&&0<=l&&l<n?e[d]:u}function xX(e,t,n,s,r,a,o,i,l,c,u){let d=Math.round(i),p=Math.round(l);return Dd(e,t,n,s,r,a,o,d,p,c,u)}function bX(e,t,n,s,r,a,o,i,l,c,u){let d=Math.floor(i),p=Math.floor(l),h=d+1,f=p+1,m=(f-l)*Dd(e,t,n,s,r,a,o,d,p,c,u)+(l-p)*Dd(e,t,n,s,r,a,o,d,f,c,u),g=(f-l)*Dd(e,t,n,s,r,a,o,h,p,c,u)+(l-p)*Dd(e,t,n,s,r,a,o,h,f,c,u);return(h-i)*m+(i-d)*g}function vX(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Ne(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:c}=E6(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var wX={kernelName:wh,backendName:"cpu",kernelFunc:vX};function kX(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),c=0;for(let h=0;h<o;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o).fill(0),d=r.shape.slice();d[a]=1;let p=new Array(i);for(let h=0;h<p.length;h++){u[a]=h;let f=wi({inputs:{x:r},backend:n,attrs:{begin:u,size:d}});p[h]=wt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return p}var IX={kernelName:jl,backendName:"cpu",kernelFunc:kX};function SX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;Ne(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,c=[],u=[],d=i-l,p=a;for(let f=0;f<d;++f){let m=o0({inputs:{input:p},backend:n,attrs:{dim:f+1}});p=m,u.push(m)}for(let f=0;f<o;++f){let m=w.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),A=Y7({inputs:{a:g,b:p},backend:n}),y=Ra({inputs:{x:A},backend:n,attrs:{dtype:"float32"}}),x=r0({inputs:{a:y,b:r},backend:n}),b=Rd({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});c.push(b),u.push(g),u.push(A),u.push(y),u.push(x),u.push(b)}let h=G6({inputs:c,backend:n,attrs:{axis:0}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var CX={kernelName:Ec,backendName:"cpu",kernelFunc:SX},TX=[$U,TV,PU,zU,FV,BU,VU,GU,jU,XU,ZU,JU,eG,sG,aG,lG,cG,pG,fG,_U,gG,yG,bG,wG,DV,OV,IG,NV,CG,NG,DG,FG,EG,MG,LG,OG,WG,UG,HG,qG,KG,YG,JG,eH,nH,rH,aH,iH,oH,T2,cH,SU,pH,PV,bH,MV,vH,LV,TH,NH,RH,WV,FH,OH,MH,LH,WH,UV,HV,EV,UH,TG,HH,qH,KH,CU,qV,KV,YH,YV,QH,nj,rj,ij,uj,dj,QV,fj,gj,yj,bj,wj,pj,Ij,Cj,tU,Nj,Dj,Oj,sU,aU,zj,Wj,Gj,iU,jj,Xj,Kj,H6,Qj,NU,cU,tq,RV,sq,EU,RU,DU,aq,iq,uq,dq,hq,fq,gq,pU,yq,bq,Iq,fU,Cq,Nq,Rq,mU,Fj,Fq,Oq,Mq,Lq,Wq,Uq,Hq,qq,yU,Xq,bU,Zq,Jq,eX,nX,rX,IU,lH,oX,lX,cX,pX,lU,fX,wX,IX,CX,qj];for(let e of TX)pa(e);var K6={};ze(K6,{assertNotComplex:()=>Ru,bindCanvasToFramebuffer:()=>LX,bindColorTextureToFramebuffer:()=>d0,bindTextureToProgramUniformSampler:()=>c4,bindTextureUnit:()=>i4,bindVertexBufferToProgramAttribute:()=>_2,callAndCheck:()=>Se,canBeRepresented:()=>Z6,createFragmentShader:()=>Q6,createFramebuffer:()=>o4,createProgram:()=>e4,createStaticIndexBuffer:()=>s4,createStaticVertexBuffer:()=>n4,createTexture:()=>r4,createVertexShader:()=>J6,getBatchDim:()=>Ii,getExtensionOrThrow:()=>$d,getFramebufferErrorMessage:()=>d4,getMaxTexturesInShader:()=>m4,getNumChannels:()=>MX,getProgramUniformLocation:()=>u4,getProgramUniformLocationOrThrow:()=>l4,getRowsCols:()=>Si,getShapeAs3D:()=>p0,getTextureShapeFromLogicalShape:()=>h4,getWebGLDisjointQueryTimerVersion:()=>g4,getWebGLErrorMessage:()=>Y6,getWebGLMaxTextureSize:()=>f4,hasExtension:()=>Ts,isCapableOfRenderingToFloatTexture:()=>A4,isDownloadFloatTextureEnabled:()=>y4,isReshapeFree:()=>Pd,isWebGLFenceEnabled:()=>x4,isWebGLVersionEnabled:()=>$2,linkProgram:()=>t4,resetMaxTextureSize:()=>BX,resetMaxTexturesInShader:()=>WX,unbindColorTextureFromFramebuffer:()=>F2,unbindTextureUnit:()=>zX,validateFramebuffer:()=>Od,validateProgram:()=>c0,validateTextureSize:()=>a4});var ki={},R2={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function l0(e,t){ki[e]=t}function Nr(e){if(!(e in ki)){let n=EX(e);if(n!==null)ki[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=ki[e];return t.isContextLost()?(delete ki[e],Nr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),ki[e])}function NX(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function EX(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=NX(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete ki[e]},!1),e===1?t.getContext("webgl",R2)||t.getContext("experimental-webgl",R2):t.getContext("webgl2",R2)}var _d;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(_d||(_d={}));var Cs;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Cs||(Cs={}));var vn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(vn||(vn={}));function Fd(e,t){return[t,e]}function RX(e,t){return e*t}function u0(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function Eu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function DX(e,t){let[n,s]=Eu(e,t);return n*s*4}function D2(e,t){let n=e,s,r,a,o,i,l,c,u,d,p;return se().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,c=4,u=1,d=n.HALF_FLOAT,p=n.FLOAT):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,c=4,u=4,d=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT),l=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:d,textureTypeFloat:p}}function Se(e,t){let n=t();return se().getBool("DEBUG")&&_X(e),n}function _X(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+Y6(e,t))}var FX=596e-10,$X=65504;function Z6(e){return!!(se().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||FX<Math.abs(e)&&Math.abs(e)<$X)}function Y6(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function $d(e,t){return jr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function J6(e,t){let n=jr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Se(e,()=>e.shaderSource(n,t)),Se(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function Q6(e,t){let n=jr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Se(e,()=>e.shaderSource(n,t)),Se(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw PX(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var OX=/ERROR: [0-9]+:([0-9]+):/g;function PX(e,t){let n=OX.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
|
|
`),a=r.length.toString().length+2,o=r.map((d,p)=>w.rightPad((p+1).toString(),a)+d),i=0;for(let d=0;d<o.length;d++)i=Math.max(o[d].length,i);let l=o.slice(0,s-1),c=o.slice(s-1,s),u=o.slice(s);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${w.rightPad(c[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
|
|
`))}function e4(e){return jr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function t4(e,t){if(Se(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function c0(e,t){if(Se(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function n4(e,t){let n=jr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Se(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function s4(e,t){let n=jr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Se(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Se(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function MX(){return se().getNumber("WEBGL_VERSION")===2?1:4}function r4(e){return jr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function a4(e,t){let n=se().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function o4(e){return jr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function _2(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),Se(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),Se(e,()=>e.enableVertexAttribArray(i)),!0)}function i4(e,t,n){p4(e,n),Se(e,()=>e.activeTexture(e.TEXTURE0+n)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function zX(e,t){p4(e,t),Se(e,()=>e.activeTexture(e.TEXTURE0+t)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function l4(e,t,n){return jr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function u4(e,t,n){return e.getUniformLocation(t,n)}function c4(e,t,n,s){Se(e,()=>i4(e,t,s)),Se(e,()=>e.uniform1i(n,s))}function LX(e){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Se(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Se(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function d0(e,t,n){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Se(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function F2(e,t){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Se(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Od(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+d4(e,t))}function d4(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function jr(e,t,n){let s=Se(e,()=>t());if(s==null)throw new Error(n);return s}function p4(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Ii(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function Si(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function p0(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Ii(e),...Si(e)]),t}function h4(e,t=!1){let n=se().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?w.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let s=w.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=Ii(e),a=2,o=2;return e.length&&([a,o]=Si(e)),s=r*(a/2)*(o/2),w.sizeToSquarishShape(s).map(i=>i*2)}return w.sizeToSquarishShape(s)}function h0(e){return e%2==0}function Pd(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||h0(n)&&h0(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&h0(e[0])&&h0(t[0])}var f0,m0;function f4(e){if(f0==null){let t=Nr(e);f0=t.getParameter(t.MAX_TEXTURE_SIZE)}return f0}function BX(){f0=null}function WX(){m0=null}function m4(e){if(m0==null){let t=Nr(e);m0=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,m0)}function g4(e){if(e===0)return 0;let t,n=Nr(e);return Ts(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Ts(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Ts(e,t){return e.getExtension(t)!=null}function $2(e){try{if(Nr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function A4(e){if(e===0)return!1;let t=Nr(e);if(e===1){if(!Ts(t,"OES_texture_float"))return!1}else if(!Ts(t,"EXT_color_buffer_float"))return!1;return O2(t)}function y4(e){if(e===0)return!1;let t=Nr(e);if(e===1){if(!Ts(t,"OES_texture_float")||!Ts(t,"WEBGL_color_buffer_float"))return!1}else{if(Ts(t,"EXT_color_buffer_float"))return O2(t);let s="EXT_color_buffer_half_float";if(Ts(t,s)){let r=t.getExtension(s);return VX(t,r)}return!1}return O2(t)}function O2(e){let t=D2(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function VX(e,t){let n=D2(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function x4(e){return e!==2?!1:Nr(e).fenceSync!=null}function Ru(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Fe=se();Fe.registerFlag("HAS_WEBGL",()=>Fe.getNumber("WEBGL_VERSION")>0);Fe.registerFlag("WEBGL_VERSION",()=>$2(2)?2:$2(1)?1:0);Fe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Fe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Fe.get("WEBGL_VERSION")===2);Fe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Fe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Fe.registerFlag("WEBGL_PACK",()=>Fe.getBool("HAS_WEBGL"));Fe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_CLIP",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_REDUCE",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_LAZILY_UNPACK",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_CONV_IM2COL",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>f4(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>m4(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Fe.getNumber("WEBGL_VERSION");return e===0?0:g4(e)});Fe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Fe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Lc.isMobile());Fe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>A4(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Fe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Fe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Fe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>y4(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>x4(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Fe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Fe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Fe.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Lc.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Fe.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Fe.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Fe.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Fe.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function zn(){let e,t,n,s,r,a,o,i,l,c;return se().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",c=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,c=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:c}}function Ci(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function g0(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function UX(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function GX(e,t,n="index"){let s=e.map((a,o)=>o),r=UX(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function P2(e){let t=w.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function M2(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var b4=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:v4}=R;function HX(e,t,n){let s=[];if(e.forEach(h=>{let f=w.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=z2(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
|
|
`),a=e.map(h=>jX(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),o=t.texShape,i=zn(),l=KX(i),c,u,d=JX(i);return t.isPacked?(c=qX(t.logicalShape,o,n.enableShapeUniforms),u=YX(i)):(c=XX(t.logicalShape,o,n.enableShapeUniforms),u=ZX(i)),n.packedInputs&&(d+=nK),[d,l,u,r,c,a,n.userCode].join(`
|
|
`)}function Du(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return fK(e,t);case 1:return gK(e,t);case 2:return yK(e,t);case 3:return bK(e,t);case 4:return wK(e,t);case 5:return kK(e);case 6:return IK(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function w4(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return hK(e);case 1:return mK(e,t);case 2:return AK(e,t);case 3:return xK(e,t);default:return vK(e,t)}}function jX(e,t,n=!1,s){let r="";n?r+=w4(e,s):r+=Du(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=SK(e,t):r+=CK(e,t)),r}function qX(e,t,n){switch(e.length){case 0:return k4();case 1:return sK(e,t,n);case 2:return dK(e,t,n);case 3:return aK(e,t,n);default:return iK(e,t,n)}}function XX(e,t,n){switch(e.length){case 0:return k4();case 1:return rK(e,t,n);case 2:return pK(e,t,n);case 3:return oK(e,t,n);case 4:return lK(e,t,n);case 5:return uK(e,t);case 6:return cK(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function KX(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function ZX(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function YX(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function JX(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${QX}
|
|
${eK}
|
|
${tK}
|
|
`}var QX=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,eK=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,tK=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,nK=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function k4(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function sK(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${s[1]}.0);
|
|
}
|
|
`:s[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${s[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
|
|
}
|
|
`}function rK(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function aK(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function oK(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${g0(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let s=Ci(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function iK(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let c=2;c<e.length-1;c++)o*=e[e.length-c-1],i=`
|
|
int b${c} = index / ${o};
|
|
index -= b${c} * ${o};
|
|
`+i,l=`b${c}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function lK(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${g0(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let s=Ci(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function uK(e,t){let n=Ci(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function cK(e,t){let n=Ci(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function dK(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function pK(e,t,n){return w.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Ti(e){return`offset${e}`}function hK(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=zn();return`
|
|
vec4 ${n}() {
|
|
return ${s.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function fK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${s}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=Ti(n);if(t)return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[i,l]=e.shapeInfo.texShape;return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function mK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=zn();if(t)return`
|
|
vec4 ${s}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${s}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${o[0]}, ${o[1]}, index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function gK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int index) {
|
|
${_u(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
|
|
float ${s}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=Ti(n);return o===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:a===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function AK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=zn();if(a!=null&&w.arraysEqual(n,a))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;let c=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],u=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${c[0]}, ${c[1]}, row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`}function yK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&w.arraysEqual(n,a)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let p=a[0],h=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}let{newShape:o,keptDims:i}=w.squeezeShape(n),l=o;if(l.length<n.length){let p=Fu(e,l),h=["row","col"];return`
|
|
${Du(p,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${$u(h,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${_u(e)}
|
|
}
|
|
`;let c=a[0],u=a[1],d=Ti(s);return u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${c}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:c===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s}Shape[1] + col + ${d};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${c}, ${u}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function xK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let p=n.slice(1),h=[1,2],f=Fu(e,p),m=["b","row","col"];return`
|
|
${w4(f,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${$u(m,h)});
|
|
}
|
|
`}let i=zn();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`;let l=o[0],c=o[1],u=Math.ceil(n[2]/2),d=u*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${c}, ${d}, ${u}, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`}function bK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=w.squeezeShape(n),c=i;if(c.length<n.length){let m=Fu(e,c),g=["row","col","depth"];return`
|
|
${Du(m,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${$u(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${o}, 1)));
|
|
${_u(e)}
|
|
}
|
|
`;let u=e.shapeInfo.texShape,d=u[0],p=u[1],h=e.shapeInfo.flatOffset;if(p===a&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${s}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(p===o&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let f=Ti(s);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${s}Shape[1] * ${s}Shape[2];
|
|
int stride1 = ${s}Shape[2];
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function vK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=zn();if(t)return`
|
|
vec4 ${s}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],c=l[0],u=l[1],d=Math.ceil(a[o-1]/2),p=d*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${p} + (row / 2) * ${d} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,p*=a[o-m-1],f=`b${m} * ${p} + `+f;return`
|
|
vec4 ${s}(${h}) {
|
|
int index = ${f};
|
|
int texR = index / ${u};
|
|
int texC = index - texR * ${u};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${u}, ${c});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function wK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:c}=w.squeezeShape(n);if(l.length<n.length){let y=Fu(e,l),x=["row","col","depth","depth2"];return`
|
|
${Du(y,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${$u(x,c)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, 1)));
|
|
${_u(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===i&&u==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${o}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(h===a&&u==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let A=Ti(s);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${A});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index + ${A});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function kK(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:c}=w.squeezeShape(t);if(l.length<t.length){let m=Fu(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${Du(m)}
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${s}(${$u(g,c)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, ${r})) +
|
|
depth3;
|
|
${_u(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1];if(h===i&&u==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${o}, ${a}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&u==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Ti(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} + depth * ${a} +
|
|
depth2 * ${r} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function IK(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=w.squeezeShape(t);if(r.length<t.length){let g=Fu(e,r),A=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Du(g)}
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${s}(${$u(A,a)});
|
|
}
|
|
`}let o=t[5],i=t[4]*o,l=t[3]*i,c=t[2]*l,u=t[1]*c;if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${u}, ${c}, ${l}, ${i})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${o}, 1)));
|
|
${_u(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,h=p[0],f=p[1];if(f===u&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${c}, ${l}, ${i}, ${o})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===o&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=Ti(n);return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${u} + col * ${c} + depth * ${l} +
|
|
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${h}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function _u(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function SK(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=v4(e.shapeInfo.logicalShape,t.logicalShape),l=yt(o),c=o-a,u,d=["x","y","z","w","u","v"];a===0?u="":o<2&&i.length>=1?u="coords = 0;":u=i.map(y=>`coords.${d[y+c]} = 0;`).join(`
|
|
`);let p="";o<2&&a>0?p="coords":p=e.shapeInfo.logicalShape.map((y,x)=>`coords.${d[x+c]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,A=w.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!A)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!A)o===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(i.length){let y=a-2,x=a-1;i.indexOf(y)>-1&&i.indexOf(x)>-1?h="return vec4(outputValue.x);":i.indexOf(y)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(x)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${u}
|
|
vec4 outputValue = get${s}(${p});
|
|
${h}
|
|
}
|
|
`}function CK(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&w.arraysEqual(o,a))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let c=yt(l),u=v4(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,p,h=["x","y","z","w","u","v"];i===0?p="":l<2&&u.length>=1?p="coords = 0;":p=u.map(m=>`coords.${h[m+d]} = 0;`).join(`
|
|
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+d]}`).join(", "),`
|
|
float ${r}() {
|
|
${c} coords = getOutputCoords();
|
|
${p}
|
|
return get${s}(${f});
|
|
}
|
|
`}function yt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function z2(e,t,n){let{newShape:s,keptDims:r}=w.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!w.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function Fu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function $u(e,t){return t.map(n=>e[n]).join(", ")}function TK(e,t,n,s){let r=n.map((x,b)=>{let v={logicalShape:x.shape,texShape:x.isUniform?null:x.texData.texShape,isUniform:x.isUniform,isPacked:x.isUniform?!1:x.texData.isPacked,flatOffset:null};return x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0&&(v.flatOffset=x.texData.slice.flatOffset),{name:t.variableNames[b],shapeInfo:v}}),a=r.map(x=>x.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=HX(r,o,t),l=e.createProgram(i),c=null,u=e.getUniformLocation(l,"NAN",!1);se().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(l,"INFINITY",!1));let d=!1,p={},h={},f={};for(let x=0;x<t.variableNames.length;x++){let b=t.variableNames[x];p[b]=e.getUniformLocation(l,b,d),p[`offset${b}`]=e.getUniformLocation(l,`offset${b}`,d),t.enableShapeUniforms&&(h[`${b}Shape`]=e.getUniformLocation(l,`${b}Shape`,d),f[`${b}TexShape`]=e.getUniformLocation(l,`${b}TexShape`,d))}let m,g,A;t.enableShapeUniforms&&(m=e.getUniformLocation(l,"outShape",d),A=e.getUniformLocation(l,"outShapeStrides",d),g=e.getUniformLocation(l,"outTexShape",d));let y=[];return t.customUniforms&&t.customUniforms.forEach((x,b)=>{y[b]=e.getUniformLocation(l,x.name,d)}),{program:t,source:i,webGLProgram:l,uniformLocations:p,customUniformLocations:y,inShapeInfos:a,outShapeInfo:o,infLoc:c,nanLoc:u,inShapesLocations:h,inTexShapesLocations:f,outShapeLocation:m,outShapeStridesLocation:A,outTexShapeLocation:g}}function I4(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!w.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!w.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function NK(e,t,n,s,r){t.program.enableShapeUniforms||(I4(t.inShapeInfos,n),I4([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),se().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,c)=>{let u=t.program.variableNames[c],d=t.uniformLocations[u],p=t.uniformLocations[`offset${u}`],h=t.inShapesLocations[`${u}Shape`],f=t.inTexShapesLocations[`${u}TexShape`];if(h){let{uniformShape:m}=z2(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(w.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}l.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,c)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=w.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,c)=>{let u=t.customUniformLocations[c],d=r[c];if(l.type==="float")e.gl.uniform1fv(u,d);else if(l.type==="vec2")e.gl.uniform2fv(u,d);else if(l.type==="vec3")e.gl.uniform3fv(u,d);else if(l.type==="vec4")e.gl.uniform4fv(u,d);else if(l.type==="int")e.gl.uniform1iv(u,d);else if(l.type==="ivec2")e.gl.uniform2iv(u,d);else if(l.type==="ivec3")e.gl.uniform3iv(u,d);else if(l.type==="ivec4")e.gl.uniform4iv(u,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function EK(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:c,uniformShape:u,keptDims:d}=z2(e.packedInputs,o.shape,l),p="",h="",f="";if(u.length===1&&e.packedInputs){let v=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];p=`${v[0]>1}_${v[1]>1}`}else if(u.length===2&&!e.packedInputs)h=`${u[0]>1}_${u[1]>1}`;else if(u.length>2&&!e.packedInputs){let v=w.computeStrides(u);f=`${v[0]===l[1]}_${v[v.length-1]===l[1]}`}let m=o.shape.length,g=u.length===2&&w.arraysEqual(o.shape,l),A=w.sizeFromShape(o.shape)===1,y=R.getBroadcastDims(o.shape,n.shape),x=!e.packedInputs&&m===n.shape.length&&w.arraysEqual(l,n.texData.texShape),b=e.packedInputs||u.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${x}_${c?d:""}_${u.length}_${A}_${y}_${g}_${p}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${se().getNumber("WEBGL_VERSION")}`,a}function Ns(e){return se().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var RK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=_d.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=zn();this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?g0(["r","c","d"],e):Ci(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},DK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=_d.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=zn();this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?g0(["r","c","d"],e):Ci(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},_K=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Cs.DOWNLOAD;let t=zn();this.outputShape=e,this.userCode=`
|
|
${b4}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},FK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Cs.DOWNLOAD;let t=zn();this.outputShape=e,this.userCode=`
|
|
${b4}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},$K=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=zn();this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?M2():P2(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${s}, 0., 0., 0.);
|
|
}
|
|
`}},OK=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=zn();this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${o};
|
|
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${a};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${i}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${i}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${i}] = values[2];
|
|
} else {
|
|
result[${i}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?M2():P2(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${s}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},S4={};ze(S4,{bindVertexProgramAttributeStreams:()=>$4,createBufferFromOutputTexture:()=>M4,createFloat16MatrixTexture:()=>R4,createFloat16PackedMatrixTexture:()=>F4,createFloat32MatrixTexture:()=>E4,createIndexBuffer:()=>N4,createPackedMatrixTexture:()=>_4,createUnsignedBytesMatrixTexture:()=>D4,createVertexBuffer:()=>T4,createVertexShader:()=>C4,downloadByteEncodedFloatMatrixFromOutputTexture:()=>L4,downloadFloat32MatrixFromBuffer:()=>z4,downloadMatrixFromPackedOutputTexture:()=>W4,downloadPackedMatrixFromBuffer:()=>B4,getInternalFormatForFloat16MatrixTexture:()=>B2,getInternalFormatForFloat16PackedMatrixTexture:()=>U2,getInternalFormatForFloat32MatrixTexture:()=>L2,getInternalFormatForPackedMatrixTexture:()=>V2,getInternalFormatForUnsignedBytesMatrixTexture:()=>W2,uploadDenseMatrixToTexture:()=>O4,uploadPixelDataToTexture:()=>P4});function C4(e){let t=zn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return J6(e,n)}function T4(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return n4(e,t)}function N4(e){let t=new Uint16Array([0,1,2,2,1,3]);return s4(e,t)}function Md(e,t,n,s,r,a){a4(t,n);let o=r4(e),i=e.TEXTURE_2D;return Se(e,()=>e.bindTexture(i,o)),Se(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Se(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Se(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),Se(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),Se(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function L2(e){return e.internalFormatFloat}function E4(e,t,n,s){let[r,a]=Fd(t,n);return Md(e,r,a,L2(s),s.textureFormatFloat,e.FLOAT)}function B2(e){return e.internalFormatHalfFloat}function R4(e,t,n,s){let[r,a]=Fd(t,n);return Md(e,r,a,B2(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function W2(e){return e.downloadTextureFormat}function D4(e,t,n,s){let[r,a]=Fd(t,n);return Md(e,r,a,W2(s),e.RGBA,e.UNSIGNED_BYTE)}function V2(e){return e.internalFormatPackedFloat}function _4(e,t,n,s){let[r,a]=Eu(t,n);return Md(e,r,a,V2(s),e.RGBA,e.FLOAT)}function U2(e){return e.internalFormatPackedHalfFloat}function F4(e,t,n,s){let[r,a]=Eu(t,n);return Md(e,r,a,U2(s),e.RGBA,s.textureTypeHalfFloat)}function $4(e,t,n){let s=0,r=3*4,a=3*4+2*4;return Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),_2(e,t,"clipSpacePos",n,3,a,s)&&_2(e,t,"uv",n,2,a,r)}function O4(e,t,n,s,r,a){Se(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function P4(e,t,n){Se(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function M4(e,t,n,s){let r=e.createBuffer();Se(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return Se(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),Se(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Se(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function z4(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function L4(e,t,n,s){let[r,a]=Fd(t,n),o=4,i=new Uint8Array(RX(t*n,o));return Se(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function B4(e,t,n,s,r,a,o,i){let l=e,c=new Float32Array(DX(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function W4(e,t,n){let s=new Float32Array(t*n*4);return Se(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var A0=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=se().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,l0(t,e)):this.gl=Nr(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(se().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=$d(this.gl,r),Ts(this.gl,a))this.textureHalfFloatExtension=$d(this.gl,a);else if(se().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Ts(this.gl,s))this.colorBufferHalfFloatExtension=$d(this.gl,s);else if(se().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Ts(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Ts(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=T4(this.gl),this.indexBuffer=N4(this.gl),this.framebuffer=o4(this.gl),this.textureConfig=D2(this.gl,this.textureHalfFloatExtension)}get debug(){return se().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Se(e,()=>e.finish()),Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Se(e,()=>e.deleteFramebuffer(this.framebuffer)),Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Se(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Se(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),E4(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),R4(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),D4(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),P4(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),O4(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),F4(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),_4(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(F2(this.gl,this.framebuffer),this.outputTexture=null),Se(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>L4(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return B4(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return z4(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=M4(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(se().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>W4(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=Q6(t,e);this.vertexShader==null&&(this.vertexShader=C4(t));let s=e4(t);return Se(t,()=>t.attachShader(s,this.vertexShader)),Se(t,()=>t.attachShader(s,n)),t4(t,s),this.debug&&c0(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=$4(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Se(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&c0(this.gl,this.program),Se(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?l4(this.gl,e,t):u4(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Se(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),c4(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=Eu(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&c0(this.gl,this.program),Od(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Se(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Se(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=$d(this.gl,se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=PK(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),d0(this.gl,e,this.framebuffer),this.debug&&Od(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(d0(this.gl,this.outputTexture,this.framebuffer),this.debug&&Od(this.gl)):F2(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;d0(s,e,this.framebuffer),this.debug&&Od(s),this.outputTexture=e,Se(s,()=>s.viewport(0,0,t,n)),Se(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),Se(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function PK(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:MK,bincountImpl:V4,bincountReduceImpl:zK,ceilImpl:LK,concatImpl:BK,equalImpl:WK,expImpl:VK,expm1Impl:UK,floorImpl:GK,gatherNdImpl:HK,gatherV2Impl:jK,greaterImpl:qK,greaterEqualImpl:XK,lessImpl:KK,lessEqualImpl:ZK,linSpaceImpl:YK,logImpl:JK,maxImpl:QK,maximumImpl:eZ,minimumImpl:tZ,multiplyImpl:nZ,negImpl:sZ,notEqualImpl:rZ,prodImpl:aZ,rangeImpl:oZ,rsqrtImpl:iZ,sigmoidImpl:lZ,simpleAbsImpl:U4,sliceImpl:uZ,sparseFillEmptyRowsImpl:cZ,sparseReshapeImpl:dZ,sparseSegmentReductionImpl:G4,sqrtImpl:pZ,stridedSliceImpl:hZ,stringNGramsImpl:fZ,stringSplitImpl:mZ,stringToHashBucketFastImpl:gZ,subImpl:AZ,tileImpl:yZ,topKImpl:xZ,transposeImpl:G2,uniqueImpl:bZ}=H7;function H4(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Ln(e,t){return t===1?[e]:H4(e,t)}function vZ(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var wZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=Ln("rc",t),s=yt(t),r=IZ(t,e,n),a=SZ(t,e[e.length-1],e[e.length-2],n),o=CZ(e,n);this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${a}
|
|
|
|
setOutput(vec4(${o}));
|
|
}
|
|
}
|
|
`}}};function kZ(e,t){let n=[];for(let s=0;s<=1;s++)for(let r=0;r<=1;r++){let a=`${s===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let o=2;o<e;o++)a=`${t[t.length-1-o]},`+a;n.push(a)}return n}function IZ(e,t,n){if(e===1)return`rc > ${t[0]}`;let s="";for(let r=e-2;r<e;r++)s+=`${n[r]} >= ${t[r]}`,r<e-1&&(s+="||");return s}function SZ(e,t,n,s){if(e===1)return"";let r=s.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function CZ(e,t){let n=e.length,s=kZ(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${s[0]}),
|
|
cEdge ? 0. : getA(${s[1]}),
|
|
rEdge ? 0. : getA(${s[2]}),
|
|
rEdge || cEdge ? 0. : getA(${s[3]})`}var j4=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2==1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${s}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${s>0?"}":""}
|
|
`}this.userCode=`
|
|
${TZ(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?M2():P2(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function TZ(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?GX(["r","c","d"],"inputShape"):Ci(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var NZ=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=X4(t,n),r=K4(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=q4(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===vn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===vn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===vn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===vn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===vn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=X4(n,s),a=K4(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=q4(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=se().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function EZ(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function q4(e,t,n,s,r){let a=RZ(t,s),o;if(r){let[l,c]=Eu(e[0],e[1]);o=l*c}else{let[l,c]=Fd(e[0],e[1]);o=l*c}let i=EZ(n,a);return o*i}function RZ(e,t){switch(e){case vn.PACKED_2X2_FLOAT32:return V2(t);case vn.PACKED_2X2_FLOAT16:return U2(t);case vn.UNPACKED_FLOAT32:return L2(t);case vn.UNPACKED_FLOAT16:return B2(t);case vn.PACKED_4X1_UNSIGNED_BYTE:return W2(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function DZ(e){return se().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?vn.PACKED_2X2_FLOAT32:vn.UNPACKED_FLOAT32:e?vn.PACKED_2X2_FLOAT16:vn.UNPACKED_FLOAT16}function X4(e,t){if(e===Cs.UPLOAD)return vn.PACKED_2X2_FLOAT32;if(e===Cs.RENDER||e==null)return DZ(t);if(e===Cs.DOWNLOAD||e===Cs.PIXELS)return vn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function K4(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var _a=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},lr="if (isnan(x)) return x;",_Z="return x;",Z4="return abs(x);",FZ="return (x >= 0.0) ? x : (exp(x) - 1.0);",$Z=lr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,OZ=lr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,y0="return x;",PZ="return 1.0 / (1.0 + exp(-1.0 * x));",MZ="return x;",zZ=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,LZ=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,BZ=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,WZ="return 1.0 / (1.0 + exp(-1.0 * x));",Ou=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},VZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=Ln("rc",t),s=yt(t),r=vZ(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${o}));
|
|
}
|
|
`}},UZ=vr.whereImpl,GZ=1e-7,HZ=1e-4,x0={};function jZ(e){return e in x0||(x0[e]={}),x0[e]}var qZ=se().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),XZ=600;function KZ(){return se().global.screen==null?1024:se().global.screen.height*se().global.screen.width*window.devicePixelRatio*XZ/1024/1024}var Pu=class extends hc{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!se().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Nr(se().getNumber("WEBGL_VERSION"));this.binaryCache=jZ(se().getNumber("WEBGL_VERSION")),this.gpgpu=new A0(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new NZ(this.gpgpu),this.numMBBeforeWarning=KZ(),this.texData=new Op(this,as())}nextDataId(){return Pu.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((se().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||se().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:Cs.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(se().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:Cs.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new Ou(o,y0):d=new _a(o,y0);let p=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,c;l&&(c=w.now());let u;if(s==="complex64"){let d=this.readSync(r.real.dataId),p=this.readSync(r.imag.dataId);u=R.mergeRealAndImagArrays(d,p)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=w.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new Ou(s,y0):h=new _a(s,y0);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!se().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&se().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(a!=="complex64"&&se().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let h=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...u0(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];u=R.mergeRealAndImagArrays(f,m)}else if(l==null)u=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(s);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(c!=null&&this.disposeIntermediateTensorInfo(c),l!=null){let h=this.gpgpu.gl;Se(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,u),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&as().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>w.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return He(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!Z6(n))throw se().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=w.sizeFromShape(t);if(se().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),p=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(p.texture,...u0(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let a=se().getBool("WEBGL_PACK")&&s===!0,o=a?p0(t):t,i=a?new FK(o):new _K(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),c=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),u}timerAvailable(){return se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=w.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=w.sum(i),o.getExtraProfileInfo=()=>i.map((l,c)=>({name:a[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(se().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=qZ){return se().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&w.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){R.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return UZ(e.shape,t)}packedUnaryOp(e,t,n){let s=new Ou(e.shape,t),r=this.compileAndRun(s,[e],n);return as().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=U4(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(se().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Z4,e.dtype);let t=new _a(e.shape,Z4),n=this.compileAndRun(t,[e]);return as().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return as().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new VZ(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new wZ(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Ii(e.shape),...Si(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[Ii(t),...Si(t)],a=new j4(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:s,dtype:r}=t,a=p0(s),o,i=u0(a);n?o=new DK(a):o=new RK(a);let l=!0,c=[i],u=this.runWebGLProgram(o,[{shape:a,dtype:r,dataId:e}],r,c,l);return{dtype:r,shape:s,dataId:u.dataId}}runWebGLProgram(e,t,n,s,r=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===_d.DENSE){let m=u0(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),w.sizeFromShape(a.shape)===0)return o.values=w.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&w.sizeFromShape(m.shape)<=se().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}else if(!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!Pd(g.shape,m.shape)){let A=m,y=m.shape;m.shape=g.shape,m=this.packedReshape(m,y),i.push(m),g=this.texData.get(m.dataId),A.shape=y}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:o,isUniform:!1},u=EK(e,l,c),d=this.getAndSaveBinary(u,()=>TK(this.gpgpu,e,l,c)),p=this.activeTimers!=null,h;p&&(h=this.startTimer()),NK(this.gpgpu,d,l,c,s),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),p&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let f=se().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=w.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!se().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(se().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=j(()=>{if(!se().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=se().getBool("DEBUG");se().set("DEBUG",!1);let t=this.abs(Ee(1e-8)).dataSync()[0];if(se().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?GZ:HZ}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,c;l&&(c=w.now());let u=t.texShape;if(u==null&&(u=h4(n,i),t.texShape=u),r!=null){let d=p0(n),p,h=u[1],f=u[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;i?([h,f]=Eu(u[0],u[1]),p=new OK(d,m)):p=new $K(d,m);let g=this.makeTensorInfo([f,h],s);m?this.texData.get(g.dataId).usage=Cs.PIXELS:this.texData.get(g.dataId).usage=Cs.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,f,r);let A=[[f,h]],y=!0,x=this.runWebGLProgram(p,[g],s,A,y),b=this.texData.get(x.dataId);t.texture=b.texture,t.texShape=b.texShape,t.isPacked=b.isPacked,t.usage=b.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(x.dataId),t.values=null,l&&(this.uploadWaitMs+=w.now()-c)}else{let d=this.acquireTexture(u,o,s,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=ZZ(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}};Pu.nextDataId=0;function ZZ(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var YZ="3.10.0";function Y4(){se().set("WEBGL_FORCE_F16_TEXTURES",!0)}Lc.isBrowser()&&nu("webgl",()=>new Pu,2);var JZ={forceHalfFloat:Y4},J4=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Mu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Ns(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},b0=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,zd=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=R.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=Ns(r);let a="";if(s)if(r===0||w.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${yt(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?a+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=Ln("coords",r);this.enableShapeUniforms?a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function ms(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var QZ={kernelName:go,backendName:"webgl",kernelFunc:ms};function Fa(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=ms({inputs:{x:s},backend:n}),l=ms({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var eY={kernelName:Gp,backendName:"webgl",kernelFunc:Fa},Q4="return (a < 0.) ? b * a : a;",ek=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function tY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),i=se().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new zd(ek,r.shape,o.shape):new Mu(Q4,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],"float32");return n.disposeIntermediateTensorInfo(o),l}var nY={kernelName:Ao,backendName:"webgl",kernelFunc:tY},tk="return (a < 0.) ? b * a : a;",nk=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function sY(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=se().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new zd(nk,s.shape,r.shape):new Mu(tk,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var rY={kernelName:Ro,backendName:"webgl",kernelFunc:sY},sk="if (isnan(x)) return x;",aY=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,oY=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function nt({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),p=n(d.values,l);return i.makeTensorInfo(o.shape,l,p)}let c=se().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new Ou(o.shape,t):u=new _a(o.shape,e),i.runWebGLProgram(u,[o],l)}}function wn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:c}=o,u=i;if(s&&l.dtype==="complex64"){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[g,A]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[b,v]=x,I={dataId:b.dataId,dtype:b.dtype,shape:l.shape},C={dataId:v.dataId,dtype:v.dtype,shape:c.shape},N=new Mu(e,l.shape,c.shape);return u.runWebGLProgram(N,[I,C],Ps(b.dtype,v.dtype))}),y=Fa({inputs:{real:g,imag:A},backend:u});return u.disposeIntermediateTensorInfo(g),u.disposeIntermediateTensorInfo(A),y}let d=a||Ps(l.dtype,c.dtype);if((l.dtype==="string"||c.dtype==="string"||u.shouldExecuteOnCPU([l,c]))&&r!=null){let f=u.texData.get(l.dataId).values,m=u.texData.get(c.dataId).values,g=l.dtype==="string"?R.fromUint8ToStringArray(f):f,A=l.dtype==="string"?R.fromUint8ToStringArray(m):m,[y,x]=r(l.shape,c.shape,g,A,d),b=u.makeTensorInfo(x,d),v=u.texData.get(b.dataId);return v.values=y,b}let p=se().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return p?h=new zd(t,l.shape,c.shape,n):h=new Mu(e,l.shape,c.shape),u.runWebGLProgram(h,[l,c],d)}}function v0(e,t=!1){if(e==="linear")return t?MZ:_Z;if(e==="relu")return t?LZ:$Z;if(e==="elu")return t?zZ:FZ;if(e==="relu6")return t?BZ:OZ;if(e==="prelu")return t?nk:tk;if(e==="leakyrelu")return t?ek:Q4;if(e==="sigmoid")return t?WZ:PZ;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var rk=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=Ns(this.outputShape.length);let c=s?e[1]:e[2],u=Math.ceil(c/2),d=s?"i * 2, rc.y":"rc.y, i * 2",p=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${o}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${o}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${o}
|
|
}`,g="result = activation(result);");let A=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",x="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${u}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${u}; i++) {
|
|
int batchA = ${y};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${d});
|
|
vec4 b = getMatrixB(batchB, ${p});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${f[0]});
|
|
result += (${h[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${A}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},ak={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},ok=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},ik="return a * b;";function H2(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=R.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),c=new ok(ak.REAL,s.shape,r.shape),u=new ok(ak.IMAG,s.shape,r.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Fa({inputs:{real:p,imag:h},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[c,u]=nZ(s.shape,r.shape,i.values,l.values,a),d=n.makeTensorInfo(u,a),p=n.texData.get(d.dataId);return p.values=c,d}let o;return se().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new zd(ik,s.shape,r.shape):o=new Mu(ik,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var iY={kernelName:Co,backendName:"webgl",kernelFunc:H2};function lY(e,t,n){let s=[Ii(e.shape),...Si(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[Ii(t),...Si(t)],o=new j4(a,s),i=!0,l=[s],c=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:c.dataId,shape:t,dtype:c.dtype}}function ve(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=w.sizeFromShape(r.shape),l=w.inferFromImplicitShape(a,i),c=w.sizeFromShape(l);w.assert(i===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let u=o.texData.get(r.dataId);return u.isPacked&&!Pd(r.shape,l)&&!(u.texture!==null&&Pd(u.shape,l))?lY(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var uY={kernelName:Fl,backendName:"webgl",kernelFunc:ve},lk=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${w.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${o};
|
|
if (${i===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},cY=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,d=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,p="vec4";t==="all"?(o="1.0",d=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,p="bvec4"):t==="any"&&(o="0.0",d=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,p="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${o});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${u===1}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===2}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===3}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function dY(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=R.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function Ni(e,t,n,s){let r=dY(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:c}=r[o],u,d;n==="mean"?u=o===0?new lk({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},i):new lk({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c}):u=new cY({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},n),d=a,a=s.runWebGLProgram(u,[a],t),d.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(d)}return a}var pY=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=yt(this.rank),r=hY(t);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function hY(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var fY=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=yt(this.rank),r=H4("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=r[c];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${i}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${i}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function w0(e,t,n){let s=se().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new fY(e.shape,t):new pY(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function mY(e,t,n,s){let r=t,a=e.shape.length,o=w.parseAxisParam(r,e.shape),i=o,l=R.getAxesPermutation(i,a),c=l!=null,u=e;c&&(u=w0(e,l,s),i=R.getInnerMostAxes(i.length,a)),R.assertAxesAreInnerMostDims("sum",i,a);let[d,p]=R.computeOutAndReduceShapes(u.shape,i),h=d;n&&(h=R.expandShapeToKeepDim(d,o));let f=w.sizeFromShape(p),g=w.sizeFromShape(e.shape)/f,A=ve({inputs:{x:u},attrs:{shape:[g,f]},backend:s}),y=Eh(e.dtype),x=Ni(A,y,"sum",s),b=ve({inputs:{x},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(A),s.disposeIntermediateTensorInfo(x),c&&s.disposeIntermediateTensorInfo(u),b}function k0(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return mY(r,a,o,n)}var gY={kernelName:Bo,backendName:"webgl",kernelFunc:k0};function Bn(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let u=0;u<l.length;u++)l[u]=r.shape[a[u]];let c;if(o.shouldExecuteOnCPU([r])){let d=o.texData.get(r.dataId).values,p=G2(d,r.shape,r.dtype,a,l);c=o.makeTensorInfo(l,r.dtype);let h=o.texData.get(c.dataId);h.values=p}else c=w0(r,a,o);return c}var AY={kernelName:jo,backendName:"webgl",kernelFunc:Bn},uk=1e3;function I0({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,d=n?e.shape[c-2]:e.shape[c-1],p=s?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],f=s?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),A=w.sizeFromShape(m),y=w.sizeFromShape(g),x=A===y||A===1||y===1;w.assert(c>=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${g}).`);let v=(A>y?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,f]);w.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let I=n?[A,d,h]:[A,h,d],C=s?[y,f,p]:[y,p,f],N=ve({inputs:{x:e},backend:r,attrs:{shape:I}}),$=ve({inputs:{x:t},backend:r,attrs:{shape:C}}),O=[N,$],E=Math.max(A,y),F=n?N.shape[1]:N.shape[2],T=a!=null,M=o!=null,G=l==="leakyrelu",H=l!=null?v0(l,!0):null,z=T||M||G||H!=null,X;if((h===1||f===1)&&F>uk&&z===!1){let Z=N,ne=$;n&&(Z=Bn({inputs:{x:N},backend:r,attrs:{perm:[0,2,1]}}),O.push(Z)),s&&(ne=Bn({inputs:{x:$},backend:r,attrs:{perm:[0,2,1]}}),O.push(ne));let te=f!==1,J=f===1,ee=Z;te&&(ee=ve({inputs:{x:Z},backend:r,attrs:{shape:[E,F,1]}}),O.push(ee));let ce=f===1?2:1,pe=ne;J&&(pe=ve({inputs:{x:ne},backend:r,attrs:{shape:[E,1,F]}}),O.push(pe));let be=H2({inputs:{a:ee,b:pe},backend:r});X=k0({inputs:{x:be},backend:r,attrs:{axis:ce,keepDims:!0}}),O.push(be)}else{let Z=Ps(e.dtype,t.dtype),ne=new rk(I,C,[E,h,f],n,s,T,H,M,G),te=[N,$];if(a!=null&&te.push(a),M&&te.push(o),G){let J=r.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));te.push(J),O.push(J)}X=r.runWebGLProgram(ne,te,Z)}let Q=ve({inputs:{x:X},backend:r,attrs:{shape:v}});O.push(X);for(let Z of O)r.disposeIntermediateTensorInfo(Z);return Q}function yY(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s;return I0({a:r,b:a,transposeA:l,transposeB:c,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var xY={kernelName:qo,backendName:"webgl",kernelFunc:yY},ck="return abs(x);";function bY(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=U4(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return se().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Ou(s.shape,ck):r=new _a(s.shape,ck),n.runWebGLProgram(r,[s],s.dtype)}var vY={kernelName:Xi,backendName:"webgl",kernelFunc:bY},wY=lr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,kY=nt({opSnippet:wY}),IY={kernelName:Ki,backendName:"webgl",kernelFunc:kY},SY=lr+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,CY=nt({opSnippet:SY}),TY={kernelName:Zi,backendName:"webgl",kernelFunc:CY},dk="return a + b;",NY=wn({opSnippet:dk,packedOpSnippet:dk,supportsComplex:!0,cpuKernelImpl:MK}),EY={kernelName:la,backendName:"webgl",kernelFunc:NY},RY=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}},DY=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}};function S0(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return ms({inputs:{x:s[0]},backend:n});if(s.length>se().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),c=S0({inputs:s.slice(0,l),backend:n}),u=S0({inputs:s.slice(l),backend:n});return S0({inputs:[c,u],backend:n})}let r=s.map(l=>l.dtype).reduce((l,c)=>Ps(l,c)),a=s.map(l=>l.shape),i=se().getBool("WEBGL_PACK")?new DY(s[0].shape,a):new RY(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var _Y={kernelName:Za,backendName:"webgl",kernelFunc:S0};function FY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=l,u=R.getAxesPermutation(c,i),d=r;u!=null&&(d=Bn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=R.getInnerMostAxes(c.length,i)),R.assertAxesAreInnerMostDims("all",c,i);let[p,h]=R.computeOutAndReduceShapes(d.shape,c),f=w.sizeFromShape(h),m=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Ni(m,m.dtype,"all",n),A;if(o){let y=R.expandShapeToKeepDim(p,l);A=ve({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=ve({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var $Y={kernelName:Yi,backendName:"webgl",kernelFunc:FY};function OY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=l,u=R.getAxesPermutation(c,i),d=r;u!=null&&(d=Bn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=R.getInnerMostAxes(c.length,i)),R.assertAxesAreInnerMostDims("any",c,i);let[p,h]=R.computeOutAndReduceShapes(d.shape,c),f=w.sizeFromShape(h),m=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Ni(m,m.dtype,"any",n),A;if(o){let y=R.expandShapeToKeepDim(p,l);A=ve({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=ve({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var PY={kernelName:Ji,backendName:"webgl",kernelFunc:OY},MY=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${s};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
int inIdx = ${i};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${o} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},zY=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=yt(i),c=Ln("coords",i),u,d;if(a===1){d=i+1;let C=yt(d);u=`
|
|
${C} sourceLocR = ${C}(${c.join()}, 0);
|
|
++${c[i-1]};
|
|
${C} sourceLocG = ${C}(${c.join()}, 0);
|
|
++${c[i-2]};
|
|
${C} sourceLocA = ${C}(${c.join()}, 0);
|
|
--${c[i-1]};
|
|
${C} sourceLocB = ${C}(${c.join()}, 0);
|
|
--${c[i-2]};`}else d=i,u=`
|
|
${l} sourceLocR = coords;
|
|
++${c[i-1]};
|
|
${l} sourceLocG = coords;
|
|
++${c[i-2]};
|
|
${l} sourceLocA = coords;
|
|
--${c[i-1]};
|
|
${l} sourceLocB = coords;
|
|
--${c[i-2]};`;let p=["x","y","z","w","u","v"].slice(0,d),h="."+p[d-1],f=p.map(C=>"int "+C),m=Ln("sourceLocR",d-1).concat("inIdx.r"),g=Ln("sourceLocG",d-1).concat("inIdx.g"),A=Ln("sourceLocB",d-1).concat("inIdx.b"),y=Ln("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",b=s?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${y.join()})));`,v=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,I=s?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}
|
|
${I}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${c[i-1]} < ${o[i-1]-1};
|
|
bool hasNextRow = ${c[i-2]} < ${o[i-2]-1};
|
|
${u}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${v};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${v};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function pk(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=R.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new MY(i,n,s==null),c=[t];s!=null&&c.push(s);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let d=pk(e,t,n,u);return e.disposeIntermediateTensorInfo(u),d}function hk(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=R.computeOptimalWindowSize(a),i=new zY(r,o,n,s==null),l=s==null?[t]:[t,s],c=e.runWebGLProgram(i,l,"int32");if(c.shape.length===t.shape.length){let u=hk(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function fk(e,t,n,s){let r=[n];if(R.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!se().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[c,u]=R.computeOutAndReduceShapes(l.shape,r),d=w.sizeFromShape(u),p=ve({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});a.push(p);let h=pk(e,p,s);a.push(h);let f=ve({inputs:{x:h},backend:e,attrs:{shape:c}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return hk(e,t,s)}function LY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=w.parseAxisParam(a,r.shape),i=R.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Bn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=R.getInnerMostAxes(o.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let u=fk(n,l,o[0],"max");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var BY={kernelName:Ya,backendName:"webgl",kernelFunc:LY};function WY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=w.parseAxisParam(a,r.shape),i=R.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Bn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=R.getInnerMostAxes(o.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let u=fk(n,l,o[0],"min");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var VY={kernelName:gc,backendName:"webgl",kernelFunc:WY},UY=lr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,GY=nt({opSnippet:UY}),HY={kernelName:Qi,backendName:"webgl",kernelFunc:GY},jY=lr+"return log(x + sqrt(x * x + 1.0));",qY=nt({opSnippet:jY}),XY={kernelName:el,backendName:"webgl",kernelFunc:qY},KY=lr+`
|
|
return atan(x);
|
|
`,ZY=nt({opSnippet:KY}),YY={kernelName:tl,backendName:"webgl",kernelFunc:ZY},JY=aY+`
|
|
return atan(a, b);
|
|
`,QY=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+oY+`
|
|
return result;
|
|
`,eJ=wn({opSnippet:JY,packedOpSnippet:QY}),tJ={kernelName:sl,backendName:"webgl",kernelFunc:eJ},nJ=lr+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,sJ=nt({opSnippet:nJ}),rJ={kernelName:nl,backendName:"webgl",kernelFunc:sJ},Ld=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,A="0.0";if(f||(A="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${c}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${C} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?m:g:`wR * ${d} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let y="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(a/4)*4,v=a%4,I=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${y}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
const float initializationValue = ${A};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${A});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
getValue(batch, xR, xC + 3 * ${c}, d)
|
|
);
|
|
|
|
${I}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${v===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${I}
|
|
} else if (${v===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${I}
|
|
} else if (${v===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${I}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},j2=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,d=e.dilationWidth,p=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,A=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",x="0.0";if(y||(x="-1.0 / 1e-20"),n){let $=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${$} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let I=Math.floor(a/4)*4,C=a%4,N=`
|
|
if (${y}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${A});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${I}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
|
|
);
|
|
|
|
${N}
|
|
}
|
|
|
|
int xC = xCCorner + ${I};
|
|
if (${C===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${N}
|
|
} else if (${C===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${N}
|
|
} else if (${C===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${N}
|
|
}
|
|
}
|
|
setOutput(${v});
|
|
}
|
|
}
|
|
`}};function aJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ru(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;w.assert(R.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=R.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return ms({inputs:{x:r},backend:n});let d=new Ld(u,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var oJ={kernelName:Ja,backendName:"webgl",kernelFunc:aJ};function iJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s,u=[1,1,1],d=R.computePool3DInfo(r.shape,a,o,u,i,l,c),p=new j2(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var lJ={kernelName:Ac,backendName:"webgl",kernelFunc:iJ},uJ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=i-1-e.padInfo.top,u=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${c}, ${u});
|
|
const float avgMultiplier = float(${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${i};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},cJ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,h=u-1-e.padInfo.front,f=d-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${u};
|
|
wD += ${i}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${c}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function dJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=R.computePool3DInfo(o.shape,i,l,d,c,u),h=new cJ(p);return n.runWebGLProgram(h,[r],o.dtype)}var pJ={kernelName:Wp,backendName:"webgl",kernelFunc:dJ};function hJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Ru([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=R.computePool2DInfo(o.shape,i,l,1,c),d=new uJ(u);return n.runWebGLProgram(d,[r],o.dtype)}var fJ={kernelName:Bp,backendName:"webgl",kernelFunc:hJ};function mJ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return I0({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var gJ={kernelName:Qa,backendName:"webgl",kernelFunc:mJ},AJ=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(R.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${o};
|
|
float scale = ${i};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},yJ=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(R.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${o};
|
|
vec4 scale = ${i};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},xJ=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;w.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[s,r,a],u=null;o!=null&&(u=o.shape,c.push(o));let d=null;i!=null&&(d=i.shape,c.push(i));let p=se().getBool("WEBGL_PACK_NORMALIZATION")?new yJ(s.shape,r.shape,a.shape,u,d,l):new AJ(s.shape,r.shape,a.shape,u,d,l);return t.runWebGLProgram(p,c,c[0].dtype)},bJ={kernelName:fo,backendName:"webgl",kernelFunc:xJ},vJ=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=yt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=wJ(this.rank),s,r=e.map((a,o)=>`sourceLoc.${q2[o]} = start[${o}] + coords.${q2[o]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},q2=["x","y","z","w","u","v"];function wJ(e){if(e===1)return"sourceLoc";if(e<=6)return q2.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var kJ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=yt(this.rank),n=Ln("coords",this.rank),s=Ln("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.y = ${a};
|
|
--${s[this.rank-1]};
|
|
}
|
|
`,i=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${s[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${s[u]} = ${n[u]} + start[${u}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${o}
|
|
${i}
|
|
setOutput(result);
|
|
}
|
|
`}};function IJ(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Fn.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function zu(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Fn.parseSliceParams(r,a,o);if(Fn.assertParamsValid(r,i,l),w.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),p=uZ(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}let{isPacked:c}=n.texData.get(r.dataId),u=Fn.isSliceContinous(r.shape,i,l);if(c||!u){let d=se().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new kJ(l):new vJ(l),p=[i];return n.runWebGLProgram(d,[r],r.dtype,p)}return n.uploadToGPU(r.dataId),IJ(r,i,l,n)}var SJ={kernelName:Ml,backendName:"webgl",kernelFunc:zu},CJ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=R.getReshaped(r.shape,a,i),c=R.getPermuted(l.length,a.length),u=R.getReshapedPermuted(r.shape,a,i),d=R.getSliceBeginCoords(o,a.length),p=R.getSliceSize(u,o,a.length),h=[],f=ve({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Bn({inputs:{x:f},backend:n,attrs:{perm:c}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:u}}),A=zu({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},TJ={kernelName:rl,backendName:"webgl",kernelFunc:CJ};function NJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),c=V4(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var EJ={kernelName:Vp,backendName:"webgl",kernelFunc:NJ};function RJ(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),o=n.readSync(r.dataId),i=R.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var DJ={kernelName:Up,backendName:"webgl",kernelFunc:RJ},_J="return float(a != b);",mk=wn({opSnippet:_J,cpuKernelImpl:rZ,dtype:"bool"}),FJ={kernelName:Sl,backendName:"webgl",kernelFunc:mk};function Bd(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return ms({inputs:{x:r.complexTensorInfos.real},backend:n})}var $J={kernelName:dh,backendName:"webgl",kernelFunc:Bd},OJ="return float(int(x));";function PJ(e,t){let n=new _a(e.shape,OJ),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function X2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return ms({inputs:{x:r},backend:n});let o=Ht(r.shape),i=X2({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Fa({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Bd({inputs:{input:r},backend:n}),i=X2({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(r.dtype,a)){let o=ms({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return PJ(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),l=mk({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var MJ={kernelName:eo,backendName:"webgl",kernelFunc:X2},gk="return ceil(x);",zJ=nt({opSnippet:gk,packedOpSnippet:gk,cpuKernelImpl:LK}),LJ={kernelName:to,backendName:"webgl",kernelFunc:zJ},BJ=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},WJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function VJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;se().getBool("WEBGL_PACK_CLIP")?i=new WJ(r.shape):i=new BJ(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var UJ={kernelName:ua,backendName:"webgl",kernelFunc:VJ},GJ=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function Ak(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function HJ(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new GJ(s.shape),o=[Ak(s,r.complexTensorInfos.real),Ak(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var jJ={kernelName:yc,backendName:"webgl",kernelFunc:HJ},qJ=class{constructor(e){this.outputShape=[],this.outputShape=R.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},XJ=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=R.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=yt(s),a=Ln("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],c=o.slice(-2),u=o.join(),d=`if (${l} < ${i[0]}) {
|
|
return getChannel(
|
|
getT0(${u}), vec2(${c.join()}));
|
|
}`;for(let f=1;f<i.length;f++){let m=i[f-1];d+=`
|
|
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${C0(o,l,m)}),
|
|
vec2(${C0(c,l,m)}));
|
|
}`}let p=i.length,h=i[i.length-1];d+=`
|
|
return getChannel(
|
|
getT${p}(${C0(o,l,h)}),
|
|
vec2(${C0(c,l,h)}));`,this.userCode=`
|
|
float getValue(${o.map(f=>"int "+f)}) {
|
|
${d}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[s-1]} = ${a[s-1]} + 1;
|
|
if (${a[s-1]} < ${n[s-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[s-2]} = ${a[s-2]} + 1;
|
|
if (${a[s-2]} < ${n[s-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[s-1]} = ${a[s-1]} - 1;
|
|
if (${a[s-2]} < ${n[s-2]} &&
|
|
${a[s-1]} < ${n[s-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function C0(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function T0(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return ms({inputs:{x:r.complexTensorInfos.imag},backend:n})}var KJ={kernelName:rh,backendName:"webgl",kernelFunc:T0};function Lu(e,t,n){let s=e[0].dtype;if(s==="complex64"){let u=e.map(m=>Bd({inputs:{input:m},backend:n})),d=e.map(m=>T0({inputs:{input:m},backend:n})),p=Lu(u,t,n),h=Lu(d,t,n),f=Fa({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let u=e.map(A=>{let y=w.sizeFromShape(A.shape.slice(t));return ve({inputs:{x:A},backend:n,attrs:{shape:[-1,y]}})}),d=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),p=R.computeOutShape(u.map(A=>A.shape),1),h=u[0].shape[0]===1,f=BK(d,p,s,h),m=R.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(m,s,f);return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),g}if(e.length>se().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),d=Lu(e.slice(0,u),t,n),p=Lu(e.slice(u),t,n),h=Lu([d,p],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),h}if(se().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new XJ(e.map(d=>d.shape),t);return n.runWebGLProgram(u,e,s)}let{tensors2D:a,outShape:o}=ZJ(e,t,n),i=new qJ(a.map(u=>u.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=ve({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),c}function ZJ(e,t,n){let s=R.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ve({inputs:{x:a},attrs:{shape:[-1,w.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function yk(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],o=R.computeOutShape(t.map(c=>c.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(c=>w.sizeFromShape(c.shape)>0);if(i.length===1)return ms({inputs:{x:i[0]},backend:n});let l=i.map(c=>c.shape);return R.assertParamsConsistent(l,a),Lu(i,a,n)}var YJ={kernelName:al,backendName:"webgl",kernelFunc:yk},xk=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,A=m?2:3,y=m?3:1,x="",b="";n&&(s?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let v=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${y}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${A}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${c};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${v}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},JJ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${a}, ${o});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${s});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${u}; wF++) {
|
|
int xF = xFCorner + wF * ${i};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},QJ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Ns(this.outputShape.length);let{dataFormat:n}=t,s=zn(),r=n==="channelsLast",a=r?0:1,o=r?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let c=0;c<=1;c++)for(let u=0;u<=1;u++)l+=`
|
|
blockIndex = rc.y + ${u};
|
|
pos = rc.x + ${c};
|
|
|
|
${i}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${a}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${o}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${c*2+u}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${c*2+u}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${s.output} = result;
|
|
}
|
|
`}};function bk({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,c=s.texData.get(e.dataId),u=n.inChannels,d=l[0]*l[1]*l[2],p=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,A=[];if(!((d===1||p===1)&&u>uk)&&c.isPacked&&h&&c.texture!=null&&l[2]%2!=0&&w.arraysEqual(c.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),v={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},I=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,w.assert(Pd(c.shape,v.shape),()=>`packed reshape ${c.shape} to ${v.shape} isn't free`);let C=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});A.push(C);let N=I0({a:v,b:C,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),$=s.texData.get(N.dataId);w.assert($.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=I,$.shape=n.outShape,g=ms({inputs:{x:N},backend:s}),g.shape=n.outShape,A.push(N)}else{let b=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],v=ve({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),I=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),C=I0({a:v,b:I,transposeA:f,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=ve({inputs:{x:C},backend:s,attrs:{shape:n.outShape}}),A.push(v),A.push(I),A.push(C)}for(let b of A)s.disposeIntermediateTensorInfo(b);return g}function vk({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:d,outHeight:p,dataFormat:h}=n,f=h==="channelsLast",m=l*c*u,g=p*d,A=[m,g],y=!0,x=!1,b=[],v=ve({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),I=ve({inputs:{x:t},backend:s,attrs:{shape:[1,m,w.sizeFromShape(t.shape)/m]}});b.push(v),b.push(I);let C=new QJ(A,n),N=[v.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],$=s.runWebGLProgram(C,[v],"float32",N),O=ve({inputs:{x:$},backend:s,attrs:{shape:[1,A[0],A[1]]}});b.push($),b.push(O);let E=r!=null,F=a!=null,T=i==="leakyrelu",M=i?v0(i,!0):null,G=new rk(O.shape,I.shape,[1,g,n.outChannels],y,x,E,M,F,T),H=[O,I];if(r&&H.push(r),F&&H.push(a),T){let Z=s.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));H.push(Z),b.push(Z)}let z=s.runWebGLProgram(G,H,"float32"),X=f?[1,p,d,n.outChannels]:[1,n.outChannels,p,d],Q=ve({inputs:{x:z},backend:s,attrs:{shape:X}});b.push(z);for(let Z of b)s.disposeIntermediateTensorInfo(Z);return Q}function eQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s,d=R.convertConv2DDataFormat(l),p=R.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))h=bk({x:r,filter:a,convInfo:p,backend:n});else if(se().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=vk({x:r,filter:a,convInfo:p,backend:n});else{let m=new xk(p);h=n.runWebGLProgram(m,[r,a],"float32")}let f=ve({inputs:{x:h},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(h),f}var tQ={kernelName:no,backendName:"webgl",kernelFunc:eQ},nQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},sQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,c=a?2:3,u=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${u}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},rQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${s} - ${o};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},aQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=s-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${i}, ${l}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${s} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function oQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s,d=R.convertConv2DDataFormat(l),p=R.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),h=new nQ(p);return n.runWebGLProgram(h,[r,a],"float32")}var iQ={kernelName:Hp,backendName:"webgl",kernelFunc:oQ};function lQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s,d=R.convertConv2DDataFormat(c),p=R.computeConv2DInfo(o,a.shape,i,1,l,u,!1,d),h=new sQ(p);return n.runWebGLProgram(h,[r,a],"float32")}var uQ={kernelName:so,backendName:"webgl",kernelFunc:lQ};function cQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=R.computeConv3DInfo(r.shape,a.shape,o,l,i),u=new JJ(c);return n.runWebGLProgram(u,[r,a],"float32")}var dQ={kernelName:xc,backendName:"webgl",kernelFunc:cQ};function pQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,c=R.computeConv3DInfo(r.shape,l,o,1,i),u=new rQ(c);return n.runWebGLProgram(u,[r,a],"float32")}var hQ={kernelName:jp,backendName:"webgl",kernelFunc:pQ};function fQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,c=R.computeConv3DInfo(l,a.shape,i,1,o),u=new aQ(c);return n.runWebGLProgram(u,[r,a],"float32")}var mQ={kernelName:qp,backendName:"webgl",kernelFunc:fQ},gQ=sk+`
|
|
return cos(x);
|
|
`,AQ=nt({opSnippet:gQ}),yQ={kernelName:ro,backendName:"webgl",kernelFunc:AQ},xQ=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,bQ=nt({opSnippet:xQ}),vQ={kernelName:ao,backendName:"webgl",kernelFunc:bQ},wQ=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[c]=t,[u,d]=n;this.outputShape=[c,u,d,l];let p=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,A]=u>1?[`${(o-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,x,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${y});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${A};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${p} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},kQ=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,u=new wQ(r.shape,a.shape,i,l,c);return n.runWebGLProgram(u,[r,a,o],"float32")},IQ={kernelName:ol,backendName:"webgl",kernelFunc:kQ},wk=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${kk(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${yt(s)} coords = getOutputCoords();
|
|
int end = ${Ik(s,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${o}) {
|
|
int idx = ${i};
|
|
${Ik(s,"coords")} = idx;
|
|
val += getX(${kk(s,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function kk(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Ik(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function SQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,c=R.getAxesPermutation([a],l),u=r;c!=null&&(u=Bn({inputs:{x:r},backend:n,attrs:{perm:c}}));let d=R.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let p=u.shape[d],h=ms({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new wk(u.shape,!1,i),g=[[f]],A=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(A)}if(o){let f=new wk(u.shape,o,i),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(c!=null){let f=R.getUndoAxesPermutation(c),m=Bn({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),m}return h}var CQ={kernelName:oo,backendName:"webgl",kernelFunc:SQ};function TQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=V4(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=zK(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var NQ={kernelName:Xp,backendName:"webgl",kernelFunc:TQ},EQ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function RQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=new EQ(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var DQ={kernelName:il,backendName:"webgl",kernelFunc:RQ},Sk=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Ns(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",c="";n&&(s?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,c="result = activation(result);");let u=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${i};
|
|
int q = d2 - d1 * ${i};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${a}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${u}
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},Ck=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Ns(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,c=e.filterHeight,u=e.filterWidth,d=u,p=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<u;g++)p+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;p+=`
|
|
for (int r = 0; r < ${c}; r++) {
|
|
`;for(let g=0;g<u;g++)p+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;p+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(d+1)/2;g++){let A=g*2;if(p+=`
|
|
xC = xCCorner + ${A*l};
|
|
`,i===1){if(A<u&&(o%2==1?(p+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
`,l===1&&A>0?p+=`
|
|
xC${A} = vec4(xTexelC${A-2}.zw, xTexelC${A}.xy);
|
|
`:p+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${A} = vec4(previous.zw, xTexelC${A}.xy);
|
|
} else {
|
|
xC${A} = vec4(0.0, 0.0, xTexelC${A}.xy);
|
|
}
|
|
`):p+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
xC${A} = xTexelC${A};
|
|
`,A+1<u)){let y=o%2==0?w.nearestLargerEven(l):l;l%2==0&&o%2==1||l%2!=0&&o%2!=1?(p+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
`,l>1&&(p+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
`),p+=`
|
|
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.xy);
|
|
`):y===1?p+=`
|
|
xC${A+1} = xTexelC${A};
|
|
`:p+=`
|
|
xCOffset = xC + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A+1} = xTexelC${A+1};
|
|
`}}else A<u&&(o%2==1?(p+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
|
|
`,A+1<u&&(p+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${A+1} = vec4(xTexelC${A+1}.xy, final.xy);
|
|
`)):(p+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A} = vec4(
|
|
xTexelC${A}.xy, xTexelC${A+1}.xy);
|
|
`,A+1<u&&(p+=`
|
|
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
|
|
`)));A<u&&(p+=`
|
|
wTexel = getW(r, ${A}, d1, q);
|
|
dotProd += xC${A} * vec4(wTexel.xz, wTexel.xz);
|
|
`,A+1<u&&(p+=`
|
|
wTexel = getW(r, ${A+1}, d1, q);
|
|
dotProd += xC${A+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}p+=`
|
|
}
|
|
`,p+=`
|
|
}
|
|
`;let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${p}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function _Q(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s,u=l;u==null&&(u=[1,1]),w.assert(R.eitherStridesOrDilationsAreOne(o,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let d=R.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!0),p;se().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?p=new Ck(d):p=new Sk(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(p,[r,a],"float32",h)}var FQ={kernelName:io,backendName:"webgl",kernelFunc:_Q},$Q=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},OQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${i}; dm++) {
|
|
int d2 = d1 * ${i} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function PQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s,d=R.computeConv2DInfo(r.shape,u,o,i,l,c,!0),p=new $Q(d);return n.runWebGLProgram(p,[r,a],"float32")}var MQ={kernelName:Kp,backendName:"webgl",kernelFunc:PQ};function zQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s,d=R.computeConv2DInfo(u,a.shape,o,i,l,c,!0),p=new OQ(d);return n.runWebGLProgram(p,[r,a],"float32")}var LQ={kernelName:Zp,backendName:"webgl",kernelFunc:zQ},BQ=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function WQ(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=w.sizeFromShape(s.shape),o=ve({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new BQ(a),l=n.runWebGLProgram(i,[o],o.dtype),c=ve({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var VQ={kernelName:Yp,backendName:"webgl",kernelFunc:WQ},UQ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:c}=e,{top:u,left:d}=s;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${a});
|
|
const ivec2 pads = ivec2(${u}, ${d});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${o}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${i}; w++) {
|
|
int wIn = wBeg + w * ${c};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function GQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=R.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),u,d=new UQ(c);u=n.runWebGLProgram(d,[r,a],"float32");let p=ve({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),p}var HQ={kernelName:bc,backendName:"webgl",kernelFunc:GQ};function jQ(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=R.decodeEinsumEquation(r,a.length);R.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=R.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:y}=R.getEinsumPermutation(h,l[g]),x;R.isIdentityPermutation(A)?x=a[g]:(x=Bn({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(x));let b=x.shape.slice();for(let v=0;v<y.length;++v)b.splice(y[v],0,1);w.arraysEqual(x.shape,b)||(x=ve({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=H2({inputs:{a:x,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=k0({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var qQ={kernelName:eh,backendName:"webgl",kernelFunc:jQ},XQ="return (x >= 0.0) ? x : (exp(x) - 1.0);",KQ=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,ZQ=nt({opSnippet:XQ,packedOpSnippet:KQ}),YQ={kernelName:uo,backendName:"webgl",kernelFunc:ZQ},JQ="return (b >= 1.0) ? a : a * (b + 1.0);",QQ=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,eee=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=se().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new zd(QQ,s.shape,r.shape):new Mu(JQ,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},tee={kernelName:th,backendName:"webgl",kernelFunc:eee},nee=`
|
|
return vec4(equal(a, b));
|
|
`,see="return float(a == b);",ree=wn({opSnippet:see,packedOpSnippet:nee,dtype:"bool",cpuKernelImpl:WK}),aee={kernelName:ul,backendName:"webgl",kernelFunc:ree},oee=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${R.ERF_P};
|
|
float a1 = ${R.ERF_A1};
|
|
float a2 = ${R.ERF_A2};
|
|
float a3 = ${R.ERF_A3};
|
|
float a4 = ${R.ERF_A4};
|
|
float a5 = ${R.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,iee=nt({opSnippet:oee}),lee={kernelName:ll,backendName:"webgl",kernelFunc:iee},Tk="return exp(x);",Nk=nt({opSnippet:Tk,packedOpSnippet:Tk,cpuKernelImpl:VK,dtype:"float32"}),uee={kernelName:co,backendName:"webgl",kernelFunc:Nk};function K2(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(w.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),ve({inputs:{x:a},backend:s,attrs:{shape:i}})}var cee={kernelName:cl,backendName:"webgl",kernelFunc:K2},Ek="return exp(x) - 1.0;",dee=nt({opSnippet:Ek,packedOpSnippet:Ek,cpuKernelImpl:UK}),pee={kernelName:dl,backendName:"webgl",kernelFunc:dee},Rk=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${o}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${s});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function Dk(e,t,n){let s=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=ve({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,c=new Rk("real",l,t),u=new Rk("imag",l,t),d=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Fa({inputs:{real:p,imag:h},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h);let m=ve({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function hee(e){let{inputs:t,backend:n}=e,{input:s}=t;return Dk(s,!1,n)}var fee={kernelName:nh,backendName:"webgl",kernelFunc:hee},mee=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function Wd(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||w.inferDtype(r),a==="string"){let o=w.getArrayFromDType(a,w.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new mee(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var gee={kernelName:vc,backendName:"webgl",kernelFunc:Wd},Aee=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},yee={kernelName:pl,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Aee(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},_k="return floor(x);",xee=nt({opSnippet:_k,packedOpSnippet:_k,cpuKernelImpl:GK}),bee={kernelName:po,backendName:"webgl",kernelFunc:xee},vee=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,wee=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,kee=wn({opSnippet:vee,packedOpSnippet:wee,dtype:"int32"}),Iee={kernelName:ho,backendName:"webgl",kernelFunc:kee},See=class{constructor(e){this.variableNames=["A"];let t=zn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},Cee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=zn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},Tee={kernelName:kh,backendName:"webgl",kernelFunc:Nee},Bu;function Nee(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],u=[c,l],d=[c,l,a];(i||o)&&(Bu==null&&(Bu=document.createElement("canvas").getContext("2d")),Bu.canvas.width=l,Bu.canvas.height=c,Bu.drawImage(r,0,0,l,c),r=Bu.canvas);let p=n.makeTensorInfo(u,"int32");n.texData.get(p.dataId).usage=Cs.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),r);let h=se().getBool("WEBGL_PACK")?new Cee(d):new See(d),f=n.runWebGLProgram(h,[p],"int32");return n.disposeData(p.dataId),f}function Eee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=R.convertConv2DDataFormat(u),g=R.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!1,m),A,y=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))A=bk({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(se().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)A=vk({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,v=i!=null,I=h==="leakyrelu",C=h?v0(h,!1):null,N=new xk(g,b,C,v,I),$=[r,a];if(o&&$.push(o),i&&$.push(i),I){let O=n.makeTensorInfo([],"float32",w.createScalarValue(f,"float32"));$.push(O),y.push(O)}A=n.runWebGLProgram(N,$,"float32")}let x=ve({inputs:{x:A},backend:n,attrs:{shape:g.outShape}});return y.push(A),y.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var Ree={kernelName:Xo,backendName:"webgl",kernelFunc:Eee};function Dee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:d,activation:p,leakyreluAlpha:h}=s,f=[],m=u;m==null&&(m=[1,1]),w.assert(R.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=R.computeConv2DInfo(r.shape,a.shape,l,m,c,d,!0),A=se().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,y=p?v0(p,A):null,x=[r,a],b=o!=null,v=i!=null,I=p==="leakyrelu";if(b&&x.push(o),v&&x.push(i),I){let O=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));x.push(O),f.push(O)}let C;A?C=new Ck(g,b,y,v,I):C=new Sk(g,b,y,v,I);let N=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],$=n.runWebGLProgram(C,x,"float32",N);return f.forEach(O=>n.disposeIntermediateTensorInfo(O)),$}var _ee={kernelName:Ko,backendName:"webgl",kernelFunc:Dee},Fee=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=yt(t.length),r=yt(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${s} strides = ${s}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function $ee(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=w.sizeFromShape(s.shape),[l,c,u,d]=R.prepareAndValidate(s,r),p=ve({inputs:{x:r},backend:n,attrs:{shape:[c,o]}}),h=ve({inputs:{x:s},backend:n,attrs:{shape:[w.sizeFromShape(s.shape)/u,u]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let A=n.readSync(r.dataId),y=n.bufferSync(s),x=HK(A,y,s.dtype,c,o,u,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,x.values)}let f=new Fee(o,d,[c,u]),m=n.runWebGLProgram(f,[h,p],h.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var Oee={kernelName:fl,backendName:"webgl",kernelFunc:$ee},Pee=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=yt(this.rank),s=Mee(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function Mee(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("int(getIndices(resRC.x, resRC.z))"):s.push(`${n[r]}`);return s.join()}function Fk(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=w.parseAxisParam(o,r.shape)[0],c=n.readSync(a.dataId),u=r.shape[l];for(let b=0;b<c.length;++b){let v=c[b];w.assert(v<=u-1&&v>=0,()=>`GatherV2: the index value ${v} is not in [0, ${u-1}]`)}let d=R.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=w.sizeFromShape(a.shape),h=[],f=ve({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),m=ve({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,p/d.batchSize]}});h.push(f),h.push(m);let g=[d.batchSize,d.outerSize,p/d.batchSize,d.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let b=n.bufferSync(m),v=n.bufferSync(f),I=jK(v,b,g);return h.forEach(C=>n.disposeIntermediateTensorInfo(C)),n.makeTensorInfo(d.outputShape,I.dtype,I.values)}let A=new Pee(f.shape,g),y=n.runWebGLProgram(A,[f,m],f.dtype);h.push(y);let x=ve({inputs:{x:y},backend:n,attrs:{shape:d.outputShape}});return h.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var zee={kernelName:hl,backendName:"webgl",kernelFunc:Fk},Lee="return float(a > b);",Bee=`
|
|
return vec4(greaterThan(a, b));
|
|
`,Wee=wn({opSnippet:Lee,packedOpSnippet:Bee,cpuKernelImpl:qK,dtype:"bool"}),Vee={kernelName:ml,backendName:"webgl",kernelFunc:Wee},Uee="return float(a >= b);",Gee=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,Hee=wn({opSnippet:Uee,packedOpSnippet:Gee,dtype:"bool",cpuKernelImpl:XK}),jee={kernelName:mo,backendName:"webgl",kernelFunc:Hee};function qee(e){let{inputs:t,backend:n}=e,{input:s}=t;return Dk(s,!0,n)}var Xee={kernelName:sh,backendName:"webgl",kernelFunc:qee},Kee="return float(!isnan(x) && !isinf(x));",Zee=nt({opSnippet:Kee,dtype:"bool"}),Yee={kernelName:gl,backendName:"webgl",kernelFunc:Zee},Jee="return float(isinf(x));",Qee=nt({opSnippet:Jee,dtype:"bool"}),ete={kernelName:Al,backendName:"webgl",kernelFunc:Qee},tte="return float(isnan(x));",nte=nt({opSnippet:tte,dtype:"bool"}),ste={kernelName:yl,backendName:"webgl",kernelFunc:nte},rte="return float(a < b);",ate=`
|
|
return vec4(lessThan(a, b));
|
|
`,ote=wn({opSnippet:rte,packedOpSnippet:ate,cpuKernelImpl:KK,dtype:"bool"}),ite={kernelName:xl,backendName:"webgl",kernelFunc:ote},lte="return float(a <= b);",ute=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,cte=wn({opSnippet:lte,packedOpSnippet:ute,cpuKernelImpl:ZK,dtype:"bool"}),dte={kernelName:bl,backendName:"webgl",kernelFunc:cte};function pte(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=YK(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var hte={kernelName:ah,backendName:"webgl",kernelFunc:pte},fte=`if (x < 0.0) return NAN;
|
|
return log(x);`,mte=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,gte=nt({opSnippet:fte,packedOpSnippet:mte,cpuKernelImpl:JK}),Ate={kernelName:yo,backendName:"webgl",kernelFunc:gte},yte="return log(1.0 + x);",xte=nt({opSnippet:yte}),bte={kernelName:vl,backendName:"webgl",kernelFunc:xte},vte="return float(a >= 1.0 && b >= 1.0);",wte=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,kte=wn({opSnippet:vte,packedOpSnippet:wte,dtype:"bool"}),Ite={kernelName:wl,backendName:"webgl",kernelFunc:kte},Ste="return float(!(x >= 1.0));",Cte=nt({opSnippet:Ste}),Tte={kernelName:wc,backendName:"webgl",kernelFunc:Cte},Nte="return float(a >= 1.0 || b >= 1.0);",Ete=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,Rte=wn({opSnippet:Nte,packedOpSnippet:Ete,dtype:"bool"}),Dte={kernelName:kc,backendName:"webgl",kernelFunc:Rte},_te=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${o}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${i};
|
|
setOutput(val);
|
|
}
|
|
`}},Fte=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${i};
|
|
setOutput(result);
|
|
}
|
|
`}},$te=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,c=se().getBool("WEBGL_PACK_NORMALIZATION")?new Fte(r.shape,a,o,i,l):new _te(r.shape,a,o,i,l);return n.runWebGLProgram(c,[r],r.dtype)},Ote={kernelName:Ic,backendName:"webgl",kernelFunc:$te},Pte=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${s}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${s})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},Mte=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s,d=new Pte(r.shape,i,l,c,u);return n.runWebGLProgram(d,[r,a,o],r.dtype)},zte={kernelName:oh,backendName:"webgl",kernelFunc:Mte};function Lte(e,t,n,s){let r=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Ni(i,e.dtype,"max",s),c=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}function $k(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=l,u=R.getAxesPermutation(c,i),d=u!=null,p=n.shouldExecuteOnCPU([r]),h=r;if(d){if(p){let x=n.texData.get(h.dataId).values,b=new Array(i);for(let C=0;C<b.length;C++)b[C]=r.shape[u[C]];let v=G2(x,r.shape,r.dtype,u,b);h=n.makeTensorInfo(b,r.dtype);let I=n.texData.get(h.dataId);I.values=v}else h=w0(r,u,n);c=R.getInnerMostAxes(c.length,i)}R.assertAxesAreInnerMostDims("max",c,i);let[f,m]=R.computeOutAndReduceShapes(h.shape,c),g=f;o&&(g=R.expandShapeToKeepDim(f,l));let A;if(p){let x=n.texData.get(h.dataId).values,b=QK(x,w.sizeFromShape(m),g,r.dtype);A=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(A.dataId);v.values=b}else A=Lte(h,m,g,n);return d&&n.disposeIntermediateTensorInfo(h),A}var Bte={kernelName:xo,backendName:"webgl",kernelFunc:$k},Wte=J4+`
|
|
return max(a, b);
|
|
`,Vte=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+b0+`
|
|
return result;
|
|
`,Ute=wn({opSnippet:Wte,packedOpSnippet:Vte,cpuKernelImpl:eZ}),Gte={kernelName:bo,backendName:"webgl",kernelFunc:Ute};function Hte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ru(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;w.assert(R.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=R.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return ms({inputs:{x:r},backend:n});let d=new Ld(u,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var jte={kernelName:vo,backendName:"webgl",kernelFunc:Hte};function qte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:c}=s,u=[1,1,1],d=R.computePool3DInfo(r.shape,a,o,u,i,c,l),p=new j2(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var Xte={kernelName:Sc,backendName:"webgl",kernelFunc:qte},Kte=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Zte=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=i-1-e.padInfo.front,d=l-1-e.padInfo.top,p=c-1-e.padInfo.left,h=i*l*c-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${u}, ${d}, ${p});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${i};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${c} +
|
|
wR * ${c} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Yte(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=R.computePool3DInfo(o.shape,i,l,d,c,u),h=new j2(p,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new Zte(p),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var Jte={kernelName:lh,backendName:"webgl",kernelFunc:Yte};function Qte(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Ru([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=R.computePool2DInfo(i.shape,l,c,1,u,d),h=!0,f=new Ld(p,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new Kte(p),A=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var ene={kernelName:ih,backendName:"webgl",kernelFunc:Qte};function tne(e,t,n,s){let r=new Ld(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new Ld(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var nne={kernelName:uh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;w.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let c=[1,1];w.assert(R.eitherStridesOrDilationsAreOne(a,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let u=R.computePool2DInfo(s.shape,r,a,c,o),[d,p]=tne(s,i,u,l);return[d,p]}};function sne(e,t,n,s){let r=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=Ni(i,"float32","mean",s),c=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}var rne={kernelName:wo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=w.parseAxisParam(a,s.shape),c=l,u=R.getAxesPermutation(c,i),d=u!=null,p=o.shouldExecuteOnCPU([s]),h=[],f=s;if(d){if(p){let b=o.texData.get(f.dataId).values,v=new Array(i);for(let N=0;N<v.length;N++)v[N]=s.shape[u[N]];let I=G2(b,s.shape,s.dtype,u,v);f=o.makeTensorInfo(v,s.dtype);let C=o.texData.get(f.dataId);C.values=I}else f=w0(s,u,o);h.push(f),c=R.getInnerMostAxes(c.length,i)}R.assertAxesAreInnerMostDims("sum",c,i);let[m,g]=R.computeOutAndReduceShapes(f.shape,c),A=m;r&&(A=R.expandShapeToKeepDim(m,l));let y=sne(f,g,A,o);for(let x of h)o.disposeIntermediateTensorInfo(x);return y}};function ane(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),c=l,u=R.getAxesPermutation(c,i),d=r;u!=null&&(d=Bn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=R.getInnerMostAxes(c.length,r.shape.length)),R.assertAxesAreInnerMostDims("min",c,i);let[p,h]=R.computeOutAndReduceShapes(d.shape,c),f=w.sizeFromShape(h),m=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Ni(m,m.dtype,"min",n),A;if(o){let y=R.expandShapeToKeepDim(p,l);A=ve({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=ve({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var one={kernelName:ko,backendName:"webgl",kernelFunc:ane},ine=J4+`
|
|
return min(a, b);
|
|
`,lne=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+b0+`
|
|
return result;
|
|
`,une=wn({opSnippet:ine,packedOpSnippet:lne,cpuKernelImpl:tZ}),cne={kernelName:Io,backendName:"webgl",kernelFunc:une},dne=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let s=e.length,r=yt(s),a=t.map(c=>c[0]).join(","),o=t.map((c,u)=>c[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${s}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}},pne=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=yt(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=Ln("rc",s),l=Ln("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,p="";if(s===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${d};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${d};
|
|
}
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${d}) +
|
|
gte * ((end - 1) * 2 - source + ${d});
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},hne=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=se().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new pne(s.shape,r,a):new dne(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},fne={kernelName:So,backendName:"webgl",kernelFunc:hne},mne=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,gne=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+b0+`
|
|
return result;
|
|
`,Ane=wn({opSnippet:mne,packedOpSnippet:gne}),yne={kernelName:kl,backendName:"webgl",kernelFunc:Ane},xne=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},bne=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,vne=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,Ok=wn({opSnippet:bne,packedOpSnippet:vne,checkOutOfBounds:!0}),wne={kernelName:lo,backendName:"webgl",kernelFunc:Ok},Pk="return a - b;",Mk=wn({opSnippet:Pk,packedOpSnippet:Pk,supportsComplex:!0,cpuKernelImpl:AZ}),kne={kernelName:Uo,backendName:"webgl",kernelFunc:Mk};function zk(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=w.parseAxisParam([a],r.shape),i=$k({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=R.expandShapeToKeepDim(i.shape,o),c=ve({inputs:{x:i},backend:n,attrs:{shape:l}}),u=Mk({inputs:{a:r,b:c},backend:n}),d=Nk({inputs:{x:u},backend:n}),p=k0({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=ve({inputs:{x:p},backend:n,attrs:{shape:l}}),f=Ok({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}var Ine={kernelName:Wo,backendName:"webgl",kernelFunc:zk};function Sne(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:zk({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),c=l.shape[0],u=l.shape[1],d=new xne(c,u,a),p=[[o]],h=n.runWebGLProgram(d,[l],"int32",p);return i||n.disposeIntermediateTensorInfo(l),h}var Cne={kernelName:ch,backendName:"webgl",kernelFunc:Sne},Lk="return -x;";function Tne(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=sZ(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return se().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Ou(s.shape,Lk):r=new _a(s.shape,Lk),n.runWebGLProgram(r,[s],s.dtype)}var Nne={kernelName:Il,backendName:"webgl",kernelFunc:Tne},Ene=vr.nonMaxSuppressionV3Impl;function Rne(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,c=n.readSync(r.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=Ene(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Dne={kernelName:Cl,backendName:"webgl",kernelFunc:Rne},_ne=vr.nonMaxSuppressionV4Impl;function Fne(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),{selectedIndices:p,validOutputs:h}=_ne(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var $ne={kernelName:Tl,backendName:"webgl",kernelFunc:Fne},One=vr.nonMaxSuppressionV5Impl;function Pne(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=One(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var Mne={kernelName:Nl,backendName:"webgl",kernelFunc:Pne},zne=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${s}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},Lne=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=w.sizeFromShape(r.shape),c=new zne(l,a,o,i),u=ve({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(c,[u],r.dtype);n.disposeIntermediateTensorInfo(u);let p=[...r.shape,a],h=ve({inputs:{x:d},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(d),h},Bne={kernelName:To,backendName:"webgl",kernelFunc:Lne};function N0(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Bd({inputs:{input:s},backend:n}),a=N0({inputs:{x:r},backend:n}),o=T0({inputs:{input:s},backend:n}),i=N0({inputs:{x:o},backend:n}),l=Fa({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Wd({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Wne={kernelName:ql,backendName:"webgl",kernelFunc:N0};function Bk(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Bd({inputs:{input:s},backend:n}),a=Bk({inputs:{x:r},backend:n}),o=T0({inputs:{input:s},backend:n}),i=N0({inputs:{x:o},backend:n}),l=Fa({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Wd({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Vne={kernelName:El,backendName:"webgl",kernelFunc:Bk};function Une(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return K2({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=K2({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=yk({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var Gne={kernelName:Rl,backendName:"webgl",kernelFunc:Une},Hne=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let s=e.length,r=yt(s),a=t.map(l=>l[0]).join(","),o=t.map((l,c)=>l[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
}
|
|
`}},jne=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=yt(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=Ln("rc",s),l=Ln("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
|
|
if(${c}) {
|
|
`,s===1?"":`}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
|
|
if(${c}) {`],p=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
|
|
${d[f]}
|
|
if (${p}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`;h+=s===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},Wk=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(w.sizeFromShape(r.shape)===0){let c=a.map((u,d)=>u[0]+r.shape[d]+u[1]);return Wd({backend:n,attrs:{shape:c,value:o,dtype:r.dtype}})}let i=se().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new jne(r.shape,a,o):new Hne(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},qne={kernelName:No,backendName:"webgl",kernelFunc:Wk},Xne=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,Kne=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+b0+`
|
|
return result;
|
|
`,Zne=wn({opSnippet:Xne,packedOpSnippet:Kne}),Yne={kernelName:Eo,backendName:"webgl",kernelFunc:Zne};function Jne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],c=w.parseAxisParam(a,r.shape),u=c,d=R.getAxesPermutation(u,i),p=r;d!=null&&(p=Bn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=R.getInnerMostAxes(u.length,i),l.push(p)),R.assertAxesAreInnerMostDims("prod",u,i);let h;if(n.shouldExecuteOnCPU([p])){let f=n.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:A}=aZ(p.shape,p.dtype,f,u);h=n.makeTensorInfo(g,A,m)}else{let[f,m]=R.computeOutAndReduceShapes(p.shape,u),g=w.sizeFromShape(m),A=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,g]}}),y=Eh(r.dtype),x=Ni(A,y,"prod",n);h=ve({inputs:{x},backend:n,attrs:{shape:f}}),l.push(A),l.push(x)}if(o){l.push(h);let f=R.expandShapeToKeepDim(h.shape,c);h=ve({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var Qne={kernelName:Dl,backendName:"webgl",kernelFunc:Jne},Vk=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=oZ(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},ese={kernelName:Cc,backendName:"webgl",kernelFunc:Vk},tse="return 1.0 / x;",nse=nt({opSnippet:tse}),sse={kernelName:_l,backendName:"webgl",kernelFunc:nse},rse=lr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,ase=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,ose=nt({opSnippet:rse,packedOpSnippet:ase}),ise={kernelName:Do,backendName:"webgl",kernelFunc:ose},lse=lr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,use=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,cse=nt({opSnippet:lse,packedOpSnippet:use}),dse={kernelName:Fo,backendName:"webgl",kernelFunc:cse},pse=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},hse=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]},
|
|
${c[1]/u[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function fse(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=se().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new hse(r.shape,l,c,a,o):new pse(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],"float32")}var mse={kernelName:_o,backendName:"webgl",kernelFunc:fse},gse=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Ase(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new gse(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var yse={kernelName:hh,backendName:"webgl",kernelFunc:Ase},xse=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},bse=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]},
|
|
${c[1]/u[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function vse(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=se().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new bse(r.shape,l,c,a,o):new xse(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],r.dtype)}var wse={kernelName:Tc,backendName:"webgl",kernelFunc:vse},kse=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${i[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${i[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Ise(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new kse(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Sse={kernelName:ph,backendName:"webgl",kernelFunc:Ise},Cse=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=yt(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},Tse=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=Ln("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=yt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${i(s.slice())};
|
|
if(${r}){
|
|
result.g = ${l(s.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${c(s.slice())};
|
|
if(${r}) {
|
|
result.a = ${u(s.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function i(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function c(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let f=e.map((A,y)=>p(y,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function Nse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=w.parseAxisParam(a,r.shape);if(o===0)return ms({inputs:{x:r},backend:n});let l=se().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Tse(r.shape,i):new Cse(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var Ese={kernelName:$o,backendName:"webgl",kernelFunc:Nse},Rse=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Dse={kernelName:Xl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Rse(s.shape,a),[c,u]=R.getImageCenter(o,s.shape[1],s.shape[2]),d=[[c,u,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,d)}},_se=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,Fse=nt({opSnippet:_se}),$se={kernelName:Oo,backendName:"webgl",kernelFunc:Fse},Ose="return inversesqrt(x);",Pse=nt({opSnippet:Ose,cpuKernelImpl:iZ}),Mse={kernelName:Po,backendName:"webgl",kernelFunc:Pse},Uk=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=yt(r.length),l=yt(a.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,d="";s===1?d="i":s===2&&(d="i, coords[1]");let p=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${i} strides = ${i}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${u});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${p};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function zse(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=R.calculateShapes(a,r,o),p=[d/c,c];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=ve({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=ve({inputs:{x:a},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new Uk(l,i,h.shape.length,f.shape.length,u,p),A=n.runWebGLProgram(g,[f,h,m],f.dtype),y=ve({inputs:{x:A},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(m),y}var Lse={kernelName:$l,backendName:"webgl",kernelFunc:zse},Bse=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let c=0;c<t.length;c++)l.push(`${o[c]}`),c<e&&i.push(`${o[c]}`);s=i.join(),r=l.join()}let a=yt(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${s});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function Wse(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new Bse(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],Ps(r.dtype,a.dtype))}var Vse={kernelName:Ol,backendName:"webgl",kernelFunc:Wse},Use=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${R.SELU_SCALEALPHA};
|
|
float scale = ${R.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,Gse=nt({opSnippet:Use}),Hse={kernelName:Pl,backendName:"webgl",kernelFunc:Gse},Gk="return 1.0 / (1.0 + exp(-1.0 * x));",jse=nt({opSnippet:Gk,packedOpSnippet:Gk,cpuKernelImpl:lZ}),qse={kernelName:zo,backendName:"webgl",kernelFunc:jse},Xse=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,Kse=nt({opSnippet:Xse}),Zse={kernelName:Ll,backendName:"webgl",kernelFunc:Kse},Yse=sk+`
|
|
return sin(x);
|
|
`,Jse=nt({opSnippet:Yse}),Qse={kernelName:Mo,backendName:"webgl",kernelFunc:Jse},ere=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,tre=nt({opSnippet:ere}),nre={kernelName:zl,backendName:"webgl",kernelFunc:tre},sre=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,rre=nt({opSnippet:sre}),are={kernelName:Bl,backendName:"webgl",kernelFunc:rre},ore=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((A,y)=>A*y),l=[[0,0]];l.push(...o);for(let A=1+a.length;A<r.shape.length;++A)l.push([0,0]);let c=[],u=Wk({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=R.getReshaped(u.shape,a,i,!1),p=R.getPermuted(d.length,a.length,!1),h=R.getReshapedPermuted(u.shape,a,i,!1),f=ve({inputs:{x:u},backend:n,attrs:{shape:d}}),m=Bn({inputs:{x:f},backend:n,attrs:{perm:p}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:h}});return c.push(u),c.push(f),c.push(m),c.forEach(A=>n.disposeIntermediateTensorInfo(A)),g},ire={kernelName:Wl,backendName:"webgl",kernelFunc:ore};function lre(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=n.readSync(o.dataId)[0],[d,p,h,f,m]=cZ(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var ure={kernelName:fh,backendName:"webgl",kernelFunc:lre};function cre(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[c,u,d]=dZ(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var dre={kernelName:mh,backendName:"webgl",kernelFunc:cre};function pre(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=G4(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var hre={kernelName:gh,backendName:"webgl",kernelFunc:pre};function fre(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=G4(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var mre={kernelName:Ah,backendName:"webgl",kernelFunc:fre};function gre(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,strides:u,outputSize:d}=R.calculateShapes(a,r,i),p=!1,h=new Uk(c,l,r.shape.length,a.shape.length,u,[d,1],p),f=n.runWebGLProgram(h,[a,r,o],a.dtype),m=ve({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var Are={kernelName:yh,backendName:"webgl",kernelFunc:gre};function yre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=w.parseAxisParam(o,r.shape)[0],l=R.prepareSplitSize(r,a,i),c=r.shape.length,u=new Array(c).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=zu({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var xre={kernelName:Vl,backendName:"webgl",kernelFunc:yre},Hk="return sqrt(x);",bre=nt({opSnippet:Hk,packedOpSnippet:Hk,cpuKernelImpl:pZ}),vre={kernelName:Lo,backendName:"webgl",kernelFunc:bre},wre="return x * x;",kre=nt({opSnippet:wre}),Ire={kernelName:Nc,backendName:"webgl",kernelFunc:kre},jk="return (a - b) * (a - b);",Sre=wn({opSnippet:jk,packedOpSnippet:jk}),Cre={kernelName:Vo,backendName:"webgl",kernelFunc:Sre};function Tre({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=lr+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,a=new _a(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var Nre={kernelName:da,backendName:"webgl",kernelFunc:Tre},Ere=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=yt(n.length),a=yt(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,c)=>(i++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${i-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}};function Rre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{nonStrided:h,$begin:f,$strides:m,size:g,newShape:A,outShape:y}=Fn.sliceInfo(r.shape,a,o,i,l,c,u,d,p),x=ve({inputs:{x:r},backend:n,attrs:{shape:A}}),b;if(h){let I=zu({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=ve({inputs:{x:I},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(I)}else if(y.some(I=>I===0))b=n.makeTensorInfo(y,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let N=n.texData.get(x.dataId).values,$=He(x.shape,x.dtype,N),O=hZ(y,$,m,f);b=n.makeTensorInfo(y,x.dtype,O.values)}else{let C=new Ere(f,m,y);b=n.runWebGLProgram(C,[x],x.dtype)}let v=ve({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var Dre={kernelName:Ul,backendName:"webgl",kernelFunc:Rre};function _re(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=fZ(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Fre={kernelName:xh,backendName:"webgl",kernelFunc:_re};function $re(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[c,u,d]=mZ(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Ore={kernelName:bh,backendName:"webgl",kernelFunc:$re};function Pre(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=gZ(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Mre={kernelName:vh,backendName:"webgl",kernelFunc:Pre},zre="return tan(x);",Lre=nt({opSnippet:zre}),Bre={kernelName:Go,backendName:"webgl",kernelFunc:Lre},Wre=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,Vre=nt({opSnippet:Wre}),Ure={kernelName:Ho,backendName:"webgl",kernelFunc:Vre},Gre=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=yt(this.rank),r=Hre(e);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function Hre(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function qk(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),c=r.dtype==="string"?l.map(p=>w.decodeString(p)):l,u=He(r.shape,r.dtype,c),d=yZ(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new Gre(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var jre={kernelName:ca,backendName:"webgl",kernelFunc:qk},qre=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},Xre=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function Ei(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function Xk(e){let t=1;for(;t<e;)t*=2;return t}function Kre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=se().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=se().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),c=r.shape,u=c[c.length-1];if(n.shouldExecuteOnCPU([r])||u<i||a>l){let O=n.readSync(r.dataId),[E,F]=xZ(O,c,r.dtype,a,o);return[n.makeTensorInfo(E.shape,E.dtype,E.values),n.makeTensorInfo(F.shape,F.dtype,F.values)]}if(a===0)return c[c.length-1]=0,[n.makeTensorInfo(c,r.dtype,[]),n.makeTensorInfo(c,"int32",[])];if(u===1)return[r,Wd({attrs:{shape:c,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),p=d!==null&&d.isPacked,h=p?n.unpackTensor(r):r,m=w.sizeFromShape(c)/u,g=ve({inputs:{x:h},attrs:{shape:[m,u]},backend:n});p&&Ei(n,h);let A=Xk(a),y=Xk(u),x=null,b=()=>x===null?[g,g]:[g,x],v=(O,E,F)=>{let T=b(),M=new qre(F),H=[[u],[x===null?1:0],[Number.NEGATIVE_INFINITY],[O],[E]],z=x;x=n.runWebGLProgram(M,T,"int32",H),Ei(n,z)};for(let O=1;O<A;O*=2){let E=O*2;for(let F=O;F>=1;F/=2)v(E,F,[m,y])}for(let O=y;O>A;O/=2){let E=b(),F=new Xre([m,O/2]),M=[[u],[x===null?1:0],[A]],G=x;x=n.runWebGLProgram(F,E,"int32",M),Ei(n,G);let H=A/2,z=H*2;for(let X=H;X>=1;X/=2)v(z,X,x.shape)}let I=x;x=zu({inputs:{x},backend:n,attrs:{begin:0,size:[m,a]}}),Ei(n,I);let C=Fk({inputs:{x:g,indices:x},backend:n,attrs:{axis:1,batchDims:1}});Ei(n,g);let N=c.slice(0,-1);N.push(a),I=x,x=ve({inputs:{x},attrs:{shape:N},backend:n}),Ei(n,I);let $=C;return C=ve({inputs:{x:C},attrs:{shape:N},backend:n}),Ei(n,$),[C,x]}var Zre={kernelName:Gl,backendName:"webgl",kernelFunc:Kre},Yre=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${i} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${o} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function Jre(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=new Yre(d,p,o,i,l,g);return n.runWebGLProgram(A,[r,a],"float32")}var Qre={kernelName:Hl,backendName:"webgl",kernelFunc:Jre};function eae(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Ru(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:c}=bZ(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var tae={kernelName:wh,backendName:"webgl",kernelFunc:eae};function nae(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],c=new Array(i-1),u=0;for(let m=0;m<i;m++)m!==a&&(c[u++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[a]=m;let g=zu({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),A=ve({inputs:{x:g},backend:n,attrs:{shape:c}});f[m]=A,d.push(g)}return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var sae={kernelName:jl,backendName:"webgl",kernelFunc:nae},rae=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,d=`
|
|
sumValue += dot(values, segFilter);
|
|
`,p="";r%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${u===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function aae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],c=0,u=R.getAxesPermutation([c],i),d=r;u!=null&&(d=Bn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(d),c=R.getInnerMostAxes(1,i)[0]);let p=R.segment_util.computeOutShape(d.shape,c,o),h=w.sizeFromShape([d.shape[c]]),f=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=Eh(r.dtype),g=(b,v,I,C,N)=>{let $=b.shape[0],O=b.shape[1],E=R.segment_util.segOpComputeOptimalWindowSize(O,N),F={windowSize:E,inSize:O,batchSize:$,numSegments:N},T=new rae(F,v),M=n.compileAndRun(T,[b,I],C);if(l.push(M),M.shape[1]===N)return M;let G=Vk({backend:n,attrs:{start:0,stop:N,step:1,dtype:"float32"}}),H=qk({inputs:{x:G},backend:n,attrs:{reps:[O/E]}});return l.push(G),l.push(H),g(M,v,H,C,N)},A=g(f,"unsortedSegmentSum",a,m,o),y=ve({inputs:{x:A},backend:n,attrs:{shape:p}}),x=y;if(u!=null){l.push(y);let b=R.getUndoAxesPermutation(u);x=Bn({inputs:{x},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var oae={kernelName:Ec,backendName:"webgl",kernelFunc:aae},iae=[Ote,zte,xY,vY,IY,TY,EY,_Y,$Y,PY,BY,VY,HY,XY,tJ,YY,rJ,lJ,oJ,pJ,fJ,gJ,bJ,TJ,EJ,DJ,MJ,LJ,UJ,jJ,eY,YJ,iQ,uQ,tQ,hQ,mQ,dQ,yQ,vQ,IQ,CQ,NQ,DQ,MQ,LQ,FQ,VQ,HQ,qQ,YQ,tee,aee,lee,uee,cee,pee,fee,gee,yee,bee,Iee,Tee,Ree,_ee,Oee,zee,Vee,jee,QZ,Xee,KJ,Yee,ete,ste,nY,ite,dte,hte,bte,Ate,Ite,Tte,Dte,Bte,Xte,jte,Jte,ene,nne,Gte,rne,one,cne,fne,yne,Cne,iY,Nne,Dne,$ne,Mne,FJ,Bne,Vne,Gne,qne,Yne,rY,Qne,ese,$J,wne,sse,dse,ise,uY,mse,yse,wse,Sse,Ese,Dse,$se,Mse,Lse,Vse,Hse,qse,Zse,Qse,nre,SJ,Ine,are,ire,ure,dre,hre,mre,Are,xre,vre,Ire,Cre,Nre,Dre,Fre,Ore,Mre,kne,gY,Bre,Ure,jre,Zre,Qre,AY,tae,sae,oae,Wne];for(let e of iae)pa(e);var Kt;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Kt||(Kt={}));var Vd;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(Vd||(Vd={}));var Kk;function lae(e){Kk=e.wasm.cwrap(qo,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function uae(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let N=n.dataIdMap.get(o.dataId);if(N.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${N.shape.length}.`);f=N.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=Vd[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let A=l?r.shape[2]:r.shape[1],y=c?a.shape[1]:a.shape[2],x=r.shape[0],b=n.makeOutput([x,A,y],r.dtype),v=n.dataIdMap.get(b.dataId).id,I=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(a.shape).buffer);return Kk(p,I,r.shape.length,h,C,a.shape.length,l,c,g,f,m,d||0,v),b}var cae={kernelName:qo,backendName:"wasm",setupFunc:lae,kernelFunc:uae};function kn(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:o,inputs:{x:i}}=a,l=o.dataIdMap.get(i.dataId).id,c=o.makeOutput(i.shape,t||i.dtype),u=o.dataIdMap.get(c.dataId).id;return w.sizeFromShape(c.shape)===0||n(l,Kt[i.dtype],u),c}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var dae=kn(Xi);function Wn(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:c,b:u}=l,d=i.dataIdMap.get(c.dataId).id,p=i.dataIdMap.get(u.dataId).id,h=n!=null?n:c.dtype,f=R.assertAndGetBroadcastShape(c.shape,u.shape),m=i.makeOutput(f,h);if(w.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(c.shape).buffer),A=new Uint8Array(new Int32Array(u.shape).buffer),y=i.dataIdMap.get(m.dataId).id,x=()=>s(d,g,c.shape.length,p,A,u.shape.length,Kt[c.dtype],y);if(t&&c.dtype==="float32")return x(),m;let b=R.getBroadcastDims(c.shape,f),v=R.getBroadcastDims(u.shape,f),I=b.every((N,$)=>N===$),C=v.every((N,$)=>N===$);if(I&&C)return x(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var pae=!0,hae=Wn(la,pae),Zk;function fae(e){Zk=e.wasm.cwrap(Za,null,["array","number","number","number"])}function mae(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return Zk(a,r.length,Kt[s.dtype],o),s}var gae={kernelName:Za,backendName:"wasm",setupFunc:fae,kernelFunc:mae};function E0(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var Aae={kernelName:go,backendName:"wasm",kernelFunc:E0},Yk;function yae(e){Yk=e.wasm.cwrap(jo,null,["number","array","number","number","number","array","number"])}function Wu(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=bae(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=xae(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=E0({inputs:t,backend:n});return f.shape=i,f}let c=n.makeOutput(i,l.dtype),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(c.dataId).id,p=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return Yk(u,h,l.shape.length,Kt[l.dtype],d,p,a.length),c}function xae(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function bae(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var vae={kernelName:jo,backendName:"wasm",kernelFunc:Wu,setupFunc:yae};function $a(e,t,n){let s=e.shape,r=e.shape.length,a=w.parseAxisParam(t,s),o=a,i=R.getAxesPermutation(o,r),l=null,c=!1;if(i!=null){let u=new Array(r);for(let h=0;h<u.length;h++)u[h]=s[i[h]];o=R.getInnerMostAxes(o.length,r),l=Wu({inputs:{x:e},attrs:{perm:i},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(c=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:c}}var Jk;function wae(e){Jk=e.wasm.cwrap(Yi,null,["number, number, number"])}function kae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;c=u,l=x}let f=c.shape.length;R.assertAxesAreInnerMostDims("all",d,f);let[m,g]=R.computeOutAndReduceShapes(c.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;Jk(l,A,x)}if(h&&t.disposeData(u.dataId),a){let x=R.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Iae={kernelName:Yi,backendName:"wasm",setupFunc:wae,kernelFunc:kae},Qk;function Sae(e){Qk=e.wasm.cwrap(Ji,null,["number, number, number"])}function Cae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;c=u,l=x}let f=c.shape.length;R.assertAxesAreInnerMostDims("any",d,f);let[m,g]=R.computeOutAndReduceShapes(c.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;Qk(l,A,x)}if(h&&t.disposeData(u.dataId),a){let x=R.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Tae={kernelName:Ji,backendName:"wasm",setupFunc:Sae,kernelFunc:Cae},e8;function Nae(e){e8=e.wasm.cwrap(Ya,null,["number","number","number","number","number"])}function Eae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:c,axes:u,inputWasTransposed:d}=$a(a,r,t);if(d){let A=t.dataIdMap.get(c.dataId).id;A!==o&&(l=c,i=A)}let p=l.shape.slice(0,-1),h=t.makeOutput(p,"int32"),f=t.dataIdMap.get(h.dataId).id,m=w.sizeFromShape(h.shape),g=l.shape[u[0]];return e8(i,Kt[l.dtype],m,g,f),d&&t.disposeData(c.dataId),h}var Rae={kernelName:Ya,backendName:"wasm",kernelFunc:Eae,setupFunc:Nae},t8;function Dae(e){t8=e.wasm.cwrap(Ja,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function _ae(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=R.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,A=u.strideHeight,y=u.strideWidth,x=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let b=s.makeOutput(u.outShape,"float32"),v=s.dataIdMap.get(b.dataId).id;return t8(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,y,x,v),b}var Fae={kernelName:Ja,backendName:"wasm",setupFunc:Dae,kernelFunc:_ae};function ts(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=w.sizeFromShape(s.shape),o=w.inferFromImplicitShape(r,a);return w.assert(a===w.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var $ae={kernelName:Fl,backendName:"wasm",kernelFunc:ts},n8;function Oae(e){n8=e.wasm.cwrap(Qa,null,["number","array","number","number","array","number","number","number","number"])}function Pae(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),A=w.sizeFromShape(m),y=g===A||g===1||A===1;w.assert(l>=2&&c>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);w.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,u,p]:[g,p,u],I=i?[A,h,d]:[A,d,h],C=ts({inputs:{x:r},backend:n,attrs:{shape:v}}),N=ts({inputs:{x:a},backend:n,attrs:{shape:I}}),$=n.dataIdMap.get(C.dataId).id,O=n.dataIdMap.get(N.dataId).id,E=o?C.shape[2]:C.shape[1],F=i?N.shape[1]:N.shape[2],T=Math.max(g,A),M=n.makeOutput([T,E,F],C.dtype),G=n.dataIdMap.get(M.dataId).id,H=new Uint8Array(new Int32Array(C.shape).buffer),z=new Uint8Array(new Int32Array(N.shape).buffer);return n8($,H,C.shape.length,O,z,N.shape.length,o,i,G),n.disposeData(C.dataId),n.disposeData(N.dataId),M.shape=b,M}var Mae={kernelName:Qa,backendName:"wasm",setupFunc:Oae,kernelFunc:Pae};function Ud(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=Fn.parseSliceParams(t,n,s),i=Fn.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),c=r.makeOutput(o,t.dtype),u=w.computeStrides(t.shape),d=r.dataIdMap.get(c.dataId);if(i){let f=Fn.computeFlatOffset(a,u);return t.dtype==="string"?d.stringBytes=l.slice(f,f+w.sizeFromShape(o)):r.typedArrayFromHeap(c).set(l.subarray(f,f+w.sizeFromShape(o))),c}if(t.dtype==="string"){let f=a0(l,a,o,t.shape,t.dtype);return d.stringBytes=f,c}let p=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)zae(l,u[0],p,a,o);else if(h===3)Lae(l,u[0],u[1],p,a,o);else if(h===4)Bae(l,u[0],u[1],u[2],p,a,o);else{let f=a0(l,a,o,t.shape,t.dtype);p.set(f)}return c}function zae(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let c=o;c<l;c++){let u=c*t+i;n.set(e.subarray(u,u+r[1]),a),a+=r[1]}}function Lae(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],c=r[2],u=i+a[0],d=l+a[1];for(let p=i;p<u;p++)for(let h=l;h<d;h++){let f=p*t+h*n+c;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function Bae(e,t,n,s,r,a,o){let i=0,l=a[0],c=a[1],u=a[2],d=l+o[0],p=c+o[1],h=u+o[2],f=a[3];for(let m=l;m<d;m++)for(let g=c;g<p;g++)for(let A=u;A<h;A++){let y=m*t+g*n+A*s+f;r.set(e.subarray(y,y+o[3]),i),i+=o[3]}}var Wae={kernelName:Ml,backendName:"wasm",kernelFunc:Ud};function Vae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((A,y)=>A*y),l=R.getReshaped(r.shape,a,i),c=R.getPermuted(l.length,a.length),u=R.getReshapedPermuted(r.shape,a,i),d=R.getSliceBeginCoords(o,a.length),p=R.getSliceSize(u,o,a.length),h=ts({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Wu({inputs:{x:h},backend:n,attrs:{perm:c}}),m=ts({inputs:{x:f},backend:n,attrs:{shape:u}}),g=Ud({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var Uae={kernelName:rl,backendName:"wasm",kernelFunc:Vae};function Gd(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var Gae={kernelName:eo,backendName:"wasm",kernelFunc:Gd},Hae=kn(to),s8;function jae(e){s8=e.wasm.cwrap(ua,null,["number","number","number","number"])}function qae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return s8(i,a,o,c),l}var Xae={kernelName:ua,backendName:"wasm",setupFunc:jae,kernelFunc:qae};function r8(e){let{inputs:t,backend:n}=e,s=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=R.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>w.sizeFromShape(h.shape)>0);if(a.length===1)return E0({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(R.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(x=>{let b=w.sizeFromShape(x.shape.slice(s));return ts({inputs:{x},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=R.computeOutShape(h.map(x=>x.shape),1);let m=h[0].shape[0]===1,g=y2(f,r,t[0].dtype,m),A=R.computeOutShape(a.map(x=>x.shape),s);o.shape=A;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=R.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),o}let l=w.sizeFromShape(a[0].shape.slice(0,s)),c=0,u=a.map(h=>{let f=w.sizeFromShape(h.shape.slice(s));return c+=f,f}),d=a.map(h=>n.typedArrayFromHeap(h)),p=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*c;for(let m=0;m<d.length;m++){let g=u[m],A=h*g,y=d[m].subarray(A,A+g);p.set(y,f),f+=g}}return o}var Kae={kernelName:al,backendName:"wasm",kernelFunc:r8},a8;function Zae(e){a8=e.wasm.cwrap(no,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Yae(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d,dataFormat:p}=n,h=R.convertConv2DDataFormat(p),f=R.computeConv2DInfo(r.shape,a.shape,l,c,u,d,!1,h),m=f.filterHeight,g=f.filterWidth,A=f.padInfo.top,y=f.padInfo.right,x=f.padInfo.bottom,b=f.padInfo.left,v=f.dilationHeight,I=f.dilationWidth,C=f.strideHeight,N=f.strideWidth,$=f.inChannels,O=f.outChannels,E=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let F=s.makeOutput(f.outShape,"float32"),T=s.dataIdMap.get(F.dataId).id;return a8(o,r.shape[0],r.shape[1],r.shape[2],i,m,g,A,y,x,b,E,v,I,C,N,$,O,T),F}var Jae={kernelName:no,backendName:"wasm",setupFunc:Zae,kernelFunc:Yae},o8;function Qae(e){o8=e.wasm.cwrap(so,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function eoe(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,inputShape:u}=s,d=1,p=R.convertConv2DDataFormat(l),h=R.computeConv2DInfo(u,a.shape,o,d,i,c,!1,p),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:A,inHeight:y,inWidth:x,outChannels:b,outHeight:v,outWidth:I,strideHeight:C,strideWidth:N}=h,$=m-1-h.padInfo.top,O=g-1-h.padInfo.left,E=h.dataFormat==="channelsLast",F=w.computeStrides(h.inShape),T=w.computeStrides(r.shape),[M,G,H]=w.computeStrides(a.shape),z=F[0],X=E?F[1]:F[2],Q=E?F[2]:1,Z=E?1:F[1],ne=T[0],te=E?T[1]:T[2],J=E?T[2]:1,ee=E?1:T[1],ce=t.makeOutput(h.inShape,"float32"),pe=t.dataIdMap.get(ce.dataId).id,be=t.dataIdMap.get(r.dataId).id,we=t.dataIdMap.get(a.dataId).id;return o8(be,we,f,m,g,y,x,A,v,I,b,C,N,$,O,M,G,H,z,X,Q,Z,ne,te,J,ee,pe),ce}var toe={kernelName:so,backendName:"wasm",setupFunc:Qae,kernelFunc:eoe},noe=kn(ro),soe=kn(ao),Z2;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(Z2||(Z2={}));var i8;function roe(e){i8=e.wasm.cwrap(ol,null,["number","number","number","number","array","number","number","number","number","number"])}function aoe(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:c}=n,u=l.shape[0],[d,p]=o,h=[u,d,p,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=Gd({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,A=t.dataIdMap.get(l.dataId).id,y=t.dataIdMap.get(c.dataId).id,x=t.makeOutput(h,"float32"),b=t.dataIdMap.get(x.dataId).id,v=new Uint8Array(new Int32Array(i.shape).buffer);return i8(g,A,y,u,v,d,p,Z2[r],a,b),m!=null&&t.disposeData(m.dataId),x}var ooe={kernelName:ol,backendName:"wasm",setupFunc:roe,kernelFunc:aoe},l8;function ioe(e){l8=e.wasm.cwrap(oo,null,["number","number","number","number","number","number"])}function loe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=R.getAxesPermutation([a],l),u=r;c!==null&&(u=Wu({inputs:{x:r},attrs:{perm:c},backend:n}));let d=R.getInnerMostAxes(1,l)[0];R.assertAxesAreInnerMostDims("cumsum",[d],l);let p=n.makeOutput(u.shape,u.dtype),h=u.shape[d],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(p.dataId).id;l8(f,o?1:0,i?1:0,h,m,Kt[r.dtype]);let g=p;if(c!==null){let A=R.getUndoAxesPermutation(c);g=Wu({inputs:{x:p},attrs:{perm:A},backend:n}),n.disposeData(u.dataId),n.disposeData(p.dataId)}return g}var uoe={kernelName:oo,backendName:"wasm",setupFunc:ioe,kernelFunc:loe},u8;function coe(e){u8=e.wasm.cwrap(il,null,["number","number","number","array","number","array","array","number","number"])}function doe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),x=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(w.computeStrides(f)).buffer),v=t.dataIdMap.get(m.dataId).id;return u8(A,a,o==="NHWC"?1:0,y,r.shape.length-1,x,b,f.length,v),m}var poe={kernelName:il,backendName:"wasm",setupFunc:coe,kernelFunc:doe},c8;function hoe(e){c8=e.wasm.cwrap(io,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function foe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d}=n,p=c==null?[1,1]:c,h=R.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,A=h.padInfo.right,y=h.padInfo.bottom,x=h.padInfo.left,b=h.dilationHeight,v=h.dilationWidth,I=h.strideHeight,C=h.strideWidth,N=h.inChannels,$=h.outChannels,O=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let E=s.makeOutput(h.outShape,"float32"),F=s.dataIdMap.get(E.dataId).id;return c8(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,A,y,x,O,b,v,I,C,N,$,F),E}var moe={kernelName:io,backendName:"wasm",setupFunc:hoe,kernelFunc:foe},goe=kn(uo),Aoe=!1,yoe=Wn(ul,Aoe,"bool"),xoe=kn(co,"float32");function Y2(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),ts({inputs:{x:r},backend:s,attrs:{shape:i}})}var boe={kernelName:cl,backendName:"wasm",kernelFunc:Y2};function d8(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var voe={kernelName:vc,backendName:"wasm",kernelFunc:d8},p8;function woe(e){p8=e.wasm.cwrap(pl,null,["number","number","number","number","number","number"])}function koe(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,c,u]=s.shape;return p8(a,i,l,c,u,o),r}var Ioe={kernelName:pl,backendName:"wasm",kernelFunc:koe,setupFunc:woe},Soe=kn(po),Coe=!1,Toe=Wn(ho,Coe),h8;function Noe(e){h8=e.wasm.cwrap(fo,null,["number","number","number","number","number","number","number"])}function Eoe(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:c}=n,u=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=c!=null?t.dataIdMap.get(c.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(w.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return h8(u,d,p,h,f,r,g),m}var Roe={kernelName:fo,backendName:"wasm",setupFunc:Noe,kernelFunc:Eoe},f8;function Doe(e){f8=e.wasm.cwrap(Xo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function _oe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(r.shape,a.shape,l,u,c,p),g=Vd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let v=m.filterHeight,I=m.filterWidth,C=m.padInfo.top,N=m.padInfo.right,$=m.padInfo.bottom,O=m.padInfo.left,E=m.dilationHeight,F=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,G=m.inChannels,H=m.padInfo.type==="SAME"?1:0,z=m.batchSize,X=m.inHeight,Q=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let Z=s.makeOutput(m.outShape,"float32"),ne=s.dataIdMap.get(Z.dataId).id,te=i==null?0:s.dataIdMap.get(i.dataId).id;return f8(A,z,X,Q,y,v,I,b,C,N,$,O,H,E,F,T,M,G,x,g,te,f||0,ne),Z}var Foe={kernelName:Xo,backendName:"wasm",setupFunc:Doe,kernelFunc:_oe},m8;function $oe(e){m8=e.wasm.cwrap(Ko,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ooe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(r.shape,a.shape,l,u,c,p,!0),g=Vd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let v=m.filterHeight,I=m.filterWidth,C=m.padInfo.top,N=m.padInfo.right,$=m.padInfo.bottom,O=m.padInfo.left,E=m.dilationHeight,F=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,G=m.inChannels,H=m.padInfo.type==="SAME"?1:0,z=m.batchSize,X=m.inHeight,Q=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let Z=s.makeOutput(m.outShape,"float32"),ne=s.dataIdMap.get(Z.dataId).id,te=i==null?0:s.dataIdMap.get(i.dataId).id;return m8(A,z,X,Q,y,v,I,b,C,N,$,O,H,E,F,T,M,G,x,g,te,f||0,ne),Z}var Poe={kernelName:Ko,backendName:"wasm",setupFunc:$oe,kernelFunc:Ooe},g8;function Moe(e){g8=e.wasm.cwrap(fl,null,["number","number","number","number","number","number","array","number"])}function zoe(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=uA.prepareAndValidate(s,r),c=t.makeOutput(a,s.dtype);if(o===0)return c;let u=r.shape,d=u[u.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),A=t.dataIdMap.get(c.dataId).id;return g8(h,Kt[s.dtype],m,o,d,i,g,A),c}var Loe={kernelName:fl,backendName:"wasm",setupFunc:Moe,kernelFunc:zoe},A8;function Boe(e){A8=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Woe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=w.parseAxisParam(o,r.shape)[0],c=t.readSync(a.dataId),u=r.shape[l];for(let $=0;$<c.length;++$){let O=c[$];w.assert(O<=u-1&&O>=0,()=>`GatherV2: the index value ${O} is not in [0, ${u-1}]`)}let d=R.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=ts({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=w.sizeFromShape(a.shape),f=ts({inputs:{x:a},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),m=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(m,r.dtype);if(w.sizeFromShape(r.shape)===0)return g;let A=p.shape.length-1,x=t.dataIdMap.get(p.dataId).id,v=t.dataIdMap.get(f.dataId).id,I=t.dataIdMap.get(g.dataId).id,C=new Uint8Array(new Int32Array(w.computeStrides(p.shape)).buffer),N=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer);return A8(x,Kt[r.dtype],C,A,v,d.batchSize,N,I),t.disposeData(p.dataId),t.disposeData(f.dataId),g.shape=d.outputShape,g}var Voe={kernelName:hl,backendName:"wasm",setupFunc:Boe,kernelFunc:Woe},Uoe=!1,Goe=Wn(ml,Uoe,"bool"),Hoe=!1,joe=Wn(mo,Hoe,"bool"),y8;function qoe(e){y8=e.wasm.cwrap(Ao,null,["number","number","number","number"])}function Xoe(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(w.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;y8(r,Kt[t.dtype],n,o)}return a}var Koe={kernelName:Ao,backendName:"wasm",setupFunc:qoe,kernelFunc:Xoe},Zoe=!1,Yoe=Wn(xl,Zoe,"bool"),Joe=!1,Qoe=Wn(bl,Joe,"bool"),eie=kn(yo),tie=!1,nie=Wn(wl,tie,"bool"),x8;function sie(e){x8=e.wasm.cwrap(xo,null,["number","number","number","number"])}function rie(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;c=u,l=x}let f=c.shape.length;R.assertAxesAreInnerMostDims("max",d,f);let[m,g]=R.computeOutAndReduceShapes(c.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;x8(l,Kt[o.dtype],A,x)}if(h&&t.disposeData(u.dataId),a){let x=R.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var aie={kernelName:xo,backendName:"wasm",setupFunc:sie,kernelFunc:rie},oie=!1,iie=Wn(bo,oie),b8;function lie(e){b8=e.wasm.cwrap(vo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function uie(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;w.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=R.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,A=u.dilationHeight,y=u.dilationWidth,x=u.strideHeight,b=u.strideWidth,v=u.inChannels,I=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let C=s.makeOutput(u.outShape,"float32"),N=s.dataIdMap.get(C.dataId).id;return b8(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,y,x,b,v,I,N),C}var cie={kernelName:vo,backendName:"wasm",setupFunc:lie,kernelFunc:uie},v8;function die(e){v8=e.wasm.cwrap(wo,null,["number, number, number"])}function pie(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t),f=d;if(h){let b=t.dataIdMap.get(u.dataId).id;b!==i&&(c=u,l=b,f=R.getInnerMostAxes(f.length,c.shape.length))}R.assertAxesAreInnerMostDims("mean",f,c.shape.length);let[m,g]=R.computeOutAndReduceShapes(c.shape,f),A=w.sizeFromShape(g),y=c;c.dtype!=="float32"&&(y=Gd({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(m,"float32");if(w.sizeFromShape(c.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;v8(l,A,b)}if(h&&t.disposeData(u.dataId),a){let b=R.expandShapeToKeepDim(x.shape,p);x.shape=b}return c.dtype!=="float32"&&t.disposeData(y.dataId),x}var hie={kernelName:wo,backendName:"wasm",setupFunc:die,kernelFunc:pie},w8;function fie(e){w8=e.wasm.cwrap(ko,null,["number","number","number","number"])}function mie(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(c=u,l=x)}let f=c.shape.length;R.assertAxesAreInnerMostDims("min",d,f);let[m,g]=R.computeOutAndReduceShapes(c.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;w8(l,Kt[o.dtype],A,x)}if(h&&t.disposeData(u.dataId),a){let x=R.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var gie={kernelName:ko,backendName:"wasm",setupFunc:fie,kernelFunc:mie},Aie=!1,yie=Wn(Io,Aie),J2;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(J2||(J2={}));var k8;function xie(e){k8=e.wasm.cwrap(So,null,["number","array","number","number","array","array","number","number"])}function bie(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=s.map(f=>f[0]),d=s.map(f=>f[1]),p=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(d).buffer);return k8(o,c,t.shape.length,Kt[t.dtype],p,h,J2[r],l),i}var vie={kernelName:So,backendName:"wasm",kernelFunc:bie,setupFunc:xie},wie=!0,kie=Wn(Co,wie),Iie=kn(Il);function Q2(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var I8;function Sie(e){I8=e.wasm.cwrap(Cl,"number",["number","number","number","number","number"])}function Cie(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,c=t.dataIdMap.get(i.dataId).id,u=t.dataIdMap.get(l.dataId).id,d=I8(c,u,a,r,o),{pSelectedIndices:p,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=Q2(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",p)}var Tie={kernelName:Cl,backendName:"wasm",setupFunc:Sie,kernelFunc:Cie},S8;function Nie(e){S8=e.wasm.cwrap(Tl,"number",["number","number","number","number","number","bool"])}function Eie(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=S8(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Q2(t,p);t.wasm._free(m);let A=t.makeOutput([f],"int32",h),y=t.makeOutput([],"int32",g);return[A,y]}var Rie={kernelName:Tl,backendName:"wasm",setupFunc:Nie,kernelFunc:Eie},C8;function Die(e){C8=e.wasm.cwrap(Nl,"number",["number","number","number","number","number","number"])}function _ie(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=C8(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Q2(t,p);t.wasm._free(g);let A=t.makeOutput([f],"int32",h),y=t.makeOutput([f],"float32",m);return[A,y]}var Fie={kernelName:Nl,backendName:"wasm",setupFunc:Die,kernelFunc:_ie},$ie=!1,Oie=Wn(Sl,$ie,"bool"),T8;function Pie(e){T8=e.wasm.cwrap(To,null,["number","number","number","number","number"])}function Mie(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),c=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return T8(d,a,o,i,c),l}var zie={kernelName:To,backendName:"wasm",setupFunc:Pie,kernelFunc:Mie};function Lie(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var Bie={kernelName:El,backendName:"wasm",kernelFunc:Lie};function Wie(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Y2({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Y2({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=r8({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeData(u.dataId)),c}var Vie={kernelName:Rl,backendName:"wasm",kernelFunc:Wie},N8;function Uie(e){N8=e.wasm.cwrap(No,null,["number","array","number","number","array","array","number","number"])}function Gie(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(w.sizeFromShape(t.shape)===0)return d8({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=s.map(m=>m[0]),p=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(d).buffer),f=new Uint8Array(new Int32Array(p).buffer);return N8(o,u,t.shape.length,Kt[t.dtype],h,f,r,c),i}var E8={kernelName:No,backendName:"wasm",kernelFunc:Gie,setupFunc:Uie},Hie=!1,jie=Wn(Eo,Hie),R8;function qie(e){R8=e.wasm.cwrap(Ro,null,["number","number","number"])}function Xie(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=a,l=s,c=l;l.dtype!=="float32"&&(c=Gd({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(c.dataId).id);let u=n.makeOutput(s.shape,"float32"),d=n.dataIdMap.get(u.dataId).id;return R8(i,o,d),l.dtype!=="float32"&&n.disposeData(c.dataId),u}var Kie={kernelName:Ro,backendName:"wasm",setupFunc:qie,kernelFunc:Xie},D8;function Zie(e){D8=e.wasm.cwrap(Dl,null,["number","number","number","number"])}function Yie(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t),f=d;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(c=u,l=x,f=R.getInnerMostAxes(f.length,c.shape.length))}R.assertAxesAreInnerMostDims("prod",f,c.shape.length);let[m,g]=R.computeOutAndReduceShapes(c.shape,f),A=w.sizeFromShape(g),y=t.makeOutput(m,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;D8(l,A,Kt[y.dtype],x)}if(h&&t.disposeData(u.dataId),a){let x=R.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Jie={kernelName:Dl,backendName:"wasm",setupFunc:Zie,kernelFunc:Yie},Qie=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=v2(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},ele={kernelName:Cc,backendName:"wasm",kernelFunc:Qie},tle=!0,nle=Wn(lo,tle),sle=kn(Do),rle=kn(Fo),_8;function ale(e){_8=e.wasm.cwrap(_o,null,["number","number","number","number","number","number","number","number","number","number"])}function ole(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,[u,d,p,h]=r.shape,f=[u,l,c,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=Gd({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let A=m.id,y=t.makeOutput(f,"float32");if(w.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return _8(A,u,d,p,h,l,c,a?1:0,o?1:0,x),g!=null&&t.disposeData(g.dataId),y}var ile={kernelName:_o,backendName:"wasm",setupFunc:ale,kernelFunc:ole},F8;function lle(e){F8=e.wasm.cwrap($o,null,["number","array","number","array","number","number"])}function ule(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=w.parseAxisParam(a,r.shape);if(r.shape.length===0)return E0({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);F8(l,u,o.length,d,r.shape.length,c);let p=ts({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),p}var cle={kernelName:$o,backendName:"wasm",kernelFunc:ule,setupFunc:lle},$8;function dle(e){$8=e.wasm.cwrap(Xl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function ple(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[d,p,h,f]=r.shape,[m,g]=R.getImageCenter(i,p,h),A=o===0,y=255,x=typeof o=="number"?[o,o,o,A?0:y]:[...o,y],b=new Uint8Array(new Int32Array(x).buffer);return $8(c,d,p,h,f,a,m,g,b,x.length,u),l}var hle={kernelName:Xl,backendName:"wasm",kernelFunc:ple,setupFunc:dle},fle=kn(Oo),mle=kn(Po),O8;function gle(e){O8=e.wasm.cwrap($l,null,["number","number","number","number","number","number","array","number","number"])}function Ale(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(w.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=cA.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,A=new Uint8Array(new Int32Array(d).buffer),y=t.dataIdMap.get(i.dataId).id;return O8(f,g,Kt[a.dtype],l,c,u,A,p,y),i}var yle={kernelName:$l,backendName:"wasm",setupFunc:gle,kernelFunc:Ale},P8;function xle(e){P8=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function ble(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,d=s.shape.length,p=r.shape.length,h=d===0||d>1||p===1?1:w.sizeFromShape(r.shape.slice(1));return P8(o,i,l,h,u),c}var vle={kernelName:Ol,backendName:"wasm",kernelFunc:ble,setupFunc:xle},M8;function wle(e){M8=e.wasm.cwrap(zo,null,["number","number"])}function kle(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||M8(s,a),r}var Ile={kernelName:"Sigmoid",backendName:"wasm",setupFunc:wle,kernelFunc:kle},Sle=kn(Mo),z8;function Cle(e){z8=e.wasm.cwrap(Wo,null,["number","number","number","number"])}function Tle(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=w.sizeFromShape(n.shape)/i;return w.sizeFromShape(a.shape)===0||z8(r,o,i,l),a}var Nle={kernelName:Wo,backendName:"wasm",setupFunc:Cle,kernelFunc:Tle};function Ele(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=w.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let I=1+a.length;I<r.shape.length;++I)l.push([0,0]);let c=E8.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=R.getReshaped(c.shape,a,i,!1),d=R.getPermuted(u.length,a.length,!1),p=R.getReshapedPermuted(c.shape,a,i,!1),m=ts({inputs:{x:c},backend:n,attrs:{shape:u}}),y=Wu({inputs:{x:m},backend:n,attrs:{perm:d}}),v=ts({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeData(c.dataId),n.disposeData(m.dataId),n.disposeData(y.dataId),v}var Rle={kernelName:Wl,backendName:"wasm",kernelFunc:Ele};function Dle(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=w.parseAxisParam(o,r.shape)[0],l=R.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=Ud({inputs:{x:r},attrs:{begin:c,size:p},backend:s});return c[i]+=d,h})}var _le={kernelName:Vl,backendName:"wasm",kernelFunc:Dle},Fle=kn(Lo),$le=kn(Nc),Ole=!0,Ple=Wn(Vo,Ole),L8;function Mle(e){L8=e.wasm.cwrap(da,null,["number","number","number","number"])}function zle(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return L8(o,r,Kt[a.dtype],l),i}var Lle={kernelName:da,backendName:"wasm",setupFunc:Mle,kernelFunc:zle},B8;function Ble(e){B8=e.wasm.cwrap(Ul,null,["number","array","number","array","array","array","array","array","number","number"])}function Wle(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i}=s;i==null&&(i=new Array(a.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,h=R.slice_util.maskToAxes(u);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&p!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.shape.length-a.length,m=R.slice_util.maskToAxes(d),g=r.shape.slice();m.forEach(E=>{a[E]=0,o[E]=1,g.splice(E,0,1)});let A=ts({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:y,end:x,strides:b}=R.slice_util.getNormalizedAxes(A.shape,h,f,a,o,i,l,c,u);a=y,o=x,i=b;let v=R.slice_util.maskToAxes(p);v.forEach(E=>{o[E]=a[E]+1,i[E]=1});let I=R.slice_util.computeOutShape(a,o,i),C=I.filter((E,F)=>v.indexOf(F)===-1);if(i.every(E=>E===1)){let E=Ud({inputs:{x:A},attrs:{begin:a,size:I},backend:t});t.disposeData(A.dataId);let F=ts({inputs:{x:E},attrs:{shape:C},backend:t});return t.disposeData(E.dataId),F}let $=t.makeOutput(C,"float32");if(!C.some(E=>E===0)){let E=t.dataIdMap.get(A.dataId).id,F=new Uint8Array(new Int32Array(w.computeStrides(A.shape)).buffer),T=new Uint8Array(new Int32Array(a).buffer),M=new Uint8Array(new Int32Array(o).buffer),G=new Uint8Array(new Int32Array(i).buffer),H=new Uint8Array(new Int32Array(C).buffer),z=new Uint8Array(new Int32Array(w.computeStrides(C)).buffer),X=t.dataIdMap.get($.dataId).id;B8(E,F,A.shape.length,T,M,G,H,z,C.length,X)}t.disposeData(A.dataId);let O=ts({inputs:{x:$},attrs:{shape:C},backend:t});return t.disposeData($.dataId),O}var Vle={kernelName:Ul,backendName:"wasm",setupFunc:Ble,kernelFunc:Wle},Ule=!0,Gle=Wn(Uo,Ule),W8;function Hle(e){W8=e.wasm.cwrap(Bo,null,["number","number","number","number"])}function jle(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=$a(o,r,t),f=d;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(c=u,l=x,f=R.getInnerMostAxes(f.length,c.shape.length))}R.assertAxesAreInnerMostDims("sum",f,c.shape.length);let[m,g]=R.computeOutAndReduceShapes(c.shape,f),A=w.sizeFromShape(g),y=t.makeOutput(m,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;W8(l,A,Kt[y.dtype],x)}if(h&&t.disposeData(u.dataId),a){let x=R.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var qle={kernelName:Bo,backendName:"wasm",setupFunc:Hle,kernelFunc:jle},Xle=kn(Go),Kle=kn(Ho),V8;function Zle(e){V8=e.wasm.cwrap(ca,null,["number","array","number","array","number","number"])}function Yle(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let p=0;p<i.length;p++)i[p]=r.shape[p]*o[p];let l=new Uint8Array(new Int32Array(r.shape).buffer),c=new Uint8Array(new Int32Array(i).buffer),u=n.makeOutput(i,r.dtype),d=n.dataIdMap.get(u.dataId).id;return V8(a,l,r.shape.length,c,i.length,Kt[u.dtype],d),u}var Jle={kernelName:ca,backendName:"wasm",setupFunc:Zle,kernelFunc:Yle},U8;function Qle(e){U8=e.wasm.cwrap(Gl,null,["number","array","number","number","number","bool","number","number"])}var eue=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,s.dtype),u=t.dataIdMap.get(c.dataId).id,d=t.makeOutput(l,"int32"),p=t.dataIdMap.get(d.dataId).id;return U8(o,i,s.shape.length,Kt[s.dtype],r,a,u,p),[c,d]},tue={kernelName:Gl,backendName:"wasm",setupFunc:Qle,kernelFunc:eue},G8;function nue(e){G8=e.wasm.cwrap(Hl,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function sue(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),y=t.makeOutput(g,r.dtype),x=t.dataIdMap.get(y.dataId).id,v=t.dataIdMap.get(r.dataId).id,C=t.dataIdMap.get(a.dataId).id,N=o==="nearest"?1:2,$;switch(i){case"constant":$=1;break;case"reflect":$=2;break;case"wrap":$=3;break;case"nearest":$=4;break;default:$=1;break}return G8(v,C,a.shape[0]>1,u,f,m,h,p,d,A,r.shape.length-1,N,$,l,x),y}var rue={kernelName:Hl,backendName:"wasm",setupFunc:nue,kernelFunc:sue};function aue(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o),d=new Array(i).fill(0),p=r.shape.slice();p[a]=1;for(let h=0;h<u.length;h++)d[a]=h,u[h]=Ud({inputs:{x:r},attrs:{begin:d,size:p},backend:n});return u.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var oue={kernelName:jl,backendName:"wasm",kernelFunc:aue};function iue(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var lue={kernelName:ql,backendName:"wasm",kernelFunc:iue},uue=[dae,hae,gae,Iae,Tae,Rae,Fae,Mae,Uae,Gae,Hae,Xae,Kae,Jae,toe,noe,soe,ooe,uoe,poe,moe,goe,yoe,xoe,boe,voe,Ioe,Soe,Toe,cae,Roe,Foe,Poe,Loe,Voe,Goe,joe,Aae,Koe,Yoe,Qoe,eie,nie,aie,iie,cie,hie,gie,yie,vie,kie,Iie,Tie,Rie,Fie,Oie,zie,Bie,Vie,E8,jie,Kie,Jie,ele,nle,sle,rle,$ae,ile,cle,hle,mle,fle,yle,vle,Ile,Sle,Wae,Nle,Rle,_le,Fle,$le,Ple,Lle,Vle,Gle,qle,Xle,Kle,Jle,tue,rue,vae,oue,lue];for(let e of uue)pa(e);var ex=se();ex.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));ex.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(ex.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var H8=qa(lT()),cue='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',due=qa(uT()),j8=class extends hc{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(K8),nx=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Op(this,as())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=w.sizeFromShape(n),i=o*w.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:s,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let a=this.wasm.HEAPU8.slice(t,t+w.sizeFromShape(s)*w.bytesPerElement(n));return fue(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function pue(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function q8(e,t,n){if(R0!=null)return R0;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),jd!=null&&jd[s]!=null?jd[s]:n+s}async function hue(){let[e,t]=await Promise.all([se().getAsync("WASM_HAS_SIMD_SUPPORT"),se().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let c=cue,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return i.endsWith(".wasm")?q8(e,t,Hd!=null?Hd:l):l+i},tx&&(r.instantiateWasm=pue(q8(e,t,Hd!=null?Hd:"")));let a=!1;r.onAbort=()=>{if(a||qd)return;qd=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&R0==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+H8.default.toString()],{type:"text/javascript"}),o=(0,H8.default)(r)):o=(0,due.default)(r),o.then(i=>{a=!0,qd=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function fue(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var mue=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],R0=null,Hd=null,jd={},qd=!1,tx=!1;function gue(e,t=!1){if(gA("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),qd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");R0=e,tx=t}function X8(e,t=!1){if(qd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Hd=e;else{jd=e;let n=mue.filter(s=>jd[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}tx=t}var K8=-1,nx=-1;function Aue(e){K8=e}function yue(){if(nx===-1)throw new Error("WASM backend not initialized.");return nx}var xue="3.10.0",bue=2;nu("wasm",async()=>{let{wasm:e}=await hue();return new j8(e)},bue);var vue="3.10.0",wue="3.10.0",kue="3.10.0",Iue="3.10.0",Sue="3.10.0",Cue="3.10.0",Tue="3.10.0",Nue="3.10.0",Eue={tfjs:vue,"tfjs-core":wue,"tfjs-data":kue,"tfjs-layers":Iue,"tfjs-converter":Sue,"tfjs-backend-cpu":Cue,"tfjs-backend-webgl":Tue,"tfjs-backend-wasm":Nue},Rue={};var Z8=`
|
|
precision highp float;
|
|
attribute vec2 pos;
|
|
attribute vec2 uv;
|
|
varying vec2 vUv;
|
|
uniform float flipY;
|
|
void main(void) {
|
|
vUv = uv;
|
|
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
|
|
}
|
|
`;var Y8=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
|
|
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
|
|
}
|
|
`,J8=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
|
|
gl_FragColor.a = c.a;
|
|
}
|
|
`,Q8=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform vec2 size;
|
|
uniform sampler2D texture;
|
|
vec2 pixelate(vec2 coord, vec2 size) {
|
|
return floor( coord / size ) * size;
|
|
}
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
vec2 coord = pixelate(vUv, size);
|
|
gl_FragColor += texture2D(texture, coord);
|
|
}
|
|
`,eI=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
|
|
}
|
|
`,tI=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
uniform float m[9];
|
|
void main(void) {
|
|
vec4 c11 = texture2D(texture, vUv - px); // top left
|
|
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
|
|
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
|
|
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
|
|
vec4 c22 = texture2D(texture, vUv); // mid center
|
|
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
|
|
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
|
|
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
|
|
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
|
|
gl_FragColor =
|
|
c11 * m[0] + c12 * m[1] + c22 * m[2] +
|
|
c21 * m[3] + c22 * m[4] + c23 * m[5] +
|
|
c31 * m[6] + c32 * m[7] + c33 * m[8];
|
|
gl_FragColor.a = c22.a;
|
|
}
|
|
`;var sx=(e,t,n)=>{let s=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(s,(r,a)=>(n[a]=0,r))},nI=class{constructor(t,n,s){he(this,"uniform",{});he(this,"attribute",{});he(this,"gl");he(this,"id");he(this,"compile",(t,n)=>{let s=this.gl.createShader(n);if(this.gl.shaderSource(s,t),this.gl.compileShader(s),!this.gl.getShaderParameter(s,this.gl.COMPILE_STATUS))throw new Error(`filter: gl compile failed: ${this.gl.getShaderInfoLog(s)}`);return s});this.gl=t;let r=this.compile(n,this.gl.VERTEX_SHADER),a=this.compile(s,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,a),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS))throw new Error(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);this.gl.useProgram(this.id),sx(n,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=this.gl.getAttribLocation(this.id,o);sx(n,"uniform",this.uniform),sx(s,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=this.gl.getUniformLocation(this.id,o)}};function sI(){let e=0,t=null,n=!1,s=-1,r=[null,null],a=[],o=null,i=null,l=Vn(100,100),c={},u={INTERMEDIATE:1},d=l.getContext("webgl");if(!d)throw new Error("filter: cannot get webgl context");function p(y,x){if(!(y===l.width&&x===l.height)){if(l.width=y,l.height=x,!o){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);o=d.createBuffer(),d.bindBuffer(d.ARRAY_BUFFER,o),d.bufferData(d.ARRAY_BUFFER,b,d.STATIC_DRAW),d.pixelStorei(d.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}d.viewport(0,0,l.width,l.height),r=[null,null]}}function h(y,x){let b=d.createFramebuffer();d.bindFramebuffer(d.FRAMEBUFFER,b);let v=d.createRenderbuffer();d.bindRenderbuffer(d.RENDERBUFFER,v);let I=d.createTexture();return d.bindTexture(d.TEXTURE_2D,I),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,y,x,0,d.RGBA,d.UNSIGNED_BYTE,null),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.framebufferTexture2D(d.FRAMEBUFFER,d.COLOR_ATTACHMENT0,d.TEXTURE_2D,I,0),d.bindTexture(d.TEXTURE_2D,null),d.bindFramebuffer(d.FRAMEBUFFER,null),{fbo:b,texture:I}}function f(y){return r[y]=r[y]||h(l.width,l.height),r[y]}function m(y=0){var I,C;if(!i)return;let x=null,b=null,v=!1;e===0?x=t:x=((I=f(s))==null?void 0:I.texture)||null,e++,n&&!(y&u.INTERMEDIATE)?(b=null,v=e%2==0):(s=(s+1)%2,b=((C=f(s))==null?void 0:C.fbo)||null),d.bindTexture(d.TEXTURE_2D,x),d.bindFramebuffer(d.FRAMEBUFFER,b),d.uniform1f(i.uniform.flipY,v?-1:1),d.drawArrays(d.TRIANGLES,0,6)}function g(y){if(c[y])return i=c[y],d.useProgram((i==null?void 0:i.id)||null),i;i=new nI(d,Z8,y);let x=Float32Array.BYTES_PER_ELEMENT,b=4*x;return d.enableVertexAttribArray(i.attribute.pos),d.vertexAttribPointer(i.attribute.pos,2,d.FLOAT,!1,b,0*x),d.enableVertexAttribArray(i.attribute.uv),d.vertexAttribPointer(i.attribute.uv,2,d.FLOAT,!1,b,2*x),c[y]=i,i}let A={colorMatrix:y=>{let x=new Float32Array(y);x[4]/=255,x[9]/=255,x[14]/=255,x[19]/=255;let b=x[18]===1&&x[3]===0&&x[8]===0&&x[13]===0&&x[15]===0&&x[16]===0&&x[17]===0&&x[19]===0?J8:Y8,v=g(b);d.uniform1fv(v==null?void 0:v.uniform.m,x),m()},brightness:y=>{let x=(y||0)+1;A.colorMatrix([x,0,0,0,0,0,x,0,0,0,0,0,x,0,0,0,0,0,1,0])},saturation:y=>{let x=(y||0)*2/3+1,b=(x-1)*-.5;A.colorMatrix([x,b,b,0,0,b,x,b,0,0,b,b,x,0,0,0,0,0,1,0])},desaturate:()=>{A.saturation(-1)},contrast:y=>{let x=(y||0)+1,b=-128*(x-1);A.colorMatrix([x,0,0,0,b,0,x,0,0,b,0,0,x,0,b,0,0,0,1,0])},negative:()=>{A.contrast(-2)},hue:y=>{y=(y||0)/180*Math.PI;let x=Math.cos(y),b=Math.sin(y),v=.213,I=.715,C=.072;A.colorMatrix([v+x*(1-v)+b*-v,I+x*-I+b*-I,C+x*-C+b*(1-C),0,0,v+x*-v+b*.143,I+x*(1-I)+b*.14,C+x*-C+b*-.283,0,0,v+x*-v+b*-(1-v),I+x*-I+b*I,C+x*(1-C)+b*C,0,0,0,0,0,1,0])},desaturateLuminance:()=>{A.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{A.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{A.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{A.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{A.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{A.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{A.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{A.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:y=>{let x=new Float32Array(y),b=1/l.width,v=1/l.height,I=g(tI);d.uniform1fv(I==null?void 0:I.uniform.m,x),d.uniform2f(I==null?void 0:I.uniform.px,b,v),m()},detectEdges:()=>{A.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{A.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{A.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:y=>{let x=y||1;A.convolution.call(this,[0,-1*x,0,-1*x,1+4*x,-1*x,0,-1*x,0])},emboss:y=>{let x=y||1;A.convolution.call(this,[-2*x,-1*x,0,-1*x,1,1*x,0,1*x,2*x])},blur:y=>{let x=y/7/l.width,b=y/7/l.height,v=g(eI);d.uniform2f(v==null?void 0:v.uniform.px,0,b),m(u.INTERMEDIATE),d.uniform2f(v==null?void 0:v.uniform.px,x,0),m()},pixelate:y=>{let x=y/l.width,b=y/l.height,v=g(Q8);d.uniform2f(v==null?void 0:v.uniform.size,x,b),m()}};this.add=function(y){let x=Array.prototype.slice.call(arguments,1),b=A[y];a.push({func:b,args:x})},this.reset=function(){a=[]},this.get=function(){return a},this.apply=function(y){p(y.width,y.height),e=0,t||(t=d.createTexture()),d.bindTexture(d.TEXTURE_2D,t),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.NEAREST),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.NEAREST),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,d.RGBA,d.UNSIGNED_BYTE,y);for(let x=0;x<a.length;x++){n=x===a.length-1;let b=a[x];b.func.apply(this,b.args||[])}return l},this.draw=function(y){return this.add("brightness",0),this.apply(y)}}var D0=2048,at=null,Vt=null,Oa=null,Rt;function Vn(e,t){let n;if(xe.browser)if(xe.offscreen)n=new OffscreenCanvas(e,t);else{if(typeof document=="undefined")throw new Error("attempted to run in web worker but offscreenCanvas is not supported");n=document.createElement("canvas"),n.width=e,n.height=t}else typeof xe.Canvas!="undefined"?n=new xe.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t));return n}function rx(e,t){let n=t||Vn(e.width,e.height);return n.getContext("2d").drawImage(e,0,0),n}function Vu(e,t,n=!0){if(!e)return t.debug&&oe("input is missing"),{tensor:null,canvas:null};if(!(e instanceof Ge)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof xe.Canvas!="undefined"&&e instanceof xe.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input type is not recognized");if(e instanceof Ge){if(e.isDisposedInternal)throw new Error("input tensor is disposed");if(!e.shape||e.shape.length!==4||e.shape[0]!==1||e.shape[3]!==3)throw new Error(`input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);return{tensor:Zs(e),canvas:t.filter.return?Vt:null}}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&oe("input stream is not ready"),{tensor:null,canvas:at};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&oe("cannot determine input dimensions"),{tensor:null,canvas:at};let a=s,o=r;if(a>D0&&(a=D0,o=Math.trunc(a*r/s)),o>D0&&(o=D0,a=Math.trunc(o*s/r)),(t.filter.width||0)>0?a=t.filter.width:(t.filter.height||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input cannot determine dimension");(!at||(at==null?void 0:at.width)!==a||(at==null?void 0:at.height)!==o)&&(at=Vn(a,o));let i=at.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,at==null?void 0:at.width,at==null?void 0:at.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,at==null?void 0:at.width,at==null?void 0:at.height),(!Vt||at.width!==Vt.width||(at==null?void 0:at.height)!==(Vt==null?void 0:Vt.height))&&(Vt=Vn(at.width,at.height)),t.filter.enabled&&xe.webgl.supported){if(Rt||(Rt=xe.browser?new sI:null),xe.filter=!!Rt,!Rt)return{tensor:null,canvas:at};Rt.reset(),t.filter.brightness!==0&&Rt.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Rt.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Rt.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Rt.add("blur",t.filter.blur),t.filter.saturation!==0&&Rt.add("saturation",t.filter.saturation),t.filter.hue!==0&&Rt.add("hue",t.filter.hue),t.filter.negative&&Rt.add("negative"),t.filter.sepia&&Rt.add("sepia"),t.filter.vintage&&Rt.add("brownie"),t.filter.sepia&&Rt.add("sepia"),t.filter.kodachrome&&Rt.add("kodachrome"),t.filter.technicolor&&Rt.add("technicolor"),t.filter.polaroid&&Rt.add("polaroid"),t.filter.pixelate!==0&&Rt.add("pixelate",t.filter.pixelate),Rt.get()>0?Vt=Rt.apply(at):Vt=Rt.draw(at)}else rx(at,Vt),Rt&&(Rt=null),xe.filter=!!Rt;if(!n)return{tensor:null,canvas:Vt};if(!Vt)throw new Error("cannot create output canvas");let l,c=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(xe.browser&&Ms)l=Ms?Ms.fromPixels(e):null;else{c=e.data.length/e.height/e.width;let p=new Uint8Array(e.data.buffer);l=Lt(p,[e.height,e.width,c],"int32")}else if((!Oa||Vt.width!==Oa.width||(Vt==null?void 0:Vt.height)!==(Oa==null?void 0:Oa.height))&&(Oa=Vn(Vt.width,Vt.height)),Ms&&xe.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=Ms.fromPixels(Vt):(Oa=rx(Vt),l=Ms.fromPixels(Oa));else{let f=rx(Vt).getContext("2d").getImageData(0,0,a,o);c=f.data.length/a/o;let m=new Uint8Array(f.data.buffer);l=Lt(m,[a,o,c])}if(c===4){let p=hu(l,[0,0,0],[-1,-1,3]);Y(l),l=p}if(!l)throw new Error("cannot create tensor from input");let u=de(l,"float32"),d=Bt(u,0);return Y([l,u]),{tensor:d,canvas:t.filter.return?Vt:null}}}var ax=0,ox=1,ix=0,Due=async e=>{let t=48,n=De.resizeBilinear(e,[Math.trunc((e.shape[1]||1)/t),Math.trunc((e.shape[2]||1)/t)]),s=async()=>{let o=Ie(n),i=await o.data();return Y(o),i[0]},r=async()=>{let o=await n.data(),i=0;for(let l=0;l<o.length/3;l++)i+=o[3*l+2];return i};if(ix===0){let o=Pe();await r();let i=Pe();await s();let l=Pe();ix=i-o<l-i?1:2}let a=ix===1?await r():await s();return Y(n),a};async function rI(e,t){if(e.cacheSensitivity===0)return!1;let n=await Due(t),s=100*(Math.max(n,ax)/Math.min(n,ax)-1);ax=n;let r=s<Math.max(e.cacheSensitivity,ox);return ox=s>10*e.cacheSensitivity?0:s,r=r&&ox>0,r}var _0=class{constructor(){he(this,"browser");he(this,"node");he(this,"worker");he(this,"platform","");he(this,"agent","");he(this,"backends",[]);he(this,"initial");he(this,"filter");he(this,"tfjs");he(this,"offscreen");he(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});he(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});he(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});he(this,"cpu",{model:void 0,flags:[]});he(this,"kernels",[]);he(this,"Canvas");he(this,"Image");he(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined",this.tfjs={version:Vc},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);this.platform=n&&n[0]?n[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){var s;this.backends=Object.keys(as().registryFactory),this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&Ys()==="wasm"&&(this.wasm.simd=await se().getAsync("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=await se().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let t=Vn(100,100),n=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof n!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(Ys()==="webgl"||Ys()==="humangl")){let r=Ar().gpgpu!=="undefined"?await Ar().getGPGPUContext().gl:null;r&&(this.webgl.version=r.getParameter(r.VERSION),this.webgl.renderer=r.getParameter(r.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu"),this.webgpu.supported&&(this.webgpu.adapter=(s=await navigator.gpu.requestAdapter())==null?void 0:s.name),this.kernels=Or(Ys()).map(r=>r.kernelName.toLowerCase())}async updateCPU(){var n;let t={model:"",flags:[]};if(this.node&&((n=this.platform)==null?void 0:n.startsWith("linux"))){let s=ra("fs");try{let r=s.readFileSync("/proc/cpuinfo").toString();for(let a of r.split(`
|
|
`))a.startsWith("model name")&&(t.model=a.match(/:(.*)/g)[0].replace(":","").trim()),a.startsWith("flags")&&(t.flags=a.match(/:(.*)/g)[0].replace(":","").trim().split(" ").sort())}catch(r){}}this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},xe=new _0;var lx="2.4.0";var Pa;var Yce=Number.MAX_SAFE_INTEGER;async function aI(e){return xe.initial&&(Pa=null),Pa?e.debug&&oe("cached model:",Pa.modelUrl):(Pa=await Qe(tt(e.modelBasePath,e.face.agegenderrace.modelPath)),!Pa||!Pa.modelUrl?oe("load model failed:",e.face.agegenderrace.modelPath):e.debug&&oe("load model:",Pa.modelUrl)),Pa}var sn,F0=[],ux=Number.MAX_SAFE_INTEGER,oI=0;async function iI(e){var t,n;return xe.initial&&(sn=null),sn?e.debug&&oe("cached model:",sn.modelUrl):(sn=await Qe(tt(e.modelBasePath,((t=e.face.antispoof)==null?void 0:t.modelPath)||"")),!sn||!sn.modelUrl?oe("load model failed:",(n=e.face.antispoof)==null?void 0:n.modelPath):e.debug&&oe("load model:",sn.modelUrl)),sn}async function cx(e,t,n,s){var r;return sn?ux<(((r=t.face.antispoof)==null?void 0:r.skipFrames)||0)&&t.skipFrame&&oI===s&&F0[n]?(ux++,F0[n]):(ux=0,new Promise(async a=>{let o=De.resizeBilinear(e,[(sn==null?void 0:sn.inputs[0].shape)?sn.inputs[0].shape[2]:0,(sn==null?void 0:sn.inputs[0].shape)?sn.inputs[0].shape[1]:0],!1),i=sn==null?void 0:sn.predict(o),l=(await i.data())[0];F0[n]=Math.round(100*l)/100,oI=s,Y([o,i]),a(F0[n])})):null}var Er={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},dx={count:468,mouth:13,symmetryLine:[13,Er.midwayBetweenEyes[0]]},Xd={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},px=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Kd=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],Di=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Fue=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],$ue=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Oue=[33,133,362,263,1,78,308],sde=Fue.map(e=>Kd[e]),rde=$ue.map(e=>Kd[e]),ade=Oue.map(e=>Kd[e]);var lI=e=>({startPoint:_e(e,[0,0],[-1,2]),endPoint:_e(e,[0,2],[-1,2])});var Zd=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],$0=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2],hx=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],fx=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],uI=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s}},mx=(e,t,n)=>{let s=t.shape[1],r=t.shape[2];return De.cropAndResize(t,[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]],[0],n)},Yd=(e,t=1.5)=>{let n=$0(e),s=Zd(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks}},Jd=e=>{let t=$0(e),n=Zd(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks}},O0=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},P0=[[1,0,0],[0,1,0],[0,0,1]],Pue=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),Mue=(e,t)=>Pue(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var cI=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],_i=(e,t)=>{let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n},zue=(e,t)=>{let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n},dI=(e,t)=>{let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(_i(e[r],zue(t,a)))}return n},pI=(e,t)=>{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=cI(t[0],t[1]),o=dI(a,r),i=cI(-t[0],-t[1]);return dI(o,i)},Lue=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-_i(t[0],n),-_i(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},Bue=(e,t)=>[_i(e,t[0]),_i(e,t[1])];function hI(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let c=r*(l+.5);for(let u=0;u<o;u++){let d=r*(u+.5);for(let p=0;p<i;p++)n.push([d,c])}}}return n}function fI(e,t,n,s,r){let a=Zd({startPoint:t.startPoint,endPoint:t.endPoint}),o=e.map(d=>[a[0]/r*(d[0]-r/2),a[1]/r*(d[1]-r/2),d[2]||0]),i=n!==0?pI(n,[0,0]):P0,l=n!==0?o.map(d=>[...Bue(d,i),d[2]]):o,c=n!==0?Lue(s):P0,u=[...$0({startPoint:t.startPoint,endPoint:t.endPoint}),1];return l.map(d=>[Math.round(d[0]+_i(u,c[0])),Math.round(d[1]+_i(u,c[1])),Math.round(d[2]||0)])}function gx(e,t,n){let s=e.landmarks.length>=dx.count?dx.symmetryLine:Xd.symmetryLine,r=Mue(e.landmarks[s[0]],e.landmarks[s[1]]),a=$0({startPoint:e.startPoint,endPoint:e.endPoint}),o=[a[0]/t.shape[2],a[1]/t.shape[1]],i=De.rotateWithOffset(t,r,0,o),l=pI(-r,a),c=mx({startPoint:e.startPoint,endPoint:e.endPoint},i,[n,n]),u=fe(c,255);return Y(c),Y(i),[r,l,u]}var mI=6,Es,Ax=[],gI=null,Rs=0,Qd=()=>Rs;async function AI(e){var t,n;return xe.initial&&(Es=null),Es?e.debug&&oe("cached model:",Es.modelUrl):(Es=await Qe(tt(e.modelBasePath,((t=e.face.detector)==null?void 0:t.modelPath)||"")),!Es||!Es.modelUrl?oe("load model failed:",(n=e.face.detector)==null?void 0:n.modelPath):e.debug&&oe("load model:",Es.modelUrl)),Rs=Es.inputs[0].shape?Es.inputs[0].shape[2]:0,Rs===-1&&(Rs=64),Ax=hI(Rs),gI=Qs(Ax),Es}function Wue(e){let t=_e(e,[0,1],[-1,2]),n=le(t,gI),s=_e(e,[0,3],[-1,2]),r=fe(s,Rs),a=fe(n,Rs),o=fe(r,2),i=ye(a,o),l=le(a,o),c=B(i,Rs),u=B(l,Rs);return au([c,u],1)}async function yI(e,t){var c,u,d,p;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return{boxes:[]};let[n,s,r]=j(()=>{let h=De.resizeBilinear(e,[Rs,Rs]),f=ye(fe(h,127.5),.5),m=Es==null?void 0:Es.execute(f),g;if(Array.isArray(m)){let b=m.sort((N,$)=>N.size-$.size),v=gt([b[0],b[2]],2),I=gt([b[1],b[3]],2),C=gt([I,v],1);g=rt(C,0)}else g=rt(m);let A=Wue(g),y=_e(g,[0,0],[-1,1]),x=rt(Kn(y));return[g,A,x]}),a=await De.nonMaxSuppressionAsync(s,r,((c=t.face.detector)==null?void 0:c.maxDetected)||0,((u=t.face.detector)==null?void 0:u.iouThreshold)||0,((d=t.face.detector)==null?void 0:d.minConfidence)||0),o=await a.array();Y(a);let i=[],l=await r.data();for(let h=0;h<o.length;h++){let f=l[o[h]];if(f>(((p=t.face.detector)==null?void 0:p.minConfidence)||0)){let m=_e(s,[o[h],0],[1,-1]),g=j(()=>U(rt(_e(n,[o[h],mI-1],[1,-1])),[mI,-1]));i.push({box:lI(m),landmarks:g,anchor:Ax[o[h]],confidence:f}),Y(m)}}return Y(n),Y(s),Y(r),{boxes:i,scaleFactor:[e.shape[2]/Rs,e.shape[1]/Rs]}}var bx={};lc(bx,{connected:()=>xx,kpt:()=>yx});var yx=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftThumb","leftHand","rightThumb","rightHand"],xx={leftLeg:["leftHip","leftKnee","leftAnkle","leftHeel","leftFoot"],rightLeg:["rightHip","rightKnee","rightAnkle","rightHeel","rightFoot"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist","leftPalm"],rightArm:["rightShoulder","rightElbow","rightWrist","rightPalm"],leftHand:[],rightHand:[],head:[]};var xI={initial:!0},rn=[null,null],Ma=[[0,0],[0,0]],vx=Number.MAX_SAFE_INTEGER,wx,M0=null,za=[[0,0],[0,0],[0,0],[0,0]];async function bI(e){var t,n,s;if(xI.initial&&(rn[0]=null),!rn[0]&&((t=e.body.detector)==null?void 0:t.modelPath)){rn[0]=await Qe(tt(e.modelBasePath,((n=e.body.detector)==null?void 0:n.modelPath)||""));let r=Object.values(rn[0].modelSignature.inputs);Ma[0][0]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[1].size):0,Ma[0][1]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[2].size):0,!rn[0]||!rn[0].modelUrl?oe("load model failed:",(s=e.body.detector)==null?void 0:s.modelPath):e.debug&&oe("load model:",rn[0].modelUrl)}else e.debug&&rn[0]&&oe("cached model:",rn[0].modelUrl);return rn[0]}async function vI(e){var t;if(xI.initial&&(rn[1]=null),rn[1])e.debug&&oe("cached model:",rn[1].modelUrl);else{rn[1]=await Qe(tt(e.modelBasePath,e.body.modelPath||""));let n=Object.values(rn[1].modelSignature.inputs);Ma[1][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Ma[1][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0,((t=e.body.modelPath)==null?void 0:t.includes("lite"))?wx=["ld_3d","output_segmentation","output_heatmap","world_3d","output_poseflag"]:wx=["Identity","Identity_2","Identity_3","Identity_4","Identity_1"],!rn[1]||!rn[1].modelUrl?oe("load model failed:",e.body.modelPath):e.debug&&oe("load model:",rn[1].modelUrl)}return rn[1]}function Vue(e,t){let n=e.map(o=>o.position[0]),s=e.map(o=>o.position[1]),r=[Math.min(...n),Math.min(...s),Math.max(...n)-Math.min(...n),Math.max(...s)-Math.min(...s)],a=[r[0]/t[0],r[1]/t[1],r[2]/t[0],r[3]/t[1]];return{keypointsBox:r,keypointsBoxRaw:a}}async function Uue(e){let t={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;za=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],t.pad=ks(e,za),t.resize=De.resizeBilinear(t.pad,[Ma[1][0],Ma[1][1]]);let n=fe(t.resize,255);return Object.keys(t).forEach(s=>Y(t[s])),n}function Gue(e,t){for(let n of e)n.position=[n.position[0]*(t[0]+za[2][0]+za[2][1])/t[0]-za[2][0],n.position[1]*(t[1]+za[1][0]+za[1][1])/t[1]-za[1][0],n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],n.position[2]];return e}var wI=e=>1-1/(1+Math.exp(e));async function Hue(e,t,n){var h;let s={};s.input=await Uue(e),[s.ld,s.segmentation,s.heatmap,s.world,s.poseflag]=await((h=rn[1])==null?void 0:h.execute(s.input,wx));let r=(await s.poseflag.data())[0],a=Math.max(0,(r-.8)/(1-.8)),o=await s.ld.data(),i=[],l=5;for(let f=0;f<o.length/l;f++){let m=wI(o[l*f+3]),g=wI(o[l*f+4]),A=Math.trunc(100*m*g*a)/100,y=[o[l*f+0]/Ma[1][0],o[l*f+1]/Ma[1][1],o[l*f+2]+0],x=[Math.trunc(n[0]*y[0]),Math.trunc(n[1]*y[1]),y[2]];i.push({part:yx[f],positionRaw:y,position:x,score:A})}if(a<(t.body.minConfidence||0))return null;let c=Gue(i,n),u=Vue(c,[n[0],n[1]]);Object.keys(s).forEach(f=>Y(s[f]));let d={};for(let[f,m]of Object.entries(xx)){let g=[];for(let A=0;A<m.length-1;A++){let y=c.find(b=>b.part===m[A]),x=c.find(b=>b.part===m[A+1]);y&&x&&y.score>(t.body.minConfidence||0)&&x.score>(t.body.minConfidence||0)&&g.push([y.position,x.position])}d[f]=g}return{id:0,score:Math.trunc(100*a)/100,box:u.keypointsBox,boxRaw:u.keypointsBoxRaw,keypoints:c,annotations:d}}async function kx(e,t){let n=[e.shape[2]||0,e.shape[1]||0];return vx<(t.body.skipFrames||0)&&t.skipFrame&&M0!==null?vx++:(M0=await Hue(e,t,n),vx=0),M0?[M0]:[]}var Uu=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Us,Fi=0,z0=[],Ix=Number.MAX_SAFE_INTEGER;async function kI(e){if(xe.initial&&(Us=null),Us)e.debug&&oe("cached model:",Us.modelUrl);else{Gu(["floormod"],e),Us=await Qe(tt(e.modelBasePath,e.object.modelPath||""));let t=Object.values(Us.modelSignature.inputs);Fi=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,!Us||!Us.modelUrl?oe("load model failed:",e.object.modelPath):e.debug&&oe("load model:",Us.modelUrl)}return Us}async function jue(e,t,n){if(!e)return[];let s=[],r=await e.array(),a=rt(e);Y(e);let o=pn(a,6,1);Y(a);let i=bn([o[1],o[0],o[3],o[2]],1),l=rt(i);Y(i);let c=rt(o[4]),u=rt(o[5]);o.forEach(f=>Y(f));let d=await De.nonMaxSuppressionAsync(l,c,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);Y(l),Y(c),Y(u);let p=await d.data();Y(d);let h=0;for(let f of p){let m=Math.trunc(100*r[0][f][4])/100,g=r[0][f][5],A=Uu[g].label,[y,x]=[r[0][f][0]/Fi,r[0][f][1]/Fi],b=[y,x,r[0][f][2]/Fi-y,r[0][f][3]/Fi-x],v=[Math.trunc(b[0]*t[0]),Math.trunc(b[1]*t[1]),Math.trunc(b[2]*t[0]),Math.trunc(b[3]*t[1])];s.push({id:h++,score:m,class:g,label:A,box:v,boxRaw:b})}return s}async function Sx(e,t){return Ix<(t.object.skipFrames||0)&&t.skipFrame&&z0.length>0?(Ix++,z0):(Ix=0,!xe.kernels.includes("mod")||!xe.kernels.includes("sparsetodense")?z0:new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=De.resizeBilinear(e,[Fi,Fi]),a=t.object.enabled?Us==null?void 0:Us.execute(r,["tower_0/detections"]):null;Y(r);let o=await jue(a,s,t);z0=o,n(o)}))}var Nx={};lc(Nx,{connected:()=>Tx,kpt:()=>Cx});var Cx=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],Tx={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var an,Un={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},Ex=Number.MAX_SAFE_INTEGER;async function Rx(e){return xe.initial&&(an=null),an?e.debug&&oe("cached model:",an.modelUrl):(an=await Qe(tt(e.modelBasePath,e.body.modelPath||"")),!an||!an.modelUrl?oe("load model failed:",e.body.modelPath):e.debug&&oe("load model:",an.modelUrl)),an}function que(e,t){let[n,s]=e.shape;return j(()=>{let r=(i,l)=>ye(i,B(fe(i,Ee(l,"int32")),Ee(l,"int32"))),a=U(e,[s*n]),o=$n(a,0).dataSync()[0];if(o>t){let i=vs(a,0),l=r(i,n).dataSync()[0],c=fe(i,Ee(n,"int32")).dataSync()[0];return[l,c,o]}return[0,0,o]})}async function Dx(e,t){var n;return Ex<(((n=t.body)==null?void 0:n.skipFrames)||0)&&t.skipFrame&&Object.keys(Un.keypoints).length>0?(Ex++,[Un]):(Ex=0,new Promise(async s=>{var u;let r=j(()=>{if(!(an==null?void 0:an.inputs[0].shape))return null;let d=De.resizeBilinear(e,[an.inputs[0].shape[2],an.inputs[0].shape[1]],!1);return B(d,2).sub(1)}),a;if(t.body.enabled&&(a=await(an==null?void 0:an.predict(r))),Y(r),a){Un.keypoints.length=0;let d=a.squeeze();Y(a);let p=d.unstack(2);Y(d);for(let h=0;h<p.length;h++){let[f,m,g]=que(p[h],t.body.minConfidence);g>(((u=t.body)==null?void 0:u.minConfidence)||0)&&Un.keypoints.push({score:Math.round(100*g)/100,part:Cx[h],positionRaw:[f/an.inputs[0].shape[2],m/an.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/an.inputs[0].shape[2]),Math.round(e.shape[1]*m/an.inputs[0].shape[1])]})}p.forEach(h=>Y(h))}Un.score=Un.keypoints.reduce((d,p)=>p.score>d?p.score:d,0);let o=Un.keypoints.map(d=>d.position[0]),i=Un.keypoints.map(d=>d.position[1]);Un.box=[Math.min(...o),Math.min(...i),Math.max(...o)-Math.min(...o),Math.max(...i)-Math.min(...i)];let l=Un.keypoints.map(d=>d.positionRaw[0]),c=Un.keypoints.map(d=>d.positionRaw[1]);Un.boxRaw=[Math.min(...l),Math.min(...c),Math.max(...l)-Math.min(...l),Math.max(...c)-Math.min(...c)];for(let[d,p]of Object.entries(Tx)){let h=[];for(let f=0;f<p.length-1;f++){let m=Un.keypoints.find(A=>A.part===p[f]),g=Un.keypoints.find(A=>A.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}Un.annotations[d]=h}s([Un])}))}var Xue=["angry","disgust","fear","happy","sad","surprise","neutral"],on,L0=[],II=0,_x=Number.MAX_SAFE_INTEGER,Fx=[.2989,.587,.114];async function SI(e){var t,n;return xe.initial&&(on=null),on?e.debug&&oe("cached model:",on.modelUrl):(on=await Qe(tt(e.modelBasePath,((t=e.face.emotion)==null?void 0:t.modelPath)||"")),!on||!on.modelUrl?oe("load model failed:",(n=e.face.emotion)==null?void 0:n.modelPath):e.debug&&oe("load model:",on.modelUrl)),on}async function $x(e,t,n,s){var r;return on?_x<(((r=t.face.emotion)==null?void 0:r.skipFrames)||0)&&t.skipFrame&&II===s&&L0[n]&&L0[n].length>0?(_x++,L0[n]):(_x=0,new Promise(async a=>{var g,A;let o=De.resizeBilinear(e,[(on==null?void 0:on.inputs[0].shape)?on.inputs[0].shape[2]:0,(on==null?void 0:on.inputs[0].shape)?on.inputs[0].shape[1]:0],!1),[i,l,c]=pn(o,3,3);Y(o);let u=B(i,Fx[0]),d=B(l,Fx[1]),p=B(c,Fx[2]);Y(i),Y(l),Y(c);let h=Ph([u,d,p]);Y(u),Y(d),Y(p);let f=j(()=>B(ye(h,.5),2));Y(h);let m=[];if((g=t.face.emotion)==null?void 0:g.enabled){let y=await(on==null?void 0:on.predict(f)),x=await y.data();Y(y);for(let b=0;b<x.length;b++)x[b]>(((A=t.face.emotion)==null?void 0:A.minConfidence)||0)&&m.push({score:Math.min(.99,Math.trunc(100*x[b])/100),emotion:Xue[b]});m.sort((b,v)=>v.score-b.score)}Y(f),L0[n]=m,II=s,a(m)})):null}var Gs,La=0,Kue=2.3,Ox=Er.leftEyeLower0,Px=Er.rightEyeLower0,Hu={leftBounds:[Ox[0],Ox[Ox.length-1]],rightBounds:[Px[0],Px[Px.length-1]]},ju={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function CI(e){var t,n;return xe.initial&&(Gs=null),Gs?e.debug&&oe("cached model:",Gs.modelUrl):(Gs=await Qe(tt(e.modelBasePath,((t=e.face.iris)==null?void 0:t.modelPath)||"")),!Gs||!Gs.modelUrl?oe("load model failed:",(n=e.face.iris)==null?void 0:n.modelPath):e.debug&&oe("load model:",Gs.modelUrl)),La=Gs.inputs[0].shape?Gs.inputs[0].shape[2]:0,La===-1&&(La=64),Gs}function B0(e,t,n,s){for(let r=0;r<px.length;r++){let{key:a,indices:o}=px[r],i=Er[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let c=o[l];e[i[l]]=[t[c][0],t[c][1],(t[c][2]+e[i[l]][2])/2]}}}var Zue=e=>{let t=e[Hu.leftBounds[0]][2],n=e[Hu.rightBounds[0]][2];return t-n},TI=(e,t,n,s,r=!1,a)=>{let o=Jd(Yd(O0([e[n],e[s]]),Kue)),i=Zd(o),l=De.cropAndResize(t,[[o.startPoint[1]/a,o.startPoint[0]/a,o.endPoint[1]/a,o.endPoint[0]/a]],[0],[La,La]);if(r&&xe.kernels.includes("flipleftright")){let c=De.flipLeftRight(l);Y(l),l=c}return{box:o,boxSize:i,crop:l}},NI=(e,t,n,s=!1)=>{let r=[];for(let a=0;a<ju.numCoordinates;a++){let o=e[a*3],i=e[a*3+1],l=e[a*3+2];r.push([(s?1-o/La:o/La)*n[0]+t.startPoint[0],i/La*n[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice(ju.index)}},EI=(e,t,n)=>{let s=e[Er[`${n}EyeUpper0`][ju.upperCenter]][2],r=e[Er[`${n}EyeLower0`][ju.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function RI(e,t,n,s){if(!Gs)return n.debug&&oe("face mesh iris detection requested, but model is not loaded"),e;let{box:r,boxSize:a,crop:o}=TI(e,t,Hu.leftBounds[0],Hu.leftBounds[1],!0,s),{box:i,boxSize:l,crop:c}=TI(e,t,Hu.rightBounds[0],Hu.rightBounds[1],!0,s),u=gt([o,c]);Y(o),Y(c);let d=Gs.predict(u);Y(u);let p=await d.data();Y(d);let h=p.slice(0,ju.numCoordinates*3),{rawCoords:f,iris:m}=NI(h,r,a,!0),g=p.slice(ju.numCoordinates*3),{rawCoords:A,iris:y}=NI(g,i,l),x=Zue(e);Math.abs(x)<30?(B0(e,f,"left",null),B0(e,A,"right",null)):x<1?B0(e,f,"left",["EyeUpper0","EyeLower0"]):B0(e,A,"right",["EyeUpper0","EyeLower0"]);let b=EI(e,m,"left"),v=EI(e,y,"right");return e.concat(b).concat(v)}var Rr=[],Hs=null,ur=0,Mx=Number.MAX_SAFE_INTEGER,DI=0;async function _I(e,t){var a,o,i,l,c,u,d,p,h,f,m,g;if(!t.skipFrame||(DI!==((a=t.face.detector)==null?void 0:a.maxDetected)||!((o=t.face.mesh)==null?void 0:o.enabled))&&Mx>(((i=t.face.detector)==null?void 0:i.skipFrames)||0)){let A=await yI(e,t);Rr=[];for(let y of A.boxes){let x=await y.box.startPoint.data(),b=await y.box.endPoint.data(),v=await y.landmarks.array();Rr.push({startPoint:x,endPoint:b,landmarks:v,confidence:y.confidence})}A.boxes.forEach(y=>Y([y.box.startPoint,y.box.endPoint,y.landmarks]));for(let y=0;y<Rr.length;y++){let x=uI({startPoint:Rr[y].startPoint,endPoint:Rr[y].endPoint},A.scaleFactor),b=Yd(x),v=Jd(b);Rr[y]={...v,confidence:Rr[y].confidence,landmarks:Rr[y].landmarks}}Mx=0}else Mx++;let n=[],s=[],r=0;for(let A of Rr){let y=0,x,b={id:r++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if(((l=t.face.detector)==null?void 0:l.rotation)&&((c=t.face.mesh)==null?void 0:c.enabled)&&xe.kernels.includes("rotatewithoffset"))[y,x,b.tensor]=gx(A,e,ur);else{x=P0;let v=mx({startPoint:A.startPoint,endPoint:A.endPoint},e,((u=t.face.mesh)==null?void 0:u.enabled)?[ur,ur]:[Qd(),Qd()]);b.tensor=fe(v,255),Y(v)}if(b.boxScore=Math.round(100*A.confidence)/100,(d=t.face.mesh)==null?void 0:d.enabled)if(!Hs)t.debug&&oe("face mesh detection requested, but model is not loaded");else{let[v,I,C]=Hs.execute(b.tensor);Y(v);let N=(await I.data())[0];Y(I);let $=U(C,[-1,3]),O=await $.array();if(Y(C),Y($),N<(((p=t.face.detector)==null?void 0:p.minConfidence)||1))A.confidence=N;else{((h=t.face.iris)==null?void 0:h.enabled)&&(O=await RI(O,b.tensor,t,ur)),b.mesh=fI(O,A,y,x,ur),b.meshRaw=b.mesh.map(E=>[E[0]/(e.shape[2]||0),E[1]/(e.shape[1]||0),(E[2]||0)/ur]),A={...Yd(O0(b.mesh),1.5),confidence:A.confidence};for(let E of Object.keys(Er))b.annotations[E]=Er[E].map(F=>b.mesh[F]);((f=t.face.detector)==null?void 0:f.rotation)&&t.face.mesh.enabled&&((m=t.face.description)==null?void 0:m.enabled)&&xe.kernels.includes("rotatewithoffset")&&(Y(b.tensor),[y,x,b.tensor]=gx(A,e,ur)),b.box=hx(A,e),b.boxRaw=fx(A,e),b.score=Math.round(100*N||100*A.confidence||0)/100,b.faceScore=Math.round(100*N)/100,A={...Jd(A),confidence:A.confidence,faceConfidence:N}}}else{b.box=hx(A,e),b.boxRaw=fx(A,e),b.score=Math.round(100*A.confidence||0)/100,b.mesh=A.landmarks.map(v=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*v[0]/Qd(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*v[1]/Qd()]),b.meshRaw=b.mesh.map(v=>[v[0]/(e.shape[2]||0),v[1]/(e.shape[1]||0),(v[2]||0)/ur]);for(let v of Object.keys(Xd))b.annotations[v]=[b.mesh[Xd[v]]]}n.push(b),s.push(A)}return((g=t.face.mesh)==null?void 0:g.enabled)&&(Rr=s.filter(A=>{var y;return A.confidence>(((y=t.face.detector)==null?void 0:y.minConfidence)||0)})),DI=n.length,n}async function FI(e){var t,n;return xe.initial&&(Hs=null),Hs?e.debug&&oe("cached model:",Hs.modelUrl):(Hs=await Qe(tt(e.modelBasePath,((t=e.face.mesh)==null?void 0:t.modelPath)||"")),!Hs||!Hs.modelUrl?oe("load model failed:",(n=e.face.mesh)==null?void 0:n.modelPath):e.debug&&oe("load model:",Hs.modelUrl)),ur=Hs.inputs[0].shape?Hs.inputs[0].shape[2]:0,ur===-1&&(ur=64),Hs}var $I=Di,OI=Kd;var Gn,W0=[],PI=0,zx=Number.MAX_SAFE_INTEGER;async function MI(e){var n,s;let t=tt(e.modelBasePath,((n=e.face.description)==null?void 0:n.modelPath)||"");return xe.initial&&(Gn=null),Gn?e.debug&&oe("cached model:",t):(Gn=await Qe(t),Gn?e.debug&&oe("load model:",t):oe("load model failed:",((s=e.face.description)==null?void 0:s.modelPath)||"")),Gn}function Lx(e){return j(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Ge))return null;let s=[[.05,.15,.85,.85]];if(!(Gn==null?void 0:Gn.inputs[0].shape))return null;let r=n.shape.length===3?De.cropAndResize(Bt(n,0),s,[0],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]):De.cropAndResize(n,s,[0],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]);return B(r,255)})}async function Bx(e,t,n,s){var r,a,o;return Gn?zx<(((r=t.face.description)==null?void 0:r.skipFrames)||0)&&t.skipFrame&&PI===s&&((a=W0[n])==null?void 0:a.age)&&((o=W0[n])==null?void 0:o.age)>0?(zx++,W0[n]):(zx=0,new Promise(async i=>{var d,p;let l=Lx(e),c,u={age:0,gender:"unknown",genderScore:0,descriptor:[]};if(((d=t.face.description)==null?void 0:d.enabled)&&(c=await(Gn==null?void 0:Gn.predict(l))),Y(l),c){let h=await c.find(b=>b.shape[1]===1).data(),f=Math.trunc(200*Math.abs(h[0]-.5))/100;f>(((p=t.face.description)==null?void 0:p.minConfidence)||0)&&(u.gender=h[0]<=.5?"female":"male",u.genderScore=Math.min(.99,f));let m=vs(c.find(b=>b.shape[1]===100),1),g=(await m.data())[0];Y(m);let A=await c.find(b=>b.shape[1]===100).data();u.age=Math.round(A[g-1]>A[g+1]?10*g-100*A[g-1]:10*g+100*A[g+1])/10;let x=await c.find(b=>b.shape[1]===1024).data();u.descriptor=[...x],c.forEach(b=>Y(b))}W0[n]=u,PI=s,i(u)})):null}function V0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function ep(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function zI(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return De.cropAndResize(t,a,[0],n)}function LI(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function U0(e,t=1.5){let n=ep(e),s=V0(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function G0(e){let t=ep(e),n=V0(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function Yue(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function BI(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Yue(n)}var WI=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Ba(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function Jue(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function VI(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(Ba(e[r],Jue(t,a)))}return n}function Wx(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=WI(t[0],t[1]),o=VI(a,r),i=WI(-t[0],-t[1]);return VI(o,i)}function UI(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Ba(t[0],n),-Ba(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function Vx(e,t){return[Ba(e,t[0]),Ba(e,t[1])]}var GI=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var Ux=class{constructor(t){he(this,"model");he(this,"anchors");he(this,"anchorsTensor");he(this,"inputSize");he(this,"inputSizeTensor");he(this,"doubleInputSizeTensor");this.model=t,this.anchors=GI.map(n=>[n.x,n.y]),this.anchorsTensor=Qs(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=jt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=jt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return j(()=>{let n=_e(t,[0,0],[-1,2]),s=_e(t,[0,2],[-1,2]),r=le(fe(n,this.inputSizeTensor),this.anchorsTensor),a=fe(s,this.doubleInputSizeTensor),o=B(ye(r,a),this.inputSizeTensor),i=B(le(r,a),this.inputSizeTensor);return au([o,i],1)})}normalizeLandmarks(t,n){return j(()=>{let s=le(fe(U(t,[-1,7,2]),this.inputSizeTensor),this.anchors[n]);return B(s,this.inputSizeTensor)})}async getBoxes(t,n){let s={};s.batched=this.model.predict(t),s.predictions=rt(s.batched),s.scores=j(()=>rt(Kn(_e(s.predictions,[0,0],[-1,1]))));let r=await s.scores.data();s.boxes=_e(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await De.nonMaxSuppressionAsync(s.norm,s.scores,3*n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let i of a){let l=_e(s.norm,[i,0],[1,-1]),c=j(()=>U(this.normalizeLandmarks(_e(s.predictions,[i,5],[1,14]),i),[-1,2]));o.push({box:l,palmLandmarks:c,confidence:r[i]})}for(let i of Object.keys(s))Y(s[i]);return o}async estimateHandBounds(t,n){let s=t.shape[1],r=t.shape[2],a=j(()=>ye(fe(De.resizeBilinear(t,[this.inputSize,this.inputSize]),127.5),1)),o=await this.getBoxes(a,n);Y(a);let i=[];if(!o||o.length===0)return i;for(let l of o){let c=await l.box.data(),u=c.slice(0,2),d=c.slice(2,4),p=await l.palmLandmarks.array();Y(l.box),Y(l.palmLandmarks),i.push(LI({startPoint:u,endPoint:d,palmLandmarks:p,confidence:l.confidence},[r/this.inputSize,s/this.inputSize]))}return i}};var Que=5,HI=1.65,jI=[0,5,9,13,17,1,2],ece=0,tce=2,Gx=class{constructor(t,n){he(this,"handDetector");he(this,"handPoseModel");he(this,"inputSize");he(this,"storedBoxes");he(this,"skipped");he(this,"detectedHands");this.handDetector=t,this.handPoseModel=n,this.inputSize=this.handPoseModel&&this.handPoseModel.inputs[0].shape?this.handPoseModel.inputs[0].shape[2]:0,this.storedBoxes=[],this.skipped=0,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>Vx([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return U0(G0(r),Que)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=U0(G0(n),HI);s.palmLandmarks=[];for(let r=0;r<jI.length;r++)s.palmLandmarks.push(t[jI[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=V0(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(h=>[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=Wx(s,[0,0]),c=i.map(h=>[...Vx(h,l),h[2]]),u=UI(r),d=[...ep(n),1],p=[Ba(d,u[0]),Ba(d,u[1])];return c.map(h=>[Math.trunc(h[0]+p[0]),Math.trunc(h[1]+p[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let a=[];for(let o=0;o<this.storedBoxes.length;o++){let i=this.storedBoxes[o];if(!!i)if(n.hand.landmarks){let l=n.hand.rotation?BI(i.palmLandmarks[ece],i.palmLandmarks[tce]):0,c=ep(i),u=[c[0]/t.shape[2],c[1]/t.shape[1]],d=n.hand.rotation&&xe.kernels.includes("rotatewithoffset")?De.rotateWithOffset(t,l,0,u):t.clone(),p=Wx(-l,c),h=s?this.getBoxForPalmLandmarks(i.palmLandmarks,p):i,f=zI(h,d,[this.inputSize,this.inputSize]),m=fe(f,255);Y(f),Y(d);let[g,A]=await this.handPoseModel.predict(m);Y(m);let y=(await g.data())[0];if(Y(g),y>=n.hand.minConfidence/4){let x=U(A,[-1,3]),b=await x.array();Y(A),Y(x);let v=this.transformRawCoords(b,h,l,p),I=this.getBoxForHandLandmarks(v);this.storedBoxes[o]={...I,confidence:y};let C={landmarks:v,confidence:y,boxConfidence:i.confidence,fingerConfidence:y,box:{topLeft:I.startPoint,bottomRight:I.endPoint}};a.push(C)}else this.storedBoxes[o]=null;Y(A)}else{let l=U0(G0(i),HI),c={confidence:i.confidence,boxConfidence:i.confidence,fingerConfidence:0,box:{topLeft:l.startPoint,bottomRight:l.endPoint},landmarks:[]};a.push(c)}}return this.storedBoxes=this.storedBoxes.filter(o=>o!==null),this.detectedHands=a.length,a.length>n.hand.maxDetected&&(a.length=n.hand.maxDetected),a}};var qe={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>qe.nameMapping[e],getPoints:e=>qe.pointsMapping[e]},ns={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>ns.nameMapping[e]},je={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>je.nameMapping[e]},H0=class{constructor(t){he(this,"name");he(this,"curls");he(this,"directions");he(this,"weights");he(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}addCurl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}addDirection(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}setWeight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var Wa=new H0("thumbs up");Wa.addCurl(qe.thumb,ns.none,1);Wa.addDirection(qe.thumb,je.verticalUp,1);Wa.addDirection(qe.thumb,je.diagonalUpLeft,.25);Wa.addDirection(qe.thumb,je.diagonalUpRight,.25);for(let e of[qe.index,qe.middle,qe.ring,qe.pinky])Wa.addCurl(e,ns.full,1),Wa.addDirection(e,je.horizontalLeft,1),Wa.addDirection(e,je.horizontalRight,1);var Zt=new H0("victory");Zt.addCurl(qe.thumb,ns.half,.5);Zt.addCurl(qe.thumb,ns.none,.5);Zt.addDirection(qe.thumb,je.verticalUp,1);Zt.addDirection(qe.thumb,je.diagonalUpLeft,1);Zt.addCurl(qe.index,ns.none,1);Zt.addDirection(qe.index,je.verticalUp,.75);Zt.addDirection(qe.index,je.diagonalUpLeft,1);Zt.addCurl(qe.middle,ns.none,1);Zt.addDirection(qe.middle,je.verticalUp,1);Zt.addDirection(qe.middle,je.diagonalUpLeft,.75);Zt.addCurl(qe.ring,ns.full,1);Zt.addDirection(qe.ring,je.verticalUp,.2);Zt.addDirection(qe.ring,je.diagonalUpLeft,1);Zt.addDirection(qe.ring,je.horizontalLeft,.2);Zt.addCurl(qe.pinky,ns.full,1);Zt.addDirection(qe.pinky,je.verticalUp,.2);Zt.addDirection(qe.pinky,je.diagonalUpLeft,1);Zt.addDirection(qe.pinky,je.horizontalLeft,.2);Zt.setWeight(qe.index,2);Zt.setWeight(qe.middle,2);var qI=[Wa,Zt];var nce=.7,$i={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function XI(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function KI(e,t){if(!e||!t)return[0,0];let n=XI(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=XI(e[1],e[2],t[1],t[2]);return[n,s]}function ZI(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function sce(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],c=e[2]-t[2],u=e[2]-n[2],d=t[2]-n[2],p=Math.sqrt(s*s+o*o+c*c),h=Math.sqrt(r*r+i*i+u*u),f=Math.sqrt(a*a+l*l+d*d),m=(f*f+p*p-h*h)/(2*f*p);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let A;return g>$i.NO_CURL_START_LIMIT?A=ns.none:g>$i.HALF_CURL_START_LIMIT?A=ns.half:A=ns.full,A}function YI(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=je.horizontalLeft:r=je.horizontalRight:s===Math.abs(t)?t>0?r=je.horizontalLeft:r=je.horizontalRight:n>0?r=je.horizontalLeft:r=je.horizontalRight,r}function JI(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=je.verticalDown:r=je.verticalUp:s===Math.abs(t)?t<0?r=je.verticalDown:r=je.verticalUp:n<0?r=je.verticalDown:r=je.verticalUp,r}function rce(e,t,n,s,r,a,o,i){let l,c=JI(e,t,n,s),u=YI(r,a,o,i);return c===je.verticalUp?u===je.horizontalLeft?l=je.diagonalUpLeft:l=je.diagonalUpRight:u===je.horizontalLeft?l=je.diagonalDownLeft:l=je.diagonalDownRight,l}function ace(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],c=t[1]-n[1],u=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),d=Math.max(Math.abs(i),Math.abs(l),Math.abs(c)),p=0,h=0,f=0,m=d/(u+1e-5);m>1.5?p+=$i.DISTANCE_VOTE_POWER:m>.66?h+=$i.DISTANCE_VOTE_POWER:f+=$i.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),A=Math.sqrt(a*a+l*l),y=Math.sqrt(o*o+c*c),x=Math.max(g,A,y),b=e[0],v=e[1],I=n[0],C=n[1];x===g?(I=n[0],C=n[1]):x===y&&(b=t[0],v=t[1]);let O=KI([b,v],[I,C]),E=ZI(O,$i.TOTAL_ANGLE_VOTE_POWER);p+=E[0],h+=E[1],f+=E[2];for(let T of s){let M=ZI(T,$i.SINGLE_ANGLE_VOTE_POWER);p+=M[0],h+=M[1],f+=M[2]}let F;return p===Math.max(p,h,f)?F=JI(l,i,c,d):f===Math.max(h,f)?F=YI(a,r,o,u):F=rce(l,i,c,d,a,r,o,u),F}function QI(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of qe.all){let o=qe.getPoints(a),i=[],l=[];for(let c of o){let u=e[c[0]],d=e[c[1]],p=KI(u,d),h=p[0],f=p[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of qe.all){let o=a===qe.thumb?1:0,i=qe.getPoints(a),l=e[i[o][0]],c=e[i[o+1][1]],u=e[i[3][1]],d=sce(l,c,u),p=ace(l,c,u,t[a].slice(o));s[a]=d,r[a]=p}return{curls:s,directions:r}}function j0(e){if(!e||e.length===0)return null;let t=QI(e),n={};for(let s of qe.all)n[qe.getName(s)]={curl:ns.getName(t.curls[s]),direction:je.getName(t.directions[s])};return n}function eS(e){let t=[];if(!e||e.length===0)return t;let n=QI(e);for(let s of qI){let r=s.matchAgainst(n.curls,n.directions);r>=nce&&t.push({name:s.name,confidence:r})}return t}var tS={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},qr,Xr,nS;async function Hx(e,t){let n=await nS.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let u of Object.keys(tS))a[u]=tS[u].map(d=>n[r].landmarks[d]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let u of o)u[0]<i[0]&&(i[0]=u[0]),u[1]<i[1]&&(i[1]=u[1]),u[0]>i[2]&&(i[2]=u[0]),u[1]>i[3]&&(i[3]=u[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let c=j0(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:c})}return s}async function jx(e){var n,s,r,a,o,i;xe.initial&&(qr=null,Xr=null),!qr||!Xr?([qr,Xr]=await Promise.all([e.hand.enabled?Qe(tt(e.modelBasePath,((n=e.hand.detector)==null?void 0:n.modelPath)||""),{fromTFHub:(((s=e.hand.detector)==null?void 0:s.modelPath)||"").includes("tfhub.dev")}):null,e.hand.landmarks?Qe(tt(e.modelBasePath,((r=e.hand.skeleton)==null?void 0:r.modelPath)||""),{fromTFHub:(((a=e.hand.skeleton)==null?void 0:a.modelPath)||"").includes("tfhub.dev")}):null]),e.hand.enabled&&(!qr||!qr.modelUrl?oe("load model failed:",((o=e.hand.detector)==null?void 0:o.modelPath)||""):e.debug&&oe("load model:",qr.modelUrl),!Xr||!Xr.modelUrl?oe("load model failed:",((i=e.hand.skeleton)==null?void 0:i.modelPath)||""):e.debug&&oe("load model:",Xr.modelUrl))):(e.debug&&oe("cached model:",qr.modelUrl),e.debug&&oe("cached model:",Xr.modelUrl));let t=new Ux(qr);return nS=new Gx(t,Xr),[qr,Xr]}function Oi(e,t=[1,1]){let n=[e.map(i=>i[0]),e.map(i=>i[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[s[0],s[1],r[0]-s[0],r[1]-s[1]],o=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:o}}function sS(e,t=[1,1]){let n=[e.map(c=>c[0]),e.map(c=>c[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[(s[0]+r[0])/2,(s[1]+r[1])/2],o=Math.max(a[0]-s[0],a[1]-s[1],-a[0]+r[0],-a[1]+r[1]),i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:l}}function q0(e,t){let n=[e[2]*t,e[3]*t];return[e[0]-(n[0]-e[2])/2,e[1]-(n[1]-e[3])/2,n[0],n[1]]}function qx(e){return[Math.max(0,e[1]),Math.max(0,e[0]),Math.min(1,e[3]+e[1]),Math.min(1,e[2]+e[0])]}var kt=[null,null],oce=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],Va=[[0,0],[0,0]],ice=["hand","fist","pinch","point","face","tip","pinchtip"],rS=4,aS=1.6,lce=512,uce=1.4,X0=0,Kr=[0,0],Ut={boxes:[],hands:[]},oS={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]};async function iS(e){var t,n;if(xe.initial&&(kt[0]=null),kt[0])e.debug&&oe("cached model:",kt[0].modelUrl);else{Gu(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),kt[0]=await Qe(tt(e.modelBasePath,((t=e.hand.detector)==null?void 0:t.modelPath)||""));let s=Object.values(kt[0].modelSignature.inputs);Va[0][0]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[1].size):0,Va[0][1]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[2].size):0,!kt[0]||!kt[0].modelUrl?oe("load model failed:",(n=e.hand.detector)==null?void 0:n.modelPath):e.debug&&oe("load model:",kt[0].modelUrl)}return kt[0]}async function lS(e){var t,n;if(xe.initial&&(kt[1]=null),kt[1])e.debug&&oe("cached model:",kt[1].modelUrl);else{kt[1]=await Qe(tt(e.modelBasePath,((t=e.hand.skeleton)==null?void 0:t.modelPath)||""));let s=Object.values(kt[1].modelSignature.inputs);Va[1][0]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[1].size):0,Va[1][1]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[2].size):0,!kt[1]||!kt[1].modelUrl?oe("load model failed:",(n=e.hand.skeleton)==null?void 0:n.modelPath):e.debug&&oe("load model:",kt[1].modelUrl)}return kt[1]}async function cce(e,t){let n=[];if(!e||!kt[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,lce),o=Math.round(a*r/8)*8;s.resize=De.resizeBilinear(e,[a,o]),s.cast=de(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await kt[0].executeAsync(s.cast,oce),s.boxes=rt(s.rawBoxes,[0,2]),s.scores=rt(s.rawScores,[0]);let i=On(s.scores,1);Y(i[rS]),i.splice(rS,1),s.filtered=bn(i,1),Y(i),s.max=$n(s.filtered,1),s.argmax=vs(s.filtered,1);let l=0;s.nms=await De.nonMaxSuppressionAsync(s.boxes,s.max,t.hand.maxDetected,t.hand.iouThreshold,t.hand.minConfidence);let c=await s.nms.data(),u=await s.max.data(),d=await s.argmax.data();for(let p of Array.from(c)){let h=_e(s.boxes,p,1),f=await h.data();Y(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=q0(m,uce),A=qx(g),y=[Math.trunc(m[0]*Kr[0]),Math.trunc(m[1]*Kr[1]),Math.trunc(m[2]*Kr[0]),Math.trunc(m[3]*Kr[1])],x=u[p],b=ice[d[p]],v={id:l++,score:x,box:y,boxRaw:g,boxCrop:A,label:b};n.push(v)}return Object.keys(s).forEach(p=>Y(s[p])),n.sort((p,h)=>h.score-p.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function Xx(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&kt[1]&&n.hand.landmarks&&t.score>(n.hand.minConfidence||0)){let r={};r.crop=De.cropAndResize(e,[t.boxCrop],[0],[Va[1][0],Va[1][1]],"bilinear"),r.cast=de(r.crop,"float32"),r.div=fe(r.cast,255),[r.score,r.keypoints]=kt[1].execute(r.div);let a=(await r.score.data())[0],o=(100-Math.trunc(100/(1+Math.exp(a))))/100;if(o>=(n.hand.minConfidence||0)){s.fingerScore=o,r.reshaped=U(r.keypoints,[-1,3]);let c=(await r.reshaped.array()).map(u=>[u[0]/Va[1][1],u[1]/Va[1][0],u[2]||0]).map(u=>[u[0]*t.boxRaw[2],u[1]*t.boxRaw[3],u[2]||0]);s.keypoints=c.map(u=>[Kr[0]*(u[0]+t.boxRaw[0]),Kr[1]*(u[1]+t.boxRaw[1]),u[2]||0]),s.landmarks=j0(s.keypoints);for(let u of Object.keys(oS))s.annotations[u]=oS[u].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null)}Object.keys(r).forEach(i=>Y(r[i]))}return s}async function Kx(e,t){var n,s;return!kt[0]||!kt[1]||!((n=kt[0])==null?void 0:n.inputs[0].shape)||!((s=kt[1])==null?void 0:s.inputs[0].shape)?[]:(Kr=[e.shape[2]||0,e.shape[1]||0],X0++,t.skipFrame&&X0<=(t.hand.skipFrames||0)?Ut.hands:new Promise(async r=>{t.skipFrame&&Ut.hands.length===t.hand.maxDetected?Ut.hands=await Promise.all(Ut.boxes.map(o=>Xx(e,o,t))):t.skipFrame&&X0<3*(t.hand.skipFrames||0)&&Ut.hands.length>0?Ut.hands=await Promise.all(Ut.boxes.map(o=>Xx(e,o,t))):(Ut.boxes=await cce(e,t),Ut.hands=await Promise.all(Ut.boxes.map(o=>Xx(e,o,t))),X0=0);let a=[...Ut.boxes];if(Ut.boxes.length=0,t.cacheSensitivity>0)for(let o=0;o<Ut.hands.length;o++){let i=sS(Ut.hands[o].keypoints,Kr);if(i.box[2]/(e.shape[2]||1)>.05&&i.box[3]/(e.shape[1]||1)>.05&&Ut.hands[o].fingerScore&&Ut.hands[o].fingerScore>(t.hand.minConfidence||0)){let l=q0(i.box,aS),c=q0(i.boxRaw,aS),u=qx(c);Ut.boxes.push({...a[o],box:l,boxRaw:c,boxCrop:u})}}for(let o=0;o<Ut.hands.length;o++){let i=Oi(Ut.hands[o].keypoints,Kr);Ut.hands[o].box=i.box,Ut.hands[o].boxRaw=i.boxRaw}r(Ut.hands)}))}var Qx={};lc(Qx,{connected:()=>Z0,horizontal:()=>Zx,kpt:()=>K0,relative:()=>Jx,vertical:()=>Yx});var K0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Zx=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],Yx=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],Jx=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],Z0={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var uS=.005,gs={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function e5(e){for(let t of Zx){let n=e.keypoints.findIndex(r=>r.part===t[0]),s=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[0]<e.keypoints[s].position[0]){let r=e.keypoints[n];e.keypoints[n]=e.keypoints[s],e.keypoints[s]=r}}for(let t of Yx){let n=e.keypoints.findIndex(r=>r&&r.part===t[0]),s=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[1]<e.keypoints[s].position[1]&&e.keypoints.splice(n,1)}for(let[t,n]of Jx){let s=e.keypoints.findIndex(c=>c&&c.part===t[0]),r=e.keypoints.findIndex(c=>c&&c.part===t[1]),a=e.keypoints.findIndex(c=>c&&c.part===n[0]),o=e.keypoints.findIndex(c=>c&&c.part===n[1]);if(!e.keypoints[a]||!e.keypoints[o])continue;let i=e.keypoints[s]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[s].position[0]),Math.abs(e.keypoints[o].position[0]-e.keypoints[s].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[o].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||l[0]>l[1]){let c=e.keypoints[s];e.keypoints[s]=e.keypoints[r],e.keypoints[r]=c}}}function cS(e){for(let t=0;t<e.length;t++)if(e[t]&&gs.keypoints[t]){let n=[Math.abs(e[t].positionRaw[0]-gs.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-gs.keypoints[t].positionRaw[1])];n[0]<uS&&n[1]<uS?e[t]=gs.keypoints[t]:gs.keypoints[t]=e[t]}else gs.keypoints[t]=e[t];return e}function dS(e,t){let n={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;gs.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],n.pad=ks(e,gs.padding),n.resize=De.resizeBilinear(n.pad,[t,t]);let s=de(n.resize,"int32");return Object.keys(n).forEach(r=>Y(n[r])),s}function pS(e,t){e.keypoints=e.keypoints.filter(s=>s&&s.position);for(let s of e.keypoints)s.position=[s.position[0]*(t[0]+gs.padding[2][0]+gs.padding[2][1])/t[0]-gs.padding[2][0],s.position[1]*(t[1]+gs.padding[1][0]+gs.padding[1][1])/t[1]-gs.padding[1][0]],s.positionRaw=[s.position[0]/t[0],s.position[1]/t[1]];let n=Oi(e.keypoints.map(s=>s.position),t);return e.box=n.box,e.boxRaw=n.boxRaw,e}var Nn,Y0=0,t5=Number.MAX_SAFE_INTEGER,tp={boxes:[],bodies:[]};async function hS(e){return xe.initial&&(Nn=null),Nn?e.debug&&oe("cached model:",Nn.modelUrl):(Gu(["size"],e),Nn=await Qe(tt(e.modelBasePath,e.body.modelPath||"")),!Nn||!Nn.modelUrl?oe("load model failed:",e.body.modelPath):e.debug&&oe("load model:",Nn.modelUrl)),Y0=Nn.inputs[0].shape?Nn.inputs[0].shape[2]:0,Y0===-1&&(Y0=256),Nn}async function dce(e,t,n,s){let r=e[0][0],a=[],o=0;for(let d=0;d<r.length;d++)if(o=r[d][2],o>t.body.minConfidence){let p=[(s[3]-s[1])*r[d][1]+s[1],(s[2]-s[0])*r[d][0]+s[0]];a.push({score:Math.round(100*o)/100,part:K0[d],positionRaw:p,position:[Math.round((n.shape[2]||0)*p[0]),Math.round((n.shape[1]||0)*p[1])]})}o=a.reduce((d,p)=>p.score>d?p.score:d,0);let i=[],l=Oi(a.map(d=>d.position),[n.shape[2],n.shape[1]]),c={};for(let[d,p]of Object.entries(Z0)){let h=[];for(let f=0;f<p.length-1;f++){let m=a.find(A=>A.part===p[f]),g=a.find(A=>A.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}c[d]=h}let u={id:0,score:o,box:l.box,boxRaw:l.boxRaw,keypoints:a,annotations:c};return e5(u),i.push(u),i}async function pce(e,t,n,s){let r=[];for(let a=0;a<e[0].length;a++){let o=e[0][a],i=Math.round(100*o[51+4])/100;if(i>t.body.minConfidence){let l=[];for(let p=0;p<17;p++){let h=o[3*p+2];if(h>t.body.minConfidence){let f=[(s[3]-s[1])*o[3*p+1]+s[1],(s[2]-s[0])*o[3*p+0]+s[0]];l.push({part:K0[p],score:Math.round(100*h)/100,positionRaw:f,position:[Math.round((n.shape[2]||0)*f[0]),Math.round((n.shape[1]||0)*f[1])]})}}let c=Oi(l.map(p=>p.position),[n.shape[2],n.shape[1]]),u={};for(let[p,h]of Object.entries(Z0)){let f=[];for(let m=0;m<h.length-1;m++){let g=l.find(y=>y.part===h[m]),A=l.find(y=>y.part===h[m+1]);g&&A&&g.score>(t.body.minConfidence||0)&&A.score>(t.body.minConfidence||0)&&f.push([g.position,A.position])}u[p]=f}let d={id:a,score:i,box:c.box,boxRaw:c.boxRaw,keypoints:[...l],annotations:u};e5(d),r.push(d)}}return r.sort((a,o)=>o.score-a.score),r.length>t.body.maxDetected&&(r.length=t.body.maxDetected),r}async function n5(e,t){return!Nn||!(Nn==null?void 0:Nn.inputs[0].shape)?[]:(t.skipFrame||(tp.boxes.length=0),t5++,t.skipFrame&&t5<=(t.body.skipFrames||0)?tp.bodies:new Promise(async n=>{let s={};t5=0,s.input=dS(e,Y0),s.res=await(Nn==null?void 0:Nn.predict(s.input));let r=await s.res.array();tp.bodies=s.res.shape[2]===17?await dce(r,t,e,[0,0,1,1]):await pce(r,t,e,[0,0,1,1]);for(let a of tp.bodies)pS(a,[e.shape[2]||1,e.shape[1]||1]),cS(a.keypoints);Object.keys(s).forEach(a=>Y(s[a])),n(tp.bodies)}))}var As,J0=[],s5=Number.MAX_SAFE_INTEGER,Q0=2.5;async function fS(e){if(!As||xe.initial){As=await Qe(tt(e.modelBasePath,e.object.modelPath||""));let t=Object.values(As.modelSignature.inputs);if(As.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!As.inputSize)throw new Error(`cannot determine model inputSize: ${e.object.modelPath}`);!As||!As.modelUrl?oe("load model failed:",e.object.modelPath):e.debug&&oe("load model:",As.modelUrl)}else e.debug&&oe("cached model:",As.modelUrl);return As}async function hce(e,t,n,s){let r=0,a=[];for(let c of[1,2,4])j(async()=>{var g,A;let u=c*13,d=(g=e.find(y=>y.shape[1]===u**2&&y.shape[2]===Uu.length))==null?void 0:g.squeeze(),p=(A=e.find(y=>y.shape[1]===u**2&&y.shape[2]<Uu.length))==null?void 0:A.squeeze(),f=await p.reshape([-1,4,p.shape[1]/4]).argMax(2).array(),m=await d.array();for(let y=0;y<d.shape[0];y++)for(let x=0;x<d.shape[1];x++){let b=m[y][x];if(b>s.object.minConfidence&&x!==61){let v=(.5+Math.trunc(y%u))/u,I=(.5+Math.trunc(y/u))/u,C=f[y].map(G=>G*(u/c/t)),[N,$]=[v-Q0/c*C[0],I-Q0/c*C[1]],[O,E]=[v+Q0/c*C[2]-N,I+Q0/c*C[3]-$],F=[N,$,O,E];F=F.map(G=>Math.max(0,Math.min(G,1)));let T=[F[0]*n[0],F[1]*n[1],F[2]*n[0],F[3]*n[1]],M={id:r++,score:Math.round(100*b)/100,class:x+1,label:Uu[x].label,box:T.map(G=>Math.trunc(G)),boxRaw:F};a.push(M)}}});e.forEach(c=>Y(c));let o=a.map(c=>[c.boxRaw[1],c.boxRaw[0],c.boxRaw[3],c.boxRaw[2]]),i=a.map(c=>c.score),l=[];if(o&&o.length>0){let c=await De.nonMaxSuppressionAsync(o,i,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);l=await c.data(),Y(c)}return a=a.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),a}async function r5(e,t){return s5<(t.object.skipFrames||0)&&t.skipFrame&&J0.length>0?(s5++,J0):(s5=0,!xe.kernels.includes("mod")||!xe.kernels.includes("sparsetodense")?J0:new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=De.resizeBilinear(e,[As.inputSize,As.inputSize],!1),a=fe(r,255),o=a.transpose([0,3,1,2]);Y(a),Y(r);let i;t.object.enabled&&(i=await As.predict(o)),Y(o);let l=await hce(i,As.inputSize,s,t);J0=l,n(l)}))}var np=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],fce=np.length,sp=np.reduce((e,t,n)=>(e[t]=n,e),{}),mce=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Xpe=mce.map(([e,t])=>[sp[e],sp[t]]),mS=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function gS(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function AS(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(c,u)=>({id:u,score:c.score,boxRaw:[c.box[0]/r,c.box[1]/s,c.box[2]/r,c.box[3]/s],box:[Math.trunc(c.box[0]*o),Math.trunc(c.box[1]*a),Math.trunc(c.box[2]*o),Math.trunc(c.box[3]*a)],keypoints:c.keypoints.map(({score:d,part:p,position:h})=>({score:d,part:p,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]}))});return e.map((c,u)=>i(c,u))}var a5=class{constructor(t,n){he(this,"priorityQueue");he(this,"numberOfElements");he(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function o5(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+fce)}}function i5(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=o5(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function l5(e,t,n){return e<t?t:e>n?n:e}function yS(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function u5(e,t){return{x:e.x+t.x,y:e.y+t.y}}var ys,gce=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],em=1,qu=16,Ace=50**2;function xS(e,t,n,s,r,a,o=2){let i=A=>({y:a.get(A.y,A.x,e),x:a.get(A.y,A.x,a.shape[2]/2+e)}),l=(A,y,x)=>({y:l5(Math.round(A.y/qu),0,y-1),x:l5(Math.round(A.x/qu),0,x-1)}),[c,u]=s.shape,d=l(t.position,c,u),p=i(d),f=u5(t.position,p);for(let A=0;A<o;A++){let y=l(f,c,u),x=o5(y.y,y.x,n,r);f=u5({x:y.x*qu,y:y.y*qu},{x:x.x,y:x.y})}let m=l(f,c,u),g=s.get(m.y,m.x,n);return{position:f,part:np[n],score:g}}function yce(e,t,n,s,r){let a=mS.map(([p,h])=>[sp[p],sp[h]]),o=a.map(([,p])=>p),i=a.map(([p])=>p),l=t.shape[2],c=o.length,u=new Array(l),d=i5(e.part,qu,n);u[e.part.id]={score:e.score,part:np[e.part.id],position:d};for(let p=c-1;p>=0;--p){let h=o[p],f=i[p];u[h]&&!u[f]&&(u[f]=xS(p,u[h],f,t,n,r))}for(let p=0;p<c;++p){let h=i[p],f=o[p];u[h]&&!u[f]&&(u[f]=xS(p,u[h],f,t,n,s))}return u}function xce(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-em,0),c=Math.min(n+em+1,a);for(let u=l;u<c;++u){let d=Math.max(s-em,0),p=Math.min(s+em+1,o);for(let h=d;h<p;++h)if(r.get(u,h,e)>t){i=!1;break}if(!i)break}return i}function bce(e,t){let[n,s,r]=t.shape,a=new a5(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let c=t.get(o,i,l);c<e||xce(l,c,o,i,t)&&a.enqueue({score:c,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function bS(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?yS(n,t,a.y,a.x)<=Ace:!1})}function vce(e,t){return t.reduce((s,{position:r,score:a},o)=>(bS(e,r,o)||(s+=a),s),0)/t.length}function wce(e,t,n,s,r,a){let o=[],i=bce(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),c=i5(l.part,qu,e);if(bS(o,c,l.part.id))continue;let u=yce(l,t,e,n,s);u=u.filter(h=>h.score>a);let d=vce(o,u),p=gS(u);d>a&&o.push({keypoints:u,box:p,score:Math.round(100*d)/100})}return o}async function c5(e,t){let n=j(()=>{if(!ys.inputs[0].shape)return[];let o=De.resizeBilinear(e,[ys.inputs[0].shape[2],ys.inputs[0].shape[1]]),i=ye(fe(de(o,"float32"),127.5),1),c=ys.execute(i,gce).map(u=>rt(u,[0]));return c[1]=c[1].sigmoid(),c}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)Y(o);let r=await wce(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return ys.inputs[0].shape?AS(r,[e.shape[1],e.shape[2]],[ys.inputs[0].shape[2],ys.inputs[0].shape[1]]):[]}async function vS(e){return!ys||xe.initial?(ys=await Qe(tt(e.modelBasePath,e.body.modelPath||"")),!ys||!ys.modelUrl?oe("load model failed:",e.body.modelPath):e.debug&&oe("load model:",ys.modelUrl)):e.debug&&oe("cached model:",ys.modelUrl),ys}var Ds,d5=!1;async function p5(e){return!Ds||xe.initial?(Ds=await Qe(tt(e.modelBasePath,e.segmentation.modelPath||"")),!Ds||!Ds.modelUrl?oe("load model failed:",e.segmentation.modelPath):e.debug&&oe("load model:",Ds.modelUrl)):e.debug&&oe("cached model:",Ds.modelUrl),Ds}async function wS(e,t,n){var m,g;if(d5)return{data:[],canvas:null,alpha:null};d5=!0,Ds||await p5(n);let s=Vu(e,n),r=((m=s.canvas)==null?void 0:m.width)||0,a=((g=s.canvas)==null?void 0:g.height)||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=De.resizeBilinear(s.tensor,[Ds.inputs[0].shape?Ds.inputs[0].shape[1]:0,Ds.inputs[0].shape?Ds.inputs[0].shape[2]:0],!1),Y(s.tensor),o.norm=fe(o.resize,255),o.res=Ds.predict(o.norm),o.squeeze=rt(o.res,0),o.squeeze.shape[2]===2?(o.softmax=ui(o.squeeze),[o.bg,o.fg]=On(o.softmax,2),o.expand=Bt(o.fg,2),o.pad=Bt(o.expand,0),o.crop=De.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=rt(o.crop,0)):o.data=De.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(xe.node&&!xe.Canvas&&typeof ImageData=="undefined")return n.debug&&oe("canvas support missing"),Object.keys(o).forEach(A=>Y(o[A])),{data:i,canvas:null,alpha:null};let l=Vn(r,a);await Ms.toPixels(o.data,l);let c=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(c.filter=`blur(${n.segmentation.blur}px)`);let u=c.getImageData(0,0,r,a),d=Vn(r,a),p=d.getContext("2d");s.canvas&&p.drawImage(s.canvas,0,0),p.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(p.filter=`blur(${n.segmentation.blur}px)`),p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none";let h=p.getImageData(0,0,r,a);for(let A=0;A<r*a;A++)h.data[4*A+3]=u.data[4*A+0];p.putImageData(h,0,0);let f=null;if(t&&d){f=Vn(r,a);let A=Vu(t,n);Y(A.tensor);let y=f.getContext("2d");y.drawImage(A.canvas,0,0,f.width,f.height),y.drawImage(d,0,0)}return Object.keys(o).forEach(A=>Y(o[A])),d5=!1,{data:i,canvas:f||d,alpha:l}}var rp=class{constructor(){he(this,"age",null);he(this,"agegenderrace",null);he(this,"blazeposedetect",null);he(this,"blazepose",null);he(this,"centernet",null);he(this,"efficientpose",null);he(this,"embedding",null);he(this,"emotion",null);he(this,"facedetect",null);he(this,"faceiris",null);he(this,"facemesh",null);he(this,"faceres",null);he(this,"gender",null);he(this,"handpose",null);he(this,"handskeleton",null);he(this,"handtrack",null);he(this,"movenet",null);he(this,"nanodet",null);he(this,"posenet",null);he(this,"segmentation",null);he(this,"antispoof",null)}};function h5(e){for(let t of Object.keys(e.models))e.models[t]=null}async function kS(e){var t,n,s,r,a,o,i,l,c,u,d,p,h,f,m,g,A,y,x,b,v,I,C,N,$,O,E,F,T,M,G;xe.initial&&h5(e),e.config.hand.enabled&&(!e.models.handpose&&((n=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:n.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await jx(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(s=e.config.hand.detector)==null?void 0:s.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await jx(e.config))),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=AI(e.config)),e.config.face.enabled&&((a=e.config.face.mesh)==null?void 0:a.enabled)&&!e.models.facemesh&&(e.models.facemesh=FI(e.config)),e.config.face.enabled&&((o=e.config.face.iris)==null?void 0:o.enabled)&&!e.models.faceiris&&(e.models.faceiris=CI(e.config)),e.config.face.enabled&&((i=e.config.face.antispoof)==null?void 0:i.enabled)&&!e.models.antispoof&&(e.models.antispoof=iI(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((c=(l=e.config.hand.detector)==null?void 0:l.modelPath)==null?void 0:c.includes("handtrack"))&&(e.models.handtrack=iS(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((d=(u=e.config.hand.detector)==null?void 0:u.modelPath)==null?void 0:d.includes("handtrack"))&&(e.models.handskeleton=lS(e.config)),e.config.body.enabled&&!e.models.posenet&&((h=(p=e.config.body)==null?void 0:p.modelPath)==null?void 0:h.includes("posenet"))&&(e.models.posenet=vS(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((m=(f=e.config.body)==null?void 0:f.modelPath)==null?void 0:m.includes("efficientpose"))&&(e.models.efficientpose=Rx(e.config)),e.config.body.enabled&&!e.models.blazepose&&((A=(g=e.config.body)==null?void 0:g.modelPath)==null?void 0:A.includes("blazepose"))&&(e.models.blazepose=vI(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&((y=e.config.body.detector)==null?void 0:y.modelPath)&&((b=(x=e.config.body)==null?void 0:x.modelPath)==null?void 0:b.includes("blazepose"))&&(e.models.blazeposedetect=bI(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((I=(v=e.config.body)==null?void 0:v.modelPath)==null?void 0:I.includes("efficientpose"))&&(e.models.efficientpose=Rx(e.config)),e.config.body.enabled&&!e.models.movenet&&((N=(C=e.config.body)==null?void 0:C.modelPath)==null?void 0:N.includes("movenet"))&&(e.models.movenet=hS(e.config)),e.config.object.enabled&&!e.models.nanodet&&((O=($=e.config.object)==null?void 0:$.modelPath)==null?void 0:O.includes("nanodet"))&&(e.models.nanodet=fS(e.config)),e.config.object.enabled&&!e.models.centernet&&((F=(E=e.config.object)==null?void 0:E.modelPath)==null?void 0:F.includes("centernet"))&&(e.models.centernet=kI(e.config)),e.config.face.enabled&&((T=e.config.face.emotion)==null?void 0:T.enabled)&&!e.models.emotion&&(e.models.emotion=SI(e.config)),e.config.face.enabled&&((M=e.config.face.description)==null?void 0:M.enabled)&&!e.models.faceres&&(e.models.faceres=MI(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=p5(e.config)),e.config.face.enabled&&((G=e.config.face.agegenderrace)==null?void 0:G.enabled)&&!e.models.agegenderrace&&(e.models.agegenderrace=aI(e.config));for await(let H of Object.keys(e.models))e.models[H]&&typeof e.models[H]!="undefined"&&(e.models[H]=await e.models[H])}async function IS(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let n of Object.keys(e.models))if(e.models[n]){let s=[];Array.isArray(e.models[n])?s=e.models[n].filter(r=>r!==null).map(r=>r&&r.executor?r:r.model):s=[e.models[n]];for(let r of s){if(!r){e.config.debug&&oe("model marked as loaded but not defined:",n);continue}let a=[],o=r==null?void 0:r.executor;if(o&&o.graph.nodes)for(let l of Object.values(o.graph.nodes)){let c=l.op.toLowerCase();a.includes(c)||a.push(c)}else!o&&e.config.debug&&oe("model signature not determined:",n);let i=[];for(let l of a)!t.includes(l)&&!e.env.kernels.includes(l)&&!e.env.kernels.includes(l.replace("_",""))&&!e.env.kernels.includes(l.replace("native",""))&&!e.env.kernels.includes(l.replace("v2",""))&&i.push(l);i.length>0&&e.config.debug&&oe("model validation:",n,i)}}}var Ot={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function kce(){let e=Ot.gl;!e||(Ot.extensions=e.getSupportedExtensions())}async function SS(e){var t;if(e.config.backend==="humangl"&&(Ot.name in as().registry&&(!Ot.gl||!Ot.gl.getParameter(Ot.gl.VERSION))&&(oe("error: humangl backend invalid context"),h5(e)),!AA(Ot.name))){try{Ot.canvas=await Vn(100,100)}catch(s){oe("error: cannot create canvas:",s);return}try{Ot.gl=(t=Ot.canvas)==null?void 0:t.getContext("webgl2",Ot.webGLattr),Ot.canvas&&(Ot.canvas.addEventListener("webglcontextlost",async s=>{throw oe("error: humangl:",s.type),oe("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("browser webgl error")}),Ot.canvas.addEventListener("webglcontextrestored",s=>{oe("error: humangl context restored:",s)}),Ot.canvas.addEventListener("webglcontextcreationerror",s=>{oe("error: humangl context create:",s)}))}catch(s){oe("error: cannot get WebGL context:",s);return}try{l0(2,Ot.gl)}catch(s){oe("error: cannot set WebGL context:",s);return}try{let s=new A0(Ot.gl);nu(Ot.name,()=>new Pu(s),Ot.priority)}catch(s){oe("error: cannot register WebGL backend:",s);return}try{Or("webgl").forEach(r=>{let a={...r,backendName:Ot.name};pa(a)})}catch(s){oe("error: cannot update WebGL backend registration:",s);return}let n=Ar().getGPGPUContext?Ar().getGPGPUContext().gl:null;if(n)oe(`humangl webgl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`);else{oe("error: no current gl context:",n,Ot.gl);return}try{fr.set("WEBGL_VERSION",2)}catch(s){oe("error: cannot set WebGL backend flags:",s);return}kce(),oe("backend registered:",Ot.name)}}async function tm(e,t=!1){if(e.state="backend",t||xe.initial||e.config.backend&&e.config.backend.length>0&&Ys()!==e.config.backend){let n=Pe();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&oe("running inside web worker"),xe.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&oe("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),xe.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&oe(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),xe.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")oe("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();e.config.debug&&oe("enumerated webgpu adapter:",r)}e.config.backend==="humangl"&&await SS(e);let s=Object.keys(as().registryFactory);if(e.config.debug&&oe("available backends:",s),s.includes(e.config.backend)||(oe(`error: backend ${e.config.backend} not found in registry`),e.config.backend=xe.node?"tensorflow":"webgl",e.config.debug&&oe(`override: setting backend ${e.config.backend}`)),e.config.debug&&oe("setting backend:",e.config.backend),e.config.backend==="wasm"){if(e.config.debug&&oe("wasm path:",e.config.wasmPath),typeof(Ri==null?void 0:Ri.setWasmPaths)!="undefined")await X8(e.config.wasmPath);else throw new Error("wasm backend is not loaded");let r=await se().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await se().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&oe(`wasm execution: ${r?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),e.config.debug&&!r&&oe("warning: wasm simd support is not enabled")}try{await e3(e.config.backend),await $h()}catch(r){return oe("error: cannot set backend:",e.config.backend,r),!1}}if(Ys()==="humangl"&&(fr.set("CHECK_COMPUTATION_FOR_ERRORS",!1),fr.set("WEBGL_CPU_FORWARD",!0),fr.set("WEBGL_USE_SHAPES_UNIFORMS",!0),fr.set("CPU_HANDOFF_SIZE_THRESHOLD",256),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(oe("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),fr.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),Ar().getGPGPUContext)){let s=await Ar().getGPGPUContext().gl;e.config.debug&&oe(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}Ys()==="webgpu",Qb(),await $h(),e.performance.backend=Math.trunc(Pe()-n),e.config.backend=Ys(),xe.updateBackend()}return!0}function Gu(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&oe("kernelFunc",n,t.backend)}};pa(s)}xe.kernels=Or(Ys()).map(n=>n.kernelName.toLowerCase())}var Zr={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},Pi=e=>{if(e&&e.getContext)return e.getContext("2d");throw new Error("invalid canvas")},Xu=e=>Math.round(e*180/Math.PI);function f5(e,t,n,s=0,r){e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function ap(e,t,n,s,r,a){if(e.beginPath(),a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function CS(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function Ice(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){CS(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function TS(e,t,n,s=5){let r,a,o;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(n[0],n[1]),r=Math.atan2(n[1]-t[1],n[0]-t[0]),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.moveTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),e.closePath(),e.stroke(),e.fill()}async function m5(e,t,n){let s=Sn(Zr,n);if(!(!t||!e)&&s.drawGestures){let r=Pi(e);r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let c=i[1]>0?`#${i[1]}`:"",u=`${i[0]} ${c}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(u,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(u,6,0+a*s.lineHeight),a+=1}}}}async function g5(e,t,n){var a,o,i,l,c;let s=Sn(Zr,n);if(!t||!e)return;let r=Pi(e);for(let u of t){if(r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&ap(r,u.box[0],u.box[1],u.box[2],u.box[3],s),s.drawLabels){let d=[];if(d.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&d.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&d.push(`age: ${u.age||""}`),u.iris&&d.push(`distance: ${u.iris}`),u.real&&d.push(`real: ${Math.trunc(100*u.real)}%`),u.emotion&&u.emotion.length>0){let p=u.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);p.length>3&&(p.length=3),d.push(p.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&d.push(`roll: ${Xu(u.rotation.angle.roll)}\xB0 yaw:${Xu(u.rotation.angle.yaw)}\xB0 pitch:${Xu(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&d.push(`gaze: ${Xu(u.rotation.gaze.bearing)}\xB0`)),d.length===0&&d.push("face"),r.fillStyle=s.color;for(let p=d.length-1;p>=0;p--){let h=Math.max(u.box[0],0),f=p*s.lineHeight+u.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(d[p],h+5,f+16)),r.fillStyle=s.labelColor,r.fillText(d[p],h+4,f+15)}}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(s.drawPoints)for(let d of u.mesh)f5(r,d[0],d[1],d[2],s);if(s.drawPolygons){if(r.lineWidth=1,u.mesh.length>450)for(let d=0;d<Di.length/3;d++){let p=[Di[d*3+0],Di[d*3+1],Di[d*3+2]].map(h=>u.mesh[h]);CS(r,p,s)}if(u.annotations&&u.annotations.leftEyeIris&&u.annotations.leftEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,p=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris&&u.annotations.rightEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,p=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&((a=u.rotation)==null?void 0:a.angle)){r.strokeStyle="pink";let d=u.box[0]+u.box[2]/2-u.box[3]*Xu(u.rotation.angle.yaw)/90,p=u.box[1]+u.box[3]/2+u.box[2]*Xu(u.rotation.angle.pitch)/90,h=new Path2D(`
|
|
M ${u.box[0]+u.box[2]/2} ${u.box[1]}
|
|
C
|
|
${d} ${u.box[1]},
|
|
${d} ${u.box[1]+u.box[3]},
|
|
${u.box[0]+u.box[2]/2} ${u.box[1]+u.box[3]}
|
|
`),f=new Path2D(`
|
|
M ${u.box[0]} ${u.box[1]+u.box[3]/2}
|
|
C
|
|
${u.box[0]} ${p},
|
|
${u.box[0]+u.box[2]} ${p},
|
|
${u.box[0]+u.box[2]} ${u.box[1]+u.box[3]/2}
|
|
`);r.stroke(f),r.stroke(h)}if(s.drawGaze&&((i=(o=u.rotation)==null?void 0:o.gaze)==null?void 0:i.strength)&&((c=(l=u.rotation)==null?void 0:l.gaze)==null?void 0:c.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.fillStyle="pink";let d=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];TS(r,[u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]],[d[0],d[1]],4);let p=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];TS(r,[u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]],[p[0],p[1]],4)}}}}}async function A5(e,t,n){var a;let s=Sn(Zr,n);if(!t||!e)return;let r=Pi(e);r.lineJoin="round";for(let o=0;o<t.length;o++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[o].box&&((a=t[o].box)==null?void 0:a.length)===4&&(ap(r,t[o].box[0],t[o].box[1],t[o].box[2],t[o].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+3,1+t[o].box[1]+s.lineHeight,t[o].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+2,0+t[o].box[1]+s.lineHeight,t[o].box[2]))),s.drawPoints&&t[o].keypoints)for(let i=0;i<t[o].keypoints.length;i++)r.fillStyle=s.useDepth&&t[o].keypoints[i].position[2]?`rgba(${127.5+2*(t[o].keypoints[i].position[2]||0)}, ${127.5-2*(t[o].keypoints[i].position[2]||0)}, 255, 0.5)`:s.color,f5(r,t[o].keypoints[i].position[0],t[o].keypoints[i].position[1],0,s);if(s.drawLabels&&t[o].keypoints){r.font=s.font;for(let i of t[o].keypoints)r.fillStyle=s.useDepth&&i.position[2]?`rgba(${127.5+2*i.position[2]}, ${127.5-2*i.position[2]}, 255, 0.5)`:s.color,r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position[0]+4,i.position[1]+4)}if(s.drawPolygons&&t[o].keypoints&&t[o].annotations)for(let i of Object.values(t[o].annotations))for(let l of i)Ice(r,l,s)}}async function y5(e,t,n){let s=Sn(Zr,n);if(!t||!e)return;let r=Pi(e);r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,ap(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*(o[2]||0)}, ${127.5-2*(o[2]||0)}, 255, 0.5)`:s.color,f5(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{!i||i.length===0||!i[0]||(r.fillStyle=s.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4))};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l<i.length;l++)r.beginPath(),r.strokeStyle=s.useDepth?`rgba(${127.5+2*i[l][2]}, ${127.5-2*i[l][2]}, 255, 0.5)`:s.color,r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}async function x5(e,t,n){let s=Sn(Zr,n);if(!t||!e)return;let r=Pi(e);r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,ap(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}async function NS(e,t,n){let s=Sn(Zr,n);if(!t||!e)return;let r=Pi(e);r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,ap(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}async function ES(e,t){if(!e||!t)return;Pi(t).drawImage(e,0,0)}async function RS(e,t,n){if(!t||!t.performance||!t||!e)return null;let s=Pe(),r=Sn(Zr,n),a=Promise.all([g5(e,t.face,r),A5(e,t.body,r),y5(e,t.hand,r),x5(e,t.object,r),m5(e,t.gesture,r)]);return t.performance.draw=Math.trunc(Pe()-s),a}var Sce=e=>{let t=(d,p)=>Math.atan2(d[1]-p[1],d[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=e.mesh[33][2]>e.mesh[263][2],a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],c=Math.sqrt(l[0]**2+l[1]**2);return c=Math.min(c,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:c}},DS=(e,t)=>{let n=g=>{let A=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=A,g[1]/=A,g[2]/=A,g},s=(g,A)=>{let y=g[0]-A[0],x=g[1]-A[1],b=g[2]-A[2];return[y,x,b]},r=(g,A)=>{let y=g[1]*A[2]-g[2]*A[1],x=g[2]*A[0]-g[0]*A[2],b=g[0]*A[1]-g[1]*A[0];return[y,x,b]},a=g=>{let[A,y,x,b,v,I,C,N,$]=g,O,E,F;return b<1?b>-1?(F=Math.asin(b),E=Math.atan2(-C,A),O=Math.atan2(-I,v)):(F=-Math.PI/2,E=-Math.atan2(N,$),O=0):(F=Math.PI/2,E=Math.atan2(N,$),O=0),isNaN(O)&&(O=0),isNaN(E)&&(E=0),isNaN(F)&&(F=0),{pitch:2*-O,yaw:2*-E,roll:2*-F}},o=g=>{let A=(x,b,v,I)=>Math.atan2(I-b,v-x);return{pitch:A(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:A(g[33][0],g[33][2],g[263][0],g[263][2]),roll:A(g[33][0],g[33][1],g[263][0],g[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,c=[i[10],i[152],i[234],i[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),u=n(s(c[1],c[0])),d=n(s(c[3],c[2])),p=n(r(d,u));d=r(u,p);let h=[d[0],d[1],d[2],u[0],u[1],u[2],p[0],p[1],p[2]],f=a(h),m=i.length===478?Sce(e):{bearing:0,strength:0};return{angle:f,matrix:h,gaze:m}};var b5=async(e,t)=>{var p,h,f,m;let n,s,r,a,o,i,l,c,u=[];e.state="run:face",n=Pe();let d=await _I(t,e.config);if(e.performance.face=Math.trunc(Pe()-n),!t.shape||t.shape.length!==4)return[];if(!d)return[];for(let g=0;g<d.length;g++){if(e.analyze("Get Face"),!d[g].tensor||d[g].tensor.isDisposedInternal){oe("Face object is disposed:",d[g].tensor);continue}let A=DS(d[g],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?o=e.config.face.emotion.enabled?$x(d[g].tensor||Lt([]),e.config,g,d.length):null:(e.state="run:emotion",n=Pe(),o=e.config.face.emotion.enabled?await $x(d[g].tensor||Lt([]),e.config,g,d.length):null,e.performance.emotion=Math.trunc(Pe()-n)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?l=e.config.face.antispoof.enabled?cx(d[g].tensor||Lt([]),e.config,g,d.length):null:(e.state="run:antispoof",n=Pe(),l=e.config.face.antispoof.enabled?await cx(d[g].tensor||Lt([]),e.config,g,d.length):null,e.performance.antispoof=Math.trunc(Pe()-n)),e.analyze("End AntiSpoof:"),e.analyze("Start Description:"),e.config.async?c=e.config.face.description.enabled?Bx(d[g].tensor||Lt([]),e.config,g,d.length):null:(e.state="run:description",n=Pe(),c=e.config.face.description.enabled?await Bx(d[g].tensor||Lt([]),e.config,g,d.length):null,e.performance.embedding=Math.trunc(Pe()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,c,r,l]=await Promise.all([s,a,o,i,c,r,l])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((h=(p=d[g])==null?void 0:p.annotations)==null?void 0:h.leftEyeIris)&&((m=(f=d[g])==null?void 0:f.annotations)==null?void 0:m.rightEyeIris)&&(delete d[g].annotations.leftEyeIris,delete d[g].annotations.rightEyeIris);let y=d[g].annotations&&d[g].annotations.leftEyeIris&&d[g].annotations.leftEyeIris[0]&&d[g].annotations.rightEyeIris&&d[g].annotations.rightEyeIris[0]&&d[g].annotations.leftEyeIris.length>0&&d[g].annotations.rightEyeIris.length>0&&d[g].annotations.leftEyeIris[0]!==null&&d[g].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(d[g].annotations.leftEyeIris[3][0]-d[g].annotations.leftEyeIris[1][0]),Math.abs(d[g].annotations.rightEyeIris[4][1]-d[g].annotations.rightEyeIris[2][1]))/t.shape[2]:0,x=e.config.face.detector.return?rt(d[g].tensor):null;Y(d[g].tensor),d[g].tensor&&delete d[g].tensor,u.push({...d[g],id:g,age:c==null?void 0:c.age,gender:c==null?void 0:c.gender,genderScore:c==null?void 0:c.genderScore,embedding:c==null?void 0:c.descriptor,emotion:o,real:l,iris:y!==0?Math.trunc(500/y/11.7)/100:0,rotation:A,tensor:x}),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),u};var _S=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position[1]<a.position[1]&&r.position[1]<a.position[1]?t.push({body:n,gesture:"i give up"}):a&&s&&s.position[1]<a.position[1]?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position[1]<a.position[1]&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&t.push({body:n,gesture:`leaning ${o.position[1]>i.position[1]?"left":"right"}`})}return t},FS=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>450){let s=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(s)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));o>10&&t.push({face:n,gesture:`mouth ${Math.trunc(o)}% open`});let i=e[n].mesh[152][2];Math.abs(i)>10&&t.push({face:n,gesture:`head ${i<0?"up":"down"}`})}return t},$S=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.leftEyeIris[0]||!e[n].annotations.rightEyeIris||!e[n].annotations.rightEyeIris[0])continue;let s=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],a=Math.abs(s*r),o=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],i=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(o*i),c=!1;Math.abs(a-l)/Math.max(a,l)<.25&&(c=!0,t.push({iris:n,gesture:"facing center"}));let d=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2],p=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2];(p>.06||d>.06)&&(c=!1),p>.06&&t.push({iris:n,gesture:"looking right"}),d>.06&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||h<.01||f>.022||h>.022)&&(c=!1),(f<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},OS=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];if(e[n].annotations)for(let[r,a]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(a)&&a[0]&&s.push({name:r.toLowerCase(),position:a[0]});if(s&&s.length>0){let r=s.reduce((o,i)=>o.position[2]<i.position[2]?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]<i.position[1]?o:i);t.push({hand:n,gesture:`${a.name} up`})}if(e[n].keypoints){let r=eS(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}}return t};var $e={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function PS(e,t){var o,i,l,c,u,d,p,h,f,m,g,A,y,x,b,v,I,C,N,$,O,E,F,T,M,G,H;let n=Pe();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};let s=Date.now()-e.timestamp,r=s<1e3?8-Math.log(s+1):1;if($e.canvas=e.canvas,!$e.body||e.body.length!==$e.body.length)$e.body=JSON.parse(JSON.stringify(e.body));else for(let z=0;z<e.body.length;z++){let X=e.body[z].box.map((J,ee)=>((r-1)*$e.body[z].box[ee]+J)/r),Q=e.body[z].boxRaw.map((J,ee)=>((r-1)*$e.body[z].boxRaw[ee]+J)/r),Z=e.body[z].keypoints.map((J,ee)=>({score:J.score,part:J.part,position:[$e.body[z].keypoints[ee]?((r-1)*$e.body[z].keypoints[ee].position[0]+J.position[0])/r:J.position[0],$e.body[z].keypoints[ee]?((r-1)*$e.body[z].keypoints[ee].position[1]+J.position[1])/r:J.position[1]],positionRaw:[$e.body[z].keypoints[ee]?((r-1)*$e.body[z].keypoints[ee].positionRaw[0]+J.positionRaw[0])/r:J.position[0],$e.body[z].keypoints[ee]?((r-1)*$e.body[z].keypoints[ee].positionRaw[1]+J.positionRaw[1])/r:J.position[1]]})),ne={},te={connected:{}};((i=(o=t.body)==null?void 0:o.modelPath)==null?void 0:i.includes("efficientpose"))?te=Nx:((c=(l=t.body)==null?void 0:l.modelPath)==null?void 0:c.includes("blazepose"))?te=bx:((d=(u=t.body)==null?void 0:u.modelPath)==null?void 0:d.includes("movenet"))&&(te=Qx);for(let[J,ee]of Object.entries(te.connected)){let ce=[];for(let pe=0;pe<ee.length-1;pe++){let be=Z.find(Ce=>Ce.part===ee[pe]),we=Z.find(Ce=>Ce.part===ee[pe+1]);be&&we&&be.score>(t.body.minConfidence||0)&&we.score>(t.body.minConfidence||0)&&ce.push([be.position,we.position])}ne[J]=ce}$e.body[z]={...e.body[z],box:X,boxRaw:Q,keypoints:Z,annotations:ne}}if(!$e.hand||e.hand.length!==$e.hand.length)$e.hand=JSON.parse(JSON.stringify(e.hand));else for(let z=0;z<e.hand.length;z++){let X=e.hand[z].box.map((te,J)=>((r-1)*$e.hand[z].box[J]+te)/r),Q=e.hand[z].boxRaw.map((te,J)=>((r-1)*$e.hand[z].boxRaw[J]+te)/r);$e.hand[z].keypoints.length!==e.hand[z].keypoints.length&&($e.hand[z].keypoints=e.hand[z].keypoints);let Z=e.hand[z].keypoints&&e.hand[z].keypoints.length>0?e.hand[z].keypoints.map((te,J)=>te.map((ee,ce)=>((r-1)*($e.hand[z].keypoints[J][ce]||1)+(ee||0))/r)):[],ne={};if(Object.keys($e.hand[z].annotations).length!==Object.keys(e.hand[z].annotations).length)$e.hand[z].annotations=e.hand[z].annotations,ne=$e.hand[z].annotations;else if(e.hand[z].annotations)for(let te of Object.keys(e.hand[z].annotations))ne[te]=e.hand[z].annotations[te]&&e.hand[z].annotations[te][0]?e.hand[z].annotations[te].map((J,ee)=>J.map((ce,pe)=>((r-1)*$e.hand[z].annotations[te][ee][pe]+ce)/r)):null;$e.hand[z]={...e.hand[z],box:X,boxRaw:Q,keypoints:Z,annotations:ne}}if(!$e.face||e.face.length!==$e.face.length)$e.face=JSON.parse(JSON.stringify(e.face));else for(let z=0;z<e.face.length;z++){let X=e.face[z].box.map((ne,te)=>((r-1)*$e.face[z].box[te]+ne)/r),Q=e.face[z].boxRaw.map((ne,te)=>((r-1)*$e.face[z].boxRaw[te]+ne)/r),Z={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};Z.matrix=(p=e.face[z].rotation)==null?void 0:p.matrix,Z.angle={roll:((r-1)*(((f=(h=$e.face[z].rotation)==null?void 0:h.angle)==null?void 0:f.roll)||0)+(((g=(m=e.face[z].rotation)==null?void 0:m.angle)==null?void 0:g.roll)||0))/r,yaw:((r-1)*(((y=(A=$e.face[z].rotation)==null?void 0:A.angle)==null?void 0:y.yaw)||0)+(((b=(x=e.face[z].rotation)==null?void 0:x.angle)==null?void 0:b.yaw)||0))/r,pitch:((r-1)*(((I=(v=$e.face[z].rotation)==null?void 0:v.angle)==null?void 0:I.pitch)||0)+(((N=(C=e.face[z].rotation)==null?void 0:C.angle)==null?void 0:N.pitch)||0))/r},Z.gaze={bearing:((r-1)*(((O=($=$e.face[z].rotation)==null?void 0:$.gaze)==null?void 0:O.bearing)||0)+(((F=(E=e.face[z].rotation)==null?void 0:E.gaze)==null?void 0:F.bearing)||0))/r,strength:((r-1)*(((M=(T=$e.face[z].rotation)==null?void 0:T.gaze)==null?void 0:M.strength)||0)+(((H=(G=e.face[z].rotation)==null?void 0:G.gaze)==null?void 0:H.strength)||0))/r},$e.face[z]={...e.face[z],rotation:Z,box:X,boxRaw:Q}}if(!$e.object||e.object.length!==$e.object.length)$e.object=JSON.parse(JSON.stringify(e.object));else for(let z=0;z<e.object.length;z++){let X=e.object[z].box.map((Z,ne)=>((r-1)*$e.object[z].box[ne]+Z)/r),Q=e.object[z].boxRaw.map((Z,ne)=>((r-1)*$e.object[z].boxRaw[ne]+Z)/r);$e.object[z]={...e.object[z],box:X,boxRaw:Q}}if(e.persons){let z=e.persons;if(!$e.persons||z.length!==$e.persons.length)$e.persons=JSON.parse(JSON.stringify(z));else for(let X=0;X<z.length;X++)$e.persons[X].box=z[X].box.map((Q,Z)=>((r-1)*$e.persons[X].box[Z]+Q)/r)}e.gesture&&($e.gesture=e.gesture);let a=Pe();return e.performance&&($e.performance={...e.performance,interpolate:Math.round(a-n)}),$e}function nm(e,t,n={order:2}){let s=0;for(let r=0;r<e.length;r++){let a=n.order===2?e[r]-t[r]:Math.abs(e[r]-t[r]);s+=n.order===2?a*a:a**n.order}return s}function MS(e,t,n={order:2}){let s=nm(e,t,n),r=n.order===2?Math.sqrt(s):s**(1/n.order);return Math.max(0,100-r)/100}function zS(e,t,n={order:2,threshold:0}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0||e.length!==t[0].length)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let s=Number.MAX_SAFE_INTEGER,r=-1;for(let a=0;a<t.length;a++){let o=nm(e,t[a],{order:n.order});if(o<s&&(s=o,r=a),s<n.threshold)break}return s=n.order===2?Math.sqrt(s):s**(1/n.order),{index:r,distance:s,similarity:Math.max(0,100-s)/100}}function LS(e,t,n,s,r){var i,l,c,u,d,p,h,f,m,g,A,y,x,b,v,I;let a=0,o=[];for(let C of e){let N={id:a++,face:C,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let M of t)C.box[0]>M.box[0]&&C.box[0]<M.box[0]+M.box[2]&&C.box[1]+C.box[3]>M.box[1]&&C.box[1]+C.box[3]<M.box[1]+M.box[3]&&(N.body=M);if(N.body)for(let M of n)M.box[0]+M.box[2]>N.body.box[0]&&M.box[0]+M.box[2]<N.body.box[0]+N.body.box[2]&&M.box[1]+M.box[3]>N.body.box[1]&&M.box[1]+M.box[3]<N.body.box[1]+N.body.box[3]&&N.hands&&(N.hands.left=M),M.box[0]<N.body.box[0]+N.body.box[2]&&M.box[0]>N.body.box[0]&&M.box[1]+M.box[3]>N.body.box[1]&&M.box[1]+M.box[3]<N.body.box[1]+N.body.box[3]&&N.hands&&(N.hands.right=M);for(let M of s)M.face!==void 0&&M.face===C.id?(i=N.gestures)==null||i.push(M):M.iris!==void 0&&M.iris===C.id?(l=N.gestures)==null||l.push(M):M.body!==void 0&&M.body===((c=N.body)==null?void 0:c.id)?(u=N.gestures)==null||u.push(M):M.hand!==void 0&&M.hand===((p=(d=N.hands)==null?void 0:d.left)==null?void 0:p.id)?(h=N.gestures)==null||h.push(M):M.hand!==void 0&&M.hand===((m=(f=N.hands)==null?void 0:f.right)==null?void 0:m.id)&&((g=N.gestures)==null||g.push(M));let $=[],O=[],E=M=>{M&&M.length===4&&($.push(M[0],M[0]+M[2]),O.push(M[1],M[1]+M[3]))};E((A=N.face)==null?void 0:A.box),E((y=N.body)==null?void 0:y.box),E((b=(x=N.hands)==null?void 0:x.left)==null?void 0:b.box),E((I=(v=N.hands)==null?void 0:v.right)==null?void 0:I.box);let F=Math.min(...$),T=Math.min(...O);N.box=[F,T,Math.max(...$)-F,Math.max(...O)-T],r&&r[1]&&r[2]&&(N.boxRaw=[N.box[0]/r[2],N.box[1]/r[1],N.box[2]/r[2],N.box[3]/r[1]]),o.push(N)}return o}var sm=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,rm=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;async function Cce(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(sm);break;case"body":case"full":n=await t(rm);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function Tce(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+sm;break;case"full":case"body":n="data:image/jpeg;base64,"+rm;break;default:n=null}let s;typeof Image!="undefined"?s=new Image:xe.Image&&(s=new xe.Image),s.onload=async()=>{let r=Vn(s.naturalWidth,s.naturalHeight);if(!r)oe("Warmup: Canvas not found"),t({});else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=await e.detect(o.tensor,e.config);t(i)}},n?s.src=n:t(null)})}async function Nce(e){let t=r=>Buffer.from(r,"base64"),n;if(e.config.warmup==="face"&&(n=t(sm)),(e.config.warmup==="body"||e.config.warmup==="full")&&(n=t(rm)),!n)return null;let s;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&oe("Warmup tfjs-node not loaded");return s}async function BS(e,t){let n=Pe();if(e.state="warmup",t&&(e.config=Sn(e.config,t)),!e.config.warmup||e.config.warmup==="none")return{error:"null"};let s;return new Promise(async r=>{typeof createImageBitmap=="function"?s=await Cce(e):typeof Image!="undefined"||xe.Canvas!==void 0?s=await Tce(e):s=await Nce(e);let a=Pe();e.config.debug&&oe("Warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),r(s)})}var Ku,op,ip,am,VS=class{constructor(t){he(this,"version");he(this,"config");he(this,"result");he(this,"state");he(this,"process");he(this,"tf");he(this,"env");he(this,"draw");he(this,"models");he(this,"events");he(this,"faceTriangulation");he(this,"faceUVMap");he(this,"performance");cc(this,Ku,void 0);cc(this,op,void 0);cc(this,ip,void 0);he(this,"gl");he(this,"analyze",(...t)=>{if(!uc(this,op))return;let n=this.tf.engine().state.numTensors,s=uc(this,Ku);dc(this,Ku,n);let r=n-s;r!==0&&oe(...t,r)});cc(this,am,t=>{if(!uc(this,ip))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof Ge))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});he(this,"similarity",MS);he(this,"distance",nm);he(this,"match",zS);he(this,"emit",t=>{var n;this.events&&this.events.dispatchEvent&&((n=this.events)==null||n.dispatchEvent(new Event(t)))});this.env=xe,aa.wasmPath=Vc.includes("-")?"https://vladmandic.github.io/tfjs/dist/":`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${Vc}/dist/`,aa.modelBasePath=xe.browser?"../models/":"file://models/",aa.backend=xe.browser?"humangl":"tensorflow",this.version=lx,Object.defineProperty(this,"version",{value:lx}),this.config=JSON.parse(JSON.stringify(aa)),Object.seal(this.config),t&&(this.config=Sn(this.config,t)),this.tf=Ri,this.state="idle",dc(this,Ku,0),dc(this,op,!1),dc(this,ip,!1),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new rp,this.draw={options:Zr,canvas:(n,s)=>ES(n,s),face:(n,s,r)=>g5(n,s,r),body:(n,s,r)=>A5(n,s,r),hand:(n,s,r)=>y5(n,s,r),gesture:(n,s,r)=>m5(n,s,r),object:(n,s,r)=>x5(n,s,r),person:(n,s,r)=>NS(n,s,r),all:(n,s,r)=>RS(n,s,r)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.process={tensor:null,canvas:null},this.faceTriangulation=$I,this.faceUVMap=OI,this.gl=Ot,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(aa)),this.config.backend=t}validate(t){return _g(aa,t||this.config)}now(){return Pe()}image(t,n=!0){return Vu(t,this.config,n)}async segmentation(t,n){return wS(t,n,this.config)}enhance(t){return Lx(t)}async init(){await tm(this,!0),await this.tf.ready()}async load(t){this.state="load";let n=Pe(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=Sn(this.config,t)),xe.initial&&(this.config.debug&&oe(`version: ${this.version}`),this.config.debug&&oe(`tfjs version: ${this.tf.version_core}`),await tm(this)||oe("error: backend check failed"),await $h(),this.env.browser&&(this.config.debug&&oe("configuration:",this.config),this.config.debug&&oe("tf flags:",this.tf.ENV.flags))),await kS(this),xe.initial&&this.config.debug&&oe("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),xe.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(await IS(this),this.emit("load"));let a=Math.trunc(Pe()-n);a>(this.performance.load||0)&&(this.performance.load=a)}next(t=this.result){return PS(t,this.config)}async warmup(t){return BS(this,t)}async detect(t,n){return this.state="detect",new Promise(async s=>{var A,y,x,b,v,I,C,N,$,O,E,F,T,M,G,H,z,X,Q,Z,ne,te;this.state="config";let r,a;this.config=Sn(this.config,n),this.state="check";let o=uc(this,am).call(this,t);o&&(oe(o,t),s({error:o}));let i=Pe();await tm(this),await this.load(),r=Pe(),this.state="image";let l=Vu(t,this.config);if(this.process=l,this.performance.image=Math.trunc(Pe()-r),this.analyze("Get Image:"),!l.tensor){this.config.debug&&oe("could not convert input to tensor"),s({error:"could not convert input to tensor"});return}this.emit("image"),r=Pe(),this.config.skipFrame=await rI(this.config,l.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(Pe()-r),this.analyze("Check Changed:");let c=[],u=[],d=[],p=[];this.state="detect:face",this.config.async?(c=this.config.face.enabled?b5(this,l.tensor):[],this.performance.face&&delete this.performance.face):(r=Pe(),c=this.config.face.enabled?await b5(this,l.tensor):[],a=Math.trunc(Pe()-r),a>0&&(this.performance.face=a)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(c=await c),this.analyze("Start Body:"),this.state="detect:body";let h=this.config.body.maxDetected===-1?Sn(this.config,{body:{maxDetected:this.config.face.enabled?1*c.length:1}}):this.config;this.config.async?(((A=this.config.body.modelPath)==null?void 0:A.includes("posenet"))?u=this.config.body.enabled?c5(l.tensor,h):[]:((y=this.config.body.modelPath)==null?void 0:y.includes("blazepose"))?u=this.config.body.enabled?kx(l.tensor,h):[]:((x=this.config.body.modelPath)==null?void 0:x.includes("efficientpose"))?u=this.config.body.enabled?Dx(l.tensor,h):[]:((b=this.config.body.modelPath)==null?void 0:b.includes("movenet"))&&(u=this.config.body.enabled?n5(l.tensor,h):[]),this.performance.body&&delete this.performance.body):(r=Pe(),((v=this.config.body.modelPath)==null?void 0:v.includes("posenet"))?u=this.config.body.enabled?await c5(l.tensor,h):[]:((I=this.config.body.modelPath)==null?void 0:I.includes("blazepose"))?u=this.config.body.enabled?await kx(l.tensor,h):[]:((C=this.config.body.modelPath)==null?void 0:C.includes("efficientpose"))?u=this.config.body.enabled?await Dx(l.tensor,h):[]:((N=this.config.body.modelPath)==null?void 0:N.includes("movenet"))&&(u=this.config.body.enabled?await n5(l.tensor,h):[]),a=Math.trunc(Pe()-r),a>0&&(this.performance.body=a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let f=this.config.hand.maxDetected===-1?Sn(this.config,{hand:{maxDetected:this.config.face.enabled?2*c.length:1}}):this.config;this.config.async?(((O=($=this.config.hand.detector)==null?void 0:$.modelPath)==null?void 0:O.includes("handdetect"))?d=this.config.hand.enabled?Hx(l.tensor,f):[]:((F=(E=this.config.hand.detector)==null?void 0:E.modelPath)==null?void 0:F.includes("handtrack"))&&(d=this.config.hand.enabled?Kx(l.tensor,f):[]),this.performance.hand&&delete this.performance.hand):(r=Pe(),((M=(T=this.config.hand.detector)==null?void 0:T.modelPath)==null?void 0:M.includes("handdetect"))?d=this.config.hand.enabled?await Hx(l.tensor,f):[]:((H=(G=this.config.hand.detector)==null?void 0:G.modelPath)==null?void 0:H.includes("handtrack"))&&(d=this.config.hand.enabled?await Kx(l.tensor,f):[]),a=Math.trunc(Pe()-r),a>0&&(this.performance.hand=a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?(((z=this.config.object.modelPath)==null?void 0:z.includes("nanodet"))?p=this.config.object.enabled?r5(l.tensor,this.config):[]:((X=this.config.object.modelPath)==null?void 0:X.includes("centernet"))&&(p=this.config.object.enabled?Sx(l.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=Pe(),((Q=this.config.object.modelPath)==null?void 0:Q.includes("nanodet"))?p=this.config.object.enabled?await r5(l.tensor,this.config):[]:((Z=this.config.object.modelPath)==null?void 0:Z.includes("centernet"))&&(p=this.config.object.enabled?await Sx(l.tensor,this.config):[]),a=Math.trunc(Pe()-r),a>0&&(this.performance.object=a)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([c,u,d,p]=await Promise.all([c,u,d,p])),this.state="detect:gesture";let m=[];this.config.gesture.enabled&&(r=Pe(),m=[...FS(c),..._S(u),...OS(d),...$S(c)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(Pe()-r)),this.performance.total=Math.trunc(Pe()-i);let g=((te=(ne=this.process)==null?void 0:ne.tensor)==null?void 0:te.shape)||[];this.result={face:c,body:u,hand:d,gesture:m,object:p,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),get persons(){return LS(c,u,d,m,g)}},Y(l.tensor),this.emit("detect"),this.state="idle",s(this.result)})}};Ku=new WeakMap,op=new WeakMap,ip=new WeakMap,am=new WeakMap;return Ece;})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|