human/dist/human.js

8057 lines
1.6 MiB

/*
Human
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
var Human=(()=>{var Hc=Object.defineProperty;var jE=Object.getOwnPropertyDescriptor;var HE=Object.getOwnPropertyNames;var qE=Object.prototype.hasOwnProperty;var XE=(e,t,r)=>t in e?Hc(e,t,{enumerable:!0,configurable:!0,writable:!0,value:r}):e[t]=r;var vs=(e,t)=>{for(var r in t)Hc(e,r,{get:t[r],enumerable:!0})},KE=(e,t,r,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of HE(t))!qE.call(e,a)&&a!==r&&Hc(e,a,{get:()=>t[a],enumerable:!(n=jE(t,a))||n.enumerable});return e};var ZE=e=>KE(Hc({},"__esModule",{value:!0}),e);var fe=(e,t,r)=>(XE(e,typeof t!="symbol"?t+"":t,r),r),z3=(e,t,r)=>{if(!t.has(e))throw TypeError("Cannot "+r)};var gp=(e,t,r)=>(z3(e,t,"read from private field"),r?r.call(e):t.get(e)),yp=(e,t,r)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,r)},Ap=(e,t,r,n)=>(z3(e,t,"write to private field"),n?n.call(e,r):t.set(e,r),r);var Mxe={};vs(Mxe,{Human:()=>f3,default:()=>f3,defaults:()=>ws,draw:()=>o3,env:()=>he,match:()=>c3,models:()=>b1});function se(...e){let t=new Date,r=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(r,"Human:",...e)}function O3(e,t){let r=e.endsWith("/")?"":"/",a=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${r}${t}`;if(!a.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${a}`);return a}var oe=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function rg(e,t,r="config",n=[]){for(let a of Object.keys(t))if(typeof t[a]=="object")rg(e[a],t[a],a,n);else{let s=e&&typeof e[a]!="undefined";s||n.push({reason:"unknown property",where:`${r}.${a} = ${t[a]}`});let i=e&&typeof e[a]==typeof t[a];s&&!i&&n.push({reason:"property type mismatch",where:`${r}.${a} = ${t[a]}`,expected:typeof e[a]})}return t.debug&&r==="config"&&n.length>0&&se("invalid configuration",n),n}function Gt(...e){let t=r=>r&&typeof r=="object";return e.reduce((r,n)=>(Object.keys(n||{}).forEach(a=>{let s=r[a],i=n[a];Array.isArray(s)&&Array.isArray(i)?r[a]=s.concat(...i):t(s)&&t(i)?r[a]=Gt(s,i):r[a]=i}),r),{})}var ws={backend:"",modelBasePath:"",cacheModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!0,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Ue={};vs(Ue,{Abs:()=>jo,Acos:()=>Bu,Acosh:()=>Wu,AdadeltaOptimizer:()=>Zf,AdagradOptimizer:()=>Yf,AdamOptimizer:()=>Jf,AdamaxOptimizer:()=>Qf,Add:()=>Ja,AddN:()=>Zs,All:()=>Vu,Any:()=>Uu,ArgMax:()=>Ys,ArgMin:()=>Gu,Asin:()=>ju,Asinh:()=>Hu,Atan:()=>qu,Atan2:()=>Ku,Atanh:()=>Xu,AvgPool:()=>Js,AvgPool3D:()=>Qp,AvgPool3DGrad:()=>tf,AvgPoolGrad:()=>ef,BackendWasm:()=>mC,BatchMatMul:()=>Qs,BatchToSpaceND:()=>Ho,Bincount:()=>rf,BroadcastArgs:()=>nf,BroadcastTo:()=>Lv,Callback:()=>gk,CallbackList:()=>g6,Cast:()=>ei,Ceil:()=>ti,ClipByValue:()=>Qa,Complex:()=>eh,ComplexAbs:()=>th,Concat:()=>qo,Conv2D:()=>ri,Conv2DBackpropFilter:()=>af,Conv2DBackpropInput:()=>ni,Conv3D:()=>rh,Conv3DBackpropFilterV2:()=>sf,Conv3DBackpropInputV2:()=>of,Cos:()=>ai,Cosh:()=>si,CropAndResize:()=>Ko,Cumprod:()=>Xo,Cumsum:()=>ii,CustomCallback:()=>A6,DataStorage:()=>Jp,DenseBincount:()=>lf,DepthToSpace:()=>Zo,DepthwiseConv2dNative:()=>oi,DepthwiseConv2dNativeBackpropFilter:()=>uf,DepthwiseConv2dNativeBackpropInput:()=>df,Diag:()=>pf,Dilation2D:()=>nh,Dilation2DBackpropFilter:()=>v0,Dilation2DBackpropInput:()=>b0,ENV:()=>ba,EarlyStopping:()=>yk,Einsum:()=>ah,Elu:()=>ui,EluGrad:()=>hf,Environment:()=>Ov,Equal:()=>Yo,Erf:()=>Zu,Exp:()=>di,ExpandDims:()=>Jo,Expm1:()=>Qo,FFT:()=>cf,Fill:()=>Yu,FlipLeftRight:()=>el,Floor:()=>pi,FloorDiv:()=>hi,FromPixels:()=>Lp,FusedBatchNorm:()=>ci,FusedConv2D:()=>_s,FusedDepthwiseConv2D:()=>zs,GPGPUContext:()=>wu,GatherNd:()=>rl,GatherV2:()=>tl,GraphModel:()=>Im,Greater:()=>nl,GreaterEqual:()=>fi,History:()=>y6,IFFT:()=>ff,Identity:()=>mi,Imag:()=>sh,InputSpec:()=>Zt,IsFinite:()=>Ju,IsInf:()=>Qu,IsNan:()=>ed,KernelBackend:()=>Du,LRN:()=>oh,LRNGrad:()=>gf,LayerVariable:()=>o6,LayersModel:()=>Ka,LeakyRelu:()=>gi,Less:()=>al,LessEqual:()=>sl,LinSpace:()=>mf,Log:()=>yi,Log1p:()=>td,LogSoftmax:()=>Bv,LogicalAnd:()=>il,LogicalNot:()=>rd,LogicalOr:()=>ih,LowerBound:()=>WR,MathBackendCPU:()=>t5,MathBackendWebGL:()=>Wh,Max:()=>Ai,MaxPool:()=>bi,MaxPool3D:()=>lh,MaxPool3DGrad:()=>Af,MaxPoolGrad:()=>yf,MaxPoolWithArgmax:()=>xf,Maximum:()=>xi,Mean:()=>vi,Min:()=>wi,Minimum:()=>ki,MirrorPad:()=>Ii,Mod:()=>nd,MomentumOptimizer:()=>em,Multinomial:()=>bf,Multiply:()=>Si,Neg:()=>ol,NonMaxSuppressionV3:()=>ul,NonMaxSuppressionV4:()=>ad,NonMaxSuppressionV5:()=>dl,NotEqual:()=>ll,OP_SCOPE_SUFFIX:()=>t7,OneHot:()=>hl,OnesLike:()=>pl,Optimizer:()=>ns,OptimizerConstructors:()=>Is,Pack:()=>cl,PadV2:()=>Ci,Pool:()=>VR,Pow:()=>Ti,Prelu:()=>Ni,Prod:()=>Ei,RMSPropOptimizer:()=>tm,RNN:()=>as,Range:()=>sd,Rank:()=>jv,Real:()=>uh,RealDiv:()=>li,Reciprocal:()=>id,Reduction:()=>jw,Relu:()=>Ri,Relu6:()=>Mi,Reshape:()=>fl,ResizeBilinear:()=>$i,ResizeBilinearGrad:()=>wf,ResizeNearestNeighbor:()=>od,ResizeNearestNeighborGrad:()=>vf,Reverse:()=>ml,RotateWithOffset:()=>El,Round:()=>gl,Rsqrt:()=>Fi,SGDOptimizer:()=>Nh,ScatterNd:()=>yl,SearchSorted:()=>kf,Select:()=>Al,Selu:()=>ld,Sequential:()=>mm,Sigmoid:()=>_i,Sign:()=>ud,Sin:()=>Pi,Sinh:()=>bl,Slice:()=>xl,Softmax:()=>Di,Softplus:()=>dd,SpaceToBatchND:()=>vl,SparseFillEmptyRows:()=>dh,SparseReshape:()=>pd,SparseSegmentMean:()=>ph,SparseSegmentSum:()=>hh,SparseToDense:()=>ch,SplitV:()=>wl,Sqrt:()=>zi,Square:()=>hd,SquaredDifference:()=>Li,Step:()=>Ui,StridedSlice:()=>kl,StringNGrams:()=>fh,StringSplit:()=>If,StringToHashBucketFast:()=>Sf,Sub:()=>Bi,Sum:()=>Oi,SymbolicTensor:()=>pa,Tan:()=>Il,Tanh:()=>Wi,Tensor:()=>nt,TensorBuffer:()=>or,Tile:()=>es,TopK:()=>Sl,Transform:()=>Cl,Transpose:()=>Vi,Unique:()=>Cf,Unpack:()=>Tl,UnsortedSegmentSum:()=>mh,UpperBound:()=>UR,Variable:()=>Vp,ZerosLike:()=>Nl,_FusedMatMul:()=>Ps,abs:()=>sr,acos:()=>P7,acosh:()=>_7,add:()=>le,addN:()=>Nf,all:()=>Wy,any:()=>T0,argMax:()=>Rn,argMin:()=>z7,asin:()=>O7,asinh:()=>D7,atan:()=>L7,atan2:()=>B7,atanh:()=>W7,avgPool:()=>Ef,avgPool3d:()=>Uy,backend:()=>Dn,backend_util:()=>C,basicLSTMCell:()=>RF,batchNorm:()=>Cu,batchNorm2d:()=>j7,batchNorm3d:()=>H7,batchNorm4d:()=>q7,batchToSpaceND:()=>Rf,bincount:()=>Gy,booleanMaskAsync:()=>Hz,broadcastArgs:()=>X7,broadcastTo:()=>Pp,broadcast_util:()=>Rl,browser:()=>On,buffer:()=>Le,callbacks:()=>kj,cast:()=>me,ceil:()=>K7,clipByValue:()=>cn,clone:()=>Wr,complex:()=>Os,concat:()=>St,concat1d:()=>Z7,concat2d:()=>fd,concat3d:()=>Y7,concat4d:()=>J7,constraints:()=>h6,conv1d:()=>jy,conv2d:()=>Ls,conv2dTranspose:()=>qy,conv3d:()=>Xy,conv3dTranspose:()=>ew,copyRegisteredKernels:()=>qR,cos:()=>$f,cosh:()=>Ky,cosineWindow:()=>xA,cumprod:()=>E0,cumsum:()=>Zy,customGrad:()=>Pa,data:()=>Vk,denseBincount:()=>tw,deprecationWarn:()=>Dy,depthToSpace:()=>rw,depthwiseConv2d:()=>kh,deregisterOp:()=>Cj,device_util:()=>xh,diag:()=>oP,dilation2d:()=>nw,disableDeprecationWarnings:()=>HM,dispose:()=>te,disposeVariables:()=>qM,div:()=>pe,divNoNan:()=>aw,dot:()=>fP,dropout:()=>zw,einsum:()=>sw,elu:()=>Ih,enableDebugMode:()=>jM,enableProdMode:()=>Oy,enclosingPowerOfTwo:()=>Ow,engine:()=>Xt,env:()=>Z,equal:()=>$n,erf:()=>iw,euclideanNorm:()=>pw,exp:()=>Mn,expandDims:()=>Kt,expm1:()=>hw,eye:()=>Qy,fft:()=>Uf,fill:()=>md,findBackend:()=>By,findBackendFactory:()=>YM,floor:()=>Sh,floorDiv:()=>vh,forceHalfFloat:()=>u9,fused:()=>Vs,gather:()=>Tu,gatherND:()=>_w,gather_util:()=>Ry,getBackend:()=>Gr,getGradient:()=>Ag,getKernel:()=>w0,getKernelsForBackend:()=>Ma,getThreadsCount:()=>Oye,gpgpu_util:()=>BI,grad:()=>KP,grads:()=>ZP,greater:()=>mn,greaterEqual:()=>Ml,ifft:()=>Hp,imag:()=>Ff,image:()=>Ie,inTopKAsync:()=>rO,initializers:()=>c6,input:()=>M6,io:()=>Cr,irfft:()=>mA,isFinite:()=>LP,isInf:()=>WP,isNaN:()=>cw,keep:()=>gr,kernel_impls:()=>Kn,layers:()=>f6,leakyRelu:()=>Pf,less:()=>eA,lessEqual:()=>Fl,linalg:()=>Hw,linspace:()=>fw,loadGraphModel:()=>EH,loadLayersModel:()=>PU,localResponseNormalization:()=>mw,log:()=>Fn,log1p:()=>_f,logSigmoid:()=>r_,logSoftmax:()=>tA,logSumExp:()=>yw,logicalAnd:()=>ga,logicalNot:()=>Of,logicalOr:()=>rA,logicalXor:()=>d_,losses:()=>BD,lowerBound:()=>Aw,matMul:()=>Ze,math:()=>m7,max:()=>Ar,maxPool:()=>Df,maxPool3d:()=>aA,maxPoolWithArgmax:()=>xw,maximum:()=>ts,mean:()=>Vt,memory:()=>C0,meshgrid:()=>y_,metrics:()=>ck,min:()=>Bs,minimum:()=>Ch,mirrorPad:()=>bw,mod:()=>yd,model:()=>MU,models:()=>fk,moments:()=>Lf,movingAverage:()=>Xz,mul:()=>L,multiRNNCell:()=>k_,multinomial:()=>vw,neg:()=>Dt,nextFrame:()=>wA,norm:()=>Mf,notEqual:()=>Nu,oneHot:()=>Gp,ones:()=>hn,onesLike:()=>Pn,op:()=>W,outerProduct:()=>N_,pad:()=>Xn,pad1d:()=>$_,pad2d:()=>F_,pad3d:()=>__,pad4d:()=>O_,pool:()=>V_,pow:()=>Ws,prelu:()=>Wf,print:()=>p7,prod:()=>sA,profile:()=>XM,rand:()=>H_,randomGamma:()=>Z_,randomNormal:()=>ww,randomUniform:()=>Ad,range:()=>Eu,ready:()=>cd,real:()=>jp,reciprocal:()=>kw,registerBackend:()=>$l,registerCallbackConstructor:()=>_U,registerGradient:()=>Wv,registerKernel:()=>qn,registerOp:()=>Sj,regularizers:()=>mk,relu:()=>Oa,relu6:()=>lA,removeBackend:()=>ZM,reshape:()=>U,reverse:()=>_n,reverse1d:()=>sz,reverse2d:()=>oz,reverse3d:()=>uz,reverse4d:()=>pz,rfft:()=>Gf,round:()=>uA,rsqrt:()=>dA,scalar:()=>Se,scatterND:()=>Pw,scatter_util:()=>$y,searchSorted:()=>nA,selu:()=>pA,separableConv2d:()=>Iw,sequential:()=>FU,serialization:()=>ue,setBackend:()=>Ly,setPlatform:()=>JM,setThreadsCount:()=>zye,setWasmPath:()=>_ye,setWasmPaths:()=>z5,setWebGLContext:()=>Tm,setdiff1dAsync:()=>Sw,shared:()=>Sm,sigmoid:()=>Tr,sign:()=>Cw,signal:()=>LD,sin:()=>hA,sinh:()=>cA,slice:()=>Pe,slice1d:()=>Vf,slice2d:()=>fA,slice3d:()=>Pl,slice4d:()=>zo,slice_util:()=>Ot,softmax:()=>xd,softplus:()=>gd,spaceToBatchND:()=>Bf,sparse:()=>Sp,sparseToDense:()=>AA,spectral:()=>DD,split:()=>Yt,sqrt:()=>Er,square:()=>xt,squaredDifference:()=>gA,squeeze:()=>Qe,stack:()=>dr,step:()=>Th,stridedSlice:()=>Tw,string:()=>o0,sub:()=>ce,sum:()=>ke,sumOutType:()=>Ah,tan:()=>Nw,tanh:()=>Su,tensor:()=>ft,tensor1d:()=>Nt,tensor2d:()=>ca,tensor3d:()=>y7,tensor4d:()=>zz,tensor5d:()=>Oz,tensor6d:()=>Dz,tensor_util:()=>ha,test_util:()=>$7,tidy:()=>X,tile:()=>Gn,time:()=>KM,topk:()=>Ew,train:()=>xo,transpose:()=>tt,truncatedNormal:()=>jf,unique:()=>$g,unregisterGradient:()=>HR,unregisterKernel:()=>jR,unsortedSegmentSum:()=>Rw,unstack:()=>nn,upcastType:()=>Nr,upperBound:()=>$w,util:()=>v,valueAndGrad:()=>YP,valueAndGrads:()=>JP,variable:()=>Mw,variableGrads:()=>gw,version:()=>Zh,version_converter:()=>RH,version_core:()=>zy,version_cpu:()=>gX,version_layers:()=>jA,version_wasm:()=>Dye,version_webgl:()=>Hte,webgl:()=>qte,webgl_util:()=>dI,webgpu:()=>dS,where:()=>Vr,whereAsync:()=>yA,zeros:()=>_t,zerosLike:()=>at});var YE=Object.create,Z0=Object.defineProperty,JE=Object.getOwnPropertyDescriptor,Sv=Object.getOwnPropertyNames,QE=Object.getPrototypeOf,eR=Object.prototype.hasOwnProperty,tR=e=>Z0(e,"__esModule",{value:!0}),pr=(e,t)=>function(){return t||(0,e[Sv(e)[0]])((t={exports:{}}).exports,t),t.exports},Be=(e,t)=>{for(var r in t)Z0(e,r,{get:t[r],enumerable:!0})},rR=(e,t,r,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of Sv(t))!eR.call(e,a)&&(r||a!=="default")&&Z0(e,a,{get:()=>t[a],enumerable:!(n=JE(t,a))||n.enumerable});return e},Uo=(e,t)=>rR(tR(Z0(e!=null?YE(QE(e)):{},"default",!t&&e&&e.__esModule?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),nR=pr({"src/node_modules/long/src/long.js"(e,t){t.exports=n;var r=null;try{r=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(S){}function n(S,z,O){this.low=S|0,this.high=z|0,this.unsigned=!!O}n.prototype.__isLong__,Object.defineProperty(n.prototype,"__isLong__",{value:!0});function a(S){return(S&&S.__isLong__)===!0}n.isLong=a;var s={},i={};function o(S,z){var O,H,K;return z?(S>>>=0,(K=0<=S&&S<256)&&(H=i[S],H)?H:(O=u(S,(S|0)<0?-1:0,!0),K&&(i[S]=O),O)):(S|=0,(K=-128<=S&&S<128)&&(H=s[S],H)?H:(O=u(S,S<0?-1:0,!1),K&&(s[S]=O),O))}n.fromInt=o;function l(S,z){if(isNaN(S))return z?b:x;if(z){if(S<0)return b;if(S>=g)return R}else{if(S<=-y)return _;if(S+1>=y)return E}return S<0?l(-S,z).neg():u(S%f|0,S/f|0,z)}n.fromNumber=l;function u(S,z,O){return new n(S,z,O)}n.fromBits=u;var d=Math.pow;function h(S,z,O){if(S.length===0)throw Error("empty string");if(S==="NaN"||S==="Infinity"||S==="+Infinity"||S==="-Infinity")return x;if(typeof z=="number"?(O=z,z=!1):z=!!z,O=O||10,O<2||36<O)throw RangeError("radix");var H;if((H=S.indexOf("-"))>0)throw Error("interior hyphen");if(H===0)return h(S.substring(1),z,O).neg();for(var K=l(d(O,8)),D=x,Q=0;Q<S.length;Q+=8){var V=Math.min(8,S.length-Q),re=parseInt(S.substring(Q,Q+V),O);if(V<8){var Y=l(d(O,V));D=D.mul(Y).add(l(re))}else D=D.mul(K),D=D.add(l(re))}return D.unsigned=z,D}n.fromString=h;function p(S,z){return typeof S=="number"?l(S,z):typeof S=="string"?h(S,z):u(S.low,S.high,typeof z=="boolean"?z:S.unsigned)}n.fromValue=p;var c=1<<16,m=1<<24,f=c*c,g=f*f,y=g/2,A=o(m),x=o(0);n.ZERO=x;var b=o(0,!0);n.UZERO=b;var w=o(1);n.ONE=w;var I=o(1,!0);n.UONE=I;var N=o(-1);n.NEG_ONE=N;var E=u(-1,2147483647,!1);n.MAX_VALUE=E;var R=u(-1,-1,!0);n.MAX_UNSIGNED_VALUE=R;var _=u(0,-2147483648,!1);n.MIN_VALUE=_;var M=n.prototype;M.toInt=function(){return this.unsigned?this.low>>>0:this.low},M.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},M.toString=function(S){if(S=S||10,S<2||36<S)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(_)){var z=l(S),O=this.div(z),H=O.mul(z).sub(this);return O.toString(S)+H.toInt().toString(S)}else return"-"+this.neg().toString(S);for(var K=l(d(S,6),this.unsigned),D=this,Q="";;){var V=D.div(K),re=D.sub(V.mul(K)).toInt()>>>0,Y=re.toString(S);if(D=V,D.isZero())return Y+Q;for(;Y.length<6;)Y="0"+Y;Q=""+Y+Q}},M.getHighBits=function(){return this.high},M.getHighBitsUnsigned=function(){return this.high>>>0},M.getLowBits=function(){return this.low},M.getLowBitsUnsigned=function(){return this.low>>>0},M.getNumBitsAbs=function(){if(this.isNegative())return this.eq(_)?64:this.neg().getNumBitsAbs();for(var S=this.high!=0?this.high:this.low,z=31;z>0&&(S&1<<z)==0;z--);return this.high!=0?z+33:z+1},M.isZero=function(){return this.high===0&&this.low===0},M.eqz=M.isZero,M.isNegative=function(){return!this.unsigned&&this.high<0},M.isPositive=function(){return this.unsigned||this.high>=0},M.isOdd=function(){return(this.low&1)===1},M.isEven=function(){return(this.low&1)===0},M.equals=function(S){return a(S)||(S=p(S)),this.unsigned!==S.unsigned&&this.high>>>31===1&&S.high>>>31===1?!1:this.high===S.high&&this.low===S.low},M.eq=M.equals,M.notEquals=function(S){return!this.eq(S)},M.neq=M.notEquals,M.ne=M.notEquals,M.lessThan=function(S){return this.comp(S)<0},M.lt=M.lessThan,M.lessThanOrEqual=function(S){return this.comp(S)<=0},M.lte=M.lessThanOrEqual,M.le=M.lessThanOrEqual,M.greaterThan=function(S){return this.comp(S)>0},M.gt=M.greaterThan,M.greaterThanOrEqual=function(S){return this.comp(S)>=0},M.gte=M.greaterThanOrEqual,M.ge=M.greaterThanOrEqual,M.compare=function(S){if(a(S)||(S=p(S)),this.eq(S))return 0;var z=this.isNegative(),O=S.isNegative();return z&&!O?-1:!z&&O?1:this.unsigned?S.high>>>0>this.high>>>0||S.high===this.high&&S.low>>>0>this.low>>>0?-1:1:this.sub(S).isNegative()?-1:1},M.comp=M.compare,M.negate=function(){return!this.unsigned&&this.eq(_)?_:this.not().add(w)},M.neg=M.negate,M.add=function(S){a(S)||(S=p(S));var z=this.high>>>16,O=this.high&65535,H=this.low>>>16,K=this.low&65535,D=S.high>>>16,Q=S.high&65535,V=S.low>>>16,re=S.low&65535,Y=0,ie=0,J=0,ae=0;return ae+=K+re,J+=ae>>>16,ae&=65535,J+=H+V,ie+=J>>>16,J&=65535,ie+=O+Q,Y+=ie>>>16,ie&=65535,Y+=z+D,Y&=65535,u(J<<16|ae,Y<<16|ie,this.unsigned)},M.subtract=function(S){return a(S)||(S=p(S)),this.add(S.neg())},M.sub=M.subtract,M.multiply=function(S){if(this.isZero())return x;if(a(S)||(S=p(S)),r){var z=r.mul(this.low,this.high,S.low,S.high);return u(z,r.get_high(),this.unsigned)}if(S.isZero())return x;if(this.eq(_))return S.isOdd()?_:x;if(S.eq(_))return this.isOdd()?_:x;if(this.isNegative())return S.isNegative()?this.neg().mul(S.neg()):this.neg().mul(S).neg();if(S.isNegative())return this.mul(S.neg()).neg();if(this.lt(A)&&S.lt(A))return l(this.toNumber()*S.toNumber(),this.unsigned);var O=this.high>>>16,H=this.high&65535,K=this.low>>>16,D=this.low&65535,Q=S.high>>>16,V=S.high&65535,re=S.low>>>16,Y=S.low&65535,ie=0,J=0,ae=0,de=0;return de+=D*Y,ae+=de>>>16,de&=65535,ae+=K*Y,J+=ae>>>16,ae&=65535,ae+=D*re,J+=ae>>>16,ae&=65535,J+=H*Y,ie+=J>>>16,J&=65535,J+=K*re,ie+=J>>>16,J&=65535,J+=D*V,ie+=J>>>16,J&=65535,ie+=O*Y+H*re+K*V+D*Q,ie&=65535,u(ae<<16|de,ie<<16|J,this.unsigned)},M.mul=M.multiply,M.divide=function(S){if(a(S)||(S=p(S)),S.isZero())throw Error("division by zero");if(r){if(!this.unsigned&&this.high===-2147483648&&S.low===-1&&S.high===-1)return this;var z=(this.unsigned?r.div_u:r.div_s)(this.low,this.high,S.low,S.high);return u(z,r.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var O,H,K;if(this.unsigned){if(S.unsigned||(S=S.toUnsigned()),S.gt(this))return b;if(S.gt(this.shru(1)))return I;K=b}else{if(this.eq(_)){if(S.eq(w)||S.eq(N))return _;if(S.eq(_))return w;var D=this.shr(1);return O=D.div(S).shl(1),O.eq(x)?S.isNegative()?w:N:(H=this.sub(S.mul(O)),K=O.add(H.div(S)),K)}else if(S.eq(_))return this.unsigned?b:x;if(this.isNegative())return S.isNegative()?this.neg().div(S.neg()):this.neg().div(S).neg();if(S.isNegative())return this.div(S.neg()).neg();K=x}for(H=this;H.gte(S);){O=Math.max(1,Math.floor(H.toNumber()/S.toNumber()));for(var Q=Math.ceil(Math.log(O)/Math.LN2),V=Q<=48?1:d(2,Q-48),re=l(O),Y=re.mul(S);Y.isNegative()||Y.gt(H);)O-=V,re=l(O,this.unsigned),Y=re.mul(S);re.isZero()&&(re=w),K=K.add(re),H=H.sub(Y)}return K},M.div=M.divide,M.modulo=function(S){if(a(S)||(S=p(S)),r){var z=(this.unsigned?r.rem_u:r.rem_s)(this.low,this.high,S.low,S.high);return u(z,r.get_high(),this.unsigned)}return this.sub(this.div(S).mul(S))},M.mod=M.modulo,M.rem=M.modulo,M.not=function(){return u(~this.low,~this.high,this.unsigned)},M.and=function(S){return a(S)||(S=p(S)),u(this.low&S.low,this.high&S.high,this.unsigned)},M.or=function(S){return a(S)||(S=p(S)),u(this.low|S.low,this.high|S.high,this.unsigned)},M.xor=function(S){return a(S)||(S=p(S)),u(this.low^S.low,this.high^S.high,this.unsigned)},M.shiftLeft=function(S){return a(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low<<S,this.high<<S|this.low>>>32-S,this.unsigned):u(0,this.low<<S-32,this.unsigned)},M.shl=M.shiftLeft,M.shiftRight=function(S){return a(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low>>>S|this.high<<32-S,this.high>>S,this.unsigned):u(this.high>>S-32,this.high>=0?0:-1,this.unsigned)},M.shr=M.shiftRight,M.shiftRightUnsigned=function(S){if(a(S)&&(S=S.toInt()),S&=63,S===0)return this;var z=this.high;if(S<32){var O=this.low;return u(O>>>S|z<<32-S,z>>>S,this.unsigned)}else return S===32?u(z,0,this.unsigned):u(z>>>S-32,0,this.unsigned)},M.shru=M.shiftRightUnsigned,M.shr_u=M.shiftRightUnsigned,M.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},M.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},M.toBytes=function(S){return S?this.toBytesLE():this.toBytesBE()},M.toBytesLE=function(){var S=this.high,z=this.low;return[z&255,z>>>8&255,z>>>16&255,z>>>24,S&255,S>>>8&255,S>>>16&255,S>>>24]},M.toBytesBE=function(){var S=this.high,z=this.low;return[S>>>24,S>>>16&255,S>>>8&255,S&255,z>>>24,z>>>16&255,z>>>8&255,z&255]},n.fromBytes=function(S,z,O){return O?n.fromBytesLE(S,z):n.fromBytesBE(S,z)},n.fromBytesLE=function(S,z){return new n(S[0]|S[1]<<8|S[2]<<16|S[3]<<24,S[4]|S[5]<<8|S[6]<<16|S[7]<<24,z)},n.fromBytesBE=function(S,z){return new n(S[4]<<24|S[5]<<16|S[6]<<8|S[7],S[0]<<24|S[1]<<16|S[2]<<8|S[3],z)}}}),aR=pr({"(disabled):src/node_modules/node-fetch/browser.js"(){}}),sR=pr({"(disabled):util"(){}}),iR=pr({"src/node_modules/seedrandom/lib/alea.js"(e,t){(function(r,n,a){function s(u){var d=this,h=l();d.next=function(){var p=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=p-(d.c=p|0)},d.c=1,d.s0=h(" "),d.s1=h(" "),d.s2=h(" "),d.s0-=h(u),d.s0<0&&(d.s0+=1),d.s1-=h(u),d.s1<0&&(d.s1+=1),d.s2-=h(u),d.s2<0&&(d.s2+=1),h=null}function i(u,d){return d.c=u.c,d.s0=u.s0,d.s1=u.s1,d.s2=u.s2,d}function o(u,d){var h=new s(u),p=d&&d.state,c=h.next;return c.int32=function(){return h.next()*4294967296|0},c.double=function(){return c()+(c()*2097152|0)*11102230246251565e-32},c.quick=c,p&&(typeof p=="object"&&i(p,h),c.state=function(){return i(h,{})}),c}function l(){var u=4022871197,d=function(h){h=String(h);for(var p=0;p<h.length;p++){u+=h.charCodeAt(p);var c=.02519603282416938*u;u=c>>>0,c-=u,c*=u,u=c>>>0,c-=u,u+=c*4294967296}return(u>>>0)*23283064365386963e-26};return d}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),oR=pr({"src/node_modules/seedrandom/lib/xor128.js"(e,t){(function(r,n,a){function s(l){var u=this,d="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var p=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^p^p>>>8},l===(l|0)?u.x=l:d+=l;for(var h=0;h<d.length+64;h++)u.x^=d.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),lR=pr({"src/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(r,n,a){function s(l){var u=this,d="";u.next=function(){var p=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(p^p<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:d+=l;for(var h=0;h<d.length+64;h++)u.x^=d.charCodeAt(h)|0,h==d.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),uR=pr({"src/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(r,n,a){function s(l){var u=this;u.next=function(){var h=u.x,p=u.i,c,m,f;return c=h[p],c^=c>>>7,m=c^c<<24,c=h[p+1&7],m^=c^c>>>10,c=h[p+3&7],m^=c^c>>>3,c=h[p+4&7],m^=c^c<<7,c=h[p+7&7],c=c^c<<13,m^=c^c<<9,h[p]=m,u.i=p+1&7,m};function d(h,p){var c,m,f=[];if(p===(p|0))m=f[0]=p;else for(p=""+p,c=0;c<p.length;++c)f[c&7]=f[c&7]<<15^p.charCodeAt(c)+f[c+1&7]<<13;for(;f.length<8;)f.push(0);for(c=0;c<8&&f[c]===0;++c);for(c==8?m=f[7]=-1:m=f[c],h.x=f,h.i=0,c=256;c>0;--c)h.next()}d(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(h.x&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),dR=pr({"src/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(r,n,a){function s(l){var u=this;u.next=function(){var h=u.w,p=u.X,c=u.i,m,f;return u.w=h=h+1640531527|0,f=p[c+34&127],m=p[c=c+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=p[c]=f^m,u.i=c,f+(h^h>>>16)|0};function d(h,p){var c,m,f,g,y,A=[],x=128;for(p===(p|0)?(m=p,p=null):(p=p+"\0",m=0,x=Math.max(x,p.length)),f=0,g=-32;g<x;++g)p&&(m^=p.charCodeAt((g+32)%p.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,c=A[g&127]^=m+y,f=c==0?f+1:0);for(f>=128&&(A[(p&&p.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=A[f+34&127],c=A[f=f+1&127],m^=m<<13,c^=c<<17,m^=m>>>15,c^=c>>>12,A[f]=m^c;h.w=y,h.X=A,h.i=f}d(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(h.X&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),pR=pr({"src/node_modules/seedrandom/lib/tychei.js"(e,t){(function(r,n,a){function s(l){var u=this,d="";u.next=function(){var p=u.b,c=u.c,m=u.d,f=u.a;return p=p<<25^p>>>7^c,c=c-m|0,m=m<<24^m>>>8^f,f=f-p|0,u.b=p=p<<20^p>>>12^c,u.c=c=c-m|0,u.d=m<<16^c>>>16^f,u.a=f-p|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):d+=l;for(var h=0;h<d.length+20;h++)u.b^=d.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),hR=pr({"(disabled):crypto"(){}}),cR=pr({"src/node_modules/seedrandom/seedrandom.js"(e,t){(function(r,n,a){var s=256,i=6,o=52,l="random",u=a.pow(s,i),d=a.pow(2,o),h=d*2,p=s-1,c;function m(w,I,N){var E=[];I=I==!0?{entropy:!0}:I||{};var R=A(y(I.entropy?[w,b(n)]:w==null?x():w,3),E),_=new f(E),M=function(){for(var S=_.g(i),z=u,O=0;S<d;)S=(S+O)*s,z*=s,O=_.g(1);for(;S>=h;)S/=2,z/=2,O>>>=1;return(S+O)/z};return M.int32=function(){return _.g(4)|0},M.quick=function(){return _.g(4)/4294967296},M.double=M,A(b(_.S),n),(I.pass||N||function(S,z,O,H){return H&&(H.S&&g(H,_),S.state=function(){return g(_,{})}),O?(a[l]=S,z):S})(M,R,"global"in I?I.global:this==a,I.state)}function f(w){var I,N=w.length,E=this,R=0,_=E.i=E.j=0,M=E.S=[];for(N||(w=[N++]);R<s;)M[R]=R++;for(R=0;R<s;R++)M[R]=M[_=p&_+w[R%N]+(I=M[R])],M[_]=I;(E.g=function(S){for(var z,O=0,H=E.i,K=E.j,D=E.S;S--;)z=D[H=p&H+1],O=O*s+D[p&(D[H]=D[K=p&K+z])+(D[K]=z)];return E.i=H,E.j=K,O})(s)}function g(w,I){return I.i=w.i,I.j=w.j,I.S=w.S.slice(),I}function y(w,I){var N=[],E=typeof w,R;if(I&&E=="object")for(R in w)try{N.push(y(w[R],I-1))}catch(_){}return N.length?N:E=="string"?w:w+"\0"}function A(w,I){for(var N=w+"",E,R=0;R<N.length;)I[p&R]=p&(E^=I[p&R]*19)+N.charCodeAt(R++);return b(I)}function x(){try{var w;return c&&(w=c.randomBytes)?w=w(s):(w=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(w)),b(w)}catch(E){var I=r.navigator,N=I&&I.plugins;return[+new Date,r,N,r.screen,b(n)]}}function b(w){return String.fromCharCode.apply(0,w)}if(A(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{c=hR()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return m}):a["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}}),Y0=pr({"src/node_modules/seedrandom/index.js"(e,t){var r=iR(),n=oR(),a=lR(),s=uR(),i=dR(),o=pR(),l=cR();l.alea=r,l.xor128=n,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}}),Cv=pr({"(disabled):src/node_modules/string_decoder/index.js"(){}}),yy=pr({"(disabled):fs"(){}}),y0=pr({"(disabled):path"(){}}),fR=pr({"(disabled):worker_threads"(){}}),mR=pr({"(disabled):perf_hooks"(){}}),gR=pr({"(disabled):os"(){}}),yR=pr({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var r=(()=>{var n=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(n=n||__filename),function(a){a=a||{};function s(){return Fe.buffer!=_r&&ra(Fe.buffer),pc}function i(){return Fe.buffer!=_r&&ra(Fe.buffer),hc}function o(){return Fe.buffer!=_r&&ra(Fe.buffer),sp}function l(){return Fe.buffer!=_r&&ra(Fe.buffer),cc}function u(){return Fe.buffer!=_r&&ra(Fe.buffer),fc}function d(){return Fe.buffer!=_r&&ra(Fe.buffer),mc}function h(){return Fe.buffer!=_r&&ra(Fe.buffer),gc}var p=typeof a!="undefined"?a:{},c,m;p.ready=new Promise(function(T,F){c=T,m=F});var f;typeof process!="undefined"&&process.listeners&&(f={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},p),y=[],A="./this.program",x=(T,F)=>{throw F},b=typeof window=="object",w=typeof importScripts=="function",I=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",N=p.ENVIRONMENT_IS_PTHREAD||!1,E="";function R(T){return p.locateFile?p.locateFile(T,E):E+T}var _,M,S,z;function O(T){T instanceof fp||Y("exiting due to exception: "+T)}var H,K,D;if(I){w?E=y0().dirname(E)+"/":E=__dirname+"/",D=()=>{K||(H=yy(),K=y0())},_=function(F,G){return D(),F=K.normalize(F),H.readFileSync(F,G?void 0:"utf8")},S=F=>{var G=_(F,!0);return G.buffer||(G=new Uint8Array(G)),G},M=(F,G,ee)=>{D(),F=K.normalize(F),H.readFile(F,function(ge,Ae){ge?ee(ge):G(Ae.buffer)})},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function(F){if(!(F instanceof fp))throw F}),process.on("unhandledRejection",function(F){throw F}),x=(F,G)=>{if(po())throw process.exitCode=F,G;O(G),process.exit(F)},p.inspect=function(){return"[Emscripten Module object]"};let T;try{T=fR()}catch(F){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),F}global.Worker=T.Worker}else(b||w)&&(w?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof n!="undefined"&&n&&(E=n),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",I||(_=T=>{var F=new XMLHttpRequest;return F.open("GET",T,!1),F.send(null),F.responseText},w&&(S=T=>{var F=new XMLHttpRequest;return F.open("GET",T,!1),F.responseType="arraybuffer",F.send(null),new Uint8Array(F.response)}),M=(T,F,G)=>{var ee=new XMLHttpRequest;ee.open("GET",T,!0),ee.responseType="arraybuffer",ee.onload=()=>{if(ee.status==200||ee.status==0&&ee.response){F(ee.response);return}G()},ee.onerror=G,ee.send(null)}),z=T=>document.title=T);I&&typeof performance=="undefined"&&(global.performance=mR().performance);var Q=console.log.bind(console),V=console.warn.bind(console);I&&(D(),Q=T=>H.writeSync(1,T+`
`),V=T=>H.writeSync(2,T+`
`));var re=p.print||Q,Y=p.printErr||V;Object.assign(p,g),g=null,p.arguments&&(y=p.arguments),p.thisProgram&&(A=p.thisProgram),p.quit&&(x=p.quit);var ie=4;function J(T){J.shown||(J.shown={}),J.shown[T]||(J.shown[T]=1,Y(T))}function ae(T,F){if(typeof WebAssembly.Function=="function"){for(var G={i:"i32",j:"i64",f:"f32",d:"f64"},ee={parameters:[],results:F[0]=="v"?[]:[G[F[0]]]},ge=1;ge<F.length;++ge)ee.parameters.push(G[F[ge]]);return new WebAssembly.Function(ee,T)}var Ae=[1,0,1,96],Te=F.slice(0,1),_e=F.slice(1),Pt={i:127,j:126,f:125,d:124};Ae.push(_e.length);for(var ge=0;ge<_e.length;++ge)Ae.push(Pt[_e[ge]]);Te=="v"?Ae.push(0):Ae=Ae.concat([1,Pt[Te]]),Ae[1]=Ae.length-2;var ia=new Uint8Array([0,97,115,109,1,0,0,0].concat(Ae,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),oa=new WebAssembly.Module(ia),jc=new WebAssembly.Instance(oa,{e:{f:T}}),mp=jc.exports.f;return mp}var de=[],xe;function be(){if(de.length)return de.pop();try{Sn.grow(1)}catch(T){throw T instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":T}return Sn.length-1}function Ee(T,F){for(var G=T;G<T+F;G++){var ee=tu(G);ee&&xe.set(ee,G)}}var $e=0,De=T=>{$e=T},We=Atomics.load,Xe=Atomics.store,ot=Atomics.compareExchange,pt;p.wasmBinary&&(pt=p.wasmBinary);var ht=p.noExitRuntime||!0;typeof WebAssembly!="object"&&Jl("no native wasm support detected");var Fe,wt,At=!1,Pr;function cr(T,F){T||Jl(F)}function Jr(T){var F=p["_"+T];return F}function nr(T,F,G,ee,ge){var Ae={string:function(Cn){var lu=0;if(Cn!=null&&Cn!==0){var _3=(Cn.length<<2)+1;lu=ou(_3),lo(Cn,lu,_3)}return lu},array:function(Cn){var lu=ou(Cn.length);return Ua(Cn,lu),lu}};function Te(Cn){return F==="string"?In(Cn):F==="boolean"?Boolean(Cn):Cn}var _e=Jr(T),Pt=[],ia=0;if(ee)for(var oa=0;oa<ee.length;oa++){var jc=Ae[G[oa]];jc?(ia===0&&(ia=eg()),Pt[oa]=jc(ee[oa])):Pt[oa]=ee[oa]}var mp=_e.apply(null,Pt);function GE(Cn){return ia!==0&&Wc(ia),Te(Cn)}return mp=GE(mp),mp}function fr(T,F,G,ee){G=G||[];var ge=G.every(function(Te){return Te==="number"}),Ae=F!=="string";return Ae&&ge&&!ee?Jr(T):function(){return nr(T,F,G,arguments,ee)}}var ta=1;function Qr(T){var F=new TextDecoder(T);this.decode=G=>(G.buffer instanceof SharedArrayBuffer&&(G=new Uint8Array(G)),F.decode.call(F,G))}var ar=typeof TextDecoder!="undefined"?new Qr("utf8"):void 0;function kn(T,F,G){for(var ee=F+G,ge=F;T[ge]&&!(ge>=ee);)++ge;if(ge-F>16&&T.subarray&&ar)return ar.decode(T.subarray(F,ge));for(var Ae="";F<ge;){var Te=T[F++];if(!(Te&128)){Ae+=String.fromCharCode(Te);continue}var _e=T[F++]&63;if((Te&224)==192){Ae+=String.fromCharCode((Te&31)<<6|_e);continue}var Pt=T[F++]&63;if((Te&240)==224?Te=(Te&15)<<12|_e<<6|Pt:Te=(Te&7)<<18|_e<<12|Pt<<6|T[F++]&63,Te<65536)Ae+=String.fromCharCode(Te);else{var ia=Te-65536;Ae+=String.fromCharCode(55296|ia>>10,56320|ia&1023)}}return Ae}function In(T,F){return T?kn(i(),T,F):""}function gs(T,F,G,ee){if(!(ee>0))return 0;for(var ge=G,Ae=G+ee-1,Te=0;Te<T.length;++Te){var _e=T.charCodeAt(Te);if(_e>=55296&&_e<=57343){var Pt=T.charCodeAt(++Te);_e=65536+((_e&1023)<<10)|Pt&1023}if(_e<=127){if(G>=Ae)break;F[G++]=_e}else if(_e<=2047){if(G+1>=Ae)break;F[G++]=192|_e>>6,F[G++]=128|_e&63}else if(_e<=65535){if(G+2>=Ae)break;F[G++]=224|_e>>12,F[G++]=128|_e>>6&63,F[G++]=128|_e&63}else{if(G+3>=Ae)break;F[G++]=240|_e>>18,F[G++]=128|_e>>12&63,F[G++]=128|_e>>6&63,F[G++]=128|_e&63}}return F[G]=0,G-ge}function lo(T,F,G){return gs(T,i(),F,G)}function dc(T){for(var F=0,G=0;G<T.length;++G){var ee=T.charCodeAt(G);ee>=55296&&ee<=57343&&(ee=65536+((ee&1023)<<10)|T.charCodeAt(++G)&1023),ee<=127?++F:ee<=2047?F+=2:ee<=65535?F+=3:F+=4}return F}var ys=typeof TextDecoder!="undefined"?new Qr("utf-16le"):void 0;function Ua(T,F){s().set(T,F)}function ap(T,F,G){for(var ee=0;ee<T.length;++ee)s()[F++>>0]=T.charCodeAt(ee);G||(s()[F>>0]=0)}function Zl(T,F){return T%F>0&&(T+=F-T%F),T}var _r,pc,hc,sp,cc,fc,m3,mc,gc;N&&(_r=p.buffer);function ra(T){_r=T,p.HEAP8=pc=new Int8Array(T),p.HEAP16=sp=new Int16Array(T),p.HEAP32=fc=new Int32Array(T),p.HEAPU8=hc=new Uint8Array(T),p.HEAPU16=cc=new Uint16Array(T),p.HEAPU32=m3=new Uint32Array(T),p.HEAPF32=mc=new Float32Array(T),p.HEAPF64=gc=new Float64Array(T)}var yc=p.INITIAL_MEMORY||16777216;if(N)Fe=p.wasmMemory,_r=p.buffer;else if(p.wasmMemory)Fe=p.wasmMemory;else if(Fe=new WebAssembly.Memory({initial:yc/65536,maximum:32768,shared:!0}),!(Fe.buffer instanceof SharedArrayBuffer))throw Y("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),I&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Fe&&(_r=Fe.buffer),yc=_r.byteLength,ra(_r);var Sn,Yl=[],As=[],S1=[],Ac=[],uo=!1,C1=!1,xc=0;function po(){return ht||xc>0}function zr(){if(p.preRun)for(typeof p.preRun=="function"&&(p.preRun=[p.preRun]);p.preRun.length;)g3(p.preRun.shift());Ic(Yl)}function ip(){uo=!0,!N&&Ic(As)}function T1(){N||(ze.terminateAllThreads(),C1=!0)}function N1(){if(!N){if(p.postRun)for(typeof p.postRun=="function"&&(p.postRun=[p.postRun]);p.postRun.length;)op(p.postRun.shift());Ic(Ac)}}function g3(T){Yl.unshift(T)}function y3(T){As.unshift(T)}function op(T){Ac.unshift(T)}var xs=0,bc=null,na=null;function lp(T){xs++,p.monitorRunDependencies&&p.monitorRunDependencies(xs)}function A3(T){if(xs--,p.monitorRunDependencies&&p.monitorRunDependencies(xs),xs==0&&(bc!==null&&(clearInterval(bc),bc=null),na)){var F=na;na=null,F()}}p.preloadedImages={},p.preloadedAudios={};function Jl(T){N?postMessage({cmd:"onAbort",arg:T}):p.onAbort&&p.onAbort(T),T="Aborted("+T+")",Y(T),At=!0,Pr=1,T+=". Build with -s ASSERTIONS=1 for more info.";var F=new WebAssembly.RuntimeError(T);throw m(F),F}var E1="data:application/octet-stream;base64,";function vc(T){return T.startsWith(E1)}function wc(T){return T.startsWith("file://")}var Or;Or="tfjs-backend-wasm-threaded-simd.wasm",vc(Or)||(Or=R(Or));function kc(T){try{if(T==Or&&pt)return new Uint8Array(pt);if(S)return S(T);throw"both async and sync fetching of the wasm failed"}catch(F){Jl(F)}}function Ql(){if(!pt&&(b||w)){if(typeof fetch=="function"&&!wc(Or))return fetch(Or,{credentials:"same-origin"}).then(function(T){if(!T.ok)throw"failed to load wasm binary file at '"+Or+"'";return T.arrayBuffer()}).catch(function(){return kc(Or)});if(M)return new Promise(function(T,F){M(Or,function(G){T(new Uint8Array(G))},F)})}return Promise.resolve().then(function(){return kc(Or)})}function R1(){var T={env:zc,wasi_snapshot_preview1:zc};function F(Te,_e){var Pt=Te.exports;if(p.asm=Pt,O1(p.asm.emscripten_tls_init),Sn=p.asm.__indirect_function_table,y3(p.asm.__wasm_call_ctors),wt=_e,!N){var ia=ze.unusedWorkers.length;ze.unusedWorkers.forEach(function(oa){ze.loadWasmModuleToWorker(oa,function(){--ia||A3("wasm-instantiate")})})}}N||lp("wasm-instantiate");function G(Te){F(Te.instance,Te.module)}function ee(Te){return Ql().then(function(_e){return WebAssembly.instantiate(_e,T)}).then(function(_e){return _e}).then(Te,function(_e){Y("failed to asynchronously prepare wasm: "+_e),Jl(_e)})}function ge(){return!pt&&typeof WebAssembly.instantiateStreaming=="function"&&!vc(Or)&&!wc(Or)&&typeof fetch=="function"?fetch(Or,{credentials:"same-origin"}).then(function(Te){var _e=WebAssembly.instantiateStreaming(Te,T);return _e.then(G,function(Pt){return Y("wasm streaming compile failed: "+Pt),Y("falling back to ArrayBuffer instantiation"),ee(G)})}):ee(G)}if(p.instantiateWasm)try{var Ae=p.instantiateWasm(T,F);return Ae}catch(Te){return Y("Module.instantiateWasm callback failed with error: "+Te),!1}return ge().catch(m),{}}var x3,b3,$1={};function Ic(T){for(;T.length>0;){var F=T.shift();if(typeof F=="function"){F(p);continue}var G=F.func;typeof G=="number"?F.arg===void 0?tu(G)():tu(G)(F.arg):G(F.arg===void 0?null:F.arg)}}function eu(T){var F=eg(),G=T();return Wc(F),G}function JN(T){return T}function v3(T){var F=/\b_Z[\w\d_]+/g;return T.replace(F,function(G){var ee=G;return G===ee?G:ee+" ["+G+"]"})}function M1(T){u()[T>>2]=0;var F=ze.pthreads[T];delete ze.pthreads[T],F.worker.terminate(),Q2(T),ze.runningWorkers.splice(ze.runningWorkers.indexOf(F.worker),1),F.worker.pthread=void 0}function F1(T){var F=ze.pthreads[T];F.worker.postMessage({cmd:"cancel"})}function Sc(T){var F=ze.pthreads[T];if(F){u()[T>>2]=0;var G=F.worker;ze.returnWorkerToPool(G)}}function Cc(T){WE(T)}function P1(T){if(T instanceof fp||T=="unwind")return Pr;x(1,T)}var ze={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){N?ze.initWorker():ze.initMainThread()},initMainThread:function(){for(var T=8,F=0;F<T;++F)ze.allocateUnusedWorker()},initWorker:function(){ht=!1},pthreads:{},setExitStatus:function(T){Pr=T},terminateAllThreads:function(){for(var T in ze.pthreads){var F=ze.pthreads[T];F&&F.worker&&ze.returnWorkerToPool(F.worker)}for(var G=0;G<ze.unusedWorkers.length;++G){var ee=ze.unusedWorkers[G];ee.terminate()}ze.unusedWorkers=[]},returnWorkerToPool:function(T){ze.runWithoutMainThreadQueuedCalls(function(){delete ze.pthreads[T.pthread.threadInfoStruct],ze.unusedWorkers.push(T),ze.runningWorkers.splice(ze.runningWorkers.indexOf(T),1),Q2(T.pthread.threadInfoStruct),T.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(T){u()[P3>>2]=0;try{T()}finally{u()[P3>>2]=1}},receiveObjectTransfer:function(T){},threadInit:function(){for(var T in ze.tlsInitFunctions)ze.tlsInitFunctions[T]()},loadWasmModuleToWorker:function(T,F){T.onmessage=G=>{var ee=G.data,ge=ee.cmd;if(T.pthread&&(ze.currentProxiedOperationCallerThread=T.pthread.threadInfoStruct),ee.targetThread&&ee.targetThread!=Bc()){var Ae=ze.pthreads[ee.targetThread];Ae?Ae.worker.postMessage(ee,ee.transferList):Y('Internal error! Worker sent a message "'+ge+'" to target pthread '+ee.targetThread+", but that thread no longer exists!"),ze.currentProxiedOperationCallerThread=void 0;return}ge==="processQueuedMainThreadWork"?E3():ge==="spawnThread"?Nc(ee):ge==="cleanupThread"?Sc(ee.thread):ge==="killThread"?M1(ee.thread):ge==="cancelThread"?F1(ee.thread):ge==="loaded"?(T.loaded=!0,F&&F(T),T.runPthread&&(T.runPthread(),delete T.runPthread)):ge==="print"?re("Thread "+ee.threadId+": "+ee.text):ge==="printErr"?Y("Thread "+ee.threadId+": "+ee.text):ge==="alert"?alert("Thread "+ee.threadId+": "+ee.text):ee.target==="setimmediate"?T.postMessage(ee):ge==="onAbort"?p.onAbort&&p.onAbort(ee.arg):Y("worker sent an unknown command "+ge),ze.currentProxiedOperationCallerThread=void 0},T.onerror=G=>{var ee="worker sent an error!";throw Y(ee+" "+G.filename+":"+G.lineno+": "+G.message),G},I&&(T.on("message",function(G){T.onmessage({data:G})}),T.on("error",function(G){T.onerror(G)}),T.on("detachedExit",function(){})),T.postMessage({cmd:"load",urlOrBlob:p.mainScriptUrlOrBlob||n,wasmMemory:Fe,wasmModule:wt})},allocateUnusedWorker:function(){var T=R("tfjs-backend-wasm-threaded-simd.worker.js");ze.unusedWorkers.push(new Worker(T))},getNewWorker:function(){return ze.unusedWorkers.length==0&&(ze.allocateUnusedWorker(),ze.loadWasmModuleToWorker(ze.unusedWorkers[0])),ze.unusedWorkers.pop()}};function _1(){var T=Bc(),F=u()[T+44>>2],G=u()[T+48>>2],ee=F-G;F3(F,ee),Wc(F)}p.establishStackSpace=_1;function Tc(T){if(N)return fo(1,0,T);try{Cc(T)}catch(F){P1(F)}}var ho=[];function tu(T){var F=ho[T];return F||(T>=ho.length&&(ho.length=T+1),ho[T]=F=Sn.get(T)),F}function z1(T,F){return tu(T)(F)}p.invokeEntryPoint=z1;function w3(){var T=new Error;if(!T.stack){try{throw new Error}catch(F){T=F}if(!T.stack)return"(no stack trace available)"}return T.stack.toString()}function O1(T,F,G){ze.tlsInitFunctions.push(T)}function k3(T,F){Sn.set(T,F),ho[T]=F}var co;I?co=()=>{var T=process.hrtime();return T[0]*1e3+T[1]/1e6}:N?co=()=>performance.now()-p.__performance_now_clock_drift:co=()=>performance.now();var D1=!0;function L1(T){return u()[N3()>>2]=T,T}function B1(T,F){var G;if(T===0)G=Date.now();else if((T===1||T===4)&&D1)G=co();else return L1(28),-1;return u()[F>>2]=G/1e3|0,u()[F+4>>2]=G%1e3*1e3*1e3|0,0}function W1(T,F){return B1(T,F)}function V1(T){R3(T,!w,1,!b),ze.threadInit()}function U1(T){N?postMessage({cmd:"cleanupThread",thread:T}):Sc(T)}function Nc(T){var F=ze.getNewWorker();if(!F)return 6;ze.runningWorkers.push(F);var G=ze.pthreads[T.pthread_ptr]={worker:F,threadInfoStruct:T.pthread_ptr};F.pthread=G;var ee={cmd:"run",start_routine:T.startRoutine,arg:T.arg,threadInfoStruct:T.pthread_ptr};return F.runPthread=()=>{ee.time=performance.now(),F.postMessage(ee,T.transferList)},F.loaded&&(F.runPthread(),delete F.runPthread),0}function G1(T,F,G,ee){if(typeof SharedArrayBuffer=="undefined")return Y("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var ge=[],Ae=0;if(N&&(ge.length===0||Ae))return $3(687865856,T,F,G,ee);if(Ae)return Ae;var Te={startRoutine:G,pthread_ptr:T,arg:ee,transferList:ge};return N?(Te.cmd="spawnThread",postMessage(Te,ge),0):Nc(Te)}function j1(){return 2097152}function H1(T,F){if(T==F)postMessage({cmd:"processQueuedMainThreadWork"});else if(N)postMessage({targetThread:T,cmd:"processThreadQueue"});else{var G=ze.pthreads[T],ee=G&&G.worker;if(!ee)return;ee.postMessage({cmd:"processThreadQueue"})}return 1}function q1(){Jl("")}function X1(){I||w||J("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Ec(){return 2147483648}function K1(T,F,G){i().copyWithin(T,F,F+G)}function Z1(){return I?gR().cpus().length:navigator.hardwareConcurrency}function fo(T,F){var G=arguments.length-2,ee=arguments;return eu(function(){for(var ge=G,Ae=ou(ge*8),Te=Ae>>3,_e=0;_e<G;_e++){var Pt=ee[2+_e];h()[Te+_e]=Pt}return M3(T,ge,Ae,F)})}var up=[];function Y1(T,F,G){up.length=F;for(var ee=G>>3,ge=0;ge<F;ge++)up[ge]=h()[ee+ge];var Ae=T<0,Te=Ae?$1[-T-1]:g2[T];return Te.apply(null,up)}function J1(T){try{return Fe.grow(T-_r.byteLength+65535>>>16),ra(Fe.buffer),1}catch(F){}}function Q1(T){var F=i().length;if(T=T>>>0,T<=F)return!1;var G=Ec();if(T>G)return!1;for(var ee=1;ee<=4;ee*=2){var ge=F*(1+.2/ee);ge=Math.min(ge,T+100663296);var Ae=Math.min(G,Zl(Math.max(T,ge),65536)),Te=J1(Ae);if(Te)return!0}return!1}var qe={inEventHandler:0,removeAllEventListeners:function(){for(var T=qe.eventHandlers.length-1;T>=0;--T)qe._removeHandler(T);qe.eventHandlers=[],qe.deferredCalls=[]},registerRemoveEventListeners:function(){qe.removeEventListenersRegistered||(S1.push(qe.removeAllEventListeners),qe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(T,F,G){function ee(Te,_e){if(Te.length!=_e.length)return!1;for(var Pt in Te)if(Te[Pt]!=_e[Pt])return!1;return!0}for(var ge in qe.deferredCalls){var Ae=qe.deferredCalls[ge];if(Ae.targetFunction==T&&ee(Ae.argsList,G))return}qe.deferredCalls.push({targetFunction:T,precedence:F,argsList:G}),qe.deferredCalls.sort(function(Te,_e){return Te.precedence<_e.precedence})},removeDeferredCalls:function(T){for(var F=0;F<qe.deferredCalls.length;++F)qe.deferredCalls[F].targetFunction==T&&(qe.deferredCalls.splice(F,1),--F)},canPerformEventHandlerRequests:function(){return qe.inEventHandler&&qe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(qe.canPerformEventHandlerRequests())for(var T=0;T<qe.deferredCalls.length;++T){var F=qe.deferredCalls[T];qe.deferredCalls.splice(T,1),--T,F.targetFunction.apply(null,F.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(T,F){for(var G=0;G<qe.eventHandlers.length;++G)qe.eventHandlers[G].target==T&&(!F||F==qe.eventHandlers[G].eventTypeString)&&qe._removeHandler(G--)},_removeHandler:function(T){var F=qe.eventHandlers[T];F.target.removeEventListener(F.eventTypeString,F.eventListenerFunc,F.useCapture),qe.eventHandlers.splice(T,1)},registerOrRemoveHandler:function(T){var F=function(ee){++qe.inEventHandler,qe.currentEventHandler=T,qe.runDeferredCalls(),T.handlerFunc(ee),qe.runDeferredCalls(),--qe.inEventHandler};if(T.callbackfunc)T.eventListenerFunc=F,T.target.addEventListener(T.eventTypeString,F,T.useCapture),qe.eventHandlers.push(T),qe.registerRemoveEventListeners();else for(var G=0;G<qe.eventHandlers.length;++G)qe.eventHandlers[G].target==T.target&&qe.eventHandlers[G].eventTypeString==T.eventTypeString&&qe._removeHandler(G--)},queueEventHandlerOnThread_iiii:function(T,F,G,ee,ge){eu(function(){var Ae=ou(12);u()[Ae>>2]=G,u()[Ae+4>>2]=ee,u()[Ae+8>>2]=ge,J2(T,637534208,F,ee,Ae)})},getTargetThreadForEventCallback:function(T){switch(T){case 1:return 0;case 2:return ze.currentProxiedOperationCallerThread;default:return T}},getNodeNameForTarget:function(T){return T?T==window?"#window":T==screen?"#screen":T&&T.nodeName?T.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function e2(T){var F=dc(T)+1,G=Y2(F);return lo(T,G,F),G}function t2(T,F,G,ee){eu(function(){var ge=ou(12),Ae=0;F&&(Ae=e2(F)),u()[ge>>2]=Ae,u()[ge+4>>2]=G,u()[ge+8>>2]=ee,J2(T,657457152,0,Ae,ge)})}function r2(T,F,G,ee){F=F?In(F):"",t2(T,F,G,ee)}function n2(T){return T>2?In(T):T}var a2=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function s2(T){T=n2(T);var F=a2[T]||(typeof document!="undefined"?document.querySelector(T):void 0);return F}function dp(T){return s2(T)}function Rc(T,F,G){var ee=dp(T);if(!ee)return-4;if(ee.canvasSharedPtr&&(u()[ee.canvasSharedPtr>>2]=F,u()[ee.canvasSharedPtr+4>>2]=G),ee.offscreenCanvas||!ee.controlTransferredOffscreen){ee.offscreenCanvas&&(ee=ee.offscreenCanvas);var ge=!1;if(ee.GLctxObject&&ee.GLctxObject.GLctx){var Ae=ee.GLctxObject.GLctx.getParameter(2978);ge=Ae[0]===0&&Ae[1]===0&&Ae[2]===ee.width&&Ae[3]===ee.height}ee.width=F,ee.height=G,ge&&ee.GLctxObject.GLctx.viewport(0,0,F,G)}else if(ee.canvasSharedPtr){var Te=u()[ee.canvasSharedPtr+8>>2];return r2(Te,T,F,G),1}else return-4;return 0}function $c(T,F,G){return N?fo(2,1,T,F,G):Rc(T,F,G)}function i2(T,F,G){var ee=dp(T);return ee?Rc(T,F,G):$c(T,F,G)}function o2(){throw"unwind"}function l2(T){var F=T.getExtension("ANGLE_instanced_arrays");if(F)return T.vertexAttribDivisor=function(G,ee){F.vertexAttribDivisorANGLE(G,ee)},T.drawArraysInstanced=function(G,ee,ge,Ae){F.drawArraysInstancedANGLE(G,ee,ge,Ae)},T.drawElementsInstanced=function(G,ee,ge,Ae,Te){F.drawElementsInstancedANGLE(G,ee,ge,Ae,Te)},1}function u2(T){var F=T.getExtension("OES_vertex_array_object");if(F)return T.createVertexArray=function(){return F.createVertexArrayOES()},T.deleteVertexArray=function(G){F.deleteVertexArrayOES(G)},T.bindVertexArray=function(G){F.bindVertexArrayOES(G)},T.isVertexArray=function(G){return F.isVertexArrayOES(G)},1}function d2(T){var F=T.getExtension("WEBGL_draw_buffers");if(F)return T.drawBuffers=function(G,ee){F.drawBuffersWEBGL(G,ee)},1}function p2(T){return!!(T.multiDrawWebgl=T.getExtension("WEBGL_multi_draw"))}var Ft={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(T){Ft.lastError||(Ft.lastError=T)},getNewId:function(T){for(var F=Ft.counter++,G=T.length;G<F;G++)T[G]=null;return F},getSource:function(T,F,G,ee){for(var ge="",Ae=0;Ae<F;++Ae){var Te=ee?u()[ee+Ae*4>>2]:-1;ge+=In(u()[G+Ae*4>>2],Te<0?void 0:Te)}return ge},createContext:function(T,F){T.getContextSafariWebGL2Fixed||(T.getContextSafariWebGL2Fixed=T.getContext,T.getContext=function(ge,Ae){var Te=T.getContextSafariWebGL2Fixed(ge,Ae);return ge=="webgl"==Te instanceof WebGLRenderingContext?Te:null});var G=T.getContext("webgl",F);if(!G)return 0;var ee=Ft.registerContext(G,F);return ee},registerContext:function(T,F){var G=Y2(8);u()[G+4>>2]=Bc();var ee={handle:G,attributes:F,version:F.majorVersion,GLctx:T};return T.canvas&&(T.canvas.GLctxObject=ee),Ft.contexts[G]=ee,(typeof F.enableExtensionsByDefault=="undefined"||F.enableExtensionsByDefault)&&Ft.initExtensions(ee),G},makeContextCurrent:function(T){return Ft.currentContext=Ft.contexts[T],p.ctx=_c=Ft.currentContext&&Ft.currentContext.GLctx,!(T&&!_c)},getContext:function(T){return Ft.contexts[T]},deleteContext:function(T){Ft.currentContext===Ft.contexts[T]&&(Ft.currentContext=null),typeof qe=="object"&&qe.removeAllHandlersOnTarget(Ft.contexts[T].GLctx.canvas),Ft.contexts[T]&&Ft.contexts[T].GLctx.canvas&&(Ft.contexts[T].GLctx.canvas.GLctxObject=void 0),T3(Ft.contexts[T].handle),Ft.contexts[T]=null},initExtensions:function(T){if(T||(T=Ft.currentContext),!T.initExtensionsDone){T.initExtensionsDone=!0;var F=T.GLctx;l2(F),u2(F),d2(F),F.disjointTimerQueryExt=F.getExtension("EXT_disjoint_timer_query"),p2(F);var G=F.getSupportedExtensions()||[];G.forEach(function(ee){!ee.includes("lose_context")&&!ee.includes("debug")&&F.getExtension(ee)})}}},h2=["default","low-power","high-performance"];function c2(T,F){var G=F>>2,ee=u()[G+6],ge={alpha:!!u()[G+0],depth:!!u()[G+1],stencil:!!u()[G+2],antialias:!!u()[G+3],premultipliedAlpha:!!u()[G+4],preserveDrawingBuffer:!!u()[G+5],powerPreference:h2[ee],failIfMajorPerformanceCaveat:!!u()[G+7],majorVersion:u()[G+8],minorVersion:u()[G+9],enableExtensionsByDefault:u()[G+10],explicitSwapControl:u()[G+11],proxyContextToMainThread:u()[G+12],renderViaOffscreenBackBuffer:u()[G+13]},Ae=dp(T);if(!Ae||ge.explicitSwapControl)return 0;var Te=Ft.createContext(Ae,ge);return Te}function f2(T,F){return c2(T,F)}var ru={mappings:{},buffers:[null,[],[]],printChar:function(T,F){var G=ru.buffers[T];F===0||F===10?((T===1?re:Y)(kn(G,0)),G.length=0):G.push(F)},varargs:void 0,get:function(){ru.varargs+=4;var T=u()[ru.varargs-4>>2];return T},getStr:function(T){var F=In(T);return F},get64:function(T,F){return T}};function Mc(T){return N?fo(3,1,T):0}function Fc(T,F,G,ee,ge){if(N)return fo(4,1,T,F,G,ee,ge)}function Pc(T,F,G,ee){if(N)return fo(5,1,T,F,G,ee);for(var ge=0,Ae=0;Ae<G;Ae++){var Te=u()[F>>2],_e=u()[F+4>>2];F+=8;for(var Pt=0;Pt<_e;Pt++)ru.printChar(T,i()[Te+Pt]);ge+=_e}return u()[ee>>2]=ge,0}function m2(T){De(T)}ze.init();var _c,g2=[null,Tc,$c,Mc,Fc,Pc],I3=!1,zc={__clock_gettime:W1,__emscripten_init_main_thread_js:V1,__emscripten_thread_cleanup:U1,__pthread_create_js:G1,_emscripten_default_pthread_stack_size:j1,_emscripten_notify_thread_queue:H1,abort:q1,emscripten_check_blocking_allowed:X1,emscripten_get_heap_max:Ec,emscripten_get_now:co,emscripten_memcpy_big:K1,emscripten_num_logical_cores:Z1,emscripten_receive_on_main_thread_js:Y1,emscripten_resize_heap:Q1,emscripten_set_canvas_element_size:i2,emscripten_unwind_to_js_event_loop:o2,emscripten_webgl_create_context:f2,exit:Cc,fd_close:Mc,fd_seek:Fc,fd_write:Pc,memory:Fe||p.wasmMemory,setTempRet0:m2},S3=R1(),y2=p.___wasm_call_ctors=function(){return(y2=p.___wasm_call_ctors=p.asm.__wasm_call_ctors).apply(null,arguments)},A2=p._init=function(){return(A2=p._init=p.asm.init).apply(null,arguments)},x2=p._init_with_threads_count=function(){return(x2=p._init_with_threads_count=p.asm.init_with_threads_count).apply(null,arguments)},b2=p._get_threads_count=function(){return(b2=p._get_threads_count=p.asm.get_threads_count).apply(null,arguments)},v2=p._register_tensor=function(){return(v2=p._register_tensor=p.asm.register_tensor).apply(null,arguments)},w2=p._dispose_data=function(){return(w2=p._dispose_data=p.asm.dispose_data).apply(null,arguments)},k2=p._dispose=function(){return(k2=p._dispose=p.asm.dispose).apply(null,arguments)},I2=p._Abs=function(){return(I2=p._Abs=p.asm.Abs).apply(null,arguments)},S2=p._Add=function(){return(S2=p._Add=p.asm.Add).apply(null,arguments)},C2=p._AddN=function(){return(C2=p._AddN=p.asm.AddN).apply(null,arguments)},T2=p._All=function(){return(T2=p._All=p.asm.All).apply(null,arguments)},N2=p._Any=function(){return(N2=p._Any=p.asm.Any).apply(null,arguments)},E2=p._ArgMax=function(){return(E2=p._ArgMax=p.asm.ArgMax).apply(null,arguments)},R2=p._AvgPool=function(){return(R2=p._AvgPool=p.asm.AvgPool).apply(null,arguments)},$2=p._BatchMatMul=function(){return($2=p._BatchMatMul=p.asm.BatchMatMul).apply(null,arguments)},M2=p._Ceil=function(){return(M2=p._Ceil=p.asm.Ceil).apply(null,arguments)},F2=p._ClipByValue=function(){return(F2=p._ClipByValue=p.asm.ClipByValue).apply(null,arguments)},P2=p._Conv2D=function(){return(P2=p._Conv2D=p.asm.Conv2D).apply(null,arguments)},_2=p._Conv2DBackpropInput=function(){return(_2=p._Conv2DBackpropInput=p.asm.Conv2DBackpropInput).apply(null,arguments)},z2=p._Cos=function(){return(z2=p._Cos=p.asm.Cos).apply(null,arguments)},O2=p._Cosh=function(){return(O2=p._Cosh=p.asm.Cosh).apply(null,arguments)},D2=p._CropAndResize=function(){return(D2=p._CropAndResize=p.asm.CropAndResize).apply(null,arguments)},L2=p._Cumprod=function(){return(L2=p._Cumprod=p.asm.Cumprod).apply(null,arguments)},B2=p._Cumsum=function(){return(B2=p._Cumsum=p.asm.Cumsum).apply(null,arguments)},W2=p._DepthToSpace=function(){return(W2=p._DepthToSpace=p.asm.DepthToSpace).apply(null,arguments)},V2=p._DepthwiseConv2dNative=function(){return(V2=p._DepthwiseConv2dNative=p.asm.DepthwiseConv2dNative).apply(null,arguments)},U2=p._Elu=function(){return(U2=p._Elu=p.asm.Elu).apply(null,arguments)},G2=p._Equal=function(){return(G2=p._Equal=p.asm.Equal).apply(null,arguments)},j2=p._Exp=function(){return(j2=p._Exp=p.asm.Exp).apply(null,arguments)},H2=p._FlipLeftRight=function(){return(H2=p._FlipLeftRight=p.asm.FlipLeftRight).apply(null,arguments)},Oc=p._Floor=function(){return(Oc=p._Floor=p.asm.Floor).apply(null,arguments)},Dc=p._FloorDiv=function(){return(Dc=p._FloorDiv=p.asm.FloorDiv).apply(null,arguments)},pp=p._FusedBatchNorm=function(){return(pp=p._FusedBatchNorm=p.asm.FusedBatchNorm).apply(null,arguments)},q2=p._FusedConv2D=function(){return(q2=p._FusedConv2D=p.asm.FusedConv2D).apply(null,arguments)},X2=p._FusedDepthwiseConv2D=function(){return(X2=p._FusedDepthwiseConv2D=p.asm.FusedDepthwiseConv2D).apply(null,arguments)},nu=p._Gather=function(){return(nu=p._Gather=p.asm.Gather).apply(null,arguments)},hp=p._GatherNd=function(){return(hp=p._GatherNd=p.asm.GatherNd).apply(null,arguments)},cp=p._Greater=function(){return(cp=p._Greater=p.asm.Greater).apply(null,arguments)},C3=p._GreaterEqual=function(){return(C3=p._GreaterEqual=p.asm.GreaterEqual).apply(null,arguments)},au=p._LeakyRelu=function(){return(au=p._LeakyRelu=p.asm.LeakyRelu).apply(null,arguments)},su=p._Less=function(){return(su=p._Less=p.asm.Less).apply(null,arguments)},K2=p._LessEqual=function(){return(K2=p._LessEqual=p.asm.LessEqual).apply(null,arguments)},j=p._Log=function(){return(j=p._Log=p.asm.Log).apply(null,arguments)},ne=p._LogicalAnd=function(){return(ne=p._LogicalAnd=p.asm.LogicalAnd).apply(null,arguments)},ye=p._Max=function(){return(ye=p._Max=p.asm.Max).apply(null,arguments)},Re=p._MaxPool=function(){return(Re=p._MaxPool=p.asm.MaxPool).apply(null,arguments)},lt=p._Maximum=function(){return(lt=p._Maximum=p.asm.Maximum).apply(null,arguments)},ct=p._Mean=function(){return(ct=p._Mean=p.asm.Mean).apply(null,arguments)},Ke=p._Min=function(){return(Ke=p._Min=p.asm.Min).apply(null,arguments)},He=p._Minimum=function(){return(He=p._Minimum=p.asm.Minimum).apply(null,arguments)},qt=p._MirrorPad=function(){return(qt=p._MirrorPad=p.asm.MirrorPad).apply(null,arguments)},aa=p._Multiply=function(){return(aa=p._Multiply=p.asm.Multiply).apply(null,arguments)},sa=p._Neg=function(){return(sa=p._Neg=p.asm.Neg).apply(null,arguments)},iu=p._NonMaxSuppressionV3=function(){return(iu=p._NonMaxSuppressionV3=p.asm.NonMaxSuppressionV3).apply(null,arguments)},mo=p._NonMaxSuppressionV4=function(){return(mo=p._NonMaxSuppressionV4=p.asm.NonMaxSuppressionV4).apply(null,arguments)},Z2=p._NonMaxSuppressionV5=function(){return(Z2=p._NonMaxSuppressionV5=p.asm.NonMaxSuppressionV5).apply(null,arguments)},en=p._NotEqual=function(){return(en=p._NotEqual=p.asm.NotEqual).apply(null,arguments)},bs=p._OneHot=function(){return(bs=p._OneHot=p.asm.OneHot).apply(null,arguments)},Lc=p._PadV2=function(){return(Lc=p._PadV2=p.asm.PadV2).apply(null,arguments)},QN=p._Pow=function(){return(QN=p._Pow=p.asm.Pow).apply(null,arguments)},eE=p._Prelu=function(){return(eE=p._Prelu=p.asm.Prelu).apply(null,arguments)},tE=p._Prod=function(){return(tE=p._Prod=p.asm.Prod).apply(null,arguments)},rE=p._RealDiv=function(){return(rE=p._RealDiv=p.asm.RealDiv).apply(null,arguments)},nE=p._Relu=function(){return(nE=p._Relu=p.asm.Relu).apply(null,arguments)},aE=p._Relu6=function(){return(aE=p._Relu6=p.asm.Relu6).apply(null,arguments)},sE=p._ResizeBilinear=function(){return(sE=p._ResizeBilinear=p.asm.ResizeBilinear).apply(null,arguments)},iE=p._Reverse=function(){return(iE=p._Reverse=p.asm.Reverse).apply(null,arguments)},oE=p._RotateWithOffset=function(){return(oE=p._RotateWithOffset=p.asm.RotateWithOffset).apply(null,arguments)},lE=p._Round=function(){return(lE=p._Round=p.asm.Round).apply(null,arguments)},uE=p._Rsqrt=function(){return(uE=p._Rsqrt=p.asm.Rsqrt).apply(null,arguments)},dE=p._ScatterNd=function(){return(dE=p._ScatterNd=p.asm.ScatterNd).apply(null,arguments)},pE=p._SelectV2=function(){return(pE=p._SelectV2=p.asm.SelectV2).apply(null,arguments)},hE=p._Sigmoid=function(){return(hE=p._Sigmoid=p.asm.Sigmoid).apply(null,arguments)},cE=p._Sin=function(){return(cE=p._Sin=p.asm.Sin).apply(null,arguments)},fE=p._Softmax=function(){return(fE=p._Softmax=p.asm.Softmax).apply(null,arguments)},mE=p._SparseFillEmptyRows=function(){return(mE=p._SparseFillEmptyRows=p.asm.SparseFillEmptyRows).apply(null,arguments)},gE=p._SparseReshape=function(){return(gE=p._SparseReshape=p.asm.SparseReshape).apply(null,arguments)},yE=p._SparseSegmentReduction=function(){return(yE=p._SparseSegmentReduction=p.asm.SparseSegmentReduction).apply(null,arguments)},AE=p._Sqrt=function(){return(AE=p._Sqrt=p.asm.Sqrt).apply(null,arguments)},xE=p._Square=function(){return(xE=p._Square=p.asm.Square).apply(null,arguments)},bE=p._SquaredDifference=function(){return(bE=p._SquaredDifference=p.asm.SquaredDifference).apply(null,arguments)},vE=p._Step=function(){return(vE=p._Step=p.asm.Step).apply(null,arguments)},wE=p._StridedSlice=function(){return(wE=p._StridedSlice=p.asm.StridedSlice).apply(null,arguments)},kE=p._Sub=function(){return(kE=p._Sub=p.asm.Sub).apply(null,arguments)},IE=p._Sum=function(){return(IE=p._Sum=p.asm.Sum).apply(null,arguments)},SE=p._Tan=function(){return(SE=p._Tan=p.asm.Tan).apply(null,arguments)},CE=p._Tanh=function(){return(CE=p._Tanh=p.asm.Tanh).apply(null,arguments)},TE=p._Tile=function(){return(TE=p._Tile=p.asm.Tile).apply(null,arguments)},NE=p._TopK=function(){return(NE=p._TopK=p.asm.TopK).apply(null,arguments)},EE=p._Transform=function(){return(EE=p._Transform=p.asm.Transform).apply(null,arguments)},RE=p._Transpose=function(){return(RE=p._Transpose=p.asm.Transpose).apply(null,arguments)},$E=p.__FusedMatMul=function(){return($E=p.__FusedMatMul=p.asm._FusedMatMul).apply(null,arguments)},Y2=p._malloc=function(){return(Y2=p._malloc=p.asm.malloc).apply(null,arguments)},T3=p._free=function(){return(T3=p._free=p.asm.free).apply(null,arguments)},ME=p._emscripten_tls_init=function(){return(ME=p._emscripten_tls_init=p.asm.emscripten_tls_init).apply(null,arguments)},N3=p.___errno_location=function(){return(N3=p.___errno_location=p.asm.__errno_location).apply(null,arguments)},Bc=p._pthread_self=function(){return(Bc=p._pthread_self=p.asm.pthread_self).apply(null,arguments)},E3=p._emscripten_main_thread_process_queued_calls=function(){return(E3=p._emscripten_main_thread_process_queued_calls=p.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},FE=p.__emscripten_thread_crashed=function(){return(FE=p.__emscripten_thread_crashed=p.asm._emscripten_thread_crashed).apply(null,arguments)},R3=p.__emscripten_thread_init=function(){return(R3=p.__emscripten_thread_init=p.asm._emscripten_thread_init).apply(null,arguments)},PE=p._emscripten_current_thread_process_queued_calls=function(){return(PE=p._emscripten_current_thread_process_queued_calls=p.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},_E=p._emscripten_main_browser_thread_id=function(){return(_E=p._emscripten_main_browser_thread_id=p.asm.emscripten_main_browser_thread_id).apply(null,arguments)},zE=p._emscripten_sync_run_in_main_thread_2=function(){return(zE=p._emscripten_sync_run_in_main_thread_2=p.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},$3=p._emscripten_sync_run_in_main_thread_4=function(){return($3=p._emscripten_sync_run_in_main_thread_4=p.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},M3=p._emscripten_run_in_main_runtime_thread_js=function(){return(M3=p._emscripten_run_in_main_runtime_thread_js=p.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},J2=p._emscripten_dispatch_to_thread_=function(){return(J2=p._emscripten_dispatch_to_thread_=p.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},Q2=p.__emscripten_thread_free_data=function(){return(Q2=p.__emscripten_thread_free_data=p.asm._emscripten_thread_free_data).apply(null,arguments)},OE=p.__emscripten_thread_exit=function(){return(OE=p.__emscripten_thread_exit=p.asm._emscripten_thread_exit).apply(null,arguments)},DE=p._memalign=function(){return(DE=p._memalign=p.asm.memalign).apply(null,arguments)},F3=p._emscripten_stack_set_limits=function(){return(F3=p._emscripten_stack_set_limits=p.asm.emscripten_stack_set_limits).apply(null,arguments)},eg=p.stackSave=function(){return(eg=p.stackSave=p.asm.stackSave).apply(null,arguments)},Wc=p.stackRestore=function(){return(Wc=p.stackRestore=p.asm.stackRestore).apply(null,arguments)},ou=p.stackAlloc=function(){return(ou=p.stackAlloc=p.asm.stackAlloc).apply(null,arguments)},LE=p.dynCall_iijjiiii=function(){return(LE=p.dynCall_iijjiiii=p.asm.dynCall_iijjiiii).apply(null,arguments)},BE=p.dynCall_jiji=function(){return(BE=p.dynCall_jiji=p.asm.dynCall_jiji).apply(null,arguments)},P3=p.__emscripten_allow_main_runtime_queued_calls=21456;p.cwrap=fr,p.keepRuntimeAlive=po,p.PThread=ze,p.PThread=ze,p.wasmMemory=Fe,p.ExitStatus=fp;var Vc;function fp(T){this.name="ExitStatus",this.message="Program terminated with exit("+T+")",this.status=T}na=function T(){Vc||tg(),Vc||(na=T)};function tg(T){if(T=T||y,xs>0)return;if(N){c(p),ip(),postMessage({cmd:"loaded"});return}if(zr(),xs>0)return;function F(){Vc||(Vc=!0,p.calledRun=!0,!At&&(ip(),c(p),p.onRuntimeInitialized&&p.onRuntimeInitialized(),N1()))}p.setStatus?(p.setStatus("Running..."),setTimeout(function(){setTimeout(function(){p.setStatus("")},1),F()},1)):F()}p.run=tg;function WE(T,F){if(Pr=T,!F&&N)throw Tc(T),"unwind";po()||T1(),VE(T)}function VE(T){Pr=T,po()||(ze.terminateAllThreads(),p.onExit&&p.onExit(T),At=!0),x(T,new fp(T))}if(p.preInit)for(typeof p.preInit=="function"&&(p.preInit=[p.preInit]);p.preInit.length>0;)p.preInit.pop()();tg();var Uc;f&&(Uc={uncaughtException:process.listeners("uncaughtException").filter(function(T){return!f.uncaughtException.indexOf(T)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(T){return!f.unhandledRejection.indexOf(T)>-1})});var Gc;if(typeof WasmBackendModule!="undefined")Gc=WasmBackendModule;else if(typeof a!="undefined")Gc=a;else throw new Error("Could not find wasm module in post.js");if(Uc){var UE=Gc._dispose;Gc._dispose=function(){UE(),Uc.uncaughtException.forEach(function(T){process.removeListener("uncaughtException",T)}),Uc.unhandledRejection.forEach(function(T){process.removeListener("unhandledRejection",T)})}}return a.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=r:typeof define=="function"&&define.amd?define([],function(){return r}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=r)}}),AR=pr({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var r=(()=>{var n=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(n=n||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i,o;s.ready=new Promise(function(j,ne){i=j,o=ne});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),d=[],h="./this.program",p=(j,ne)=>{throw ne},c=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(j){return s.locateFile?s.locateFile(j,g):g+j}var A,x,b,w;function I(j){j instanceof hp||M("exiting due to exception: "+j)}var N,E,R;f?(m?g=y0().dirname(g)+"/":g=__dirname+"/",R=()=>{E||(N=yy(),E=y0())},A=function(j,ne){return R(),j=E.normalize(j),N.readFileSync(j,ne?void 0:"utf8")},b=j=>{var ne=A(j,!0);return ne.buffer||(ne=new Uint8Array(ne)),ne},x=(j,ne,ye)=>{R(),j=E.normalize(j),N.readFile(j,function(Re,lt){Re?ye(Re):ne(lt.buffer)})},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(j){if(!(j instanceof hp))throw j}),process.on("unhandledRejection",function(j){throw j}),p=(j,ne)=>{if(sp())throw process.exitCode=j,ne;I(ne),process.exit(j)},s.inspect=function(){return"[Emscripten Module object]"}):(c||m)&&(m?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),n&&(g=n),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",A=j=>{var ne=new XMLHttpRequest;return ne.open("GET",j,!1),ne.send(null),ne.responseText},m&&(b=j=>{var ne=new XMLHttpRequest;return ne.open("GET",j,!1),ne.responseType="arraybuffer",ne.send(null),new Uint8Array(ne.response)}),x=(j,ne,ye)=>{var Re=new XMLHttpRequest;Re.open("GET",j,!0),Re.responseType="arraybuffer",Re.onload=()=>{if(Re.status==200||Re.status==0&&Re.response){ne(Re.response);return}ye()},Re.onerror=ye,Re.send(null)},w=j=>document.title=j);var _=s.print||console.log.bind(console),M=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(d=s.arguments),s.thisProgram&&(h=s.thisProgram),s.quit&&(p=s.quit);var S=4;function z(j){z.shown||(z.shown={}),z.shown[j]||(z.shown[j]=1,M(j))}function O(j,ne){if(typeof WebAssembly.Function=="function"){for(var ye={i:"i32",j:"i64",f:"f32",d:"f64"},Re={parameters:[],results:ne[0]=="v"?[]:[ye[ne[0]]]},lt=1;lt<ne.length;++lt)Re.parameters.push(ye[ne[lt]]);return new WebAssembly.Function(Re,j)}var ct=[1,0,1,96],Ke=ne.slice(0,1),He=ne.slice(1),qt={i:127,j:126,f:125,d:124};ct.push(He.length);for(var lt=0;lt<He.length;++lt)ct.push(qt[He[lt]]);Ke=="v"?ct.push(0):ct=ct.concat([1,qt[Ke]]),ct[1]=ct.length-2;var aa=new Uint8Array([0,97,115,109,1,0,0,0].concat(ct,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),sa=new WebAssembly.Module(aa),iu=new WebAssembly.Instance(sa,{e:{f:j}}),mo=iu.exports.f;return mo}var H=[],K;function D(){if(H.length)return H.pop();try{ys.grow(1)}catch(j){throw j instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":j}return ys.length-1}function Q(j,ne){for(var ye=j;ye<j+ne;ye++){var Re=lp(ye);Re&&K.set(Re,ye)}}var V=0,re=j=>{V=j},Y;s.wasmBinary&&(Y=s.wasmBinary);var ie=s.noExitRuntime||!0;typeof WebAssembly!="object"&&uo("no native wasm support detected");var J,ae=!1,de;function xe(j,ne){j||uo(ne)}function be(j){var ne=s["_"+j];return ne}function Ee(j,ne,ye,Re,lt){var ct={string:function(en){var bs=0;if(en!=null&&en!==0){var Lc=(en.length<<2)+1;bs=pp(Lc),ht(en,bs,Lc)}return bs},array:function(en){var bs=pp(en.length);return At(en,bs),bs}};function Ke(en){return ne==="string"?ot(en):ne==="boolean"?Boolean(en):en}var He=be(j),qt=[],aa=0;if(Re)for(var sa=0;sa<Re.length;sa++){var iu=ct[ye[sa]];iu?(aa===0&&(aa=Oc()),qt[sa]=iu(Re[sa])):qt[sa]=Re[sa]}var mo=He.apply(null,qt);function Z2(en){return aa!==0&&Dc(aa),Ke(en)}return mo=Z2(mo),mo}function $e(j,ne,ye,Re){ye=ye||[];var lt=ye.every(function(Ke){return Ke==="number"}),ct=ne!=="string";return ct&&lt&&!Re?be(j):function(){return Ee(j,ne,ye,arguments,Re)}}var De=1,We=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Xe(j,ne,ye){for(var Re=ne+ye,lt=ne;j[lt]&&!(lt>=Re);)++lt;if(lt-ne>16&&j.subarray&&We)return We.decode(j.subarray(ne,lt));for(var ct="";ne<lt;){var Ke=j[ne++];if(!(Ke&128)){ct+=String.fromCharCode(Ke);continue}var He=j[ne++]&63;if((Ke&224)==192){ct+=String.fromCharCode((Ke&31)<<6|He);continue}var qt=j[ne++]&63;if((Ke&240)==224?Ke=(Ke&15)<<12|He<<6|qt:Ke=(Ke&7)<<18|He<<12|qt<<6|j[ne++]&63,Ke<65536)ct+=String.fromCharCode(Ke);else{var aa=Ke-65536;ct+=String.fromCharCode(55296|aa>>10,56320|aa&1023)}}return ct}function ot(j,ne){return j?Xe(fr,j,ne):""}function pt(j,ne,ye,Re){if(!(Re>0))return 0;for(var lt=ye,ct=ye+Re-1,Ke=0;Ke<j.length;++Ke){var He=j.charCodeAt(Ke);if(He>=55296&&He<=57343){var qt=j.charCodeAt(++Ke);He=65536+((He&1023)<<10)|qt&1023}if(He<=127){if(ye>=ct)break;ne[ye++]=He}else if(He<=2047){if(ye+1>=ct)break;ne[ye++]=192|He>>6,ne[ye++]=128|He&63}else if(He<=65535){if(ye+2>=ct)break;ne[ye++]=224|He>>12,ne[ye++]=128|He>>6&63,ne[ye++]=128|He&63}else{if(ye+3>=ct)break;ne[ye++]=240|He>>18,ne[ye++]=128|He>>12&63,ne[ye++]=128|He>>6&63,ne[ye++]=128|He&63}}return ne[ye]=0,ye-lt}function ht(j,ne,ye){return pt(j,fr,ne,ye)}function Fe(j){for(var ne=0,ye=0;ye<j.length;++ye){var Re=j.charCodeAt(ye);Re>=55296&&Re<=57343&&(Re=65536+((Re&1023)<<10)|j.charCodeAt(++ye)&1023),Re<=127?++ne:Re<=2047?ne+=2:Re<=65535?ne+=3:ne+=4}return ne}var wt=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function At(j,ne){nr.set(j,ne)}function Pr(j,ne,ye){for(var Re=0;Re<j.length;++Re)nr[ne++>>0]=j.charCodeAt(Re);ye||(nr[ne>>0]=0)}function cr(j,ne){return j%ne>0&&(j+=ne-j%ne),j}var Jr,nr,fr,ta,Qr,ar,kn,In,gs;function lo(j){Jr=j,s.HEAP8=nr=new Int8Array(j),s.HEAP16=ta=new Int16Array(j),s.HEAP32=ar=new Int32Array(j),s.HEAPU8=fr=new Uint8Array(j),s.HEAPU16=Qr=new Uint16Array(j),s.HEAPU32=kn=new Uint32Array(j),s.HEAPF32=In=new Float32Array(j),s.HEAPF64=gs=new Float64Array(j)}var dc=s.INITIAL_MEMORY||16777216,ys,Ua=[],ap=[],Zl=[],_r=!1,pc=!1,hc=0;function sp(){return ie||hc>0}function cc(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)gc(s.preRun.shift());op(Ua)}function fc(){_r=!0,op(ap)}function m3(){pc=!0}function mc(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)yc(s.postRun.shift());op(Zl)}function gc(j){Ua.unshift(j)}function ra(j){ap.unshift(j)}function yc(j){Zl.unshift(j)}var Sn=0,Yl=null,As=null;function S1(j){Sn++,s.monitorRunDependencies&&s.monitorRunDependencies(Sn)}function Ac(j){if(Sn--,s.monitorRunDependencies&&s.monitorRunDependencies(Sn),Sn==0&&(Yl!==null&&(clearInterval(Yl),Yl=null),As)){var ne=As;As=null,ne()}}s.preloadedImages={},s.preloadedAudios={};function uo(j){s.onAbort&&s.onAbort(j),j="Aborted("+j+")",M(j),ae=!0,de=1,j+=". Build with -s ASSERTIONS=1 for more info.";var ne=new WebAssembly.RuntimeError(j);throw o(ne),ne}var C1="data:application/octet-stream;base64,";function xc(j){return j.startsWith(C1)}function po(j){return j.startsWith("file://")}var zr;zr="tfjs-backend-wasm.wasm",xc(zr)||(zr=y(zr));function ip(j){try{if(j==zr&&Y)return new Uint8Array(Y);if(b)return b(j);throw"both async and sync fetching of the wasm failed"}catch(ne){uo(ne)}}function T1(){if(!Y&&(c||m)){if(typeof fetch=="function"&&!po(zr))return fetch(zr,{credentials:"same-origin"}).then(function(j){if(!j.ok)throw"failed to load wasm binary file at '"+zr+"'";return j.arrayBuffer()}).catch(function(){return ip(zr)});if(x)return new Promise(function(j,ne){x(zr,function(ye){j(new Uint8Array(ye))},ne)})}return Promise.resolve().then(function(){return ip(zr)})}function N1(){var j={env:eu,wasi_snapshot_preview1:eu};function ne(Ke,He){var qt=Ke.exports;s.asm=qt,J=s.asm.memory,lo(J.buffer),ys=s.asm.__indirect_function_table,ra(s.asm.__wasm_call_ctors),Ac("wasm-instantiate")}S1("wasm-instantiate");function ye(Ke){ne(Ke.instance)}function Re(Ke){return T1().then(function(He){return WebAssembly.instantiate(He,j)}).then(function(He){return He}).then(Ke,function(He){M("failed to asynchronously prepare wasm: "+He),uo(He)})}function lt(){return!Y&&typeof WebAssembly.instantiateStreaming=="function"&&!xc(zr)&&!po(zr)&&typeof fetch=="function"?fetch(zr,{credentials:"same-origin"}).then(function(Ke){var He=WebAssembly.instantiateStreaming(Ke,j);return He.then(ye,function(qt){return M("wasm streaming compile failed: "+qt),M("falling back to ArrayBuffer instantiation"),Re(ye)})}):Re(ye)}if(s.instantiateWasm)try{var ct=s.instantiateWasm(j,ne);return ct}catch(Ke){return M("Module.instantiateWasm callback failed with error: "+Ke),!1}return lt().catch(o),{}}var g3,y3;function op(j){for(;j.length>0;){var ne=j.shift();if(typeof ne=="function"){ne(s);continue}var ye=ne.func;typeof ye=="number"?ne.arg===void 0?lp(ye)():lp(ye)(ne.arg):ye(ne.arg===void 0?null:ne.arg)}}function xs(j){return j}function bc(j){var ne=/\b_Z[\w\d_]+/g;return j.replace(ne,function(ye){var Re=ye;return ye===Re?ye:Re+" ["+ye+"]"})}var na=[];function lp(j){var ne=na[j];return ne||(j>=na.length&&(na.length=j+1),na[j]=ne=ys.get(j)),ne}function A3(){var j=new Error;if(!j.stack){try{throw new Error}catch(ne){j=ne}if(!j.stack)return"(no stack trace available)"}return j.stack.toString()}function Jl(j,ne){ys.set(j,ne),na[j]=ne}function E1(){uo("")}function vc(j,ne,ye){fr.copyWithin(j,ne,ne+ye)}function wc(){return 2147483648}function Or(j){try{return J.grow(j-Jr.byteLength+65535>>>16),lo(J.buffer),1}catch(ne){}}function kc(j){var ne=fr.length;j=j>>>0;var ye=wc();if(j>ye)return!1;for(var Re=1;Re<=4;Re*=2){var lt=ne*(1+.2/Re);lt=Math.min(lt,j+100663296);var ct=Math.min(ye,cr(Math.max(j,lt),65536)),Ke=Or(ct);if(Ke)return!0}return!1}var Ql={mappings:{},buffers:[null,[],[]],printChar:function(j,ne){var ye=Ql.buffers[j];ne===0||ne===10?((j===1?_:M)(Xe(ye,0)),ye.length=0):ye.push(ne)},varargs:void 0,get:function(){Ql.varargs+=4;var j=ar[Ql.varargs-4>>2];return j},getStr:function(j){var ne=ot(j);return ne},get64:function(j,ne){return j}};function R1(j){return 0}function x3(j,ne,ye,Re,lt){}function b3(j,ne,ye,Re){for(var lt=0,ct=0;ct<ye;ct++){var Ke=ar[ne>>2],He=ar[ne+4>>2];ne+=8;for(var qt=0;qt<He;qt++)Ql.printChar(j,fr[Ke+qt]);lt+=He}return ar[Re>>2]=lt,0}function $1(j){re(j)}var Ic=!1,eu={abort:E1,emscripten_memcpy_big:vc,emscripten_resize_heap:kc,fd_close:R1,fd_seek:x3,fd_write:b3,setTempRet0:$1},JN=N1(),v3=s.___wasm_call_ctors=function(){return(v3=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},M1=s._init=function(){return(M1=s._init=s.asm.init).apply(null,arguments)},F1=s._init_with_threads_count=function(){return(F1=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},Sc=s._get_threads_count=function(){return(Sc=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},Cc=s._register_tensor=function(){return(Cc=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},P1=s._dispose_data=function(){return(P1=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},ze=s._dispose=function(){return(ze=s._dispose=s.asm.dispose).apply(null,arguments)},_1=s._Abs=function(){return(_1=s._Abs=s.asm.Abs).apply(null,arguments)},Tc=s._Add=function(){return(Tc=s._Add=s.asm.Add).apply(null,arguments)},ho=s._AddN=function(){return(ho=s._AddN=s.asm.AddN).apply(null,arguments)},tu=s._All=function(){return(tu=s._All=s.asm.All).apply(null,arguments)},z1=s._Any=function(){return(z1=s._Any=s.asm.Any).apply(null,arguments)},w3=s._ArgMax=function(){return(w3=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},O1=s._AvgPool=function(){return(O1=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},k3=s._BatchMatMul=function(){return(k3=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},co=s._Ceil=function(){return(co=s._Ceil=s.asm.Ceil).apply(null,arguments)},D1=s._ClipByValue=function(){return(D1=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},L1=s._Conv2D=function(){return(L1=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},B1=s._Conv2DBackpropInput=function(){return(B1=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},W1=s._Cos=function(){return(W1=s._Cos=s.asm.Cos).apply(null,arguments)},V1=s._Cosh=function(){return(V1=s._Cosh=s.asm.Cosh).apply(null,arguments)},U1=s._CropAndResize=function(){return(U1=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},Nc=s._Cumprod=function(){return(Nc=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},G1=s._Cumsum=function(){return(G1=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},j1=s._DepthToSpace=function(){return(j1=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},H1=s._DepthwiseConv2dNative=function(){return(H1=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},q1=s._Elu=function(){return(q1=s._Elu=s.asm.Elu).apply(null,arguments)},X1=s._Equal=function(){return(X1=s._Equal=s.asm.Equal).apply(null,arguments)},Ec=s._Exp=function(){return(Ec=s._Exp=s.asm.Exp).apply(null,arguments)},K1=s._FlipLeftRight=function(){return(K1=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},Z1=s._Floor=function(){return(Z1=s._Floor=s.asm.Floor).apply(null,arguments)},fo=s._FloorDiv=function(){return(fo=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},up=s._FusedBatchNorm=function(){return(up=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},Y1=s._FusedConv2D=function(){return(Y1=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},J1=s._FusedDepthwiseConv2D=function(){return(J1=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},Q1=s._Gather=function(){return(Q1=s._Gather=s.asm.Gather).apply(null,arguments)},qe=s._GatherNd=function(){return(qe=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},e2=s._Greater=function(){return(e2=s._Greater=s.asm.Greater).apply(null,arguments)},t2=s._GreaterEqual=function(){return(t2=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},r2=s._LeakyRelu=function(){return(r2=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},n2=s._Less=function(){return(n2=s._Less=s.asm.Less).apply(null,arguments)},a2=s._LessEqual=function(){return(a2=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},s2=s._Log=function(){return(s2=s._Log=s.asm.Log).apply(null,arguments)},dp=s._LogicalAnd=function(){return(dp=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},Rc=s._Max=function(){return(Rc=s._Max=s.asm.Max).apply(null,arguments)},$c=s._MaxPool=function(){return($c=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},i2=s._Maximum=function(){return(i2=s._Maximum=s.asm.Maximum).apply(null,arguments)},o2=s._Mean=function(){return(o2=s._Mean=s.asm.Mean).apply(null,arguments)},l2=s._Min=function(){return(l2=s._Min=s.asm.Min).apply(null,arguments)},u2=s._Minimum=function(){return(u2=s._Minimum=s.asm.Minimum).apply(null,arguments)},d2=s._MirrorPad=function(){return(d2=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},p2=s._Multiply=function(){return(p2=s._Multiply=s.asm.Multiply).apply(null,arguments)},Ft=s._Neg=function(){return(Ft=s._Neg=s.asm.Neg).apply(null,arguments)},h2=s._NonMaxSuppressionV3=function(){return(h2=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},c2=s._NonMaxSuppressionV4=function(){return(c2=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},f2=s._NonMaxSuppressionV5=function(){return(f2=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},ru=s._NotEqual=function(){return(ru=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},Mc=s._OneHot=function(){return(Mc=s._OneHot=s.asm.OneHot).apply(null,arguments)},Fc=s._PadV2=function(){return(Fc=s._PadV2=s.asm.PadV2).apply(null,arguments)},Pc=s._Pow=function(){return(Pc=s._Pow=s.asm.Pow).apply(null,arguments)},m2=s._Prelu=function(){return(m2=s._Prelu=s.asm.Prelu).apply(null,arguments)},_c=s._Prod=function(){return(_c=s._Prod=s.asm.Prod).apply(null,arguments)},g2=s._RealDiv=function(){return(g2=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},I3=s._Relu=function(){return(I3=s._Relu=s.asm.Relu).apply(null,arguments)},zc=s._Relu6=function(){return(zc=s._Relu6=s.asm.Relu6).apply(null,arguments)},S3=s._ResizeBilinear=function(){return(S3=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},y2=s._Reverse=function(){return(y2=s._Reverse=s.asm.Reverse).apply(null,arguments)},A2=s._RotateWithOffset=function(){return(A2=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},x2=s._Round=function(){return(x2=s._Round=s.asm.Round).apply(null,arguments)},b2=s._Rsqrt=function(){return(b2=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},v2=s._ScatterNd=function(){return(v2=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},w2=s._SelectV2=function(){return(w2=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},k2=s._Sigmoid=function(){return(k2=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},I2=s._Sin=function(){return(I2=s._Sin=s.asm.Sin).apply(null,arguments)},S2=s._Softmax=function(){return(S2=s._Softmax=s.asm.Softmax).apply(null,arguments)},C2=s._SparseFillEmptyRows=function(){return(C2=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},T2=s._SparseReshape=function(){return(T2=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},N2=s._SparseSegmentReduction=function(){return(N2=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},E2=s._Sqrt=function(){return(E2=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},R2=s._Square=function(){return(R2=s._Square=s.asm.Square).apply(null,arguments)},$2=s._SquaredDifference=function(){return($2=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},M2=s._Step=function(){return(M2=s._Step=s.asm.Step).apply(null,arguments)},F2=s._StridedSlice=function(){return(F2=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},P2=s._Sub=function(){return(P2=s._Sub=s.asm.Sub).apply(null,arguments)},_2=s._Sum=function(){return(_2=s._Sum=s.asm.Sum).apply(null,arguments)},z2=s._Tan=function(){return(z2=s._Tan=s.asm.Tan).apply(null,arguments)},O2=s._Tanh=function(){return(O2=s._Tanh=s.asm.Tanh).apply(null,arguments)},D2=s._Tile=function(){return(D2=s._Tile=s.asm.Tile).apply(null,arguments)},L2=s._TopK=function(){return(L2=s._TopK=s.asm.TopK).apply(null,arguments)},B2=s._Transform=function(){return(B2=s._Transform=s.asm.Transform).apply(null,arguments)},W2=s._Transpose=function(){return(W2=s._Transpose=s.asm.Transpose).apply(null,arguments)},V2=s.__FusedMatMul=function(){return(V2=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},U2=s._malloc=function(){return(U2=s._malloc=s.asm.malloc).apply(null,arguments)},G2=s._free=function(){return(G2=s._free=s.asm.free).apply(null,arguments)},j2=s.___errno_location=function(){return(j2=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},H2=s._emscripten_main_thread_process_queued_calls=function(){return(H2=s._emscripten_main_thread_process_queued_calls=s.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},Oc=s.stackSave=function(){return(Oc=s.stackSave=s.asm.stackSave).apply(null,arguments)},Dc=s.stackRestore=function(){return(Dc=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},pp=s.stackAlloc=function(){return(pp=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},q2=s.dynCall_iijjiiii=function(){return(q2=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},X2=s.dynCall_jiji=function(){return(X2=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=$e;var nu;function hp(j){this.name="ExitStatus",this.message="Program terminated with exit("+j+")",this.status=j}As=function j(){nu||cp(),nu||(As=j)};function cp(j){if(j=j||d,Sn>0||(cc(),Sn>0))return;function ne(){nu||(nu=!0,s.calledRun=!0,!ae&&(fc(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),mc()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ne()},1)):ne()}s.run=cp;function C3(j){de=j,sp()||(s.onExit&&s.onExit(j),ae=!0),p(j,new hp(j))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();cp();var au;l&&(au={uncaughtException:process.listeners("uncaughtException").filter(function(j){return!l.uncaughtException.indexOf(j)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(j){return!l.unhandledRejection.indexOf(j)>-1})});var su;if(typeof a!="undefined")su=a;else if(typeof WasmBackendModuleThreadedSimd!="undefined")su=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(au){var K2=su._dispose;su._dispose=function(){K2(),au.uncaughtException.forEach(function(j){process.removeListener("uncaughtException",j)}),au.unhandledRejection.forEach(function(j){process.removeListener("unhandledRejection",j)})}}return a.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=r:typeof define=="function"&&define.amd?define([],function(){return r}):typeof e=="object"&&(e.WasmBackendModule=r)}}),xR=1e-7,bR=1e-4,Jp=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Du=class{refCount(e){return Tn("refCount")}incRef(e){return Tn("incRef")}timerAvailable(){return!0}time(e){return Tn("time")}read(e){return Tn("read")}readSync(e){return Tn("readSync")}readToGPU(e,t){return Tn("readToGPU")}numDataIds(){return Tn("numDataIds")}disposeData(e,t){return Tn("disposeData")}write(e,t,r){return Tn("write")}move(e,t,r,n,a){return Tn("move")}memory(){return Tn("memory")}floatPrecision(){return Tn("floatPrecision")}epsilon(){return this.floatPrecision()===32?xR:bR}dispose(){return Tn("dispose")}};function Tn(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function Tv(e){let t=e.length,r=0;for(;t>0;)r=Math.random()*t|0,t--,A0(e,t,r)}function vR(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let r=e.length,n=0;for(;r>0;)n=Math.random()*r|0,r--,A0(e,r,n),A0(t,r,n)}function Dp(e,t,r){return Math.max(e,Math.min(t,r))}function wR(e){return e%2===0?e:e+1}function A0(e,t,r){let n=e[t];e[t]=e[r],e[r]=n}function kR(e){let t=0;for(let r=0;r<e.length;r++)t+=e[r];return t}function IR(e,t){let r=Math.random();return t*r+(1-r)*e}function SR(e,t){let r=0;for(let n=0;n<e.length;n++){let a=Number(e[n])-Number(t[n]);r+=a*a}return r}function P(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Ur(e,t,r=""){P(Ks(e,t),()=>r+` Shapes ${e} and ${t} must match`)}function Go(e){P(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Mo(e,t=[],r=!1){if(t==null&&(t=[]),Array.isArray(e)||Sr(e)&&!r)for(let n=0;n<e.length;++n)Mo(e[n],t,r);else t.push(e);return t}function It(e){if(e.length===0)return 1;let t=e[0];for(let r=1;r<e.length;r++)t*=e[r];return t}function CR(e){return e.length===0}function Ks(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let r=0;r<e.length;r++)if(e[r]!==t[r])return!1;return!0}function ku(e){return e%1===0}function TR(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function NR(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function ER(e){let t=new Uint32Array(e);for(let r=0;r<e;++r)t[r]=r;return Tv(t),t}function Fp(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function RR(e,t=n=>0,r){return new Promise((n,a)=>{let s=0,i=()=>{if(e()){n();return}s++;let o=t(s);if(r!=null&&s>=r){a();return}setTimeout(i,o)};i()})}function $R(e,t){let r=1,n=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)r*=e[s];else if(e[s]===-1){if(n!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${n} and dim ${s}`);n=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(n===-1){if(t>0&&t!==r)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(r===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%r!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${r}`);let a=e.slice();return a[n]=t/r,a}function Hn(e,t){let r=t.length;return e=e==null?t.map((n,a)=>a):[].concat(e),P(e.every(n=>n>=-r&&n<r),()=>`All values in axis param must be in range [-${r}, ${r}) but got axis ${e}`),P(e.every(n=>ku(n)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(n=>n<0?r+n:n)}function Nv(e,t){let r=[],n=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:Hn(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(r.push(e[o]),n.push(o)),s[i]<=o&&i++}e[o]!==1&&(r.push(e[o]),n.push(o))}return{newShape:r,keptDims:n}}function Ev(e,t){let r=null;if(e==null||e==="float32")r=new Float32Array(t);else if(e==="int32")r=new Int32Array(t);else if(e==="bool")r=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return r}function Rv(e,t){let r=null;if(e==null||e==="float32")r=new Float32Array(t);else if(e==="int32")r=new Int32Array(t);else if(e==="bool")r=new Uint8Array(t);else if(e==="string")r=new Array(t);else throw new Error(`Unknown data type ${e}`);return r}function $v(e,t){for(let r=0;r<e.length;r++){let n=e[r];if(isNaN(n)||!isFinite(n))throw Error(`A tensor of type ${t} being uploaded contains ${n}.`)}}function Mv(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function MR(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Sr(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function yg(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function Fv(e){if(e==null)return 0;let t=0;return e.forEach(r=>t+=r.length),t}function Ts(e){return typeof e=="string"||e instanceof String}function Pv(e){return typeof e=="boolean"}function _v(e){return typeof e=="number"}function J0(e){return Array.isArray(e)?J0(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":_v(e)?"float32":Ts(e)?"string":Pv(e)?"bool":"float32"}function Fs(e){return!!(e&&e.constructor&&e.call&&e.apply)}function x0(e,t){for(let r=t;r<e;++r)if(e%r===0)return r;return e}function Lu(e){let t=e.length;if(t<2)return[];let r=new Array(t-1);r[t-2]=e[t-1];for(let n=t-3;n>=0;--n)r[n]=r[n+1]*e[n+1];return r}function zv(e,t,r,n=!1){let a=new Array;if(t.length===1){let s=t[0]*(n?2:1);for(let i=0;i<s;i++)a[i]=r[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(n?2:1);for(let l=0;l<s;l++)a[l]=zv(e+l*o,i,r,n)}return a}function Au(e,t,r=!1){if(e.length===0)return t[0];let n=e.reduce((a,s)=>a*s)*(r?2:1);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${r?" for a complex tensor":""}.`);return zv(0,e,t,r)}function Ay(e,t){let r=Q0(e,t);for(let n=0;n<r.length;n++)r[n]=1;return r}function Q0(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function FR(e,t){let r=e.reduce((n,a)=>n*a,1);if(t==null||t==="float32")return Au(e,new Float32Array(r));if(t==="int32")return Au(e,new Int32Array(r));if(t==="bool")return Au(e,new Uint8Array(r));throw new Error(`Unknown data type ${t}`)}function xy(e){e.forEach(t=>{P(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function PR(e,t,r){if(t===0)return 0;if(t===1)return e[0];let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=r[a]*e[a];return n}function _R(e,t,r){if(t===0)return[];if(t===1)return[e];let n=new Array(t);for(let a=0;a<n.length-1;++a)n[a]=Math.floor(e/r[a]),e-=n[a]*r[a];return n[n.length-1]=e,n}function by(e){return e&&e.then&&typeof e.then=="function"}var D3="tfjsflags",Ov=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=zR,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(Z().getBool("IS_TEST")||Z().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,r){if(this.flagRegistry[e]={evaluationFn:t,setHook:r},this.urlFlags[e]!=null){let n=this.urlFlags[e];Z().getBool("IS_TEST")||Z().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${n}.`),this.set(e,n)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(by(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);D3 in e&&e[D3].split(",").forEach(t=>{let[r,n]=t.split(":");this.urlFlags[r]=DR(r,n)})}};function zR(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(r,...n)=>(OR(t,n[0],n[1]),n.join("="))),t}function OR(e,t,r){e[decodeURIComponent(t)]=decodeURIComponent(r||"")}function DR(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Z(){return ba}var ba=null;function LR(e){ba=e}var ng;function Dv(){if(ng==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");ng=e}return ng}function BR(){let e=Dv();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function vy(e,t){let r=BR();if(r.has(e))return r.get(e);{let n=t();return r.set(e,n),r.get(e)}}var jo="Abs",Bu="Acos",Wu="Acosh",Ja="Add",Zs="AddN",Vu="All",Uu="Any",Ys="ArgMax",Gu="ArgMin",ju="Asin",Hu="Asinh",qu="Atan",Xu="Atanh",Ku="Atan2",Js="AvgPool",ef="AvgPoolGrad",Qp="AvgPool3D",tf="AvgPool3DGrad",Qs="BatchMatMul",Ho="BatchToSpaceND",rf="Bincount",Lv="BroadcastTo",nf="BroadcastArgs",ei="Cast",ti="Ceil",Qa="ClipByValue",eh="Complex",th="ComplexAbs",qo="Concat",ri="Conv2D",af="Conv2DBackpropFilter",ni="Conv2DBackpropInput",rh="Conv3D",sf="Conv3DBackpropFilterV2",of="Conv3DBackpropInputV2",ai="Cos",si="Cosh",Xo="Cumprod",ii="Cumsum",Ko="CropAndResize",lf="DenseBincount",Zo="DepthToSpace",oi="DepthwiseConv2dNative",uf="DepthwiseConv2dNativeBackpropFilter",df="DepthwiseConv2dNativeBackpropInput",pf="Diag",nh="Dilation2D",b0="Dilation2DBackpropInput",v0="Dilation2DBackpropFilter",li="RealDiv",ah="Einsum",ui="Elu",hf="EluGrad",Zu="Erf",Yo="Equal",di="Exp",Jo="ExpandDims",Qo="Expm1",cf="FFT",Yu="Fill",el="FlipLeftRight",pi="Floor",hi="FloorDiv",ci="FusedBatchNorm",tl="GatherV2",rl="GatherNd",nl="Greater",fi="GreaterEqual",mi="Identity",ff="IFFT",sh="Imag",Ju="IsFinite",Qu="IsInf",ed="IsNan",gi="LeakyRelu",al="Less",sl="LessEqual",mf="LinSpace",yi="Log",td="Log1p",il="LogicalAnd",rd="LogicalNot",ih="LogicalOr",Bv="LogSoftmax",WR="LowerBound",oh="LRN",gf="LRNGrad",Ai="Max",xi="Maximum",bi="MaxPool",yf="MaxPoolGrad",lh="MaxPool3D",Af="MaxPool3DGrad",xf="MaxPoolWithArgmax",vi="Mean",wi="Min",ki="Minimum",Ii="MirrorPad",nd="Mod",bf="Multinomial",Si="Multiply",ol="Neg",ll="NotEqual",ul="NonMaxSuppressionV3",ad="NonMaxSuppressionV4",dl="NonMaxSuppressionV5",pl="OnesLike",hl="OneHot",cl="Pack",Ci="PadV2",VR="Pool",Ti="Pow",Ni="Prelu",Ei="Prod",sd="Range",uh="Real",id="Reciprocal",Ri="Relu",fl="Reshape",od="ResizeNearestNeighbor",vf="ResizeNearestNeighborGrad",$i="ResizeBilinear",wf="ResizeBilinearGrad",Mi="Relu6",ml="Reverse",gl="Round",Fi="Rsqrt",yl="ScatterNd",kf="SearchSorted",Al="Select",ld="Selu",xl="Slice",Pi="Sin",bl="Sinh",ud="Sign",_i="Sigmoid",dd="Softplus",zi="Sqrt",Oi="Sum",vl="SpaceToBatchND",wl="SplitV",Di="Softmax",dh="SparseFillEmptyRows",pd="SparseReshape",ph="SparseSegmentMean",hh="SparseSegmentSum",ch="SparseToDense",Li="SquaredDifference",hd="Square",kl="StridedSlice",fh="StringNGrams",If="StringSplit",Sf="StringToHashBucketFast",Bi="Sub",Il="Tan",Wi="Tanh",es="Tile",Sl="TopK",Cl="Transform",Vi="Transpose",Cf="Unique",Tl="Unpack",mh="UnsortedSegmentSum",UR="UpperBound",Nl="ZerosLike",Ui="Step",Lp="FromPixels",El="RotateWithOffset",Ps="_FusedMatMul",_s="FusedConv2D",zs="FusedDepthwiseConv2D";function Cs(...e){Z().getBool("IS_TEST")||Z().getBool("PROD")||console.warn(...e)}function GR(...e){Z().getBool("IS_TEST")||Z().getBool("PROD")||console.log(...e)}var Iu=vy("kernelRegistry",()=>new Map),Bp=vy("gradRegistry",()=>new Map);function w0(e,t){let r=wy(e,t);return Iu.get(r)}function Ag(e){return Bp.get(e)}function Ma(e){let t=Iu.entries(),r=[];for(;;){let{done:n,value:a}=t.next();if(n)break;let[s,i]=a,[o]=s.split("_");o===e&&r.push(i)}return r}function qn(e){let{kernelName:t,backendName:r}=e,n=wy(t,r);Iu.has(n)&&Cs(`The kernel '${t}' for backend '${r}' is already registered`),Iu.set(n,e)}function Wv(e){let{kernelName:t}=e;Bp.has(t)&&Z().getBool("DEBUG")&&Cs(`Overriding the gradient for '${t}'`),Bp.set(t,e)}function jR(e,t){let r=wy(e,t);if(!Iu.has(r))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Iu.delete(r)}function HR(e){if(!Bp.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Bp.delete(e)}function qR(e,t){Ma(e).forEach(r=>{let n=Object.assign({},r,{backendName:t});qn(n)})}function wy(e,t){return`${t}_${e}`}var v={};Be(v,{arraysEqual:()=>Ks,assert:()=>P,assertNonNegativeIntegerDimensions:()=>xy,assertNonNull:()=>Go,assertShapesMatch:()=>Ur,bytesFromStringArray:()=>Fv,bytesPerElement:()=>yg,checkConversionForErrors:()=>$v,clamp:()=>Dp,computeStrides:()=>Lu,createScalarValue:()=>QR,createShuffledIndices:()=>ER,decodeString:()=>k0,distSquared:()=>SR,encodeString:()=>yh,fetch:()=>t$,fingerPrint64:()=>JR,flatten:()=>Mo,getArrayFromDType:()=>Rv,getTypedArrayFromDType:()=>Ev,hasEncodingLoss:()=>MR,hexToLong:()=>gh,indexToLoc:()=>_R,inferDtype:()=>J0,inferFromImplicitShape:()=>$R,isBoolean:()=>Pv,isFunction:()=>Fs,isInt:()=>ku,isNumber:()=>_v,isPromise:()=>by,isScalarShape:()=>CR,isString:()=>Ts,isTypedArray:()=>Sr,isValidDtype:()=>Mv,locToIndex:()=>PR,makeOnesTypedArray:()=>Ay,makeZerosNestedTypedArray:()=>FR,makeZerosTypedArray:()=>Q0,nearestDivisor:()=>x0,nearestLargerEven:()=>wR,now:()=>Wp,parseAxisParam:()=>Hn,randUniform:()=>IR,repeatedTry:()=>RR,rightPad:()=>Fp,shuffle:()=>Tv,shuffleCombo:()=>vR,sizeFromShape:()=>It,sizeToSquarishShape:()=>NR,squeezeShape:()=>Nv,sum:()=>kR,swap:()=>A0,tanh:()=>TR,toNestedArray:()=>Au,toTypedArray:()=>Tf});var L3=Uo(nR()),vo=L3.default||L3;function gh(e){return vo.fromString(e,!0,16)}var Vv=gh("c3a5c85c97cb3127"),Ao=gh("b492b66fbe98f273"),Dr=gh("9ae16a3b2f90404f");function xg(e){return e.xor(e.shru(47))}function Uv(e,t,r){let n=e.slice(t,t+r);return vo.fromBytes(Array.from(n),!0,!0)}function kt(e,t){return Uv(e,t,8)}function B3(e,t){return Uv(e,t,4)}function mr(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Es(e,t,r=gh("9ddfea08eb382d69")){let n=e.xor(t).mul(r);n=n.xor(n.shru(47));let a=t.xor(n).mul(r);return a=a.xor(a.shru(47)),a=a.mul(r),a}function XR(e,t,r,n,a,s){a=a.add(e),s=mr(s.add(a).add(n),21);let i=a;return a=a.add(t),a=a.add(r),s=s.add(mr(a,44)),[a.add(n),s.add(i)]}function qc(e,t,r,n){return XR(kt(e,t),kt(e,t+8),kt(e,t+16),kt(e,t+24),r,n)}function KR(e,t=e.length){if(t>=8){let r=Dr.add(t*2),n=kt(e,0).add(Dr),a=kt(e,t-8),s=mr(a,37).mul(r).add(n),i=mr(n,25).add(a).mul(r);return Es(s,i,r)}if(t>=4){let r=Dr.add(t*2),n=B3(e,0);return Es(n.shl(3).add(t),B3(e,t-4),r)}if(t>0){let r=e[0],n=e[t>>1],a=e[t-1],s=r+(n<<8),i=t+(a<<2);return xg(Dr.mul(s).xor(Vv.mul(i))).mul(Dr)}return Dr}function ZR(e,t=e.length){let r=Dr.add(t*2),n=kt(e,0).mul(Ao),a=kt(e,8),s=kt(e,t-8).mul(r),i=kt(e,t-16).mul(Dr);return Es(mr(n.add(a),43).add(mr(s,30)).add(i),n.add(mr(a.add(Dr),18)).add(s),r)}function YR(e,t=e.length){let r=Dr.add(t*2),n=kt(e,0).mul(Dr),a=kt(e,8),s=kt(e,t-8).mul(r),i=kt(e,t-16).mul(Dr),o=mr(n.add(a),43).add(mr(s,30)).add(i),l=Es(o,n.add(mr(a.add(Dr),18)).add(s),r),u=kt(e,16).mul(r),d=kt(e,24),h=o.add(kt(e,t-32)).mul(r),p=l.add(kt(e,t-24)).mul(r);return Es(mr(u.add(d),43).add(mr(h,30)).add(p),u.add(mr(d.add(n),18)).add(h),r)}function JR(e,t=e.length){let r=vo.fromNumber(81,!0);if(t<=32)return t<=16?KR(e,t):ZR(e,t);if(t<=64)return YR(e,t);let n=r,a=r.mul(Ao).add(113),s=xg(a.mul(Dr).add(113)).mul(Dr),i=[vo.UZERO,vo.UZERO],o=[vo.UZERO,vo.UZERO];n=n.mul(Dr).add(kt(e,0));let l=0,u=(t-1>>6)*64,d=u+(t-1&63)-63;do n=mr(n.add(a).add(i[0]).add(kt(e,l+8)),37).mul(Ao),a=mr(a.add(i[1]).add(kt(e,l+48)),42).mul(Ao),n=n.xor(o[1]),a=a.add(i[0]).add(kt(e,l+40)),s=mr(s.add(o[0]),33).mul(Ao),i=qc(e,l,i[1].mul(Ao),n.add(o[0])),o=qc(e,l+32,s.add(o[1]),a.add(kt(e,l+16))),[s,n]=[n,s],l+=64;while(l!==u);let h=Ao.add(s.and(255).shl(1));return l=d,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),n=mr(n.add(a).add(i[0]).add(kt(e,l+8)),37).mul(h),a=mr(a.add(i[1]).add(kt(e,l+48)),42).mul(h),n=n.xor(o[1].mul(9)),a=a.add(i[0].mul(9).add(kt(e,l+40))),s=mr(s.add(o[0]),33).mul(h),i=qc(e,l,i[1].mul(h),n.add(o[0])),o=qc(e,l+32,s.add(o[1]),a.add(kt(e,l+16))),[s,n]=[n,s],Es(Es(i[0],o[0],h).add(xg(a).mul(Vv)).add(s),Es(i[1],o[1],h).add(n),h)}function QR(e,t){return t==="string"?yh(e):Tf([e],t)}function e$(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Tf(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Mo(e)),Z().getBool("DEBUG")&&$v(e,t),e$(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let r=new Uint8Array(e.length);for(let n=0;n<r.length;++n)Math.round(e[n])!==0&&(r[n]=1);return r}else throw new Error(`Unknown data type ${t}`)}function Wp(){return Z().platform.now()}function t$(e,t){return Z().platform.fetch(e,t)}function yh(e,t="utf-8"){return t=t||"utf-8",Z().platform.encode(e,t)}function k0(e,t="utf-8"){return t=t||"utf-8",Z().platform.decode(e,t)}var r$=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new a$)}profileKernel(e,t,r){let n,a=()=>{n=r()},s,i=Wp();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(a);else{a();for(let o of n)o.dataSync();s=Promise.resolve({kernelMs:Wp()-i})}if(Z().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<n.length;o++){let l=n[o];l.data().then(u=>{n$(u,l.dtype,e)})}return{kernelName:e,outputs:n,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:r,timeMs:n,inputs:a,extraInfo:s}=e;r.forEach(i=>{Promise.all([i.data(),n,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function n$(e,t,r){if(t!=="float32")return!1;for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))return console.warn(`Found ${a} in the result of '${r}'`),!0}return!1}var a$=class{logKernelProfile(e,t,r,n,a,s){let i=typeof n=="number"?Fp(`${n}ms`,9):n.error,o=Fp(e,25),l=t.rank,u=t.size,d=Fp(t.shape.toString(),14),h="";for(let p in a){let c=a[p];if(c!=null){let m=c.shape||t.shape,f=m.length;h+=`${p}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${d} %c${u} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function s$(e,t,r){let n={},a={};for(let l=0;l<t.length;l++)n[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],d=u.inputs;for(let h in d){let p=d[h],c=!1;for(let m=0;m<t.length;m++)if(n[p.id]){u.outputs.forEach(f=>n[f.id]=!0),c=!0,a[u.id]=!0;break}if(c)break}}let s={};s[r.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],d=u.inputs;for(let h=0;h<u.outputs.length;h++)if(s[u.outputs[h].id]){for(let p in d)s[d[p].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(a[u.id]&&i[u.id]){let d={};for(let p in u.inputs){let c=u.inputs[p];n[c.id]&&(d[p]=c)}let h=Object.assign({},u);h.inputs=d,h.outputs=u.outputs,o.push(h)}}return o}function i$(e,t,r,n){for(let a=t.length-1;a>=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=r(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let d=s.inputs[l];if(!Ks(u.shape,d.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${d.shape}'`);if(e[d.id]==null)e[d.id]=u;else{let h=e[d.id];e[d.id]=n(h,u),h.dispose()}}}}var W3=20,xp=3,ag=7;function o$(e,t,r,n){let a=Lu(t),s=l$(e,t,r,a),i=t.length,o=s0(e,t,r,a,s),l=["Tensor"];return n&&(l.push(` dtype: ${r}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
`)),l.join(`
`)}function l$(e,t,r,n){let a=It(t),s=n[n.length-1],i=new Array(s).fill(0),o=t.length,l=r==="complex64"?Ip(e):e;if(o>1)for(let u=0;u<a/s;u++){let d=u*s;for(let h=0;h<s;h++)i[h]=Math.max(i[h],kp(l[d+h],0,r).length)}return i}function kp(e,t,r){let n;return Array.isArray(e)?n=`${parseFloat(e[0].toFixed(ag))} + ${parseFloat(e[1].toFixed(ag))}j`:Ts(e)?n=`'${e}'`:r==="bool"?n=Gv(e):n=parseFloat(e.toFixed(ag)).toString(),Fp(n,t)}function Gv(e){return e===0?"false":"true"}function s0(e,t,r,n,a,s=!0){let i=r==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(r==="complex64"){let f=Ip(e);return[kp(f[0],0,r)]}return r==="bool"?[Gv(e[0])]:[e[0].toString()]}if(l===1){if(o>W3){let g=xp*i,y=Array.from(e.slice(0,g)),A=Array.from(e.slice((o-xp)*i,o*i));return r==="complex64"&&(y=Ip(y),A=Ip(A)),["["+y.map((x,b)=>kp(x,a[b],r)).join(", ")+", ..., "+A.map((x,b)=>kp(x,a[o-xp+b],r)).join(", ")+"]"]}let f=r==="complex64"?Ip(e):Array.from(e);return["["+f.map((g,y)=>kp(g,a[y],r)).join(", ")+"]"]}let u=t.slice(1),d=n.slice(1),h=n[0]*i,p=[];if(o>W3){for(let f=0;f<xp;f++){let g=f*h,y=g+h;p.push(...s0(e.slice(g,y),u,r,d,a,!1))}p.push("...");for(let f=o-xp;f<o;f++){let g=f*h,y=g+h;p.push(...s0(e.slice(g,y),u,r,d,a,f===o-1))}}else for(let f=0;f<o;f++){let g=f*h,y=g+h;p.push(...s0(e.slice(g,y),u,r,d,a,f===o-1))}let c=l===2?",":"";p[0]="["+p[0]+c;for(let f=1;f<p.length-1;f++)p[f]=" "+p[f]+c;let m=`,
`;for(let f=2;f<l;f++)m+=`
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(s?"":m),p}function Ip(e){let t=[];for(let r=0;r<e.length;r+=2)t.push([e[r],e[r+1]]);return t}var or=class{constructor(e,t,r){if(this.dtype=t,this.shape=e.slice(),this.size=It(e),r!=null){let n=r.length;P(n===this.size,()=>`Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=r||Rv(t,this.size),this.strides=Lu(e)}set(e,...t){t.length===0&&(t=[0]),P(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let r=this.locToIndex(t);this.values[r]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let n of e){if(n<0||n>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let r=e[e.length-1];for(let n=0;n<e.length-1;++n)r+=this.strides[n]*e[n];return this.values[r]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let r=0;r<e.length-1;++r)t+=this.strides[r]*e[r];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let r=0;r<t.length-1;++r)t[r]=Math.floor(e/this.strides[r]),e-=t[r]*this.strides[r];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return la().makeTensor(this.values,this.shape,this.dtype)}},la=null,fu=null,u$=null;function d$(e){la=e}function p$(e){fu=e}function h$(e){u$=e}var nt=class{constructor(e,t,r,n){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=It(e),this.strides=Lu(e),this.dataId=r,this.id=n,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return fu.buffer(this.shape,this.dtype,e)}bufferSync(){return fu.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Au(this.shape,e,this.dtype==="complex64")}arraySync(){return Au(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=la().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(r=>k0(r))}catch(r){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),la().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=la().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>k0(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await la().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(la().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return fu.print(this,e)}clone(){return this.throwIfDisposed(),fu.clone(this)}toString(e=!1){let t=this.dataSync();return o$(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),fu.cast(this,e)}variable(e=!0,t,r){return this.throwIfDisposed(),la().makeVariable(this,e,t,r)}};Object.defineProperty(nt,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function c$(){return vy("Tensor",()=>nt)}c$();var Vp=class extends nt{constructor(e,t,r,n){super(e.shape,e.dtype,e.dataId,n),this.trainable=t,this.name=r}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Ks(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);la().disposeTensor(this),this.dataId=e.dataId,la().incRef(this,null)}dispose(){la().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Vp,Symbol.hasInstance,{value:e=>e instanceof nt&&e.assign!=null&&e.assign instanceof Function});var ha={};Be(ha,{assertTypesMatch:()=>Zv,getTensorsInContainer:()=>ky,isTensorInList:()=>m$,makeTypesMatch:()=>Lt});var jv=(e=>(e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6",e))(jv||{}),Hv=(e=>(e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64",e))(Hv||{}),qv=(e=>(e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64",e))(qv||{}),Xv=(e=>(e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64",e))(Xv||{}),Kv=(e=>(e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64",e))(Kv||{}),f$={float32:Xv,int32:Hv,bool:qv,complex64:Kv};function Nr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return f$[e][t]}function Ah(e){return Nr(e,"int32")}function Lt(e,t){if(e.dtype===t.dtype)return[e,t];let r=Nr(e.dtype,t.dtype);return[e.cast(r),t.cast(r)]}function Zv(e,t){P(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function m$(e,t){return t.some(r=>r.id===e.id)}function ky(e){let t=[];return Yv(e,t,new Set),t}function Yv(e,t,r){if(e==null)return;if(e instanceof nt){t.push(e);return}if(!g$(e))return;let n=e;for(let a in n){let s=n[a];r.has(s)||(r.add(s),Yv(s,t,r))}}function g$(e){return Array.isArray(e)||typeof e=="object"}function sg(e){return e.kernelName!=null}var V3=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},bg=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new V3}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let r=e[t];if(await this.initializeBackend(r).success){await this.setBackend(r);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,r=1){return e in this.registryFactory?(Cs(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:r},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:r}=this.initializeBackend(e);if(!(r?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new r$(this.backendInstance),!0}setupRegisteredKernels(){Ma(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Ma(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let r=t.factory();if(r&&!(r instanceof Du)&&typeof r.then=="function"){let n=++this.pendingBackendInitId,a=r.then(s=>n<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(n<this.pendingBackendInitId||(this.pendingBackendInit=null,Cs(`Initialization of backend ${e} failed`),Cs(s.stack||s.message)),!1));return this.pendingBackendInit=a,{success:a,asyncInit:!0}}else return this.registry[e]=r,{success:!0,asyncInit:!1}}catch(r){return Cs(`Initialization of backend ${e} failed`),Cs(r.stack||r.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let r=e[t],{success:n,asyncInit:a}=this.initializeBackend(r);if(a||n)return{name:r,asyncInit:a}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let r=this.state.tensorInfo.get(t),n=r.backend,a=this.readSync(t),s=n.refCount(t);n.disposeData(t,!0),r.backend=e,e.move(t,a,r.shape,r.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let r=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");r=e}let n;return this.scopedRun(()=>this.startScope(r),()=>this.endScope(n),()=>(n=t(),n instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),n))}scopedRun(e,t,r){e();try{let n=r();return t(),n}catch(n){throw t(),n}}nextTensorId(){return bg.nextTensorId++}nextVariableId(){return bg.nextVariableId++}clone(e){let t=B.runKernel(mi,{x:e}),r={x:e},n=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return B.runKernel(ei,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,r,[t],n,a,{}),t}runKernel(e,t,r){if(this.backendName==null&&this.backend,w0(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:r})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,r){let n=this.backend.numDataIds(),a=0;r.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=n-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,r=[],n=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=sg(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(sg(e)){let{kernelName:c,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=w0(c,this.backendName);P(g!=null,()=>`Cannot find registered kernel '${c}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let A=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(c,y,A);let x=A.map(b=>b.rank!=null?b:this.makeTensorFromTensorInfo(b));if(n){let b=this.getTensorsForGradient(c,m,x);r=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:c}=e,m=f=>{!n||(r=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>c(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:d}=e,h=sg(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(p=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),n&&this.addTapeNode(l,u,t,h,r,d),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(c=>u[c]!=null?u[c].shape:null),outputShapes:t.map(c=>c.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,r){let n=Ag(e);if(n!=null){let a=n.inputsToSave||[],s=n.outputsToSave||[],i;n.saveAllInputs?(P(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=r.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,r,n){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");r=r||"float32",n=n||this.backend;let a=e;r==="string"&&Ts(e[0])&&(a=e.map(o=>yh(o)));let s=n.write(a,t,r),i=new nt(t,r,s,this.nextTensorId());if(this.trackTensor(i,n),r==="string"){let o=this.state.tensorInfo.get(s),l=Fv(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromTensorInfo(e,t){let{dataId:r,shape:n,dtype:a}=e,s=new nt(n,a,r,this.nextTensorId());return this.trackTensor(s,t),s}makeVariable(e,t=!0,r,n){r=r||this.nextVariableId().toString(),n!=null&&n!==e.dtype&&(e=e.cast(n));let a=new Vp(e,t,r,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let r=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(r=e.size*yg(e.dtype)),this.state.numBytes+=r,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:r})),e instanceof Vp||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let r=e.size*yg(e.dtype);this.state.numBytes-=r}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,r=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(n=>n.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-r;for(let n of this.state.activeProfile.kernels)n.kernelTimeMs=await n.kernelTimeMs,n.extraInfo=await n.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,r,n,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:r,saved:a},o=Ag(e);o!=null&&(n=o.gradFunc),n!=null&&(i.gradient=l=>(l=l.map((u,d)=>{if(u==null){let h=r[d],p=Q0(h.size,h.dtype);return this.makeTensor(p,h.shape,h.dtype)}return u}),n(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=ky(e),r=new Set(t.map(a=>a.id));for(let a=0;a<this.state.activeScope.track.length;a++){let s=this.state.activeScope.track[a];!s.kept&&!r.has(s.id)&&s.dispose()}let n=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(a=>{!a.kept&&a.scopeId===n.id&&this.track(a)})}gradients(e,t,r,n=!1){if(P(t.length>0,()=>"gradients() received an empty list of xs."),r!=null&&r.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${r.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));P(a instanceof nt,()=>"The result y returned by f() must be a tensor.");let s=s$(this.state.activeTape,t,a);if(!n&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=r==null?y$(a.shape):r,i$(i,s,l=>this.tidy(l),A$);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return P(Fs(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{P(t.every(i=>i instanceof nt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let r,n={};t.forEach((i,o)=>{n[o]=i});let a=(i,o)=>(r=e(...t,o),P(r.value instanceof nt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),P(Fs(r.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),r.value),s=(i,o)=>{let l=r.gradFunc(i,o),u=Array.isArray(l)?l:[l];P(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),P(u.every(h=>h instanceof nt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let d={};return u.forEach((h,p)=>{d[p]=()=>h}),d};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:n})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Wp(),r=await this.backend.time(e);return r.wallMs=Wp()-t,r}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new V3;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}},Iy=bg;Iy.nextTensorId=0;Iy.nextVariableId=0;function y$(e){let t=Ay(It(e),"float32");return B.makeTensor(t,e,"float32")}function Jv(){let e=Dv();if(e._tfengine==null){let t=new Ov(e);e._tfengine=new Iy(t)}return LR(e._tfengine.ENV),d$(()=>e._tfengine),e._tfengine}var B=Jv();function A$(e,t){let r={a:e,b:t};return B.runKernel(Ja,r)}var xh={};Be(xh,{isBrowser:()=>Qv,isMobile:()=>v$,mockIsMobile:()=>b$});function x$(){return typeof navigator!="undefined"&&navigator!=null}var vg;function b$(e){vg=e}function v$(e){if(vg!==void 0)return vg;if(e||x$()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let r=e;return r.userAgentData&&r.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function Qv(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var jn=Z();jn.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});jn.registerFlag("IS_BROWSER",()=>Qv());jn.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");jn.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));jn.registerFlag("PROD",()=>!1);jn.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>jn.getBool("DEBUG"));jn.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);jn.registerFlag("IS_TEST",()=>!1);jn.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);jn.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);jn.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function Fa(e,t){let r=e;if(Sr(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let n=[];for(;Array.isArray(r)||Sr(r)&&t!=="string";)n.push(r.length),r=r[0];return Array.isArray(e)&&Z().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&e7(e,n,[]),n}function e7(e,t,r){if(r=r||[],!Array.isArray(e)&&!Sr(e)){P(t.length===0,()=>`Element arr[${r.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}P(t.length>0,()=>`Element arr[${r.join("][")}] should be a primitive, but is an array of ${e.length} elements`),P(e.length===t[0],()=>`Element arr[${r.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let n=t.slice(1);for(let a=0;a<e.length;++a)e7(e[a],n,r.concat(a))}function U3(e,t,r,n){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${r}' passed to '${n}' must be ${e} tensor, but got ${t} tensor`)}}function $(e,t,r,n="numeric"){if(e instanceof nt)return U3(n,e.dtype,t,r),e;let a=J0(e);if(a!=="string"&&["bool","int32","float32"].indexOf(n)>=0&&(a=n),U3(n,a,t,r),e==null||!Sr(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${r}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Fa(e,a);!Sr(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?Tf(e,a):Mo(e,[],!0);return B.makeTensor(i,s,a)}function Up(e,t,r,n="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${r} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>$(a,`${t}[${s}]`,r,n))}var t7="__op";function W(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let r=t[0],n=e[r];r.endsWith("_")&&(r=r.substring(0,r.length-1)),r=r+t7;let a=(...s)=>{B.startScope(r);try{let i=n(...s);return by(i)&&console.error("Cannot return a Promise inside of tidy."),B.endScope(i),i}catch(i){throw B.endScope(null),i}};return Object.defineProperty(a,"name",{value:r,configurable:!0}),a}function w$(e,t){let r=$(e,"real","complex"),n=$(t,"imag","complex");Ur(r.shape,n.shape,`real and imag shapes, ${r.shape} and ${n.shape}, must match in call to tf.complex().`);let a={real:r,imag:n};return B.runKernel(eh,a)}var Os=W({complex_:w$});function Gi(e,t,r,n){if(n==null&&(n=J0(e)),n==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Sr(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){xy(t);let a=It(t),s=It(r);P(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i<r.length;++i){let o=r[i],l=i===r.length-1?o!==It(t.slice(i)):!0;P(r[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${r}) does not match the provided shape (${t}). `)}}return!Sr(e)&&!Array.isArray(e)&&(e=[e]),t=t||r,e=n!=="string"?Tf(e,n):Mo(e,[],!0),B.makeTensor(e,t,n)}function ft(e,t,r){let n=Fa(e,r);return Gi(e,t,n,r)}var wg={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},I0=4;async function k$(e,t){let r=[],n=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<a.length;++i){let o=a[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let d=new Promise(async h=>{let p=await l.bytes(),c=p.reduce((g,y)=>g+y.length,0)+I0*p.length,m=new Uint8Array(c),f=0;for(let g=0;g<p.length;g++){let y=p[g],A=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(A,f),f+=I0,m.set(y,f),f+=y.length}h(m)});n.push(d)}else n.push(l.data());t!=null&&(u.group=t),r.push(u)}let s=await Promise.all(n);return{data:I$(s),specs:r}}function r7(e,t){let r={},n,a=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=It(l),d;if("quantization"in s){let h=s.quantization;if(h.dtype==="uint8"||h.dtype==="uint16"){if(!("min"in h&&"scale"in h))throw new Error(`Weight ${s.name} with quantization ${h.dtype} doesn't have corresponding metadata min and scale.`)}else if(h.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${h.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${h.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=wg[h.dtype],c=e.slice(a,a+u*p),m=h.dtype==="uint8"?new Uint8Array(c):new Uint16Array(c);if(o==="float32")if(h.dtype==="uint8"||h.dtype==="uint16"){d=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];d[f]=g*h.scale+h.min}}else if(h.dtype==="float16")n===void 0&&(n=R$()),d=n(m);else throw new Error(`Unsupported quantization type ${h.dtype} for weight type float32.`);else if(o==="int32"){if(h.dtype!=="uint8"&&h.dtype!=="uint16")throw new Error(`Unsupported quantization type ${h.dtype} for weight type int32.`);d=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];d[f]=Math.round(g*h.scale+h.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*p}else if(o==="string"){let h=It(s.shape);d=[];for(let p=0;p<h;p++){let c=new Uint32Array(e.slice(a,a+I0))[0];a+=I0;let m=new Uint8Array(e.slice(a,a+c));d.push(m),a+=c}}else{let h=wg[o],p=e.slice(a,a+u*h);if(o==="float32")d=new Float32Array(p);else if(o==="int32")d=new Int32Array(p);else if(o==="bool")d=new Uint8Array(p);else if(o==="complex64"){d=new Float32Array(p);let c=new Float32Array(d.length/2),m=new Float32Array(d.length/2);for(let y=0;y<c.length;y++)c[y]=d[y*2],m[y]=d[y*2+1];let f=ft(c,l,"float32"),g=ft(m,l,"float32");r[i]=Os(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*h}o!=="complex64"&&(r[i]=ft(d,l,o))}return r}function I$(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,r=[];e.forEach(s=>{if(t+=s.byteLength,r.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let n=new Uint8Array(t),a=0;return r.forEach(s=>{n.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),n.buffer}var Sy=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function G3(e){return Sy?Buffer.byteLength(e):new Blob([e]).size}function S$(e){if(Sy)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),r="";for(let n=0,a=t.length;n<a;n++)r+=String.fromCharCode(t[n]);return btoa(r)}function C$(e){if(Sy){let n=Buffer.from(e,"base64");return n.buffer.slice(n.byteOffset,n.byteOffset+n.byteLength)}let t=atob(e),r=new Uint8Array(t.length);for(let n=0;n<t.length;++n)r.set([t.charCodeAt(n)],n);return r.buffer}function Cy(e){if(e.length===1)return e[0];let t=0;e.forEach(a=>{t+=a.byteLength});let r=new Uint8Array(t),n=0;return e.forEach(a=>{r.set(new Uint8Array(a),n),n+=a.byteLength}),r.buffer}function j3(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let r=e.split(t);return r[r.length-1]}function n7(e,t){let r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(r.trainingConfig=e.trainingConfig),r}async function Ty(e,t){let r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(r.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[n,a]=await t(e.weightsManifest);r.weightSpecs=n,r.weightData=a}return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),r}function bh(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:G3(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:G3(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function T$(){let e=r=>{let n=r<<13,a=0;for(;(n&8388608)===0;)a-=8388608,n<<=1;return n&=-8388609,a+=947912704,n|a},t=new Uint32Array(2048);t[0]=0;for(let r=1;r<1024;r++)t[r]=e(r);for(let r=1024;r<2048;r++)t[r]=939524096+(r-1024<<13);return t}function N$(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function E$(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function R$(){let e=T$(),t=N$(),r=E$();return n=>{let a=new ArrayBuffer(4*n.length),s=new Uint32Array(a);for(let i=0;i<n.length;i++){let o=n[i],l=e[r[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Wt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Wt.instance==null&&(Wt.instance=new Wt),Wt.instance}static registerSaveRouter(e){Wt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Wt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Wt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Wt.getHandlers(e,"load",t)}static getHandlers(e,t,r){let n=[];return(t==="load"?Wt.getInstance().loadRouters:Wt.getInstance().saveRouters).forEach(a=>{let s=a(e,r);s!==null&&n.push(s)}),n}},$$=e=>Wt.registerSaveRouter(e),M$=e=>Wt.registerLoadRouter(e),F$=e=>Wt.getSaveHandlers(e),P$=(e,t)=>Wt.getLoadHandlers(e,t),kg="tensorflowjs",Ig=1,So="models_store",Ns="model_info_store";function a7(){if(!Z().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Sg(e){let t=e.result;t.createObjectStore(So,{keyPath:"modelPath"}),t.createObjectStore(Ns,{keyPath:"modelPath"})}var Fo=class{constructor(e){if(this.indexedDB=a7(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((r,n)=>{let a=this.indexedDB.open(kg,Ig);a.onupgradeneeded=()=>Sg(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(So,"readonly"),o=i.objectStore(So).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),n(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));r(o.result.modelArtifacts)},o.onerror=l=>(s.close(),n(o.error)),i.oncomplete=()=>s.close()}else{let i=bh(t),o=s.transaction(Ns,"readwrite"),l=o.objectStore(Ns),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),d;u.onsuccess=()=>{d=s.transaction(So,"readwrite");let h=d.objectStore(So).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>r({modelArtifactsInfo:i}),h.onerror=p=>{l=o.objectStore(Ns);let c=l.delete(this.modelPath);c.onsuccess=()=>(s.close(),n(h.error)),c.onerror=m=>(s.close(),n(h.error))}},u.onerror=h=>(s.close(),n(u.error)),o.oncomplete=()=>{d==null?s.close():d.oncomplete=()=>s.close()}}},a.onerror=s=>n(a.error)})}};Fo.URL_SCHEME="indexeddb://";var s7=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Fo.URL_SCHEME)?_$(e.slice(Fo.URL_SCHEME.length)):null;Wt.registerSaveRouter(s7);Wt.registerLoadRouter(s7);function _$(e){return new Fo(e)}function z$(e){return e.startsWith(Fo.URL_SCHEME)?e.slice(Fo.URL_SCHEME.length):e}var O$=class{constructor(){this.indexedDB=a7()}async listModels(){return new Promise((e,t)=>{let r=this.indexedDB.open(kg,Ig);r.onupgradeneeded=()=>Sg(r),r.onsuccess=()=>{let n=r.result,a=n.transaction(Ns,"readonly"),s=a.objectStore(Ns).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(n.close(),t(s.error)),a.oncomplete=()=>n.close()},r.onerror=n=>t(r.error)})}async removeModel(e){return e=z$(e),new Promise((t,r)=>{let n=this.indexedDB.open(kg,Ig);n.onupgradeneeded=()=>Sg(n),n.onsuccess=()=>{let a=n.result,s=a.transaction(Ns,"readwrite"),i=s.objectStore(Ns),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),r(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),d=()=>{l=a.transaction(So,"readwrite");let h=l.objectStore(So).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=p=>r(o.error)};u.onsuccess=d,u.onerror=h=>(d(),a.close(),r(o.error))}},o.onerror=u=>(a.close(),r(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},n.onerror=a=>r(n.error)})}},qa="/",mu="tensorflowjs_models",i7="info",D$="model_topology",L$="weight_specs",B$="weight_data",W$="model_metadata";function o7(e){return{info:[mu,e,i7].join(qa),topology:[mu,e,D$].join(qa),weightSpecs:[mu,e,L$].join(qa),weightData:[mu,e,B$].join(qa),modelMetadata:[mu,e,W$].join(qa)}}function l7(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function V$(e){let t=e.split(qa);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(qa)}function U$(e){return e.startsWith(Po.URL_SCHEME)?e.slice(Po.URL_SCHEME.length):e}var Po=class{constructor(e){if(!Z().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=o7(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),r=JSON.stringify(e.weightSpecs),n=bh(e);try{this.LS.setItem(this.keys.info,JSON.stringify(n)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,r),this.LS.setItem(this.keys.weightData,S$(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:n}}catch(a){throw l7(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${n.modelTopologyBytes}, weightSpecsBytes=${n.weightSpecsBytes}, weightDataBytes=${n.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},r=JSON.parse(this.LS.getItem(this.keys.topology));if(r==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=r;let n=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(n==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=n;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=C$(s),t}};Po.URL_SCHEME="localstorage://";var u7=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Po.URL_SCHEME)?G$(e.slice(Po.URL_SCHEME.length)):null;Wt.registerSaveRouter(u7);Wt.registerLoadRouter(u7);function G$(e){return new Po(e)}var j$=class{constructor(){P(Z().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),P(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=mu+qa,r=qa+i7;for(let n=0;n<this.LS.length;++n){let a=this.LS.key(n);if(a.startsWith(t)&&a.endsWith(r)){let s=V$(a);e[s]=JSON.parse(this.LS.getItem(a))}}return e}async removeModel(e){e=U$(e);let t=o7(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let r=JSON.parse(this.LS.getItem(t.info));return l7(t),r}},xu="://",Nn=class{constructor(){this.managers={}}static getInstance(){return Nn.instance==null&&(Nn.instance=new Nn),Nn.instance}static registerManager(e,t){P(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(xu)&&(e=e.slice(0,e.indexOf(xu))),P(e.length>0,()=>"scheme must not be an empty string.");let r=Nn.getInstance();P(r.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),r.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function i0(e){if(e.indexOf(xu)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Nn.getSchemes().join(",")}`);return{scheme:e.split(xu)[0],path:e.split(xu)[1]}}async function d7(e,t,r=!1){P(e!==t,()=>`Old path and new path are the same: '${e}'`);let n=Wt.getLoadHandlers(e);P(n.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),P(n.length<2,()=>`Copying failed because more than one (${n.length}) load handlers for source URL ${e}.`);let a=n[0],s=Wt.getSaveHandlers(t);P(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),P(s.length<2,()=>`Copying failed because more than one (${n.length}) save handlers for destination URL ${t}.`);let i=s[0],o=i0(e).scheme,l=i0(e).path,u=o===i0(e).scheme,d=await a.load();r&&u&&await Nn.getManager(o).removeModel(l);let h=await i.save(d);return r&&!u&&await Nn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function H$(){let e=Nn.getSchemes(),t={};for(let r of e){let n=await Nn.getManager(r).listModels();for(let a in n){let s=r+xu+a;t[s]=n[a]}}return t}async function q$(e){let t=i0(e);return Nn.getManager(t.scheme).removeModel(t.path)}async function X$(e,t){return d7(e,t,!1)}async function K$(e,t){return d7(e,t,!0)}var Z$=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Z().get("IS_BROWSER")){Z().setPlatform("browser",new Z$);try{Nn.registerManager(Po.URL_SCHEME,new j$)}catch(e){}try{Nn.registerManager(Fo.URL_SCHEME,new O$)}catch(e){}}var Y$={importFetch:()=>aR()},ig,J$=class{constructor(){this.util=sR(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Z().global.fetch!=null?Z().global.fetch(e,t):(ig==null&&(ig=Y$.importFetch()),ig(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Z().get("IS_NODE")&&!Z().get("IS_BROWSER")&&Z().setPlatform("node",new J$);function Le(e,t="float32",r){return t=t||"float32",xy(e),new or(e,t,r)}function Q$(e,t){let r=$(e,"x","cast");if(!Mv(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&r.dtype!=="string"||t!=="string"&&r.dtype==="string")throw new Error("Only strings can be casted to strings");let n={x:r},a={dtype:t};return B.runKernel(ei,n,a)}var me=W({cast_:Q$});function eM(e){let t={x:$(e,"x","clone","string_or_numeric")};return B.runKernel(mi,t)}var Wr=W({clone_:eM});function p7(e,t=!1){console.log(e.toString(t))}Jv();var tM={buffer:Le,cast:me,clone:Wr,print:p7};p$(tM);var Cr={};Be(Cr,{browserFiles:()=>lM,browserHTTPRequest:()=>cM,concatenateArrayBuffers:()=>Cy,copyModel:()=>X$,decodeWeights:()=>r7,encodeWeights:()=>k$,fromMemory:()=>mM,getLoadHandlers:()=>P$,getModelArtifactsForJSON:()=>Ty,getModelArtifactsInfoForJSON:()=>bh,getSaveHandlers:()=>F$,http:()=>Ey,isHTTPScheme:()=>Tg,listModels:()=>H$,loadWeights:()=>uM,moveModel:()=>K$,registerLoadRouter:()=>M$,registerSaveRouter:()=>$$,removeModel:()=>q$,weightsLoaderFactory:()=>c7,withSaveHandler:()=>gM});var rM="model",nM=".json",aM=".weights.bin";function H3(e){return new Promise(t=>setTimeout(t)).then(e)}var Cg=class{constructor(e){if(!Z().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Cg.URL_SCHEME)&&(e=e.slice(Cg.URL_SCHEME.length)),(e==null||e.length===0)&&(e=rM),this.modelJsonFileName=e+nM,this.weightDataFileName=e+aM}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let r=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],n=n7(e,r),a=window.URL.createObjectURL(new Blob([JSON.stringify(n)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=a,await H3(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await H3(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:bh(e)}}}},S0=Cg;S0.URL_SCHEME="downloads://";var sM=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let r=new FileReader;r.onload=n=>{let a=JSON.parse(n.target.result),s=a.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(a.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=Ty(a,o=>this.loadWeights(o));e(i)},r.onerror=n=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(this.jsonFile)})}loadWeights(e){let t=[],r=[];for(let s of e)t.push(...s.weights),r.push(...s.paths);let n=this.checkManifestAndWeightFiles(e),a=r.map(s=>this.loadWeightsFile(s,n[s]));return Promise.all(a).then(s=>[t,Cy(s)])}loadWeightsFile(e,t){return new Promise((r,n)=>{let a=new FileReader;a.onload=s=>{let i=s.target.result;r(i)},a.onerror=s=>n(`Failed to weights data from file of path '${e}'.`),a.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],r=this.weightsFiles.map(a=>j3(a.name)),n={};for(let a of e)a.paths.forEach(s=>{let i=j3(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),r.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);n[s]=this.weightsFiles[r.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return n}},iM=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(S0.URL_SCHEME)?oM(e.slice(S0.URL_SCHEME.length)):null;Wt.registerSaveRouter(iM);function oM(e="model"){return new S0(e)}function lM(e){return new sM(e)}function q3(e,t,r,n){i(e),r=r==null?0:r,n=n==null?1:n,o(r,n);let a=0,s=l=>(l.then(u=>{let d=r+ ++a/e.length*(n-r);return t(d),u}),l);function i(l){P(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){P(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),P(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),P(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function h7(e,t){t==null&&(t={});let r=t.fetchFunc==null?Z().platform.fetch:t.fetchFunc,n=e.map(u=>r(u,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(n):await q3(n,t.onProgress,a,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await q3(i,t.onProgress,o,l)}async function uM(e,t="",r,n){return c7(a=>h7(a,{requestInit:n}))(e,t,r)}function c7(e){return async(t,r="",n)=>{let a=t.map(()=>!1),s={},i=n!=null?n.map(()=>!1):[],o=[];if(t.forEach((c,m)=>{let f=0;c.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,A=wg[y]*It(g.shape),x=()=>{a[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:A})};n!=null?n.forEach((b,w)=>{b===g.name&&(x(),i[w]=!0)}):x(),o.push(g.name),f+=A})}),!i.every(c=>c)){let c=n.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${c.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((c,m,f)=>(m&&c.push(f),c),[]),u=[];l.forEach(c=>{t[c].paths.forEach(m=>{let f=r+(r.endsWith("/")?"":"/")+m;u.push(f)})});let d=await e(u),h={},p=0;return l.forEach(c=>{let m=t[c].paths.length,f=0;for(let x=0;x<m;x++)f+=d[p+x].byteLength;let g=new ArrayBuffer(f),y=new Uint8Array(g),A=0;for(let x=0;x<m;x++){let b=new Uint8Array(d[p+x]);y.set(b,A),A+=b.byteLength}s[c].forEach(x=>{let b=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),w=r7(b,[x.manifestEntry]);for(let I in w)h[I]=w[I]}),p+=m}),h}}var dM="application/octet-stream",pM="application/json",Ny=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(P(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Z().platform.fetch,P(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&P(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let r=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],n=n7(e,r);t.body.append("model.json",new Blob([JSON.stringify(n)],{type:pM}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:dM}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:bh(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(a){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let r=t.modelTopology,n=t.weightsManifest;if(r==null&&n==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Ty(t,a=>this.loadWeights(a))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[r,n]=hM(t),a=this.weightPathPrefix||r,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let d of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(d)):i.push(a+d+n);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await h7(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Cy(l)]}};Ny.URL_SCHEME_REGEX=/^https?:\/\//;function hM(e){let t=e.lastIndexOf("/"),r=e.lastIndexOf("?"),n=e.substring(0,t),a=r>t?e.substring(r):"";return[n+"/",a]}function Tg(e){return e.match(Ny.URL_SCHEME_REGEX)!=null}var f7=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let r=!0;if(Array.isArray(e)?r=e.every(n=>Tg(n)):r=Tg(e),r)return Ey(e,t)}return null};Wt.registerSaveRouter(f7);Wt.registerLoadRouter(f7);function Ey(e,t){return new Ny(e,t)}function cM(e,t){return Ey(e,t)}var og=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},fM=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function mM(e,t,r,n){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new og(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new og({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new og({modelTopology:e,weightSpecs:t,weightData:r,trainingConfig:n}))}function gM(e){return new fM(e)}var m7={};Be(m7,{confusionMatrix:()=>vM});function yM(e,t,r=!1,n=!1){let a=$(e,"a","matMul"),s=$(t,"b","matMul");[a,s]=Lt(a,s);let i={a,b:s},o={transposeA:r,transposeB:n};return B.runKernel(Qs,i,o)}var Ze=W({matMul_:yM});function AM(e,t,r=1,n=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:$(e,"indices","oneHot","int32")},s={depth:t,onValue:r,offValue:n};return B.runKernel(hl,a,s)}var Gp=W({oneHot_:AM});function xM(e,t){let r=$(e,"x","transpose");if(t==null&&(t=r.shape.map((s,i)=>i).reverse()),P(r.rank===t.length,()=>`Error in transpose: rank of input ${r.rank} must match length of perm ${t}.`),t.forEach(s=>{P(s>=0&&s<r.rank,()=>`All entries in 'perm' must be between 0 and ${r.rank-1} but got ${t}`)}),r.rank<=1)return r.clone();let n={x:r},a={perm:t};return B.runKernel(Vi,n,a)}var tt=W({transpose_:xM});function bM(e,t,r){let n=$(e,"labels","confusionMatrix"),a=$(t,"predictions","confusionMatrix");P(r==null||r>0&&Number.isInteger(r),()=>`If provided, numClasses must be a positive integer, but got ${r}`),P(n.rank===1,()=>`Expected the rank of labels to be 1, but got ${n.rank}`),P(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),P(n.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${n.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),P(r>0&&Number.isInteger(r),()=>`numClasses is required to be a positive integer, but got ${r}`);let s=Gp(me(n,"int32"),r),i=Gp(me(a,"int32"),r),o=tt(s),l=Ze(o,i);return me(l,"int32")}var vM=W({confusionMatrix_:bM}),Rl={};Be(Rl,{assertAndGetBroadcastShape:()=>yt,getBroadcastDims:()=>g7,getReductionAxes:()=>Qt});function g7(e,t){let r=e.length,n=[];for(let a=0;a<r;a++){let s=r-1-a,i=e[s]||1;(t[t.length-1-a]||1)>1&&i===1&&n.unshift(s)}return n}function Qt(e,t){let r=[];for(let n=0;n<t.length;n++){let a=e[e.length-n-1],s=t.length-n-1,i=t[s];(a==null||a===1&&i>1)&&r.unshift(s)}return r}function yt(e,t){let r=[],n=Math.max(e.length,t.length);for(let a=0;a<n;a++){let s=e[e.length-a-1];s==null&&(s=1);let i=t[t.length-a-1];if(i==null&&(i=1),s===1)r.unshift(i);else if(i===1)r.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else r.unshift(s)}return r}var On={};Be(On,{fromPixels:()=>NM,fromPixelsAsync:()=>CM,toPixels:()=>TM});function y7(e,t,r){if(Go(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let n=Fa(e,r);if(n.length!==3&&n.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Gi(e,t,n,r)}var go;function A7(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let r=!1,n=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)r=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)n=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a&&a&&e.readyState<2)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.");if(w0(Lp,B.backendName)!=null){let p={pixels:e},c={numChannels:t};return B.runKernel(Lp,p,c)}let[l,u]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;if(i)d=e.getContext("2d").getImageData(0,0,l,u).data;else if(n||r)d=e.data;else if(s||a||o){if(go==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")go=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else go=document.createElement("canvas").getContext("2d");go.canvas.width=l,go.canvas.height=u,go.drawImage(e,0,0,l,u),d=go.getImageData(0,0,l,u).data}let h;if(t===4)h=new Int32Array(d);else{let p=l*u;h=new Int32Array(p*t);for(let c=0;c<p;c++)for(let m=0;m<t;++m)h[c*t+m]=d[c*4+m]}return y7(h,[u,l,t],"int32")}function wM(e){return e!=null&&e.data instanceof Uint8Array}function kM(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function IM(e){return e!=null&&e.width!==0&&e.height!==0}function SM(e){return kM()&&!(e instanceof ImageBitmap)&&IM(e)&&!wM(e)}async function CM(e,t=3){let r=null;if(Z().getBool("WRAP_TO_IMAGEBITMAP")&&SM(e)){let n;try{n=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(a){n=null}n!=null&&n.width===e.width&&n.height===e.height?r=n:r=e}else r=e;return A7(r,t)}async function TM(e,t){let r=$(e,"img","toPixels");if(!(e instanceof nt)){let u=r;r=me(u,"int32"),u.dispose()}if(r.rank!==2&&r.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${r.rank}.`);let[n,a]=r.shape.slice(0,2),s=r.rank===2?1:r.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(r.dtype!=="float32"&&r.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${r.dtype}. Please use float32 or int32 tensors.`);let i=await r.data(),o=r.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*n*4);for(let u=0;u<n*a;++u){let d=[0,0,0,255];for(let p=0;p<s;p++){let c=i[u*s+p];if(r.dtype==="float32"){if(c<0||c>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${c}.`)}else if(r.dtype==="int32"&&(c<0||c>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${c}.`);s===1?(d[0]=c*o,d[1]=c*o,d[2]=c*o):d[p]=c*o}let h=u*4;l[h+0]=Math.round(d[0]),l[h+1]=Math.round(d[1]),l[h+2]=Math.round(d[2]),l[h+3]=Math.round(d[3])}if(t!=null){t.width=a,t.height=n;let u=t.getContext("2d"),d=new ImageData(l,a,n);u.putImageData(d,0,0)}return r!==e&&r.dispose(),l}var NM=W({fromPixels_:A7}),Ry={};Be(Ry,{prepareAndValidate:()=>x7});function x7(e,t){let r=e.shape.length,n=t.shape.length;if(r<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${r}.`);if(n<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${n}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[n-1]>r)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[n-1]} vs. ${r}`);if(It(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;h<a.length-1;++h)i*=a[h];let o=e.shape,l=a.slice();l.pop();let u=1;for(let h=s;h<r;++h)u*=o[h],l.push(o[h]);let d=[...Lu(e.shape).map(h=>h/u),1].slice(0,s);return[l,i,u,d]}var $y={};Be($y,{calculateShapes:()=>b7,validateInput:()=>Fy,validateUpdateShape:()=>My});function My(e,t,r){let n=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${r.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${n}, and batchDim: ${a}.`;if(r.rank<a)throw new Error(s+` update.rank < ${a}. `);if(e.length<n+(r.rank-a))throw new Error(s+` Output shape length < ${n+(r.rank-a)}`);if(r.rank!==a+e.length-n)throw new Error(s+` update.rank != ${a+e.length-n}`);for(let i=0;i<a;++i)if(r.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${r.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<r.rank-a;++i)if(r.shape[i+a]!==e[i+n])throw new Error(s+` updates.shape[${i+a}] (${r.shape[i+a]}) != shape[${i+a}] (${e[i+a]})`)}function Fy(e,t,r){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(r.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${r}`);if(r.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}My(r,t,e)}function b7(e,t,r){let n=t.shape.length,a=n>1?t.shape[n-1]:1,s=r.length,i=1;for(let h=a;h<s;++h)i*=r[h];let o=a<1?1:a,l=It(t.shape)/o,u=[...Lu(r.slice(0,a)),1],d=It(r);return{sliceRank:a,numUpdates:l,sliceSize:i,strides:u,outputSize:d}}var Ot={};Be(Ot,{assertParamsValid:()=>RM,computeFlatOffset:()=>_M,computeOutShape:()=>MM,getNormalizedAxes:()=>FM,isSliceContinous:()=>PM,maskToAxes:()=>$M,parseSliceParams:()=>E7,sliceInfo:()=>zM,startForAxis:()=>T7,startIndicesWithElidedDims:()=>I7,stopForAxis:()=>N7,stopIndicesWithElidedDims:()=>S7,stridesForAxis:()=>C7,stridesWithElidedDims:()=>v7});var Ng=-2,EM=-1;function RM(e,t,r){let n=e.shape.length;P(n===t.length,()=>`Error in slice${n}D: Length of begin ${t} must match the rank of the array (${n}).`),P(n===r.length,()=>`Error in slice${n}D: Length of size ${r} must match the rank of the array (${n}).`);for(let a=0;a<n;++a)P(t[a]+r[a]<=e.shape[a],()=>`Error in slice${n}D: begin[${a}] + size[${a}] (${t[a]+r[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function $M(e){let t=[],r=0;for(;e>0;)e&1&&t.push(r),e/=2,r++;return t}function MM(e,t,r){let n=[];for(let a=0;a<e.length;a++)n[a]=Math.ceil((t[a]-e[a])/r[a]);return n}function v7(e,t,r,n){let a=[...e];for(let s=a.length;s<n.length;s++)a.push(1);for(let s=0;s<r;s++)s===0?a[t]=1:(a.splice(t,0,1),a.pop());return a}function w7(e,t,r){return r<=e?r:r-(t-1)}function k7(e,t){let r=[];for(let n=0;n<e;n++)r.push(t+n);return r}function FM(e,t,r,n,a,s,i,o,l){let u=e.length,d=new Array(u),h=new Array(u),p=new Array(u);if(t.length&&r>0){let c=t[0],m=r+1;d=I7(i,c,m,n,e),h=S7(o,c,m,a,e),p=v7(s,c,m,e)}else for(let c=0;c<u;c++)d[c]=T7(i,n,s,e,c,l),h[c]=N7(o,a,s,e,c,l),p[c]=C7(s,c,l);return{begin:d,end:h,strides:p}}function I7(e,t,r,n,a){let s=[...a],i=k7(r,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=w7(t,r,o),u=n[l];e&1<<l&&(u=0),s[o]=u}return s}function S7(e,t,r,n,a){let s=[...a],i=k7(r,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=w7(t,r,o),u=n[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=a[o];s[o]<0&&(s[o]+=l),s[o]=Dp(0,s[o],a[o])}return s}function C7(e,t,r){let n=e[t];return(r&1<<t||n==null)&&(n=1),n}function T7(e,t,r,n,a,s){let i=t[a],o=r[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=n[a];return i<0&&(i+=l),i=Dp(0,i,l-1),i}function N7(e,t,r,n,a,s){let i=t[a],o=r[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=n[a];return i<0&&(i+=l),o>0?i=Dp(0,i,l):i=Dp(-1,i,l-1),i}function PM(e,t,r){let n=r.length;for(let a=0;a<r.length;a++)if(r[a]>1){n=a;break}for(let a=n+1;a<r.length;a++)if(t[a]>0||r[a]!==e[a])return!1;return!0}function _M(e,t){let r=e.length>0?e[e.length-1]:1;for(let n=0;n<e.length-1;n++)r+=e[n]*t[n];return r}function E7(e,t,r){let n,a=e.shape.length;typeof t=="number"?n=[t,...new Array(a-1).fill(0)]:t.length<a?n=t.concat(new Array(a-t.length).fill(0)):n=t.slice(),n.forEach(i=>{P(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return r==null?s=new Array(a).fill(-1):typeof r=="number"?s=[r,...new Array(a-1).fill(-1)]:r.length<a?s=r.concat(new Array(a-r.length).fill(-1)):s=r,s=s.map((i,o)=>i>=0?i:(P(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-n[o])),[n,s]}function zM(e,t,r,n,a,s,i,o,l){let u;if(n==null?(u=new Array(t.length),u.fill(1)):u=n,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let d=!1,h={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:r.slice(),strides:u.slice(),beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let A=0;A<h.dims;A++)d&&(1<<A&o)!==0&&h.numAddAxisAfterEllipsis++,1<<A&i&&(d=!0);d||(h.ellipsisMask|=1<<h.dims,h.dims++);let p={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};OM(h,p);let c=!0,m=!0,f=!0,g=[],y=[];for(let A=0;A<e.length;++A){if(p.strides[A]===0)throw Error(`strides[${A}] must be non-zero`);let x=!!(p.shrinkAxisMask&1<<A),b=e[A];if(b===-1){g.push(x?1:-1);continue}let w=[p.beginMask&1<<A,p.endMask&1<<A],I=[p.strides[A]>0?0:-1,p.strides[A]>0?b:b-1];if(x&&p.strides[A]<=0)throw Error("only stride 1 allowed on non-range indexing.");f=f&&p.strides[A]===1;let N=!!(p.beginMask&1<<A&&p.endMask&1<<A);if(p.beginValid&&p.endValid){if(x){let M=p.begin[A]<0?b+p.begin[A]:p.begin[A];if(p.begin[A]=M,p.end[A]=p.begin[A]+1,M<0||M>=b)throw Error(`slice index ${p.begin[A]} of dimension ${A} out of bounds.`)}else p.begin[A]=X3(p.begin[A],0,p.strides[A],b,w,I),p.end[A]=X3(p.end[A],1,p.strides[A],b,w,I);let _=p.strides[A]===1&&p.begin[A]===0&&p.end[A]===b;c=c&&_,m=m&&(A===0&&p.strides[A]===1||_)}else c=c&&p.strides[A]===1&&N,m=m&&(A===0&&p.strides[A]===1||N);let E,R=!1;if(p.beginValid&&p.endValid?(E=p.end[A]-p.begin[A],R=!0):x?(E=1,R=!0):N&&b>=0&&(p.strides[A]<0?E=-b:E=b,R=!0),R){let _;E===0||E<0!=p.strides[A]<0?_=0:_=Math.trunc(E/p.strides[A])+(E%p.strides[A]!==0?1:0),g.push(_)}else g.push(-1)}for(let A=0;A<p.finalShapeGatherIndices.length;++A){let x=p.finalShapeGatherIndices[A];x>=0?y.push(g[x]):x===Ng&&y.push(1)}return{finalShapeSparse:y.filter((A,x)=>p.finalShapeGatherIndices[x]!==Ng),finalShape:y,isIdentity:c,sliceDim0:m,isSimpleSlice:f,begin:p.begin,end:p.end,strides:p.strides}}function OM(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let r=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let n=0;n<e.dims;n++)if(1<<n&e.ellipsisMask){let a=Math.min(t.dims-(e.dims-n)+1+e.numAddAxisAfterEllipsis,t.dims);for(;r<a;r++)t.begin[r]=0,t.end[r]=0,t.strides[r]=1,t.beginMask|=1<<r,t.endMask|=1<<r,t.finalShapeGatherIndices.push(r),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[r]=n}else if(1<<n&e.newAxisMask)t.finalShapeGatherIndices.push(Ng),t.finalShapeGatherIndicesSparse.push(-1);else{if(r===t.begin.length)throw Error(`Index out of range using input dim ${r}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[r]=e.begin[n]),e.end!=null&&(t.end[r]=e.end[n]),t.strides[r]=e.strides[n],e.beginMask&1<<n&&(t.beginMask|=1<<r),e.endMask&1<<n&&(t.endMask|=1<<r),e.shrinkAxisMask&1<<n?(t.finalShapeGatherIndices.push(EM),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<r):(t.finalShapeGatherIndices.push(r),t.finalShapeGatherIndicesSparse.push(n)),t.inputShapeGatherIndicesSparse[r]=n,r++}}function X3(e,t,r,n,a,s){if(a[t])return r>0?s[t]:s[t+1&1];{let i=e<0?n+e:e;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var ue={};Be(ue,{Serializable:()=>R7,SerializationMap:()=>wo,registerClass:()=>ji});var R7=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},wo=class{constructor(){this.classNameMap={}}static getMap(){return wo.instance==null&&(wo.instance=new wo),wo.instance}static register(e){wo.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ji(e){P(e.className!=null,()=>"Class being registered does not have the static className property defined."),P(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),P(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),wo.register(e)}var $7={};Be($7,{TEST_EPSILON_FLOAT16:()=>M7,encodeStrings:()=>F7,expectArrayBuffersEqual:()=>GM,expectArraysClose:()=>LM,expectArraysEqual:()=>WM,expectNumbersClose:()=>VM,expectPromiseToFail:()=>BM,expectValuesInRange:()=>UM,testEpsilon:()=>Py});var DM=.001,M7=.1;function LM(e,t,r){return r==null&&(r=Py()),Eg(e,t,(n,a)=>_y(n,a,r))}function Py(){return B.backend.floatPrecision()===32?DM:M7}function Eg(e,t,r){let n=!0;if((Sr(e)||Sr(t))&&(n=!1),Sr(e)&&Sr(t)&&(n=!0),n){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Fa(e),o=Fa(t);if(!Ks(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=Sr(e)?e:Mo(e),s=Sr(t)?t:Mo(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}.
Actual: ${a}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=a[i],l=s[i];if(!r(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${a}.
Expected: ${s}.`)}}function BM(e,t){e().then(()=>t.fail(),()=>t())}function WM(e,t){let r=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ts(e)||Ts(e[0])||Ts(t)||Ts(t[0])?Eg(e,r,(n,a)=>n==a):Eg(e,t,(n,a)=>_y(n,a,0))}function VM(e,t,r){if(r==null&&(r=Py()),!_y(e,t,r))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function _y(e,t,r){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>r)}function UM(e,t,r){for(let n=0;n<e.length;n++)if(e[n]<t||e[n]>r)throw new Error(`Value out of range:${e[n]} low: ${t}, high: ${r}`)}function GM(e,t){let r=new Float32Array(e),n=new Float32Array(t);if(r.length!==n.length)throw new Error(`Expected ArrayBuffer to be of length ${n.length}, but it was ${r.length}`);for(let a=0;a<n.length;a++)if(r[a]!==n[a])throw new Error(`Expected ArrayBuffer value at ${a} to be ${n[a]} but got ${r[a]} instead`)}function F7(e){for(let t=0;t<e.length;t++){let r=e[t];Array.isArray(r)?F7(r):e[t]=yh(r)}return e}var zy="0.0.0";function Oy(){Z().set("PROD",!0)}function jM(){Z().set("DEBUG",!0)}function HM(){Z().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Dy(e){Z().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}h$(Dy);function qM(){B.disposeVariables()}function Xt(){return B}function C0(){return B.memory()}function XM(e){return B.profile(e)}function X(e,t){return B.tidy(e,t)}function te(e){ky(e).forEach(t=>t.dispose())}function gr(e){return B.keep(e)}function KM(e){return B.time(e)}function Ly(e){return B.setBackend(e)}function cd(){return B.ready()}function Gr(){return B.backendName}function ZM(e){B.removeBackend(e)}function By(e){return B.findBackend(e)}function YM(e){return B.findBackendFactory(e)}function $l(e,t,r=1){return B.registerBackend(e,t,r)}function Dn(){return B.backend}function JM(e,t){Z().setPlatform(e,t)}function QM(e,t){let r=$(e,"a","add"),n=$(t,"b","add");[r,n]=Lt(r,n);let a={a:r,b:n};return B.runKernel(Ja,a)}var le=W({add_:QM});function eF(e,t){let r=$(e,"a","floorDiv"),n=$(t,"b","floorDiv");[r,n]=Lt(r,n);let a={a:r,b:n};return B.runKernel(hi,a)}var vh=W({floorDiv_:eF});function tF(e,t){let r=$(e,"a","div"),n=$(t,"b","div");if([r,n]=Lt(r,n),r.dtype==="int32"&&n.dtype==="int32")return vh(r,n);let a={a:r,b:n},s={};return B.runKernel(li,a,s)}var pe=W({div_:tF});function rF(e,t){let r=$(e,"a","mul"),n=$(t,"b","mul");[r,n]=Lt(r,n);let a={a:r,b:n};return B.runKernel(Si,a)}var L=W({mul_:rF});function nF(e){let t=$(e,"x","abs");if(t.dtype==="complex64"){let r={x:t};return B.runKernel(th,r)}else{let r={x:t};return B.runKernel(jo,r)}}var sr=W({abs_:nF});function aF(e){let t={x:$(e,"x","acos")};return B.runKernel(Bu,t)}var P7=W({acos_:aF});function sF(e){let t={x:$(e,"x","acosh")};return B.runKernel(Wu,t)}var _7=W({acosh_:sF});function iF(e){P(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),P(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>$(a,`tensors${s}`,"addN")),r=t[0];t.forEach(a=>{if(a.dtype!==r.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!Ks(a.shape,r.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let n=t;return B.runKernel(Zs,n)}var Nf=W({addN_:iF});function oF(e,t=null,r=!1){let n={x:$(e,"x","all","bool")},a={axis:t,keepDims:r};return B.runKernel(Vu,n,a)}var Wy=W({all_:oF});function lF(e,t=null,r=!1){let n={x:$(e,"x","any","bool")},a={axis:t,keepDims:r};return B.runKernel(Uu,n,a)}var T0=W({any_:lF});function uF(e,t=0){let r={x:$(e,"x","argMax")},n={axis:t};return B.runKernel(Ys,r,n)}var Rn=W({argMax_:uF});function dF(e,t=0){let r={x:$(e,"x","argMin")},n={axis:t};return B.runKernel(Gu,r,n)}var z7=W({argMin_:dF});function pF(e){let t={x:$(e,"x","asin")};return B.runKernel(ju,t)}var O7=W({asin_:pF});function hF(e){let t={x:$(e,"x","asinh")};return B.runKernel(Hu,t)}var D7=W({asinh_:hF});function cF(e){let t={x:$(e,"x","atan")};return B.runKernel(qu,t)}var L7=W({atan_:cF});function fF(e,t){let r=$(e,"a","atan2"),n=$(t,"b","atan2");[r,n]=Lt(r,n);let a={a:r,b:n};return B.runKernel(Ku,a)}var B7=W({atan2_:fF});function mF(e){let t={x:$(e,"x","atanh")};return B.runKernel(Xu,t)}var W7=W({atanh_:mF});function gF(e,t,r,n,a="NHWC",s){let i=e[3],o=[...t,i],l=G7(a);return wh(e,o,r,s,n,null,null,l)}function V7(e,t,r,n,a,s,i="channelsLast"){let[o,l]=N0(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return wh(e,u,r,n,a,s,!1,i)}function yF(e,t,r,n,a,s,i="NDHWC"){let[o,l,u]=Rg(t),d,h;if(i==="NDHWC")h="channelsLast",d=[o,l,u,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",d=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return U7(e,d,r,n,a,!1,h,s)}function wh(e,t,r,n,a,s,i=!1,o="channelsLast"){let[l,u,d,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,d,h]=e;else if(o==="channelsFirst")[l,h,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[p,c,,m]=t,[f,g]=N0(r),[y,A]=N0(n),x=bu(p,y),b=bu(c,A),{padInfo:w,outHeight:I,outWidth:N}=bF(a,u,d,f,g,x,b,s,o),E=i?m*h:m,R;return o==="channelsFirst"?R=[l,E,I,N]:o==="channelsLast"&&(R=[l,I,N,E]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:d,inChannels:h,outHeight:I,outWidth:N,outChannels:E,padInfo:w,strideHeight:f,strideWidth:g,filterHeight:p,filterWidth:c,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:A,inShape:e,outShape:R,filterShape:t}}function U7(e,t,r,n,a,s=!1,i="channelsLast",o){let[l,u,d,h,p]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,d,h,p]=e;else if(i==="channelsFirst")[l,p,u,d,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[c,m,f,,g]=t,[y,A,x]=Rg(r),[b,w,I]=Rg(n),N=bu(c,b),E=bu(m,w),R=bu(f,I),{padInfo:_,outDepth:M,outHeight:S,outWidth:z}=vF(a,u,d,h,y,A,x,N,E,R,o),O=s?g*p:g,H;return i==="channelsFirst"?H=[l,O,M,S,z]:i==="channelsLast"&&(H=[l,M,S,z,O]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:d,inWidth:h,inChannels:p,outDepth:M,outHeight:S,outWidth:z,outChannels:O,padInfo:_,strideDepth:y,strideHeight:A,strideWidth:x,filterDepth:c,filterHeight:m,filterWidth:f,effectiveFilterDepth:N,effectiveFilterHeight:E,effectiveFilterWidth:R,dilationDepth:b,dilationHeight:w,dilationWidth:I,inShape:e,outShape:H,filterShape:t}}function AF(e,t,r,n,a){n==null&&(n=Vy(e,t,r));let s=e[0],i=e[1],o=No((s-t+2*n)/r+1,a),l=No((i-t+2*n)/r+1,a);return[o,l]}function xF(e,t,r,n,a,s){a==null&&(a=Vy(e,t,n));let i=e[0],o=e[1],l=e[2],u=No((i-t+2*a)/n+1,s),d=No((o-t+2*a)/n+1,s),h=No((l-t+2*a)/n+1,s);return[u,d,h,r]}function Vy(e,t,r,n=1){let a=bu(t,n);return Math.floor((e[0]*(r-1)-r+a)/2)}function N0(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Rg(e){return typeof e=="number"?[e,e,e]:e}function bu(e,t){return t<=1?e:e+(e-1)*(t-1)}function bF(e,t,r,n,a,s,i,o,l){let u,d,h;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let p=AF([t,r],s,n,e,o);d=p[0],h=p[1]}else if(e==="same"){d=Math.ceil(t/n),h=Math.ceil(r/a);let p=Math.max(0,(d-1)*n+s-t),c=Math.max(0,(h-1)*a+i-r),m=Math.floor(p/2),f=p-m,g=Math.floor(c/2),y=c-g;u={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},d=Math.ceil((t-s+1)/n),h=Math.ceil((r-i+1)/a);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],c=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:p,bottom:c,left:m,right:f,type:p===0&&c===0&&m===0&&f===0?"VALID":"EXPLICIT"},d=No((t-s+p+c)/n+1,o),h=No((r-i+m+f)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:d,outWidth:h}}function vF(e,t,r,n,a,s,i,o,l,u,d){let h,p,c,m;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=xF([t,r,n,1],o,1,a,e,d);p=f[0],c=f[1],m=f[2]}else if(e==="same"){p=Math.ceil(t/a),c=Math.ceil(r/s),m=Math.ceil(n/i);let f=(p-1)*a+o-t,g=(c-1)*s+l-r,y=(m-1)*i+u-n,A=Math.floor(f/2),x=f-A,b=Math.floor(g/2),w=g-b,I=Math.floor(y/2),N=y-I;h={top:b,bottom:w,left:I,right:N,front:A,back:x,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-o+1)/a),c=Math.ceil((r-l+1)/s),m=Math.ceil((n-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:p,outHeight:c,outWidth:m}}function No(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Ds(e){let[t,r,n]=N0(e);return t===1&&r===1&&n===1}function za(e,t){return Ds(e)||Ds(t)}function G7(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function jr(e,t,r){if(r!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${r} but got pad ${t}.`);if(typeof t=="number")P(ku(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${r} but got pad ${t}.`);else if(typeof t=="object")t.forEach(n=>{n.forEach(a=>{P(ku(a),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${r} but got pad ${a}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function wF(e,t){let r={x:$(e,"x","reshape","string_or_numeric")},n={shape:t};return B.runKernel(fl,r,n)}var U=W({reshape_:wF});function kF(e,t,r,n,a){let s=$(e,"x","avgPool","float32"),i=1;P(za(r,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=U(s,[1,s.shape[0],s.shape[1],s.shape[2]])),P(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),jr("avgPool",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a},h=B.runKernel(Js,u,d);return h=me(h,s.dtype),l?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Ef=W({avgPool_:kF});function IF(e,t,r,n,a,s="NDHWC"){let i=$(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),P(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),jr("avgPool3d",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a,dataFormat:s},h=B.runKernel(Qp,u,d);return h=me(h,o.dtype),l?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Uy=W({avgPool3d_:IF});function SF(e,t=0){P(e.length>=1,()=>"Pass at least one tensor to concat");let r=Up(e,"tensors","concat","string_or_numeric");if(r[0].dtype==="complex64"&&r.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),r.length===1)return Wr(r[0]);let n=r,a={axis:t};return B.runKernel(qo,n,a)}var St=W({concat_:SF});function CF(e){let t={x:$(e,"x","sigmoid","float32")};return B.runKernel(_i,t)}var Tr=W({sigmoid_:CF});function TF(e,t,r){let n=$(e,"x","slice","string_or_numeric");if(n.rank===0)throw new Error("Slicing scalar is not possible");let a={x:n},s={begin:t,size:r};return B.runKernel(xl,a,s)}var Pe=W({slice_:TF});function NF(e){let t={x:$(e,"x","tanh","float32")};return B.runKernel(Wi,t)}var Su=W({tanh_:NF});function EF(e,t,r,n,a,s){let i=$(e,"forgetBias","basicLSTMCell"),o=$(t,"lstmKernel","basicLSTMCell"),l=$(r,"lstmBias","basicLSTMCell"),u=$(n,"data","basicLSTMCell"),d=$(a,"c","basicLSTMCell"),h=$(s,"h","basicLSTMCell"),p=St([u,h],1),c=Ze(p,o),m=le(c,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],A=Pe(m,[0,0],y),x=Pe(m,[0,g],y),b=Pe(m,[0,g*2],y),w=Pe(m,[0,g*3],y),I=le(L(Tr(A),Su(x)),L(d,Tr(le(i,b)))),N=L(Su(I),Tr(w));return[I,N]}var RF=W({basicLSTMCell_:EF});function $F(e,t,r){let n=$(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);P(n.rank>=1+t.length,()=>`input rank is ${n.rank} but should be > than blockShape.length ${t.length}`),P(r.length===t.length,()=>`crops.length is ${r.length} but should be equal to blockShape.length ${t.length}`),P(n.shape[0]%a===0,()=>`input tensor batch is ${n.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:n},i={blockShape:t,crops:r};return B.runKernel(Ho,s,i)}var Rf=W({batchToSpaceND_:$F});function MF(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function FF(e,t,r,n,a,s){s==null&&(s=.001);let i=$(e,"x","batchNorm"),o=$(t,"mean","batchNorm"),l=$(r,"variance","batchNorm"),u;a!=null&&(u=$(a,"scale","batchNorm"));let d;n!=null&&(d=$(n,"offset","batchNorm")),P(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),P(d==null||o.rank===d.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),P(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:MF(i),scale:u,offset:d,mean:o,variance:l},p={varianceEpsilon:s},c=B.runKernel(ci,h,p);return U(c,i.shape)}var Cu=W({batchNorm_:FF});function PF(e,t,r,n,a,s){let i=$(e,"x","batchNorm"),o=$(t,"mean","batchNorm"),l=$(r,"variance","batchNorm"),u;a!=null&&(u=$(a,"scale","batchNorm"));let d;return n!=null&&(d=$(n,"offset","batchNorm")),P(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),P(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),P(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),d!=null&&P(d.rank===2||d.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${d.rank}.`),Cu(i,o,l,d,u,s)}var j7=W({batchNorm2d_:PF});function _F(e,t,r,n,a,s){let i=$(e,"x","batchNorm"),o=$(t,"mean","batchNorm"),l=$(r,"variance","batchNorm"),u;a!=null&&(u=$(a,"scale","batchNorm"));let d;return n!=null&&(d=$(n,"offset","batchNorm")),P(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),P(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),P(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),d!=null&&P(d.rank===3||d.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${d.rank}.`),Cu(i,o,l,d,u,s)}var H7=W({batchNorm3d_:_F});function zF(e,t,r,n,a,s){let i=$(e,"x","batchNorm"),o=$(t,"mean","batchNorm"),l=$(r,"variance","batchNorm"),u;a!=null&&(u=$(a,"scale","batchNorm"));let d;return n!=null&&(d=$(n,"offset","batchNorm")),P(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),P(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),P(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&P(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),d!=null&&P(d.rank===4||d.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${d.rank}.`),Cu(i,o,l,d,u,s)}var q7=W({batchNorm4d_:zF});function OF(e,t,r){let n=$(e,"x","bincount"),a=$(t,"weights","bincount");P(n.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${n.dtype}`),P(r>=0,()=>`size must be non-negative, but got ${r}.`),P(a.size===n.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${n.shape}, weights shape: ${a.shape}.`);let s={x:n,weights:a},i={size:r};return B.runKernel(rf,s,i)}var Gy=W({bincount_:OF});function DF(e,t){let r=$(e,"s0","broadcastArgs","int32"),n=$(t,"s1","broadcastArgs","int32");if(r.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${r.rank}`);if(n.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${n.rank}`);let a={s0:r,s1:n};return B.runKernel(nf,a)}var X7=W({broadcastArgs_:DF});function LF(e,t){let r=$(e,"broadcastTo","x"),n=r.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<r.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${r.rank}.`);if(t.length>r.rank){let l=r.shape.slice();for(;l.length<t.length;)l.unshift(1);r=U(r,l)}let a=r.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(a[l]===t[l])s[l]=1;else if(r.shape[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Wr(r);let i={x:r},o={reps:s};return B.runKernel(es,i,o)}var Pp=W({broadcastTo_:LF});function BF(e){let t={x:$(e,"x","ceil","float32")};return B.runKernel(ti,t)}var K7=W({ceil_:BF});function WF(e,t,r){let n=$(e,"x","clipByValue");P(t<=r,()=>`Error in clip: min (${t}) must be less than or equal to max (${r}).`);let a={x:n},s={clipValueMin:t,clipValueMax:r};return B.runKernel(Qa,a,s)}var cn=W({clipByValue_:WF});function VF(e){return St(e,0)}var Z7=W({concat1d_:VF});function UF(e,t){return St(e,t)}var fd=W({concat2d_:UF});function GF(e,t){return St(e,t)}var Y7=W({concat3d_:GF});function jF(e,t){return St(e,t)}var J7=W({concat4d_:jF});function HF(e,t,r,n,a="NHWC",s=[1,1],i){let o=$(e,"x","conv2d","float32"),l=$(t,"filter","conv2d","float32"),u=o,d=!1;o.rank===3&&(d=!0,u=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),jr("conv2d",n,i);let h=a==="NHWC"?u.shape[3]:u.shape[1];P(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),P(za(r,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`);let p={x:u,filter:l},c={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i},m=B.runKernel(ri,p,c);return d?U(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Ls=W({conv2d_:HF});function qF(e,t,r,n,a="NWC",s=1,i){let o=$(e,"x","conv1d"),l=$(t,"filter","conv1d"),u=o,d=!1;o.rank===2&&(d=!0,u=U(o,[1,o.shape[0],o.shape[1]])),P(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),P(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),jr("conv1d",n,i),P(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),P(za(r,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${r} and dilation '${s}'`),P(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=U(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=U(u,[u.shape[0],1,u.shape[1],u.shape[2]]),c=Ls(p,h,[1,r],n,"NHWC",[1,s],i);return d?U(c,[c.shape[2],c.shape[3]]):U(c,[c.shape[0],c.shape[2],c.shape[3]])}var jy=W({conv1d_:qF});function XF(e,t,r,n,a,s="NHWC",i){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),P(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),P(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),P(r.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${r.rank}`);let d=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];P(d===r.shape[2],()=>`Error in conv2dDerInput: depth of input (${d}) must match input depth for filter ${r.shape[2]}.`),P(h===r.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${r.shape[3]}.`),jr("conv2dDerInput",a,i);let p={dy:l,filter:r},c={strides:n,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},m=B.runKernel(ni,p,c);return u?U(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Hy=W({conv2DBackpropInput_:XF});function KF(e,t,r,n,a,s){let i=$(e,"x","conv2dTranspose"),o=$(t,"filter","conv2dTranspose");return Hy(r,i,o,n,a,"NHWC",s)}var qy=W({conv2dTranspose_:KF});function ZF(e,t,r,n,a="NDHWC",s=[1,1,1]){let i=$(e,"x","conv3d"),o=$(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),P(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),P(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),P(za(r,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`),P(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let d={x:l,filter:o},h={strides:r,pad:n,dataFormat:a,dilations:s},p=B.runKernel(rh,d,h);return u?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Xy=W({conv3d_:ZF});function YF(e,t,r,n,a){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];P(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),P(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),P(r.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${r.rank}`),P(l===r.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${r.shape[3]}.`),P(u===r.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${r.shape[4]}.`);let d={dy:i,filter:r},h={pad:a,strides:n,inputShape:s},p=B.runKernel(of,d,h);return o?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Q7=W({conv3DBackpropInput_:YF});function JF(e,t,r,n,a){let s=$(e,"x","conv3dTranspose"),i=$(t,"filter","conv3dTranspose");return Q7(r,s,i,n,a)}var ew=W({conv3dTranspose_:JF});function QF(e){let t={x:$(e,"x","cos","float32")};return B.runKernel(ai,t)}var $f=W({cos_:QF});function eP(e){let t={x:$(e,"x","cosh","float32")};return B.runKernel(si,t)}var Ky=W({cosh_:eP});function tP(e,t=0,r=!1,n=!1){let a={x:$(e,"x","cumprod")},s={axis:t,exclusive:r,reverse:n};return B.runKernel(Xo,a,s)}var E0=W({cumprod_:tP});function rP(e,t=0,r=!1,n=!1){let a={x:$(e,"x","cumsum")},s={axis:t,exclusive:r,reverse:n};return B.runKernel(ii,a,s)}var Zy=W({cumsum_:rP});function nP(e,t,r,n=!1){let a=$(e,"x","denseBincount"),s=$(t,"weights","denseBincount");P(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),P(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),P(r>=0,()=>`size must be non-negative, but got ${r}.`),P(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:r,binaryOutput:n};return B.runKernel(lf,i,o)}var tw=W({denseBincount_:nP});function aP(e,t,r="NHWC"){let n=$(e,"x","depthToSpace","float32"),a=r==="NHWC"?n.shape[1]:n.shape[2],s=r==="NHWC"?n.shape[2]:n.shape[3],i=r==="NHWC"?n.shape[3]:n.shape[1];P(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),P(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${a} and ${t} for depthToSpace with input shape
${n.shape}`),P(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${n.shape}`),P(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${n.shape}`);let o={x:n},l={blockSize:t,dataFormat:r};return B.runKernel(Zo,o,l)}var rw=W({depthToSpace_:aP});function sP(e,t,r,n,a="NHWC",s=[1,1],i){let o=$(e,"x","depthwiseConv2d","float32"),l=$(t,"filter","depthwiseConv2d","float32"),u=o,d=!1;o.rank===3&&(d=!0,u=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),P(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),jr("depthwiseConv2d",n,i);let h={x:u,filter:l},p={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i},c=B.runKernel(oi,h,p);return d?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var kh=W({depthwiseConv2d_:sP});function iP(e){let t={x:$(e,"x","diag")};return B.runKernel(pf,t)}var oP=W({diag_:iP});function lP(e,t,r,n,a=[1,1],s="NHWC"){let i=$(e,"x","dilation2d"),o=$(t,"filter","dilation2d");P(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),P(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),P(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=U(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let d={x:l,filter:o},h={strides:r,pad:n,dilations:a},p=B.runKernel(nh,d,h);return u?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var nw=W({dilation2d_:lP});function uP(e,t){let r=$(e,"a","equal","string_or_numeric"),n=$(t,"b","equal","string_or_numeric");[r,n]=Lt(r,n),yt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(Yo,a)}var $n=W({equal_:uP});function dP(e,t,r){let n=$(t,"a","where"),a=$(r,"b","where"),s=$(e,"condition","where","bool"),i=yt(yt(s.shape,n.shape),a.shape),o=Pp(s,i),l=Pp(n,i),u=Pp(a,i),d={condition:o,t:l,e:u};return B.runKernel(Al,d)}var Vr=W({where_:dP});function pP(e){let t={x:$(e,"x","zerosLike")};return B.runKernel(Nl,t)}var at=W({zerosLike_:pP});function hP(e,t){let r=$(e,"a","div"),n=$(t,"b","div");[r,n]=Lt(r,n);let a=pe(r,n),s=at(a),i=$n(n,s);return Vr(i,s,a)}var aw=W({divNoNan_:hP});function cP(e,t){let r=$(e,"t1","dot"),n=$(t,"t2","dot");P((r.rank===1||r.rank===2)&&(n.rank===1||n.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${r.rank} and ${n.rank}.`);let a=r.rank===1?r.size:r.shape[1],s=n.rank===1?n.size:n.shape[0];if(P(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),r.rank===1&&n.rank===1){let i=U(r,[1,-1]),o=U(n,[-1,1]),l=Ze(i,o);return U(l,[])}else if(r.rank===1&&n.rank===2){let i=U(r,[1,-1]),o=U(n,[n.shape[0],n.shape[1]]),l=Ze(i,o);return U(l,[l.size])}else if(r.rank===2&&n.rank===1){let i=U(n,[-1,1]),o=Ze(r,i);return U(o,[o.size])}else{let i=U(n,[n.shape[0],n.shape[1]]);return Ze(r,i)}}var fP=W({dot_:cP});function mP(e,...t){let r=t.map((a,s)=>$(a,`tensors${s}`,"einsum")),n={equation:e};return B.runKernel(ah,r,n)}var sw=W({einsum_:mP});function gP(e){let t={x:$(e,"x","elu","float32")};return B.runKernel(ui,t)}var Ih=W({elu_:gP});function yP(e){let t=$(e,"x","erf");P(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=me(t,"float32"));let r={x:t};return B.runKernel(Zu,r)}var iw=W({erf_:yP});function Yy(e,t){for(let r=0;r<e.length;++r)if(e[e.length-r-1]!==t-1-r)return!1;return!0}function ow(e,t,r){let n=e.length+t.length,a=[],s=0,i=0;for(let o=0;o<n;o++)r.indexOf(o)===-1?a.push(e[s++]):a.push(t[i++]);return a}function lw(e,t){let r=[],n=e.length;for(let s=0;s<n;s++)t.indexOf(s)===-1&&r.push(e[s]);let a=t.map(s=>e[s]);return[r,a]}function _o(e,t){let r=t.map(n=>1);return ow(e,r,t)}function AP(e,t,r){P(Yy(t,r),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${r} input.`)}function uw(e,t){if(Yy(e,t))return null;let r=[];for(let n=0;n<t;++n)e.indexOf(n)===-1&&r.push(n);return e.forEach(n=>r.push(n)),r}function Jy(e){return e.map((t,r)=>[r,t]).sort((t,r)=>t[1]-r[1]).map(t=>t[0])}function xP(e,t){let r=[];for(let n=t-e;n<t;++n)r.push(n);return r}function bP(e,t=null,r=!1){let n={x:$(e,"x","max")},a={reductionIndices:t,keepDims:r};return B.runKernel(Ai,n,a)}var Ar=W({max_:bP});function vP(e,t=null,r=!1){let n={x:$(e,"x","min")},a={axis:t,keepDims:r};return B.runKernel(wi,n,a)}var Bs=W({min_:vP});function wP(e,t){let r=$(e,"base","pow"),n=$(t,"exp","pow");[r,n]=Lt(r,n);let a={a:r,b:n};return B.runKernel(Ti,a)}var Ws=W({pow_:wP});function Se(e,t){if((Sr(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Sr(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Gi(e,[],[],t)}function kP(e){let t={x:$(e,"x","sqrt","float32")};return B.runKernel(zi,t)}var Er=W({sqrt_:kP});function IP(e){let t=$(e,"x","square"),r={};return B.runKernel("Square",{x:t},r)}var xt=W({square_:IP});function SP(e,t=null,r=!1){let n=$(e,"x","sum");n.dtype==="bool"&&(n=me(n,"int32"));let a={x:n},s={axis:t,keepDims:r};return B.runKernel(Oi,a,s)}var ke=W({sum_:SP});function CP(e,t="euclidean",r=null,n=!1){e=$(e,"x","norm");let a=dw(e,t,r),s=a.shape;if(n){let i=Hn(r,e.shape);s=_o(a.shape,i)}return U(a,s)}function dw(e,t,r=null){if(e.rank===0)return sr(e);if(e.rank!==1&&r===null)return dw(U(e,[-1]),t,r);if(e.rank===1||typeof r=="number"||Array.isArray(r)&&r.length===1){if(t===1)return ke(sr(e),r);if(t===1/0)return Ar(sr(e),r);if(t===-1/0)return Bs(sr(e),r);if(t==="euclidean"||t===2)return Er(ke(Ws(sr(e),Se(2,"int32")),r));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(r)&&r.length===2){if(t===1)return Ar(ke(sr(e),r[0]),r[1]-1);if(t===1/0)return Ar(ke(sr(e),r[1]),r[0]);if(t===-1/0)return Bs(ke(sr(e),r[1]),r[0]);if(t==="fro"||t==="euclidean")return Er(ke(xt(e),r));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${r}`)}var Mf=W({norm_:CP});function TP(e,t=null,r=!1){return Mf(e,"euclidean",t,r)}var pw=W({euclideanNorm_:TP});function NP(e){let t={x:$(e,"x","exp")};return B.runKernel(di,t)}var Mn=W({exp_:NP});function EP(e,t=0){let r=$(e,"x","expandDims","string_or_numeric");P(t<=r.rank,()=>"Axis must be <= rank of the tensor");let n={input:r},a={dim:t};return B.runKernel(Jo,n,a)}var Kt=W({expandDims_:EP});function RP(e){let t={x:$(e,"x","expm1")};return B.runKernel(Qo,t)}var hw=W({expm1_:RP});function $P(e,t){let r=$(e,"x","tile","string_or_numeric");P(r.rank===t.length,()=>`Error in transpose: rank of input ${r.rank} must match length of reps ${t}.`);let n={x:r},a={reps:t};return B.runKernel(es,n,a)}var Gn=W({tile_:$P});function MP(e,t,r,n="float32"){t==null&&(t=e);let a=Le([e,t],n),s=e<=t?e:t;for(let o=0;o<s;++o)a.set(1,o,o);let i=U(a.toTensor(),[e,t]);if(r==null)return i;if(r.length===1)return Gn(Kt(i,0),[r[0],1,1]);if(r.length===2)return Gn(Kt(Kt(i,0),0),[r[0],r[1],1,1]);if(r.length===3)return Gn(Kt(Kt(Kt(i,0),0),0),[r[0],r[1],r[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${r.length}D.`)}var Qy=W({eye_:MP});function md(e,t,r){let n={shape:e,value:t,dtype:r};return B.runKernel(Yu,{},n)}function FP(e){let t={x:$(e,"x","floor","float32")};return B.runKernel(pi,t)}var Sh=W({floor_:FP});function PP(e,t,r=0,n=0){let a=$(e,"x","gather"),s=$(t,"indices","gather","int32"),i={x:a,indices:s},o={axis:r,batchDims:n};return B.runKernel(tl,i,o)}var Tu=W({gather_:PP});function _P(e,t){let r=$(e,"a","greater","string_or_numeric"),n=$(t,"b","greater","string_or_numeric");[r,n]=Lt(r,n),yt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(nl,a)}var mn=W({greater_:_P});function zP(e,t){let r=$(e,"a","greaterEqual","string_or_numeric"),n=$(t,"b","greaterEqual","string_or_numeric");[r,n]=Lt(r,n),yt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(fi,a)}var Ml=W({greaterEqual_:zP});function OP(e){let t={input:$(e,"input","imag")};return B.runKernel(sh,t)}var Ff=W({imag_:OP});function DP(e){let t={x:$(e,"x","isFinite")};return B.runKernel(Ju,t)}var LP=W({isFinite_:DP});function BP(e){let t={x:$(e,"x","isInf")};return B.runKernel(Qu,t)}var WP=W({isInf_:BP});function VP(e){let t={x:$(e,"x","isNaN")};return B.runKernel(ed,t)}var cw=W({isNaN_:VP});function UP(e,t=.2){let r={x:$(e,"x","leakyRelu")},n={alpha:t};return B.runKernel(gi,r,n)}var Pf=W({leakyRelu_:UP});function GP(e,t){let r=$(e,"a","less","string_or_numeric"),n=$(t,"b","less","string_or_numeric");[r,n]=Lt(r,n),yt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(al,a)}var eA=W({less_:GP});function jP(e,t){let r=$(e,"a","lessEqual","string_or_numeric"),n=$(t,"b","lessEqual","string_or_numeric");[r,n]=Lt(r,n),yt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(sl,a)}var Fl=W({lessEqual_:jP});function fw(e,t,r){if(r<=0)throw new Error("The number of values should be positive.");let n={start:e,stop:t,num:r};return B.runKernel(mf,{},n)}function HP(e,t=5,r=1,n=1,a=.5){let s=$(e,"x","localResponseNormalization");P(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),P(ku(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=U(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:r,alpha:n,beta:a},d=B.runKernel(oh,l,u);return o?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var mw=W({localResponseNormalization_:HP});function qP(e){let t={x:$(e,"x","log","float32")};return B.runKernel(yi,t)}var Fn=W({log_:qP});function XP(e){let t={x:$(e,"x","log1p")};return B.runKernel(td,t)}var _f=W({log1p_:XP});function KP(e){return P(Fs(e),()=>"The f passed in grad(f) must be a function"),(t,r)=>{let n=$(t,"x","tf.grad","string_or_numeric"),a=r!=null?$(r,"dy","tf.grad"):null;return B.tidy(()=>{let{value:s,grads:i}=B.gradients(()=>e(n),[n],a);return a!=null&&Ur(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),zf(i),i[0]})}}function ZP(e){return P(Fs(e),()=>"The f passed in grads(f) must be a function"),(t,r)=>{P(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let n=Up(t,"args","tf.grads","string_or_numeric"),a=r!=null?$(r,"dy","tf.grads"):null;return B.tidy(()=>{let{value:s,grads:i}=B.gradients(()=>e(...n),n,a);return a!=null&&Ur(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),zf(i),i})}}function YP(e){return P(Fs(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,r)=>{P(t instanceof nt,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),P(r==null||r instanceof nt,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:n,value:a}=B.gradients(()=>e(t),[t],r);return zf(n),{grad:n[0],value:a}}}function JP(e){return P(Fs(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,r)=>{P(Array.isArray(t)&&t.every(a=>a instanceof nt),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),P(r==null||r instanceof nt,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let n=B.gradients(()=>e(...t),t,r);return r!=null&&Ur(n.value.shape,r.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),zf(n.grads),n}}function gw(e,t){P(Fs(e),()=>"The f passed in variableGrads(f) must be a function"),P(t==null||Array.isArray(t)&&t.every(u=>u instanceof Vp),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let r=t!=null;if(!r){t=[];for(let u in B.registeredVariables)t.push(B.registeredVariables[u])}let n=r?t.filter(u=>!u.trainable):null,a=t.length;t=t.filter(u=>u.trainable),P(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=B.gradients(e,t,null,s);P(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),P(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,d)=>{o[d]!=null&&(l[u.name]=o[d])}),n!=null&&n.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Pa(e){return B.customGrad(e)}function zf(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function QP(e){let t={x:$(e,"x","neg")};return B.runKernel(ol,t)}var Dt=W({neg_:QP});function e_(e){let t={x:$(e,"x","softplus")};return B.runKernel(dd,t)}var gd=W({softplus_:e_});function t_(e){let t=$(e,"x","logSigmoid");return Pa(r=>({value:Dt(gd(Dt(r))),gradFunc:n=>L(n,Tr(Dt(r)))}))(t)}var r_=W({logSigmoid_:t_});function n_(e,t){let r=$(e,"a","sub"),n=$(t,"b","sub");[r,n]=Lt(r,n);let a={a:r,b:n};return B.runKernel(Bi,a)}var ce=W({sub_:n_});function a_(e,t=-1){let r=$(e,"logits","logSoftmax");if(t===-1&&(t=r.rank-1),t!==r.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${r.rank} and axis was ${t}`);return Pa((n,a)=>{let s=Ar(n,t,!0),i=ce(n,s),o=ce(me(i,"float32"),Fn(ke(Mn(i),t,!0)));return a([o]),{value:o,gradFunc:(l,u)=>{let[d]=u,h=!0,p=Mn(d);return ce(l,L(ke(l,t,h),p))}}})(r)}var tA=W({logSoftmax_:a_});function s_(e,t=null,r=!1){let n=$(e,"x","logSumExp"),a=Hn(t,n.shape),s=Ar(n,a,!0),i=ce(n,s),o=Mn(i),l=ke(o,a),u=Fn(l),d=le(U(s,u.shape),u);if(r){let h=_o(d.shape,a);return U(d,h)}return d}var yw=W({logSumExp_:s_});function i_(e,t){let r=$(e,"a","logicalAnd","bool"),n=$(t,"b","logicalAnd","bool");yt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(il,a)}var ga=W({logicalAnd_:i_});function o_(e){let t={x:$(e,"x","logicalNot","bool")};return B.runKernel(rd,t)}var Of=W({logicalNot_:o_});function l_(e,t){let r=$(e,"a","logicalOr","bool"),n=$(t,"b","logicalOr","bool");yt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(ih,a)}var rA=W({logicalOr_:l_});function u_(e,t){let r=$(e,"a","logicalXor","bool"),n=$(t,"b","logicalXor","bool");return yt(r.shape,n.shape),ga(rA(e,t),Of(ga(e,t)))}var d_=W({logicalXor_:u_}),Xc=2147483648;function p_(e,t,r="left"){let n=$(e,"sortedSequence","searchSorted"),a=$(t,"values","searchSorted"),s=n.shape[n.shape.length-1],i=a.shape[a.shape.length-1],o=U(n,[-1,s]),l=U(a,[-1,i]);if(o.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(o.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(It(l.shape)>=Xc)throw new Error(`values tensor size must less than ${Xc}`);if(o.shape[1]>=Xc)throw new Error(`trailing dim_size must less than ${Xc} for int32 output type, was ${o.shape[1]}`);let u={sortedSequence:o,values:l},d={side:r};return B.runKernel(kf,u,d)}var nA=W({searchSorted_:p_});function Aw(e,t){return nA(e,t,"left")}function h_(e,t,r,n,a){let s=$(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=U(s,[1,s.shape[0],s.shape[1],s.shape[2]])),P(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),P(za(r,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'`),jr("maxPool",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a},h=B.runKernel(bi,u,d);return l?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Df=W({maxPool_:h_});function c_(e,t=[1,1,1],r,n,a,s="NDHWC"){let i=$(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),P(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),jr("maxPool3d",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a,dataFormat:s},h=B.runKernel(lh,u,d);return l?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var aA=W({maxPool3d_:c_});function f_(e,t,r,n,a=!1){let s={x:$(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:r,pad:n,includeBatchInIndex:a},o=B.runKernel(xf,s,i);return{result:o[0],indexes:o[1]}}var xw=W({maxPoolWithArgmax_:f_});function m_(e,t){let r=$(e,"a","maximum"),n=$(t,"b","maximum");[r,n]=Lt(r,n),r.dtype==="bool"&&(r=me(r,"int32"),n=me(n,"int32")),yt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(xi,a)}var ts=W({maximum_:m_});function g_(e,t=null,r=!1){let n={x:$(e,"x","mean")},a={axis:t,keepDims:r};return B.runKernel(vi,n,a)}var Vt=W({mean_:g_});function _t(e,t="float32"){if(t==="complex64"){let n=_t(e,"float32"),a=_t(e,"float32");return Os(n,a)}let r=Q0(It(e),t);return B.makeTensor(r,e,t)}function hn(e,t="float32"){if(t==="complex64"){let n=hn(e,"float32"),a=_t(e,"float32");return Os(n,a)}let r=Ay(It(e),t);return B.makeTensor(r,e,t)}function y_(e,t,{indexing:r="xy"}={}){if(r!=="xy"&&r!=="ij")throw new TypeError(`${r} is not a valid third argument to meshgrid`);if(e===void 0)return[];let n=$(e,"x","meshgrid",e instanceof nt?e.dtype:"float32");if(t===void 0)return[n];let a=$(t,"y","meshgrid",t instanceof nt?t.dtype:"float32"),s=It(n.shape),i=It(a.shape);return r==="xy"?(n=U(n,[1,-1]),a=U(a,[-1,1]),[Ze(hn([i,1],n.dtype),n),Ze(a,hn([1,s],a.dtype))]):(n=U(n,[-1,1]),a=U(a,[1,-1]),[Ze(n,hn([1,i],n.dtype)),Ze(hn([s,1],a.dtype),a)])}function A_(e,t){let r=$(e,"a","minimum"),n=$(t,"b","minimum");[r,n]=Lt(r,n),r.dtype==="bool"&&(r=me(r,"int32"),n=me(n,"int32")),yt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(ki,a)}var Ch=W({minimum_:A_});function x_(e,t,r){P(r==="reflect"||r==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${r}.`);let n=$(e,"x","mirrorPad");if(n.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");P(t.length===n.rank,()=>`Padding doesn't match input. Must be ${n.rank}. Got ${t.length}.`);let a=r==="reflect"?1:0;for(let o=0;o<n.rank;o++)P(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),P(t[o][0]>=0&&t[o][0]<=n.shape[o]-a&&t[o][1]>=0&&t[o][1]<=n.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${n.shape[o]-a} or less than 0 for input of shape ${n.shape}`);let s={paddings:t,mode:r},i={x:n};return B.runKernel(Ii,i,s)}var bw=W({mirrorPad_:x_});function b_(e,t){let r=$(e,"a","mod"),n=$(t,"b","mod");[r,n]=Lt(r,n);let a={a:r,b:n};return B.runKernel(nd,a)}var yd=W({mod_:b_});function v_(e,t=null,r=!1){e=$(e,"x","moments");let n=Hn(t,e.shape),a=Vt(e,n,r),s=a.shape;r||(s=_o(a.shape,n));let i=xt(ce(me(e,"float32"),U(a,s))),o=Vt(i,n,r);return{mean:a,variance:o}}var Lf=W({moments_:v_});function w_(e,t,r,n){let a=$(t,"data","multiRNNCell"),s=Up(r,"c","multiRNNCell"),i=Up(n,"h","multiRNNCell"),o=a,l=[];for(let h=0;h<e.length;h++){let p=e[h](o,s[h],i[h]);l.push(p[0]),l.push(p[1]),o=p[1]}let u=[],d=[];for(let h=0;h<l.length;h+=2)u.push(l[h]),d.push(l[h+1]);return[u,d]}var k_=W({multiRNNCell_:w_});function I_(e,t,r,n=!1){let a=$(e,"logits","multinomial"),s=a.size,i=a.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);r=r||Math.random();let o={logits:i===1?U(a,[1,-1]):a},l={numSamples:t,seed:r,normalized:n},u=B.runKernel(bf,o,l);return i===1?U(u,[u.size]):u}var vw=W({multinomial_:I_});function S_(e,t){let r=$(e,"a","notEqual","string_or_numeric"),n=$(t,"b","notEqual","string_or_numeric");[r,n]=Lt(r,n),yt(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(ll,a)}var Nu=W({notEqual_:S_});function C_(e){let t={x:$(e,"x","onesLike")};return B.runKernel(pl,t)}var Pn=W({onesLike_:C_});function T_(e,t){let r=$(e,"v1","outerProduct"),n=$(t,"v2","outerProduct");P(r.rank===1&&n.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${r.rank} and ${n.rank}.`);let a=U(r,[-1,1]),s=U(n,[1,-1]);return Ze(a,s)}var N_=W({outerProduct_:T_});function E_(e,t,r=0){let n=$(e,"x","pad");if(n.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:r},s={x:n};return B.runKernel(Ci,s,a)}var Xn=W({pad_:E_});function R_(e,t,r=0){return P(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Xn(e,[t],r)}var $_=W({pad1d_:R_});function M_(e,t,r=0){return P(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Xn(e,t,r)}var F_=W({pad2d_:M_});function P_(e,t,r=0){return P(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Xn(e,t,r)}var __=W({pad3d_:P_});function z_(e,t,r=0){return P(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Xn(e,t,r)}var O_=W({pad4d_:z_});function D_(e,t,r){let n=$(e,"x","spaceToBatchND");P(n.rank>=1+t.length,()=>`input rank ${n.rank} should be > than [blockShape] ${t.length}`),P(r.length===t.length,()=>`paddings.shape[0] ${r.length} must be equal to [blockShape] ${t.length}`),P(n.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+r[l-1][0]+r[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${n.shape.slice(1)} with paddings ${r.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:n},s={blockShape:t,paddings:r};return B.runKernel(vl,a,s)}var Bf=W({spaceToBatchND_:D_});function L_(e,t,r,n,a,s,i){a==null&&(a=[1,1]),s==null&&(s=1),n===0&&(n="valid");let o=$(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),P(za(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let d=V7(l.shape,t,s,a,n),h=[d.dilationHeight,d.dilationWidth],p;n==="same"?p=W_([d.filterHeight,d.filterWidth],h):p=[[0,0],[0,0]];let c=h[0]===1&&h[1]===1,[m,f]=B_([d.inHeight,d.inWidth],h,p),g=c?n:"valid",y=c?l:Bf(l,h,m),A=(r==="avg"?()=>Ef(y,t,s,g,i):()=>Df(y,t,s,g,i))(),x=c?A:Rf(A,h,f);return u?U(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function B_(e,t,r){let n=r.map(d=>d[0]),a=r.map(d=>d[1]),s=e.concat(n,a),i=t.map((d,h)=>(d-s[h]%d)%d),o=a.map((d,h)=>d+i[h]),l=t.map((d,h)=>[n[h],o[h]]),u=t.map((d,h)=>[0,i[h]]);return[l,u]}function W_(e,t){let r=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),n=r.map(s=>Math.floor(s/2)),a=r.map((s,i)=>s-n[i]);return r.map((s,i)=>[n[i],a[i]])}var V_=W({pool_:L_});function U_(e,t){let r=$(e,"x","prelu"),n=$(t,"alpha","prelu"),a={x:r,alpha:n};return B.runKernel(Ni,a)}var Wf=W({prelu_:U_});function G_(e,t=null,r=!1){let n=$(e,"x","prod");n.dtype==="bool"&&(n=me(n,"int32"));let a={x:n},s={axis:t,keepDims:r};return B.runKernel(Ei,a,s)}var sA=W({prod_:G_});function j_(e,t,r){let n=It(e),a=null;if(r==null||r==="float32")a=new Float32Array(n);else if(r==="int32")a=new Int32Array(n);else if(r==="bool")a=new Uint8Array(n);else throw new Error(`Unknown data type ${r}`);for(let s=0;s<n;s++)a[s]=t();return B.makeTensor(a,e,r)}var H_=W({rand_:j_}),iA=Uo(Y0()),oA=class{constructor(e,t,r,n,a){this.mean=e,this.stdDev=t,this.dtype=r,this.nextVal=NaN,this.truncated=n,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=a||Math.random();this.random=iA.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let n=this.nextVal;return this.nextVal=NaN,n}let e,t,r=!1;for(;!r;){let n,a,s;do n=2*this.random()-1,a=2*this.random()-1,s=n*n+a*a;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*n*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(r=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},q_=class{constructor(e,t,r,n){this.alpha=e,this.beta=1/t,this.dtype=r;let a=n||Math.random();this.randu=iA.alea(a.toString()),this.randn=new oA(0,1,r,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,r,n,a,s;for(;;){do n=this.randn.nextValue(),s=1+this.c*n;while(s<=0);if(s*=s*s,e=n*n,t=1-.331*e*e,r=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),a<t||Math.log(a)<r)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},X_=class{constructor(e=0,t=1,r,n){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=r,n==null&&(n=Math.random()),typeof n=="number"&&(n=n.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=iA.alea(n)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function K_(e,t,r=1,n="float32",a){if(r==null&&(r=1),n==null&&(n="float32"),n!=="float32"&&n!=="int32")throw new Error(`Unsupported data type ${n}`);let s=new q_(t,r,n,a),i=Le(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Z_=W({randomGamma_:K_});function Y_(e,t=0,r=1,n,a){if(n!=null&&n==="bool")throw new Error(`Unsupported data type ${n}`);let s=new oA(t,r,n,!1,a),i=Le(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var ww=W({randomNormal_:Y_});function J_(e,t=0,r=1,n="float32",a){let s=Le(e,n),i=new X_(t,r,null,a);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Ad=W({randomUniform_:J_});function Eu(e,t,r=1,n="float32"){if(r===0)throw new Error("Cannot have a step of zero");let a={start:e,stop:t,step:r,dtype:n};return B.runKernel(sd,{},a)}function Q_(e){let t={input:$(e,"input","real")};return B.runKernel(uh,t)}var jp=W({real_:Q_});function ez(e){let t={x:$(e,"x","reciprocal")};return B.runKernel(id,t)}var kw=W({reciprocal_:ez});function tz(e){let t={x:$(e,"x","relu")};return B.runKernel(Ri,t)}var Oa=W({relu_:tz});function rz(e){let t={x:$(e,"x","relu6")};return B.runKernel(Mi,t)}var lA=W({relu6_:rz});function nz(e,t){let r={x:$(e,"x","reverse")},n={dims:t};return B.runKernel(ml,r,n)}var _n=W({reverse_:nz});function az(e){let t=$(e,"x","reverse");return P(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),_n(t,0)}var sz=W({reverse1d_:az});function iz(e,t){let r=$(e,"x","reverse");return P(r.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${r.rank}.`),_n(r,t)}var oz=W({reverse2d_:iz});function lz(e,t){let r=$(e,"x","reverse");return P(r.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${r.rank}.`),_n(r,t)}var uz=W({reverse3d_:lz});function dz(e,t){let r=$(e,"x","reverse");return P(r.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${r.rank}.`),_n(r,t)}var pz=W({reverse4d_:dz});function hz(e){let t={x:$(e,"x","round")};return B.runKernel(gl,t)}var uA=W({round_:hz});function cz(e){let t={x:$(e,"x","rsqrt","float32")};return B.runKernel(Fi,t)}var dA=W({rsqrt_:cz});function fz(e){let t={x:$(e,"x","selu")};return B.runKernel(ld,t)}var pA=W({selu_:fz});function mz(e,t,r,n,a,s=[1,1],i="NHWC"){let o=$(e,"x","separableConv2d"),l=$(t,"depthwiseFilter","separableConv2d"),u=$(r,"pointwiseFilter","separableConv2d"),d=o,h=!1;if(o.rank===3&&(h=!0,d=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");P(d.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${d.rank}.`),P(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),P(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),P(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),P(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let p=l.shape[2],c=l.shape[3];P(u.shape[2]===p*c,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*c}, but got ${u.shape[2]}.`);let m=kh(d,l,n,a,i,s),f=Ls(m,u,1,"valid",i);return h?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Iw=W({separableConv2d_:mz});async function gz(e,t){let r=$(e,"x","setdiff1d"),n=$(t,"y","setdiff1d");P(r.dtype===n.dtype,()=>`x and y should have the same dtype, but got x (${r.dtype}) and y (${n.dtype}).`),P(r.rank===1,()=>`x should be 1D tensor, but got x (${r.shape}).`),P(n.rank===1,()=>`y should be 1D tensor, but got y (${n.shape}).`);let a=await r.data(),s=await n.data(),i=new Set(s),o=0;for(let d=0;d<a.length;d++)i.has(a[d])||o++;let l=new or([o],r.dtype),u=new or([o],"int32");for(let d=0,h=0;d<a.length;d++)i.has(a[d])||(l.values[h]=a[d],u.values[h]=d,h++);return[l.toTensor(),u.toTensor()]}var Sw=gz;function yz(e){let t={x:$(e,"x","sign")};return B.runKernel(ud,t)}var Cw=W({sign_:yz});function Az(e){let t={x:$(e,"x","sin","float32")};return B.runKernel(Pi,t)}var hA=W({sin_:Az});function xz(e){let t={x:$(e,"x","sinh")};return B.runKernel(bl,t)}var cA=W({sinh_:xz});function bz(e,t,r){let n=$(e,"x","slice1d");return P(n.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${n.rank} tensor`),Pe(n,[t],[r])}var Vf=W({slice1d_:bz});function vz(e,t,r){let n=$(e,"x","slice2d");return P(n.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${n.rank} tensor`),Pe(n,t,r)}var fA=W({slice2d_:vz});function wz(e,t,r){let n=$(e,"x","slice3d");return P(n.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${n.rank} tensor`),Pe(n,t,r)}var Pl=W({slice3d_:wz});function kz(e,t,r){let n=$(e,"x","slice4d");return P(n.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${n.rank} tensor`),Pe(n,t,r)}var zo=W({slice4d_:kz});function Iz(e,t=-1){let r=$(e,"logits","softmax","float32");if(t===-1&&(t=r.rank-1),t!==r.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${r.rank} and dim was ${t}`);let n={logits:r},a={dim:t};return B.runKernel(Di,n,a)}var xd=W({softmax_:Iz});function Sz(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(cf,t)}var Uf=W({fft_:Sz});function Cz(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(ff,t)}var Hp=W({ifft_:Cz});function Tz(e){let t=e.shape[e.shape.length-1],r=e.size/t,n;if(t<=2){let a=U(e,[r,t]);n=Hp(a)}else{let a=[r,2*(t-1)],s=U(jp(e),[r,t]),i=U(Ff(e),[r,t]),o=_n(Pe(s,[0,1],[r,t-2]),1),l=L(_n(Pe(i,[0,1],[r,t-2]),1),Se(-1)),u=St([s,o],1),d=St([i,l],1),h=U(Os(u,d),[a[0],a[1]]);n=Hp(h)}if(n=jp(n),e.rank===3&&e.shape[0]!==0){let a=n,s=e.shape[0];n=U(n,[s,n.shape[0]/s,n.shape[1]]),a.dispose()}return n}var mA=W({irfft_:Tz});function Nz(e,t,r=0){let n={x:$(e,"x","split")},a={numOrSizeSplits:t,axis:r};return B.runKernel(wl,n,a)}var Yt=W({split_:Nz});function Ez(e,t){P(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let r=e.shape[e.shape.length-1],n=e.size/r,a;if(t!=null&&t<r){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,a=Pe(e,m,f),r=t}else if(t!=null&&t>r){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-r,a=St([e,_t(m)],e.shape.length-1),r=t}else a=e;let s=at(a),i=U(Os(a,s),[n,r]),o=Uf(i),l=Math.floor(r/2)+1,u=jp(o),d=Ff(o),h=Yt(u,[l,r-l],u.shape.length-1),p=Yt(d,[l,r-l],d.shape.length-1),c=a.shape.slice();return c[a.shape.length-1]=l,U(Os(h[0],p[0]),c)}var Gf=W({rfft_:Ez});function Rz(e,t){let r=$(e,"a","squaredDifference"),n=$(t,"b","squaredDifference");[r,n]=Lt(r,n),yt(r.shape,n.shape);let a={a:r,b:n},s={};return B.runKernel(Li,a,s)}var gA=W({squaredDifference_:Rz});function $z(e,t){let r=$(e,"x","squeeze");return U(r,Nv(r.shape,t).newShape)}var Qe=W({squeeze_:$z});function Mz(e,t=0){let r=Up(e,"tensors","stack","string_or_numeric");P(r.length>=1,()=>"Pass at least one tensor to tf.stack"),r.length>0&&P(t<=r[0].rank,()=>"Axis must be <= rank of the tensor");let n=r,a={axis:t};return B.runKernel(cl,n,a)}var dr=W({stack_:Mz});function Fz(e,t=0){let r={x:$(e,"x","step")},n={alpha:t};return B.runKernel(Ui,r,n)}var Th=W({step_:Fz});function Pz(e,t,r,n,a=0,s=0,i=0,o=0,l=0){let u={x:$(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:r,strides:n,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return B.runKernel(kl,u,d)}var Tw=W({stridedSlice_:Pz});function _z(e){let t={x:$(e,"x","tan","float32")};return B.runKernel(Il,t)}var Nw=W({tan_:_z});function Nt(e,t){Go(e);let r=Fa(e,t);if(r.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Gi(e,null,r,t)}function ca(e,t,r){if(Go(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let n=Fa(e,r);if(n.length!==2&&n.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Gi(e,t,n,r)}function zz(e,t,r){if(Go(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let n=Fa(e,r);if(n.length!==4&&n.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Gi(e,t,n,r)}function Oz(e,t,r){if(Go(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let n=Fa(e,r);if(n.length!==5&&n.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Gi(e,t,n,r)}function Dz(e,t,r){if(Go(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let n=Fa(e,r);if(n.length!==6&&n.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||n,Gi(e,t,n,r)}function Lz(e,t=1,r=!0){let n=$(e,"x","topk");if(n.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=n.shape[n.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:n},i={k:t,sorted:r},[o,l]=B.runKernel(Sl,s,i);return{values:o,indices:l}}var Ew=W({topk_:Lz});function Bz(e,t=0,r=1,n,a){if(n!=null&&n==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new oA(t,r,n,!0,a),i=Le(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var jf=W({truncatedNormal_:Bz});function Wz(e,t=0){let r=$(e,"x","unique","string_or_numeric");P(r.rank>0,()=>"The input tensor must be at least 1D");let n={x:r},a={axis:t},[s,i]=B.runKernel(Cf,n,a);return{values:s,indices:i}}var $g=W({unique_:Wz});function Vz(e,t,r){let n=$(e,"x","unsortedSegmentSum"),a=$(t,"segmentIds","unsortedSegmentSum","int32");P(ku(r),()=>"numSegments must be of dtype int");let s={x:n,segmentIds:a},i={numSegments:r};return B.runKernel(mh,s,i)}var Rw=W({unsortedSegmentSum_:Vz});function Uz(e,t=0){let r=$(e,"x","unstack","string_or_numeric");P(t>=-r.shape.length&&t<r.shape.length,()=>`Axis = ${t} is not in [-${r.shape.length}, ${r.shape.length})`);let n={value:r},a={axis:t};return B.runKernel(Tl,n,a)}var nn=W({unstack_:Uz});function $w(e,t){return nA(e,t,"right")}function Mw(e,t=!0,r,n){return B.makeVariable(e,t,r,n)}function Fw(e,t){let r=[];for(let s=0;s<t.length;s++)t[s]&&r.push(s);let n=Le(e,"int32"),a=Le([r.length,e.length],"int32");for(let s=0;s<r.length;s++){let i=n.indexToLoc(r[s]),o=s*e.length;a.values.set(i,o)}return a.toTensor()}async function Gz(e){let t=$(e,"condition","whereAsync","bool"),r=await t.data(),n=Fw(t.shape,r);return e!==t&&t.dispose(),n}var yA=Gz;async function jz(e,t,r){let n=$(e,"tensor","boolMask"),a=$(t,"mask","boolMask","bool"),s=r==null?0:r,i=a.rank,o=n.shape;P(i>0,()=>"mask cannot be scalar"),Ur(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),d=U(n,u),h=U(a,[-1]),p=await yA(h),c=Qe(p,[1]),m=Tu(d,c,s);return e!==n&&n.dispose(),t!==a&&a.dispose(),c.dispose(),d.dispose(),h.dispose(),p.dispose(),m}var Hz=jz;function qz(e,t,r,n,a=!0){let s=$(e,"v","movingAverage"),i=$(t,"x","movingAverage"),o=$(r,"decay","movingAverage");Zv(s,i),P(Ks(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=Se(1),u=ce(l,o),d=L(ce(i,s),u);if(a){P(n!=null,()=>"When using zeroDebias: true, step is required.");let h=$(n,"step","movingAverage");d=pe(d,ce(l,Ws(o,h)))}return le(s,d)}var Xz=W({movingAverage_:qz});function Kz(e,t,r){let n=$(e,"indices","scatterND","int32"),a=$(t,"updates","scatterND");Fy(a,n,r);let s={indices:n,updates:a},i={shape:r};return B.runKernel(yl,s,i)}var Pw=W({scatterND_:Kz});function Zz(e,t,r,n){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(r.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${r.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==n.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function Yz(e,t,r,n=0){let a=$(e,"sparseIndices","sparseToDense","int32"),s=$(t,"sparseValues","sparseToDense","string_or_numeric"),i=$(n,"defaultValue","sparseToDense",s.dtype);Zz(a,s,r,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:r};return B.runKernel(ch,o,l)}var AA=W({sparseToDense_:Yz});function Jz(e,t){let r=$(t,"indices","gatherND","int32"),n={params:$(e,"x","gatherND","string_or_numeric"),indices:r};return B.runKernel(rl,n)}var _w=W({gatherND_:Jz});function Qz(e,t){if(t==null)return e.shape.slice();if(Ks(e.shape,t))return t;if(e.shape.length===t.length){let r=[];for(let n=0;n<e.shape.length;n++)t[n]==null&&e.shape[n]!=null?r.push(e.shape[n]):r.push(t[n]);return r}return t}function eO(e,t,r,n){let a=$(e,"x","dropout");if(P(a.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),P(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof nt?a.clone():a;let s=Qz(a,r),i=1-t,o=pe(Sh(le(Ad(s,0,1,"float32",n),i)),i);return L(a,o)}var zw=W({dropout_:eO});function Ow(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function xA(e,t,r){let n=1-e%2,a=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+n-1);a[s]=t-r*Math.cos(i)}return Nt(a,"float32")}async function tO(e,t,r=1){let n=$(e,"predictions","inTopK"),a=$(t,"targets","inTopK");P(n.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${n.rank}`),P(n.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${n.rank} and targets rank ${a.rank}`),Ur(n.shape.slice(0,n.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=n.shape[n.shape.length-1];P(r>0&&r<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${r}`);let i=await n.data(),o=await a.data(),[l,u]=[i.length/s,s],d=Ev("bool",l);for(let h=0;h<l;h++){let p=h*u,c=i.subarray(p,p+u),m=[];for(let f=0;f<c.length;f++)m.push({value:c[f],index:f});m.sort((f,g)=>g.value-f.value),d[h]=0;for(let f=0;f<r;f++)if(m[f].index===o[h]){d[h]=1;break}}return e!==n&&n.dispose(),t!==a&&a.dispose(),ft(d,a.shape,"bool")}var rO=tO,Vs={};Be(Vs,{conv2d:()=>sO,depthwiseConv2d:()=>uO,matMul:()=>pO});function nO(e,t,r,n,a,s="NHWC",i){let o=e;e.rank===3&&(o=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),P(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),P(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),P(r.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${r}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],d=s==="NHWC"?l.shape[3]:l.shape[1];P(u===r[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${r[2]}.`),P(d===r[3],()=>`Error in conv2dDerFilter: depth of dy (${d}) must match output depth for filter (${r[3]}).`),jr("conv2dDerFilter",a,i);let h={x:o,dy:l},p={strides:n,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:r};return B.runKernel(af,h,p)}var bA=W({conv2DBackpropFilter_:nO});function Hf(e,t,r){if(r==null||r==="linear")return e;if(r==="relu")return L(e,Th(t));throw new Error(`Cannot compute gradient for fused activation ${r}.`)}function qf(e,t){let r=t,n=Qt(e.shape,t.shape);return n.length>0&&(r=ke(r,n)),U(r,e.shape)}function Xf(e,t,r,n){if(t==="linear")return e;if(t==="relu")return Oa(e);if(t==="elu")return Ih(e);if(t==="relu6")return lA(e);if(t==="prelu")return Wf(e,r);if(t==="leakyrelu")return Pf(e,n);if(t==="sigmoid")return Tr(e);throw new Error(`Unknown fused activation ${t}.`)}var Kf=(e,t)=>!(e>0)||t==="linear";function aO({x:e,filter:t,strides:r,pad:n,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(l=l||"linear",Kf(B.state.gradientDepth,l)===!1){P(a==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${a} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let I=Ls(e,t,r,n,a,s,i);return o!=null&&(I=le(I,o)),Xf(I,l,u,d)}let h=$(e,"x","conv2d","float32"),p=$(t,"filter","conv2d","float32"),c=h,m=!1;h.rank===3&&(m=!0,c=U(h,[1,h.shape[0],h.shape[1],h.shape[2]])),P(c.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${c.rank}.`),P(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),jr("fused conv2d",n,i);let f=a==="NHWC"?c.shape[3]:c.shape[1];P(p.shape[2]===f,()=>`Error in conv2d: depth of input (${f}) must match input depth for filter ${p.shape[2]}.`),P(za(r,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`);let g=wh(c.shape,p.shape,r,s,n,i),y;o!=null&&(y=$(o,"bias","fused conv2d"),[y]=Lt(y,h),a==="NHWC"?yt(g.outShape,y.shape):(P(y.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${y.shape.length}.`),P(y.shape.length===0||y.shape[0]===g.outChannels||y.shape[0]===1,()=>`Error in fused conv2d: bias shape (${y.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let A;if(u!=null){let I=u.shape;if(P(I.length<=1||I.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${I.length}.`),I.length===1)P(I[0]===1||I[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${I}) is not compatible with the number of output channels (${g.outChannels}).`);else if(I.length===3)try{yt(I,g.outShape)}catch(N){let E=`Error in fused conv2d: PReLU activation weights (${I}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(E)}A=$(u,"prelu weights","fused conv2d")}let x=(I,N)=>{P(a==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${a} but only NHWC is currently supported.`);let[E,R,_,M]=N,S=Hf(I,_,l);P(Ds(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let z=Hy(R.shape,S,E,r,n),O=bA(R,S,E.shape,r,n),H=[z,O];if(M!=null){let K=qf(M,S);H.push(K)}return H},b={x:c,filter:p,bias:y,preluActivationWeights:A},w={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?Pa((I,N,E)=>{let R=B.runKernel(_s,b,w);return E([N,I,R]),m&&(R=U(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:x}})(c,p):Pa((I,N,E,R)=>{let _=B.runKernel(_s,b,w);return R([N,I,_,E]),m&&(_=U(_,[_.shape[1],_.shape[2],_.shape[3]])),{value:_,gradFunc:x}})(c,p,y)}var sO=W({fusedConv2d_:aO});function iO(e,t,r,n,a,s=[1,1],i){let o=e;e.rank===3&&(o=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},d={strides:n,pad:a,dimRoundingMode:i,dilations:s,filterShape:r};return B.runKernel(uf,u,d)}var Dw=W({depthwiseConv2dNativeBackpropFilter_:iO});function oO(e,t,r,n,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:r},d={strides:n,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=B.runKernel(df,u,d);return l?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Lw=W({depthwiseConv2dNativeBackpropInput_:oO});function lO({x:e,filter:t,strides:r,pad:n,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(Kf(B.state.gradientDepth,l)===!1){let w=kh(e,t,r,n,a,s,i);return o!=null&&(w=le(w,o)),Xf(w,l,u,d)}let h=$(e,"x","depthwiseConv2d","float32"),p=$(t,"filter","depthwiseConv2d","float32"),c=h,m=!1;h.rank===3&&(m=!0,c=U(h,[1,h.shape[0],h.shape[1],h.shape[2]])),P(c.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),P(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),P(c.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),s==null&&(s=[1,1]),P(za(r,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`),jr("fused depthwiseConv2d",n,i);let f=wh(c.shape,p.shape,r,s,n,i,!0),g;o!=null&&(g=$(o,"bias","fused conv2d"),[g]=Lt(g,h),yt(f.outShape,g.shape));let y;u!=null&&(y=$(u,"prelu weights","fused depthwiseConv2d"));let A=(w,I)=>{P(Ds(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,E,R,_]=I,M=Hf(w,R,l),S=Lw(E.shape,M,N,r,n,s,i),z=Dw(E,M,N.shape,r,n,s,i);if(_!=null){let O=qf(g,M);return[S,z,O]}return[S,z]},x={x:c,filter:p,bias:g,preluActivationWeights:y},b={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?Pa((w,I,N)=>{let E=B.runKernel(zs,x,b);return N([I,w,E]),m&&(E=U(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:A}})(c,p):Pa((w,I,N,E)=>{let R=B.runKernel(zs,x,b);return E([I,w,R,N]),m&&(R=U(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:A}})(c,p,g)}var uO=W({fusedDepthwiseConv2d_:lO});function dO({a:e,b:t,transposeA:r=!1,transposeB:n=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Kf(B.state.gradientDepth,s)===!1){let _=Ze(e,t,r,n);return a!=null&&(_=le(_,a)),Xf(_,s,i,o)}let l=$(e,"a","fused matMul"),u=$(t,"b","fused matMul");[l,u]=Lt(l,u);let d=r?l.shape[l.rank-2]:l.shape[l.rank-1],h=n?u.shape[u.rank-1]:u.shape[u.rank-2],p=r?l.shape[l.rank-1]:l.shape[l.rank-2],c=n?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=It(m),y=It(f);P(d===h,()=>`Error in fused matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${r} and transposeB=${n} must match.`);let A=yt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([p,c]),x=r?U(l,[g,d,p]):U(l,[g,p,d]),b=n?U(u,[y,c,h]):U(u,[y,h,c]),w;a!=null&&(w=$(a,"bias","fused matMul"),[w]=Lt(w,l),yt(A,w.shape));let I;i!=null&&(I=$(i,"prelu weights","fused matMul"));let N=(_,M)=>{let[S,z,O,H]=M,K=Hf(U(_,O.shape),O,s),D,Q;if(!r&&!n?(D=Ze(K,z,!1,!0),Q=Ze(S,K,!0,!1)):!r&&n?(D=Ze(K,z,!1,!1),Q=Ze(K,S,!0,!1)):r&&!n?(D=Ze(z,K,!1,!0),Q=Ze(S,K,!1,!1)):(D=Ze(z,K,!0,!0),Q=Ze(K,S,!0,!0)),a!=null){let V=qf(H,K);return[D,Q,V]}else return[D,Q]},E={a:x,b,bias:w,preluActivationWeights:I},R={transposeA:r,transposeB:n,activation:s,leakyreluAlpha:o};return a==null?Pa((_,M,S)=>{let z=B.runKernel(Ps,E,R);return S([_,M,z]),{value:U(z,A),gradFunc:N}})(x,b):Pa((_,M,S,z)=>{let O=B.runKernel(Ps,E,R);return z([_,M,O,S]),{value:U(O,A),gradFunc:N}})(x,b,w)}var pO=W({fusedMatMul_:dO});function hO(e){return xA(e,.54,.46)}var cO=W({hammingWindow_:hO});function fO(e){return xA(e,.5,.5)}var Bw=W({hannWindow_:fO});function mO(e,t,r,n=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Pe(e,s,t)),s+=r;if(n)for(;s<e.size;){let o=s+t-e.size,l=St([Pe(e,s,t-o),md([o],a)]);i.push(l),s+=r}return i.length===0?ca([],[0,t]):U(St(i),[i.length,t])}var Ww=W({frame_:mO});function gO(e,t,r,n,a=Bw){n==null&&(n=Ow(t));let s=Ww(e,t,r),i=L(s,a(t));return Gf(i,n)}var yO=W({stft_:gO});function AO(e,t,r,n,a="bilinear",s=0){let i=$(e,"image","cropAndResize"),o=$(t,"boxes","cropAndResize","float32"),l=$(r,"boxInd","cropAndResize","int32"),u=o.shape[0];P(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),P(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),P(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),P(n.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${n.length}.`),P(n[0]>=1&&n[1]>=1,()=>`cropSize must be atleast [1,1], but was ${n}`),P(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let d={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:n};return B.runKernel(Ko,d,h)}var xO=W({cropAndResize_:AO});function bO(e){let t=$(e,"image","flipLeftRight","float32");P(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let r={image:t};return B.runKernel(el,r,{})}var vO=W({flipLeftRight_:bO});function wO(e){let t=$(e,"image","grayscaleToRGB"),r=t.rank-1,n=t.shape[r];P(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),P(n===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${n}.`);let a=new Array(t.rank);return a.fill(1,0,r),a[r]=3,Gn(t,a)}var kO=W({grayscaleToRGB_:wO});function IO(e,t,r=0,n=.5){let a=$(e,"image","rotateWithOffset","float32");P(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:r,center:n};return B.runKernel(El,s,i)}var SO=W({rotateWithOffset_:IO});function bd(e,t,r,n,a,s){n==null&&(n=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return r=Math.min(r,i),P(0<=n&&n<=1,()=>`iouThreshold must be in [0, 1], but was '${n}'`),P(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),P(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),P(t.rank===1,()=>"scores must be a 1D tensor"),P(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),P(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:r,iouThreshold:n,scoreThreshold:a,softNmsSigma:s}}function CO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY){let s=$(e,"boxes","nonMaxSuppression","float32"),i=$(t,"scores","nonMaxSuppression","float32"),o=bd(s,i,r,n,a);r=o.maxOutputSize,n=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:r,iouThreshold:n,scoreThreshold:a};return B.runKernel(ul,{boxes:s,scores:i},l)}var TO=W({nonMaxSuppression_:CO});function NO(e,t,r){let n=EO(e,t,r),a=n<0?-(n+1):n;e.splice(a,0,t)}function EO(e,t,r){return $O(e,t,r||RO)}function RO(e,t){return e>t?1:e<t?-1:0}function $O(e,t,r){let n=0,a=e.length,s=0,i=!1;for(;n<a;){s=n+(a-n>>>1);let o=r(t,e[s]);o>0?n=s+1:(a=s,i=!o)}return i?n:-n-1}function Vw(e,t,r,n,a){return vA(e,t,r,n,a,0)}function Uw(e,t,r,n,a,s){return vA(e,t,r,n,a,0,!1,s,!0)}function Gw(e,t,r,n,a,s){return vA(e,t,r,n,a,s,!0)}function vA(e,t,r,n,a,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>a&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(K3);let d=s>0?-.5/s:0,h=[],p=[];for(;h.length<r&&u.length>0;){let g=u.pop(),{score:y,boxIndex:A,suppressBeginIndex:x}=g;if(y<a)break;let b=!1;for(let w=h.length-1;w>=x;--w){let I=MO(e,A,h[w]);if(I>=n){b=!0;break}if(g.score=g.score*FO(n,d,I),g.score<=a)break}g.suppressBeginIndex=h.length,b||(g.score===y?(h.push(A),p.push(g.score)):g.score>a&&NO(u,g,K3))}let c=h.length,m=r-c;o&&m>0&&(h.push(...new Array(m).fill(0)),p.push(...new Array(m).fill(0)));let f={selectedIndices:h};return i&&(f.selectedScores=p),l&&(f.validOutputs=c),f}function MO(e,t,r){let n=e.subarray(t*4,t*4+4),a=e.subarray(r*4,r*4+4),s=Math.min(n[0],n[2]),i=Math.min(n[1],n[3]),o=Math.max(n[0],n[2]),l=Math.max(n[1],n[3]),u=Math.min(a[0],a[2]),d=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),p=Math.max(a[1],a[3]),c=(o-s)*(l-i),m=(h-u)*(p-d);if(c<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,d),y=Math.min(o,h),A=Math.min(l,p),x=Math.max(y-f,0)*Math.max(A-g,0);return x/(c+m-x)}function FO(e,t,r){let n=Math.exp(t*r*r);return r<=e?n:0}function K3(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function PO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY){let s=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),o=bd(s,i,r,n,a);r=o.maxOutputSize,n=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],d=l[1],{selectedIndices:h}=Vw(u,d,r,n,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),Nt(h,"int32")}var _O=PO;function zO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=$(e,"boxes","nonMaxSuppression"),o=$(t,"scores","nonMaxSuppression"),l=bd(i,o,r,n,a,s);r=l.maxOutputSize,n=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},d={maxOutputSize:r,iouThreshold:n,scoreThreshold:a,softNmsSigma:s},h=B.runKernel(dl,u,d);return{selectedIndices:h[0],selectedScores:h[1]}}var OO=W({nonMaxSuppressionWithScore_:zO});async function DO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=$(e,"boxes","nonMaxSuppressionAsync"),o=$(t,"scores","nonMaxSuppressionAsync"),l=bd(i,o,r,n,a,s);r=l.maxOutputSize,n=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),d=u[0],h=u[1],{selectedIndices:p,selectedScores:c}=Gw(d,h,r,n,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Nt(p,"int32"),selectedScores:Nt(c)}}var LO=DO;function BO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=$(e,"boxes","nonMaxSuppression"),o=$(t,"scores","nonMaxSuppression"),l=bd(i,o,r,n,a,null),u=l.maxOutputSize,d=l.iouThreshold,h=l.scoreThreshold,p={boxes:i,scores:o},c={maxOutputSize:u,iouThreshold:d,scoreThreshold:h,padToMaxOutputSize:s},m=B.runKernel(ad,p,c);return{selectedIndices:m[0],validOutputs:m[1]}}var WO=W({nonMaxSuppressionPadded_:BO});async function VO(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=$(e,"boxes","nonMaxSuppressionAsync"),o=$(t,"scores","nonMaxSuppressionAsync"),l=bd(i,o,r,n,a,null),u=l.maxOutputSize,d=l.iouThreshold,h=l.scoreThreshold,[p,c]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=Uw(p,c,u,d,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Nt(m,"int32"),validOutputs:Se(f,"int32")}}var UO=VO;function GO(e,t,r=!1,n=!1){let a=$(e,"images","resizeBilinear");P(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),P(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),P(n===!1||r===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:r,halfPixelCenters:n,size:t},u=B.runKernel($i,o,l);return i?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var jO=W({resizeBilinear_:GO});function HO(e,t,r=!1,n=!1){let a=$(e,"images","resizeNearestNeighbor");P(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),P(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),P(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),P(n===!1||r===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:r,halfPixelCenters:n,size:t},u=B.runKernel(od,o,l);return i?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var qO=W({resizeNearestNeighbor_:HO});function XO(e,t="binary",r=!1,n=.5){let a=$(e,"image","threshold"),s=.2989,i=.587,o=.114,l=a.shape[0]*a.shape[1],u=L(Nt([n]),255),d,h,p,c;if(P(a.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${a.rank}.`),P(a.shape[2]===3||a.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${a.shape[2]}.`),P(a.dtype==="int32"||a.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${a.dtype}.`),P(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),a.shape[2]===3){[d,h,p]=Yt(a,[1,1,1],-1);let f=L(d,s),g=L(h,i),y=L(p,o);c=le(le(f,g),y)}else c=e;if(t==="otsu"){let f=Gy(me(uA(c),"int32"),ft([]),256);u=KO(f,l)}let m=r?Fl(c,u):mn(c,u);return me(L(m,255),"int32")}function KO(e,t){let r=Nt([-1]),n=Nt([0]),a=Nt([0]),s,i,o,l,u,d;for(let h=0;h<e.size-1;h++){s=Pe(e,0,h+1),i=Pe(e,h+1),u=pe(ke(s),t),d=pe(ke(i),t);let p=ke(L(s,Eu(0,s.size)));o=pe(p,ke(s));let c=md(i.shape,s.size),m=le(Eu(0,i.size),c),f=L(i,m);l=pe(ke(f),ke(i));let g=ce(o,l),y=ce(o,l),A=L(u,d);a=L(L(A,g),y);let x=mn(a,n);n=Vr(x,a,n),r=Vr(x,Nt([h]),r)}return r}var ZO=W({threshold_:XO});function YO(e,t,r="nearest",n="constant",a=0,s){let i=$(e,"image","transform","float32"),o=$(t,"transforms","transform","float32");P(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),P(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),P(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:r,fillMode:n,fillValue:a,outputShape:s};return B.runKernel(Cl,l,u)}var JO=W({transform_:YO});function QO(e,t,r){P(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),P(r%1===0,()=>`bandPart(): numUpper must be an integer, got ${r}.`);let n=$(e,"a","bandPart");P(n.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${n.rank}.`);let a=n.shape,[s,i]=n.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(r<=i))throw new Error(`bandPart(): numUpper (${r}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),r<0&&(r=i);let o=U(Eu(0,s,1,"int32"),[-1,1]),l=Eu(0,i,1,"int32"),u=ce(o,l),d=ga(Fl(u,Se(+t,"int32")),Ml(u,Se(-r,"int32"))),h=_t([s,i],n.dtype);return U(dr(nn(U(n,[-1,s,i])).map(p=>Vr(d,p,h))),a)}var eD=W({bandPart_:QO});function tD(e){let t;if(Array.isArray(e)){t=!1,P(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s<e.length;++s)P(e[s].shape[0]===a,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Yt(e,e.shape[0],0).map(a=>Qe(a,[0]));P(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let r=[],n=e;for(let a=0;a<e.length;++a)r.push(B.tidy(()=>{let s=n[a];if(a>0)for(let i=0;i<a;++i){let o=L(ke(L(r[i],s)),r[i]);s=ce(s,o)}return pe(s,Mf(s,"euclidean"))}));return t?dr(r,0):r}var rD=W({gramSchmidt_:tD});function nD(e,t=!1){if(P(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Z3(e,t);{let r=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),n=nn(U(e,[r,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];n.forEach(l=>{let[u,d]=Z3(l,t);a.push(u),s.push(d)});let i=U(dr(a,0),e.shape),o=U(dr(s,0),e.shape);return[i,o]}}function Z3(e,t=!1){return B.tidy(()=>{P(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let r=e.shape[0],n=e.shape[1],a=Qy(r),s=Wr(e),i=ca([[1]],[1,1]),o=Wr(i),l=r>=n?n:r;for(let u=0;u<l;++u){let d=s,h=o,p=a;[o,s,a]=B.tidy(()=>{let c=Pe(s,[u,u],[r-u,1]),m=Mf(c),f=Pe(s,[u,u],[1,1]),g=Vr(mn(f,0),ca([[-1]]),ca([[1]])),y=ce(f,L(g,m)),A=pe(c,y);A.shape[0]===1?o=Wr(i):o=St([i,Pe(A,[1,0],[A.shape[0]-1,A.shape[1]])],0);let x=Dt(pe(Ze(g,y),m)),b=Pe(s,[u,0],[r-u,n]),w=L(x,o),I=tt(o);if(u===0)s=ce(b,Ze(w,Ze(I,b)));else{let R=ce(b,Ze(w,Ze(I,b)));s=St([Pe(s,[0,0],[u,n]),R],0)}let N=tt(w),E=Pe(a,[0,u],[r,a.shape[1]-u]);if(u===0)a=ce(E,Ze(Ze(E,o),N));else{let R=ce(E,Ze(Ze(E,o),N));a=St([Pe(a,[0,0],[r,u]),R],1)}return[o,s,a]}),te([d,h,p])}return!t&&r>n&&(a=Pe(a,[0,0],[r,n]),s=Pe(s,[0,0],[n,n])),[a,s]})}var aD=W({qr_:nD}),jw=(e=>(e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS",e))(jw||{});function sD(e,t,r=3){let n=$(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=$(t,"weights","computeWeightedLoss"));let s=a==null?n:L(n,a);if(r===0)return s;if(r===2)return ke(s);if(r===1){if(a==null)return Vt(s);{let i=n.size/a.size,o=pe(ke(s),ke(a));return i>1?pe(o,Se(i)):o}}if(r===3){if(a==null)return pe(ke(s),Se(n.size));{let i=L(a,hn(n.shape)),o=me(ke(Nu(i,Se(0))),"float32");return pe(ke(s),o)}}throw Error(`Unknown reduction: ${r}`)}var rs=W({computeWeightedLoss_:sD});function iD(e,t,r,n=3){let a=$(e,"labels","absoluteDifference"),s=$(t,"predictions","absoluteDifference"),i=null;r!=null&&(i=$(r,"weights","absoluteDifference")),Ur(a.shape,s.shape,"Error in absoluteDifference: ");let o=sr(ce(a,s));return rs(o,i,n)}var oD=W({absoluteDifference_:iD});function lD(e,t,r,n,a=3){let s=$(e,"labels","cosineDistance"),i=$(t,"predictions","cosineDistance"),o=null;n!=null&&(o=$(n,"weights","cosineDistance")),Ur(s.shape,i.shape,"Error in cosineDistance: ");let l=Se(1),u=ce(l,ke(L(s,i),r,!0));return rs(u,o,a)}var uD=W({cosineDistance_:lD});function dD(e,t,r,n=3){let a=$(e,"labels","hingeLoss"),s=$(t,"predictions","hingeLoss"),i=null;r!=null&&(i=$(r,"weights","hingeLoss")),Ur(a.shape,s.shape,"Error in hingeLoss: ");let o=Se(1);a=ce(L(Se(2),a),o);let l=Oa(ce(o,L(a,s)));return rs(l,i,n)}var pD=W({hingeLoss_:dD});function hD(e,t,r,n=1,a=3){let s=$(e,"labels","huberLoss"),i=$(t,"predictions","huberLoss"),o=null;r!=null&&(o=$(r,"weights","huberLoss")),Ur(s.shape,i.shape,"Error in huberLoss: ");let l=Se(n),u=sr(ce(i,s)),d=Ch(u,l),h=ce(u,d),p=le(L(Se(.5),xt(d)),L(l,h));return rs(p,o,a)}var cD=W({huberLoss_:hD});function fD(e,t,r,n=1e-7,a=3){let s=$(e,"labels","logLoss"),i=$(t,"predictions","logLoss"),o=null;r!=null&&(o=$(r,"weights","logLoss")),Ur(s.shape,i.shape,"Error in logLoss: ");let l=Se(1),u=Se(n),d=Dt(L(s,Fn(le(i,u)))),h=L(ce(l,s),Fn(le(ce(l,i),u))),p=ce(d,h);return rs(p,o,a)}var mD=W({logLoss_:fD});function gD(e,t,r,n=3){let a=$(e,"labels","meanSquaredError"),s=$(t,"predictions","meanSquaredError"),i=null;r!=null&&(i=$(r,"weights","meanSquaredError")),Ur(a.shape,s.shape,"Error in meanSquaredError: ");let o=gA(a,s);return rs(o,i,n)}var yD=W({meanSquaredError_:gD});function AD(e,t){let r=$(e,"labels","sigmoidCrossEntropyWithLogits"),n=$(t,"logits","sigmoidCrossEntropyWithLogits");Ur(r.shape,n.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Oa(n),s=L(n,r),i=_f(Mn(Dt(sr(n))));return le(ce(a,s),i)}function xD(e,t,r,n=0,a=3){let s=$(e,"multiClassLabels","sigmoidCrossEntropy"),i=$(t,"logits","sigmoidCrossEntropy"),o=null;if(r!=null&&(o=$(r,"weights","sigmoidCrossEntropy")),Ur(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),n>0){let u=Se(n),d=Se(1),h=Se(.5);s=le(L(s,ce(d,u)),L(h,u))}let l=AD(s,i);return rs(l,o,a)}var bD=W({sigmoidCrossEntropy_:xD});function vD(e,t,r=-1){if(r===-1&&(r=t.rank-1),r!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${r}`);return Pa((n,a,s)=>{let i=yw(a,[r],!0),o=ce(me(a,"float32"),i);s([n,o]);let l=Dt(L(o,n));return{value:ke(l,[r]),gradFunc:(u,d)=>{let[h,p]=d,c=_o(u.shape,[r]);return[L(U(u,c),ce(me(h,"float32"),Mn(p))),L(U(u,c),ce(Mn(p),me(h,"float32")))]}}})(e,t)}function wD(e,t,r,n=0,a=3){let s=$(e,"onehotLabels","softmaxCrossEntropy"),i=$(t,"logits","softmaxCrossEntropy"),o=null;if(r!=null&&(o=$(r,"weights","softmaxCrossEntropy")),Ur(s.shape,i.shape,"Error in softmaxCrossEntropy: "),n>0){let u=Se(n),d=Se(1),h=Se(s.shape[1]);s=le(L(s,ce(d,u)),pe(u,h))}let l=vD(s,i);return rs(l,o,a)}var kD=W({softmaxCrossEntropy_:wD});function ID(e,t,r,n){let a=$(e,"indices","sparseFillEmptyRows","int32"),s=$(t,"values","sparseFillEmptyRows"),i=$(r,"denseShape","sparseFillEmptyRows","int32"),o=$(n,"defaultValue","sparseFillEmptyRows",s.dtype);if(a.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${a.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:a,values:s,denseShape:i,defaultValue:o},u=B.runKernel(dh,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var SD=W({sparseFillEmptyRows_:ID});function CD(e,t,r){let n=$(e,"inputIndices","sparseReshape","int32"),a=$(t,"inputShape","sparseReshape","int32"),s=$(r,"newShape","sparseReshape","int32");if(n.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${n.shape}`);if(a.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${a.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:n,inputShape:a,newShape:s},o=B.runKernel(pd,i);return{outputIndices:o[0],outputShape:o[1]}}var TD=W({sparseReshape_:CD});function ND(e,t,r){let n=$(e,"data","sparseSegmentMean"),a=$(t,"indices","sparseSegmentMean","int32"),s=$(r,"segmentIds","sparseSegmentMean","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${a.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:n,indices:a,segmentIds:s};return B.runKernel(ph,i)}var ED=W({sparseSegmentMean_:ND});function RD(e,t,r){let n=$(e,"data","sparseSegmentSum"),a=$(t,"indices","sparseSegmentSum","int32"),s=$(r,"segmentIds","sparseSegmentSum","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${a.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:n,indices:a,segmentIds:s};return B.runKernel(hh,i)}var $D=W({sparseSegmentSum_:RD});function MD(e,t,r,n,a,s,i,o){let l=$(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=$(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let d={separator:r,nGramWidths:n,leftPad:a,rightPad:s,padWidth:i,preserveShortSequences:o},h={data:l,dataSplits:u},p=B.runKernel(fh,h,d);return{nGrams:p[0],nGramsSplits:p[1]}}var FD=W({stringNGrams_:MD});function PD(e,t,r=!0){let n=$(e,"input","stringSplit","string"),a=$(t,"delimiter","stringSplit","string");if(n.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${n.shape}`);if(a.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${a.shape}`);let s={skipEmpty:r},i={input:n,delimiter:a},o=B.runKernel(If,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var _D=W({stringSplit_:PD});function zD(e,t){let r=$(e,"input","stringToHashBucketFast","string"),n={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let a={input:r};return B.runKernel(Sf,a,n)}var OD=W({stringToHashBucketFast_:zD}),DD={fft:Uf,ifft:Hp,rfft:Gf,irfft:mA},LD={hammingWindow:cO,hannWindow:Bw,frame:Ww,stft:yO},Ie={flipLeftRight:vO,grayscaleToRGB:kO,resizeNearestNeighbor:qO,resizeBilinear:jO,rotateWithOffset:SO,cropAndResize:xO,nonMaxSuppression:TO,nonMaxSuppressionAsync:_O,nonMaxSuppressionWithScore:OO,nonMaxSuppressionWithScoreAsync:LO,nonMaxSuppressionPadded:WO,nonMaxSuppressionPaddedAsync:UO,threshold:ZO,transform:JO},Hw={bandPart:eD,gramSchmidt:rD,qr:aD},BD={absoluteDifference:oD,computeWeightedLoss:rs,cosineDistance:uD,hingeLoss:pD,huberLoss:cD,logLoss:mD,meanSquaredError:yD,sigmoidCrossEntropy:bD,softmaxCrossEntropy:kD},Sp={sparseFillEmptyRows:SD,sparseReshape:TD,sparseSegmentMean:ED,sparseSegmentSum:$D},o0={stringNGrams:FD,stringSplit:_D,stringToHashBucketFast:OD},ns=class extends R7{minimize(e,t=!1,r){let{value:n,grads:a}=this.computeGradients(e,r);if(r!=null){let s=r.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return te(a),t?n:(n.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return gw(e,t)}dispose(){this.iterations_!=null&&te(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Se(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(ns,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Zf=class extends ns{constructor(e,t,r=null){super(),this.learningRate=e,this.rho=t,this.epsilon=r,this.accumulatedGrads=[],this.accumulatedUpdates=[],r==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t],a=!1;this.accumulatedGrads[r]==null&&(this.accumulatedGrads[r]={originalName:`${t}/accum_grad`,variable:X(()=>at(n).variable(a))}),this.accumulatedUpdates[r]==null&&(this.accumulatedUpdates[r]={originalName:`${t}/accum_var`,variable:X(()=>at(n).variable(a))});let s=Array.isArray(e)?e[r].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[r].variable,o=this.accumulatedUpdates[r].variable;X(()=>{let l=le(L(i,this.rho),L(xt(s),1-this.rho)),u=L(pe(Er(le(o,this.epsilon)),Er(le(i,this.epsilon))),s),d=le(L(o,this.rho),L(xt(u),1-this.rho));i.assign(l),o.assign(d);let h=le(L(u,-this.learningRate),n);n.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(te(this.accumulatedGrads.map(e=>e.variable)),te(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,r=!1;this.accumulatedGrads=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.accumulatedUpdates=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(r)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Zf.className="Adadelta";ji(Zf);var Yf=class extends ns{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t];this.accumulatedGrads[r]==null&&(this.accumulatedGrads[r]={originalName:`${t}/accumulator`,variable:X(()=>md(n.shape,this.initialAccumulatorValue).variable(!1))});let a=Array.isArray(e)?e[r].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[r].variable;X(()=>{let i=le(s,xt(a));s.assign(i);let o=le(L(pe(a,Er(le(i,B.backend.epsilon()))),-this.learningRate),n);n.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&te(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(r=>({originalName:r.name,variable:r.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Yf.className="Adagrad";ji(Yf);var Jf=class extends ns{constructor(e,t,r,n=null){super(),this.learningRate=e,this.beta1=t,this.beta2=r,this.epsilon=n,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],X(()=>{this.accBeta1=Se(t).variable(),this.accBeta2=Se(r).variable()}),n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(r=>r.name):Object.keys(e);X(()=>{let r=ce(1,this.accBeta1),n=ce(1,this.accBeta2);t.forEach((a,s)=>{let i=B.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:X(()=>at(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:X(()=>at(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedSecondMoment[s].variable,h=le(L(u,this.beta1),L(l,1-this.beta1)),p=le(L(d,this.beta2),L(xt(l),1-this.beta2)),c=pe(h,r),m=pe(p,n);u.assign(h),d.assign(p);let f=le(L(pe(c,le(Er(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&te(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&te(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),X(()=>{this.accBeta1.assign(Ws(this.beta1,this.iterations_+1)),this.accBeta2.assign(Ws(this.beta2,this.iterations_+1))});let t=e.length/2,r=!1;this.accumulatedFirstMoment=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(r)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Jf.className="Adam";ji(Jf);var Qf=class extends ns{constructor(e,t,r,n=null,a=0){super(),this.learningRate=e,this.beta1=t,this.beta2=r,this.epsilon=n,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],X(()=>{this.iteration=Se(0).variable(),this.accBeta1=Se(t).variable()}),n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(r=>r.name):Object.keys(e);X(()=>{let r=ce(1,this.accBeta1),n=pe(-this.learningRate,le(L(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=B.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:at(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:at(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedWeightedInfNorm[s].variable,h=le(L(u,this.beta1),L(l,1-this.beta1)),p=L(d,this.beta2),c=sr(l),m=ts(p,c);u.assign(h),d.assign(m);let f=le(L(pe(n,r),pe(h,le(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(le(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&te(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&te(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Qf.className="Adamax";ji(Qf);var Nh=class extends ns{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=Array.isArray(e)?e[r].tensor:e[t];if(n==null)return;let a=B.registeredVariables[t];X(()=>{let s=le(L(this.c,n),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=gr(Se(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Nh.className="SGD";ji(Nh);var em=class extends Nh{constructor(e,t,r=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=r,this.accumulations=[],this.m=Se(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t];this.accumulations[r]==null&&(this.accumulations[r]={originalName:`${t}/momentum`,variable:X(()=>at(n).variable(!1))});let a=this.accumulations[r].variable,s=Array.isArray(e)?e[r].tensor:e[t];s!=null&&X(()=>{let i,o=le(L(this.m,a),s);this.useNesterov?i=le(L(this.c,le(s,L(o,this.m))),n):i=le(L(this.c,o),n),a.assign(o),n.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&te(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(r=>({originalName:r.name,variable:r.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};em.className="Momentum";ji(em);var tm=class extends ns{constructor(e,t=.9,r=0,n=null,a=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=r,this.epsilon=n,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,n==null&&(this.epsilon=B.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t],a=!1;this.accumulatedMeanSquares[r]==null&&(this.accumulatedMeanSquares[r]={originalName:`${t}/rms`,variable:X(()=>at(n).variable(a))}),this.accumulatedMoments[r]==null&&(this.accumulatedMoments[r]={originalName:`${t}/momentum`,variable:X(()=>at(n).variable(a))}),this.accumulatedMeanGrads[r]==null&&this.centered&&(this.accumulatedMeanGrads[r]={originalName:`${t}/mg`,variable:X(()=>at(n).variable(a))});let s=Array.isArray(e)?e[r].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[r].variable,o=this.accumulatedMoments[r].variable;X(()=>{let l=le(L(i,this.decay),L(xt(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[r].variable,d=le(L(u,this.decay),L(s,1-this.decay)),h=pe(L(s,this.learningRate),Er(ce(l,le(xt(d),this.epsilon)))),p=le(L(o,this.momentum),h);i.assign(l),u.assign(d),o.assign(p);let c=ce(n,p);n.assign(c)}else{let u=le(L(i,this.decay),L(xt(s),1-this.decay)),d=le(L(o,this.momentum),pe(L(s,this.learningRate),Er(le(u,this.epsilon))));i.assign(u),o.assign(d);let h=ce(n,d);n.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&te(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&te(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&te(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,r=!1;this.accumulatedMeanSquares=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.accumulatedMoments=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};tm.className="RMSProp";ji(tm);var Is=class{static sgd(e){return new Nh(e)}static momentum(e,t,r=!1){return new em(e,t,r)}static rmsprop(e,t=.9,r=0,n=null,a=!1){return new tm(e,t,r,n,a)}static adam(e=.001,t=.9,r=.999,n=null){return new Jf(e,t,r,n)}static adadelta(e=.001,t=.95,r=null){return new Zf(e,t,r)}static adamax(e=.002,t=.9,r=.999,n=null,a=0){return new Qf(e,t,r,n,a)}static adagrad(e,t=.1){return new Yf(e,t)}},xo={sgd:Is.sgd,momentum:Is.momentum,adadelta:Is.adadelta,adagrad:Is.adagrad,rmsprop:Is.rmsprop,adamax:Is.adamax,adam:Is.adam},WD=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function wA(){return new Promise(e=>WD(()=>e()))}var C={};Be(C,{ERF_A1:()=>JD,ERF_A2:()=>QD,ERF_A3:()=>eL,ERF_A4:()=>tL,ERF_A5:()=>rL,ERF_P:()=>YD,PARALLELIZE_THRESHOLD:()=>kA,SELU_SCALE:()=>Xw,SELU_SCALEALPHA:()=>qw,applyActivation:()=>Xf,assertAndGetBroadcastShape:()=>yt,assertAxesAreInnerMostDims:()=>AP,assertParamsConsistent:()=>VD,assignToTypedArray:()=>lL,axesAreInnerMostDims:()=>Yy,calculateShapes:()=>b7,checkEinsumDimSizes:()=>fL,checkPadOnDimRoundingMode:()=>jr,combineLocations:()=>ow,complexWithEvenIndex:()=>sL,complexWithOddIndex:()=>iL,computeConv2DInfo:()=>wh,computeConv3DInfo:()=>U7,computeDefaultPad:()=>Vy,computeDilation2DInfo:()=>gF,computeOptimalWindowSize:()=>GD,computeOutAndReduceShapes:()=>lw,computeOutShape:()=>UD,computePool2DInfo:()=>V7,computePool3DInfo:()=>yF,convertConv2DDataFormat:()=>G7,decodeEinsumEquation:()=>hL,eitherStridesOrDilationsAreOne:()=>za,expandShapeToKeepDim:()=>_o,exponent:()=>dL,exponents:()=>uL,fromStringArrayToUint8:()=>_L,fromUint8ToStringArray:()=>PL,getAxesPermutation:()=>uw,getBroadcastDims:()=>g7,getComplexWithIndex:()=>oL,getEinsumComputePath:()=>mL,getEinsumPermutation:()=>cL,getFusedBiasGradient:()=>qf,getFusedDyActivation:()=>Hf,getImageCenter:()=>jD,getInnerMostAxes:()=>xP,getPermuted:()=>qD,getReductionAxes:()=>Qt,getReshaped:()=>HD,getReshapedPermuted:()=>XD,getSliceBeginCoords:()=>KD,getSliceSize:()=>ZD,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>xL,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>bL,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>vL,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>IL,getSparseReshapeInputOutputMismatchErrorMessage:()=>CL,getSparseReshapeInputOutputMultipleErrorMessage:()=>SL,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>wL,getSparseReshapeNegativeOutputDimErrorMessage:()=>kL,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>RL,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>TL,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>NL,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>EL,getUndoAxesPermutation:()=>Jy,isIdentityPermutation:()=>gL,log:()=>GR,mergeRealAndImagArrays:()=>nL,prepareAndValidate:()=>x7,prepareSplitSize:()=>AL,segment_util:()=>Kw,shouldFuse:()=>Kf,slice_util:()=>Ot,splitRealAndImagArrays:()=>aL,tupleValuesAreOne:()=>Ds,upcastType:()=>Nr,validateInput:()=>Fy,validateUpdateShape:()=>My,warn:()=>Cs});function VD(e,t){let r=e[0].length;e.forEach((a,s)=>{P(a.length===r,()=>`Error in concat${r}D: rank of tensors[${s}] must be the same as the rank of the rest (${r})`)}),P(t>=0&&t<r,()=>`Error in concat${r}D: axis must be between 0 and ${r-1}.`);let n=e[0];e.forEach((a,s)=>{for(let i=0;i<r;i++)P(i===t||a[i]===n[i],()=>`Error in concat${r}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${n}) along the non-concatenated axis ${s}.`)})}function UD(e,t){let r=e[0].slice();for(let n=1;n<e.length;n++)r[t]+=e[n][t];return r}var kA=30;function GD(e){return e<=kA?e:x0(e,Math.floor(Math.sqrt(e)))}function jD(e,t,r){let n=r*(typeof e=="number"?e:e[0]),a=t*(typeof e=="number"?e:e[1]);return[n,a]}function HD(e,t,r,n=!0){let a=[];if(n)a=a.concat(t.slice(0)),a.push(e[0]/r),a=a.concat(e.slice(1));else{a=a.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)a=a.concat([e[i+1]/t[i],t[i]]);a=a.concat(e.slice(s+1))}return a}function qD(e,t,r=!0){let n=[];if(r){n.push(t);for(let a=t+1;a<e;++a)a<=2*t?(n.push(a),n.push(a-(t+1))):n.push(a)}else{let a=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?s.push(i):a.push(i);n.push(...a),n.push(0),n.push(...s)}return n}function XD(e,t,r,n=!0){let a=[];n?a.push(e[0]/r):a.push(e[0]*r);for(let s=1;s<e.length;++s)s<=t.length?n?a.push(t[s-1]*e[s]):a.push(e[s]/t[s-1]):a.push(e[s]);return a}function KD(e,t){let r=[0];for(let n=0;n<t;++n)r.push(e[n][0]);return r}function ZD(e,t,r){let n=e.slice(0,1);for(let a=0;a<r;++a)n.push(e[a+1]-t[a][0]-t[a][1]);return n}var qw=1.7580993408473768,Xw=1.0507009873554805,YD=.3275911,JD=.254829592,QD=-.284496736,eL=1.421413741,tL=-1.453152027,rL=1.061405429;function nL(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let r=new Float32Array(e.length*2);for(let n=0;n<r.length;n+=2)r[n]=e[n/2],r[n+1]=t[n/2];return r}function aL(e){let t=new Float32Array(e.length/2),r=new Float32Array(e.length/2);for(let n=0;n<e.length;n+=2)t[n/2]=e[n],r[n/2]=e[n+1];return{real:t,imag:r}}function sL(e){let t=Math.ceil(e.length/4),r=new Float32Array(t),n=new Float32Array(t);for(let a=0;a<e.length;a+=4)r[Math.floor(a/4)]=e[a],n[Math.floor(a/4)]=e[a+1];return{real:r,imag:n}}function iL(e){let t=Math.floor(e.length/4),r=new Float32Array(t),n=new Float32Array(t);for(let a=2;a<e.length;a+=4)r[Math.floor(a/4)]=e[a],n[Math.floor(a/4)]=e[a+1];return{real:r,imag:n}}function oL(e,t){let r=e[t*2],n=e[t*2+1];return{real:r,imag:n}}function lL(e,t,r,n){e[n*2]=t,e[n*2+1]=r}function uL(e,t){let r=new Float32Array(e/2),n=new Float32Array(e/2);for(let a=0;a<Math.ceil(e/2);a++){let s=(t?2:-2)*Math.PI*(a/e);r[a]=Math.cos(s),n[a]=Math.sin(s)}return{real:r,imag:n}}function dL(e,t,r){let n=(r?2:-2)*Math.PI*(e/t),a=Math.cos(n),s=Math.sin(n);return{real:a,imag:s}}var lg="->",pL=/->/g,Y3=",",J3="...";function hL(e,t){e=e.replace(/\s/g,"");let r=(e.length-e.replace(pL,"").length)/lg.length;if(r<1)throw new Error("Equations without an arrow are not supported.");if(r>1)throw new Error(`Equation must contain exactly one arrow ("${lg}").`);let[n,a]=e.split(lg);P(n.indexOf(J3)===-1,()=>`The ellipsis notation ("${J3}") is not supported yet.`);let s=n.split(Y3),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let p=0;p<a.length;++p){let c=a[p];if(!s.some(m=>m.indexOf(c)!==-1))throw new Error(`Output subscripts contain the label ${c} not present in the input subscripts.`);o.indexOf(c)===-1&&o.push(c)}for(let p=0;p<n.length;++p){let c=n[p];o.indexOf(c)===-1&&c!==Y3&&o.push(c)}let l=new Array(s.length);for(let p=0;p<i;++p){if(new Set(s[p].split("")).size!==s[p].length)throw new Error(`Found duplicate axes in input component ${s[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let c=0;c<s[p].length;++c)l[p].push(o.indexOf(s[p][c]))}let u=o.length,d=a.length,h=[];for(let p=d;p<u;++p)h.push(p);return{allDims:o,summedDims:h,idDims:l}}function cL(e,t){let r=new Array(e);r.fill(-1);for(let a=0;a<t.length;++a)r[t[a]]=a;let n=[];for(let a=0;a<e;++a)r[a]===-1&&n.push(a);return r=r.filter(a=>a!==-1),{permutationIndices:r,expandDims:n}}function fL(e,t,r){let n=new Array(e);for(let a=0;a<r.length;++a){let s=r[a].shape;for(let i=0;i<t[a].length;++i)n[t[a][i]]===void 0?n[t[a][i]]=s[i]:P(n[t[a][i]]===s[i],()=>`Expected dimension ${n[t[a][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function mL(e,t){let r=e,n=[],a=0;e.length===0&&r.push(-1),a=e.length+1;for(let i=0;i<a;++i)n.push([]);let s=[];for(let i=0;i<r.length;++i){let o=r[i],l=yL(t,o);for(let u of l)s.indexOf(u)===-1&&(n[i].push(u),s.push(u))}return{path:r,steps:n}}function gL(e){return e.every((t,r)=>t===r)}function yL(e,t){let r=[];for(let n=0;n<e.length;++n)(e[n].length===0||e[n].indexOf(t)!==-1||t===-1)&&r.push(n);return r}function AL(e,t,r=0){let n=[];if(typeof t=="number")P(e.shape[r]%t===0,()=>"Number of splits must evenly divide the axis."),n=new Array(t).fill(e.shape[r]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);P(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[r]-i}P(e.shape[r]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),n=t}return n}function xL(e){return`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${e}`}function bL(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function vL(e,t,r){return`indices(${e}, 0) is invalid: ${t} >= ${r}`}function wL(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function kL(e,t){return`size ${e} must be non-negative, not ${t}`}function IL(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function SL(e,t){let r=It(e),n=It(t);return`Input to reshape is a SparseTensor with ${r}
dense values, but the requested shape requires a multiple of ${n}. inputShape=${e} outputShape= ${t}`}function CL(e,t){let r=It(e),n=It(t);return`Input to reshape is a tensor with ${r} dense values, but the requested shape has ${n}. inputShape=${e} outputShape=${t}`}function TL(){return"segment ids must be >= 0"}function NL(){return"segment ids are not increasing"}function EL(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function RL(e,t,r){return`Bad: indices[${e}] == ${t} out of range [0, ${r})`}var Kw={};Be(Kw,{collectGatherOpShapeInfo:()=>FL,computeOutShape:()=>ML,segOpComputeOptimalWindowSize:()=>$L});function $L(e,t){let r=!1,n;for(e<=kA?(n=e,r=!0):n=x0(e,Math.floor(Math.sqrt(e)));!r;)n>t||n===e?r=!0:n=x0(e,n+1);return n}function ML(e,t,r){let n=[],a=e.length;for(let s=0;s<a;s++)s!==t?n.push(e[s]):n.push(r);return n}function FL(e,t,r,n){let a=t.shape.length,s=e.shape.length;if(n!==0&&(n<-a||n>a))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${n}`);if(n<0&&(n+=a),n>s)throw new Error(`batchDims (${n}) must be less than rank(x) (
${s}).`);if(r<n)throw new Error(`batchDims (${n}) must be less than or equal to axis (${r}).`);for(let h=0;h<n;++h)if(e.shape[h]!==t.shape[h])throw new Error(`x.shape[${h}]: ${e.shape[h]} should be equal to indices.shape[${h}]: ${t.shape[h]}.`);let i=e.shape[r],o=[],l=1,u=1,d=1;for(let h=0;h<n;++h)o.push(e.shape[h]),l*=e.shape[h];for(let h=n;h<r;h++)o.push(e.shape[h]),u*=e.shape[h];for(let h=n;h<a;h++)o.push(t.shape[h]);for(let h=r+1;h<s;h++)o.push(e.shape[h]),d*=e.shape[h];return{batchSize:l,sliceSize:d,outerSize:u,dimSize:i,outputShape:o}}function PL(e){try{return e.map(t=>k0(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function _L(e){return e.map(t=>yh(t))}var Kn={};Be(Kn,{nonMaxSuppressionV3Impl:()=>Vw,nonMaxSuppressionV4Impl:()=>Uw,nonMaxSuppressionV5Impl:()=>Gw,whereImpl:()=>Fw});var Ga=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ga.prototype)}},da=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,da.prototype)}},q=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,q.prototype)}},Ve=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ve.prototype)}},Zw=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Zw.prototype)}},Yw=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let r=this.cache.keys().next().value;this.cache.delete(r)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let r=this.cache.keys().next().value;this.cache.delete(r)}this.maxEntries=e}};function Oo(e,t){if(Array.isArray(e)){let r=[];for(let n=0;n<t;n++)r=r.concat(e);return r}else{let r=new Array(t);return r.fill(e),r}}function Na(e,t){if(!e)throw new Zw(t)}function Q3(e,t){let r=0;for(let n of e)n===t&&r++;return r}function tn(e){return e.length===1?e[0]:e}function Tt(e){return Array.isArray(e)?e:[e]}function ja(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function ko(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,r)=>r.toUpperCase())}var Vn={};function IA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Mg(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Mg(t));else{let t=Object.keys(e);for(let r of t){let n=e[r];n!=null&&typeof n=="object"&&(!Array.isArray(n)&&n.type==="ndarray"&&typeof n.value=="number"?e[r]=n.value:Mg(n))}}}function Eh(e,t={},r={},n="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in r)i=r[s];else if(s in Vn)i=Vn[s];else if(i=t[s],i==null)throw new q(`Unknown ${n}: ${e}. This may be due to one of the following reasons:
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new q(`${n}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,o,l;if(i in r?[o,l]=r[i]:i in Vn?[o,l]=Vn.className:i in t&&([o,l]=t[i]),o==null)throw new q(`Unknown ${n}: ${i}. This may be due to one of the following reasons:
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let c of Object.keys(Vn))u[c]=Vn[c];for(let c of Object.keys(r))u[c]=r[c];let d=s.config;d.customObjects=u;let h={...Vn};for(let c of Object.keys(r))Vn[c]=r[c];Mg(s.config);let p=l(o,s.config,r,a);return Vn={...h},p}else{let u={...Vn};for(let h of Object.keys(r))Vn[h]=r[h];let d=new o(s.config);return Vn={...u},d}}}function zL(e,t){return e<t?-1:e>t?1:0}function Kc(e,t){return-1*zL(e,t)}function Rs(e){if(e==null)return e;let t=[];for(let r of e)t.indexOf(r)===-1&&t.push(r);return t}function OL(e){if(e==null)throw new q(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function _l(e,t,r){if(r!=null&&e.indexOf(r)<0)throw new q(`${r} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function SA(e,t,r=0,n=1/0){return Na(r>=0),Na(n>=r),Array.isArray(e)&&e.length>=r&&e.length<=n&&e.every(a=>typeof a===t)}function yr(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((r,n)=>yr(r,`element ${n+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Jw(e)}.`)}function Jw(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Jw(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function DL(e,t,r){let n=r!=null?r():v.now(),a;return(...s)=>{let i=r!=null?r():v.now();return i-n<t||(n=i,a=e(...s)),a}}function Qw(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var LL=0;function e6(){return LL++}var Zc={};function rm(e=""){return e in Zc||(Zc[e]=0),Zc[e]+=1,e+Zc[e].toString()}var BL=["channelsFirst","channelsLast"],WL=["nearest","bilinear"],VL=["valid","same","causal"],UL=["max","avg"],GL=["sum","mul","concat","ave"],uu=new Map;function jt(e){_l(BL,"DataFormat",e)}function jL(e){_l(WL,"InterpolationFormat",e)}function Ln(e){_l(VL,"PaddingMode",e)}function t6(e){_l(UL,"PoolMode",e)}var _p=[],e4="/";function Eo(e,t){_p.push(e);try{let r=t();return _p.pop(),r}catch(r){throw _p.pop(),r}}function HL(){return _p.length===0?"":_p.join(e4)+e4}function r6(e){if(!a6(e))throw new Error("Not a valid tensor name: '"+e+"'");return HL()+e}function n6(e){if(!a6(e))throw new Error("Not a valid tensor name: '"+e+"'");uu.has(e)||uu.set(e,0);let t=uu.get(e);if(uu.set(e,uu.get(e)+1),t>0){let r=`${e}_${t}`;return uu.set(r,1),r}else return e}var qL=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function a6(e){return!!e.match(qL)}function XL(e){return e===parseInt(e.toString(),10)}function $s(e,t,r){t==null&&(t=0),r==null&&(r=e.length);let n=1;for(let a=t;a<r;++a)n*=e[a];return n}function Ru(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let r=0;r<e.length;r++){let n=e[r];n<t&&(t=n)}return t}function Us(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let r=0;r<e.length;r++){let n=e[r];n>t&&(t=n)}return t}function ya(e,t){if(t<e)throw new q(`end (${t}) < begin (${e}) is forbidden.`);let r=[];for(let n=e;n<t;++n)r.push(n);return r}var ug;function ir(){return ug==null&&(ug=Dn().epsilon()),ug}function Aa(){return"channelsLast"}function nm(e,t){return me(e,t)}function Rh(e,t=-1){let r=e.shape.slice();return t<0&&(t=r.length+t+1),r.splice(t,0,1),U(e,r)}function KL(e,t){return X(()=>{if(e.shape.length!==2)throw new q(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let r=Rh(e,1);return Fg(r,[1,t,1])})}function ZL(e){let t=[$s(e.shape)];return U(e,t)}function YL(e){if(e.rank<=1)throw new q(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],$s(e.shape,1)];return U(e,t)}function Ro(e,t,r){return X(()=>{switch(e.rank){case 1:return Vf(e,t,r);case 2:return fA(e,[t,0],[r,e.shape[1]]);case 3:return Pl(e,[t,0,0],[r,e.shape[1],e.shape[2]]);case 4:return zo(e,[t,0,0,0],[r,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Pe(e,[t,0,0,0,0],[r,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Pe(e,[t,0,0,0,0,0],[r,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new q(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function dg(e,t,r){return X(()=>{switch(e.rank){case 1:return Vf(e,t,r);case 2:return fA(e,[0,t],[e.shape[0],r]);case 3:return Pl(e,[0,0,t],[e.shape[0],e.shape[1],r]);case 4:return zo(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],r]);default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Yc(e,t,r,n){return X(()=>{switch(e.rank){case 1:return Vf(e,t,r);case 2:switch(n){case 1:return Ro(e,t,r);case 2:return dg(e,t,r);default:throw new q(`The axis is not within the rank of the tensor ${n}`)}case 3:switch(n){case 1:return Ro(e,t,r);case 2:return Pl(e,[0,t,0],[e.shape[0],r,e.shape[2]]);case 3:return dg(e,t,r);default:throw new q(`The axis is not within the rank of the tensor ${n}`)}case 4:switch(n){case 1:return Ro(e,t,r);case 2:return zo(e,[0,t,0,0],[e.shape[0],r,e.shape[2],e.shape[3]]);case 3:return zo(e,[0,0,t,0],[e.shape[0],e.shape[1],r,e.shape[3]]);case 4:return dg(e,t,r);default:throw new q(`The axis is not within the rank of the tensor ${n}`)}default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function CA(e,t=-1){let r;return t<0&&(r=e[0].rank,r!==0?t=r:t=0),t===e[0].rank&&(t=-1),St(e,t)}function t4(e,t){switch(e.rank){case 1:return Z7([e,t]);case 2:return fd([e,t],0);case 3:return Y7([e,t],0);case 4:return J7([e,t],0);default:throw new q(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Fg(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new q(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Gn(e,t)}function am(e,t=0,r=1,n,a){return ww(e,t,r,n,a)}function $a(e,t,r,n){if(e.rank<2||t.rank<2)throw new Ve(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new Ve(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return Vs.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:n?Pg(e.rank,n,Aa()):null,activation:r});{let a=e.shape.slice(),s=a.pop();e=U(e,[-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],d=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=U(tt(t,d),[l,-1]);let h=[...a,...u],p=!1,c=!1;return U(Vs.matMul({a:e,b:t,transposeA:p,transposeB:c,bias:n?Pg(e.rank,n,Aa()):null,activation:r}),h)}}function s6(e,t,r){return X(()=>(Array.isArray(t)?t=Nt(t,"int32"):t=me(t,"int32"),Tu(e,t,r)))}function $h(e){return L(e,e)}function Pg(e,t,r){let n=t.shape;if(t.rank!==1&&t.rank!==e)throw new q(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(r==="channelsFirst")return n.length===1?U(t,[1,n[0],1,1,1]):U(t,[1,n[3],n[0],n[1],n[2]]);if(r==="channelsLast")return n.length===1?U(t,[1,1,1,1,n[0]]):U(t,[1].concat(n))}else if(e===4){if(r==="channelsFirst")return n.length===1?U(t,[1,n[0],1,1]):U(t,[1,n[2],n[0],n[1]]);if(r==="channelsLast")return n.length===1?U(t,[1,1,1,n[0]]):U(t,[1].concat(n))}else if(e===3){if(r==="channelsFirst")return n.length===1?U(t,[1,n[0],1]):U(t,[1,n[1],n[0]]);if(r==="channelsLast")return n.length===1?U(t,[1,1,n[0]]):U(t,[1].concat(n))}else if(e<3)return t;throw new q(`Unsupported input rank by biasAdd: ${t.rank}`)}function va(e,t,r){return X(()=>(r==null&&(r=Aa()),jt(r),le(e,Pg(e.rank,t,r))))}function JL(e,t=1){if(t!==1)throw new Ve(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Ih(e)}function QL(e){return X(()=>pe(e,le(sr(e),1)))}function i6(e,t,r,n){return X(()=>zw(e,t,r,n))}function eB(e){return X(()=>{let t=le(.5,L(.2,e));return cn(t,0,1)})}function Mh(e,t,r=!1){return r?e():t()}var tB=["fanIn","fanOut","fanAvg"],rB=["normal","uniform","truncatedNormal"];function nB(e){_l(tB,"FanMode",e)}function aB(e){_l(rB,"Distribution",e)}var Zn=class extends ue.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},TA=class extends Zn{apply(e,t){return _t(e,t)}};TA.className="Zeros";ue.registerClass(TA);var sm=class extends Zn{apply(e,t){return hn(e,t)}};sm.className="Ones";ue.registerClass(sm);var NA=class extends Zn{constructor(e){if(super(),typeof e!="object")throw new q(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new q(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return X(()=>L(Se(this.value),hn(e,t)))}getConfig(){return{value:this.value}}};NA.className="Constant";ue.registerClass(NA);var EA=class extends Zn{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Ad(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};EA.className="RandomUniform";ue.registerClass(EA);var RA=class extends Zn{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`randomNormal does not support dType ${t}.`);return am(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};RA.className="RandomNormal";ue.registerClass(RA);var $A=class extends Zn{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`truncatedNormal does not support dType ${t}.`);return jf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};$A.className="TruncatedNormal";ue.registerClass($A);var MA=class extends Zn{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return X(()=>{if(e.length!==2||e[0]!==e[1])throw new q("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,Qy(e[0]))})}getConfig(){return{gain:this.gain}}};MA.className="Identity";ue.registerClass(MA);function sB(e,t="channelsLast"){let r,n;if(jt(t),e.length===2)r=e[0],n=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=$s(e,2);r=e[1]*a,n=e[0]*a}else if(t==="channelsLast"){let a=$s(e,0,e.length-2);r=e[e.length-2]*a,n=e[e.length-1]*a}}else{let a=$s(e);r=Math.sqrt(a),n=Math.sqrt(a)}return[r,n]}var an=class extends Zn{constructor(e){if(super(),e.scale<0)throw new q(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,nB(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,aB(this.distribution),this.seed=e.seed}apply(e,t){let r=sB(e),n=r[0],a=r[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,n):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(n+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`${this.getClassName()} does not support dType ${t}.`);return jf(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Ad(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};an.className="VarianceScaling";ue.registerClass(an);var im=class extends an{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return an.className}};im.className="GlorotUniform";ue.registerClass(im);var om=class extends an{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return an.className}};om.className="GlorotNormal";ue.registerClass(om);var lm=class extends an{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return an.className}};lm.className="HeNormal";ue.registerClass(lm);var um=class extends an{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return an.className}};um.className="HeUniform";ue.registerClass(um);var dm=class extends an{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return an.className}};dm.className="LeCunNormal";ue.registerClass(dm);var pm=class extends an{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return an.className}};pm.className="LeCunNormal";ue.registerClass(pm);var FA=class extends Zn{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Ve("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return X(()=>{if(e.length<2)throw new Ve("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let r=e[0]>e[1]?[e[1],e[0]]:e,n=am(r,0,1,"float32"),a=Hw.gramSchmidt(n);return e[0]>e[1]&&(a=tt(a)),L(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};FA.className="Orthogonal";ue.registerClass(FA);var r4={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function n4(e,t={}){return Eh(e,ue.SerializationMap.getMap().classNameMap,t,"initializer")}function zt(e){return IA(e)}function $t(e){if(typeof e=="string"){let t=e in r4?r4[e]:e;if(t==="GlorotNormal")return new om;if(t==="GlorotUniform")return new im;if(t==="HeNormal")return new lm;if(t==="HeUniform")return new um;if(t==="LeCunNormal")return new dm;if(t==="LeCunUniform")return new pm;{let r={};return r.className=t,r.config={},n4(r)}}else return e instanceof Zn?e:n4(e)}function _g(e){return Array.isArray(e)&&Array.isArray(e[0])}function R0(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function je(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new q(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function mt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new q(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function $0(e){let t=0;for(let r of e)r.shape.length===0?t+=1:t+=r.shape.reduce((n,a)=>n*a);return t}var a4="Variable",o6=class{constructor(e,t="float32",r=a4,n=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=e6(),r=r==null?a4:r,this.originalName=r6(r),this.name=n6(this.originalName),this.trainable_=n,this.constraint=a,this.val=Mw(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),iB(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function iB(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function zg(e){return e.map(t=>t.read())}function PA(e){e.forEach(t=>{t[0].write(t[1])})}var Zt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},pa=class{constructor(e,t,r,n,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=r,this.inputs=n,this.callArgs=a,this.outputTensorIndex=i,this.id=e6(),s!=null&&(this.originalName=r6(s),this.name=n6(this.originalName)),this.rank=t.length}},oB=0,hm=class{constructor(e,t){this.callArgs=t,this.id=oB++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let r of e.inboundLayers)r!=null&&r.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},lB=0,st=class extends ue.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=lB++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let r=this.getClassName();t=ja(r)+"_"+rm(r)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let r;if(e.batchInputShape!=null)r=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),r=[a].concat(e.inputShape)}this.batchInputShape=r;let n=e.dtype;n==null&&(n=e.inputDType),n==null&&(n="float32"),this.dtype=n}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new da(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new q(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return tn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return tn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Ga(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Ga(`Layer ${this.name} is not connected, no input to return.`);return tn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Ga(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Ga(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return tn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=Tt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=Tt(this.inputSpec);if(e.length!==t.length)throw new q(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let r=0;r<e.length;r++){let n=e[r],a=t[r];if(a==null)continue;let s=n.rank;if(a.ndim!=null&&s!==a.ndim)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected ndim=${a.ndim}, found ndim=${s}`);if(a.maxNDim!=null&&s>a.maxNDim)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s<a.minNDim)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected min_ndim=${a.minNDim}, found ndim=${s}.`);if(a.dtype!=null&&n.dtype!==a.dtype)throw new q(`Input ${r} is incompatible with layer ${this.name} : expected dtype=${a.dtype}, found dtype=${n.dtype}.`);if(a.axes){let i=n.shape;for(let o in a.axes){let l=Number(o),u=a.axes[o],d=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(d)===-1)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i<a.shape.length;++i){let o=a.shape[i],l=n.shape[i];if(o!=null&&l!=null&&o!==l)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected shape=${a.shape}, found shape=${n.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let r=Tt(e),n=!0;for(let s of r)if(!(s instanceof pa)){n=!1;break}let a=!0;for(let s of r)if(s instanceof pa){a=!1;break}if(n===a)throw new q("Arguments to apply() must be all SymbolicTensors or all Tensors");return Eo(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of Tt(e))s.push(i.shape);this.build(tn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=Tt(s),o=[];for(let l of i)r.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=tn(o),this.activityRegularizer!=null)throw new Ve("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=uB(e),i=this.computeOutputShape(s),o,l=dB(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,d)=>new pa(l,u,this,Tt(e),t,this.name,d)):o=new pa(l,i,this,Tt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Ve("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((r,n)=>{r!=null&&e[n]!=null&&e[n]!==r&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Ga(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let r=JSON.stringify(t.outputShapes);e.indexOf(r)===-1&&e.push(r)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Ga(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new da(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return $0(this.weights)}build(e){this.built=!0}getWeights(e=!1){return zg(e?this.trainableWeights:this.weights)}setWeights(e){X(()=>{let t=this.weights;if(t.length!==e.length)throw new q(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let r=[],n=zg(t);for(let a=0;a<n.length;++a){let s=n[a],i=t[a],o=e[a];if(!v.arraysEqual(s.shape,o.shape))throw new q(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);r.push([i,o])}PA(r)})}addWeight(e,t,r,n,a,s,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new q(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),r==null&&(r="float32"),this.fastWeightInitDuringBuild&&(n=o!=null?o():$t("zeros"));let l=n.apply(t,r),u=new o6(l,r,e,s,i);return l.dispose(),a!=null&&this.addLoss(()=>a.apply(u.read())),s==null&&(s=!0),s?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=Tt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(r=>{if(r!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,r,n,a,s,i=null){let o=Tt(e);t=Tt(t),r=Tt(r),n=Tt(n),a=R0(a),s=R0(s);let l=[],u=[],d=[];for(let h of o)l.push(h.sourceLayer),u.push(h.nodeIndex),d.push(h.tensorIndex);new hm({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:d,inputTensors:o,outputTensors:t,inputMasks:r,outputMasks:n,inputShapes:a,outputShapes:s},i);for(let h=0;h<t.length;h++)t[h].sourceLayer=this,t[h].nodeIndex=this.inboundNodes.length-1,t[h].tensorIndex=h}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function uB(e){e=Tt(e);let t=[];for(let r of e)t.push(r.shape);return tn(t)}function dB(e){return"float32"}function l6(e,t,r){if((t==null||r!=null&&r>0)&&(t=e.sourceLayer,r=e.nodeIndex),t.inboundNodes.length===0)return[e];{let n=t.inboundNodes[r];if(n.inboundLayers.length===0)return n.inputTensors;{let a=[];for(let s=0;s<n.inboundLayers.length;s++){let i=n.inputTensors[s],o=n.inboundLayers[s],l=n.nodeIndices[s],u=l6(i,o,l);for(let d of u)a.indexOf(d)===-1&&a.push(d)}return a}}}var vd=class extends st{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:rm("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new q("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new q("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new q("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let r=e.dtype||"float32";this.batchInputShape=t,this.dtype=r,this.inputSpec=[{shape:t}];let n=new pa(this.dtype,this.batchInputShape,this,[],{},this.name);n.nodeIndex=0,n.tensorIndex=0,new hm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[n],outputTensors:[n],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new q(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};vd.className="InputLayer";ue.registerClass(vd);function u6(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new q("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let r=e.dtype;return r==null&&(r="float32"),new vd({batchInputShape:t,name:e.name,dtype:r,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function pB(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return me(t,e.dtype)}catch(r){throw new q(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Co=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Co)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,r){if(this.id2Value[e.id]==null)this.id2Value[e.id]=pB(e,t),this.name2Id[e.name]=e.id,r!=null&&(this.id2Mask[e.id]=r);else throw new q(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof pa){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof pa){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&te(this.id2Mask)}},M0=new Yw,F0=new Yw;function hB(e){M0!=null&&M0.setMaxEntries(e),F0!=null&&F0.setMaxEntries(e)}function Cp(e,t,r,n){let a=r==null?!1:r.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);n!=null&&(n.maxNumTensors=-1/0,n.minNumTensors=1/0);let d=o.join(",")+"|"+t.names().sort().join(","),h=M0.get(d),p;if(h==null){let m=cB(i,t);h=m.sorted,p=m.recipientCounts,M0.put(d,h),F0.put(d,p)}p={},a||Object.assign(p,F0.get(d));let c=new Co(t);for(let m=0;m<h.length;++m){if(n!=null){let R=C0().numTensors;R>n.maxNumTensors&&(n.maxNumTensors=R),R<n.minNumTensors&&(n.minNumTensors=R)}let f=h[m],g=f.sourceLayer;if(g instanceof vd)continue;let y=[],A=[],x=[],b=!1;for(let R of f.inputs){let _=c.getValue(R),M=c.getMask(R);y.push(_),A.push(M),M!=null&&(b=!0),a||(p[R.name]--,p[R.name]===0&&!t.hasKey(R)&&o.indexOf(R.name)===-1&&!_.isDisposed&&R.sourceLayer.stateful!==!0&&x.push(_))}b&&(r=r||{},r.mask=A[0]);let w=Tt(g.apply(y,r)),I=null;g.supportsMasking&&(I=g.computeMask(y,A));let N=mB(f),E=Array.isArray(N)?N:[N];for(let R=0;R<E.length;++R){c.hasKey(E[R])||c.add(E[R],w[R],Array.isArray(I)?I[0]:I);let _=o.indexOf(E[R].name);_!==-1&&(l[_]=w[R])}a||te(x)}return c.disposeMasks(),s?l:l[0]}function cB(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let r=[],n={};if(e.length===1){let a=s4(e[0],t);r=a.sorted,n=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=s4(s,t);for(let l of i)a.has(l.name)||(r.push(l),a.add(l.name));for(let l in o)n[l]==null&&(n[l]=new Set),o[l].forEach(u=>n[l].add(u))}}return{sorted:r,recipientCounts:fB(n)}}function fB(e){let t={};for(let r in e)t[r]=e[r].size;return t}function s4(e,t){let r=new Set,n=[],a={};for(let o of t.names())r.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(r.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),n.push(o),r.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)a[u.name]==null&&(a[u.name]=new Set),a[u.name].add(o.name),!r.has(u.name)&&s.push(u)}}return{sorted:n,recipientMap:a}}function mB(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let r=null;for(let n=0;n<e.sourceLayer.inboundNodes.length;++n)for(let a of e.sourceLayer.inboundNodes[n].outputTensors)if(a.id===e.id){r=n;break}t=e.sourceLayer.getOutputAt(r)}return t}var gB=Z();gB.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,hB);var d6={kernelName:jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,Th(me(r,"float32"),-1))}}},yB={kernelName:Bu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=xt(me(r,"float32")),a=Er(ce(Se(1),n));return Dt(pe(e,a))}}}},AB={kernelName:Wu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=Er(ce(xt(me(r,"float32")),1));return pe(e,n)}}}},xB={kernelName:Ja,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=yt(r.shape,n.shape);return{a:()=>{let s=e,i=Qt(r.shape,a);return i.length>0&&(s=ke(s,i)),U(s,r.shape)},b:()=>{let s=e,i=Qt(n.shape,a);return i.length>0&&(s=ke(s,i)),U(s,n.shape)}}}},bB={kernelName:Zs,saveAllInputs:!0,gradFunc:(e,t)=>{let r={};return t.forEach((n,a)=>{r[a]=()=>e.clone()}),r}},vB={kernelName:Ys,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>at(r)}}},wB={kernelName:Gu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>at(r)}}},kB={kernelName:ju,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,Er(ce(Se(1),xt(me(r,"float32")))))}}},IB={kernelName:Hu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=Er(le(Se(1),xt(me(r,"float32"))));return pe(e,n)}}}},SB={kernelName:Ku,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=yt(r.shape,n.shape);return{a:()=>{let s=le(xt(r),xt(n)),i=L(e,pe(n,s)),o=Qt(r.shape,a);return o.length>0&&(i=ke(i,o)),U(i,r.shape)},b:()=>{let s=le(xt(r),xt(n)),i=Dt(L(e,pe(r,s))),o=Qt(n.shape,a);return o.length>0&&(i=ke(i,o)),U(i,n.shape)}}}},CB={kernelName:qu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,le(xt(me(r,"float32")),1))}}},TB={kernelName:Xu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,ce(Se(1),xt(me(r,"float32"))))}}};function NB(e,t,r,n,a,s){let i=$(e,"dy","avgPool3dGrad"),o=$(t,"input","avgPool3dGrad"),l=i,u=o,d=!1;o.rank===4&&(d=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),P(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),P(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),jr("avgPool3dGrad",a,s);let h={dy:l,input:u},p={filterSize:r,strides:n,pad:a,dimRoundingMode:s},c=B.runKernel(tf,h,p);return d?U(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var EB=W({avgPool3dGrad_:NB}),RB={kernelName:Qp,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=r;return{x:()=>EB(e,n,a,s,i,o)}}};function $B(e,t,r,n,a){let s=$(e,"dy","avgPoolGrad"),i=$(t,"input","avgPoolGrad");P(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=U(s,[1,s.shape[0],s.shape[1],s.shape[2]])),P(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),P(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let d={dy:l,input:o},h={filterSize:r,strides:n,pad:a},p=B.runKernel(ef,d,h);return u?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var MB=W({avgPoolGrad_:$B}),FB={kernelName:Js,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{filterSize:a,strides:s,pad:i}=r;return{x:()=>MB(e,n,a,s,i)}}},PB={kernelName:Qs,inputsToSave:["a","b"],gradFunc:(e,t,r)=>{let[n,a]=t,{transposeA:s,transposeB:i}=r;return!s&&!i?{a:()=>Ze(e,a,!1,!0),b:()=>Ze(n,e,!0,!1)}:!s&&i?{a:()=>Ze(e,a,!1,!1),b:()=>Ze(e,n,!0,!1)}:s&&!i?{a:()=>Ze(a,e,!1,!0),b:()=>Ze(n,e,!1,!1)}:{a:()=>Ze(a,e,!0,!0),b:()=>Ze(e,n,!0,!0)}}},_B={kernelName:Ho,gradFunc:(e,t,r)=>{let{blockShape:n,crops:a}=r;return{x:()=>Bf(e,n,a)}}},zB={kernelName:Lv,gradFunc:(e,t,r)=>{let n=r,a=n.inputShape,s=n.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>ke(e,o,!0)}}},OB={kernelName:ei,gradFunc:e=>({x:()=>e.clone()})},DB={kernelName:ti,gradFunc:e=>({x:()=>at(e)})},LB={kernelName:Qa,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{clipValueMin:a,clipValueMax:s}=r;return{x:()=>Vr(ga(Ml(n,a),Fl(n,s)),e,at(e))}}},BB={kernelName:th,inputsToSave:["x"],gradFunc:d6.gradFunc},WB={kernelName:qo,saveAllInputs:!0,gradFunc:(e,t,r)=>{let n=t.map(o=>o.shape),{axis:a}=r,s=Hn(a,t[0].shape)[0],i=n.map(o=>o[s]);return Yt(e,i,s).map(o=>()=>o)}},VB={kernelName:ri,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let[n,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=r;return P(Ds(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Hy(n.shape,e,a,i,o,l),filter:()=>bA(n,e,a.shape,i,o,l)}}},UB={kernelName:ni,inputsToSave:["dy","filter"],gradFunc:(e,t,r)=>{let[n,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=r;return{dy:()=>Ls(e,a,s,i,o,1,l),filter:()=>bA(e,n,a.shape,s,i,o,l)}}};function GB(e,t,r,n,a){let s=e;e.rank===4&&(s=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),P(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),P(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),P(r.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${r}.`),P(s.shape[4]===r[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${r[3]}.`),P(i.shape[4]===r[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${r[4]}).`);let o={x:s,dy:i},l={strides:n,pad:a,filterShape:r};return B.runKernel(sf,o,l)}var jB=W({conv3DBackpropFilter_:GB}),HB={kernelName:rh,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let{dilations:n,strides:a,pad:s}=r;P(Ds(n),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${n}'`);let[i,o]=t;return{x:()=>Q7(i.shape,e,o,a,s),filter:()=>jB(i,e,o.shape,a,s)}}},qB={kernelName:ai,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(Dt(hA(me(r,"float32"))),e)}}},XB={kernelName:si,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(cA(me(r,"float32")),e)}}},KB={kernelName:ii,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{axis:a,exclusive:s,reverse:i}=r;return{x:()=>{let o=uw([a],n.rank),l=Zy(e,a,s,!i);return o!=null&&(l=tt(l,o)),l}}}},ZB={kernelName:oi,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let{dilations:n,strides:a,pad:s,dimRoundingMode:i}=r,o=n==null?[1,1]:n;P(Ds(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return P(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),P(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),P(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),P(za(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),jr("depthwiseConv2d",s,i),{x:()=>Lw(l.shape,e,u,a,s,o,i),filter:()=>Dw(l,e,u.shape,a,s,o,i)}}},YB={kernelName:nh,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let[n,a]=t,s={x:n,filter:a,dy:e},i={x:n,filter:a,dy:e};return{x:()=>B.runKernel(b0,s,r),filter:()=>B.runKernel(v0,i,r)}}},JB={kernelName:ui,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t,n={dy:e,y:r};return{x:()=>B.runKernel(hf,n)}}},QB={kernelName:Zu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t,n=L(Mn(Dt(xt(r))),2/Math.sqrt(Math.PI));return{x:()=>L(e,n)}}},eW={kernelName:di,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,r)}}},tW={kernelName:Jo,inputsToSave:["input"],gradFunc:(e,t)=>{let[r]=t;return{input:()=>U(e,r.shape)}}},rW={kernelName:Qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,Mn(r))}}},nW={kernelName:pi,gradFunc:e=>({x:()=>at(e)})},aW={kernelName:hi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=yt(r.shape,n.shape);return{a:()=>{let s=pe(e,me(n,"float32")),i=Qt(r.shape,a);return i.length>0?U(ke(s,i),r.shape):s},b:()=>{let s=L(e,me(r,"float32")),i=Qt(n.shape,a);i.length>0&&(s=U(ke(s,i),n.shape));let o=xt(n);return Dt(pe(s,me(o,"float32")))}}}},sW={kernelName:ci,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,r)=>{let{varianceEpsilon:n}=r,[a,s,i,o]=t,l=o==null?Se(1):o,u=Qt(s.shape,a.shape),d=[];if(s.rank===1){for(let f=0;f<a.shape.length-1;++f)d.push(a.shape[f]);d.push(1)}let h=ce(a,s),p=L(e,l),c=dA(le(i,Se(n))),m=L(L(L(c,c),c),Se(-.5));return{x:()=>s.rank===1?U(L(L(e,Gn(U(c,[1,1,1,s.shape[0]]),d)),l),a.shape):U(L(L(e,c),l),a.shape),mean:()=>{let f=L(L(c,Se(-1)),p);return s.rank===1&&(f=ke(f,u)),U(f,s.shape)},variance:()=>{let f=L(L(m,h),p);return s.rank===1&&(f=ke(f,u)),U(f,s.shape)},scale:()=>{let f=L(h,c),g=L(e,f);return s.rank===1&&(g=ke(g,u)),U(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=ke(f,u)),U(f,s.shape)}}}},iW={kernelName:tl,inputsToSave:["x","indices"],gradFunc:(e,t,r)=>{let[n,a]=t,{axis:s}=r,i=Hn(s,n.shape)[0];return{x:()=>{let o=n.shape,l=a.size,u=o.slice(0,i),d=u.length,h=o.slice(s,o.length).slice(1),p=h.length,c=i4(0,d),m=i4(d+1,d+1+p),f=o4([u,[l],h]),g=U(e,f),y=U(a,[l]),A=o4([[d],c,m]),x=tt(g,A),b=Rw(x,y,n.shape[i]),w=Jy(A);return b=tt(b,w),b},indices:()=>a}}};function i4(e,t){let r=[];for(let n=e;n<t;++n)r.push(n);return r}function o4(e){let t=[];for(let r=0;r<e.length;++r)for(let n=0;n<e[r].length;++n)t.push(e[r][n]);return t}var oW={kernelName:fi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t;return{a:()=>at(r),b:()=>at(n)}}},lW={kernelName:mi,gradFunc:e=>({x:()=>me(e,"float32")})},uW={kernelName:Ju,gradFunc:e=>({x:()=>at(e)})},dW={kernelName:Qu,gradFunc:e=>({x:()=>at(e)})},pW={kernelName:ed,gradFunc:e=>({x:()=>at(e)})},hW={kernelName:gi,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{alpha:a}=r,s=mn(n,0);return{x:()=>Vr(s,e,L(e,a))}}},cW={kernelName:td,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,le(r,1))}}},fW={kernelName:yi,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,me(r,"float32"))}}},mW={kernelName:Bv,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n]=t,{axis:a}=r;return{logits:()=>{let s=Mn(n);return ce(e,L(ke(e,a,!0),s))}}}};function gW(e,t,r,n=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:r},l={depthRadius:n,bias:a,alpha:s,beta:i};return B.runKernel(gf,o,l)}var yW=W({localResponseNormalizationBackprop_:gW}),AW={kernelName:oh,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;return{x:()=>yW(n,a,e,s,i,o,l)}}};function p6(e,t,r,n){return t.rank<r.rank&&(t=U(t,_o(t.shape,n))),e.rank<r.rank&&(e=U(e,_o(e.shape,n))),{x:()=>L(e,me($n(r,t),e.dtype))}}var l4={kernelName:Ai,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let n=r,{reductionIndices:a}=n,s=t[0],i=t[1],o=Hn(a,s.shape),l=p6(e,i,s,o);return{x:()=>l.x()}}},xW={kernelName:xi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t;return{a:()=>L(e,me(Ml(r,n),"float32")),b:()=>L(e,me(eA(r,n),"float32"))}}};function bW(e,t,r,n,a,s,i){let o=$(e,"dy","maxPool3dGrad"),l=$(t,"input","maxPool3dGrad"),u=$(r,"output","maxPool3dGrad"),d=o,h=l,p=u,c=!1;l.rank===4&&(c=!0,d=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=U(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),P(d.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${d.rank}.`),P(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),P(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),jr("maxPool3dGrad",s,i);let m={dy:d,input:h,output:p},f={filterSize:n,strides:a,pad:s,dimRoundingMode:i},g=B.runKernel(Af,m,f);return c?U(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var vW=W({maxPool3dGrad_:bW}),wW={kernelName:lh,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r;return{x:()=>vW(e,n,a,s,i,o,l)}}};function kW(e,t,r,n,a,s,i){let o=$(e,"dy","maxPoolGrad"),l=$(t,"input","maxPoolGrad"),u=$(r,"output","maxPoolGrad");P(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),P(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),P(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),jr("maxPoolGrad",s,i);let d={dy:o,input:l,output:u},h={filterSize:n,strides:a,pad:s,dimRoundingMode:i};return B.runKernel(yf,d,h)}var IW=W({maxPoolGrad_:kW}),SW={kernelName:bi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n,a]=t,{filterSize:s,strides:i,pad:o}=r;return{x:()=>IW(e,n,a,s,i,o)}}},CW={kernelName:vi,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{axis:a}=r,s=Hn(a,n.shape),i=lw(n.shape,s)[1],o=It(i);return{x:()=>{let l=n.shape.slice();s.forEach(d=>{l[d]=1});let u=U(e,l);return pe(L(u,hn(n.shape,"float32")),o)}}}},TW={kernelName:wi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let n=r,{axis:a}=n,[s,i]=t,o=Hn(a,s.shape),l=p6(e,i,s,o);return{x:()=>l.x()}}},NW={kernelName:ki,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t;return{a:()=>L(e,me(Fl(r,n),"float32")),b:()=>L(e,me(mn(r,n),"float32"))}}},EW={kernelName:Ii,inputsToSave:["x"],gradFunc:(e,t,r)=>{let n=t[0],{paddings:a}=r,s=a.map(i=>i[0]);return{x:()=>Pe(e,s,n.shape)}}},RW={kernelName:nd,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=yt(r.shape,n.shape);return{a:()=>{let s=Qt(r.shape,a);return s.length>0?U(ke(e,s),r.shape):e},b:()=>{let s=L(e,Dt(Sh(pe(r,n)))),i=Qt(n.shape,a);return i.length>0?U(ke(s,i),n.shape):s}}}},$W={kernelName:Si,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=yt(r.shape,n.shape);return{a:()=>{let s=L(e,me(n,"float32")),i=Qt(r.shape,a);return i.length>0?U(ke(s,i),r.shape):s},b:()=>{let s=L(e,me(r,"float32")),i=Qt(n.shape,a);return i.length>0?U(ke(s,i),n.shape):s}}}},MW={kernelName:ol,gradFunc:e=>({x:()=>Dt(e)})},FW={kernelName:hl,inputsToSave:["indices"],gradFunc:(e,t)=>{let r=t[0];return{indices:()=>_t(r.shape,"float32")}}},PW={kernelName:pl,gradFunc:e=>({x:()=>at(e)})},_W={kernelName:cl,saveAllInputs:!0,gradFunc:(e,t,r)=>{let{axis:n}=r;return nn(e,n).map(a=>()=>a)}},u4={kernelName:Ci,inputsToSave:["x"],gradFunc:(e,t,r)=>{let n=t[0],{paddings:a}=r,s=a.map(i=>i[0]);return{x:()=>Pe(e,s,n.shape)}}},zW={kernelName:Ti,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[r,n,a]=t,s=r,i=n,o=yt(s.shape,i.shape);return{a:()=>{let l=me(i,"float32"),u=L(e,L(l,Ws(s,ce(l,Se(1))))),d=Qt(s.shape,o);return d.length>0&&(u=ke(u,d)),U(u,s.shape)},b:()=>{let l=mn(s,0),u=Vr(l,Fn(s),at(s)),d=L(e,L(a,u)),h=Qt(i.shape,o);return h.length>0&&(d=ke(d,h)),U(d,i.shape)}}}},OW={kernelName:Ni,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[r,n]=t,a=mn(r,0);return{x:()=>Vr(a,e,L(e,n)),alpha:()=>{let s=Vr(a,at(e),L(e,r)),i=Qt(n.shape,e.shape);return i.length>0&&(s=ke(s,i)),U(s,n.shape)}}}};function DW(e,t,r){let n=e.shape.slice();n[r]=1;let a=U(t,n),s=E0(e,r,!0,!1),i=E0(e,r,!0,!0),o=L(s,i);return L(a,o)}function LW(e,t,r){let n=e.shape.length,a=n-r.length,s=C.getAxesPermutation(r,n),i=e;s!=null&&(i=tt(e,s));let o=i.shape.slice(),l=o.splice(n-r.length,r.length).reduce((h,p)=>h*p,1);o.push(l);let u=i.reshape(o),d=DW(u,t,a);if(d=d.reshape(i.shape),s!=null){let h=C.getUndoAxesPermutation(s);d=tt(d,h)}return d}var BW={kernelName:Ei,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{axis:a}=r,s=[];return a==null?s=n.shape.map((i,o)=>o):typeof a=="number"?s=[a]:s=a,{x:()=>LW(n,e,s)}}},WW={kernelName:li,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=yt(r.shape,n.shape);return{a:()=>{let s=pe(e,me(n,"float32")),i=Qt(r.shape,a);return i.length>0?U(ke(s,i),r.shape):s},b:()=>{let s=L(e,me(r,"float32")),i=Qt(n.shape,a);i.length>0&&(s=U(ke(s,i),n.shape));let o=xt(n);return Dt(pe(s,me(o,"float32")))}}}},VW={kernelName:id,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,Dt(xt(r)))}}},UW={kernelName:Mi,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t,n=L(Fl(r,6),Th(r));return{x:()=>L(e,me(n,"float32"))}}},GW={kernelName:Ri,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,me(Th(r),"float32"))}}},jW={kernelName:fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>U(e,r.shape)}}},HW={kernelName:$i,inputsToSave:["images"],gradFunc:(e,t,r)=>{let[n]=t,a={dy:e,images:n};return{images:()=>B.runKernel(wf,a,r)}}},qW={kernelName:od,inputsToSave:["images"],gradFunc:(e,t,r)=>{let[n]=t,a={dy:e,images:n};return{images:()=>B.runKernel(vf,a,r)}}},XW={kernelName:ml,gradFunc:(e,t,r)=>{let{dims:n}=r,a=Hn(n,e.shape);return{x:()=>_n(e,a)}}},KW={kernelName:gl,gradFunc:e=>({x:()=>at(e)})},ZW={kernelName:Fi,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>Dt(pe(e,L(Ws(r,1.5),2)))}}},YW={kernelName:Al,inputsToSave:["condition"],gradFunc:(e,t)=>{let[r]=t;return{condition:()=>me(at(r),"float32"),t:()=>L(e,me(r,e.dtype)),e:()=>L(e,me(Of(r),e.dtype))}}},JW={kernelName:ld,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=mn(r,Se(0)),a=Se(qw),s=Se(Xw),i=L(e,s),o=L(L(e,a),Mn(me(r,"float32")));return Vr(n,i,o)}}}},QW={kernelName:_i,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,L(r,ce(Se(1),r)))}}},eV={kernelName:ud,gradFunc:e=>({x:()=>at(e)})},tV={kernelName:Pi,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L($f(me(r,"float32")),e)}}},rV={kernelName:bl,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(Ky(me(r,"float32")),e)}}},nV={kernelName:xl,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{begin:a,size:s}=r,i=n.shape,[o,l]=E7(n,a,s),u=[];for(let d=0;d<e.rank;d++)u.push([o[d],i[d]-o[d]-l[d]]);return{x:()=>Xn(e,u)}}},aV={kernelName:Di,outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n]=t,{dim:a}=r,s=!0,i=L(e,n);return{logits:()=>ce(i,L(ke(i,[a],s),n))}}},sV={kernelName:dd,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,Tr(r))}}},d4={kernelName:vl,gradFunc:(e,t,r)=>{let{blockShape:n,paddings:a}=r;return{x:()=>Rf(e,n,a)}}},p4={kernelName:wl,gradFunc:(e,t,r)=>{let{axis:n}=r;return{x:()=>St(e,n)}}},iV={kernelName:zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,L(Er(me(r,"float32")),2))}}},oV={kernelName:hd,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,L(me(r,"float32"),2))}}},lV={kernelName:Li,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=Se(2);return{a:()=>L(e,L(a,ce(r,n))),b:()=>L(e,L(a,ce(n,r)))}}},uV={kernelName:Ui,gradFunc:e=>({x:()=>at(e)})},dV={kernelName:Bi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=yt(r.shape,n.shape);return{a:()=>{let s=e,i=Qt(r.shape,a);return i.length>0&&(s=ke(s,i)),U(s,r.shape)},b:()=>{let s=e,i=Qt(n.shape,a);return i.length>0&&(s=ke(s,i)),U(Dt(s),n.shape)}}}},pV={kernelName:Oi,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,a=n.shape.slice(),{axis:s}=r;Hn(s,n.shape).forEach(l=>{a[l]=1});let i=U(e,a),o=L(i,hn(n.shape,"float32"));return{x:()=>o}}},hV={kernelName:Il,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,xt($f(r)))}}},cV={kernelName:Wi,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(ce(Se(1),xt(r)),e)}}},fV={kernelName:es,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{reps:a}=r;return{x:()=>{let s=at(n);if(n.rank===1)for(let i=0;i<a[0];++i)s=le(s,Pe(e,[i*n.shape[0]],[n.shape[0]]));else if(n.rank===2)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)s=le(s,Pe(e,[i*n.shape[0],o*n.shape[1]],[n.shape[0],n.shape[1]]));else if(n.rank===3)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)s=le(s,Pe(e,[i*n.shape[0],o*n.shape[1],l*n.shape[2]],[n.shape[0],n.shape[1],n.shape[2]]));else if(n.rank===4)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)for(let u=0;u<a[3];++u)s=le(s,Pe(e,[i*n.shape[0],o*n.shape[1],l*n.shape[2],u*n.shape[3]],[n.shape[0],n.shape[1],n.shape[2],n.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${n.rank} tensors yet.`);return s}}}},mV={kernelName:Vi,gradFunc:(e,t,r)=>{let n=r,{perm:a}=n,s=Jy(a);return{x:()=>tt(e,s)}}},gV={kernelName:Tl,gradFunc:(e,t,r)=>{let n=r,{axis:a}=n;return{value:()=>dr(e,a)}}},yV={kernelName:mh,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>AV(e,r)}}};function AV(e,t){let r=ts(t,at(t)),n=Tu(e,r),a=Ml(t,Se(0,"int32")),s=n.rank-a.rank;for(let o=0;o<s;++o)a=Kt(a,o+1);a=ga(a,hn(n.shape,"bool"));let i=at(n);return Vr(a,n,i)}var xV={kernelName:Nl,gradFunc:e=>({x:()=>at(e)})},bV=[d6,yB,AB,xB,bB,vB,wB,kB,IB,SB,CB,TB,RB,FB,PB,_B,zB,OB,DB,LB,BB,WB,UB,VB,HB,qB,XB,KB,ZB,YB,WW,JB,QB,eW,tW,rW,aW,nW,sW,iW,oW,lW,uW,dW,pW,hW,cW,fW,mW,AW,l4,l4,xW,wW,SW,CW,TW,NW,EW,RW,$W,MW,FW,PW,_W,u4,u4,zW,OW,BW,VW,UW,GW,jW,HW,qW,XW,KW,ZW,YW,JW,QW,eV,tV,rV,nV,aV,sV,d4,d4,p4,p4,iV,lV,oV,uV,dV,pV,hV,cV,fV,mV,gV,yV,xV];for(let e of bV)Wv(e);var h6={};Be(h6,{maxNorm:()=>vV,minMaxNorm:()=>IV,nonNeg:()=>kV,unitNorm:()=>wV});function _A(e,t){return X(()=>Er(ke(L(e,e),t,!0)))}var Fh=class extends ue.Serializable{getConfig(){return{}}},zA=class extends Fh{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return X(()=>{let t=_A(e,this.axis),r=cn(t,0,this.maxValue);return L(e,pe(r,le(ir(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};zA.className="MaxNorm";ue.registerClass(zA);var OA=class extends Fh{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return X(()=>pe(e,le(ir(),_A(e,this.axis))))}getConfig(){return{axis:this.axis}}};OA.className="UnitNorm";ue.registerClass(OA);var DA=class extends Fh{apply(e){return Oa(e)}};DA.className="NonNeg";ue.registerClass(DA);var LA=class extends Fh{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return X(()=>{let t=_A(e,this.axis),r=le(L(this.rate,cn(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,pe(r,le(ir(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};LA.className="MinMaxNorm";ue.registerClass(LA);var h4={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function lr(e){return IA(e)}function c4(e,t={}){return Eh(e,ue.SerializationMap.getMap().classNameMap,t,"constraint")}function ur(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in h4?h4[e]:e,config:{}};return c4(t)}else return e instanceof Fh?e:c4(e)}function vV(e){return new zA(e)}function wV(e){return new OA(e)}function kV(){return new DA}function IV(e){return new LA(e)}var c6={};Be(c6,{constant:()=>TV,glorotNormal:()=>PV,glorotUniform:()=>FV,heNormal:()=>_V,heUniform:()=>zV,identity:()=>$V,leCunNormal:()=>OV,leCunUniform:()=>DV,ones:()=>CV,orthogonal:()=>LV,randomNormal:()=>EV,randomUniform:()=>NV,truncatedNormal:()=>RV,varianceScaling:()=>MV,zeros:()=>SV});function SV(){return new TA}function CV(){return new sm}function TV(e){return new NA(e)}function NV(e){return new EA(e)}function EV(e){return new RA(e)}function RV(e){return new $A(e)}function $V(e){return new MA(e)}function MV(e){return new an(e)}function FV(e){return new im(e)}function PV(e){return new om(e)}function _V(e){return new lm(e)}function zV(e){return new um(e)}function OV(e){return new dm(e)}function DV(e){return new pm(e)}function LV(e){return new FA(e)}var f6={};Be(f6,{Layer:()=>st,RNN:()=>as,RNNCell:()=>zh,activation:()=>dG,add:()=>xG,alphaDropout:()=>rj,average:()=>bG,averagePooling1d:()=>Xx,averagePooling2d:()=>Kx,averagePooling3d:()=>Zx,avgPool1d:()=>EG,avgPool2d:()=>$G,avgPool3d:()=>FG,avgPooling1d:()=>RG,avgPooling2d:()=>MG,avgPooling3d:()=>PG,batchNormalization:()=>CG,bidirectional:()=>XG,concatenate:()=>vG,conv1d:()=>tG,conv2d:()=>rG,conv2dTranspose:()=>nG,conv3d:()=>aG,conv3dTranspose:()=>sG,convLstm2d:()=>GG,convLstm2dCell:()=>jG,cropping2D:()=>oG,dense:()=>pG,depthwiseConv2d:()=>uG,dot:()=>SG,dropout:()=>hG,elu:()=>KU,embedding:()=>AG,flatten:()=>fG,gaussianDropout:()=>tj,gaussianNoise:()=>ej,globalAveragePooling1d:()=>_G,globalAveragePooling2d:()=>zG,globalMaxPool1d:()=>ZG,globalMaxPool2d:()=>YG,globalMaxPooling1d:()=>uk,globalMaxPooling2d:()=>dk,gru:()=>DG,gruCell:()=>LG,input:()=>M6,inputLayer:()=>XU,layerNormalization:()=>TG,leakyReLU:()=>YU,lstm:()=>BG,lstmCell:()=>WG,masking:()=>nj,maxPool1d:()=>JG,maxPool2d:()=>QG,maxPooling1d:()=>pk,maxPooling2d:()=>hk,maxPooling3d:()=>OG,maximum:()=>wG,minimum:()=>kG,multiply:()=>IG,permute:()=>yG,prelu:()=>JU,reLU:()=>ZU,repeatVector:()=>mG,reshape:()=>gG,rnn:()=>HG,separableConv2d:()=>iG,simpleRNN:()=>VG,simpleRNNCell:()=>UG,softmax:()=>QU,spatialDropout1d:()=>cG,stackedRNNCells:()=>qG,thresholdedReLU:()=>eG,timeDistributed:()=>KG,upSampling2d:()=>lG,zeroPadding2d:()=>NG});async function Ss(e){if(e==null)return;let t=[],r=[],n=[];for(let a in e){let s=e[a];if(typeof s!="number"){let i=s;t.push(i.data()),r.push(a),n.push(i)}}if(t.length>0){let a=await Promise.all(t);for(let s=0;s<a.length;++s)e[r[s]]=a[s][0];te(n)}}function m6(e){if(e!=null)for(let t in e){let r=e[t];typeof r!="number"&&r.dispose()}}var BV=125,$u=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},g6=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},WV=class extends $u{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let r=t.size==null?0:t.size;this.seen+=r;for(let n in t){let a=t[n];if(typeof a=="number")this.totals.hasOwnProperty(n)||(this.totals[n]=0),this.totals[n]=this.totals[n]+a*r;else{let s;n in this.totals?s=this.totals[n]:this.totals[n]=0;let i=X(()=>le(this.totals[n],L(a,r)));this.totals[n]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let r of this.params.metrics)this.totals[r]!=null&&(typeof this.totals[r]=="number"?t[r]=this.totals[r]/this.seen:X(()=>{let n=L(pe(1,this.seen),this.totals[r]);t[r]=n,this.totals[r].dispose(),gr(t[r])}))}},y6=class extends $u{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let r in t)this.history[r]==null&&(this.history[r]=[]),this.history[r].push(t[r])}async syncData(){let e=[],t=[],r=[];for(let a in this.history){let s=this.history[a];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(a),r.push(i)}}let n=await Promise.all(e);for(let a=0;a<n.length;++a)this.history[t[a]][r[a]].dispose(),this.history[t[a]][r[a]]=n[a][0]}},A6=class extends $u{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||wA,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=BV),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=DL(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,r){let n=[];this.yield!=null&&(await Ss(r),n.push(this.yield(e,t,r))),n.push(this.nextFrameFunc()),await Promise.all(n)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Ss(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let r=[];this.epochEnd!=null&&(await Ss(t),r.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&r.push(this.nextFrameFunc()),await Promise.all(r)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Ss(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let r=[];this.batchEnd!=null&&(await Ss(t),r.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?r.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&r.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(r)}async onTrainBegin(e){this.trainBegin!=null&&(await Ss(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Ss(e),await this.trainEnd(e))}};function x6(e,t){return e==null&&(e={}),e instanceof $u?[e]:Array.isArray(e)&&e[0]instanceof $u?e:Tt(e).map(r=>new A6(r,t))}var Ca=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ca.checkForDuplicate(t),Ca.constructors[e]==null&&(Ca.constructors[e]=[]),Ca.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Ca.constructors)Ca.constructors[+t].forEach(r=>{if(r===e)throw new q("Duplicate callback constructor.")})}static clear(){Ca.constructors={}}static createCallbacks(e){let t=[];for(let r in Ca.constructors){let n=+r;e>=n&&t.push(...Ca.constructors[n])}return t.map(r=>new r)}},BA=Ca;BA.constructors={};function b6(e,t,r,n,a,s,i,o,l){let u=new y6,d=[new WV,...BA.createCallbacks(t)];e!=null&&d.push(...e),d.push(u);let h=new g6(d);return h.setParams({epochs:r,initialEpoch:n,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:u}}function fa(e,t={},r=!1){return Eh(e,ue.SerializationMap.getMap().classNameMap,t,"layer",r)}function P0(e,t){return X(()=>{e.dtype!=="float32"&&(e=me(e,"float32"));let r=ke($h(e),t,!0),n=md(r.shape,ir()),a=Er(ts(r,n));return pe(e,a)})}function zl(e,t){return X(()=>Vt($h(ce(t,e)),-1))}function cm(e,t){return X(()=>Vt(sr(ce(t,e)),-1))}function wd(e,t){return X(()=>{let r=ce(e,t),n=cn(sr(e),ir(),Number.MAX_VALUE),a=sr(pe(r,n));return L(100,Vt(a,-1))})}function VV(e,t){return X(()=>{let r=cn(t,ir(),Number.MAX_VALUE),n=Fn(le(1,r)),a=cn(e,ir(),Number.MAX_VALUE),s=Fn(le(1,a));return Vt($h(ce(n,s)),-1)})}function UV(e,t){return X(()=>{let r=ts(0,ce(1,L(e,t)));return Vt($h(r),-1)})}function GV(e,t){return X(()=>{let r=ts(0,ce(1,L(e,t)));return Vt(r,-1)})}function jV(e,t){return X(()=>{let r=ke(L(e,t),-1),n=Ar(L(ce(1,e),t),-1);return ts(0,le(1,ce(n,r)))})}function HV(e,t){return X(()=>{let r=Math.log(2),n=ce(t,e),a=ce(le(n,gd(L(-2,n))),r);return Vt(a,-1)})}function qp(e,t,r=!1){return X(()=>{if(r)t=xd(t);else{let n=ke(t,t.shape.length-1,!0);t=pe(t,n)}return t=cn(t,ir(),1-ir()),Dt(ke(L(me(e,"float32"),Fn(t)),t.shape.length-1))})}function _0(e,t,r=!1){return X(()=>{let n=me(Sh(ZL(e)),"int32");t=cn(t,ir(),1-ir());let a=t.shape,s=U(Gp(n,a[a.length-1]),a);return qp(s,t,r)})}function qV(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new q(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return X(()=>{let r=Oa(t),n=Dt(sr(t));return le(ce(r,L(t,e)),_f(Mn(n)))})}function fm(e,t){return X(()=>{let r;return r=cn(t,ir(),1-ir()),r=Fn(pe(r,ce(1,r))),Vt(qV(e,r),-1)})}function XV(e,t){return X(()=>{let r=cn(e,ir(),1),n=cn(t,ir(),1);return ke(L(e,Fn(pe(r,n))),-1)})}function KV(e,t){return X(()=>{let r=Fn(le(ir(),t));return Vt(ce(t,L(e,r)),-1)})}function WA(e,t){return X(()=>{let r=P0(e,-1),n=P0(t,-1),a=L(r,n);return Dt(ke(a,-1))})}var z0={meanSquaredError:zl,meanAbsoluteError:cm,meanAbsolutePercentageError:wd,meanSquaredLogarithmicError:VV,squaredHinge:UV,hinge:GV,categoricalHinge:jV,logcosh:HV,categoricalCrossentropy:qp,sparseCategoricalCrossentropy:_0,binaryCrossentropy:fm,kullbackLeiblerDivergence:XV,poisson:KV,cosineProximity:WA};function pg(e){if(typeof e=="string"){if(e in z0)return z0[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new q(t)}else return e}function VA(e,t){return X(()=>{let r=L(.5,Pn(t)),n=nm(mn(t,r),e.dtype);return Vt($n(e,n),-1)})}function UA(e,t){return X(()=>nm($n(Rn(e,-1),Rn(t,-1)),"float32"))}function v6(e,t){return X(()=>me(ke(ga($n(e,1),$n(t,1))),"float32"))}function ZV(e,t){return X(()=>me(ke(ga($n(e,1),$n(t,0))),"float32"))}function YV(e,t){return X(()=>me(ke(ga($n(e,0),$n(t,1))),"float32"))}function w6(e,t){return X(()=>{let r=v6(e,t),n=YV(e,t),a=le(r,n);return me(Vr(mn(a,0),pe(r,a),0),"float32")})}function JV(e,t){return X(()=>{let r=v6(e,t),n=ZV(e,t),a=le(r,n);return me(Vr(mn(a,0),pe(r,a),0),"float32")})}function k6(e,t){return fm(e,t)}function I6(e,t){return e.rank===t.rank&&(e=Qe(e,[e.rank-1])),t=Rn(t,-1),t.dtype!==e.dtype&&(t=me(t,e.dtype)),me($n(e,t),"float32")}var QV=zl,eU=zl,tU=cm,rU=cm,nU=wd,aU=wd,GA=qp,sU=WA,S6=_0,O0={binaryAccuracy:VA,categoricalAccuracy:UA,precision:w6,categoricalCrossentropy:GA,sparseCategoricalCrossentropy:S6,mse:QV,MSE:eU,mae:tU,MAE:rU,mape:nU,MAPE:aU,cosine:sU};function iU(e){if(typeof e=="string"&&e in O0)return O0[e];if(typeof e!="string"&&e!=null)return e;throw new q(`Unknown metric ${e}`)}function Jc(e){if(Na(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let r of Object.keys(z0))if(z0[r]===e){t=r;break}if(t!==void 0)return t;for(let r of Object.keys(O0))if(O0[r]===e){t=r;break}return t!==void 0?t:e.name}}function oU(e){let t={Adagrad:()=>xo.adagrad(.01),Adadelta:()=>xo.adadelta(1,.95,ir()),Adam:()=>xo.adam(.001,.9,.999,ir()),Adamax:()=>xo.adamax(.002,.9,.999,ir(),0),RMSProp:()=>xo.rmsprop(.001,.9,0,ir()),SGD:()=>xo.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new q(`Unknown Optimizer ${e}`)}var f4=1*1024*1024;function m4(e,t,r=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Og(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(r){let n=JSON.stringify(e);n.length>f4&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${n.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${f4}.`)}}function Og(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let r of t)if(typeof r!="string"||!Og(e[r]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Og(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function lU(e,t,r,n=console.log){let a=dU(e),s=["Layer (type)","Input Shape","Output shape","Param #"];a?(t=t||90,r=r||[.32,.61,.89,1]):(t=t||115,r=r||[.24,.48,.7,.8,1]),r[r.length-1]<=1&&(r=r.map(d=>Math.floor(t*d)));let i;if(!a){s.push("Receives inputs"),i=[];for(let d in e.nodesByDepth)i.push(...e.nodesByDepth[d])}n("_".repeat(t)),D0(s,r,n),n("=".repeat(t));let o=e.layers;for(let d=0;d<o.length;++d)a?pU(o[d],r,n):hU(o[d],r,i,n),n((d===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=uU(e),u=$0(e.nonTrainableWeights);n(`Total params: ${l+u}`),n(`Trainable params: ${l}`),n(`Non-trainable params: ${u}`),n("_".repeat(t))}function uU(e){let t;return e.collectedTrainableWeights!=null?t=$0(e.collectedTrainableWeights):t=$0(e.trainableWeights),t}function dU(e){let t=!0,r=[],n=[];for(let a in e.nodesByDepth)r.push(e.nodesByDepth[a]);for(let a of r){if(a.length>1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}n.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(n.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function D0(e,t,r=console.log){let n="";for(let a=0;a<e.length;++a)a>0&&(n=n.slice(0,n.length-1)+" "),n+=e[a],n=n.slice(0,t[a]),n+=" ".repeat(t[a]-n.length);r(n)}function pU(e,t,r){let n,a;try{a=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){a="multiple"}try{n=JSON.stringify(e.outputShape)}catch(l){n="multiple"}let s=e.name,i=e.getClassName(),o=[`${s} (${i})`,a,n,e.countParams().toString()];D0(o,t,r)}function hU(e,t,r,n){let a,s;try{s=e.inboundNodes.map(h=>JSON.stringify(h.inputShapes)).join(",")}catch(h){s="multiple"}try{a=JSON.stringify(e.outputShape)}catch(h){a="multiple"}let i=[];for(let h of e.inboundNodes)if(!(r!=null&&r.length>0&&r.indexOf(h)===-1))for(let p=0;p<h.inboundLayers.length;++p){let c=h.inboundLayers[p].name,m=h.nodeIndices[p],f=h.tensorIndices[p];i.push(`${c}[${m}][${f}]`)}let o=e.name,l=e.getClassName(),u=i.length===0?"":i[0],d=[`${o} (${l})`,s,a,e.countParams().toString(),u];D0(d,t,n);for(let h=1;h<i.length;++h)D0(["","","","",i[h]],t,n)}function C6(e,t,r){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof r=="string"}function Xp(e,t){if(e===null)return null;if(typeof e=="string")return ko(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let r=[],n=e.length;for(let a=0;a<n;++a){let s=e[a];C6(t,a,s)?r.push(s):r.push(Xp(s,t))}return r}else{let r={};for(let n of Object.keys(e)){let a=e[n];if(n==="name"&&typeof a=="string")r[n]=a;else{let s=ko(n);r[s]=Xp(a,s)}}return r}}function Dg(e,t){if(e==null)return null;if(typeof e=="string")return ja(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let r=[],n=e.length;for(let a=0;a<n;++a){let s=e[a];C6(t,a,s)?r.push(s):r.push(Dg(s,t))}return r}else{let r={};for(let n of Object.keys(e)){let a=e[n],s=ja(n);(n==="name"||n==="className")&&typeof a=="string"?r[s]=a:r[s]=Dg(a,n)}return r}}var jA="0.0.0",Ta=class extends st{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=rm(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Rs(this.inputs).length!==this.inputs.length)throw new q(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Rs(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let A=y.sourceLayer,x=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(A),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let A=y.sourceLayer,x=y.nodeIndex,b=y.tensorIndex;Na(x===0,"input layer has >1 nodes"),Na(b===0,"input layer has >1 tensors"),this.inputLayers.push(A),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let A=this.inputLayers[y];if(!(A instanceof vd))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${A.getClassName()}.`);this.inputNames.push(A.name),this.feedInputShapes.push(A.batchInputShape),this.feedInputNames.push(A.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},r={},n={},a={},s={},i=[],o=(y,A,x,b,w,I)=>{(b==null||w==null||I==null)&&(b=y.sourceLayer,w=y.nodeIndex,I=y.tensorIndex);let N=b.inboundNodes[w];if(x.indexOf(N)!==-1)throw new da(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(A.indexOf(N)!==-1)return;this.containerNodes.add(Ta.nodeKey(b,w)),b.id in s||(s[b.id]=Object.keys(s).length),x.indexOf(N)===-1&&x.push(N);let E=N.inboundLayers.length;for(let R=0;R<E;R++){let _=N.inputTensors[R],M=N.inboundLayers[R],S=N.nodeIndices[R],z=N.tensorIndices[R];o(_,A,x,M,S,z)}for(A.push(N);x.indexOf(N)>=0;)x.splice(x.indexOf(N),1);i.push(N)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let d=i.slice().reverse();for(let y of d){r[y.id]=y,y.id in t||(t[y.id]=0);let A=t[y.id],x=n[y.outboundLayer.id]==null?0:n[y.outboundLayer.id];A=Math.max(A,x),n[y.outboundLayer.id]=A,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=A;for(let b=0;b<y.inboundLayers.length;b++){let w=y.inboundLayers[b],I=y.nodeIndices[b],N=w.inboundNodes[I],E=t[N.id]==null?0:t[N.id];t[N.id]=Math.max(A+1,E),r[N.id]=N}}let h={};for(let y in t){let A=t[y];A in h||(h[A]=[]),h[A].push(r[y])}let p={};for(let y in n){let A=n[y];A in p||(p[A]=[]),p[A].push(a[y])}let c=Object.keys(p).map(y=>parseInt(y,10)).sort(Kc);this.layers=[];for(let y of c){let A=p[y];A.sort((x,b)=>{let w=s[x.id],I=s[b.id];return w<I?-1:w>I?1:0});for(let x of A)x instanceof Ta&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=p,c=Object.keys(h).map(y=>parseInt(y,10)).sort(Kc);let m=this.inputs.slice(),f=[];for(let y of c)for(let A of h[y]){let x=A.outboundLayer;if(x!=null){for(let b of A.inputTensors)if(m.indexOf(b)===-1)throw new da(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let b of A.outputTensors)m.push(b);f.push(x.name)}}this.nodesByDepth=h;let g=this.layers.map(y=>y.name);for(let y of g){let A=g.filter(x=>x===y).length;if(A!==1)throw new da(`The name "${y}" is used ${A} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new hm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(r=>r.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new q("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let r of this.layers)t.push(...r.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let r={},n=0;for(let s of this.layers)for(let i of s.weights){if(r[i.originalName]!=null)throw new q(`Duplicate weight name: ${i.originalName}`);r[i.originalName]=i,n++}let a=[];for(let s in e){let i=s;if(r[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(r[i]!=null)a.push([r[i],e[s]]);else if(t)throw new q(`Provided weight data has no target variable: ${s}`);delete r[i]}if(t){let s=[];for(let i in r)s.push(i);if(s.length>0)throw new q(`${s.length} of ${n} weights are not set: ${s}`)}PA(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${jA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let r=Dg(this.updatedConfig());return t?JSON.stringify(r):r}call(e,t){return X(()=>{e=Tt(e);let r=new Co;for(let n=0;n<this.inputs.length;++n)r.add(this.inputs[n],e[n]);return Cp(this.outputs,r,t)})}computeMask(e,t){return X(()=>{e=Tt(e);let r;return t==null?r=Oo(null,e.length):r=Tt(t),this.runInternalGraph(e,r)[1]})}computeOutputShape(e){let t=R0(e);if(t.length!==this.inputLayers.length)throw new q(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let r={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";r[u]=l}let n=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Kc);if(n.length>1)for(let i of n){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let d=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],y=l.tensorIndices[m],A=`${f.name}_${g}_${y}`,x=r[A];d.push(x)}let h=u.computeOutputShape(tn(d)),p=R0(h),c=u.inboundNodes.indexOf(l);for(let m=0;m<p.length;m++){let f=`${u.name}_${c}_${m}`;r[f]=p[m]}}}let a=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],d=`${o.name}_${l}_${u}`;s.push(d)}for(let i=0;i<s.length;i++){let o=s[i];Na(o in r),a.push(r[o])}return tn(a)}runInternalGraph(e,t){t==null&&(t=Oo(null,e.length));let r={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],d=t[o];r[l.id]=[u,d]}let n=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Kc);for(let o of n){let l=this.nodesByDepth[o];for(let u of l){let d=u.outboundLayer,h=u.inputTensors,p=u.outputTensors,c=new Array;for(let m of h)m.id in r&&c.push(r[m.id]);if(c.length===h.length){let m={},f,g,y,A;if(u.callArgs!=null&&(m=u.callArgs),c.length===1){let[x,b]=c[0];m.mask==null&&(m.mask=b),y=Tt(d.call(x,m)),A=Tt(d.computeMask(x,b)),f=[x],g=[b]}else f=c.map(x=>x[0]),g=c.map(x=>x[1]),m.mask==null&&(m.mask=g),y=Tt(d.call(f,m)),A=Tt(d.computeMask(f,g));if(d.activityRegularizer)throw new Ve("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<p.length;++x){let b=p[x],w=y[x],I=A[x];r[b.id]=[w,I]}}}}let a=[],s=[],i=[];for(let o of this.outputs){Na(o.id in r,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=r[o.id];i.push(l.shape),a.push(l),s.push(u)}return[a,s,i]}buildNodeConversionMap(e){let t={},r;for(let n of this.layers){r=n instanceof Ta?1:0;for(let a=0;a<n.inboundNodes.length;a++){let s=Ta.nodeKey(n,a);this.containerNodes.has(s)&&(t[s]=r,r+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new q(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new q("Provide either a layer name or layer index");for(let r of this.layers)if(r.name===e)return r;throw new q(`No such layer: ${e}`)}calculateLosses(){return X(()=>{let e=[];for(let t of this.layers)for(let r=0;r<t.inboundNodes.length;++r){let n=Ta.nodeKey(t,r);this.containerNodes.has(n)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),r=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let d=0;d<s.inboundNodes.length;d++){let h=s.inboundNodes[d],p=Ta.nodeKey(s,d),c={};if(this.containerNodes.has(p)){if(h.callArgs)try{JSON.stringify(h.callArgs),c=h.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${h.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),c={}}if(h.inboundLayers.length>0){let m=[];for(let f=0;f<h.inboundLayers.length;f++){let g=h.inboundLayers[f],y=h.nodeIndices[f],A=h.tensorIndices[f],x=Ta.nodeKey(g,y),b=t[x];b==null&&(b=0),m.push([g.name,b,A,c])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,r.push(u)}e.layers=r;let n=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Ta.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.inputLayersTensorIndices[s];n.push([i.name,u,d])}e.inputLayers=n;let a=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Ta.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.outputLayersTensorIndices[s];a.push([i.name,u,d])}return e.outputLayers=a,e}static fromConfig(e,t,r={},n=!1){let a={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let y=[],A;for(let x of g){let b=x[0],w=x[1],I=x[2];if(A=x[3]==null?{}:x[3],!(b in a)){i(f,g);return}let N=a[b];if(N.inboundNodes.length<=w){i(f,g);return}let E=N.inboundNodes[w];y.push(E.outputTensors[I])}y.length>0&&f.apply(tn(y),A)}function l(f){let g=f.name,y=fa(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(n),a[g]=y,f.inboundNodes.forEach(A=>{if(!(A instanceof Array))throw new q(`Corrupted configuration, expected array for nodeData: ${A}`);i(y,A)})}let u=t.name,d=t.layers;for(let f of d)l(f);for(;!OL(s);)for(let f of d){let g=a[f.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let A of y)o(g,A)}}let h=[],p=[],c=t.inputLayers;for(let f of c){let g=f[0],y=f[1],A=f[2];Na(g in a);let x=a[g].inboundNodes[y].outputTensors;h.push(x[A])}let m=t.outputLayers;for(let f of m){let g=f[0],y=f[1],A=f[2];Na(g in a);let x=a[g].inboundNodes[y].outputTensors;p.push(x[A])}return new e({inputs:h,outputs:p,name:u})}get stateful(){if(this._stateful)throw new q("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){X(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function cU(e,t,r){let n=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(n===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==n)throw new Error(`Provided ${r} is an array of ${e.length} element(s), but the model has ${n} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${n}) outputs, so ${r} must be either an array with ${n} elements or an object with ${t} keys. Provided ${r} not understood: ${JSON.stringify(e)}`)}function T6(e,t){return cU(e,t,"classWeight")}async function N6(e,t,r,n){if(t!=null||n!=null)throw new Error("Support sampleWeight is not implemented yet");if(r!=null){let a=X(()=>{if(e.shape.length===1)return Wr(e);if(e.shape.length===2){if(e.shape[1]>1)return Rn(e,1);if(e.shape[1]===1)return U(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());te(a);let i=[];return s.forEach(o=>{if(r[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(r[o])}),Nt(i,"float32")}else return null}function fU(e,t){return L(e,t)}var mU=32;function E6(e,t){let r,n,a=t;r=a.xs,n=a.ys,v.assert(r!=null&&n!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=g4("input",e.inputNames,r),i=g4("output",e.outputNames,n),o=s[0].shape[0];v.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)v.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)v.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function g4(e,t,r){if(r instanceof nt)return[r];if(Array.isArray(r))return v.assert(r.length===t.length,()=>`Received an array of ${r.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),r;{let n=[];for(let a of t){if(r[a]==null)throw new q(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);n.push(r[a])}return n}}function gU(e){if(e.length===3)throw new Ve("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function yU(e,t,r){let n=r.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(r!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(r.epochs!=null&&r.epochs>0&&Number.isInteger(r.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${r.epochs}`),v.assert(!n||r.batchesPerEpoch>0&&Number.isInteger(r.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${r.batchesPerEpoch}`),v.assert(r.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=r.validationData!=null,s,i;if(a)if(y4(r.validationData))v.assert(r.validationBatches==null||r.validationBatches>0&&Number.isInteger(r.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${r.validationBatches}`);else{let g=gU(r.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;a?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let d=x6(r.callbacks,r.yieldEvery),h=r.verbose==null?1:r.verbose,{callbackList:p,history:c}=b6(d,h,r.epochs,null,null,AU(t,r),null,a,u);p.setModel(e),e.history=c,await p.onTrainBegin(),e.stopTraining_=!1;let m=r.initialEpoch==null?0:r.initialEpoch,f=await t.iterator();for(;m<r.epochs;){let g={};await p.onEpochBegin(m);let y=0,A=0;for(n||(f=await t.iterator());!n||y<r.batchesPerEpoch;){let x=await f.next();if(n&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${r.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${r.batchesPerEpoch*r.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:b,ys:w}=E6(e,x.value),I={};I.batch=A,I.size=b[0].shape[0],await p.onBatchBegin(A,I);let N=[];if(r.classWeight!=null){let _=T6(r.classWeight,e.outputNames);for(let M=0;M<_.length;++M)N.push(await N6(w[M],null,_[M]))}let E=b.concat(w).concat(N),R=o(E);te(E);for(let _=0;_<l.length;++_){let M=l[_],S=R[_];I[M]=S,gr(S)}await p.onBatchEnd(A,I),m6(I),A++,y++}if(n?y>=r.batchesPerEpoch:x.done){if(a){let b;y4(r.validationData)?b=Tt(await e.evaluateDataset(r.validationData,{batches:r.validationBatches})):b=Tt(e.evaluate(s,i,{batchSize:r.validationBatchSize==null?mU:r.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)g[`val_${e.metricsNames[w]}`]=b[w]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(m,g),m++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function AU(e,t){let r=null;return t.batchesPerEpoch!=null?r=t.batchesPerEpoch:Number.isFinite(e.size)&&(r=e.size),r}function y4(e){return typeof e.iterator=="function"}function xU(e){return typeof e.next=="function"}async function bU(e,t,r){r=r||{};let n=r.batches!=null,a=e.testFunction,s=[];if(r.verbose>0)throw new Ve("Verbose mode is not implemented yet.");v.assert(!n||r.batches>0&&Number.isInteger(r.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(r.batches)}`);let i=xU(t)?t:await t.iterator(),o=0,l=0;for(;!n||l<r.batches;){let u=await i.next();if(s=X(()=>{if(u.value){let{xs:d,ys:h}=E6(e,u.value),p=d.concat(h),c=X(()=>a(p));if(te(p),l===0)for(let f=0;f<c.length;++f)s.push(Se(0));let m=p[0].shape[0];for(let f=0;f<c.length;++f){let g=c[f],y=s[f];s[f]=X(()=>le(s[f],L(m,g))),l>0&&te(y)}te(c),o+=m,++l}return s}),u.done){n&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${r.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let d=s[u];s[u]=pe(s[u],o),te(d)}return tn(s)}function Lg(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Tp(e,t,r){return e==null?[null]:Array.isArray(e)?e.map(n=>Ro(n,t,r-t)):Ro(e,t,r-t)}function HA(e,t){return X(()=>e==null?null:Array.isArray(e)?e.map(r=>HA(r,t)):s6(e,t.dtype==="int32"?t:me(t,"int32")))}function Bg(e,t){let r=[],n=0,a=null;for(;n<e;)a=n+t,a>=e&&(a=e),r.push([n,a]),n=a;return r}async function vU(e,t,r,n,a,s,i,o,l,u,d,h,p,c,m){a==null&&(a=32),s==null&&(s=1),d==null&&(d=!0),p==null&&(p=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,c==null))throw new q("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(r,a,c,"steps_per_epoch"),y;g!=null&&(y=ya(0,g)),i==null&&(i=1);let{callbackList:A,history:x}=b6(o,i,s,p,g,c,a,f,h);A.setModel(e),e.history=x,await A.onTrainBegin(),e.stopTraining_=!1;for(let b=p;b<s;++b){await A.onEpochBegin(b);let w={};if(c!=null)throw new Ve("stepsPerEpoch mode is not implemented yet.");{if(d==="batch")throw new Ve("batch shuffling is not implemneted yet");d&&v.shuffle(y);let I=Nt(y),N=Bg(g,a);for(let E=0;E<N.length;++E){let R={};if(await A.onBatchBegin(E,R),X(()=>{let _=N[E][0],M=N[E][1],S=Ro(I,_,M-_);R.batch=E,R.size=M-_;let z=HA(r,S),O=t(z);for(let H=0;H<n.length;++H){let K=n[H],D=O[H];R[K]=D,gr(D)}if(E===N.length-1&&f){let H=e.testLoop(l,u,a);for(let K=0;K<n.length;++K){let D=n[K],Q=H[K];gr(Q),w["val_"+D]=Q}}}),await A.onBatchEnd(E,R),m6(R),e.stopTraining_)break}I.dispose()}if(await A.onEpochEnd(b,w),e.stopTraining_)break}return await A.onTrainEnd(),await e.history.syncData(),e.history}async function wU(e,t,r,n={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let a,s,i,o,l,u,d,h,p;try{let c=n.batchSize==null?32:n.batchSize;Lg(c);let m=!1,f=await e.standardizeUserData(t,r,n.sampleWeight,n.classWeight,m,c);a=f[0],s=f[1],p=f[2];let g=!1,y;if(n.validationData!=null&&n.validationData.length>0){if(g=!0,n.validationData.length===2)l=n.validationData[0],u=n.validationData[1];else throw n.validationData.length===3?new Ve("validationData including sample weights is not supported yet."):new q(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let E=!0,R=await e.standardizeUserData(l,u,null,null,E,c);d=R[0],h=R[1],y=d.concat(h)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){g=!0;let E=Math.floor(a[0].shape[0]*(1-n.validationSplit)),R=a[0].shape[0];d=Tp(a,E,R),i=a,a=Tp(a,0,E),h=Tp(s,E,R),o=s,s=Tp(s,0,E),y=d.concat(h)}else n.validationSteps!=null&&(g=!0);let A=a.concat(s).concat(p);e.checkTrainableWeightsConsistency();let x=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),w,I;g?(e.makeTestFunction(),w=e.testFunction,I=b.slice().concat(b.map(E=>"val_"+E))):(w=null,y=[],I=b.slice());let N=x6(n.callbacks,n.yieldEvery);return await vU(e,x,A,b,c,n.epochs,n.verbose,N,w,y,n.shuffle,I,n.initialEpoch,null,null)}finally{e.isTraining=!1,ua(a,t),ua(s,r),ua(i,t),ua(o,r),ua(d,l),ua(h,u),p!=null&&te(p)}}function R6(e){let t=[];e instanceof nt&&(e=[e]);for(let r=0;r<e.length;++r){let n=e[r];if(n.rank===1)t.push(Rh(n,1));else{if(n.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(n)}}return t}function ua(e,t){if(e==null)return;let r=[];if(t instanceof nt)r.push(t.id);else if(Array.isArray(t))t.forEach(a=>r.push(a.id));else if(t!=null)for(let a in t){let s=t[a];r.push(s.id)}let n=[];if(e instanceof nt)r.indexOf(e.id)===-1&&n.push(e);else if(Array.isArray(e))e.forEach(a=>{r.indexOf(a.id)===-1&&n.push(a)});else if(e!=null)for(let a in e){let s=e[a];r.indexOf(s.id)===-1&&n.push(s)}n.forEach(a=>{a.isDisposed||a.dispose()})}function kU(e){return e instanceof nt}function Wg(e){return Array.isArray(e)}function A4(e){return!kU(e)&&!Wg(e)}function x4(e,t,r,n=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Wg(e)&&e.length>0)i=!0;else if(A4(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new q(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(A4(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new q(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Wg(e)){if(e=e,e.length!==t.length)throw new q(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new q(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=R6(s),r!=null)for(let i=0;i<t.length;++i){if(r[i]==null)continue;let o=s[i];if(o.shape.length!==r[i].length)throw new q(`Error when checking ${a}: expected ${t[i]} to have ${r[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<r[i].length;++l){if(l===0&&!n)continue;let u=o.shape[l],d=r[i][l];if(d!=null&&d>=0&&u!==d)throw new q(`${a} expected a batch of elements where each example has shape [${r[i].slice(1,r[i].length)}] (i.e.,tensor shape [*,${r[i].slice(1,r[i].length)}]) but the ${a} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return s}function IU(e,t,r){let n=Rs(e.map(s=>s.shape[0]));n.sort();let a=Rs(t.map(s=>s.shape[0]));if(a.sort(),n.length>1)throw new q(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new q(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(n.length>0&&a.length>0&&!v.arraysEqual(n,a))throw new q(`Input Tensors should have the same number of samples as target Tensors. Found ${n[0]} input sample(s) and ${a[0]} target sample(s).`)}function SU(e,t,r){let n=[zl,fm,qp];for(let a=0;a<e.length;++a){let s=e[a],i=t[a],o=r[a];if(i!=null){if(i===qp&&s.shape[s.shape.length-1]===1)throw new q(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(n.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let d=0;d<l.length;++d){let h=l[d],p=u[d];if(p!=null&&h!==p)throw new q(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function b4(e,t,r,n=!0,a=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new q(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new q(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(r!=null)for(let i=0;i<t.length;++i){if(r[i]==null)continue;let o=s[i];if(o.shape.length!==r[i].length)throw new q(`Error when checking ${a}: expected ${t[i]} to have ${r[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<r[i].length;++l){if(l===0&&!n)continue;let u=o.shape[l],d=r[i][l];if(d!=null&&d!==u)throw new q(`Error when checking ${a}: expected ${t[i]} to have shape ${JSON.stringify(r[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function CU(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(n=>[]);let r;if(typeof e=="string"||typeof e=="function")r=[e];else if(Array.isArray(e)||typeof e=="object")r=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(r))return t.map(n=>r);{let n=[];for(let a of t){let s=r.hasOwnProperty(a)?r[a]:[];Array.isArray(s)||(s=[s]),n.push(s)}return n}}var TU="layers-model",Ka=class extends Ta{constructor(e){super(e),this.isTraining=!1}summary(e,t,r=console.log){if(!this.built)throw new q("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");lU(this,e,t,r)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=oU(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof ns))throw new q("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new q(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(pg(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new q(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>pg(s))}else{let s=pg(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let r=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Eo("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(r.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let n=CU(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Eo("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(r.indexOf(s)!==-1)continue;let i=n[s];(o=>{let l="",u,d,h;for(let p of o){if(typeof p=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(p)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===fm?["accuracy","acc"].indexOf(p)!==-1?d=VA:["crossentropy","ce"].indexOf(p)!==-1&&(d=k6):this.lossFunctions[s]===_0?["accuracy","acc"].indexOf(p)!==-1?d=I6:["crossentropy","ce"].indexOf(p)!==-1&&(d=S6):["accuracy","acc"].indexOf(p)!==-1?d=UA:["crossentropy","ce"].indexOf(p)!==-1&&(d=GA);let f;["accuracy","acc"].indexOf(p)!==-1?f="acc":["crossentropy","ce"].indexOf(p)!==-1&&(f="ce"),h=d,u=l+f}else h=iU(p),u=l+Jc(p);let c;Eo(u,()=>{c=h}),a(s,u,c)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,r={}){let n=r.batchSize==null?32:r.batchSize;Lg(n);let a=!0,s=this.standardizeUserDataXY(e,t,a,n);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,n,r.verbose,r.steps);return tn(l)}finally{ua(s[0],e),ua(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),bU(this,e,t)}checkNumSamples(e,t,r,n="steps"){let a;if(r!=null){if(a=null,t!=null)throw new q(`If ${n} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new q(`Either the input data should have a defined shape, or ${n} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new q("`outputs` is an empty Array, which is not allowed.");let r=Array.isArray(t),n=r?t:[t],a=this.retrieveSymbolicTensors(n),s=new Co;if(e instanceof nt&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new q(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new q(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Cp(a,s);return r?i:i[0]}retrieveSymbolicTensors(e){let t=Oo(null,e.length),r=e.length;for(let n of this.layers){let a=Array.isArray(n.output)?n.output:[n.output],s=a.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=a[o],r--),r===0)break}if(r===0)break}if(r>0){let n=[];throw t.forEach((a,s)=>{a==null&&n.push(e[s])}),new q(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(n)}`)}return t}predictLoop(e,t=32,r=!1){return X(()=>{let n=this.checkNumSamples(e);if(r)throw new Ve("Verbose predictLoop() is not implemented yet.");let a=Bg(n,t),s=this.outputs.map(i=>[]);for(let i=0;i<a.length;++i)X(()=>{let o=a[i][0],l=a[i][1],u=Tp(e,o,l),d=[];if(Array.isArray(u))for(let p=0;p<u.length;++p)d.push({key:this.inputs[p],value:u[p]});else d.push({key:this.inputs[0],value:u});let h=new Co(d);return Cp(this.outputs,h)}).forEach((o,l)=>s[l].push(o));return tn(s.map(i=>St(i,0)))})}predict(e,t={}){let r=R6(e);b4(r,this.inputNames,this.feedInputShapes,!1);try{let n=t.batchSize==null?32:t.batchSize;return Lg(n),this.predictLoop(r,n)}finally{ua(r,e)}}predictOnBatch(e){b4(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,r=!0,n){if(this.optimizer_==null)throw new da("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===_0?a.push(i.slice(0,i.length-1).concat([1])):a.push(i)}if(e=x4(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=x4(t,this.feedOutputNames,a,!1,"target"),IU(e,t,null),SU(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&n!=null&&n>0&&e[0].shape[0]%n!==0)throw new q(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${n}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,r,n,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(r!=null)throw new Error("sample weight is not supported yet.");let l=null;if(n!=null){let u=T6(n,this.outputNames);l=[];for(let d=0;d<u.length;++d)l.push(await N6(o[d],null,u[d]))}return[i,o,l]}testLoop(e,t,r,n=0,a){return X(()=>{let s=this.checkNumSamples(t,r,a,"steps"),i=[];if(n>0)throw new Ve("Verbose mode is not implemented yet.");if(a!=null)throw new Ve("steps mode in testLoop() is not implemented yet");{let o=Bg(s,r),l=Nt(ya(0,s));for(let u=0;u<o.length;++u){let d=o[u][0],h=o[u][1],p=Ro(l,d,h-d),c=HA(t,p),m=e(c);if(u===0)for(let f=0;f<m.length;++f)i.push(Se(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=le(i[f],L(h-d,g))}}for(let u=0;u<i.length;++u)i[u]=pe(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let r=0;r<e.length;++r){let n=e[r],a=n;Q3(e,n)>1&&(a+=`_${Q3(e.slice(0,r),n)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],r=e.slice(0,this.inputs.length),n=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let c=0;c<this.inputs.length;++c)u.push({key:this.inputs[c],value:r[c]});let d=new Co(u),h=Cp(this.outputs,d,{training:!0}),p;for(let c=0;c<this.lossFunctions.length;++c){let m=this.lossFunctions[c](n[c],h[c]);a[c]!=null&&(m=fU(m,a[c]));let f=Vt(m);t.push(f),c===0?p=m:p=le(p,m)}for(let c=0;c<this.metricsTensors.length;++c){let m;if(this.outputs.length>1&&c<this.outputs.length)m=t[c];else{let f=this.metricsTensors[c][0],g=this.metricsTensors[c][1];m=Vt(f(n[g],h[g]))}gr(m),s.push(m)}return p=Vt(p),this.calculateLosses().forEach(c=>{p=le(p,c)}),p},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>X(()=>{let t=[],r,n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:n[l]});let i=new Co(s),o=Cp(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],d=Vt(u(a[l],o[l]));l===0?r=d:r=le(r,d),t.push(r)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],d=this.metricsTensors[l][1],h=Vt(u(a[d],o[d]));t.push(h)}return t})}async fit(e,t,r={}){return wU(this,e,t,r)}async fitDataset(e,t){return yU(this,e,t)}async trainOnBatch(e,t){let r=await this.standardizeUserData(e,t),n=r[0],a=r[1],s=this.makeTrainFunction()(n.concat(a)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return te(s),ua(r[0],e),ua(r[1],t),tn(i)}getNamedWeights(e){let t=[],r=e!=null&&e.trainableOnly,n=r?this.trainableWeights:this.weights,a=this.getWeights(r);for(let s=0;s<n.length;++s)r&&!n[s].trainable||t.push({name:n[s].originalName,tensor:a[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=C0().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-C0().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=ja(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>ja(t))}else{let t=Object.keys(this.loss);e={};let r=this.loss;for(let n of t)if(typeof r[n]=="string")e[n]=ja(r[n]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ja(Jc(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ja(Jc(e)));{let e={};for(let t in this.metrics)e[t]=ja(Jc(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Xp(e.optimizer_config),r=fa(t),n;if(typeof e.loss=="string")n=ko(e.loss);else if(Array.isArray(e.loss))n=e.loss.map(s=>ko(s));else if(e.loss!=null){n={};for(let s in e.loss)n[s]=ko(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>ko(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=ko(e.metrics[s])}this.compile({loss:n,metrics:a,optimizer:r})}async save(e,t){if(typeof e=="string"){let i=Cr.getSaveHandlers(e);if(i.length===0)throw new q(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new q(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new q("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let r=await Cr.encodeWeights(this.getNamedWeights(t)),n=!1,a=null,s={modelTopology:this.toJSON(a,n),format:TU,generatedBy:`TensorFlow.js tfjs-layers v${jA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Cr.encodeWeights(await this.optimizer.getWeights(),i);r.specs.push(...l),r.data=Cr.concatenateArrayBuffers([r.data,o])}return this.userDefinedMetadata!=null&&(m4(this.userDefinedMetadata,this.name,!0),s.userDefinedMetadata=this.userDefinedMetadata),s.weightData=r.data,s.weightSpecs=r.specs,e.save(s)}setUserDefinedMetadata(e){m4(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Ka.className="Model";ue.registerClass(Ka);var $6=class extends Ka{};$6.className="Functional";ue.registerClass($6);async function NU(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let r=e.modelTopology;r.model_config!=null&&(r=r.model_config);let n=Xp(r),a=fa(n,t);if(e.weightsManifest!=null){let s=await Cr.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),te(s)}return a}async function EU(e,t){if(t==null&&(t={}),typeof e=="string"){let r=Cr.getLoadHandlers(e,t);if(r.length===0)r.push(Cr.browserHTTPRequest(e,t));else if(r.length>1)throw new q(`Found more than one (${r.length}) load handlers for URL '${e}'`);e=r[0]}return RU(e,void 0,t)}async function RU(e,t,r){if(r==null&&(r={}),e.load==null)throw new q("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let n=await e.load(),a=n.modelTopology;a.model_config!=null&&(a=a.model_config);let s=r.strict==null?!0:r.strict,i=n.weightData!=null&&n.weightSpecs!=null&&s,o=fa(Xp(a),t,i),l=n.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),n.userDefinedMetadata!=null&&o.setUserDefinedMetadata(n.userDefinedMetadata),n.weightData!=null){if(n.weightSpecs==null)throw new q("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:d}=$U(n.weightData,n.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&d.length>0&&await o.optimizer.setWeights(d),te(u),te(d.map(h=>h.tensor))}return o}function $U(e,t){let r=Cr.decodeWeights(e,t),n={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:r[s.name]}):n[s.name]=r[s.name]}),{modelWeights:n,optimizerWeights:a}}var Vg=class extends Ka{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:rm("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new q(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Vg||e instanceof Ka,r;if(t){if(r=e,r.outputs.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(r.inputs.length!==1)throw new q("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new q("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let n=u6({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(n)}if(t)this.outputs=r.outputs,this.inputs=r.inputs;else{if(e.inboundNodes.length!==1)throw new q(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=l6(this.outputs[0])}this.inboundNodes=[],new hm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Oo(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(n=>n.shape),outputShapes:this.outputs[0].shape})}else{let n=e.apply(this.outputs[0]);if(Array.isArray(n))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[n],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(mt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Ka({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,r=console.log){this.built||this.build(),super.summary(e,t,r)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,r={}){if(!this.built)throw new da("The model needs to be compiled before being used.");return this.model.evaluate(e,t,r)}async evaluateDataset(e,t){if(!this.built)throw new da("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,r={}){if(!this.built)throw new da("The model needs to be compiled before being used.");return this.model.fit(e,t,r)}async fitDataset(e,t){if(!this.built)throw new da("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,r={},n=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new q("Legacy serialization format not supported yet.");a=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Vg))throw new Ve(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=fa(o,void 0,n);n&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new q("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new q("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let r={};r.className=t.getClassName(),r.config=t.getConfig(),e.push(r)}return{name:this.name,layers:e}}},mm=Vg;mm.className="Sequential";ue.registerClass(mm);function MU(e){return new Ka(e)}function FU(e){return new mm(e)}function PU(e,t){return t==null&&(t={}),EU(e,t)}function M6(e){return u6(e)}function _U(e,t){BA.registerCallbackConstructor(e,t)}var on=class extends ue.Serializable{getConfig(){return{}}},F6=class extends on{apply(e,t=1){return JL(e,t)}};F6.className="elu";ue.registerClass(F6);var P6=class extends on{apply(e){return pA(e)}};P6.className="selu";ue.registerClass(P6);var _6=class extends on{apply(e){return Oa(e)}};_6.className="relu";ue.registerClass(_6);var z6=class extends on{apply(e){return X(()=>Ch(6,Oa(e)))}};z6.className="relu6";ue.registerClass(z6);var O6=class extends on{apply(e){return e}};O6.className="linear";ue.registerClass(O6);var D6=class extends on{apply(e){return Tr(e)}};D6.className="sigmoid";ue.registerClass(D6);var L6=class extends on{apply(e){return eB(e)}};L6.className="hardSigmoid";ue.registerClass(L6);var B6=class extends on{apply(e){return gd(e)}};B6.className="softplus";ue.registerClass(B6);var W6=class extends on{apply(e){return QL(e)}};W6.className="softsign";ue.registerClass(W6);var V6=class extends on{apply(e){return Su(e)}};V6.className="tanh";ue.registerClass(V6);var qA=class extends on{apply(e,t=-1){return xd(e,t)}};qA.className="softmax";ue.registerClass(qA);var U6=class extends on{apply(e,t=-1){return tA(e,t)}};U6.className="logSoftmax";ue.registerClass(U6);var G6=class extends on{apply(e,t=1){return X(()=>L(Tr(L(e,t)),e))}};G6.className="swish";ue.registerClass(G6);var j6=class extends on{apply(e){return X(()=>L(e,Su(gd(e))))}};j6.className="mish";ue.registerClass(j6);function Gs(e){return e.getClassName()}function hg(e,t={}){return Eh(e,ue.SerializationMap.getMap().classNameMap,t,"activation")}function js(e){if(e==null){let t={};return t.className="linear",t.config={},hg(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},hg(t)}else return e instanceof on?e:hg(e)}function XA(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var H6=class extends ue.Serializable{},Ph=class extends H6{constructor(e){super(),XA(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return X(()=>{let t=_t([1]);return this.hasL1&&(t=le(t,ke(L(this.l1,sr(e))))),this.hasL2&&(t=le(t,ke(L(this.l2,$h(e))))),U(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Ph.className="L1L2";ue.registerClass(Ph);function zU(e){return XA(e),new Ph({l1:e!=null?e.l1:null,l2:0})}function OU(e){return XA(e),new Ph({l2:e!=null?e.l2:null,l1:0})}var v4={l1l2:"L1L2"};function bt(e){return IA(e)}function w4(e,t={}){return Eh(e,ue.SerializationMap.getMap().classNameMap,t,"regularizer")}function Mt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in v4?v4[e]:e,config:{}};return w4(t)}else return e instanceof H6?e:w4(e)}var KA=class extends st{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=je(e);let r=Oa(e);return this.maxValue!=null&&(r=cn(r,0,this.maxValue)),r}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};KA.className="ReLU";ue.registerClass(KA);var ZA=class extends st{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let r=je(e);return Pf(r,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};ZA.className="LeakyReLU";ue.registerClass(ZA);var YA=class extends st{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=$t(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Mt(e.alphaRegularizer),this.alphaConstraint=ur(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new q(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=mt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let n of this.sharedAxes)t[n-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let r={};if(this.sharedAxes!=null)for(let n=1;n<e.length;++n)r[n]=e[n];this.inputSpec=[new Zt({ndim:e.length,axes:r})],this.built=!0}call(e,t){return e=je(e),Wf(e,this.alpha.read())}getConfig(){let e={alphaInitializer:zt(this.alphaInitializer),alphaRegularizer:bt(this.alphaRegularizer),alphaConstraint:lr(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};YA.className="PReLU";ue.registerClass(YA);var JA=class extends st{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Ve(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let r=je(e);return Ih(r)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};JA.className="ELU";ue.registerClass(JA);var QA=class extends st{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let r=je(e);return L(r,me(mn(r,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};QA.className="ThresholdedReLU";ue.registerClass(QA);var ex=class extends st{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new qA().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let r=je(e);return this.softmax(r,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};ex.className="Softmax";ue.registerClass(ex);function vu(e,t,r){if(typeof e=="number")return Oo(e,t);if(e.length!==t)throw new q(`The ${r} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let n=0;n<t;++n){let a=e[n];if(!XL(a))throw new q(`The ${r} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${a}`)}return e}function ma(e,t,r,n,a=1){if(e==null)return e;let s=t+(t-1)*(a-1),i;return r==="same"?i=e:i=e-s+1,Math.floor((i+n-1)/n)}function Ea(e,t,r,n){if(e==null)return null;if(n==="valid")e=e*t+Us([r-t,0]);else if(n==="same")e=e*t;else throw new q(`Unsupport padding mode: ${n}.`);return e}function tx(e,t){return X(()=>(jt(t),t==="channelsFirst"?tt(e,[0,2,3,1]):e))}function q6(e,t){return X(()=>(jt(t),t==="channelsFirst"?tt(e,[0,2,3,4,1]):e))}function DU(e,t,r,n=1,a="valid",s,i=1){return X(()=>{if(s==null&&(s=Aa()),jt(s),e.shape.length!==3)throw new q(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new q(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(r!=null&&r.shape.length!==1)throw new q(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=tt(e,[0,2,1])),a==="causal")throw new Ve("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=jy(e,t,n,a==="same"?"same":"valid","NWC",i);return r!=null&&(o=va(o,r)),o})}function k4(e,t,r,n=[1,1],a="valid",s,i,o=null){return X(()=>{if(s==null&&(s=Aa()),jt(s),e.rank!==3&&e.rank!==4)throw new q(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new q(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=tx(e,s);if(a==="causal")throw new Ve("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Vs.conv2d({x:l,filter:t,strides:n,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:r,activation:o}),s==="channelsFirst"&&(l=tt(l,[0,3,1,2])),l})}function LU(e,t,r,n=[1,1,1],a="valid",s,i){return X(()=>{if(s==null&&(s=Aa()),jt(s),e.rank!==4&&e.rank!==5)throw new q(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new q(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=q6(e,s);if(a==="causal")throw new Ve("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=Xy(o,t,n,a==="same"?"same":"valid","NDHWC",i),r!=null&&(o=va(o,r)),s==="channelsFirst"&&(o=tt(o,[0,4,1,2,3])),o})}var rx=class extends st{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",rx.verifyArgs(t),this.rank=e,yr(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Ve(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=vu(t.kernelSize,e,"kernelSize"),this.strides=vu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Ln(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,jt(this.dataFormat),this.activation=js(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=$t(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=ur(t.biasConstraint),this.biasRegularizer=Mt(t.biasRegularizer),this.activityRegularizer=Mt(t.activityRegularizer),this.dilationRate=vu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new q(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new q(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new q(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Na("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!SA(e.kernelSize,"number",1,3))throw new q(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Gs(this.activation),useBias:this.useBias,biasInitializer:zt(this.biasInitializer),biasRegularizer:bt(this.biasRegularizer),activityRegularizer:bt(this.activityRegularizer),biasConstraint:lr(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},_h=class extends rx{constructor(e,t){super(e,t),this.kernel=null,_h.verifyArgs(t),this.filters=t.filters,yr(this.filters,"filters"),this.kernelInitializer=$t(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=ur(t.kernelConstraint),this.kernelRegularizer=Mt(t.kernelRegularizer)}build(e){e=mt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[t]}`);let r=e[t],n=this.kernelSize.concat([r,this.filters]);this.kernel=this.addWeight("kernel",n,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:r}}],this.built=!0}call(e,t){return X(()=>{e=je(e);let r,n=this.bias==null?null:this.bias.read(),a=Qw(this.activation.getClassName());if(a!=null&&this.rank===2)r=k4(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)r=DU(e,this.kernel.read(),n,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)r=k4(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)r=LU(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Ve("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(r=this.activation.apply(r))}return r})}computeOutputShape(e){e=mt(e);let t=[],r=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a<r.length;++a){let s=ma(r[a],this.kernelSize[a],this.padding,this.strides[a],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[a]);t.push(s)}let n=[e[0]];return this.dataFormat==="channelsLast"?(n=n.concat(t),n.push(this.filters)):(n.push(this.filters),n=n.concat(t)),n}getConfig(){let e={filters:this.filters,kernelInitializer:zt(this.kernelInitializer),kernelRegularizer:bt(this.kernelRegularizer),kernelConstraint:lr(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new q(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},X6=class extends _h{constructor(e){super(2,e),X6.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!SA(e.kernelSize,"number",1,2))throw new q(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}},gm=X6;gm.className="Conv2D";ue.registerClass(gm);var K6=class extends _h{constructor(e){super(3,e),K6.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new q(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}},ym=K6;ym.className="Conv3D";ue.registerClass(ym);var nx=class extends gm{constructor(e){if(super(e),this.inputSpec=[new Zt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=mt(e),e.length!==4)throw new q("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let r=e[t],n=this.kernelSize.concat([this.filters,r]);this.kernel=this.addWeight("kernel",n,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Zt({ndim:4,axes:{[t]:r}})],this.built=!0}call(e,t){return X(()=>{let r=je(e);if(r.shape.length!==4)throw new q(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${r.shape.length}`);let n=r.shape,a=n[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=n[s],l=n[i],u=this.kernelSize[0],d=this.kernelSize[1],h=this.strides[0],p=this.strides[1],c=Ea(o,h,u,this.padding),m=Ea(l,p,d,this.padding),f=[a,c,m,this.filters];this.dataFormat!=="channelsLast"&&(r=tt(r,[0,2,3,1]));let g=qy(r,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=tt(g,[0,3,1,2])),this.bias!=null&&(g=va(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=mt(e);let t=e.slice(),r,n,a;this.dataFormat==="channelsFirst"?(r=1,n=2,a=3):(r=3,n=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[r]=this.filters,t[n]=Ea(t[n],o,s,this.padding),t[a]=Ea(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};nx.className="Conv2DTranspose";ue.registerClass(nx);var ax=class extends ym{constructor(e){if(super(e),this.inputSpec=[new Zt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=mt(e),e.length!==5)throw new q("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let r=e[t],n=this.kernelSize.concat([this.filters,r]);this.kernel=this.addWeight("kernel",n,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Zt({ndim:5,axes:{[t]:r}})],this.built=!0}call(e,t){return X(()=>{let r=je(e);if(r.shape.length!==5)throw new q(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${r.shape.length}`);let n=r.shape,a=n[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=n[o],u=n[s],d=n[i],h=this.kernelSize[0],p=this.kernelSize[1],c=this.kernelSize[2],m=this.strides[0],f=this.strides[1],g=this.strides[2],y=Ea(l,m,h,this.padding),A=Ea(u,f,p,this.padding),x=Ea(d,g,c,this.padding),b=[a,y,A,x,this.filters];this.dataFormat!=="channelsLast"&&(r=tt(r,[0,2,3,4,1]));let w=ew(r,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=tt(w,[0,4,1,2,3])),this.bias!==null&&(w=va(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=mt(e);let t=e.slice(),r,n,a,s;this.dataFormat==="channelsFirst"?(r=1,n=2,a=3,s=4):(r=4,n=1,a=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],d=this.strides[1],h=this.strides[2];return t[r]=this.filters,t[n]=Ea(t[n],u,i,this.padding),t[a]=Ea(t[a],d,o,this.padding),t[s]=Ea(t[s],h,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};ax.className="Conv3DTranspose";ue.registerClass(ax);var Z6=class extends _h{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new q("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new q("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new q(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=$t(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Mt(t.depthwiseRegularizer),this.depthwiseConstraint=ur(t.depthwiseConstraint),this.pointwiseInitializer=$t(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Mt(t.pointwiseRegularizer),this.pointwiseConstraint=ur(t.pointwiseConstraint)}build(e){if(e=mt(e),e.length<this.rank+2)throw new q(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let r=e[t],n=this.kernelSize.concat([r,this.depthMultiplier]),a=[];for(let i=0;i<this.rank;++i)a.push(1);a.push(r*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",n,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",a,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Zt({ndim:this.rank+2,axes:{[t]:r}})],this.built=!0}call(e,t){return X(()=>{e=je(e);let r;if(this.rank===1)throw new Ve("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=tt(e,[0,2,3,1])),r=Iw(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(r=va(r,this.bias.read(),this.dataFormat)),this.activation!=null&&(r=this.activation.apply(r)),this.dataFormat==="channelsFirst"&&(r=tt(r,[0,3,1,2])),r})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=zt(this.depthwiseInitializer),e.pointwiseInitializer=zt(this.pointwiseInitializer),e.depthwiseRegularizer=bt(this.depthwiseRegularizer),e.pointwiseRegularizer=bt(this.pointwiseRegularizer),e.depthwiseConstraint=lr(this.depthwiseConstraint),e.pointwiseConstraint=lr(this.pointwiseConstraint),e}};Z6.className="SeparableConv";var sx=class extends Z6{constructor(e){super(2,e)}};sx.className="SeparableConv2D";ue.registerClass(sx);var Y6=class extends _h{constructor(e){super(1,e),Y6.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!SA(e.kernelSize,"number",1,1))throw new q(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}},ix=Y6;ix.className="Conv1D";ue.registerClass(ix);var ox=class extends st{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return X(()=>{if(e=je(e),this.dataFormat==="channelsLast"){let r=Yc(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Yc(r,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let r=Yc(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Yc(r,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ox.className="Cropping2D";ue.registerClass(ox);var lx=class extends st{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,jL(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],r=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,r]}else{let t=e[1]==null?null:this.size[0]*e[1],r=e[2]==null?null:this.size[1]*e[2];return[e[0],t,r,e[3]]}}call(e,t){return X(()=>{let r=je(e),n=r.shape;if(this.dataFormat==="channelsFirst"){r=tt(r,[0,2,3,1]);let a=this.size[0]*n[2],s=this.size[1]*n[3],i=this.interpolation==="nearest"?Ie.resizeNearestNeighbor(r,[a,s]):Ie.resizeBilinear(r,[a,s]);return tt(i,[0,3,1,2])}else{let a=this.size[0]*n[1],s=this.size[1]*n[2];return this.interpolation==="nearest"?Ie.resizeNearestNeighbor(r,[a,s]):Ie.resizeBilinear(r,[a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};lx.className="UpSampling2D";ue.registerClass(lx);function BU(e,t,r=[1,1],n="valid",a,s){return X(()=>{a==null&&(a=Aa()),jt(a);let i=tx(e,a);if(e.rank!==4)throw new q(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new q(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=kh(i,t,r,n==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=tt(i,[0,3,1,2])),i})}var ux=class extends rx{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=$t(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=ur(e.depthwiseConstraint),this.depthwiseRegularizer=Mt(e.depthwiseRegularizer)}build(e){if(e=mt(e),e.length<4)throw new q(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let r=e[t],n=[this.kernelSize[0],this.kernelSize[1],r,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",n,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[r*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return X(()=>{e=je(e);let r=BU(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(r=va(r,this.bias.read(),this.dataFormat)),this.activation!=null&&(r=this.activation.apply(r)),r})}computeOutputShape(e){e=mt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],r=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=ma(t,this.kernelSize[0],this.padding,this.strides[0]),s=ma(r,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],n,a,s]:[e[0],a,s,n]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=zt(this.depthwiseInitializer),e.depthwiseRegularizer=bt(this.depthwiseRegularizer),e.depthwiseConstraint=lr(this.depthwiseRegularizer),e}};ux.className="DepthwiseConv2D";ue.registerClass(ux);function J6(e,t,r,n){if(Array.isArray(e)){if(t!=null||r!=null)throw new q("When inputs is an array, neither initialState or constants should be provided");n!=null&&(r=e.slice(e.length-n,e.length),e=e.slice(0,e.length-n)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),r=a(r),{inputs:e,initialState:t,constants:r}}function Q6(e,t,r,n=!1,a,s,i=!1,o=!1){return X(()=>{let l=t.shape.length;if(l<3)throw new q(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(ya(2,l));if(t=tt(t,u),s!=null)throw new Ve("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=me(me(a,"bool"),"float32"),a.rank===l-1&&(a=Kt(a,-1)),a=tt(a,u)),n&&(t=_n(t,0),a!=null&&(a=_n(a,0)));let d=[],h,p=r,c=t.shape[0],m=nn(t),f;a!=null&&(f=nn(a));for(let y=0;y<c;++y){let A=m[y],x=X(()=>e(A,p));if(a==null)h=x[0],p=x[1];else{let b=X(()=>{let w=f[y],I=ce(Pn(w),w),N=le(L(x[0],w),L(p[0],I)),E=p.map((R,_)=>le(L(x[1][_],w),L(R,I)));return{output:N,newStates:E}});h=b.output,p=b.newStates}o&&d.push(h)}let g;return o&&(g=dr(d,1)),[h,g,p]})}var ek=class extends st{constructor(e){super(e);let t;if(e.cell==null)throw new q("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new bm({cells:e.cell}):t=e.cell,t.stateSize==null)throw new q("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Zt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return ya(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){_g(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let r=t[0],n;if(this.returnSequences?n=[e[0],e[1],r]:n=[e[0],r],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[n].concat(a)}else return n}computeMask(e,t){return X(()=>{Array.isArray(t)&&(t=t[0]);let r=this.returnSequences?t:null;if(this.returnState){let n=this.states.map(a=>null);return[r].concat(n)}else return r})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let r=0;r<e;++r)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Ve("Constants support is not implemented in RNN yet.");_g(e)&&(e=e[0]),e=e;let t=this.stateful?e[0]:null,r=e.slice(2);this.inputSpec[0]=new Zt({shape:[t,null,...r]});let n=[e[0]].concat(e.slice(2));this.cell.build(n);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(s=>s.shape[s.shape.length-1]),a))throw new q(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(s=>new Zt({shape:[null,s]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){X(()=>{if(!this.stateful)throw new Ga("Cannot call resetStates() on an RNN Layer that is not stateful.");let r=this.inputSpec[0].shape[0];if(r==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>_t([r,n])):this.states_=[_t([r,this.cell.stateSize])];else if(e==null)te(this.states_),this.keptStates!=null&&(te(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>_t([r,n])):this.states_[0]=_t([r,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):te(this.states_);for(let n=0;n<this.states_.length;++n){let a=e[n],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[n]:this.cell.stateSize,i=[r,s];if(!v.arraysEqual(a.shape,i))throw new q(`State ${n} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${a.shape}`);this.states_[n]=a}}this.states_=this.states_.map(n=>gr(n.clone()))})}apply(e,t){let r=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let a=J6(e,r,n,this.numConstants);e=a.inputs,r=a.initialState,n=a.constants;let s=[],i=[];if(r!=null){t.initialState=r,s=s.concat(r),this.stateSpec=[];for(let o of r)this.stateSpec.push(new Zt({shape:o.shape}));i=i.concat(this.stateSpec)}if(n!=null&&(t.constants=n,s=s.concat(n),this.numConstants=n.length),s[0]instanceof pa){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let d=super.apply(o,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return X(()=>{let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;e=je(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new q(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:n},o=Q6((p,c)=>{let m=this.cell.call([p].concat(c),i);return[m[0],m.slice(1)]},e,a,this.goBackwards,r,null,this.unroll,this.returnSequences),l=o[0],u=o[1],d=o[2];this.stateful&&this.resetStates(d,n);let h=this.returnSequences?u:l;return this.returnState?[h].concat(d):h})}getInitialState(e){return X(()=>{let t=_t(e.shape);return t=ke(t,[1,2]),t=Rh(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(r=>r>1?Fg(t,[1,r]):t):this.cell.stateSize>1?[Fg(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let r=this.cell.getConfig();return this.getClassName()===ek.className&&(t.cell={className:this.cell.getClassName(),config:r}),{...r,...e,...t}}static fromConfig(e,t,r={}){let n=t.cell,a=fa(n,r);return new e(Object.assign(t,{cell:a}))}},as=ek;as.className="RNN";ue.registerClass(as);var zh=class extends st{},Am=class extends zh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,yr(this.units,"units"),this.activation=js(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=$t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=$t(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=$t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Mt(e.kernelRegularizer),this.recurrentRegularizer=Mt(e.recurrentRegularizer),this.biasRegularizer=Mt(e.biasRegularizer),this.kernelConstraint=ur(e.kernelConstraint),this.recurrentConstraint=ur(e.recurrentConstraint),this.biasConstraint=ur(e.biasConstraint),this.dropout=Ru([1,Us([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ru([1,Us([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=mt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return X(()=>{if(e=e,e.length!==2)throw new q(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let r=e[1];e=e[0];let n=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Hs({ones:()=>Pn(e),rate:this.dropout,training:n,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Hs({ones:()=>Pn(r),rate:this.recurrentDropout,training:n,dropoutFunc:this.dropoutFunc}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=$a(L(e,s),this.kernel.read()):a=$a(e,this.kernel.read()),this.bias!=null&&(a=va(a,this.bias.read())),i!=null&&(r=L(r,i));let o=le(a,$a(r,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Gs(this.activation),useBias:this.useBias,kernelInitializer:zt(this.kernelInitializer),recurrentInitializer:zt(this.recurrentInitializer),biasInitializer:zt(this.biasInitializer),kernelRegularizer:bt(this.kernelRegularizer),recurrentRegularizer:bt(this.recurrentRegularizer),biasRegularizer:bt(this.biasRegularizer),activityRegularizer:bt(this.activityRegularizer),kernelConstraint:lr(this.kernelConstraint),recurrentConstraint:lr(this.recurrentConstraint),biasConstraint:lr(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return{...e,...t}}};Am.className="SimpleRNNCell";ue.registerClass(Am);var dx=class extends as{constructor(e){e.cell=new Am(e),super(e)}call(e,t){return X(()=>{this.cell.dropoutMask!=null&&(te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}static fromConfig(e,t){return new e(t)}};dx.className="SimpleRNN";ue.registerClass(dx);var xm=class extends zh{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new q("GRUCell does not support reset_after parameter set to true.");this.units=e.units,yr(this.units,"units"),this.activation=js(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=js(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=$t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=$t(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=$t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Mt(e.kernelRegularizer),this.recurrentRegularizer=Mt(e.recurrentRegularizer),this.biasRegularizer=Mt(e.biasRegularizer),this.kernelConstraint=ur(e.kernelConstraint),this.recurrentConstraint=ur(e.recurrentConstraint),this.biasConstraint=ur(e.biasConstraint),this.dropout=Ru([1,Us([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ru([1,Us([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=mt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return X(()=>{if(e=e,e.length!==2)throw new q(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let r=t.training==null?!1:t.training,n=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Hs({ones:()=>Pn(e),rate:this.dropout,training:r,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Hs({ones:()=>Pn(n),rate:this.recurrentDropout,training:r,count:3,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=L(e,a[0]));let u=$a(e,this.kernel.read());this.useBias&&(u=va(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(n=L(n,s[0]));let d=this.recurrentKernel.read(),[h,p]=Yt(d,[2*this.units,this.units],d.rank-1),c=$a(n,h),[m,f,g]=Yt(u,3,u.rank-1),[y,A]=Yt(c,2,c.rank-1);i=this.recurrentActivation.apply(le(m,y)),o=this.recurrentActivation.apply(le(f,A));let x=$a(L(o,n),p);l=this.activation.apply(le(g,x));let b=le(L(i,n),L(le(1,Dt(i)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Gs(this.activation),recurrentActivation:Gs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:zt(this.kernelInitializer),recurrentInitializer:zt(this.recurrentInitializer),biasInitializer:zt(this.biasInitializer),kernelRegularizer:bt(this.kernelRegularizer),recurrentRegularizer:bt(this.recurrentRegularizer),biasRegularizer:bt(this.biasRegularizer),activityRegularizer:bt(this.activityRegularizer),kernelConstraint:lr(this.kernelConstraint),recurrentConstraint:lr(this.recurrentConstraint),biasConstraint:lr(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return{...e,...t}}};xm.className="GRUCell";ue.registerClass(xm);var px=class extends as{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new xm(e),super(e)}call(e,t){return X(()=>{this.cell.dropoutMask!=null&&(te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};px.className="GRU";ue.registerClass(px);var Oh=class extends zh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,yr(this.units,"units"),this.activation=js(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=js(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=$t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=$t(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=$t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Mt(e.kernelRegularizer),this.recurrentRegularizer=Mt(e.recurrentRegularizer),this.biasRegularizer=Mt(e.biasRegularizer),this.kernelConstraint=ur(e.kernelConstraint),this.recurrentConstraint=ur(e.recurrentConstraint),this.biasConstraint=ur(e.biasConstraint),this.dropout=Ru([1,Us([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ru([1,Us([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=mt(e);let r=e[e.length-1];this.kernel=this.addWeight("kernel",[r,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let n;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;n=new(t=class extends Zn{apply(i,o){let l=a.apply([s]),u=new sm().apply([s]),d=a.apply([s*2]);return t4(t4(l,u),d)}},t.className="CustomInit",t)}else n=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,n,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return X(()=>{let r=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new q(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=e[1],a=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Hs({ones:()=>Pn(e),rate:this.dropout,training:r,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Hs({ones:()=>Pn(n),rate:this.recurrentDropout,training:r,count:4,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,d;0<this.dropout&&this.dropout<1&&(e=L(e,s[0]));let h=$a(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(n=L(n,i[0])),h=le(h,$a(n,this.recurrentKernel.read())),this.useBias&&(h=va(h,this.bias.read()));let[p,c,m,f]=Yt(h,4,h.rank-1);o=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(c),u=le(L(l,a),L(o,this.activation.apply(m))),d=this.recurrentActivation.apply(f);let g=L(d,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Gs(this.activation),recurrentActivation:Gs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:zt(this.kernelInitializer),recurrentInitializer:zt(this.recurrentInitializer),biasInitializer:zt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:bt(this.kernelRegularizer),recurrentRegularizer:bt(this.recurrentRegularizer),biasRegularizer:bt(this.biasRegularizer),activityRegularizer:bt(this.activityRegularizer),kernelConstraint:lr(this.kernelConstraint),recurrentConstraint:lr(this.recurrentConstraint),biasConstraint:lr(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return{...e,...t}}};Oh.className="LSTMCell";ue.registerClass(Oh);var hx=class extends as{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Oh(e),super(e)}call(e,t){return X(()=>{this.cell.dropoutMask!=null&&(te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};hx.className="LSTM";ue.registerClass(hx);var bm=class extends zh{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return X(()=>{e=e;let r=e.slice(1),n=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?n.push(r.splice(0,i.stateSize.length)):n.push(r.splice(0,1));n.reverse();let a=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];r=n[i],i===0?s=[e[0]].concat(r):s=[s[0]].concat(r),s=o.call(s,t),a.push(s.slice(1))}r=[];for(let i of a.slice().reverse())r.push(...i);return[s[0]].concat(r)})}build(e){_g(e)&&(e=e[0]),e=e;let t;this.cells.forEach((r,n)=>{Eo(`RNNCell_${n}`,()=>{r.build(e),Array.isArray(r.stateSize)?t=r.stateSize[0]:t=r.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=n=>({className:n.getClassName(),config:n.getConfig()}),r={cells:this.cells.map(t)};return{...e,...r}}static fromConfig(e,t,r={}){let n=[];for(let a of t.cells)n.push(fa(a,r));return new e({cells:n})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let r of this.cells)t.push(...r.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return zg(e)}setWeights(e){let t=[];for(let r of this.cells){let n=r.weights.length,a=e.splice(n);for(let s=0;s<r.weights.length;++s)t.push([r.weights[s],a[s]])}PA(t)}};bm.className="StackedRNNCells";ue.registerClass(bm);function Hs(e){let{ones:t,rate:r,training:n=!1,count:a=1,dropoutFunc:s}=e,i=()=>s!=null?s(t(),r):i6(t(),r),o=()=>Mh(i,t,n);return!a||a<=1?gr(o().clone()):Array(a).fill(void 0).map(o).map(l=>gr(l.clone()))}var tk=class extends as{constructor(e){if(e.unroll)throw new Ve("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Ve("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new Zt({ndim:5})]}call(e,t){return X(()=>{if(this.cell.dropoutMask!=null&&(te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new q("ConvRNN2D cell does not support constants");let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return X(()=>{let{stateSize:t}=this.cell,r=e.shape,n=this.computeSingleOutputShape(r),a=[n[0],...n.slice(2)],s=_t(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){X(()=>{if(!this.stateful)throw new Ga("Cannot call resetStates() on an RNN Layer that is not stateful.");let r=this.inputSpec[0].shape,n=this.computeSingleOutputShape(r),a=[n[0],...n.slice(2)];if(r[0]==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>_t(a)):this.states_=[_t(a)];else if(e==null)te(this.states_),this.keptStates!=null&&(te(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>_t(a)):this.states_[0]=_t(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):te(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=a;if(!v.arraysEqual(i.shape,o))throw new q(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>gr(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:r,kernelSize:n,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],d=ma(l,n[0],a,s[0],i[0]),h=ma(u,n[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[r,d,h]:[d,h,r]]}};tk.className="ConvRNN2D";var vm=class extends Oh{constructor(e){let{filters:t,kernelSize:r,strides:n,padding:a,dataFormat:s,dilationRate:i}=e;super({...e,units:t}),this.filters=t,yr(this.filters,"filters"),this.kernelSize=vu(r,2,"kernelSize"),this.kernelSize.forEach(o=>yr(o,"kernelSize")),this.strides=vu(n||1,2,"strides"),this.strides.forEach(o=>yr(o,"strides")),this.padding=a||"valid",Ln(this.padding),this.dataFormat=s||"channelsLast",jt(this.dataFormat),this.dilationRate=vu(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>yr(o,"dilationRate"))}build(e){var t;e=mt(e);let r=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[r]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[r]}`);let n=e[r],a=4,s=this.kernelSize.concat([n,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Zn{apply(d,h){let p=l.apply([u]),c=hn([u]),m=l.apply([u*2]);return CA([p,c,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return X(()=>{if(e.length!==3)throw new q(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=t.training||!1,n=e[0],a=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Hs({ones:()=>Pn(n),rate:this.dropout,training:r,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,l=(V,re,Y)=>!re||!re[Y]?V:L(re[Y],V),u=l(n,o,0),d=l(n,o,1),h=l(n,o,2),p=l(n,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Hs({ones:()=>Pn(a),rate:this.recurrentDropout,training:r,count:i,dropoutFunc:this.dropoutFunc}));let c=this.recurrentDropoutMask,m=l(a,c,0),f=l(a,c,1),g=l(a,c,2),y=l(a,c,3),A=3,[x,b,w,I]=Yt(this.kernel.read(),i,A),[N,E,R,_]=this.useBias?Yt(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,N,this.padding),d=this.inputConv(d,b,E,this.padding),h=this.inputConv(h,w,R,this.padding),p=this.inputConv(p,I,_,this.padding);let[M,S,z,O]=Yt(this.recurrentKernel.read(),i,A);m=this.recurrentConv(m,M),f=this.recurrentConv(f,S),g=this.recurrentConv(g,z),y=this.recurrentConv(y,O);let H=this.recurrentActivation.apply(le(u,m)),K=this.recurrentActivation.apply(le(d,f)),D=le(L(K,s),L(H,this.activation.apply(le(h,g)))),Q=L(this.recurrentActivation.apply(le(p,y)),this.activation.apply(D));return[Q,Q,D]})}getConfig(){let{units:e,...t}=super.getConfig(),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return{...t,...r}}inputConv(e,t,r,n){let a=Ls(e,t,this.strides,n||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return r?va(a,r,this.dataFormat):a}recurrentConv(e,t){return Ls(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};vm.className="ConvLSTM2DCell";ue.registerClass(vm);var cx=class extends tk{constructor(e){let t=new vm(e);super({...e,cell:t})}static fromConfig(e,t){return new e(t)}};cx.className="ConvLSTM2D";ue.registerClass(cx);var wm=class extends st{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,r=[];for(let n=0;n<this.noiseShape.length;++n)r.push(this.noiseShape[n]==null?t[n]:this.noiseShape[n]);return r}call(e,t){return X(()=>{this.invokeCallHook(e,t);let r=je(e);if(0<this.rate&&this.rate<1){let n=t.training==null?!1:t.training,a=this.getNoiseShape(r);return Mh(()=>i6(r,this.rate,a,this.seed),()=>r,n)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};wm.className="Dropout";ue.registerClass(wm);var fx=class extends wm{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};fx.className="SpatialDropout1D";ue.registerClass(fx);var mx=class extends st{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,yr(this.units,"units"),this.activation=js(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=$t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=$t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=ur(e.kernelConstraint),this.biasConstraint=ur(e.biasConstraint),this.kernelRegularizer=Mt(e.kernelRegularizer),this.biasRegularizer=Mt(e.biasRegularizer),this.activityRegularizer=Mt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=mt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=mt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return X(()=>{this.invokeCallHook(e,t);let r=je(e),n=Qw(this.activation.getClassName()),a;return n!=null?a=$a(r,this.kernel.read(),n,this.bias?this.bias.read():null):(a=$a(r,this.kernel.read()),this.bias!=null&&(a=va(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:Gs(this.activation),useBias:this.useBias,kernelInitializer:zt(this.kernelInitializer),biasInitializer:zt(this.biasInitializer),kernelRegularizer:bt(this.kernelRegularizer),biasRegularizer:bt(this.biasRegularizer),activityRegularizer:bt(this.activityRegularizer),kernelConstraint:lr(this.kernelConstraint),biasConstraint:lr(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};mx.className="Dense";ue.registerClass(mx);var gx=class extends st{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=mt(e);for(let t of e.slice(1))if(t==null)throw new q(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],$s(e,1)]}call(e,t){return X(()=>{this.invokeCallHook(e,t);let r=je(e);if(this.dataFormat==="channelsFirst"&&r.rank>1){let n=[0];for(let a=2;a<r.rank;++a)n.push(a);n.push(1),r=tt(r,n)}return YL(r)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};gx.className="Flatten";ue.registerClass(gx);var yx=class extends st{constructor(e){super(e),this.supportsMasking=!0,this.activation=js(e.activation)}call(e,t){return X(()=>{this.invokeCallHook(e,t);let r=je(e);return this.activation.apply(r)})}getConfig(){let e={activation:Gs(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};yx.className="Activation";ue.registerClass(yx);var Ax=class extends st{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return X(()=>(e=je(e),KL(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Ax.className="RepeatVector";ue.registerClass(Ax);var xx=class extends st{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let r="Total size of new array must be unchanged.",n=t.slice(),a=1,s=null;for(let o=0;o<n.length;++o){let l=n[o];if(this.isUnknown(l))if(s===null)s=o;else throw new q("Can only specifiy one unknown dimension.");else a*=l}let i=$s(e);if(s!==null){if(a===0||i%a!==0)throw new q(r);n[s]=i/a}else if(i!==a)throw new q(r);return n}computeOutputShape(e){let t=!1;for(let r=0;r<e.length;++r)if(this.isUnknown(e[r])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return X(()=>{this.invokeCallHook(e,t);let r=je(e),n=r.shape,a=n.slice(0,1).concat(this.fixUnknownDimension(n.slice(1),this.targetShape));return U(r,a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};xx.className="Reshape";ue.registerClass(xx);var bx=class extends st{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=ya(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Zt({ndim:this.dims.length+1})]}computeOutputShape(e){e=mt(e);let t=e.slice();return this.dims.forEach((r,n)=>{t[n+1]=e[r]}),t}call(e,t){return tt(je(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};bx.className="Permute";ue.registerClass(bx);var vx=class extends st{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let r=je(e),n=-1;return T0(Nu(r,this.maskValue),n)}call(e,t){return X(()=>{this.invokeCallHook(e,t);let r=je(e),n=-1,a=!0,s=T0(Nu(r,this.maskValue),n,a);return L(r,me(s,r.dtype))})}};vx.className="Masking";ue.registerClass(vx);var wx=class extends st{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(Tt(e.inputLength))}this.inputDim=e.inputDim,yr(this.inputDim,"inputDim"),this.outputDim=e.outputDim,yr(this.outputDim,"outputDim"),this.embeddingsInitializer=$t(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Mt(e.embeddingsRegularizer),this.activityRegularizer=Mt(e.activityRegularizer),this.embeddingsConstraint=ur(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return X(()=>this.maskZero?(e=je(e),Nu(e,at(e))):null)}computeOutputShape(e){if(e=mt(e),this.inputLength==null)return[...e,this.outputDim];let t=Tt(this.inputLength);if(t.length!==e.length-1)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let r=0;for(let n=0;n<t.length;++n){let a=t[n],s=e[n+1];if(a!=null&&s!=null&&a!==s)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);a==null&&(t[r]=s),r++}}return[e[0],...t,this.outputDim]}call(e,t){return X(()=>{this.invokeCallHook(e,t);let r=je(e);r.dtype!=="int32"&&(r=nm(r,"int32"));let n=s6(this.embeddings.read(),U(r,[r.size]));return U(n,mt(this.computeOutputShape(r.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:zt(this.embeddingsInitializer),embeddingsRegularizer:bt(this.embeddingsRegularizer),activityRegularizer:bt(this.activityRegularizer),embeddingsConstraint:lr(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};wx.className="Embedding";ue.registerClass(wx);var Ol=class extends st{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Ve}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let r=e.slice(0,e.length-t.length);for(let n=0;n<t.length;++n){let a=e[e.length-t.length+n],s=t[n];if(a==null||s==null||a<0||s<0)r.push(null);else if(a===1)r.push(s);else if(s===1)r.push(a);else{if(a!==s)throw new q("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));r.push(a)}}return r}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[mt(e)]),e=e,e.length<2)throw new q(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let a of e)a!=null&&a[0]!==null&&t.push(a[0]);if(t=Rs(t),t.length>1)throw new q(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let r=e[0]==null?null:e[0].slice(1);for(let a=1;a<e.length;++a){let s=e[a]==null?null:e[a].slice(1);r=this.computeElementwiseOpOutputShape(r,s)}let n=e.map(a=>a.length);e.indexOf(null)===-1&&Rs(n).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return X(()=>{if(e=e,this.reshapeRequired){let r=[],n=e.map(a=>a.rank);if(n.indexOf(null)===-1){let a=Us(n);for(let s of e){let i=s.rank;for(let o=0;o<a-i;++o)s=Rh(s,1);r.push(s)}return this.mergeFunction(r)}else{let a=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,d=u[0],h=u.slice(1).concat([d]),p=U(o,[d].concat($s(u.slice(1))));p=tt(p,[1,0]),p=U(p,h),r.push(p),a=!0}else if(l>1){let u=ya(1,l).concat([0]);r.push(tt(o,u)),a=!0}else r.push(o)}let s=this.mergeFunction(r),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,u=o[l-1],d=[u].concat(o.slice(0,o.length-1));s=U(tt(U(s,[-1,u]),[1,0]),d)}else if(i>1){let o=[i-1].concat(ya(0,i-1));s=tt(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let n=1;n<e.length;++n){let a=e[n]==null?null:e[n].slice(1);t=this.computeElementwiseOpOutputShape(t,a)}let r=[];for(let n of e)n!=null&&n[0]!==null&&r.push(n[0]);return r=Rs(r),r.length===1?t=r.concat(t):t=[null].concat(t),t}computeMask(e,t){return X(()=>{if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an Array");if(!Array.isArray(e))throw new q("`inputs` should be an Array");if(t.length!==e.length)throw new q(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(n=>n==null))return null;t=t.map(n=>n==null?n:Kt(n,0));let r=t[0];for(let n=1;n<t.length-1;++n)r=ga(r,t[n]);return r})}},kx=class extends Ol{constructor(e){super(e)}mergeFunction(e){return X(()=>{let t=e[0].clone();for(let r=1;r<e.length;++r)t=le(t,e[r]);return t})}};kx.className="Add";ue.registerClass(kx);var Ix=class extends Ol{constructor(e){super(e)}mergeFunction(e){return X(()=>{let t=e[0].clone();for(let r=1;r<e.length;++r)t=L(t,e[r]);return t})}};Ix.className="Multiply";ue.registerClass(Ix);var Sx=class extends Ol{constructor(e){super(e)}mergeFunction(e){return X(()=>{let t=e[0].clone();for(let r=1;r<e.length;++r)t=le(t,e[r]);return L(1/e.length,t)})}};Sx.className="Average";ue.registerClass(Sx);var Cx=class extends Ol{constructor(e){super(e)}mergeFunction(e){return X(()=>{let t=e[0];for(let r=1;r<e.length;++r)t=ts(t,e[r]);return t})}};Cx.className="Maximum";ue.registerClass(Cx);var Tx=class extends Ol{constructor(e){super(e)}mergeFunction(e){return X(()=>{let t=e[0];for(let r=1;r<e.length;++r)t=Ch(t,e[r]);return t})}};Tx.className="Minimum";ue.registerClass(Tx);var Nx=class extends Ol{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new q("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let n of e)if(n!=null){t=!1;break}if(t)return;let r=[];for(let n=0;n<e.length;++n){let a=e[n].slice();a.splice(this.axis,1);let s=!1;for(let i of r)if(v.arraysEqual(i,a)){s=!0;break}s||r.push(a)}if(r.length>1)throw new q("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return X(()=>CA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new q("A `Concatenate` layer should be called on a list of inputs.");let t=e,r=t[0].slice(),n=this.axis<0?r.length+this.axis:this.axis;for(let a of t.slice(1)){if(r[n]==null||a[n]==null){r[n]=null;break}r[n]+=a[n]}return r}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new q("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new q(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return X(()=>{let r=!0;if(t.forEach(s=>{if(s!=null){r=!1;return}}),r)return null;let n=[];for(let s=0;s<e.length;++s)t[s]==null?n.push(me(Pn(e[s]),"bool")):t[s].rank<e[s].rank?n.push(Kt(t[s],-1)):n.push(t[s]);let a=St(n,this.axis);return Wy(a,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Nx.className="Concatenate";ue.registerClass(Nx);function bp(e,t){for(;e<0;)e+=t;return e}function WU(e,t,r){if(e.shape.length>3||t.shape.length>3)throw new Ve("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof r=="number"&&(r=[r,r]),e.dtype==="complex64"||t.dtype==="complex64")throw new Ve("batchDot is not implemented for complex64-type Tensors yet.");let n=e.shape.length,a=t.shape.length;r==null&&(r=[n-1,a-2]);let s=r;return X(()=>{let i;if(n>a){i=n-a;let l=[];for(let u=0;u<i;++u)l.push(1);t=U(t,t.shape.concat(l))}else if(a>n){i=a-n;let l=[];for(let u=0;u<i;++u)l.push(1);e=U(e,e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=ke(L(e,t),s[0]):o=ke(L(tt(e,[1,0]),t),s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=Ze(e,t,l,u)}if(i>0){let l;n>a?l=n+a-3:l=n-1;let u=[];for(let d=l;d<l+i;++d)u.push(d);o=Qe(o,u)}return o.shape.length===1&&(o=Kt(o,1)),o})}var Ex=class extends Ol{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],r=e[1];if(t.length>3||r.length>3)throw new Ve("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,r);if(t[n[0]]!==r[n[1]])throw new q(`Dimension incompatibility: ${t[n[0]]} !== ${r[n[1]]}`)}mergeFunction(e){if(e.length!==2)throw new q(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],r=e[1],n;return Array.isArray(this.axes)?n=this.axes.map((a,s)=>bp(a,e[s].shape.length)):n=[bp(this.axes,t.shape.length),bp(this.axes,r.shape.length)],this.normalize&&(t=P0(t,n[0]),r=P0(r,n[1])),WU(t,r,n)}interpretAxes(e,t){let r;return Array.isArray(this.axes)?r=this.axes:r=[bp(this.axes,e.length),bp(this.axes,t.length)],r}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),r=e[1].slice();if(t.length>3||r.length>3)throw new Ve("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,r);t.splice(n[0],1),r.splice(n[1],1),r.splice(0,1);let a=t.concat(r);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Ex.className="Dot";ue.registerClass(Ex);var Rx=class extends st{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return X(()=>{this.invokeCallHook(e,t);let r=je(e);return Mh(()=>le(am(r.shape,0,this.stddev),r),()=>r,t.training||!1)})}};Rx.className="GaussianNoise";ue.registerClass(Rx);var $x=class extends st{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return X(()=>{this.invokeCallHook(e,t);let r=je(e);return this.rate>0&&this.rate<1?Mh(()=>{let n=Math.sqrt(this.rate/(1-this.rate));return L(r,am(r.shape,1,n))},()=>r,t.training||!1):r})}};$x.className="GaussianDropout";ue.registerClass($x);var Mx=class extends st{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||je(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return X(()=>{if(this.rate<1&&this.rate>0){let r=this._getNoiseShape(e);return Mh(()=>{let n=je(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=Ml(Ad(r),this.rate);o=nm(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,d=le(L(n,o),L(le(o,-1),i));return le(L(d,l),u)},()=>je(e),t.training||!1)}return e})}};Mx.className="AlphaDropout";ue.registerClass(Mx);function Kp(e,t,r,n,a,s=.001){let i;if(e.rank===2)i=j7(e,t,r,n,a,s);else if(e.rank===3)i=H7(e,t,r,n,a,s);else if(e.rank===4)i=q7(e,t,r,n,a,s);else throw new Ve(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function VU(e,t,r,n,a=.001){return X(()=>{let s=Lf(e,n),i=s.mean,o=s.variance;return[Kp(e,i,o,r,t,a),i,o]})}function UU(e,t,r,n,a=.001){return X(()=>{let s=Lf(e,n),i=s.mean,o=s.variance,l=[];for(let c of ya(0,e.rank))n.indexOf(c)!==-1?l.push(1):l.push(e.shape[c]);let u=U(i,l),d=U(o,l),h=t==null?null:U(t,l),p=r==null?null:U(r,l);return[Kp(e,u,d,p,h,a),i,o]})}function GU(e,t,r,n,a=.001){return v.arraysEqual(n.slice().sort(),ya(0,e.rank-1))?VU(e,t,r,n,a):UU(e,t,r,n,a)}var Fx=class extends st{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=$t(e.betaInitializer||"zeros"),this.gammaInitializer=$t(e.gammaInitializer||"ones"),this.movingMeanInitializer=$t(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=$t(e.movingVarianceInitializer||"ones"),this.betaConstraint=ur(e.betaConstraint),this.gammaConstraint=ur(e.gammaConstraint),this.betaRegularizer=Mt(e.betaRegularizer),this.gammaRegularizer=Mt(e.gammaRegularizer)}build(e){e=mt(e);let t=this.axis>=0?this.axis:this.axis+e.length,r=e[t];if(r==null)throw new q(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Zt({ndim:e.length,axes:{[t]:r}})];let n=[r];this.scale&&(this.gamma=this.addWeight("gamma",n,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",n,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",n,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",n,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return X(()=>{let r=t.training==null?!1:t.training,n=je(e),a=n.shape,s=a.length,i=ya(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Oo(1,s);l[o]=a[o];let u=i.slice();u.sort();let d=!v.arraysEqual(u,ya(0,s).slice(0,s-1)),h=()=>{if(d){let g=U(this.movingMean.read(),l),y=U(this.movingVariance.read(),l),A=this.center?U(this.beta.read(),l):null,x=this.scale?U(this.gamma.read(),l):null;return Kp(n,g,y,A,x,this.epsilon)}else return Kp(n,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!r)return h();let[p,c,m]=GU(n,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,y,A)=>{X(()=>{let x=1-A,b=g.read(),w=L(ce(b,y),x);g.write(ce(b,w))})};return f(this.movingMean,c,this.momentum),f(this.movingVariance,m,this.momentum),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:zt(this.betaInitializer),gammaInitializer:zt(this.gammaInitializer),movingMeanInitializer:zt(this.movingMeanInitializer),movingVarianceInitializer:zt(this.movingVarianceInitializer),betaRegularizer:bt(this.betaRegularizer),gammaRegularizer:bt(this.gammaRegularizer),betaConstraint:lr(this.betaConstraint),gammaConstraint:lr(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Fx.className="BatchNormalization";ue.registerClass(Fx);var Px=class extends st{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=$t(e.betaInitializer||"zeros"),this.gammaInitializer=$t(e.gammaInitializer||"ones"),this.betaRegularizer=Mt(e.betaRegularizer),this.gammaRegularizer=Mt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=mt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a<this.axis.length;++a)this.axis[a]<0&&(this.axis[a]+=t);for(let a of this.axis)if(a<0||a>=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Rs(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let r=this.axis.map(a=>e[a]),n=!0;this.scale?this.gamma=this.addWeight("gamma",r,"float32",this.gammaInitializer,this.gammaRegularizer,n):this.gamma=null,this.center?this.beta=this.addWeight("beta",r,"float32",this.betaInitializer,this.betaRegularizer,n):this.beta=null,this.built=!0}call(e,t){let r=je(e),n=r.shape,a=n.length;return X(()=>{let{mean:s,variance:i}=Lf(r,this.axis,!0),o=Oo(1,a);for(let c of this.axis)o[c]=n[c];let l=c=>c!=null&&c.shape.length!==a?U(c,o):c,u=this.scale?l(this.gamma.read()):null,d=this.center?l(this.beta.read()):null,h=[],p=[];for(let c=0;c<a;++c)this.axis.indexOf(c)!==-1?(h.push(n[c]),p.push(1)):(h.push(1),p.push(n[c]));return s=Gn(s,h),i=Gn(i,h),u!=null&&(u=Gn(u,p)),d!=null&&(d=Gn(d,p)),Kp(r,s,i,d,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:zt(this.betaInitializer),gammaInitializer:zt(this.gammaInitializer),betaRegularizer:bt(this.betaRegularizer),gammaRegularizer:bt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Px.className="LayerNormalization";ue.registerClass(Px);function jU(e,t,r){return X(()=>{if(e.rank!==4)throw new q(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new q("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(r==null&&(r=Aa()),r!=="channelsLast"&&r!=="channelsFirst")throw new q(`Unknown data format: ${r}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let n;return r==="channelsFirst"?n=[[0,0],[0,0],t[0],t[1]]:n=[[0,0],t[0],t[1],[0,0]],Xn(e,n)})}var _x=class extends st{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Aa():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new q(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,r;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],r=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new q(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new q(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);r=e.padding[1]}this.padding=[t,r]}this.inputSpec=[new Zt({ndim:4})]}computeOutputShape(e){e=mt(e);let t,r;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?r=e[3]+this.padding[1][0]+this.padding[1][1]:r=null,[e[0],e[1],t,r]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?r=e[2]+this.padding[1][0]+this.padding[1][1]:r=null,[e[0],t,r,e[3]])}call(e,t){return X(()=>jU(je(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};_x.className="ZeroPadding2D";ue.registerClass(_x);function km(e,t,r,n,a,s){return X(()=>{jt(a),t6(s),Ln(n),r==null&&(r=[1,1]),n==null&&(n="valid"),a==null&&(a=Aa()),s==null&&(s="max"),e=tx(e,a);let i,o=n==="same"?"same":"valid";return s==="max"?i=Df(e,t,r,o):i=Ef(e,t,r,o),a==="channelsFirst"&&(i=tt(i,[0,3,1,2])),i})}function rk(e,t,r,n,a,s){return X(()=>{jt(a),t6(s),Ln(n),r==null&&(r=[1,1,1]),n==null&&(n="valid"),a==null&&(a=Aa()),s==null&&(s="max"),e=q6(e,a);let i,o=n==="same"?"same":"valid";return s==="max"?i=aA(e,t,r,o):i=Uy(e,t,r,o),a==="channelsFirst"&&(i=tt(i,[0,4,1,2,3])),i})}var nk=class extends st{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new q(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(yr(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new q(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);yr(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Ln(this.padding),this.inputSpec=[new Zt({ndim:3})]}computeOutputShape(e){e=mt(e);let t=ma(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return X(()=>{this.invokeCallHook(e,t),e=Rh(je(e),2);let r=this.poolingFunction(je(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Qe(r,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},zx=class extends nk{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return jt(a),Ln(n),km(e,t,r,n,a,"max")}};zx.className="MaxPooling1D";ue.registerClass(zx);var Ox=class extends nk{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return jt(a),Ln(n),km(e,t,r,n,a,"avg")}};Ox.className="AveragePooling1D";ue.registerClass(Ox);var ak=class extends st{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new q(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];yr(this.poolSize,"poolSize"),yr(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),Ln(this.padding),this.inputSpec=[new Zt({ndim:4})]}computeOutputShape(e){e=mt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],r=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=ma(t,this.poolSize[0],this.padding,this.strides[0]),r=ma(r,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,r]:[e[0],t,r,e[3]]}call(e,t){return X(()=>(this.invokeCallHook(e,t),this.poolingFunction(je(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Dx=class extends ak{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return jt(a),Ln(n),km(e,t,r,n,a,"max")}};Dx.className="MaxPooling2D";ue.registerClass(Dx);var Lx=class extends ak{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return jt(a),Ln(n),km(e,t,r,n,a,"avg")}};Lx.className="AveragePooling2D";ue.registerClass(Lx);var sk=class extends st{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new q(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];yr(this.poolSize,"poolSize"),yr(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),Ln(this.padding),this.inputSpec=[new Zt({ndim:5})]}computeOutputShape(e){e=mt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],r=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=ma(t,this.poolSize[0],this.padding,this.strides[0]),r=ma(r,this.poolSize[1],this.padding,this.strides[1]),n=ma(n,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,r,n]:[e[0],t,r,n,e[4]]}call(e,t){return X(()=>(this.invokeCallHook(e,t),this.poolingFunction(je(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Bx=class extends sk{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return jt(a),Ln(n),rk(e,t,r,n,a,"max")}};Bx.className="MaxPooling3D";ue.registerClass(Bx);var Wx=class extends sk{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return jt(a),Ln(n),rk(e,t,r,n,a,"avg")}};Wx.className="AveragePooling3D";ue.registerClass(Wx);var ik=class extends st{constructor(e){super(e),this.inputSpec=[new Zt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Ve}},Vx=class extends ik{constructor(e){super(e||{})}call(e,t){return X(()=>{let r=je(e);return Vt(r,1)})}};Vx.className="GlobalAveragePooling1D";ue.registerClass(Vx);var Ux=class extends ik{constructor(e){super(e||{})}call(e,t){return X(()=>{let r=je(e);return Ar(r,1)})}};Ux.className="GlobalMaxPooling1D";ue.registerClass(Ux);var ok=class extends st{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),this.inputSpec=[new Zt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Ve}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Gx=class extends ok{call(e,t){return X(()=>{let r=je(e);return this.dataFormat==="channelsLast"?Vt(r,[1,2]):Vt(r,[2,3])})}};Gx.className="GlobalAveragePooling2D";ue.registerClass(Gx);var jx=class extends ok{call(e,t){return X(()=>{let r=je(e);return this.dataFormat==="channelsLast"?Ar(r,[1,2]):Ar(r,[2,3])})}};jx.className="GlobalMaxPooling2D";ue.registerClass(jx);var lk=class extends st{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,r={}){let n=t.layer,a=fa(n,r);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},Hx=class extends lk{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=mt(e),e.length<3)throw new q(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=mt(e);let t=[e[0]].concat(e.slice(2)),r=this.layer.computeOutputShape(t),n=e[1];return[r[0],n].concat(r.slice(1))}call(e,t){return X(()=>(e=je(e),Q6((r,n)=>[je(this.layer.call(r,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Hx.className="TimeDistributed";ue.registerClass(Hx);function HU(e){_l(GL,"BidirectionalMergeMode",e)}var qU="concat",qx=class extends lk{constructor(e){super(e);let t=e.layer.getConfig(),r={};r.className=e.layer.getClassName(),r.config=t,this.forwardLayer=fa(r),t.goBackwards=t.goBackwards!==!0;let n={};if(n.className=e.layer.getClassName(),n.config=t,this.backwardLayer=fa(n),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?qU:e.mergeMode,HU(this.mergeMode),e.weights)throw new Ve("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,r=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,r)),this.backwardLayer.setWeights(e.slice(r))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let r,n,a;return this.returnState&&(a=t.slice(1)),r=t[0],r=r,this.mergeMode==="concat"?(r[r.length-1]*=2,n=[r]):this.mergeMode==null?n=[r,r.slice()]:n=[r],this.returnState?this.mergeMode==null?n.concat(a).concat(a.slice()):[r].concat(a).concat(a.slice()):tn(n)}apply(e,t){let r=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let a=J6(e,r,n,this.numConstants);if(e=a.inputs,r=a.initialState,n=a.constants,Array.isArray(e)&&(r=e.slice(1),e=e[0]),(r==null||r.length===0)&&n==null)return super.apply(e,t);let s=[],i=[];if(r!=null){let l=r.length;if(l%2>0)throw new q("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=r,s.push(...r);let u=r.map(d=>new Zt({shape:d.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(n!=null)throw new Ve("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof pa;for(let l of s)if(l instanceof pa!==o)throw new q("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),d=this.inputSpec;this.inputSpec=u;let h=super.apply(l,t);return this.inputSpec=d,h}else return super.apply(e,t)}call(e,t){return X(()=>{let r=t.initialState,n,a;if(r==null)n=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=r.slice(0,r.length/2),l=r.slice(r.length/2);n=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(n)&&(s=n.slice(1).concat(a.slice(1))),n=n[0],a=a[0]),this.returnSequences&&(a=_n(a,1));let i;return this.mergeMode==="concat"?i=CA([n,a]):this.mergeMode==="sum"?i=le(n,a):this.mergeMode==="ave"?i=L(.5,le(n,a)):this.mergeMode==="mul"?i=L(n,a):this.mergeMode==null&&(i=[n,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Eo(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Eo(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let r;if(this.returnSequences?this.mergeMode==null?r=[t,t]:r=t:this.mergeMode==null?r=[null,null]:r=null,this.returnState){let n=this.forwardLayer.states.map(a=>null);return Array.isArray(r)?r.concat(n).concat(n):[r].concat(n).concat(n)}else return r}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let r=fa(t.layer);if(delete t.layer,t.numConstants!=null)throw new Ve("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let n=t;return n.layer=r,new e(n)}};qx.className="Bidirectional";ue.registerClass(qx);function XU(e){return new vd(e)}function KU(e){return new JA(e)}function ZU(e){return new KA(e)}function YU(e){return new ZA(e)}function JU(e){return new YA(e)}function QU(e){return new ex(e)}function eG(e){return new QA(e)}function tG(e){return new ix(e)}function rG(e){return new gm(e)}function nG(e){return new nx(e)}function aG(e){return new ym(e)}function sG(e){return new ax(e)}function iG(e){return new sx(e)}function oG(e){return new ox(e)}function lG(e){return new lx(e)}function uG(e){return new ux(e)}function dG(e){return new yx(e)}function pG(e){return new mx(e)}function hG(e){return new wm(e)}function cG(e){return new fx(e)}function fG(e){return new gx(e)}function mG(e){return new Ax(e)}function gG(e){return new xx(e)}function yG(e){return new bx(e)}function AG(e){return new wx(e)}function xG(e){return new kx(e)}function bG(e){return new Sx(e)}function vG(e){return new Nx(e)}function wG(e){return new Cx(e)}function kG(e){return new Tx(e)}function IG(e){return new Ix(e)}function SG(e){return new Ex(e)}function CG(e){return new Fx(e)}function TG(e){return new Px(e)}function NG(e){return new _x(e)}function Xx(e){return new Ox(e)}function EG(e){return Xx(e)}function RG(e){return Xx(e)}function Kx(e){return new Lx(e)}function $G(e){return Kx(e)}function MG(e){return Kx(e)}function Zx(e){return new Wx(e)}function FG(e){return Zx(e)}function PG(e){return Zx(e)}function _G(e){return new Vx(e)}function zG(e){return new Gx(e)}function uk(e){return new Ux(e)}function dk(e){return new jx(e)}function pk(e){return new zx(e)}function hk(e){return new Dx(e)}function OG(e){return new Bx(e)}function DG(e){return new px(e)}function LG(e){return new xm(e)}function BG(e){return new hx(e)}function WG(e){return new Oh(e)}function VG(e){return new dx(e)}function UG(e){return new Am(e)}function GG(e){return new cx(e)}function jG(e){return new vm(e)}function HG(e){return new as(e)}function qG(e){return new bm(e)}function XG(e){return new qx(e)}function KG(e){return new Hx(e)}var ZG=uk,YG=dk,JG=pk,QG=hk;function ej(e){return new Rx(e)}function tj(e){return new $x(e)}function rj(e){return new Mx(e)}function nj(e){return new vx(e)}var ck={};Be(ck,{MAPE:()=>fj,MSE:()=>yj,binaryAccuracy:()=>aj,binaryCrossentropy:()=>sj,categoricalAccuracy:()=>oj,categoricalCrossentropy:()=>lj,cosineProximity:()=>pj,mape:()=>mj,meanAbsoluteError:()=>hj,meanAbsolutePercentageError:()=>cj,meanSquaredError:()=>gj,mse:()=>Aj,precision:()=>uj,recall:()=>dj,sparseCategoricalAccuracy:()=>ij});function aj(e,t){return VA(e,t)}function sj(e,t){return k6(e,t)}function ij(e,t){return I6(e,t)}function oj(e,t){return UA(e,t)}function lj(e,t){return GA(e,t)}function uj(e,t){return w6(e,t)}function dj(e,t){return JV(e,t)}function pj(e,t){return WA(e,t)}function hj(e,t){return cm(e,t)}function cj(e,t){return wd(e,t)}function fj(e,t){return wd(e,t)}function mj(e,t){return wd(e,t)}function gj(e,t){return zl(e,t)}function yj(e,t){return zl(e,t)}function Aj(e,t){return zl(e,t)}var fk={};Be(fk,{modelFromJSON:()=>NU});var mk={};Be(mk,{l1:()=>bj,l1l2:()=>xj,l2:()=>vj});function xj(e){return new Ph(e)}function bj(e){return zU(e)}function vj(e){return OU(e)}var gk=class extends $u{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof Ka))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Qc(e,t){return e<t}function I4(e,t){return e>t}var yk=class extends gk{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Ve("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Qc:this.mode==="max"?this.monitorFunc=I4:this.monitor.indexOf("acc")!==-1?this.monitorFunc=I4:this.monitorFunc=Qc,this.monitorFunc===Qc&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Qc?1/0:-1/0}async onEpochEnd(e,t){await Ss(t);let r=this.getMonitorValue(t);r!=null&&(this.monitorFunc(r-this.minDelta,this.best)?(this.best=r,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function wj(e){return new yk(e)}var kj={earlyStopping:wj},Ij=Z();Ij.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var Ak=(e=>(e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF",e))(Ak||{}),S4;(e=>{let t;(r=>{r[r.LEGACY=0]="LEGACY",r[r.V1=1]="V1",r[r.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(S4||(S4={}));var Yx={};function Sj(e,t){let r={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Yx[e]=r}function xk(e){return Yx[e]}function Cj(e){delete Yx[e]}function k(e,t,r,n,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return Lr(t.inputNames[s.inputIndexStart],r,n,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>Lr(h,r,n,a));let u=Lr(t.inputNames.slice(o)[0],r,n,a),d=u.dataSync();return s.type==="number"?d[0]:v.toNestedArray(u.shape,d)}let i=t.attrParams[e];return i&&i.value}function Lr(e,t,r,n){let[a,s]=dn(e);if(n!=null){let o=n.getHashTableHandleByName(a);if(o!=null)return o}let i=r.currentContextIds.find(o=>!!t[L0(a,o)]);return i!==void 0?t[L0(a,i)][s]:void 0}function Tj(e,t,r){return t[L0(e,r.currentContextId)]}function Ra(e,t){let[r,n,a]=dn(e);return[L0(r,t&&t.currentContextId),n,a]}function L0(e,t){return t?`${e}-${t}`:e}function dn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let r=t[0],n=t.length===3?t[1]:void 0,a=Number(t[t.length-1]);return[r,a,n]}function l0(e,t,r){let n=k("pad",e,t,r);if(n==="explicit"){n=k("explicitPaddings",e,t,r);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=n[s*2],a[s][1]=n[s*2+1];return a}return n}function Ha(e){return e.kept?e:Wr(e)}var bk={};Be(bk,{json:()=>Nj});var Nj=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],vk={};Be(vk,{json:()=>Ej});var Ej=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],wk={};Be(wk,{json:()=>Rj});var Rj=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],kk={};Be(kk,{json:()=>$j});var $j=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],Ik={};Be(Ik,{json:()=>Mj});var Mj=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],Sk={};Be(Sk,{json:()=>Fj});var Fj=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Ck={};Be(Ck,{json:()=>Pj});var Pj=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],Tk={};Be(Tk,{json:()=>_j});var _j=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Nk={};Be(Nk,{json:()=>zj});var zj=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],Ek={};Be(Ek,{json:()=>Oj});var Oj=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],Rk={};Be(Rk,{json:()=>Dj});var Dj=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],$k={};Be($k,{json:()=>Lj});var Lj=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],Mk={};Be(Mk,{json:()=>Bj});var Bj=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],Fk={};Be(Fk,{json:()=>Wj});var Wj=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],Pk={};Be(Pk,{json:()=>Vj});var Vj=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],_k={};Be(_k,{json:()=>Uj});var Uj=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],zk={};Be(zk,{json:()=>Gj});var Gj=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],Ok={};Be(Ok,{json:()=>jj});var jj=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],Dk={};Be(Dk,{json:()=>Hj});var Hj=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],C4=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[bk,vk,wk,kk,Ik,Sk,Ck,Tk,Nk,Ek,Rk,$k,Mk,Fk,Pk,_k,zk,Ok,Dk],t=[].concat(...e.map(r=>r.json));this.opMappers=t.reduce((r,n)=>(r[n.tfOpName]=n,r),{})}transformGraph(e,t={}){let r=e.node,n=[],a=[],s=[],i=r.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?n.push(m[f.name]):f.op==="Const"?a.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},d={};t!=null&&(u=this.mapSignatureEntries(t.inputs),d=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(m=>{let f=i[m];f.inputNames.forEach((g,y)=>{let[A,,x]=Ra(g),b=i[A];if(b.outputs!=null){let w=b.outputs.indexOf(x);if(w!==-1){let I=`${A}:${w}`;f.inputNames[y]=I}}f.inputs.push(b),b.children.push(f)})}),Object.keys(d).length===0?h.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(d).forEach(m=>{let[f]=Ra(m),g=i[f];g!=null&&(g.signatureKey=d[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=Ra(m),g=i[f];g&&(g.signatureKey=u[m],o.push(g))}):o=n;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let c={nodes:i,inputs:o,outputs:l,weights:a,placeholders:n,signature:t,functions:p};return s.length>0&&(c.initNodes=s),c}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,r)=>(t[e[r].name]=r,t),{})}mapNode(e){let t=xk(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let r={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(n=>n.startsWith("^")?n.slice(1):n),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(r.inputParams=t.inputs.reduce((n,a)=>(n[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},n),{})),t.attrs!=null&&(r.attrParams=t.attrs.reduce((n,a)=>{let s=a.type,i;switch(a.type){case"string":i=Ug(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Ug(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=Zg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Zg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=jg(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=jg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=Kg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Kg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=Gg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Gg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=Jg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Jg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=Xg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Xg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=Yg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Yg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=Hg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Hg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=qg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=qg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=T4(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=T4(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return n[a.name]={value:i,type:s},n},{})),r}mapFunction(e){let t=e.nodeDef,r=[],n=[],a={};t!=null&&(a=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&n.push(u[d.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[d]=Ra(u.name),h={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Jx(u.type),type:"dtype"}},children:[]};h.signatureKey=u.name,s.push(h),a[d]=h}),Object.keys(a).forEach(u=>{let d=a[u];d.inputNames.forEach((h,p)=>{let[c,,m]=Ra(h),f=a[c];if(f.outputs!=null){let g=f.outputs.indexOf(m);if(g!==-1){let y=`${c}:${g}`;d.inputNames[p]=y}}d.inputs.push(f),f.children.push(d)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[d,h]=Ra(o[u.name]),p=a[d];p!=null&&(p.defaultOutput=h,i.push(p))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:n,placeholders:r,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,r)=>(t[r.name]=this.mapArgToTensorInfo(r),t),{}),outputs:e.signature.outputArg.reduce((t,r)=>(t[r.name]=this.mapArgToTensorInfo(r,e.ret),t),{})}}mapArgToTensorInfo(e,t){let r=e.name;return t!=null&&(r=t[r]),{name:r,dtype:e.type}}};function qj(e){let t=Z().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function Lk(e,t){let r=Array.isArray(e)?String.fromCharCode.apply(null,e):qj(e);return t?r:r.toLowerCase()}function Ug(e,t,r,n=!1){let a=e[t];return a!=null?Lk(a.s,n):r}function Gg(e,t,r){let n=e[t];return n?n.b:r}function jg(e,t,r){let n=e[t]||{},a=n.i!=null?n.i:n.f!=null?n.f:r;return typeof a=="number"?a:parseInt(a,10)}function Jx(e){switch(typeof e=="string"&&(e=Ak[e]),e){case 1:case 19:return"float32";case 3:case 9:case 6:case 4:return"int32";case 10:return"bool";case 2:return"float32";case 7:return"string";default:return null}}function T4(e,t,r){let n=e[t];return n&&n.func?n.func.name:r}function Hg(e,t,r){let n=e[t];return n&&n.type?Jx(n.type):r}function qg(e,t,r){let n=e[t];return n&&n.list&&n.list.type?n.list.type.map(a=>Jx(a)):r}function Bk(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Xg(e,t,r){let n=e[t];return n&&n.shape?Bk(n.shape):r}function Kg(e,t,r){let n=e[t];return n?((n.list.f&&n.list.f.length?n.list.f:n.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):r}function Zg(e,t,r,n=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>Lk(s,n)):r}function Yg(e,t,r){let n=e[t];return n&&n.list&&n.list.shape?n.list.shape.map(a=>Bk(a)):r}function Jg(e,t,r){let n=e[t];return n&&n.list&&n.list.b?n.list.b:r}var Xj=class{constructor(e,t,r){this.node=e,this.tensorMap=t,this.context=r,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(n=>this.getInput(n)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((n,a)=>(n[a]=this.getAttr(a),n),{}))}getInput(e){return Lr(e,this.tensorMap,this.context)}getAttr(e,t){let r=this.node.rawAttrs[e];if(r.tensor!=null)return Lr(e,this.tensorMap,this.context);if(r.i!=null||r.f!=null)return jg(this.node.rawAttrs,e,t);if(r.s!=null)return Ug(this.node.rawAttrs,e,t);if(r.b!=null)return Gg(this.node.rawAttrs,e,t);if(r.shape!=null)return Xg(this.node.rawAttrs,e,t);if(r.type!=null)return Hg(this.node.rawAttrs,e,t);if(r.list!=null){if(r.list.i!=null||r.list.f!=null)return Kg(this.node.rawAttrs,e,t);if(r.list.s!=null)return Zg(this.node.rawAttrs,e,t);if(r.list.shape!=null)return Yg(this.node.rawAttrs,e,t);if(r.list.b!=null)return Jg(this.node.rawAttrs,e,t);if(r.list.type!=null)return qg(this.node.rawAttrs,e,t)}return t}},Kj=(e,t,r)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[le(k("a",e,t,r),k("b",e,t,r))];case"AddN":return[Nf(k("tensors",e,t,r))];case"FloorMod":case"Mod":return[yd(k("a",e,t,r),k("b",e,t,r))];case"Mul":return[L(k("a",e,t,r),k("b",e,t,r))];case"RealDiv":case"Div":return[pe(k("a",e,t,r),k("b",e,t,r))];case"DivNoNan":return[aw(k("a",e,t,r),k("b",e,t,r))];case"FloorDiv":return[vh(k("a",e,t,r),k("b",e,t,r))];case"Sub":return[ce(k("a",e,t,r),k("b",e,t,r))];case"Minimum":return[Ch(k("a",e,t,r),k("b",e,t,r))];case"Maximum":return[ts(k("a",e,t,r),k("b",e,t,r))];case"Pow":return[Ws(k("a",e,t,r),k("b",e,t,r))];case"SquaredDifference":return[gA(k("a",e,t,r),k("b",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Zj=(e,t,r)=>{switch(e.op){case"Abs":case"ComplexAbs":return[sr(k("x",e,t,r))];case"Acos":return[P7(k("x",e,t,r))];case"Acosh":return[_7(k("x",e,t,r))];case"Asin":return[O7(k("x",e,t,r))];case"Asinh":return[D7(k("x",e,t,r))];case"Atan":return[L7(k("x",e,t,r))];case"Atan2":return[B7(k("x",e,t,r),k("y",e,t,r))];case"Atanh":return[W7(k("x",e,t,r))];case"Ceil":return[K7(k("x",e,t,r))];case"Complex":return[Os(k("real",e,t,r),k("imag",e,t,r))];case"Cos":return[$f(k("x",e,t,r))];case"Cosh":return[Ky(k("x",e,t,r))];case"Elu":return[Ih(k("x",e,t,r))];case"Erf":return[iw(k("x",e,t,r))];case"Exp":return[Mn(k("x",e,t,r))];case"Expm1":return[hw(k("x",e,t,r))];case"Floor":return[Sh(k("x",e,t,r))];case"Log":return[Fn(k("x",e,t,r))];case"Log1p":return[_f(k("x",e,t,r))];case"Imag":return[Ff(k("x",e,t,r))];case"Neg":return[Dt(k("x",e,t,r))];case"Reciprocal":return[kw(k("x",e,t,r))];case"Real":return[jp(k("x",e,t,r))];case"Relu":return[Oa(k("x",e,t,r))];case"Round":return[uA(k("x",e,t,r))];case"Selu":return[pA(k("x",e,t,r))];case"Sigmoid":return[Tr(k("x",e,t,r))];case"Sin":return[hA(k("x",e,t,r))];case"Sign":return[Cw(k("x",e,t,r))];case"Sinh":return[cA(k("x",e,t,r))];case"Softplus":return[gd(k("x",e,t,r))];case"Sqrt":return[Er(k("x",e,t,r))];case"Square":return[xt(k("x",e,t,r))];case"Tanh":return[Su(k("x",e,t,r))];case"Tan":return[Nw(k("x",e,t,r))];case"ClipByValue":return[cn(k("x",e,t,r),k("clipValueMin",e,t,r),k("clipValueMax",e,t,r))];case"Relu6":return[lA(k("x",e,t,r))];case"Rsqrt":return[dA(Lr(e.inputNames[0],t,r))];case"Prod":return[sA(k("x",e,t,r),k("axes",e,t,r))];case"LeakyRelu":return[Pf(k("x",e,t,r),k("alpha",e,t,r))];case"Prelu":return[Wf(k("x",e,t,r),k("alpha",e,t,r))];case"IsNan":return[cw(Lr(e.inputNames[0],t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Un(e,t,r=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>r+` Shapes ${e} and ${t} must match`);for(let n=0;n<e.length;n++){let a=e[n],s=t[n];v.assert(a<0||s<0||a===s,()=>r+` Shapes ${e} and ${t} must match`)}}}function N4(e){return!(typeof e=="number"||e.some(t=>t<0))}function vp(e,t,r){let n=Qg(e,r),a=!N4(n);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${n}`);if(a&&t.forEach(s=>{n=Qg(s.shape,n)}),!N4(n))throw new Error(`Non-fully-defined elementShape: ${n}`);return n}function Qg(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let r=[];for(let n=0;n<e.length;++n){let a=e[n],s=t[n];if(a>=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);r[n]=a>=0?a:s}return r}var Yj=class{constructor(e,t,r,n,a,s,i){this.name=e,this.dtype=t,this.maxSize=r,this.elementShape=n,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=Se(0),gr(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let r=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Un(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),r.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(r.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);r.tensor=t,gr(t),r.written=!0,this.tensors[e]=r}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((r,n)=>this.write(r,t[n]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let n=0;n<this.size();n++)e.push(n)}if(e.length===0)return ft([],[0].concat(this.elementShape));let r=this.readMany(e);return Un(this.elementShape,r[0].shape,"TensorArray shape mismatch: "),dr(r,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ft([],[0].concat(this.elementShape));let t=[];for(let n=0;n<this.size();n++)t.push(n);let r=this.readMany(t);return Un(this.elementShape,r[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${r[0].shape})`),St(r,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let r=Math.max(...e);if(!this.dynamicSize&&r>=this.maxSize)throw new Error(`Max index must be < array size (${r} vs. ${this.maxSize})`);this.writeMany(e,nn(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let r=0,n=e.map(o=>(r+=o,r));if(r!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${r}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=r===0?0:t.size/r,s=[];X(()=>{t=U(t,[1,r,a]);for(let o=0;o<e.length;++o){let l=o===0?0:n[o-1],u=[0,l,0],d=[1,e[o],a];s[o]=U(Pe(t,u,d),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Mu=class{constructor(e,t,r,n=-1){this.tensors=e,this.elementShape=t,this.elementDtype=r,e!=null&&e.forEach(a=>{if(r!==a.dtype)throw new Error(`Invalid data types; op elements ${r}, but list elements ${a.dtype}`);Un(t,a.shape,"TensorList shape mismatch: "),gr(a)}),this.idTensor=Se(0),this.maxNumElements=n,gr(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Mu([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,r=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(r!==-1&&this.tensors.length!==r)throw new Error(`Operation expected a list with ${r} elements but got a list with ${this.tensors.length} elements.`);Un(e,this.elementShape,"TensorList shape mismatch: ");let n=vp(this.elementShape,this.tensors,e);return X(()=>{let a=this.tensors.map(s=>U(s,n));return dr(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let r=vp(this.elementShape,this.tensors,e),n=this.tensors.pop();return Un(n.shape,e,"TensorList shape mismatch: "),U(n,r)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Un(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");gr(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new Mu([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let r=0;r<Math.min(this.tensors.length,e);++r)t.tensors[r]=this.tensors[r];return t}getItem(e,t,r){if(r!==this.elementDtype)throw new Error(`Invalid data types; op elements ${r}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Un(this.tensors[e].shape,t,"TensorList shape mismatch: ");let n=vp(this.elementShape,this.tensors,t);return U(this.tensors[e],n)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Un(this.elementShape,t.shape,"TensorList shape mismatch: "),gr(t),this.tensors[e]=t}gather(e,t,r){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Un(this.elementShape,r,"TensorList shape mismatch: "),e=e.slice(0,this.size());let n=vp(this.elementShape,this.tensors,r);return e.length===0?ft([],[0].concat(n)):X(()=>{let a=e.map(s=>U(this.tensors[s],n));return dr(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Un(this.elementShape,t,"TensorList shape mismatch: ");let r=vp(this.elementShape,this.tensors,t);return this.size()===0?ft([],[0].concat(r)):X(()=>{let n=this.tensors.map(a=>U(a,r));return St(n,0)})}};function Jj(e,t,r){let n=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==r)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${r}`);let a=e.shape.slice(1);Un(a,t,"TensorList shape mismatch: ");let s=nn(e);return new Mu(s,t,n)}function Qj(e,t,r){return new Mu([],e,t,r)}function eH(e,t,r,n){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(n!=null&&n!==-1&&a>=n)throw new Error(`Max index must be < array size (${a} vs. ${n})`);let s=new Mu([],r,e.dtype,n),i=nn(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function tH(e,t,r){let n=0,a=t.map(d=>(n+=d,n));if(n!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Qg(s,r),o=n===0?0:e.size/n,l=X(()=>{let d=[];e=U(e,[1,n,o]);for(let h=0;h<t.length;++h){let p=h===0?0:a[h-1],c=[0,p,0],m=[1,t[h],o];d[h]=U(Pe(e,c,m),i)}return e.dispose(),d}),u=new Mu([],r,e.dtype,t.length);for(let d=0;d<l.length;d++)u.setItem(d,l[d]);return u}var rH=async(e,t,r)=>{switch(e.op){case"If":case"StatelessIf":{let n=k("thenBranch",e,t,r),a=k("elseBranch",e,t,r),s=k("cond",e,t,r),i=k("args",e,t,r);return(await s.data())[0]?r.functionMap[n].executeFunctionAsync(i,r.tensorArrayMap,r.tensorListMap):r.functionMap[a].executeFunctionAsync(i,r.tensorArrayMap,r.tensorListMap)}case"While":case"StatelessWhile":{let n=k("body",e,t,r),a=k("cond",e,t,r),s=k("args",e,t,r),i=await r.functionMap[a].executeFunctionAsync(s,r.tensorArrayMap,r.tensorListMap),o=s.map(d=>d.id),l=await i[0].data();i.forEach(d=>{!d.kept&&o.indexOf(d.id)===-1&&d.dispose()});let u=s;for(;l[0];){let d=u;u=await r.functionMap[n].executeFunctionAsync(u,r.tensorArrayMap,r.tensorListMap);let h=u.map(c=>c.id);d.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&h.indexOf(c.id)===-1&&c.dispose()});let p=await r.functionMap[a].executeFunctionAsync(u,r.tensorArrayMap,r.tensorListMap);l=await p[0].data(),p.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&h.indexOf(c.id)===-1&&c.dispose()})}return u}case"LoopCond":{let n=k("pred",e,t,r);return[Ha(n)]}case"Switch":{let n=k("pred",e,t,r),a=k("data",e,t,r);return a.kept||(a=Ha(a)),(await n.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let n=e.inputNames.find(a=>Lr(a,t,r)!==void 0);if(n){let a=Lr(n,t,r);return[Ha(a)]}return}case"Enter":{let n=k("frameName",e,t,r),a=k("tensor",e,t,r);return r.enterFrame(n),[Ha(a)]}case"Exit":{let n=k("tensor",e,t,r);return r.exitFrame(),[Ha(n)]}case"NextIteration":{let n=k("tensor",e,t,r);return r.nextIteration(),[Ha(n)]}case"TensorArrayV3":{let n=k("size",e,t,r),a=k("dtype",e,t,r),s=k("elementShape",e,t,r),i=k("dynamicSize",e,t,r),o=k("clearAfterRead",e,t,r),l=k("identicalElementShapes",e,t,r),u=k("name",e,t,r),d=new Yj(u,a,n,s,l,i,o);return r.addTensorArray(d),[d.idTensor,Se(1)]}case"TensorArrayWriteV3":{let n=k("tensorArrayId",e,t,r),a=k("index",e,t,r),s=k("tensor",e,t,r),i=r.getTensorArray(n.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let n=k("tensorArrayId",e,t,r),a=k("index",e,t,r);return[r.getTensorArray(n.id).read(a)]}case"TensorArrayGatherV3":{let n=k("tensorArrayId",e,t,r),a=k("indices",e,t,r),s=k("dtype",e,t,r);return[r.getTensorArray(n.id).gather(a,s)]}case"TensorArrayScatterV3":{let n=k("tensorArrayId",e,t,r),a=k("indices",e,t,r),s=k("tensor",e,t,r),i=r.getTensorArray(n.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let n=k("tensorArrayId",e,t,r),a=r.getTensorArray(n.id),s=k("dtype",e,t,r);return[a.concat(s)]}case"TensorArraySplitV3":{let n=k("tensorArrayId",e,t,r),a=k("tensor",e,t,r),s=k("lengths",e,t,r),i=r.getTensorArray(n.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let n=k("tensorArrayId",e,t,r),a=r.getTensorArray(n.id);return[Se(a.size(),"int32")]}case"TensorArrayCloseV3":{let n=k("tensorArrayId",e,t,r),a=r.getTensorArray(n.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let n=k("tensorListId",e,t,r),a=k("index",e,t,r),s=k("tensor",e,t,r),i=r.getTensorList(n.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let n=k("tensorListId",e,t,r),a=k("index",e,t,r),s=k("elementShape",e,t,r),i=k("elementDType",e,t,r);return[r.getTensorList(n.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let n=k("indices",e,t,r),a=k("tensor",e,t,r),s=k("elementShape",e,t,r),i=k("numElements",e,t,r),o=eH(a,n,s,i);return r.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let n=k("elementShape",e,t,r),a=k("elementDType",e,t,r),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,r),o=Qj(n,a,i);return r.addTensorList(o),[o.idTensor]}case"TensorListGather":{let n=k("tensorListId",e,t,r),a=k("indices",e,t,r),s=k("elementShape",e,t,r),i=k("elementDType",e,t,r);return[r.getTensorList(n.id).gather(a,i,s)]}case"TensorListStack":{let n=k("tensorListId",e,t,r),a=k("elementShape",e,t,r),s=k("elementDType",e,t,r),i=k("numElements",e,t,r);return[r.getTensorList(n.id).stack(a,s,i)]}case"TensorListFromTensor":{let n=k("tensor",e,t,r),a=k("elementShape",e,t,r),s=k("elementDType",e,t,r),i=Jj(n,a,s);return r.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let n=k("tensorListId",e,t,r),a=r.getTensorList(n.id),s=k("dtype",e,t,r),i=k("elementShape",e,t,r);return[a.concat(s,i)]}case"TensorListPushBack":{let n=k("tensorListId",e,t,r),a=k("tensor",e,t,r),s=r.getTensorList(n.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let n=k("tensorListId",e,t,r),a=k("elementShape",e,t,r),s=k("elementDType",e,t,r);return[r.getTensorList(n.id).popBack(a,s)]}case"TensorListSplit":{let n=k("tensor",e,t,r),a=k("elementShape",e,t,r),s=k("lengths",e,t,r),i=tH(n,s,a);return r.addTensorList(i),[i.idTensor]}case"TensorListLength":{let n=k("tensorListId",e,t,r),a=r.getTensorList(n.id);return[Se(a.size(),"int32")]}case"TensorListResize":{let n=k("tensorListId",e,t,r),a=k("size",e,t,r),s=r.getTensorList(n.id).resize(a);return r.addTensorList(s),[s.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function E4(e,t,r){let[n,a]=k("fusedOps",e,t,r),s=n==="biasadd",i=!s,o=a==="prelu",l=n==="fusedbatchnorm",u=k("numArgs",e,t,r);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let d=k("strides",e,t,r),h=l0(e,t,r),p=k("dataFormat",e,t,r).toUpperCase(),c=k("dilations",e,t,r),[m,f]=k("args",e,t,r);i&&(f=m,m=void 0);let g=k("leakyreluAlpha",e,t,r);return{stride:d,pad:h,dataFormat:p,dilations:c,biasArg:m,preluArg:f,activationFunc:a,leakyreluAlpha:g}}var nH=(e,t,r)=>{switch(e.op){case"Conv1D":{let n=k("stride",e,t,r),a=k("pad",e,t,r),s=k("dataFormat",e,t,r).toUpperCase(),i=k("dilation",e,t,r);return[jy(k("x",e,t,r),k("filter",e,t,r),n,a,s,i)]}case"Conv2D":{let n=k("strides",e,t,r),a=l0(e,t,r),s=k("dataFormat",e,t,r).toUpperCase(),i=k("dilations",e,t,r);return[Ls(k("x",e,t,r),k("filter",e,t,r),[n[1],n[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:n,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=E4(e,t,r);return[Vs.conv2d({x:k("x",e,t,r),filter:k("filter",e,t,r),strides:[n[1],n[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:n,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=E4(e,t,r);return[Vs.depthwiseConv2d({x:k("x",e,t,r),filter:k("filter",e,t,r),strides:[n[1],n[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let n=k("outputShape",e,t,r),a=k("strides",e,t,r),s=l0(e,t,r);return[qy(k("x",e,t,r),k("filter",e,t,r),n,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let n=k("strides",e,t,r),a=l0(e,t,r),s=k("dilations",e,t,r),i=k("dataFormat",e,t,r).toUpperCase();return[kh(k("input",e,t,r),k("filter",e,t,r),[n[1],n[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("dataFormat",e,t,r).toUpperCase(),i=k("dilations",e,t,r);return[Xy(k("x",e,t,r),k("filter",e,t,r),[n[1],n[2],n[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[Ef(k("x",e,t,r),[s[1],s[2]],[n[1],n[2]],a)]}case"MaxPool":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[Df(k("x",e,t,r),[s[1],s[2]],[n[1],n[2]],a)]}case"MaxPoolWithArgmax":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r),i=k("includeBatchInIndex",e,t,r),{result:o,indexes:l}=xw(k("x",e,t,r),[s[1],s[2]],[n[1],n[2]],a,i);return[o,l]}case"AvgPool3D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[Uy(k("x",e,t,r),[s[1],s[2],s[3]],[n[1],n[2],n[3]],a)]}case"MaxPool3D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[aA(k("x",e,t,r),[s[1],s[2],s[3]],[n[1],n[2],n[3]],a)]}case"Dilation2D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("dilations",e,t,r),i=n[1],o=n[2],l=s[1],u=s[2];return[nw(k("x",e,t,r),k("filter",e,t,r),[i,o],a,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},aH=(e,t,r)=>{switch(e.op){case"Fill":{let n=k("shape",e,t,r),a=k("dtype",e,t,r),s=k("value",e,t,r);return[md(n,s,a)]}case"LinSpace":{let n=k("start",e,t,r),a=k("stop",e,t,r),s=k("num",e,t,r);return[fw(n,a,s)]}case"Multinomial":{let n=k("logits",e,t,r),a=k("numSamples",e,t,r),s=k("seed",e,t,r);return[vw(n,a,s)]}case"OneHot":{let n=k("indices",e,t,r),a=k("depth",e,t,r),s=k("onValue",e,t,r),i=k("offValue",e,t,r);return[Gp(n,a,s,i)]}case"Ones":return[hn(k("shape",e,t,r),k("dtype",e,t,r))];case"OnesLike":return[Pn(k("x",e,t,r))];case"RandomUniform":return[Ad(k("shape",e,t,r),k("minval",e,t,r),k("maxval",e,t,r),k("dtype",e,t,r))];case"Range":{let n=k("start",e,t,r),a=k("stop",e,t,r),s=k("step",e,t,r);return[Eu(n,a,s,k("dtype",e,t,r))]}case"TruncatedNormal":{let n=k("shape",e,t,r),a=k("mean",e,t,r),s=k("stdDev",e,t,r),i=k("seed",e,t,r);return[jf(n,a,s,k("dtype",e,t,r),i)]}case"Zeros":return[_t(k("shape",e,t,r),k("dtype",e,t,r))];case"ZerosLike":return[at(k("x",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function cg(e,t,r){let n=k("boxes",e,t,r),a=k("scores",e,t,r),s=k("maxOutputSize",e,t,r),i=k("iouThreshold",e,t,r),o=k("scoreThreshold",e,t,r),l=k("softNmsSigma",e,t,r);return{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var sH=async(e,t,r)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=cg(e,t,r),u=await Ie.nonMaxSuppressionWithScoreAsync(n,a,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=cg(e,t,r),l=k("padToMaxOutputSize",e,t,r),u=await Ie.nonMaxSuppressionPaddedAsync(n,a,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=cg(e,t,r);return[await Ie.nonMaxSuppressionAsync(n,a,s,i,o)]}case"Where":{let n=me(k("condition",e,t,r),"bool"),a=[await yA(n)];return n.dispose(),a}case"ListDiff":return Sw(k("x",e,t,r),k("y",e,t,r));default:throw TypeError(`Node type ${e.op} is not implemented`)}},iH=(e,t,r)=>{switch(e.op){case"LowerBound":{let n=k("sortedSequence",e,t,r),a=k("values",e,t,r);return[Aw(n,a)]}case"TopKV2":{let n=k("x",e,t,r),a=k("k",e,t,r),s=k("sorted",e,t,r),i=Ew(n,a,s);return[i.values,i.indices]}case"UpperBound":{let n=k("sortedSequence",e,t,r),a=k("values",e,t,r);return[$w(n,a)]}case"Unique":{let n=k("x",e,t,r),a=$g(n);return[a.values,a.indices]}case"UniqueV2":{let n=k("x",e,t,r),a=k("axis",e,t,r),s=$g(n,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},oH=(e,t,r)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let n=k("default",e,t,r);return[Lr(e.name,t,r)||n];case"Placeholder":return[Lr(e.name,t,r)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=k("x",e,t,r);return[Ha(u)]}case"IdentityN":return k("x",e,t,r).map(u=>Ha(u));case"Snapshot":let a=k("x",e,t,r);return[Ha(a)];case"Shape":return[Nt(k("x",e,t,r).shape,"int32")];case"ShapeN":return k("x",e,t,r).map(u=>Nt(u.shape));case"Size":return[Se(k("x",e,t,r).size,"int32")];case"Rank":return[Se(k("x",e,t,r).rank,"int32")];case"NoOp":return[Se(1)];case"Print":let s=k("x",e,t,r),i=k("data",e,t,r),o=k("message",e,t,r),l=k("summarize",e,t,r);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},lH=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Se(0),this.tensorMap=new Map,gr(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Se(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let r=await e.data();return this.tensorMap.forEach(n=>n.dispose()),this.tensorMap.clear(),X(()=>{let n=nn(t),a=r.length,s=n.length;v.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i<a;i++){let o=r[i],l=n[i];gr(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let r=await e.data();return X(()=>{let n=[];for(let a=0;a<r.length;a++){let s=r[a],i=this.findWithDefault(s,t);n.push(i)}return dr(n)})}findWithDefault(e,t){let r=this.tensorMap.get(e);return r!=null?r:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},uH=async(e,t,r,n)=>{switch(e.op){case"HashTable":case"HashTableV2":{let a=k("keyDType",e,t,r),s=k("valueDType",e,t,r),i=new lH(a,s);return n.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=k("tableHandle",e,t,r,n),s=k("keys",e,t,r),i=k("values",e,t,r);return[await n.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=k("tableHandle",e,t,r,n),s=k("keys",e,t,r),i=k("defaultValue",e,t,r);return[await n.getHashTableById(a.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let a=k("tableHandle",e,t,r,n);return[n.getHashTableById(a.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},dH=(e,t,r)=>{switch(e.op){case"ResizeBilinear":{let n=k("images",e,t,r),a=k("size",e,t,r),s=k("alignCorners",e,t,r),i=k("halfPixelCenters",e,t,r);return[Ie.resizeBilinear(n,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let n=k("images",e,t,r),a=k("size",e,t,r),s=k("alignCorners",e,t,r),i=k("halfPixelCenters",e,t,r);return[Ie.resizeNearestNeighbor(n,[a[0],a[1]],s,i)]}case"CropAndResize":{let n=k("image",e,t,r),a=k("boxes",e,t,r),s=k("boxInd",e,t,r),i=k("cropSize",e,t,r),o=k("method",e,t,r),l=k("extrapolationValue",e,t,r);return[Ie.cropAndResize(n,a,s,i,o,l)]}case"ImageProjectiveTransformV3":{let n=k("images",e,t,r),a=k("transforms",e,t,r),s=k("outputShape",e,t,r),i=k("fillValue",e,t,r),o=k("interpolation",e,t,r),l=k("fillMode",e,t,r);return[Ie.transform(n,a,o.toLowerCase(),l.toLowerCase(),i,s)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},pH=(e,t,r)=>{switch(e.op){case"Equal":return[$n(k("a",e,t,r),k("b",e,t,r))];case"NotEqual":return[Nu(k("a",e,t,r),k("b",e,t,r))];case"Greater":return[mn(k("a",e,t,r),k("b",e,t,r))];case"GreaterEqual":return[Ml(k("a",e,t,r),k("b",e,t,r))];case"Less":return[eA(k("a",e,t,r),k("b",e,t,r))];case"LessEqual":return[Fl(k("a",e,t,r),k("b",e,t,r))];case"LogicalAnd":return[ga(k("a",e,t,r),k("b",e,t,r))];case"LogicalNot":return[Of(k("a",e,t,r))];case"LogicalOr":return[rA(k("a",e,t,r),k("b",e,t,r))];case"Select":case"SelectV2":return[Vr(k("condition",e,t,r),k("a",e,t,r),k("b",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},hH=(e,t,r)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ze(k("a",e,t,r),k("b",e,t,r),k("transposeA",e,t,r),k("transposeB",e,t,r))];case"Einsum":return[sw(k("equation",e,t,r),...k("tensors",e,t,r))];case"Transpose":return[tt(k("x",e,t,r),k("perm",e,t,r))];case"_FusedMatMul":let[n,a]=k("fusedOps",e,t,r),s=n==="biasadd",i=a==="prelu",o=k("numArgs",e,t,r),l=k("leakyreluAlpha",e,t,r);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,d]=k("args",e,t,r);return[Vs.matMul({a:k("a",e,t,r),b:k("b",e,t,r),transposeA:k("transposeA",e,t,r),transposeB:k("transposeB",e,t,r),bias:u,activation:a,preluActivationWeights:d,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},cH=(e,t,r)=>{switch(e.op){case"EuclideanNorm":return[pw(k("x",e,t,r),k("axis",e,t,r),k("keepDims",e,t,r))];case"FusedBatchNorm":case"FusedBatchNormV2":return[Cu(k("x",e,t,r),k("mean",e,t,r),k("variance",e,t,r),k("offset",e,t,r),k("scale",e,t,r),k("epsilon",e,t,r))];case"FusedBatchNormV3":return[Cu(k("x",e,t,r),k("mean",e,t,r),k("variance",e,t,r),k("offset",e,t,r),k("scale",e,t,r),k("epsilon",e,t,r))];case"LRN":return[mw(k("x",e,t,r),k("radius",e,t,r),k("bias",e,t,r),k("alpha",e,t,r),k("beta",e,t,r))];case"Softmax":return[xd(k("x",e,t,r))];case"LogSoftmax":return[tA(k("x",e,t,r))];case"SparseToDense":return[AA(k("sparseIndices",e,t,r),k("outputShape",e,t,r),k("sparseValues",e,t,r),k("defaultValue",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},fH=(e,t,r)=>{switch(e.op){case"Max":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[Ar(k("x",e,t,r),i,o)]}case"Mean":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[Vt(k("x",e,t,r),i,o)]}case"Min":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[Bs(k("x",e,t,r),i,o)]}case"Sum":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[ke(k("x",e,t,r),i,o)]}case"All":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[Wy(k("x",e,t,r),i,o)]}case"Any":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[T0(k("x",e,t,r),i,o)]}case"ArgMax":{let i=k("axis",e,t,r);return[Rn(k("x",e,t,r),i)]}case"ArgMin":{let i=k("axis",e,t,r);return[z7(k("x",e,t,r),i)]}case"Prod":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[sA(k("x",e,t,r),i,o)]}case"Cumprod":{let i=k("axis",e,t,r),o=k("exclusive",e,t,r),l=k("reverse",e,t,r);return[E0(k("x",e,t,r),i,o,l)]}case"Cumsum":{let i=k("axis",e,t,r),o=k("exclusive",e,t,r),l=k("reverse",e,t,r);return[Zy(k("x",e,t,r),i,o,l)]}case"Bincount":let n=k("x",e,t,r),a=k("weights",e,t,r),s=k("size",e,t,r);return[Gy(n,a,s)];case"DenseBincount":{let i=k("x",e,t,r),o=k("weights",e,t,r),l=k("size",e,t,r),u=k("binaryOutput",e,t,r);return[tw(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},mH=(e,t,r)=>{switch(e.op){case"ConcatV2":case"Concat":{let n=k("n",e,t,r),a=k("axis",e,t,r),s=k("tensors",e,t,r);return s=s.slice(0,n),[St(s,a)]}case"Gather":{let n=k("x",e,t,r),a=k("indices",e,t,r);return[Tu(n,me(a,"int32"),0)]}case"GatherV2":{let n=k("axis",e,t,r),a=k("batchDims",e,t,r),s=k("x",e,t,r),i=k("indices",e,t,r);return[Tu(s,me(i,"int32"),n,a)]}case"Reverse":{let n=k("dims",e,t,r),a=[];for(let i=0;i<n.length;i++)n[i]&&a.push(i);let s=k("x",e,t,r);return[_n(s,a)]}case"ReverseV2":{let n=k("axis",e,t,r),a=k("x",e,t,r);return[_n(a,n)]}case"Slice":{let n=k("begin",e,t,r),a=k("size",e,t,r);return[Pe(k("x",e,t,r),n,a)]}case"StridedSlice":{let n=k("begin",e,t,r),a=k("end",e,t,r),s=k("strides",e,t,r),i=k("beginMask",e,t,r),o=k("endMask",e,t,r),l=k("ellipsisMask",e,t,r),u=k("newAxisMask",e,t,r),d=k("shrinkAxisMask",e,t,r),h=k("x",e,t,r);return[Tw(h,n,a,s,i,o,l,u,d)]}case"Pack":return X(()=>{let n=k("axis",e,t,r),a=k("tensors",e,t,r),s=a[0].shape,i=Qe(a[0]).shape,o=a.map(l=>{let u=v.arraysEqual(l.shape,s);if(!u&&!v.arraysEqual(Qe(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:U(l,s)});return[dr(o,n)]});case"Unpack":{let n=k("axis",e,t,r),a=k("tensor",e,t,r);return nn(a,n)}case"Tile":{let n=k("reps",e,t,r);return[Gn(k("x",e,t,r),n)]}case"Split":case"SplitV":{let n=k("axis",e,t,r),a=k("numOrSizeSplits",e,t,r),s=k("x",e,t,r);return Yt(s,a,n)}case"ScatterNd":{let n=k("indices",e,t,r),a=k("values",e,t,r),s=k("shape",e,t,r);return[Pw(n,a,s)]}case"GatherNd":{let n=k("x",e,t,r),a=k("indices",e,t,r);return[_w(n,a)]}case"SparseToDense":{let n=k("sparseIndices",e,t,r),a=k("outputShape",e,t,r),s=k("sparseValues",e,t,r),i=k("defaultValue",e,t,r);return[AA(n,s,a,s.dtype===i.dtype?i:me(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},gH=(e,t,r)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:n,outputValues:a,emptyRowIndicator:s,reverseIndexMap:i}=Sp.sparseFillEmptyRows(k("indices",e,t,r),k("values",e,t,r),k("denseShape",e,t,r),k("defaultValue",e,t,r));return[n,a,s,i]}case"SparseReshape":{let{outputIndices:n,outputShape:a}=Sp.sparseReshape(k("inputIndices",e,t,r),k("inputShape",e,t,r),k("newShape",e,t,r));return[n,a]}case"SparseSegmentMean":return[Sp.sparseSegmentMean(k("data",e,t,r),k("indices",e,t,r),k("segmentIds",e,t,r))];case"SparseSegmentSum":return[Sp.sparseSegmentSum(k("data",e,t,r),k("indices",e,t,r),k("segmentIds",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},yH=(e,t,r)=>{switch(e.op){case"FFT":return[Uf(k("x",e,t,r))];case"IFFT":return[Hp(k("x",e,t,r))];case"RFFT":return[Gf(k("x",e,t,r))];case"IRFFT":return[mA(k("x",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},AH=(e,t,r)=>{switch(e.op){case"StringNGrams":{let{nGrams:n,nGramsSplits:a}=o0.stringNGrams(k("data",e,t,r),k("dataSplits",e,t,r),k("separator",e,t,r),k("nGramWidths",e,t,r),k("leftPad",e,t,r),k("rightPad",e,t,r),k("padWidth",e,t,r),k("preserveShortSequences",e,t,r));return[n,a]}case"StringSplit":{let{indices:n,values:a,shape:s}=o0.stringSplit(k("input",e,t,r),k("delimiter",e,t,r),k("skipEmpty",e,t,r));return[n,a,s]}case"StringToHashBucketFast":return[o0.stringToHashBucketFast(k("input",e,t,r),k("numBuckets",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},xH=(e,t,r)=>{switch(e.op){case"Cast":return[me(k("x",e,t,r),k("dtype",e,t,r))];case"ExpandDims":{let n=k("axis",e,t,r);return[Kt(k("x",e,t,r),n)]}case"Squeeze":{let n=k("axis",e,t,r);return[Qe(k("x",e,t,r),n)]}case"Reshape":return[U(k("x",e,t,r),k("shape",e,t,r))];case"MirrorPad":return[bw(k("x",e,t,r),k("padding",e,t,r),k("mode",e,t,r))];case"PadV2":case"Pad":return[Xn(k("x",e,t,r),k("padding",e,t,r),k("constantValue",e,t,r))];case"SpaceToBatchND":{let n=k("blockShape",e,t,r),a=k("paddings",e,t,r);return[Bf(k("x",e,t,r),n,a)]}case"BatchToSpaceND":{let n=k("blockShape",e,t,r),a=k("crops",e,t,r);return[Rf(k("x",e,t,r),n,a)]}case"DepthToSpace":{let n=k("blockSize",e,t,r),a=k("dataFormat",e,t,r).toUpperCase();return[rw(k("x",e,t,r),n,a)]}case"BroadcastTo":return[Pp(k("x",e,t,r),k("shape",e,t,r))];case"BroadcastArgs":return[X7(k("s0",e,t,r),k("s1",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function R4(e,t,r,n){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return X(()=>Kj(s,i,o));case"basic_math":return X(()=>Zj(s,i,o));case"control":return rH(s,i,o);case"convolution":return X(()=>nH(s,i,o));case"creation":return X(()=>aH(s,i,o));case"dynamic":return sH(s,i,o);case"evaluation":return X(()=>iH(s,i,o));case"image":return X(()=>dH(s,i,o));case"graph":return X(()=>oH(s,i,o));case"logical":return X(()=>pH(s,i,o));case"matrices":return X(()=>hH(s,i,o));case"normalization":return X(()=>cH(s,i,o));case"reduction":return X(()=>fH(s,i,o));case"slice_join":return X(()=>mH(s,i,o));case"sparse":return X(()=>gH(s,i,o));case"spectral":return X(()=>yH(s,i,o));case"string":return X(()=>AH(s,i,o));case"transformation":return X(()=>xH(s,i,o));case"hash_table":return uH(s,i,o,n);case"custom":let l=xk(s.op);if(l&&l.customExecutor)return l.customExecutor(new Xj(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,r);return v.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var $4=class{constructor(e={},t={},r={},n={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=r,this.functionMap=n,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let r=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(r))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function M4(e,t,r,n){let a=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(p=>dn(p)[0]),d=[];n!=null&&(d=n.map(p=>dn(p.name)[0]));let h=[...t];for(;h.length>0;){let p=h.pop();if((Wk(p)||IH(p)||SH(p))&&i==null&&(i=p,o=i.children.map(c=>c.name).filter(c=>a.has(c))),a.add(p.name),r[p.name]==null&&u.indexOf(p.name)===-1&&d.indexOf(p.name)===-1){if(p.inputs.length===0){s.push(p.name);continue}p.inputs.forEach(c=>{l.has(c.name)||(l.add(c.name),h.push(c))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function bH(e,t,r){let{usedNodes:n,inputs:a}=r,s=[],i=Object.keys(a).map(d=>dn(d)[0]).map(d=>e.nodes[d]),o=e.initNodes;i.forEach(d=>{n.has(d.name)&&s.push(d)}),e.weights.forEach(d=>{n.has(d.name)&&s.push(d)}),o!=null&&o.forEach(d=>{n.has(d.name)&&s.push(d)});let l=new Set,u=[];for(;s.length>0;){let d=s.pop();l.add(d.name),t[d.name]||u.push(d),d.children.forEach(h=>{!l.has(h.name)&&n.has(h.name)&&h.inputs.every(p=>l.has(p.name))&&s.push(h)})}return u}var vH=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],wH=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],kH=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function Wk(e){return vH.indexOf(e.op)>=0}function IH(e){return wH.indexOf(e.op)>=0}function SH(e){return kH.indexOf(e.op)>=0}var ey=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(r=>{this._functionExecutorMap[r]=new ey(e.functions[r],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(r=>e[r].map(n=>n.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let r=e.map(a=>a.name).sort(),n=t.map(a=>a.name).sort();return r.join(this.SEPERATOR)+"--"+n.join(this.SEPERATOR)}compile(e,t){let r=M4(e,t,this.weightMap,this._initNodes),{missingInputs:n,dynamicNode:a,syncInputs:s}=r;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(n.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${n}]`)}return bH(this.graph,this.weightMap,r)}execute(e,t){e=this.mapInputs(e);let r=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let n=r.map(d=>this.graph.nodes[dn(d)[0]]),a=t.map(d=>dn(d)[0]),s=a.map(d=>this.graph.nodes[d]);this.resetIntermediateTensors(),s.length===0&&(s=this._outputs);let i=this.getCompilationKey(n,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return X(()=>{let d=new $4(this.weightMap,l,u,this.functionExecutorMap),h={...this.weightMap};Object.keys(e).forEach(m=>{let[f,g]=dn(m),y=[];y[g]=e[m],h[f]=y});let p=this.getFrozenTensorIds(h),c={};for(let m=0;m<o.length;m++){let f=o[m];if(!h[f.name]){let g=R4(f,h,d,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);h[f.name]=g,this.checkTensorForDisposal(f.name,f,h,d,p,a,c)}}return this.parent==null&&d.dispose(p),t.map(m=>Lr(m,h,d))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(r=>e[r]).map(r=>r.map(n=>n.id)));return new Set(t)}checkTensorForDisposal(e,t,r,n,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(r[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=Tj(o.name,r,n);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!a.has(u.id)){let d=i[u.id];if(d===1){if(!this.keepTensorForDebug)u.dispose();else{let[h,p]=Ra(t.name,n);this.intermediateTensors[h]?this.intermediateTensors[h][p]=u:(this.intermediateTensors[h]=[],this.intermediateTensors[h][p]=u)}delete i[u.id]}else d!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(t=>{t&&!t.kept&&!t.isDisposed&&!this.keepIds.has(t.id)&&t.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,r=!1,n={},a={}){r||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=Z().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let s=new $4(this.weightMap,n,a,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,s,t,r);let i=t.map(u=>Lr(u,this.tensorsMap,s)),o=i.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...o,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&s.dispose(this.keepIds),i}async executeFunctionAsync(e,t,r){let n=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(n,this.outputNodes,!0,t,r)}async executeWithControlFlow(e,t,r,n){let a=Object.keys(e),s=a.map(A=>this.graph.nodes[dn(A)[0]]),i=r.map(A=>dn(A)[0]),o=i.map(A=>this.graph.nodes[A]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:d,syncInputs:h}=M4(e,o,this.weightMap,this._initNodes),p=[...s,...this.graph.weights,...this._initNodes||[]].map(A=>({node:A,contexts:t.currentContext})),c={...this.weightMap};Object.keys(e).forEach(A=>{let[x,b]=dn(A),w=[];w[b]=e[A],c[x]=w});let m={},f=this.getFrozenTensorIds(c),g={};for(;p.length>0;){let A=this.processStack(s,p,t,c,g,f,i,m,l);await Promise.all(A)}d==null&&!n&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(A=>!Wk(A)&&!Lr(A.name,c,t)).map(A=>A.name);if(y.length>0){let A="";throw d!=null&&(A=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${u}]. ${A}`)}return c}processStack(e,t,r,n,a,s,i,o,l){let u=[];for(;t.length>0;){let d=t.pop();r.currentContext=d.contexts;let h="";if(d.node.op==="Enter"&&k("isConstant",d.node,n,r)&&([h]=Ra(d.node.name,r)),n[d.node.name]==null){let p=R4(d.node,n,r,this._resourceManager);h||([h]=Ra(d.node.name,r));let c=r.currentContext;v.isPromise(p)?u.push(p.then(m=>(n[h]=m,r.currentContext=c,this.checkTensorForDisposal(h,d.node,n,r,s,i,o),this.processChildNodes(d.node,t,r,n,a,l),m))):(n[h]=p,this.checkTensorForDisposal(h,d.node,n,r,s,i,o),this.processChildNodes(d.node,t,r,n,a,l))}else this.processChildNodes(d.node,t,r,n,a,l)}return u}processChildNodes(e,t,r,n,a,s){e.children.forEach(i=>{let[o]=Ra(i.name,r);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!Lr(l,n,r))&&(a[o]=!0,t.push({contexts:r.currentContext,node:i})):i.inputNames.every(l=>!!Lr(l,n,r))&&(a[o]=!0,t.push({contexts:r.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let r=e[t],[n]=dn(t),a=this.graph.nodes[n];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===r.shape.length&&r.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${r.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&v.assert(r.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${r.dtype}`)})}mapInputs(e){let t={};for(let r in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[r]!=null){let n=this._signature.inputs[r];t[n.name]=e[r]}else t[r]=e[r];return t}checkInputs(e){let t=Object.keys(e).filter(r=>{let[n]=dn(r);return this.graph.nodes[n]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[r]=dn(t);if(!this.graph.nodes[r])throw new Error(`The output '${t}' is not found in the graph`)})}},CH=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},TH="?tfjs-format=file",NH="model.json",Im=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new CH}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Cr.browserHTTPRequest(e,this.loadOptions);else{let t=Cr.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Cr.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,r;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?r=this.artifacts.userDefinedMetadata.signature:r=this.artifacts.signature,this.signature=r,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let n=Cr.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new ey(C4.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(n),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=C4.Instance.transformGraph(e.modelInitializer);this.initializer=new ey(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let r=Cr.getSaveHandlers(e);if(r.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(r.length>1)throw new Error(`Found more than one (${r.length}) save handlers for URL '${e}'`);e=r[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof nt)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,r,n)=>(t[r]=e[n],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let r=this.executor.execute(e,t);return r.length>1?r:r[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let r=await this.executor.executeAsync(e,t);return r.length>1?r:r[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,r)=>(t[r]=[e[r]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function EH(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${NH}${TH}`);let r=new Im(e,t);return await r.load(),r}var RH="0.0.0",Vk={};Be(Vk,{CSVDataset:()=>e8,Dataset:()=>kd,FileDataSource:()=>o8,TextLineDataset:()=>Qk,URLDataSource:()=>l8,array:()=>QH,csv:()=>dq,func:()=>pq,generator:()=>hq,microphone:()=>fq,version_data:()=>mq,webcam:()=>cq,zip:()=>eq});var $H=Uo(Y0()),MH=Uo(Y0());function FH(e,t){return B0(e,t)}function B0(e,t,r=new Map,n=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(n.has(e))throw new Error("Circular references are not supported.");if(r.has(e))return r.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Fu(e)){let s=Array.isArray(e)?[]:{};n.add(e);for(let i in e){let o=e[i],l=B0(o,t,r,n);s[i]=l}return n.delete(e),e.__proto__&&(s.__proto__=e.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return r.set(e,a.value),a.value}function PH(e,t=Gk){return Uk(e,t)}function Uk(e,t,r=new Set){let n=e[0];if(r.has(n))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Fu(n)){let s=Array.isArray(n)?[]:{};r.add(n);for(let i in n){let o=e.map(u=>u[i]),l=Uk(o,t,r);s[i]=l}return r.delete(n),s}else throw new Error(`Can't recurse into non-iterable type: ${n}`);else return a.value}function Gk(e){return e===null?null:Fu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function jk(e,t){let r=new Map;B0(e,t,r);for(let n of Array.from(r.keys())){let a=r.get(n);if(v.isPromise(a)){let s=await a;r.set(n,s)}}return B0(e,t,r)}function Fu(e){let t=!1;if(Z().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:r}=Cv();t=e instanceof r}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof nt)&&!(e instanceof Promise)&&!t)}function _H(e){return e==null||zH(e)||Array.isArray(e)||typeof e=="object"&&e instanceof nt||v.isTypedArray(e)}function zH(e){return e===null||typeof e!="object"&&typeof e!="function"}function OH(e){return FH(e,DH)}function DH(e){return e instanceof nt?{value:e.clone(),recurse:!1}:Fu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var Hk=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),r=this.get(t);return this.set(t,this.pop()),r}},qk=class extends Hk{constructor(){super(qk.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),r=this.length();for(let n=0;n<r;n++)t[n]=this.get(this.wrap(this.begin+n));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=r}},Xk=qk;Xk.INITIAL_CAPACITY=32;function Kk(e){return new WH(e)}function Qx(e){return new VH(e)}function LH(e,t){return new Zk(e,t)}function BH(e,t=Yk.FAIL){return new YH(e,t)}var br=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],r=await e.next();for(;!r.done;)t.push(r.value),r=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),r=e(t.value);for(;!t.done&&r;)t=await this.next(),r=e(t.value)}handleErrors(e){return new KH(this,e)}filter(e){return new qH(this,e)}map(e){return new XH(this,e)}mapAsync(e){return new F4(this,e)}serialMapAsync(e){return new F4(this,e).serial()}flatmap(e){return new ZH(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new HH(this,e,t)}columnMajorBatch(e,t=!0,r=Gk){return this.rowMajorBatch(e,t).map(n=>PH(n,r))}concatenate(e,t){return new Zk(Kk([this,e]),t)}take(e){return e<0||e==null?this:new jH(this,e)}skip(e){return e<0||e==null?this:new GH(this,e)}prefetch(e){return new Jk(this,e)}shuffle(e,t){return new JH(this,e,t)}serial(){return new UH(this)}},WH=class extends br{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:OH(e),done:!1}}},VH=class extends br{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},UH=class extends br{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},GH=class extends br{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;te(e.value)}return this.upstream.next()}},jH=class extends br{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},HH=class extends br{constructor(e,t,r=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=r,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},qH=class extends br{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;te(e.value)}}},XH=class extends br{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=ha.getTensorsInContainer(e.value),r=this.transform(e.value),n=ha.getTensorsInContainer(r);for(let a of t)ha.isTensorInList(a,n)||a.dispose();return{value:r,done:!1}}},KH=class extends br{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},F4=class extends br{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=ha.getTensorsInContainer(e.value),r=await this.transform(e.value),n=ha.getTensorsInContainer(r);for(let a of t)ha.isTensorInList(a,n)||a.dispose();return{value:r,done:!1}}},e5=class extends br{constructor(){super(),this.outputQueue=new Xk,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},ZH=class extends e5{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=ha.getTensorsInContainer(e.value),r=this.transform(e.value),n=ha.getTensorsInContainer(r);this.outputQueue.pushAll(r);for(let a of t)ha.isTensorInList(a,n)||a.dispose();return!0}},Zk=class extends br{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let r=await this.moreIterators.next();if(r.done)return{value:null,done:!0};this.iterator=r.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Yk=(e=>(e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST",e))(Yk||{}),YH=class extends br{constructor(e,t=0){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,r=0;function n(s){return s instanceof br?{value:s.next().then(i=>(t++,i.done&&r++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await jk(this.iterators,n);if(t===r)return{value:null,done:!0};if(r>0)switch(this.mismatchMode){case 0:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case 1:return{value:null,done:!0};case 2:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},Jk=class extends br{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new Hk(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},JH=class extends Jk{constructor(e,t,r){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=MH.alea(r||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},kd=class{constructor(){this.size=null}batch(e,t=!0){let r=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let n;return this.size===1/0||this.size==null?n=this.size:t?n=Math.ceil(this.size/e):n=Math.floor(this.size/e),un(async()=>(await r.iterator()).columnMajorBatch(e,t,tq),n)}concatenate(e){let t=this,r;return this.size===1/0||e.size===1/0?r=1/0:this.size!=null&&e.size!=null?r=this.size+e.size:r=null,un(async()=>(await t.iterator()).concatenate(await e.iterator()),r)}filter(e){let t=this,r;return this.size===1/0?r=1/0:r=null,un(async()=>(await t.iterator()).filter(n=>X(()=>e(n))),r)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return un(async()=>(await t.iterator()).map(r=>X(()=>e(r))),this.size)}mapAsync(e){let t=this;return un(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return un(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,r;return this.size!=null&&e>0?r=this.size*e:e===0?r=0:this.size!=null&&(e===void 0||e<0)?r=1/0:r=null,un(async()=>{let n=Qx(async()=>({value:await t.iterator(),done:!1}));return LH(n.take(e))},r)}skip(e){let t=this,r;return this.size!=null&&e>=0&&this.size>=e?r=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?r=0:r=null,un(async()=>(await t.iterator()).skip(e),r)}shuffle(e,t,r=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let n=this,a=$H.alea(t||v.now().toString());return un(async()=>{let s=a.int32();return r&&(s+=a.int32()),(await n.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,r;return this.size!=null&&this.size>e?r=e:this.size!=null&&this.size<=e?r=this.size:r=null,un(async()=>(await t.iterator()).take(e),r)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};kd.MAX_BUFFER_SIZE=1e4;function un(e,t=null){return new class extends kd{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function QH(e){return un(async()=>Kk(e),e.length)}function eq(e){if(!Fu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let r=0;r<e.length;r++)t=t==null?e[r].size:Math.min(t,e[r].size);else if(e instanceof Object)for(let r in e)t=t==null?e[r].size:Math.min(t,e[r].size);return un(async()=>{let r=await jk(e,n=>{if(n instanceof kd)return{value:n.iterator(),recurse:!1};if(Fu(n))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return BH(r,1)},t)}function tq(e){if(e===null)return null;let t=e[0];return _H(t)?{value:rq(e),recurse:!1}:{value:null,recurse:!0}}function rq(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof nt?dr(e):ft(e)}var Qk=class extends kd{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},e0='"',wp=Symbol("out"),P4=Symbol("field"),t0=Symbol("quote"),fg=Symbol("quoteafterquote"),_4=Symbol("quoteinquote"),e8=class extends kd{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new Qk(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((n,a)=>(n[a]=n[a]+1||1,n),{}),r=Object.keys(t).filter(n=>t[n]>1);if(v.assert(r.length===0,()=>"Duplicate column names found: "+r.toString()),this.columnConfigs){for(let n of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(n)===-1)throw new Error('The key "'+n+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),r={},n={};for(let a=0;a<this.fullColumnNames.length;a++){let s=this.fullColumnNames[a],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[a],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?n[s]=l:r[s]=l}}return Object.keys(n).length===0?r:{xs:r,ys:n}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let r=[],n=0,a=e.length,s=wp;for(let i=0;i<a;i++)switch(s){case wp:switch(e.charAt(i)){case e0:n=i+1,s=t0;break;case this.delimiter:if(n=i+1,this.delimiter===" "&&this.delimWhitespace)break;r.push(""),s=wp;break;default:s=P4,n=i;break}break;case P4:switch(e.charAt(i)){case this.delimiter:r.push(e.substring(n,i)),s=wp,n=i+1;break;default:}break;case t0:switch(e.charAt(i)){case e0:s=fg;break;default:}break;case fg:switch(e.charAt(i)){case this.delimiter:r.push(e.substring(n,i-1)),s=wp,n=i+1;break;case e0:s=t0;break;default:s=_4;break}break;case _4:switch(e.charAt(i)){case e0:s=t0;break;default:}break;default:}if(s===fg?r.push(e.substring(n,a-1)):r.push(e.substring(n)),t&&r.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${r}`);return r}},t8=class extends br{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!Z().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new t8(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(r){throw new Error(`Error thrown while initializing video stream: ${r.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,r=await this.getAudioData();if(this.includeSpectrogram){let n=this.flattenQueue(r.freqDataQueue);e=this.getTensorFromAudioDataArray(n,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let n=this.flattenQueue(r.timeDataQueue);t=this.getTensorFromAudioDataArray(n,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],r=0;return new Promise(n=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&n({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++r===this.numFrames&&(clearInterval(a),n({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,r=new Float32Array(e.length*t);return e.forEach((n,a)=>r.set(n,a*t)),r}getTensorFromAudioDataArray(e,t){let r=new Float32Array(v.sizeFromShape(t));return r.set(e,r.length-e.length),ft(r,t)}},r8=class extends br{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Nt([0],"int32"),this.webcamConfig.centerCrop){let r=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,n=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-r)/2,s=(1-n)/2,i=a+r,o=n+s;this.cropBox=ca([s,a,o,i],[1,4])}else this.cropBox=ca([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!Z().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let r=new r8(e,t);return await r.start(),r}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=On.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return X(()=>{let t=Kt(me(e,"float32"),0),r;r=Ie.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let n=r.shape;return U(r,n.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},n8=class{},a8=class extends br{split(e){return new nq(this,e)}},nq=class extends a8{constructor(e,t){super(),this.upstream=e,this.impl=new aq(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},aq=class extends e5{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let r of t.slice(0,-1))this.outputQueue.push(r);return this.carryover=t[t.length-1],!0}},sq=class extends br{decodeUTF8(){return new iq(this)}},iq=class extends a8{constructor(e){super(),this.upstream=e,this.impl=new oq(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},oq=class extends e5{constructor(e){if(super(),this.upstream=e,Z().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=Cv();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let r;return Z().get("IS_BROWSER")?r=this.decoder.decode(t,{stream:!0}):r=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(r),!0}},s8=class extends sq{constructor(e,t={}){super(),this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(Z().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let r=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,r)));else{let n=new FileReader;n.onload=s=>{let i=n.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},n.onabort=s=>t(new Error("Aborted")),n.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,r);n.readAsArrayBuffer(a)}this.offset=r}),done:!1}}};async function lq(e,t={},r){let n,a;typeof e=="string"?n=e:(n=e.url,a=uq(e));let s=await(r||v.fetch)(n,a);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new s8(i,t)}else throw new Error(s.statusText)}var uq=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function i8(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var o8=class extends n8{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(i8(this.input)&&Z().get("IS_NODE")){let e=yy();this.input=e.readFileSync(this.input.slice(7))}return new s8(this.input,this.options)}},l8=class extends n8{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return i8(this.url)?new o8(this.url,this.fileOptions).iterator():lq(this.url,this.fileOptions)}};function dq(e,t={}){return new e8(new l8(e),t)}function pq(e){let t=Qx(e);return un(async()=>t)}function hq(e){return un(async()=>{let t=await e();return Qx(()=>t.next())})}async function cq(e,t){return r8.create(e,t)}async function fq(e){return t8.create(e)}var mq="0.0.0";function Ce(e,t){Array.isArray(e)||(e=[e]),e.forEach(r=>{r!=null&&v.assert(r.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var gq=Kn.whereImpl,u8=class extends Du{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Jp(this,Xt())}nextDataId(){return u8.nextDataId++}write(e,t,r){this.firstUse&&(this.firstUse=!1,Z().get("IS_NODE")&&C.warn(`
============================
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let n={id:this.nextDataId()};return this.data.set(n,{values:e,dtype:r,refCount:1}),n}makeTensorInfo(e,t,r){let n;if(t==="string"&&r!=null&&r.length>0&&v.isString(r[0])){let a=r.map(s=>v.encodeString(s));n=this.write(a,e,t)}else n=this.write(r,e,t);return{dataId:n,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,r,n,a){this.data.set(e,{values:t,dtype:n,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:r}=this.data.get(e);if(t==="complex64"){let n=this.readSync(r.real.dataId),a=this.readSync(r.imag.dataId);return C.mergeRealAndImagArrays(n,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let r=t.map(n=>v.decodeString(n));return Le(e.shape,e.dtype,r)}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,t)}makeOutput(e,t,r){return Xt().makeTensorFromTensorInfo(this.makeTensorInfo(t,r,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:r}=this.data.get(e);r!=null&&(this.disposeData(r.real.dataId,!0),this.disposeData(r.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ce([e],"where");let t=this.readSync(e.dataId);return gq(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},t5=u8;t5.nextDataId=0;var Sm={};Be(Sm,{addImpl:()=>p8,bincountImpl:()=>n5,bincountReduceImpl:()=>h8,ceilImpl:()=>c8,concatImpl:()=>a5,equalImpl:()=>f8,expImpl:()=>g8,expm1Impl:()=>A8,floorImpl:()=>x8,gatherNdImpl:()=>b8,gatherV2Impl:()=>v8,greaterEqualImpl:()=>k8,greaterImpl:()=>w8,lessEqualImpl:()=>S8,lessImpl:()=>I8,linSpaceImpl:()=>C8,logImpl:()=>T8,maxImpl:()=>N8,maximumImpl:()=>E8,minimumImpl:()=>R8,multiplyImpl:()=>s5,negImpl:()=>$8,notEqualImpl:()=>M8,prodImpl:()=>F8,rangeImpl:()=>o5,rsqrtImpl:()=>P8,scatterImpl:()=>yu,sigmoidImpl:()=>aX,simpleAbsImpl:()=>d8,sliceImpl:()=>V0,sparseFillEmptyRowsImpl:()=>z8,sparseReshapeImpl:()=>O8,sparseSegmentReductionImpl:()=>l5,sqrtImpl:()=>oX,squaredDifferenceImpl:()=>D8,stridedSliceImpl:()=>L8,stringNGramsImpl:()=>B8,stringSplitImpl:()=>W8,stringToHashBucketFastImpl:()=>V8,subImpl:()=>U8,tileImpl:()=>G8,topKImpl:()=>H8,transposeImpl:()=>i5,uniqueImpl:()=>q8});function d8(e){let t=new Float32Array(e.length);for(let r=0;r<e.length;++r)t[r]=Math.abs(e[r]);return t}var yq=e=>{let{x:t}=e.inputs,r=e.backend;Ce(t,"abs");let n=new Float32Array(v.sizeFromShape(t.shape)),a=r.data.get(t.dataId).values;return n=d8(a),r.makeOutput(n,t.shape,t.dtype)},Aq={kernelName:jo,backendName:"cpu",kernelFunc:yq};function er(e){return(t,r,n,a,s)=>{let i=C.assertAndGetBroadcastShape(t,r),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),d=v.getTypedArrayFromDType(s,u),h=t.length,p=r.length,c=v.computeStrides(t),m=v.computeStrides(r),f=C.getBroadcastDims(t,i),g=C.getBroadcastDims(r,i);if(f.length+g.length===0)for(let y=0;y<d.length;++y)d[y]=e(n[y%n.length],a[y%a.length]);else for(let y=0;y<d.length;++y){let A=v.indexToLoc(y,o,l),x=A.slice(-h);f.forEach(N=>x[N]=0);let b=v.locToIndex(x,h,c),w=A.slice(-p);g.forEach(N=>w[N]=0);let I=v.locToIndex(w,p,m);d[y]=e(n[b],a[I])}return[d,i]}}function pn(e){let{inputs:t,backend:r}=e,{real:n,imag:a}=t,s=r.data.get(n.dataId).values,i=r.data.get(a.dataId).values,o=r.makeTensorInfo(n.shape,"complex64"),l=r.data.get(o.dataId);return l.complexTensorInfos={real:r.makeTensorInfo(n.shape,"float32",s),imag:r.makeTensorInfo(a.shape,"float32",i)},o}var xq={kernelName:eh,backendName:"cpu",kernelFunc:pn};function W0(e,t,r="float32"){if(r==="complex64"){let a=W0(e,t,"float32"),s=W0(e,t,"float32");return pn({inputs:{real:a,imag:s},backend:e})}let n=v.makeZerosTypedArray(v.sizeFromShape(t),r);return e.makeTensorInfo(t,r,n)}function _a(e){let{inputs:t,backend:r}=e,{x:n}=t;return r.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var bq={kernelName:mi,backendName:"cpu",kernelFunc:_a};function Do(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.data.get(n.dataId).complexTensorInfos.real,s=r.data.get(a.dataId).values;return r.makeTensorInfo(a.shape,a.dtype,s)}var vq={kernelName:uh,backendName:"cpu",kernelFunc:Do};function qs(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dtype:s}=n;if(s==="complex64"){if(a.dtype==="complex64")return _a({inputs:{x:a},backend:r});let i=W0(r,a.shape,a.dtype),o=qs({inputs:{x:a},backend:r,attrs:{dtype:"float32"}}),l=pn({inputs:{real:o,imag:i},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Do({inputs:{input:a},backend:r}),o=qs({inputs:{x:i},backend:r,attrs:{dtype:s}});return r.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=_a({inputs:{x:a},backend:r});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=r.data.get(a.dataId).values,o=Int32Array.from(i);return r.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=r.data.get(a.dataId).values,o=v.toTypedArray([0],a.dtype),[l,u]=er((d,h)=>d!==h?1:0)(a.shape,[],i,o,"bool");return r.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var wq={kernelName:ei,backendName:"cpu",kernelFunc:qs};function vr(e,t,r,n){return r==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;Ce([i,o],e);let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,h=i.dtype==="string"?C.fromUint8ToStringArray(u):u,p=i.dtype==="string"?C.fromUint8ToStringArray(d):d,c=n||i.dtype,[m,f]=t(i.shape,o.shape,h,p,c);return l.makeTensorInfo(f,c,m)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=qs({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),d=l.data.get(u.dataId),h=d.complexTensorInfos.real,p=d.complexTensorInfos.imag,c=l.data.get(h.dataId).values,m=l.data.get(p.dataId).values,f=qs({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,A=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,b=l.data.get(A.dataId).values,[w,I,N]=r(i.shape,o.shape,c,m,x,b),E=l.makeTensorInfo(N,"float32",w),R=l.makeTensorInfo(N,"float32",I),_=pn({inputs:{real:E,imag:R},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(R),_}else{let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,h=n||i.dtype,[p,c]=t(i.shape,o.shape,u,d,h);return l.makeTensorInfo(c,h,p)}}}function r5(e){return(t,r,n,a,s,i)=>{let o=C.assertAndGetBroadcastShape(t,r),l=v.sizeFromShape(o),u=o.length,d=v.computeStrides(o),h=v.getTypedArrayFromDType("float32",l),p=v.getTypedArrayFromDType("float32",l),c=C.getBroadcastDims(t,o),m=C.getBroadcastDims(r,o),f=C.mergeRealAndImagArrays(n,a),g=C.mergeRealAndImagArrays(s,i),y=t.length,A=v.computeStrides(t),x=r.length,b=v.computeStrides(r);if(c.length+m.length===0)for(let w=0;w<h.length;w++){let I=w%f.length,N=w%g.length,E=e(f[I*2],f[I*2+1],g[N*2],g[N*2+1]);h[w]=E.real,p[w]=E.imag}else for(let w=0;w<h.length;w++){let I=v.indexToLoc(w,u,d),N=I.slice(-y);c.forEach(S=>N[S]=0);let E=v.locToIndex(N,y,A),R=I.slice(-x);m.forEach(S=>R[S]=0);let _=v.locToIndex(R,x,b),M=e(f[E*2],f[E*2+1],g[_*2],g[_*2+1]);h[w]=M.real,p[w]=M.imag}return[h,p,o]}}var p8=er((e,t)=>e+t),kq=r5((e,t,r,n)=>({real:e+r,imag:t+n})),Pu=vr(Ja,p8,kq),Iq={kernelName:Ja,backendName:"cpu",kernelFunc:Pu};function n5(e,t,r,n,a){let s=v.sizeFromShape(n),i=v.makeZerosTypedArray(a,r);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function h8(e,t,r,n=!1){let a=e.shape[0],s=e.shape[1],i=Le([a,r],t.dtype);for(let o=0;o<a;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=r||(n?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function Hi(e){return(t,r,n)=>{let a=v.getTypedArrayFromDType(r,t.length);for(let s=0;s<t.length;++s)a[s]=e(t[s],n);return a}}function gt(e,t,r){return({inputs:n,attrs:a,backend:s})=>{let{x:i}=n;if(Ce(i,e),i.dtype==="string"||r==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),d=r||i.dtype,h=v.getArrayFromDType(d,u);for(let p=0;p<u;++p)h[p]=t(l[p],a);return o.makeTensorInfo(i.shape,d,h)}}function Id(e,t,r){return({inputs:n,attrs:a,backend:s})=>{let{x:i}=n;if(Ce(i,e),i.dtype==="string"||r==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=r||i.dtype,d=t(l,u,a);return o.makeTensorInfo(i.shape,u,d)}}var c8=Hi(e=>Math.ceil(e)),Sq=Id(ti,c8),Cq={kernelName:ti,backendName:"cpu",kernelFunc:Sq};function a5(e,t,r,n){let a=v.getArrayFromDType(r,v.sizeFromShape(t));if(n&&r!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=r==="string"?C.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let d=u*t[1]+s;for(let h=0;h<i.shape[1];++h)a[d+h]=o[l++]}s+=i.shape[1]})}return a}var f8=er((e,t)=>e===t?1:0),m8=vr(Yo,f8,null,"bool"),Tq={kernelName:Yo,backendName:"cpu",kernelFunc:m8},g8=Hi(e=>Math.exp(e)),y8=Id(di,g8,"float32"),Nq={kernelName:di,backendName:"cpu",kernelFunc:y8},A8=Hi(e=>Math.expm1(e)),Eq=Id(Qo,A8),Rq={kernelName:Qo,backendName:"cpu",kernelFunc:Eq},x8=Hi(e=>Math.floor(e)),$q=Id(pi,x8),Mq={kernelName:pi,backendName:"cpu",kernelFunc:$q};function b8(e,t,r,n,a,s,i,o,l){let u=Le([n,s],r);for(let d=0;d<n;d++){let h=[],p=0;for(let c=0;c<a;c++){let m=e[d*a+c];p+=m*i[c],h.push(m)}if(p<0||p>=l/s)throw new Error(`Invalid indices: ${h} does not index into ${o}`);for(let c=0;c<s;c++)u.values[d*s+c]=t.get(...t.indexToLoc(p*s+c))}return u}function v8(e,t,r){let n=Le(r,e.dtype);for(let a=0;a<n.size;++a){let s=n.indexToLoc(a).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);0<=u&&u<e.values.length&&(n.values[a]=e.values[u])}return n}var w8=er((e,t)=>e>t?1:0),Fq=vr(nl,w8,null,"bool"),Pq={kernelName:nl,backendName:"cpu",kernelFunc:Fq},k8=er((e,t)=>e>=t?1:0),_q=vr(fi,k8,null,"bool"),zq={kernelName:fi,backendName:"cpu",kernelFunc:_q},I8=er((e,t)=>e<t?1:0),Oq=vr(al,I8,null,"bool"),Dq={kernelName:al,backendName:"cpu",kernelFunc:Oq},S8=er((e,t)=>e<=t?1:0),Lq=vr(sl,S8,null,"bool"),Bq={kernelName:sl,backendName:"cpu",kernelFunc:Lq};function C8(e,t,r){let n=(t-e)/(r-1),a=v.makeZerosTypedArray(r,"float32");a[0]=e;for(let s=1;s<a.length;s++)a[s]=a[s-1]+n;return a}var T8=Hi(e=>Math.log(e)),Wq=Id(yi,T8),Vq={kernelName:yi,backendName:"cpu",kernelFunc:Wq};function N8(e,t,r,n){let a=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let s=0;s<a.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}a[s]=o}return a}var E8=er((e,t)=>Math.max(e,t)),Uq=vr(xi,E8),Gq={kernelName:xi,backendName:"cpu",kernelFunc:Uq},R8=er((e,t)=>Math.min(e,t)),jq=vr(ki,R8),Hq={kernelName:ki,backendName:"cpu",kernelFunc:jq},s5=er((e,t)=>e*t),qq=r5((e,t,r,n)=>({real:e*r-t*n,imag:e*n+t*r})),Cm=vr(Si,s5,qq),Xq={kernelName:Si,backendName:"cpu",kernelFunc:Cm};function $8(e,t,r){let n=v.createScalarValue(-1,r);return s5([],t,n,e,r)}function Kq(e){let{inputs:t,backend:r}=e,{x:n}=t;Ce(n,"neg");let a=r.data.get(n.dataId).values,[s,i]=$8(a,n.shape,n.dtype);return r.makeTensorInfo(i,n.dtype,s)}var Zq={kernelName:ol,backendName:"cpu",kernelFunc:Kq},M8=er((e,t)=>e!==t?1:0),Yq=vr(ll,M8,null,"bool"),Jq={kernelName:ll,backendName:"cpu",kernelFunc:Yq};function i5(e,t,r,n,a){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(a),u=v.getTypedArrayFromDType(r,v.sizeFromShape(a));for(let d=0;d<i;++d){let h=v.indexToLoc(d,s,o),p=new Array(h.length);for(let m=0;m<p.length;m++)p[m]=h[n[m]];let c=v.locToIndex(p,s,l);u[c]=e[d]}return u}function sn(e){let{inputs:t,attrs:r,backend:n}=e,{x:a}=t,{perm:s}=r;Ce(a,"transpose");let i=a.shape.length,o=new Array(i);for(let d=0;d<o.length;d++)o[d]=a.shape[s[d]];let l=n.data.get(a.dataId).values,u=i5(l,a.shape,a.dtype,s,o);return{dataId:n.write(u,o,a.dtype),shape:o,dtype:a.dtype}}var Qq={kernelName:Vi,backendName:"cpu",kernelFunc:sn};function F8(e,t,r,n){let[a,s]=C.computeOutAndReduceShapes(e,n),i=Nr(t,"int32"),o=v.makeZerosTypedArray(v.sizeFromShape(a),i),l=v.sizeFromShape(s);for(let u=0;u<o.length;++u){let d=u*l,h=1;for(let p=0;p<l;++p)h*=r[d+p];o[u]=h}return{outVals:o,outShape:a,outDtype:i}}function eX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Ce(a,"prod");let o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=C.getAxesPermutation(l,o),d=l,h=a,p=[];u!=null&&(h=sn({inputs:{x:a},backend:r,attrs:{perm:u}}),p.push(h),d=C.getInnerMostAxes(d.length,o));let c=r.data.get(h.dataId).values,{outVals:m,outShape:f,outDtype:g}=F8(h.shape,h.dtype,c,d),y=f;return i&&(y=C.expandShapeToKeepDim(f,l)),p.forEach(A=>r.disposeIntermediateTensorInfo(A)),r.makeTensorInfo(y,g,m)}var tX={kernelName:Ei,backendName:"cpu",kernelFunc:eX};function o5(e,t,r,n){let a=e===t,s=e<t&&r<0,i=t<e&&r>1;if(a||s||i)return v.makeZerosTypedArray(0,n);let o=Math.abs(Math.ceil((t-e)/r)),l=v.makeZerosTypedArray(o,n);t<e&&r===1&&(r=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+r;return l}var P8=Hi(e=>1/Math.sqrt(e)),rX=Id(Fi,P8),nX={kernelName:Fi,backendName:"cpu",kernelFunc:rX};function yu(e,t,r,n,a,s,i,o,l,u){let d=[n/a,a],h=e.values,p=t.values;if(n===0)return Le(r,t.dtype);let c=Le(d,t.dtype);typeof l=="string"||typeof l=="number"?c.values.fill(l):typeof l=="boolean"&&c.values.fill(+l);for(let m=0;m<s;m++){let f=[],g=0;for(let y=0;y<i;y++){let A=h[m*i+y];f.push(A),g+=A*o[y]}if(g<0||g>=n/a)throw new Error(`Invalid indices: ${f} does not index into ${r}`);for(let y=0;y<a;y++)u?c.values[g*a+y]+=p[m*a+y]:c.values[g*a+y]=t.rank===0?p[0]:p[m*a+y]}return c}var aX=Hi(e=>1/(1+Math.exp(-e))),_8=gt(_i,e=>1/(1+Math.exp(-e))),sX={kernelName:_i,backendName:"cpu",kernelFunc:_8};function V0(e,t,r,n,a){let s=Ot.isSliceContinous(n,t,r),i=v.sizeFromShape(r),o=v.computeStrides(n);if(s){let h=Ot.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?C.fromUint8ToStringArray(e):e,u=Le(n,a,l),d=Le(r,a);for(let h=0;h<d.size;++h){let p=d.indexToLoc(h),c=p.map((m,f)=>m+t[f]);d.set(u.get(...c),...p)}return a==="string"?C.fromStringArrayToUint8(d.values):d.values}function Lo(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,size:i}=n;Ce(a,"slice");let[o,l]=Ot.parseSliceParams(a,s,i);Ot.assertParamsValid(a,o,l);let u=r.data.get(a.dataId).values,d=V0(u,o,l,a.shape,a.dtype);return r.makeTensorInfo(l,a.dtype,d)}var iX={kernelName:xl,backendName:"cpu",kernelFunc:Lo};function z8(e,t,r,n,a,s,i){let o=t[0],l=s[0],u=new Array(l),d=new Array(o),h=t[1];if(l===0){if(o!==0)throw new Error(C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=v.getArrayFromDType(r,0),y=v.getArrayFromDType(a,0);return[g,[0,h],y,u,d]}let p=!0,c=0,m=new Array(l).fill(0);for(let g=0;g<o;++g){let y=e[g*h];if(y<0)throw new Error(C.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=l)throw new Error(C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++m[y],p=p&&y>=c,c=y}let f=!0;for(let g=0;g<l;++g){let y=m[g]===0;u[g]=y,f=f&&!y,m[g]=Math.max(m[g],1),g>0&&(m[g]+=m[g-1])}if(f&&p){let g=e,y=n;for(let A=0;A<o;++A)d[A]=A;return[g,[o,h],y,u,d]}else{let g=m[l-1],y=v.getArrayFromDType(r,g*h),A=v.getArrayFromDType(a,g),x=new Array(l).fill(0);for(let b=0;b<o;++b){let w=e[b*h],I=x[w],N=(w===0?0:m[w-1])+I;x[w]++;for(let E=0;E<h;++E)y[N*h+E]=e[b*h+E];A[N]=n[b],d[b]=N}for(let b=0;b<l;++b)if(x[b]===0){let w=b===0?0:m[b-1];y[w*h+0]=b;for(let I=1;I<h;++I)y[w*h+I]=0;A[w]=i}return[y,[g,h],A,u,d]}}function O8(e,t,r,n,a){let s=v.sizeFromShape(n),i=t[0],o=a.length,l=[],u=1,d=-1;for(let f=0;f<o;++f){let g=a[f];if(g===-1){if(d!==-1)throw new Error(C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(d,f));d=f,l.push(1)}else{if(g<0)throw new Error(C.getSparseReshapeNegativeOutputDimErrorMessage(f,g));u*=g,l.push(g)}}if(d!==-1){if(u<=0)throw new Error(C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let f=Math.trunc(s/u);if(u*f!==s)throw new Error(C.getSparseReshapeInputOutputMultipleErrorMessage(n,l));l[d]=f}if(v.sizeFromShape(l)!==s)throw new Error(C.getSparseReshapeInputOutputMismatchErrorMessage(n,l));let h=n.length,p=[];if(h>0){p[h-1]=1;for(let f=h-2;f>=0;--f)p[f]=p[f+1]*n[f+1]}let c=[];if(o>0){c[o-1]=1;for(let f=o-2;f>=0;--f)c[f]=c[f+1]*l[f+1]}let m=v.getArrayFromDType(r,i*o);for(let f=0;f<i;++f){let g=0;for(let y=0;y<h;++y)g+=e[f*h+y]*p[y];for(let y=0;y<o;++y)m[f*o+y]=Math.trunc(g/c[y]),g%=c[y]}return[m,[i,o],l]}function l5(e,t,r,n,a,s=!1,i=0){let o=n.length,l=[t[0],e.length/t[0]],u=l[1],d=o>0?a[o-1]+1:0;if(d<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let h=t.slice();h[0]=d;let p=h.reduce((A,x)=>A*x,1),c=v.getArrayFromDType(r,p);if(o===0)return d>0&&c.fill(i),[c,h];if(d<=0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,f=1,g=0,y=a[m];for(;;){let A=0;if(f<o){if(A=a[f],y===A){++f;continue}if(y>=A)throw new Error(C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(y<0||y>=d)throw new Error(C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y,d));y>g&&c.fill(i,g*u,y*u);for(let x=m;x<f;++x){let b=n[x];if(b<0||b>=l[0])throw new Error(C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,n[x],l[0]));for(let w=0;w<u;w++)c[y*u+w]+=e[b*u+w]}if(s)for(let x=0;x<u;x++)c[y*u+x]/=f-m;if(m=f,++f,g=y+1,y=A,f>o)break}return g<d&&c.fill(i,g*u,d*u),[c,h]}var oX=Hi(e=>Math.sqrt(e)),lX=gt(zi,e=>Math.sqrt(e)),uX={kernelName:zi,backendName:"cpu",kernelFunc:lX},D8=er((e,t)=>{let r=e-t;return r*r}),dX=vr(Li,D8),pX={kernelName:Li,backendName:"cpu",kernelFunc:dX};function L8(e,t,r,n){let a=Le(e,t.dtype);for(let s=0;s<a.size;s++){let i=a.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*r[l]+n[l];a.set(t.get(...o),...i)}return a}var hX=class{constructor(e,t,r,n,a,s){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(r),this.rightPad=v.encodeString(n),this.padWidth=a,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let r=this.getPadWidth(t);return Math.max(0,e+2*r-t+1)}createNGrams(e,t,r,n,a,s){for(let i=0;i<a;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(a-(i+1))),d=s-(l+u),h=t+(l>0?0:i-o),p=0;p+=l*this.leftPad.length;for(let g=0;g<d;++g)p+=e[h+g].length;p+=u*this.rightPad.length,p+=(l+u+d-1)*this.separator.length,r[n+i]=new Uint8Array(p);let c=r[n+i],m=0,f=g=>g.forEach(y=>c[m++]=y);for(let g=0;g<l;++g)f(this.leftPad),f(this.separator);for(let g=0;g<d-1;++g)f(e[h+g]),f(this.separator);if(d>0){f(e[h+d-1]);for(let g=0;g<u;++g)f(this.separator),f(this.rightPad)}else{for(let g=0;g<u-1;++g)f(this.rightPad),f(this.separator);f(this.rightPad)}}}compute(e,t){let r=e.length,n=t.length;if(n>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<n;++l){let u=t[l]>=o;if(u=u&&t[l]<=r,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${r}]`);o=t[l]}if(o!==r)throw new Error(`Last split value must be data size. Expected ${r}, got ${o}`)}let a=n-1,s=v.getArrayFromDType("int32",n);if(r===0||n===0){let o=new Array(r);for(let l=0;l<=a;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=a;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(d=>{u+=this.getNumNGrams(l,d)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[a]);for(let o=0;o<a;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(d=>{let h=t[o+1]-t[o],p=this.getNumNGrams(h,d);this.createNGrams(e,l,i,u,p,d),u+=p}),this.preserveShort&&u===s[o]){let d=t[o+1]-t[o];if(d===0)continue;let h=d+2*this.padWidth,p=1;this.createNGrams(e,l,i,u,p,h)}}return[i,s]}};function B8(e,t,r,n,a,s,i,o){return new hX(r,n,a,s,i,o).compute(e,t)}function cX(e,t,r,n){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)n.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!r||o.length!==0)&&n.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!r||e.length!==0)&&n.push(e);return}let a=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(a,s);(!r||i.length!==0)&&n.push(i),a=s+1}}function W8(e,t,r){let n=e.length,a=[],s=0,i=0,o=new Array(n);for(let p=0;p<n;++p){let c=a.length;cX(e[p],t,r,a);let m=a.length-c;o[p]=m,s+=m,i=Math.max(i,m)}let l=v.getArrayFromDType("int32",s*2),u=new Array(s),d=[n,i],h=0;for(let p=0;p<n;++p)for(let c=0;c<o[p];++c)l[h*2]=p,l[h*2+1]=c,u[h]=a[h],++h;return[l,u,d]}function V8(e,t){let r=v.getArrayFromDType("int32",e.length);for(let n=0;n<e.length;++n)r[n]=v.fingerPrint64(e[n]).modulo(t).getLowBitsUnsigned();return r}var U8=er((e,t)=>e-t),fX=r5((e,t,r,n)=>({real:e-r,imag:t-n})),u5=vr(Bi,U8,fX),mX={kernelName:Bi,backendName:"cpu",kernelFunc:u5};function G8(e,t){let r=new Array(e.rank);for(let a=0;a<r.length;a++)r[a]=e.shape[a]*t[a];let n=Le(r,e.dtype);for(let a=0;a<n.values.length;++a){let s=n.indexToLoc(a),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);n.values[a]=e.values[o]}return n}var Np=(e,t)=>{let r=t.value-e.value;return r===0?e.index-t.index:r};function j8(e,t,r=0,n=e.length-1){for(;n>r;){if(n-r>600){let o=n-r+1,l=t-r+1,u=Math.log(o),d=.5*Math.exp(2*u/3),h=.5*Math.sqrt(u*d*(o-d)/o)*Math.sign(l-o/2),p=Math.max(r,Math.floor(t-l*d/o+h)),c=Math.min(n,Math.floor(t+(o-l)*d/o+h));j8(e,t,p,c)}let a=e[t],s=r,i=n;for(v.swap(e,r,t),Np(e[n],a)>0&&v.swap(e,r,n);s<i;){for(v.swap(e,s,i),s++,i--;Np(e[s],a)<0;)s=s+1;for(;Np(e[i],a)>0;)i=i-1}Np(e[r],a)===0?v.swap(e,r,i):(i=i+1,v.swap(e,i,n)),i<=t&&(r=i+1),t<=i&&(n=i-1)}}function H8(e,t,r,n,a){let s=t[t.length-1],[i,o]=[e.length/s,s],l=v.getTypedArrayFromDType(r,i*n),u=v.getTypedArrayFromDType("int32",i*n);for(let h=0;h<i;h++){let p=h*o,c=e.subarray(p,p+o),m=new Array(c.length);c.forEach((A,x)=>m[x]={value:A,index:x}),n<m.length&&(j8(m,n),m=m.slice(0,n)),a&&m.sort(Np);let f=h*n,g=l.subarray(f,f+n),y=u.subarray(f,f+n);for(let A=0;A<n;A++)g[A]=m[A].value,y[A]=m[A].index}let d=t.slice();return d[d.length-1]=n,[Le(d,r,l),Le(d,"int32",u)]}function q8(e,t,r,n){let a=v.parseAxisParam(t,r)[0],s=[1,r[0],1];for(let m=0;m<a;m++)s[0]*=r[m];s[1]=r[a];for(let m=a+1;m<r.length;m++)s[2]*=r[m];let i={},o=new Int32Array(r[a]),l=new or(s,n,e),u=[],d=s[0]===1&&s[2]===1;for(let m=0;m<r[a];m++){let f;if(d)f=e[m].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let A=0;A<s[2];A++)g.push(l.get(y,m,A));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,u.push(m)}}let h=s.slice();h[1]=Object.keys(i).length;let p=new or(h,n);u.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)p.set(l.get(g,m,y),g,f,y)});let c=r.slice();return c[a]=h[1],{outputValues:p.values,outputShape:c,indices:o}}var gX="0.0.0";$l("cpu",()=>new t5,1);var X8=gt(ui,e=>e>=0?e:Math.exp(e)-1),yX={kernelName:ui,backendName:"cpu",kernelFunc:X8};function K8(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{alpha:s}=n;Ce([a],"leakyRelu");let i=v.sizeFromShape(a.shape),o=r.data.get(a.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return r.makeTensorInfo(a.shape,"float32",l)}var AX={kernelName:gi,backendName:"cpu",kernelFunc:K8},xX=er((e,t)=>e<0?t*e:e);function Z8(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t;Ce([n,a],"prelu");let s=r.data.get(n.dataId).values,i=r.data.get(a.dataId).values,[o,l]=xX(n.shape,a.shape,s,i,"float32");return r.makeTensorInfo(l,"float32",o)}var bX={kernelName:Ni,backendName:"cpu",kernelFunc:Z8},Y8=gt(Ri,e=>Math.max(0,e)),vX={kernelName:Ri,backendName:"cpu",kernelFunc:Y8},J8=gt(Mi,e=>Math.min(Math.max(0,e),6)),wX={kernelName:Mi,backendName:"cpu",kernelFunc:J8};function U0(e,t,r,n,a){if(r==="linear")return _a({inputs:{x:t},backend:e});if(r==="relu")return Y8({inputs:{x:t},backend:e});if(r==="elu")return X8({inputs:{x:t},backend:e});if(r==="relu6")return J8({inputs:{x:t},backend:e});if(r==="prelu")return Z8({inputs:{x:t,alpha:n},backend:e});if(r==="leakyrelu")return K8({inputs:{x:t},backend:e,attrs:{alpha:a}});if(r==="sigmoid")return _8({inputs:{x:t},backend:e});throw new Error(`Activation ${r} has not been implemented for the CPU backend.`)}function Ct(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{shape:s}=n,i=v.sizeFromShape(a.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),r.incRef(a.dataId);let u=r.data.get(a.dataId);if(u.complexTensorInfos!=null){let d=u.complexTensorInfos.real,h=u.complexTensorInfos.imag;d.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var kX={kernelName:fl,backendName:"cpu",kernelFunc:Ct};function Q8(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;Ce([a,s],"matMul");let l=a.shape.length,u=s.shape.length,d=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],p=i?a.shape[l-1]:a.shape[l-2],c=o?s.shape[u-2]:s.shape[u-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),y=v.sizeFromShape(f),A=Rl.assertAndGetBroadcastShape(a.shape.slice(0,-2),s.shape.slice(0,-2)).concat([p,c]);v.assert(d===h,()=>`Error in matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,d,p]:[g,p,d],b=o?[y,c,h]:[y,h,c],w=Ct({inputs:{x:a},backend:r,attrs:{shape:x}}),I=Ct({inputs:{x:s},backend:r,attrs:{shape:b}}),N=i?w.shape[1]:w.shape[2],E=i?w.shape[2]:w.shape[1],R=o?I.shape[1]:I.shape[2],_=Math.max(g,y),M=r.data.get(w.dataId).values,S=r.data.get(I.dataId).values,z=v.computeStrides(w.shape),O=v.computeStrides(I.shape),[H,K,D]=i?[z[0],1,z[1]]:[z[0],z[1],1],[Q,V,re]=o?[1,O[1],O[0]]:[O[1],1,O[0]],Y=E*R,ie=Le([_,E,R],w.dtype),J=ie.values,ae=r.blockSize;for(let de=0;de<_;de++)for(let xe=0;xe<E;xe+=ae)for(let be=0;be<R;be+=ae)for(let Ee=0;Ee<N;Ee+=ae){let $e=Math.min(xe+ae,E),De=Math.min(be+ae,R),We=Math.min(Ee+ae,N);for(let Xe=xe;Xe<$e;Xe++)for(let ot=be;ot<De;ot++){let pt=0;for(let ht=Ee;ht<We;ht++){let Fe=Math.min(de,g-1)*H,wt=Math.min(de,y-1)*re,At=M[Fe+Xe*K+ht*D],Pr=S[ht*Q+ot*V+wt];pt+=At*Pr}J[de*Y+(Xe*R+ot)]+=pt}}return r.disposeIntermediateTensorInfo(w),r.disposeIntermediateTensorInfo(I),r.makeTensorInfo(A,ie.dtype,ie.values)}var IX={kernelName:Qs,backendName:"cpu",kernelFunc:Q8};function SX(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n,p,c,m,f=[];p=Q8({inputs:{a,b:s},attrs:{transposeA:l,transposeB:u},backend:r}),i&&(c=Pu({inputs:{a:p,b:i},backend:r}),f.push(p),p=c),d&&(m=U0(r,p,d,o,h),f.push(p),p=m);for(let g of f)r.disposeIntermediateTensorInfo(g);return p}var CX={kernelName:Ps,backendName:"cpu",kernelFunc:SX},TX=gt(Bu,e=>Math.acos(e)),NX={kernelName:Bu,backendName:"cpu",kernelFunc:TX},EX=gt(Wu,e=>Math.acosh(e)),RX={kernelName:Wu,backendName:"cpu",kernelFunc:EX};function $X(e){let{inputs:t,backend:r}=e,n=t;Ce(t,"addN");let a=n.map(o=>r.data.get(o.dataId).values),s=Le(n[0].shape,n[0].dtype),i=s.values;for(let o=0;o<n.length;o++){let l=a[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return r.makeTensorInfo(s.shape,s.dtype,s.values)}var MX={kernelName:Zs,backendName:"cpu",kernelFunc:$X};function FX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Ce(a,"all");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),d=a;u!=null&&(d=sn({inputs:{x:a},backend:r,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("all",l,d.shape.length);let[h,p]=C.computeOutAndReduceShapes(d.shape,l),c=v.sizeFromShape(p),m=v.makeZerosTypedArray(v.sizeFromShape(h),d.dtype),f=r.data.get(d.dataId).values;for(let y=0;y<m.length;++y){let A=y*c,x=f[A];for(let b=0;b<c;++b){let w=f[A+b];x=x&&w}m[y]=x}u!=null&&r.disposeIntermediateTensorInfo(d);let g=r.makeTensorInfo(h,d.dtype,m);if(i){let y=C.expandShapeToKeepDim(h,o),A=Ct({inputs:{x:g},backend:r,attrs:{shape:y}});return r.disposeIntermediateTensorInfo(g),A}return g}var PX={kernelName:Vu,backendName:"cpu",kernelFunc:FX};function _X(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Ce(a,"any");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),d=a;u!=null&&(d=sn({inputs:{x:a},backend:r,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("any",l,d.shape.length);let[h,p]=C.computeOutAndReduceShapes(d.shape,l),c=v.sizeFromShape(p),m=v.makeZerosTypedArray(v.sizeFromShape(h),d.dtype),f=r.data.get(d.dataId).values;for(let y=0;y<m.length;++y){let A=y*c,x=f[A];for(let b=0;b<c;++b){let w=f[A+b];x=x||w}m[y]=x}u!=null&&r.disposeIntermediateTensorInfo(d);let g=r.makeTensorInfo(h,d.dtype,m);if(i){let y=C.expandShapeToKeepDim(h,o),A=Ct({inputs:{x:g},backend:r,attrs:{shape:y}});return r.disposeIntermediateTensorInfo(g),A}return g}var zX={kernelName:Uu,backendName:"cpu",kernelFunc:_X};function OX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n;Ce(a,"argMax");let i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=sn({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[d,h]=C.computeOutAndReduceShapes(l.shape,i),p=v.sizeFromShape(d),c=v.makeZerosTypedArray(p,"int32"),m=v.sizeFromShape(h),f=r.data.get(l.dataId).values;for(let g=0;g<c.length;++g){let y=g*m,A=f[y],x=0;for(let b=0;b<m;++b){let w=f[y+b];w>A&&(A=w,x=b)}c[g]=x}return u.forEach(g=>r.disposeIntermediateTensorInfo(g)),r.makeTensorInfo(d,"int32",c)}var DX={kernelName:Ys,backendName:"cpu",kernelFunc:OX};function LX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n;Ce(a,"argMin");let i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=sn({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[d,h]=C.computeOutAndReduceShapes(l.shape,i),p=v.sizeFromShape(d),c=v.makeZerosTypedArray(p,"int32"),m=v.sizeFromShape(h),f=r.data.get(l.dataId).values;for(let g=0;g<c.length;++g){let y=g*m,A=f[y],x=0;for(let b=0;b<m;++b){let w=f[y+b];w<A&&(A=w,x=b)}c[g]=x}return u.forEach(g=>r.disposeIntermediateTensorInfo(g)),r.makeTensorInfo(d,"int32",c)}var BX={kernelName:Gu,backendName:"cpu",kernelFunc:LX},WX=gt(ju,e=>Math.asin(e)),VX={kernelName:ju,backendName:"cpu",kernelFunc:WX},UX=gt(Hu,e=>Math.asinh(e)),GX={kernelName:Hu,backendName:"cpu",kernelFunc:UX},jX=gt(qu,e=>Math.atan(e)),HX={kernelName:qu,backendName:"cpu",kernelFunc:jX},qX=er((e,t)=>Math.atan2(e,t)),XX=vr(Ku,qX),KX={kernelName:Ku,backendName:"cpu",kernelFunc:XX},ZX=gt(Xu,e=>Math.atanh(e)),YX={kernelName:Xu,backendName:"cpu",kernelFunc:ZX};function d5(e,t,r,n,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,u=a.dilationWidth,d=a.effectiveFilterHeight,h=a.effectiveFilterWidth,p=a.padInfo.top,c=a.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Le(a.outShape,r),g=f.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],A=a.outShape[2]*a.outShape[3],x=a.outShape[3];for(let b=0;b<a.batchSize;++b){let w=b*y,I=b*n[0];for(let N=0;N<a.inChannels;++N)for(let E=0;E<a.outHeight;++E){let R=E*i-p,_=Math.max(0,R),M=Math.min(a.inHeight,d+R),S=w+E*A;for(let z=0;z<a.outWidth;++z){let O=z*o-c,H=Math.max(0,O),K=Math.min(a.inWidth,h+O),D=m,Q=0,V=0;for(let Y=_;Y<M;Y+=l){let ie=I+Y*n[1];for(let J=H;J<K;J+=u){let ae=ie+J*n[2],de=e[ae+N];s==="max"&&de>D?D=de:s==="avg"&&(Q+=de,V++)}if(isNaN(D))break}let re=S+z*x+N;g[re]=s==="avg"?Q/V:D}}}return f}function eI(e,t,r,n,a=!1,s=!1){let i=Le(n.outShape,"int32"),o=n.strideHeight,l=n.strideWidth,u=n.dilationHeight,d=n.dilationWidth,h=n.effectiveFilterHeight,p=n.effectiveFilterWidth,c=n.padInfo.top,m=n.padInfo.left,f=Le(t,r,e);for(let g=0;g<n.batchSize;++g)for(let y=0;y<n.inChannels;++y)for(let A=0;A<n.outHeight;++A){let x=A*o-c,b=x;for(;b<0;)b+=u;let w=Math.min(n.inHeight,h+x);for(let I=0;I<n.outWidth;++I){let N=I*l-m,E=N;for(;E<0;)E+=d;let R=Math.min(n.inWidth,p+N),_=Number.NEGATIVE_INFINITY,M=-1;for(let S=b;S<w;S+=u){let z=S-x;for(let O=E;O<R;O+=d){let H=O-N,K=f.get(g,S,O,y);K>_&&(_=K,a?M=s?((g*n.inHeight+S)*n.inWidth+O)*n.inChannels+y:(S*n.inWidth+O)*n.inChannels+y:M=z*p+H)}}i.set(M,g,A,I,y)}}return i}function tI(e,t,r,n,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,u=a.dilationDepth,d=a.dilationHeight,h=a.dilationWidth,p=a.effectiveFilterDepth,c=a.effectiveFilterHeight,m=a.effectiveFilterWidth,f=a.padInfo.front,g=a.padInfo.top,y=a.padInfo.left,A=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Le(a.outShape,r),b=x.values,w=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],I=a.outShape[2]*a.outShape[3]*a.outShape[4],N=a.outShape[3]*a.outShape[4],E=a.outShape[4];for(let R=0;R<a.batchSize;++R){let _=R*w,M=R*n[0];for(let S=0;S<a.inChannels;++S)for(let z=0;z<a.outDepth;++z){let O=z*i-f,H=O;for(;H<0;)H+=u;let K=Math.min(a.inDepth,p+O),D=_+z*I;for(let Q=0;Q<a.outHeight;++Q){let V=Q*o-g,re=V;for(;re<0;)re+=d;let Y=Math.min(a.inHeight,c+V),ie=D+Q*N;for(let J=0;J<a.outWidth;++J){let ae=J*l-y,de=ae;for(;de<0;)de+=h;let xe=Math.min(a.inWidth,m+ae),be=ie+J*E,Ee=A,$e=0,De=0;for(let Xe=H;Xe<K;Xe+=u){let ot=M+Xe*n[1];for(let pt=re;pt<Y;pt+=d){let ht=ot+pt*n[2];for(let Fe=de;Fe<xe;Fe+=h){let wt=ht+Fe*n[3],At=e[wt+S];if(s==="max"&&At>Ee?Ee=At:s==="avg"&&($e+=At,De++),isNaN(Ee))break}if(isNaN(Ee))break}if(isNaN(Ee))break}let We=be+S;b[We]=s==="avg"?$e/De:Ee}}}}return x}function JX(e,t){let r=Le(t.outShape,"int32"),n=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,d=t.effectiveFilterHeight,h=t.effectiveFilterWidth,p=t.padInfo.front,c=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let A=y*n-p,x=A;for(;x<0;)x+=i;let b=Math.min(t.inDepth,u+A);for(let w=0;w<t.outHeight;++w){let I=w*a-c,N=I;for(;N<0;)N+=o;let E=Math.min(t.inHeight,d+I);for(let R=0;R<t.outWidth;++R){let _=R*s-m,M=_;for(;M<0;)M+=l;let S=Math.min(t.inWidth,h+_),z=Number.NEGATIVE_INFINITY,O=-1;for(let H=x;H<b;H+=i){let K=H-A;for(let D=N;D<E;D+=o){let Q=D-I;for(let V=M;V<S;V+=l){let re=V-_,Y=e.get(f,H,D,V,g);Y>=z&&(z=Y,O=K*d*h+Q*d+re)}}}r.set(O,f,y,w,R,g)}}}return r}function QX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;Ce(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=C.computePool2DInfo(a.shape,s,i,u,o,l),h;if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))h=_a({inputs:{x:a},backend:r});else{let p=r.data.get(a.dataId).values,c=v.computeStrides(a.shape),m=d5(p,a.shape,a.dtype,c,d,"avg");h=r.makeTensorInfo(d.outShape,a.dtype,m.values)}return h}var eK={kernelName:Js,backendName:"cpu",kernelFunc:QX};function tK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n;Ce(a,"avgPool3d");let d=C.computePool3DInfo(a.shape,s,i,1,o,l,u),h=r.data.get(a.dataId).values,p=tI(h,a.shape,a.dtype,v.computeStrides(a.shape),d,"avg");return r.makeTensorInfo(p.shape,"float32",p.values)}var rK={kernelName:Qp,backendName:"cpu",kernelFunc:tK};function nK(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n;Ce([a,s],"avgPool3DGrad");let d=C.computePool3DInfo(s.shape,i,o,1,l,u),h=d.strideDepth,p=d.strideHeight,c=d.strideWidth,m=d.filterDepth,f=d.filterHeight,g=d.filterWidth,y=d.dilationDepth,A=d.dilationHeight,x=d.dilationWidth,b=d.effectiveFilterDepth,w=d.effectiveFilterHeight,I=d.effectiveFilterWidth,N=b-1-d.padInfo.front,E=I-1-d.padInfo.left,R=w-1-d.padInfo.top,_=Le(s.shape,"float32"),M=1/(m*f*g),S=r.bufferSync(a);for(let z=0;z<d.batchSize;++z)for(let O=0;O<d.inChannels;++O)for(let H=0;H<d.inDepth;++H)for(let K=0;K<d.inHeight;++K)for(let D=0;D<d.inWidth;++D){let Q=H-N,V=K-R,re=D-E,Y=0;for(let ie=0;ie<b;ie+=y){let J=(Q+ie)/h;if(!(J<0||J>=d.outDepth||Math.floor(J)!==J))for(let ae=0;ae<w;ae+=A){let de=(V+ae)/p;if(!(de<0||de>=d.outHeight||Math.floor(de)!==de))for(let xe=0;xe<I;xe+=x){let be=(re+xe)/c;be<0||be>=d.outWidth||Math.floor(be)!==be||(Y+=S.get(z,J,de,be,O))}}}_.set(Y*M,z,H,K,D,O)}return r.makeTensorInfo(_.shape,_.dtype,_.values)}var aK={kernelName:tf,backendName:"cpu",kernelFunc:nK};function sK(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s;Ce([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=n,d=C.computePool2DInfo(i.shape,o,l,1,u),h=d.strideHeight,p=d.strideWidth,c=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,g=d.dilationWidth,y=d.effectiveFilterHeight,A=d.effectiveFilterWidth,x=A-1-d.padInfo.left,b=y-1-d.padInfo.top,w=Le(i.shape,"float32"),I=1/(c*m),N=r.data.get(a.dataId).values,E=Le(a.shape,"float32",N);for(let R=0;R<d.batchSize;++R)for(let _=0;_<d.inChannels;++_)for(let M=0;M<d.inHeight;++M)for(let S=0;S<d.inWidth;++S){let z=M-b,O=S-x,H=0;for(let K=0;K<y;K+=f){let D=(z+K)/h;if(!(D<0||D>=d.outHeight||Math.floor(D)!==D))for(let Q=0;Q<A;Q+=g){let V=(O+Q)/p;V<0||V>=d.outWidth||Math.floor(V)!==V||(H+=E.get(R,D,V,_))}}w.set(H*I,R,M,S,_)}return r.makeTensorInfo(w.shape,w.dtype,w.values)}var iK={kernelName:ef,backendName:"cpu",kernelFunc:sK};function oK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ce([a,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=n;u==null&&(u=.001);let d=r.data.get(a.dataId).values,h=r.data.get(o.dataId).values,p=r.data.get(l.dataId).values,c=s?r.data.get(s.dataId).values:new Float32Array([1]),m=i?r.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(d.length),g=m.length,y=c.length,A=p.length,x=h.length,b=0,w=0,I=0,N=0;for(let E=0;E<d.length;++E)f[E]=m[b++]+(d[E]-h[w++])*c[I++]/Math.sqrt(p[N++]+u),b>=g&&(b=0),w>=x&&(w=0),I>=y&&(I=0),N>=A&&(N=0);return r.makeTensorInfo(a.shape,a.dtype,f)}var lK={kernelName:ci,backendName:"cpu",kernelFunc:oK};function uK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n;Ce([a],"batchToSpaceND");let o=s.reduce((y,A)=>y*A),l=C.getReshaped(a.shape,s,o),u=C.getPermuted(l.length,s.length),d=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),p=C.getSliceSize(d,i,s.length),c=Ct({inputs:{x:a},backend:r,attrs:{shape:l}}),m=sn({inputs:{x:c},backend:r,attrs:{perm:u}}),f=Ct({inputs:{x:m},backend:r,attrs:{shape:d}}),g=Lo({inputs:{x:f},backend:r,attrs:{begin:h,size:p}});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(m),r.disposeIntermediateTensorInfo(f),g}var dK={kernelName:Ho,backendName:"cpu",kernelFunc:uK};function pK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i}=n,o=r.data.get(a.dataId).values,l=r.data.get(s.dataId).values,u=n5(o,l,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,u)}var hK={kernelName:rf,backendName:"cpu",kernelFunc:pK};function cK(e){let{inputs:t,backend:r}=e,{s0:n,s1:a}=t,s=r.data.get(n.dataId).values,i=r.data.get(a.dataId).values,o=C.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return r.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var fK={kernelName:nf,backendName:"cpu",kernelFunc:cK},mK=gt(Qa,(e,t)=>{let r=t;return e>r.clipValueMax?r.clipValueMax:e<r.clipValueMin?r.clipValueMin:e}),gK={kernelName:Qa,backendName:"cpu",kernelFunc:mK},yK=e=>{let{x:t}=e.inputs,r=e.backend,n=new Float32Array(v.sizeFromShape(t.shape)),a=r.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=r.data.get(s.dataId).values,l=r.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let d=o[u],h=l[u];n[u]=Math.hypot(d,h)}return r.makeOutput(n,t.shape,"float32")},AK={kernelName:th,backendName:"cpu",kernelFunc:yK};function _u(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.data.get(n.dataId).complexTensorInfos.imag,s=r.data.get(a.dataId).values;return r.makeTensorInfo(a.shape,a.dtype,s)}var xK={kernelName:sh,backendName:"cpu",kernelFunc:_u};function zu(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n,s=v.parseAxisParam(a,t[0].shape)[0],i=C.computeOutShape(t.map(f=>f.shape),s);if(v.sizeFromShape(i)===0)return r.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>v.sizeFromShape(f.shape)>0);if(o.length===1)return _a({inputs:{x:o[0]},backend:r});let l=o.map(f=>f.shape);if(C.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(b=>Do({inputs:{input:b},backend:r})),g=o.map(b=>_u({inputs:{input:b},backend:r})),y=zu({inputs:f,backend:r,attrs:{axis:s}}),A=zu({inputs:g,backend:r,attrs:{axis:s}}),x=pn({inputs:{real:y,imag:A},backend:r});return f.forEach(b=>r.disposeIntermediateTensorInfo(b)),g.forEach(b=>r.disposeIntermediateTensorInfo(b)),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(A),x}let u=o.map(f=>{let g=v.sizeFromShape(f.shape.slice(s));return Ct({inputs:{x:f},backend:r,attrs:{shape:[-1,g]}})}),d=u.map(f=>({vals:r.data.get(f.dataId).values,shape:f.shape}));i=C.computeOutShape(u.map(f=>f.shape),1);let h=u[0].shape[0]===1,p=a5(d,i,t[0].dtype,h),c=C.computeOutShape(o.map(f=>f.shape),s),m=r.makeTensorInfo(c,t[0].dtype,p);return u.forEach(f=>r.disposeIntermediateTensorInfo(f)),m}var bK={kernelName:qo,backendName:"cpu",kernelFunc:zu};function rI(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=n;Ce([a,s],"conv2d");let h=C.convertConv2DDataFormat(l),p=C.computeConv2DInfo(a.shape,s.shape,i,u,o,d,!1,h),c=p.filterHeight,m=p.filterWidth,f=p.dilationHeight,g=p.dilationWidth,y=p.padInfo.left,A=p.padInfo.top,x=p.dataFormat==="channelsLast",b=new or(p.outShape,a.dtype),w=v.computeStrides(a.shape),I=v.computeStrides(s.shape),N=w[0],E=x?w[1]:w[2],R=x?w[2]:1,_=x?1:w[1],M=b.strides[0],S=x?b.strides[1]:b.strides[2],z=x?b.strides[2]:1,O=x?1:b.strides[1],H=r.data.get(a.dataId).values,K=r.data.get(s.dataId).values,D=b.values;for(let Q=0;Q<p.batchSize;++Q){let V=Q*N,re=Q*M;for(let Y=0;Y<p.outHeight;++Y){let ie=re+Y*S,J=Y*p.strideHeight-A;for(let ae=0;ae<c;++ae){let de=J+ae*f;if(de<0||de>=p.inHeight)continue;let xe=ae*I[0],be=V+de*E;for(let Ee=0;Ee<p.outWidth;++Ee){let $e=ie+Ee*z,De=Ee*p.strideWidth-y;for(let We=0;We<m;++We){let Xe=De+We*g;if(Xe<0||Xe>=p.inWidth)continue;let ot=xe+We*I[1],pt=be+Xe*R,ht=ot;for(let Fe=0;Fe<p.inChannels;++Fe){let wt=H[pt+Fe*_];for(let At=0;At<p.outChannels;++At)D[$e+At*O]+=wt*K[ht+At];ht+=p.outChannels}}}}}}return r.makeTensorInfo(b.shape,b.dtype,D)}var vK={kernelName:ri,backendName:"cpu",kernelFunc:rI};function wK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=n;Ce([a,s],"conv2dBackpropFilter");let h=C.convertConv2DDataFormat(l),p=C.computeConv2DInfo(a.shape,d,i,1,o,u,!1,h),{strideHeight:c,strideWidth:m,filterHeight:f,filterWidth:g}=p,y=p.dataFormat==="channelsLast",A=new or(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,w=r.data.get(a.dataId).values,I=r.data.get(s.dataId).values,N=new or(a.shape,a.dtype,w),E=new or(s.shape,s.dtype,I);for(let R=0;R<f;++R){let _=Math.max(0,Math.ceil((b-R)/c)),M=Math.min(p.outHeight,(p.inHeight+b-R)/c);for(let S=0;S<g;++S){let z=Math.max(0,Math.ceil((x-S)/m)),O=Math.min(p.outWidth,(p.inWidth+x-S)/m);for(let H=0;H<p.inChannels;++H)for(let K=0;K<p.outChannels;++K){let D=0;for(let Q=0;Q<p.batchSize;++Q)for(let V=_;V<M;++V){let re=R+V*c-b;for(let Y=z;Y<O;++Y){let ie=S+Y*m-x;y?D+=N.get(Q,re,ie,H)*E.get(Q,V,Y,K):D+=N.get(Q,H,re,ie)*E.get(Q,K,V,Y)}}A.set(D,R,S,H,K)}}}return r.makeTensorInfo(A.shape,A.dtype,A.values)}var kK={kernelName:af,backendName:"cpu",kernelFunc:wK};function IK(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=n;Ce([a,s],"conv2dBackpropInput");let h=v.computeStrides(s.shape),p=v.computeStrides(a.shape),c=C.convertConv2DDataFormat(u),m=C.computeConv2DInfo(i,s.shape,o,1,l,d,!1,c),f=new or(m.inShape,"float32"),g=f.values,y=r.data.get(a.dataId).values,A=r.data.get(s.dataId).values,[x,b,w]=h,{batchSize:I,filterHeight:N,filterWidth:E,inChannels:R,inHeight:_,inWidth:M,outChannels:S,outHeight:z,outWidth:O,strideHeight:H,strideWidth:K}=m;c=m.dataFormat;let D=N-1-m.padInfo.top,Q=E-1-m.padInfo.left,V=c==="channelsLast",re=f.strides[0],Y=V?f.strides[1]:f.strides[2],ie=V?f.strides[2]:1,J=V?1:f.strides[1],ae=p[0],de=V?p[1]:p[2],xe=V?p[2]:1,be=V?1:p[1];for(let Ee=0;Ee<I;++Ee)for(let $e=0;$e<R;++$e)for(let De=0;De<_;++De){let We=De-D,Xe=Math.max(0,Math.ceil(We/H)),ot=Math.min(z,(N+We)/H);for(let pt=0;pt<M;++pt){let ht=pt-Q,Fe=Math.max(0,Math.ceil(ht/K)),wt=Math.min(O,(E+ht)/K),At=0;for(let cr=Xe;cr<ot;++cr){let Jr=cr*H-We;for(let nr=Fe;nr<wt;++nr){let fr=nr*K-ht,ta=ae*Ee+de*cr+xe*nr,Qr=x*(N-1-Jr)+b*(E-1-fr)+w*$e;for(let ar=0;ar<S;++ar){let kn=y[ta+be*ar],In=A[Qr+ar];At+=kn*In}}}let Pr=re*Ee+Y*De+ie*pt+J*$e;g[Pr]=At}}return r.makeTensorInfo(f.shape,f.dtype,f.values)}var SK={kernelName:ni,backendName:"cpu",kernelFunc:IK};function CK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=n;Ce([a,s],"conv3d");let u=C.computeConv3DInfo(a.shape,s.shape,i,l,o),{filterDepth:d,filterHeight:h,filterWidth:p,dilationDepth:c,dilationHeight:m,dilationWidth:f,padInfo:g}=u,y=g.front,A=g.left,x=g.top,b=new or(u.outShape,a.dtype),w=r.data.get(a.dataId).values,I=r.data.get(s.dataId).values,N=b.values,E=v.computeStrides(a.shape),R=v.computeStrides(s.shape);for(let _=0;_<u.batchSize;++_){let M=_*E[0],S=_*b.strides[0];for(let z=0;z<u.outDepth;++z){let O=S+z*b.strides[1],H=z*u.strideDepth-y;for(let K=0;K<d;++K){let D=H+K*c;if(D<0||D>=u.inDepth)continue;let Q=K*R[0],V=M+D*E[1];for(let re=0;re<u.outHeight;++re){let Y=O+re*b.strides[2],ie=re*u.strideHeight-x;for(let J=0;J<h;++J){let ae=ie+J*m;if(ae<0||ae>=u.inHeight)continue;let de=Q+J*R[1],xe=V+ae*E[2];for(let be=0;be<u.outWidth;++be){let Ee=Y+be*u.outChannels,$e=be*u.strideWidth-A;for(let De=0;De<p;++De){let We=$e+De*f;if(We<0||We>=u.inWidth)continue;let Xe=de+De*R[2],ot=xe+We*u.inChannels,pt=Xe;for(let ht=0;ht<u.inChannels;++ht){let Fe=w[ot+ht];for(let wt=0;wt<u.outChannels;++wt)N[Ee+wt]+=Fe*I[pt+wt];pt+=u.outChannels}}}}}}}}return r.makeTensorInfo(b.shape,b.dtype,b.values)}var TK={kernelName:rh,backendName:"cpu",kernelFunc:CK};function NK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=n;Ce([a,s],"conv3dBackpropFilterV2");let u=v.computeStrides(a.shape),d=v.computeStrides(s.shape),h=C.computeConv3DInfo(a.shape,l,i,1,o),p=h.strideDepth,c=h.strideHeight,m=h.strideWidth,f=h.filterDepth,g=h.filterHeight,y=h.filterWidth,A=new or(h.filterShape,"float32"),x=A.values,[b,w,I,N]=A.strides,E=r.data.get(s.dataId).values,[R,_,M,S]=d,z=r.data.get(a.dataId).values,[O,H,K,D]=u,Q=h.padInfo.front,V=h.padInfo.left,re=h.padInfo.top;for(let Y=0;Y<f;++Y){let ie=Math.max(0,Math.ceil((Q-Y)/p)),J=Math.min(h.outDepth,(h.inDepth+Q-Y)/p),ae=Y*b;for(let de=0;de<g;++de){let xe=Math.max(0,Math.ceil((re-de)/c)),be=Math.min(h.outHeight,(h.inHeight+re-de)/c),Ee=de*w+ae;for(let $e=0;$e<y;++$e){let De=Math.max(0,Math.ceil((V-$e)/m)),We=Math.min(h.outWidth,(h.inWidth+V-$e)/m),Xe=$e*I+Ee;for(let ot=0;ot<h.inChannels;++ot){let pt=ot*N+Xe;for(let ht=0;ht<h.outChannels;++ht){let Fe=0;for(let wt=0;wt<h.batchSize;++wt){let At=wt*O,Pr=wt*R;for(let cr=ie;cr<J;++cr){let Jr=(Y+cr*p-Q)*H+At,nr=cr*_+Pr;for(let fr=xe;fr<be;++fr){let ta=(de+fr*c-re)*K+Jr,Qr=fr*M+nr;for(let ar=De;ar<We;++ar){let kn=($e+ar*m-V)*D+ta,In=ar*S+Qr;Fe+=z[kn+ot]*E[In+ht]}}}}x[pt+ht]=Fe}}}}}return r.makeTensorInfo(A.shape,A.dtype,A.values)}var EK={kernelName:sf,backendName:"cpu",kernelFunc:NK};function RK(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=n;Ce([a],"conv3dBackpropInputV2");let u=v.computeStrides(a.shape),d=v.computeStrides(s.shape),h=C.computeConv3DInfo(l,s.shape,o,1,i),p=new or(h.inShape,"float32"),c=p.values,[m,f,g,y]=p.strides,A=r.data.get(a.dataId).values,[x,b,w,I]=u,N=r.data.get(s.dataId).values,[E,R,_,M]=d,{batchSize:S,filterDepth:z,filterHeight:O,filterWidth:H,inChannels:K,inDepth:D,inHeight:Q,inWidth:V,outChannels:re,outDepth:Y,outHeight:ie,outWidth:J,strideDepth:ae,strideHeight:de,strideWidth:xe}=h,be=z-1-h.padInfo.front,Ee=O-1-h.padInfo.top,$e=H-1-h.padInfo.left;for(let De=0;De<S;++De)for(let We=0;We<K;++We)for(let Xe=0;Xe<D;++Xe){let ot=Xe-be,pt=Math.max(0,Math.ceil(ot/ae)),ht=Math.min(Y,(z+ot)/ae);for(let Fe=0;Fe<Q;++Fe){let wt=Fe-Ee,At=Math.max(0,Math.ceil(wt/de)),Pr=Math.min(ie,(O+wt)/de);for(let cr=0;cr<V;++cr){let Jr=cr-$e,nr=Math.max(0,Math.ceil(Jr/xe)),fr=Math.min(J,(H+Jr)/xe),ta=0;for(let Qr=pt;Qr<ht;++Qr){let ar=Qr*ae-ot;for(let kn=At;kn<Pr;++kn){let In=kn*de-wt;for(let gs=nr;gs<fr;++gs){let lo=gs*xe-Jr,dc=x*De+b*Qr+w*kn+I*gs,ys=E*(z-1-ar)+R*(O-1-In)+_*(H-1-lo)+M*We;for(let Ua=0;Ua<re;++Ua){let ap=A[dc+Ua],Zl=N[ys+Ua];ta+=ap*Zl}}}}c[m*De+f*Xe+g*Fe+y*cr+We]=ta}}}return r.makeTensorInfo(p.shape,p.dtype,p.values)}var $K={kernelName:of,backendName:"cpu",kernelFunc:RK},MK=gt(ai,e=>Math.cos(e)),FK={kernelName:ai,backendName:"cpu",kernelFunc:MK},PK=gt(si,e=>Math.cosh(e)),_K={kernelName:si,backendName:"cpu",kernelFunc:PK};function zK(e){let{inputs:t,backend:r,attrs:n}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,[d,h,p,c]=a.shape,m=s.shape[0],[f,g]=o,y=Le([m,f,g,c],"float32"),A=r.data.get(s.dataId).values,x=r.data.get(i.dataId).values,b=r.data.get(a.dataId).values,w=v.computeStrides(a.shape),I=v.computeStrides(y.shape);for(let N=0;N<m;N++){let E=N*4,R=A[E],_=A[E+1],M=A[E+2],S=A[E+3],z=x[N];if(z>=d)continue;let O=f>1?(M-R)*(h-1)/(f-1):0,H=g>1?(S-_)*(p-1)/(g-1):0;for(let K=0;K<f;K++){let D=f>1?R*(h-1)+K*O:.5*(R+M)*(h-1);if(D<0||D>h-1){for(let Q=0;Q<g;Q++)for(let V=0;V<c;V++){let re=V+Q*I[2]+K*I[1]+N*I[0];y.values[re]=u}continue}if(l==="bilinear"){let Q=Math.floor(D),V=Math.ceil(D),re=D-Q;for(let Y=0;Y<g;Y++){let ie=g>1?_*(p-1)+Y*H:.5*(_+S)*(p-1);if(ie<0||ie>p-1){for(let xe=0;xe<c;xe++){let be=xe+Y*I[2]+K*I[1]+N*I[0];y.values[be]=u}continue}let J=Math.floor(ie),ae=Math.ceil(ie),de=ie-J;for(let xe=0;xe<c;xe++){let be=xe+J*w[2]+Q*w[1]+z*w[0],Ee=b[be];be=xe+ae*w[2]+Q*w[1]+z*w[0];let $e=b[be];be=xe+J*w[2]+V*w[1]+z*w[0];let De=b[be];be=xe+ae*w[2]+V*w[1]+z*w[0];let We=b[be],Xe=Ee+($e-Ee)*de,ot=De+(We-De)*de;be=xe+Y*I[2]+K*I[1]+N*I[0],y.values[be]=Xe+(ot-Xe)*re}}}else for(let Q=0;Q<g;++Q){let V=g>1?_*(p-1)+Q*H:.5*(_+S)*(p-1);if(V<0||V>p-1){for(let ie=0;ie<c;ie++){let J=ie+Q*I[2]+K*I[1]+N*I[0];y.values[J]=u}continue}let re=Math.round(V),Y=Math.round(D);for(let ie=0;ie<c;ie++){let J=ie+re*w[2]+Y*w[1]+z*w[0],ae=ie+Q*I[2]+K*I[1]+N*I[0];y.values[ae]=b[J]}}}}return r.makeTensorInfo(y.shape,y.dtype,y.values)}var OK={kernelName:Ko,backendName:"cpu",kernelFunc:zK};function DK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n;Ce(a,"cumprod");let l=C.getAxesPermutation([s],a.shape.length),u=a;l!=null&&(u=sn({inputs:{x:a},backend:r,attrs:{perm:l}}));let d=C.getInnerMostAxes(1,a.shape.length)[0];if(d!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${d}`);let h=Nr(u.dtype,"int32"),p=v.makeOnesTypedArray(v.sizeFromShape(u.shape),h),c=r.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,A)=>y+m-A-1:(y,A)=>y+A;for(let y=0;y<c.length;y+=m)for(let A=0;A<m;A++){let x=f(y,A);if(A===0)p[x]=i?1:c[x];else{let b=f(y,A-1);p[x]=i?c[b]*p[b]:c[x]*p[b]}}let g=r.makeTensorInfo(u.shape,h,p);if(l!=null){let y=C.getUndoAxesPermutation(l),A=sn({inputs:{x:g},backend:r,attrs:{perm:y}});return r.disposeIntermediateTensorInfo(g),r.disposeIntermediateTensorInfo(u),A}return g}var LK={kernelName:Xo,backendName:"cpu",kernelFunc:DK};function BK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n;Ce(a,"cumsum");let l=C.getAxesPermutation([s],a.shape.length),u=a;l!=null&&(u=sn({inputs:{x:a},backend:r,attrs:{perm:l}}));let d=C.getInnerMostAxes(1,a.shape.length)[0];if(d!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${d}`);let h=Nr(u.dtype,"int32"),p=v.makeZerosTypedArray(v.sizeFromShape(u.shape),h),c=r.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,A)=>y+m-A-1:(y,A)=>y+A;for(let y=0;y<c.length;y+=m)for(let A=0;A<m;A++){let x=f(y,A);if(A===0)p[x]=i?0:c[x];else{let b=f(y,A-1);p[x]=i?c[b]+p[b]:c[x]+p[b]}}let g=r.makeTensorInfo(u.shape,h,p);if(l!=null){let y=C.getUndoAxesPermutation(l),A=sn({inputs:{x:g},backend:r,attrs:{perm:y}});return r.disposeIntermediateTensorInfo(g),r.disposeIntermediateTensorInfo(u),A}return g}var WK={kernelName:ii,backendName:"cpu",kernelFunc:BK};function VK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=n;if(a.shape.length===1){let l=r.data.get(a.dataId).values,u=r.data.get(s.dataId).values,d=n5(l,u,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,d)}else if(a.shape.length===2){let l=r.bufferSync(a),u=r.bufferSync(s),d=h8(l,u,i,o);return r.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var UK={kernelName:lf,backendName:"cpu",kernelFunc:VK};function GK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockSize:s,dataFormat:i}=n;v.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=a.shape[0],l=a.shape[1],u=a.shape[2],d=a.shape[3],h=l*s,p=u*s,c=d/(s*s),m=r.data.get(a.dataId).values,f=new Float32Array(o*h*p*c),g=0;for(let y=0;y<o;++y)for(let A=0;A<h;++A){let x=Math.floor(A/s),b=A%s;for(let w=0;w<p;++w){let I=Math.floor(w/s),N=w%s,E=(b*s+N)*c;for(let R=0;R<c;++R){let _=R+E+d*(I+u*(x+l*y));f[g++]=m[_]}}}return r.makeTensorInfo([o,h,p,c],a.dtype,f)}var jK={kernelName:Zo,backendName:"cpu",kernelFunc:GK};function nI(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=n;Ce([a,s],"depthwiseConv2DNative");let d=v.computeStrides(a.shape),h=v.computeStrides(s.shape),p=l;p==null&&(p=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let c=C.computeConv2DInfo(a.shape,s.shape,i,p,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:y,padInfo:A}=c,x=A.left,b=A.top,w=c.outChannels/c.inChannels,I=new or(c.outShape,a.dtype),N=r.data.get(a.dataId).values,E=r.data.get(s.dataId).values,R=I.values;for(let _=0;_<c.batchSize;++_){let M=_*d[0],S=_*I.strides[0];for(let z=0;z<c.outHeight;++z){let O=S+z*I.strides[1],H=z*c.strideHeight-b;for(let K=0;K<m;++K){let D=H+K*g;if(D<0||D>=c.inHeight)continue;let Q=K*h[0],V=M+D*d[1];for(let re=0;re<c.outWidth;++re){let Y=O+re*I.strides[2],ie=re*c.strideWidth-x;for(let J=0;J<f;++J){let ae=ie+J*y;if(ae<0||ae>=c.inWidth)continue;let de=Q+J*h[1],xe=V+ae*c.inChannels,be=Y,Ee=de;for(let $e=0;$e<c.inChannels;++$e){let De=N[xe+$e];for(let We=0;We<w;++We)R[be+We]+=De*E[Ee+We];be+=w,Ee+=w}}}}}}return r.makeTensorInfo(I.shape,I.dtype,I.values)}var HK={kernelName:oi,backendName:"cpu",kernelFunc:nI};function qK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=n;Ce([a,s],"depthwiseConv2dNativeBackpropFilter");let h=C.computeConv2DInfo(a.shape,d,i,o,l,u,!0),{strideHeight:p,strideWidth:c,filterHeight:m,filterWidth:f}=h,g=new or(h.filterShape,"float32"),y=h.padInfo.left,A=h.padInfo.top,x=h.outChannels/h.inChannels,b=r.data.get(a.dataId).values,w=new or(a.shape,a.dtype,b),I=r.data.get(s.dataId).values,N=new or(s.shape,s.dtype,I);for(let E=0;E<m;++E){let R=Math.max(0,Math.ceil((A-E)/p)),_=Math.min(h.outHeight,(h.inHeight+A-E)/p);for(let M=0;M<f;++M){let S=Math.max(0,Math.ceil((y-M)/c)),z=Math.min(h.outWidth,(h.inWidth+y-M)/c);for(let O=0;O<h.outChannels;++O){let H=Math.trunc(O/x),K=O%x,D=0;for(let Q=0;Q<h.batchSize;++Q)for(let V=R;V<_;++V){let re=E+V*p-A;for(let Y=S;Y<z;++Y){let ie=M+Y*c-y;D+=w.get(Q,re,ie,H)*N.get(Q,V,Y,O)}}g.set(D,E,M,H,K)}}}return r.makeTensorInfo(g.shape,g.dtype,g.values)}var XK={kernelName:uf,backendName:"cpu",kernelFunc:qK};function KK(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=n;Ce([a,s],"depthwiseConv2DNativeBackpropInput");let h=v.computeStrides(a.shape),p=v.computeStrides(s.shape),c=C.computeConv2DInfo(d,s.shape,i,o,l,u,!0),m=new or(c.inShape,"float32"),f=m.values,[g,y,A]=m.strides,x=r.data.get(a.dataId).values,[b,w,I]=h,N=r.data.get(s.dataId).values,[E,R,_]=p,{batchSize:M,filterHeight:S,filterWidth:z,inChannels:O,inHeight:H,inWidth:K,outChannels:D,outHeight:Q,outWidth:V,strideHeight:re,strideWidth:Y}=c,ie=S-1-c.padInfo.top,J=z-1-c.padInfo.left,ae=D/O;for(let de=0;de<M;++de)for(let xe=0;xe<O;++xe)for(let be=0;be<H;++be){let Ee=be-ie,$e=Math.max(0,Math.ceil(Ee/re)),De=Math.min(Q,(S+Ee)/re);for(let We=0;We<K;++We){let Xe=We-J,ot=Math.max(0,Math.ceil(Xe/Y)),pt=Math.min(V,(z+Xe)/Y),ht=0;for(let Fe=$e;Fe<De;++Fe){let wt=Fe*re-Ee;for(let At=ot;At<pt;++At){let Pr=At*Y-Xe,cr=b*de+w*Fe+I*At,Jr=E*(S-1-wt)+R*(z-1-Pr)+_*xe;for(let nr=0;nr<ae;++nr){let fr=xe*ae+nr,ta=x[cr+fr],Qr=N[Jr+nr];ht+=ta*Qr}}}f[g*de+y*be+A*We+xe]=ht}}return r.makeTensorInfo(m.shape,m.dtype,m.values)}var ZK={kernelName:df,backendName:"cpu",kernelFunc:KK};function YK(e){let{inputs:t,backend:r}=e,{x:n}=t,a=v.sizeFromShape(n.shape),s=r.data.get(n.dataId).values,i=Le([a,a],n.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*a+u]=s[u];let l=[...n.shape,...n.shape];return r.makeTensorInfo(l,i.dtype,i.values)}var JK={kernelName:pf,backendName:"cpu",kernelFunc:YK},QK={kernelName:nh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:r})=>{let{x:n,filter:a}=e,{strides:s,pad:i,dilations:o}=r,l=t,u=l.data.get(n.dataId).values,d=n.shape.length,h=l.data.get(a.dataId).values,p=a.shape.length,{batchSize:c,inHeight:m,inWidth:f,inChannels:g,outHeight:y,outWidth:A,padInfo:x,strideHeight:b,strideWidth:w,filterHeight:I,filterWidth:N,dilationHeight:E,dilationWidth:R,outShape:_}=C.computeDilation2DInfo(n.shape,a.shape,s,i,"NHWC",o),M=v.sizeFromShape(_),S=_.length,z=v.getArrayFromDType(n.dtype,M);for(let O=0;O<c;++O)for(let H=0;H<y;++H){let K=H*b-x.top;for(let D=0;D<A;++D){let Q=D*w-x.left;for(let V=0;V<g;++V){let re=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<I;++ie){let J=K+ie*E;if(J>=0&&J<m)for(let ae=0;ae<N;++ae){let de=Q+ae*R;if(de>=0&&de<f){let xe=v.locToIndex([O,J,de,V],d,v.computeStrides(n.shape)),be=v.locToIndex([ie,ae,V],p,v.computeStrides(a.shape)),Ee=u[xe]+h[be];Ee>re&&(re=Ee)}}}let Y=v.locToIndex([O,H,D,V],S,v.computeStrides(_));z[Y]=re}}}return{dataId:l.write(v.toTypedArray(z,n.dtype),_,n.dtype),shape:_,dtype:n.dtype}}},eZ={kernelName:v0,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:r})=>{let{x:n,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=r,u=t,d=v.toNestedArray(n.shape,u.data.get(n.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:p,inHeight:c,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:b,filterHeight:w,filterWidth:I,dilationHeight:N,dilationWidth:E,outShape:R}=C.computeDilation2DInfo(n.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===R.length,()=>`Error in ${v0}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let _=v.toNestedArray(R,u.data.get(s.dataId).values),M=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let S=0;S<p;++S)for(let z=0;z<g;++z){let O=z*x-A.top;for(let H=0;H<y;++H){let K=H*b-A.left;for(let D=0;D<f;++D){let Q=Number.MIN_SAFE_INTEGER,V=0,re=0;for(let Y=0;Y<w;++Y){let ie=O+Y*N;if(ie>=0&&ie<c)for(let J=0;J<I;++J){let ae=K+J*E;if(ae>=0&&ae<m){let de=d[S][ie][ae][D]+h[Y][J][D];de>Q&&(Q=de,V=Y,re=J)}}}M[V][re][D]+=_[S][z][H][D]}}}return{dataId:u.write(v.toTypedArray(M,n.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},tZ={kernelName:b0,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:r})=>{let{x:n,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=r,u=t,d=v.toNestedArray(n.shape,u.data.get(n.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:p,inHeight:c,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:b,filterHeight:w,filterWidth:I,dilationHeight:N,dilationWidth:E,outShape:R}=C.computeDilation2DInfo(n.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===R.length,()=>`Error in ${b0}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let _=v.toNestedArray(R,u.data.get(s.dataId).values),M=v.makeZerosNestedTypedArray(n.shape,n.dtype);for(let S=0;S<p;++S)for(let z=0;z<g;++z){let O=z*x-A.top;for(let H=0;H<y;++H){let K=H*b-A.left;for(let D=0;D<f;++D){let Q=Number.MIN_SAFE_INTEGER,V=O<0?0:O,re=K<0?0:K;for(let Y=0;Y<w;++Y){let ie=O+Y*N;if(ie>=0&&ie<c)for(let J=0;J<I;++J){let ae=K+J*E;if(ae>=0&&ae<m){let de=d[S][ie][ae][D]+h[Y][J][D];de>Q&&(Q=de,V=ie,re=ae)}}}M[S][V][re][D]+=_[S][z][H][D]}}}return{dataId:u.write(v.toTypedArray(M,n.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function Dh(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Ce(a,"sum");let o;a.dtype==="bool"?o=qs({inputs:{x:a},backend:r,attrs:{dtype:"int32"}}):o=_a({inputs:{x:a},backend:r});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),d=C.getAxesPermutation(u,l),h=u,p=o;d!=null&&(p=sn({inputs:{x:o},backend:r,attrs:{perm:d}}),h=C.getInnerMostAxes(h.length,l)),C.assertAxesAreInnerMostDims("sum",h,p.shape.length);let[c,m]=C.computeOutAndReduceShapes(p.shape,h),f=C.upcastType(p.dtype,"int32"),g=W0(r,c,f),y=v.sizeFromShape(m),A=r.data.get(g.dataId).values,x=r.data.get(p.dataId).values;for(let b=0;b<A.length;++b){let w=b*y,I=0;for(let N=0;N<y;++N)I+=x[w+N];A[b]=I}if(i){let b=C.expandShapeToKeepDim(g.shape,u),w=g;g=Ct({inputs:{x:g},backend:r,attrs:{shape:b}}),r.disposeIntermediateTensorInfo(w)}return r.disposeIntermediateTensorInfo(o),d!=null&&r.disposeIntermediateTensorInfo(p),g}var rZ={kernelName:Oi,backendName:"cpu",kernelFunc:Dh};function nZ(e){let{inputs:t,backend:r,attrs:n}=e,{equation:a}=n,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(a,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=C.getEinsumComputePath(o,l),h=d.length,p=null,c=i.length,m=[];for(let f=0;f<h;++f){for(let g of d[f]){let{permutationIndices:y,expandDims:A}=C.getEinsumPermutation(c,l[g]),x;C.isIdentityPermutation(y)?x=s[g]:(x=sn({inputs:{x:s[g]},backend:r,attrs:{perm:y}}),m.push(x));let b=x.shape.slice();for(let w=0;w<A.length;++w)b.splice(A[w],0,1);v.arraysEqual(x.shape,b)||(x=Ct({inputs:{x},backend:r,attrs:{shape:b}}),m.push(x)),p===null?p=x:(p=Cm({inputs:{a:x,b:p},backend:r}),m.push(p))}f<h-1&&(u[f]>=0&&(p=Dh({inputs:{x:p},backend:r,attrs:{axis:u[f]-(i.length-c),keepDims:!1}}),m.push(p)),c--)}for(let f of m)f!==p&&r.disposeIntermediateTensorInfo(f);return p}var aZ={kernelName:ah,backendName:"cpu",kernelFunc:nZ};function sZ(e){let{inputs:t,backend:r}=e,{dy:n,y:a}=t;Ce([n,a],"eluGrad");let s=new Float32Array(v.sizeFromShape(a.shape)),i=r.data.get(a.dataId).values,o=r.data.get(n.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return r.makeTensorInfo(a.shape,"float32",s)}var iZ={kernelName:hf,backendName:"cpu",kernelFunc:sZ},oZ=C.ERF_P,lZ=C.ERF_A1,uZ=C.ERF_A2,dZ=C.ERF_A3,pZ=C.ERF_A4,hZ=C.ERF_A5,cZ=gt(Zu,e=>{let t=Math.sign(e),r=Math.abs(e),n=1/(1+oZ*r);return t*(1-((((hZ*n+pZ)*n+dZ)*n+uZ)*n+lZ)*n*Math.exp(-r*r))}),fZ={kernelName:Zu,backendName:"cpu",kernelFunc:cZ};function G0(e){let{inputs:t,backend:r,attrs:n}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Ct({inputs:{x:a},backend:r,attrs:{shape:o}})}var mZ={kernelName:Jo,backendName:"cpu",kernelFunc:G0},gZ=er((e,t)=>e/t),p5=vr(li,gZ),ty={kernelName:li,backendName:"cpu",kernelFunc:p5};function aI(e,t,r){let n=e.shape,a=n[0],s=n[1],i=r.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[a,s],d=v.sizeFromShape(u),h=v.getTypedArrayFromDType("float32",d),p=v.getTypedArrayFromDType("float32",d);for(let g=0;g<a;g++){let y=Lo({inputs:{x:o},backend:r,attrs:{begin:[g,0],size:[1,s]}}),A=Lo({inputs:{x:l},backend:r,attrs:{begin:[g,0],size:[1,s]}}),x=pn({inputs:{real:y,imag:A},backend:r}),{real:b,imag:w}=yZ(x,t,r),I=C.mergeRealAndImagArrays(b,w);for(let N=0;N<s;N++){let E=C.getComplexWithIndex(I,N);h[g*s+N]=E.real,p[g*s+N]=E.imag}r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(x)}let c=r.makeTensorInfo(u,"float32",h),m=r.makeTensorInfo(u,"float32",p),f=pn({inputs:{real:c,imag:m},backend:r});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(m),f}function yZ(e,t,r){let n=v.sizeFromShape(e.shape),a=r.data.get(e.dataId),s=r.data.get(a.complexTensorInfos.real.dataId).values,i=r.data.get(a.complexTensorInfos.imag.dataId).values;if(AZ(n)){let o=ry(s,i,n,t,r),l=[e.shape[0],e.shape[1]];if(t){let u=r.makeTensorInfo(l,"float32",o.real),d=r.makeTensorInfo(l,"float32",o.imag),h=r.makeTensorInfo([],"float32",v.createScalarValue(n,"float32")),p=_a({inputs:{x:h},backend:r}),c=ty.kernelFunc({inputs:{a:u,b:h},backend:r}),m=ty.kernelFunc({inputs:{a:d,b:p},backend:r}),f=r.data.get(c.dataId).values,g=r.data.get(m.dataId).values;return r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=C.mergeRealAndImagArrays(s,i),l=xZ(o,n,t);return C.splitRealAndImagArrays(l)}}function AZ(e){return(e&e-1)===0}function ry(e,t,r,n,a){if(r===1)return{real:e,imag:t};let s=C.mergeRealAndImagArrays(e,t),i=r/2,o=C.complexWithEvenIndex(s),l=o.real,u=o.imag,d=[l.length],h=a.makeTensorInfo(d,"float32",l),p=a.makeTensorInfo(d,"float32",u),c=pn({inputs:{real:h,imag:p},backend:a}),m=C.complexWithOddIndex(s),f=m.real,g=m.imag,y=[f.length],A=a.makeTensorInfo(y,"float32",f),x=a.makeTensorInfo(y,"float32",g),b=pn({inputs:{real:A,imag:x},backend:a}),w=ry(l,u,i,n,a),I=w.real,N=w.imag,E=[I.length],R=a.makeTensorInfo(E,"float32",I),_=a.makeTensorInfo(E,"float32",N),M=pn({inputs:{real:R,imag:_},backend:a}),S=ry(f,g,i,n,a),z=S.real,O=S.imag,H=[z.length],K=a.makeTensorInfo(H,"float32",z),D=a.makeTensorInfo(H,"float32",O),Q=pn({inputs:{real:K,imag:D},backend:a}),V=C.exponents(r,n),re=[V.real.length],Y=a.makeTensorInfo(re,"float32",V.real),ie=a.makeTensorInfo(re,"float32",V.imag),J=pn({inputs:{real:Y,imag:ie},backend:a}),ae=Cm({inputs:{a:J,b:Q},backend:a}),de=Pu({inputs:{a:M,b:ae},backend:a}),xe=u5({inputs:{a:M,b:ae},backend:a}),be=Do({inputs:{input:de},backend:a}),Ee=Do({inputs:{input:xe},backend:a}),$e=_u({inputs:{input:de},backend:a}),De=_u({inputs:{input:xe},backend:a}),We=zu({inputs:[be,Ee],backend:a,attrs:{axis:0}}),Xe=zu({inputs:[$e,De],backend:a,attrs:{axis:0}}),ot=a.data.get(We.dataId).values,pt=a.data.get(Xe.dataId).values;return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(c),a.disposeIntermediateTensorInfo(A),a.disposeIntermediateTensorInfo(x),a.disposeIntermediateTensorInfo(b),a.disposeIntermediateTensorInfo(R),a.disposeIntermediateTensorInfo(_),a.disposeIntermediateTensorInfo(M),a.disposeIntermediateTensorInfo(K),a.disposeIntermediateTensorInfo(D),a.disposeIntermediateTensorInfo(Q),a.disposeIntermediateTensorInfo(Y),a.disposeIntermediateTensorInfo(ie),a.disposeIntermediateTensorInfo(J),a.disposeIntermediateTensorInfo(ae),a.disposeIntermediateTensorInfo(de),a.disposeIntermediateTensorInfo(xe),a.disposeIntermediateTensorInfo(be),a.disposeIntermediateTensorInfo($e),a.disposeIntermediateTensorInfo(Ee),a.disposeIntermediateTensorInfo(De),a.disposeIntermediateTensorInfo(We),a.disposeIntermediateTensorInfo(Xe),{real:ot,imag:pt}}function xZ(e,t,r){let n=new Float32Array(t*2);for(let a=0;a<t;a++){let s=0,i=0;for(let o=0;o<t;o++){let l=C.exponent(a*o,t,r),u=C.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}r&&(s/=t,i/=t),C.assignToTypedArray(n,s,i,a)}return n}function bZ(e){let{inputs:t,backend:r}=e,{input:n}=t,a=v.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=a/s,o=Ct({inputs:{x:n},backend:r,attrs:{shape:[i,s]}}),l=aI(o,!1,r),u=Ct({inputs:{x:l},backend:r,attrs:{shape:n.shape}});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(l),u}var vZ={kernelName:cf,backendName:"cpu",kernelFunc:bZ};function h5(e){let{backend:t,attrs:r}=e,{shape:n,value:a,dtype:s}=r,i=s||v.inferDtype(a),o=v.getArrayFromDType(i,v.sizeFromShape(n));return kZ(o,a,i),t.makeTensorInfo(n,i,o)}var wZ={kernelName:Yu,backendName:"cpu",kernelFunc:h5};function kZ(e,t,r){e.fill(t)}var IZ={kernelName:el,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,a=r,s=v.getTypedArrayFromDType(n.dtype,v.sizeFromShape(n.shape)),[i,o,l,u]=n.shape,d=a.data.get(n.dataId).values;for(let h=0;h<i;h++){let p=h*l*o*u;for(let c=0;c<o;c++){let m=c*(l*u);for(let f=0;f<l;f++){let g=f*u;for(let y=0;y<u;y++){let A=Math.round(l-f-1),x=p+m+g+y,b=d[x];if(A>=0&&A<l){let w=A*u,I=p+m+w+y;b=d[I]}s[x]=b}}}}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},SZ=er((e,t)=>Math.floor(e/t)),CZ=vr(hi,SZ,null,"int32"),TZ={kernelName:hi,backendName:"cpu",kernelFunc:CZ};function NZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:m}=n,f=rI({inputs:{x:a,filter:s},backend:r,attrs:{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p}});if(i){let g=f;if(d==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let y=Ct({inputs:{x:i},backend:r,attrs:{shape:[i.shape[0],1,1]}});f=Pu({inputs:{a:f,b:y},backend:r}),r.disposeIntermediateTensorInfo(y)}else f=Pu({inputs:{a:f,b:i},backend:r});r.disposeIntermediateTensorInfo(g)}if(c){let g=f;if(d==="NCHW"&&c==="prelu"&&o.shape.length===1&&o.shape[0]!==1){let y=Ct({inputs:{x:o},backend:r,attrs:{shape:[o.shape[0],1,1]}});f=U0(r,f,c,y,m),r.disposeIntermediateTensorInfo(y)}else f=U0(r,f,c,o,m);r.disposeIntermediateTensorInfo(g)}return f}var EZ={kernelName:_s,backendName:"cpu",kernelFunc:NZ};function RZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:m}=n,f=nI({inputs:{x:a,filter:s},backend:r,attrs:{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p}});if(i){let g=f;f=Pu({inputs:{a:f,b:i},backend:r}),r.disposeIntermediateTensorInfo(g)}if(c){let g=f;f=U0(r,f,c,o,m),r.disposeIntermediateTensorInfo(g)}return f}var $Z={kernelName:zs,backendName:"cpu",kernelFunc:RZ};function MZ(e){let{inputs:t,backend:r}=e,{params:n,indices:a}=t,s=v.sizeFromShape(n.shape),i=a.shape,o=i[i.length-1],[l,u,d,h]=C.prepareAndValidate(n,a);if(u===0)return r.makeTensorInfo(l,n.dtype,[]);let p=r.data.get(a.dataId).values,c=r.bufferSync(n),m=b8(p,c,n.dtype,u,o,d,h,n.shape,s);return r.makeTensorInfo(l,n.dtype,m.values)}var FZ={kernelName:rl,backendName:"cpu",kernelFunc:MZ};function PZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=n;Ce([a,s],"gatherV2");let l=v.parseAxisParam(i,a.shape)[0],u=r.data.get(s.dataId).values,d=a.shape[l];for(let b=0;b<u.length;++b){let w=u[b];v.assert(w<=d-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${d-1}]`)}let h=o;o==null&&(h=0);let p=v.sizeFromShape(s.shape),c=C.segment_util.collectGatherOpShapeInfo(a,s,l,h),m=Ct({inputs:{x:a},backend:r,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),f=Ct({inputs:{x:s},backend:r,attrs:{shape:[c.batchSize,p/c.batchSize]}}),g=[c.batchSize,c.outerSize,p/c.batchSize,c.sliceSize],y=r.bufferSync(f),A=r.bufferSync(m),x=v8(A,y,g);return r.disposeIntermediateTensorInfo(m),r.disposeIntermediateTensorInfo(f),r.makeTensorInfo(c.outputShape,x.dtype,x.values)}var _Z={kernelName:tl,backendName:"cpu",kernelFunc:PZ};function zZ(e){let{inputs:t,backend:r}=e,{input:n}=t,a=v.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=a/s,o=Ct({inputs:{x:n},backend:r,attrs:{shape:[i,s]}}),l=aI(o,!0,r),u=Ct({inputs:{x:l},backend:r,attrs:{shape:n.shape}});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(l),u}var OZ={kernelName:ff,backendName:"cpu",kernelFunc:zZ},DZ=gt(Ju,e=>Number.isFinite(e)?1:0,"bool"),LZ={kernelName:Ju,backendName:"cpu",kernelFunc:DZ},BZ=gt(Qu,e=>Math.abs(e)===1/0?1:0,"bool"),WZ={kernelName:Qu,backendName:"cpu",kernelFunc:BZ},VZ=gt(ed,e=>Number.isNaN(e)?1:0,"bool"),UZ={kernelName:ed,backendName:"cpu",kernelFunc:VZ};function GZ(e){let{backend:t,attrs:r}=e,{start:n,stop:a,num:s}=r,i=C8(n,a,s);return t.makeTensorInfo([i.length],"float32",i)}var jZ={kernelName:mf,backendName:"cpu",kernelFunc:GZ},HZ=gt(td,e=>Math.log1p(e)),qZ={kernelName:td,backendName:"cpu",kernelFunc:HZ},XZ=er((e,t)=>e&&t),KZ=vr(il,XZ,null,"bool"),ZZ={kernelName:il,backendName:"cpu",kernelFunc:KZ},YZ=gt(rd,e=>e?0:1,"bool"),JZ={kernelName:rd,backendName:"cpu",kernelFunc:YZ},QZ=er((e,t)=>e||t),eY=vr(ih,QZ,null,"bool"),tY={kernelName:ih,backendName:"cpu",kernelFunc:eY};function rY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;Ce(a,"LRN");let u=a.shape[3],d=u-1,h=r.data.get(a.dataId).values,p=v.sizeFromShape(a.shape),c=new Float32Array(p);function m(f){let g=f%u,y=f-g+Math.max(0,g-s),A=f-g+Math.min(g+s,d),x=0;for(;y<=A;y++){let b=h[y];x+=b*b}return x}for(let f=0;f<p;f++){let g=m(f),y=h[f]*Math.pow(i+o*g,-l);c[f]=y}return r.makeTensorInfo(a.shape,a.dtype,c)}var nY={kernelName:oh,backendName:"cpu",kernelFunc:rY};function aY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=n;Ce(i,"LRNGrad");let h=v.sizeFromShape(i.shape),p=i.shape[3],c=r.data.get(i.dataId).values,m=r.data.get(a.dataId).values,f=r.data.get(s.dataId).values,g=new Float32Array(h),y=h;for(let A=0;A<y;A++){let x=A%p,b=A-x+Math.max(0,x-o),w=A-x+Math.min(p,x+o+1),I=0;for(let N=b;N<w;N++)I+=Math.pow(m[N],2);I=u*I+l;for(let N=b;N<w;N++){let E=-2*u*d*m[N]*f[A]/I;A===N&&(E+=Math.pow(I,-d)),E*=c[A],g[N]+=E}}return r.makeTensorInfo(i.shape,a.dtype,g)}var sY={kernelName:gf,backendName:"cpu",kernelFunc:aY};function sI(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=n,o=r,l=a.shape,u=l.length,d=v.parseAxisParam(s,l),h=d,p=C.getAxesPermutation(h,u),c=o.data.get(a.dataId).values;if(p!=null){let b=new Array(u);for(let w=0;w<b.length;w++)b[w]=l[p[w]];c=i5(c,l,a.dtype,p,b),h=C.getInnerMostAxes(h.length,u),l=b}Ce(a,"max"),C.assertAxesAreInnerMostDims("max",h,u);let[m,f]=C.computeOutAndReduceShapes(l,h),g=v.sizeFromShape(f),y=N8(c,g,m,a.dtype),A=o.write(y,m,a.dtype),x=m;return i&&(x=C.expandShapeToKeepDim(m,d)),{dataId:A,shape:x,dtype:a.dtype}}var iY={kernelName:Ai,backendName:"cpu",kernelFunc:sI};function oY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;Ce(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=C.computePool2DInfo(a.shape,s,i,u,o,l),h;if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))h=_a({inputs:{x:a},backend:r});else{let p=r.data.get(a.dataId).values,c=v.computeStrides(a.shape),m=d5(p,a.shape,a.dtype,c,d,"max");h=r.makeTensorInfo(d.outShape,a.dtype,m.values)}return h}var lY={kernelName:bi,backendName:"cpu",kernelFunc:oY};function uY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n;Ce(a,"maxPool3d");let d=C.computePool3DInfo(a.shape,s,i,1,o,l,u),h=r.data.get(a.dataId).values,p=tI(h,a.shape,a.dtype,v.computeStrides(a.shape),d,"max");return r.makeTensorInfo(p.shape,"float32",p.values)}var dY={kernelName:lh,backendName:"cpu",kernelFunc:uY};function pY(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n;Ce([a,s],"maxPool3DGrad");let d=C.computePool3DInfo(s.shape,i,o,1,l,u),h=r.bufferSync(s),p=JX(h,d),c=d.strideDepth,m=d.strideHeight,f=d.strideWidth,g=d.dilationDepth,y=d.dilationHeight,A=d.dilationWidth,x=d.effectiveFilterDepth,b=d.effectiveFilterHeight,w=d.effectiveFilterWidth,I=x-1-d.padInfo.front,N=w-1-d.padInfo.left,E=b-1-d.padInfo.top,R=Le(s.shape,"float32"),_=r.bufferSync(a);for(let M=0;M<d.batchSize;++M)for(let S=0;S<d.inChannels;++S)for(let z=0;z<d.inDepth;++z)for(let O=0;O<d.inHeight;++O)for(let H=0;H<d.inWidth;++H){let K=z-I,D=O-E,Q=H-N,V=0;for(let re=0;re<x;re+=g){let Y=(K+re)/c;if(!(Y<0||Y>=d.outDepth||Math.floor(Y)!==Y))for(let ie=0;ie<b;ie+=y){let J=(D+ie)/m;if(!(J<0||J>=d.outHeight||Math.floor(J)!==J))for(let ae=0;ae<w;ae+=A){let de=(Q+ae)/f;if(de<0||de>=d.outWidth||Math.floor(de)!==de)continue;let xe=x*b*w-1-p.get(M,Y,J,de,S),be=re*b*w+ie*w+ae,Ee=xe===be?1:0;Ee!==0&&(V+=_.get(M,Y,J,de,S)*Ee)}}}R.set(V,M,z,O,H,S)}return r.makeTensorInfo(R.shape,R.dtype,R.values)}var hY={kernelName:Af,backendName:"cpu",kernelFunc:pY};function cY(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s,output:i}=t,o=s;Ce([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:h}=n,p=C.computePool2DInfo(o.shape,l,u,1,d,h),c=r.data.get(o.dataId).values,m=Le(p.outShape,o.dtype,eI(c,o.shape,o.dtype,p).values),f=p.strideHeight,g=p.strideWidth,y=p.dilationHeight,A=p.dilationWidth,x=p.effectiveFilterHeight,b=p.effectiveFilterWidth,w=b-1-p.padInfo.left,I=x-1-p.padInfo.top,N=Le(o.shape,"float32"),E=r.data.get(a.dataId).values,R=Le(a.shape,"float32",E);for(let _=0;_<p.batchSize;++_)for(let M=0;M<p.inChannels;++M)for(let S=0;S<p.inHeight;++S)for(let z=0;z<p.inWidth;++z){let O=S-I,H=z-w,K=0;for(let D=0;D<x;D+=y){let Q=(O+D)/f;if(!(Q<0||Q>=p.outHeight||Math.floor(Q)!==Q))for(let V=0;V<b;V+=A){let re=(H+V)/g;if(re<0||re>=p.outWidth||Math.floor(re)!==re)continue;let Y=x*b-1-m.get(_,Q,re,M),ie=D*b+V,J=Y===ie?1:0;J!==0&&(K+=R.get(_,Q,re,M)*J)}}N.set(K,_,S,z,M)}return r.makeTensorInfo(N.shape,N.dtype,N.values)}var fY={kernelName:yf,backendName:"cpu",kernelFunc:cY};function mY(e,t,r,n,a){let s=v.computeStrides(t),i=d5(e,t,r,s,a,"max"),o=eI(e,t,r,a,!0,n);return[i.values,o.values]}var gY={kernelName:xf,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=r;Ce(n,"MaxPoolWithArgmax");let u=l.data.get(n.dataId).values,d=C.computePool2DInfo(n.shape,a,s,[1,1],i),[h,p]=mY(u,n.shape,n.dtype,o,d),c=l.write(h,d.outShape,n.dtype),m=l.write(p,d.outShape,n.dtype);return[{dataId:c,shape:d.outShape,dtype:n.dtype},{dataId:m,shape:d.outShape,dtype:"int32"}]}};function yY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=v.parseAxisParam(s,a.shape),l=C.computeOutAndReduceShapes(a.shape,o)[1],u=v.sizeFromShape(l),d=[],h=r.makeTensorInfo([],"float32",new Float32Array([u]));d.push(h);let p=qs({inputs:{x:a},backend:r,attrs:{dtype:"float32"}});d.push(p);let c=p5({inputs:{a:p,b:h},backend:r});d.push(c);let m=Dh({inputs:{x:c},backend:r,attrs:{axis:s,keepDims:i}});return d.forEach(f=>r.disposeIntermediateTensorInfo(f)),m}var AY={kernelName:vi,backendName:"cpu",kernelFunc:yY};function xY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Ce(a,"min");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),d=a;u!=null&&(d=sn({inputs:{x:a},backend:r,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("min",l,d.shape.length);let[h,p]=C.computeOutAndReduceShapes(d.shape,l),c=v.sizeFromShape(p),m=v.makeZerosTypedArray(v.sizeFromShape(h),d.dtype),f=r.data.get(d.dataId).values;for(let y=0;y<m.length;++y){let A=y*c,x=f[A];for(let b=0;b<c;++b){let w=f[A+b];(Number.isNaN(w)||w<x)&&(x=w)}m[y]=x}u!=null&&r.disposeIntermediateTensorInfo(d);let g=r.makeTensorInfo(h,d.dtype,m);if(i){let y=C.expandShapeToKeepDim(h,o),A=Ct({inputs:{x:g},backend:r,attrs:{shape:y}});return r.disposeIntermediateTensorInfo(g),A}return g}var bY={kernelName:wi,backendName:"cpu",kernelFunc:xY};function vY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,mode:i}=n;Ce(a,"mirrorPad");let o=s.map((A,x)=>A[0]+a.shape[x]+A[1]),l=s.map(A=>A[0]),u=s.map((A,x)=>A[0]+a.shape[x]),d=i==="reflect"?0:1,h=r.data.get(a.dataId).values,p=a.shape.length,c=v.computeStrides(a.shape),m=v.sizeFromShape(o),f=o.length,g=v.computeStrides(o),y=v.getTypedArrayFromDType(a.dtype,m);for(let A=0;A<m;A++){let x=v.indexToLoc(A,f,g);for(let w=0;w<f;w++)x[w]<l[w]?x[w]=l[w]*2-x[w]-d:x[w]>=u[w]&&(x[w]=(u[w]-1)*2-x[w]+d);x=x.map((w,I)=>w-l[I]);let b=v.locToIndex(x,p,c);y[A]=h[b]}return{dataId:r.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var wY={kernelName:Ii,backendName:"cpu",kernelFunc:vY},kY=er((e,t)=>{let r=e%t;return e<0&&t<0||e>=0&&t>=0?r:(r+t)%t}),IY=vr(nd,kY),SY={kernelName:nd,backendName:"cpu",kernelFunc:IY},CY=Uo(Y0());function iI(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{dim:s}=n,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],a.shape),u=sI({inputs:{x:a},backend:r,attrs:{reductionIndices:l,keepDims:!1}}),d=C.expandShapeToKeepDim(u.shape,l),h=Ct({inputs:{x:u},backend:r,attrs:{shape:d}}),p=u5({inputs:{a,b:h},backend:r}),c=y8({inputs:{x:p},backend:r}),m=Dh({inputs:{x:c},backend:r,attrs:{axis:l,keepDims:!1}}),f=Ct({inputs:{x:m},backend:r,attrs:{shape:d}}),g=p5({inputs:{a:c,b:f},backend:r});return r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(m),r.disposeIntermediateTensorInfo(f),g}var TY={kernelName:Di,backendName:"cpu",kernelFunc:iI};function NY(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=n;Ce(a,"multinomial");let l=o?a:iI({inputs:{logits:a},backend:r,attrs:{dim:-1}}),u=l.shape[0],d=l.shape[1],h=r.data.get(l.dataId).values,p=[u,s],c=v.makeZerosTypedArray(v.sizeFromShape(p),"int32");for(let m=0;m<u;++m){let f=m*d,g=new Float32Array(d-1);g[0]=h[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+h[f+x];let y=CY.alea(i.toString()),A=m*s;for(let x=0;x<s;++x){let b=y();c[A+x]=g.length;for(let w=0;w<g.length;w++)if(b<g[w]){c[A+x]=w;break}}}return o||r.disposeIntermediateTensorInfo(l),r.makeTensorInfo(p,"int32",c)}var EY={kernelName:bf,backendName:"cpu",kernelFunc:NY},RY=Kn.nonMaxSuppressionV3Impl;function $Y(e){let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n;Ce(a,"NonMaxSuppression");let u=r.data.get(a.dataId).values,d=r.data.get(s.dataId).values,{selectedIndices:h}=RY(u,d,i,o,l);return r.makeTensorInfo([h.length],"int32",new Int32Array(h))}var MY={kernelName:ul,backendName:"cpu",kernelFunc:$Y},FY=Kn.nonMaxSuppressionV4Impl;function PY(e){let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=n;Ce(a,"NonMaxSuppressionPadded");let d=r.data.get(a.dataId).values,h=r.data.get(s.dataId).values,{selectedIndices:p,validOutputs:c}=FY(d,h,i,o,l,u);return[r.makeTensorInfo([p.length],"int32",new Int32Array(p)),r.makeTensorInfo([],"int32",new Int32Array([c]))]}var _Y={kernelName:ad,backendName:"cpu",kernelFunc:PY},zY=Kn.nonMaxSuppressionV5Impl;function OY(e){let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n;Ce(a,"NonMaxSuppressionWithScore");let d=r.data.get(a.dataId).values,h=r.data.get(s.dataId).values,p=i,c=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=zY(d,h,p,c,m,f);return[r.makeTensorInfo([g.length],"int32",new Int32Array(g)),r.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var DY={kernelName:dl,backendName:"cpu",kernelFunc:OY};function LY(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=n;Ce(a,"oneHot");let l=v.sizeFromShape(a.shape),u=new Float32Array(l*s);u.fill(o);let d=r.data.get(a.dataId).values;for(let h=0;h<l;++h)d[h]>=0&&d[h]<s&&(u[h*s+d[h]]=i);return r.makeTensorInfo([...a.shape,s],"int32",u)}var BY={kernelName:hl,backendName:"cpu",kernelFunc:LY};function j0(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(n.dtype==="complex64"){let a=Do({inputs:{input:n},backend:r}),s=j0({inputs:{x:a},backend:r}),i=_u({inputs:{input:n},backend:r}),o=j0({inputs:{x:i},backend:r}),l=pn({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return h5({backend:r,attrs:{shape:n.shape,value:0,dtype:n.dtype}})}var WY={kernelName:Nl,backendName:"cpu",kernelFunc:j0};function oI(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(n.dtype==="complex64"){let a=Do({inputs:{input:n},backend:r}),s=oI({inputs:{x:a},backend:r}),i=_u({inputs:{input:n},backend:r}),o=j0({inputs:{x:i},backend:r}),l=pn({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return h5({backend:r,attrs:{shape:n.shape,value:1,dtype:n.dtype}})}var VY={kernelName:pl,backendName:"cpu",kernelFunc:oI};function lI(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return G0({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{v.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=G0({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=zu({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeIntermediateTensorInfo(d)),u}var UY={kernelName:cl,backendName:"cpu",kernelFunc:lI};function GY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,constantValue:i}=n;Ce(a,"pad");let o=s.map((y,A)=>y[0]+a.shape[A]+y[1]),l=s.map(y=>y[0]),u=r.data.get(a.dataId).values,d=v.sizeFromShape(a.shape),h=a.shape.length,p=v.computeStrides(a.shape),c=v.sizeFromShape(o),m=o.length,f=v.computeStrides(o),g=v.getTypedArrayFromDType(a.dtype,c);i!==0&&g.fill(i);for(let y=0;y<d;y++){let A=v.indexToLoc(y,h,p).map((b,w)=>b+l[w]),x=v.locToIndex(A,m,f);g[x]=u[y]}return{dataId:r.write(g,o,a.dtype),shape:o,dtype:a.dtype}}var uI={kernelName:Ci,backendName:"cpu",kernelFunc:GY},jY=er((e,t)=>Math.pow(e,t)),HY=vr(Ti,jY),qY={kernelName:Ti,backendName:"cpu",kernelFunc:HY};function XY(e){let{backend:t,attrs:r}=e,{start:n,stop:a,dtype:s,step:i}=r,o=o5(n,a,i,s);return t.makeTensorInfo([o.length],s,o)}var KY={kernelName:sd,backendName:"cpu",kernelFunc:XY},ZY=gt(id,e=>1/e),YY={kernelName:id,backendName:"cpu",kernelFunc:ZY};function JY(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n;Ce(a,"resizeBilinear");let l=v.computeStrides(a.shape),[u,d]=o,[h,p,c,m]=a.shape,f=r.data.get(a.dataId).values,g=new Float32Array(v.sizeFromShape([h,u,d,m])),y=[s&&u>1?p-1:p,s&&d>1?c-1:c],A=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=0,b=y[0]/A[0],w=y[1]/A[1];for(let I=0;I<h;I++)for(let N=0;N<u;N++){let E;i?E=b*(N+.5)-.5:E=b*N;let R=Math.max(0,Math.floor(E)),_=E-R,M=Math.min(p-1,Math.ceil(E)),S=I*l[0]+R*l[1],z=I*l[0]+M*l[1];for(let O=0;O<d;O++){let H;i?H=w*(O+.5)-.5:H=w*O;let K=Math.max(0,Math.floor(H)),D=H-K,Q=Math.min(c-1,Math.ceil(H)),V=S+K*l[2],re=z+K*l[2],Y=S+Q*l[2],ie=z+Q*l[2];for(let J=0;J<m;J++){let ae=f[V+J],de=f[re+J],xe=f[Y+J],be=f[ie+J],Ee=ae+(xe-ae)*D,$e=de+(be-de)*D,De=Ee+($e-Ee)*_;g[x++]=De}}}return r.makeTensorInfo([h,u,d,m],"float32",g)}var QY={kernelName:$i,backendName:"cpu",kernelFunc:JY};function eJ(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n;Ce([s,a],"resizeBilinearGrad");let o=v.computeStrides(a.shape),[l,u,d,h]=a.shape,[,p,c]=s.shape,m=new Float32Array(l*u*d*h),f=[i&&p>1?u-1:u,i&&c>1?d-1:d],g=[i&&p>1?p-1:p,i&&c>1?c-1:c],y=f[0]/g[0],A=f[1]/g[1],x=r.data.get(s.dataId).values,b=0;for(let w=0;w<l;w++){let I=w*o[0];for(let N=0;N<p;N++){let E=N*y,R=Math.floor(E),_=Math.min(Math.ceil(E),u-1),M=I+R*o[1],S=I+_*o[1],z=E-R,O=1-z;for(let H=0;H<c;H++){let K=H*A,D=Math.floor(K),Q=Math.min(Math.ceil(K),d-1),V=K-D,re=1-V,Y=M+D*o[2],ie=M+Q*o[2],J=S+D*o[2],ae=S+Q*o[2],de=O*re,xe=O*V,be=z*re,Ee=z*V;for(let $e=0;$e<h;$e++){let De=x[b++];m[Y+$e]+=De*de,m[ie+$e]+=De*xe,m[J+$e]+=De*be,m[ae+$e]+=De*Ee}}}}return r.makeTensorInfo([l,d,u,h],"float32",m)}var tJ={kernelName:wf,backendName:"cpu",kernelFunc:eJ};function rJ(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n;Ce(a,"resizeNearestNeighbor");let l=v.computeStrides(a.shape),[u,d]=o,[h,p,c,m]=a.shape,f=r.data.get(a.dataId).values,g=new Float32Array(h*u*d*m),y=[s&&u>1?p-1:p,s&&d>1?c-1:c],A=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=y[0]/A[0],b=y[1]/A[1],w=0;for(let I=0;I<h;I++){let N=I*l[0];for(let E=0;E<u;E++){let R=i?x*(E+.5):x*E,_=Math.min(p-1,s?Math.round(R):Math.floor(R));i&&(_=Math.max(0,_));let M=N+_*l[1];for(let S=0;S<d;S++){let z=i?b*(S+.5):b*S,O=Math.min(c-1,s?Math.round(z):Math.floor(z));i&&(O=Math.max(0,O));let H=M+O*l[2];for(let K=0;K<m;K++){let D=f[H+K];g[w++]=D}}}}return r.makeTensorInfo([h,u,d,m],a.dtype,g)}var nJ={kernelName:od,backendName:"cpu",kernelFunc:rJ};function aJ(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n;Ce([s,a],"resizeNearestNeighborGrad");let o=v.computeStrides(a.shape),l=v.computeStrides(s.shape),[u,d,h,p]=a.shape,[,c,m]=s.shape,f=new Float32Array(u*d*h*p),g=r.data.get(s.dataId).values,y=[i&&c>1?d-1:d,i&&m>1?h-1:h],A=[i&&c>1?c-1:c,i&&m>1?m-1:m],x=y[0]/A[0],b=y[1]/A[1],w=1/x,I=1/b,N=Math.ceil(w)*2+2,E=Math.ceil(I)*2+2;for(let R=0;R<u;R++){let _=R*o[0];for(let M=0;M<d;M++){let S=_+M*o[1],z=Math.floor(M*w),O=Math.floor(z-N/2);for(let H=0;H<h;H++){let K=S+H*o[2],D=Math.floor(H*I),Q=Math.floor(D-E/2);for(let V=0;V<p;V++){let re=0;for(let Y=0;Y<N;Y++){let ie=Y+O;if(ie<0||ie>=c)continue;let J=_+ie*l[1],ae=ie*x,de=Math.min(d-1,i?Math.round(ae):Math.floor(ae));if(M===de)for(let xe=0;xe<E;xe++){let be=xe+Q;if(be<0||be>=m)continue;let Ee=J+be*l[2],$e=be*b,De=Math.min(h-1,i?Math.round($e):Math.floor($e));H===De&&(re+=g[Ee+V])}}f[K+V]=re}}}}return r.makeTensorInfo(a.shape,a.dtype,f)}var sJ={kernelName:vf,backendName:"cpu",kernelFunc:aJ};function iJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dims:s}=n;Ce(a,"reverse");let i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return _a({inputs:{x:a},backend:r});let l=new or(a.shape,a.dtype),u=r.bufferSync(a);for(let d=0;d<l.size;d++){let h=l.indexToLoc(d),p=h.slice();o.forEach(c=>p[c]=a.shape[c]-1-p[c]),l.set(u.get(...p),...h)}return r.makeTensorInfo(l.shape,l.dtype,l.values)}var oJ={kernelName:ml,backendName:"cpu",kernelFunc:iJ},lJ={kernelName:El,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,{radians:a,fillValue:s,center:i}=t,o=r,l=v.getTypedArrayFromDType(n.dtype,v.sizeFromShape(n.shape)),[u,d,h,p]=n.shape,[c,m]=C.getImageCenter(i,d,h),f=255,g=Math.sin(a),y=Math.cos(a),A=o.data.get(n.dataId).values;for(let x=0;x<u;x++){let b=x*h*d*p;for(let w=0;w<d;w++){let I=w*(h*p);for(let N=0;N<h;N++){let E=N*p;for(let R=0;R<p;R++){let _=[u,w,N,R],M=_[2],S=_[1],z=(M-c)*y-(S-m)*g,O=(M-c)*g+(S-m)*y;z=Math.round(z+c),O=Math.round(O+m);let H=s;if(typeof s!="number"&&(R===3?H=f:H=s[R]),z>=0&&z<h&&O>=0&&O<d){let D=O*(h*p),Q=z*p,V=b+D+Q+R;H=A[V]}let K=b+I+E+R;l[K]=H}}}}return{dataId:o.write(l,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},uJ=gt(gl,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),dJ={kernelName:gl,backendName:"cpu",kernelFunc:uJ};function pJ(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:h}=C.calculateShapes(s,a,i),p=!0,c=r.bufferSync(a),m=r.bufferSync(s),f=yu(c,m,i,h,u,l,o,d,0,p);return r.makeTensorInfo(i,f.dtype,f.values)}var hJ={kernelName:yl,backendName:"cpu",kernelFunc:pJ};function cJ(e,t){let r=0,n=e.length,a=0;for(;r<n;)a=Math.floor((r+n)/2),e[a]<t?r=a+1:n=a;return n}function fJ(e,t){let r=0,n=e.length,a=0;for(;r<n;)a=Math.floor((r+n)/2),e[a]<=t?r=a+1:n=a;return n}function mJ(e,t,r,n,a,s){let i=v.getArrayFromDType("int32",r*a);for(let o=0;o<r;++o){let l=e.slice(o*n,(o+1)*n),u=o*a;for(let d=0;d<a;++d)i[u+d]=s==="left"?cJ(l,t[d+u]):fJ(l,t[d+u])}return i}function gJ(e){let{inputs:t,backend:r,attrs:n}=e,{sortedSequence:a,values:s}=t,{side:i}=n,o=r.data.get(a.dataId).values,l=r.data.get(s.dataId).values,u=mJ(o,l,a.shape[0],a.shape[1],s.shape[1],i);return r.makeTensorInfo(s.shape,"int32",u)}var yJ={kernelName:kf,backendName:"cpu",kernelFunc:gJ};function AJ(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t;Ce([n,a,s],"select");let i=n.shape.length,o=r.data.get(n.dataId).values,l=r.data.get(a.dataId).values,u=r.data.get(s.dataId).values,d=Nr(a.dtype,s.dtype),h=v.makeZerosTypedArray(v.sizeFromShape(a.shape),d),p=0,c=i===0||i>1||a.shape.length===1?1:v.sizeFromShape(a.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<c;f++)o[m]===1?h[p++]=l[m]:h[p++]=u[m];return r.makeTensorInfo(a.shape,d,h)}var xJ={kernelName:Al,backendName:"cpu",kernelFunc:AJ},bJ=C.SELU_SCALEALPHA,vJ=C.SELU_SCALE,wJ=gt(ld,e=>e>=0?vJ*e:bJ*(Math.exp(e)-1)),kJ={kernelName:ld,backendName:"cpu",kernelFunc:wJ},IJ=gt(ud,e=>e<0?-1:e>0?1:0),SJ={kernelName:ud,backendName:"cpu",kernelFunc:IJ},CJ=gt(Pi,e=>Math.sin(e)),TJ={kernelName:Pi,backendName:"cpu",kernelFunc:CJ},NJ=gt(bl,e=>Math.sinh(e)),EJ={kernelName:bl,backendName:"cpu",kernelFunc:NJ},RJ=11920928955078125e-23,z4=Math.log(RJ)+2,$J=gt(dd,e=>{let t=e>-z4,r=e<z4,n=Math.exp(e),a;return r?a=n:t?a=e:a=Math.log(1+n),a}),MJ={kernelName:dd,backendName:"cpu",kernelFunc:$J};function FJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n;Ce([a],"spaceToBatchND");let o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<a.shape.length;++g)l.push([0,0]);let u=uI.kernelFunc({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),d=C.getReshaped(u.shape,s,o,!1),h=C.getPermuted(d.length,s.length,!1),p=C.getReshapedPermuted(u.shape,s,o,!1),c=Ct({inputs:{x:u},backend:r,attrs:{shape:d}}),m=sn({inputs:{x:c},backend:r,attrs:{perm:h}}),f=Ct({inputs:{x:m},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(m),f}var PJ={kernelName:vl,backendName:"cpu",kernelFunc:FJ};function _J(e){let{inputs:t,backend:r}=e,{indices:n,values:a,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${n.shape}`);if(a.shape.length!==1)throw new Error(`Values must be a vector, saw:
${a.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=r.data.get(n.dataId).values,l=r.data.get(a.dataId).values,u=r.data.get(s.dataId).values,d=r.data.get(i.dataId).values[0],[h,p,c,m,f]=z8(o,n.shape,n.dtype,l,a.dtype,u,d);return[r.makeTensorInfo(p,n.dtype,h),r.makeTensorInfo([p[0]],a.dtype,c),r.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),r.makeTensorInfo([f.length],n.dtype,new Int32Array(f))]}var zJ={kernelName:dh,backendName:"cpu",kernelFunc:_J};function OJ(e){let{inputs:t,backend:r}=e,{inputIndices:n,inputShape:a,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${n.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(r.data.get(a.dataId).values),o=r.data.get(n.dataId).values,l=Array.from(r.data.get(s.dataId).values),[u,d,h]=O8(o,n.shape,n.dtype,i,l);return[r.makeTensorInfo(d,n.dtype,u),r.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var DJ={kernelName:pd,backendName:"cpu",kernelFunc:OJ};function LJ(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(a.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=r.data.get(n.dataId).values,o=r.data.get(a.dataId).values,l=r.data.get(s.dataId).values,[u,d]=l5(i,n.shape,n.dtype,o,l,!0);return r.makeTensorInfo(d,n.dtype,u)}var BJ={kernelName:ph,backendName:"cpu",kernelFunc:LJ};function WJ(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(a.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=r.data.get(n.dataId).values,o=r.data.get(a.dataId).values,l=r.data.get(s.dataId).values,[u,d]=l5(i,n.shape,n.dtype,o,l);return r.makeTensorInfo(d,n.dtype,u)}var VJ={kernelName:hh,backendName:"cpu",kernelFunc:WJ};function UJ(e){let{inputs:t,backend:r,attrs:n}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,sliceSize:d,strides:h,outputSize:p}=C.calculateShapes(s,a,o),c=!1,m=r.bufferSync(a),f;switch(s.dtype){case"bool":{let g=r.bufferSync(s),y=Boolean(r.data.get(i.dataId).values[0]);f=yu(m,g,o,p,d,u,l,h,y,c);break}case"float32":{let g=r.bufferSync(s),y=r.data.get(i.dataId).values[0];f=yu(m,g,o,p,d,u,l,h,y,c);break}case"int32":{let g=r.bufferSync(s),y=r.data.get(i.dataId).values[0];f=yu(m,g,o,p,d,u,l,h,y,c);break}case"string":{let g=r.bufferSync(s),y=v.decodeString(r.data.get(i.dataId).values[0]);f=yu(m,g,o,p,d,u,l,h,y,c);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return r.makeTensorInfo(o,f.dtype,f.values)}var GJ={kernelName:ch,backendName:"cpu",kernelFunc:UJ};function jJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),d=a.shape.slice();return l.map(h=>{let p=[...d];p[o]=h;let c=Lo({inputs:{x:a},backend:r,attrs:{begin:u,size:p}});return u[o]+=h,c})}var HJ={kernelName:wl,backendName:"cpu",kernelFunc:jJ},qJ={kernelName:hd,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:r}=e,n=t;Ce(r,"square");let a=n.data.get(r.dataId).values,s=new Float32Array(a.length);for(let i=0;i<a.length;++i){let o=a[i];s[i]=o*o}return{dataId:n.write(s,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},XJ=gt(Ui,(e,t)=>{let r=t;return isNaN(e)?NaN:e>0?1:r.alpha}),KJ={kernelName:Ui,backendName:"cpu",kernelFunc:XJ};function ZJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n;Ce(a,"stridedSlice");let{finalShapeSparse:c,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=Ot.sliceInfo(a.shape,s,i,o,l,u,d,h,p),w;if(f)w=Ct({inputs:{x:a},backend:r,attrs:{shape:m}});else if(g||y){v.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let I=Ot.computeOutShape(A,x,b),N=Lo({inputs:{x:a},backend:r,attrs:{begin:A,size:I}});w=Ct({inputs:{x:N},backend:r,attrs:{shape:m}}),r.disposeIntermediateTensorInfo(N)}else{let I=r.bufferSync(a),N=L8(c,I,b,A);w=r.makeTensorInfo(m,N.dtype,N.values)}return w}var YJ={kernelName:kl,backendName:"cpu",kernelFunc:ZJ};function JJ(e){let{inputs:t,backend:r,attrs:n}=e,{separator:a,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:d,dataSplits:h}=t,p=r.data.get(d.dataId).values,c=r.data.get(h.dataId).values,[m,f]=B8(p,c,a,s,i,o,l,u);return[r.makeTensorInfo([m.length],"string",m),r.makeTensorInfo(h.shape,"int32",f)]}var QJ={kernelName:fh,backendName:"cpu",kernelFunc:JJ};function eQ(e){let{inputs:t,backend:r,attrs:n}=e,{skipEmpty:a}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=r.data.get(s.dataId).values,l=r.data.get(i.dataId).values[0],[u,d,h]=W8(o,l,a),p=d.length;return[r.makeTensorInfo([p,2],"int32",u),r.makeTensorInfo([p],"string",d),r.makeTensorInfo([2],"int32",new Int32Array(h))]}var tQ={kernelName:If,backendName:"cpu",kernelFunc:eQ};function rQ(e){let{inputs:t,backend:r,attrs:n}=e,{numBuckets:a}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(a<=0)throw new Error("Number of buckets must be at least 1");let i=r.data.get(s.dataId).values,o=V8(i,a);return r.makeTensorInfo(s.shape,"int32",o)}var nQ={kernelName:Sf,backendName:"cpu",kernelFunc:rQ},aQ=gt(Il,e=>Math.tan(e)),sQ={kernelName:Il,backendName:"cpu",kernelFunc:aQ},iQ=gt(Wi,e=>Math.tanh(e)),oQ={kernelName:Wi,backendName:"cpu",kernelFunc:iQ};function lQ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reps:s}=n;Ce(a,"tile");let i=G8(r.bufferSync(a),s);return r.makeTensorInfo(i.shape,i.dtype,i.values)}var uQ={kernelName:es,backendName:"cpu",kernelFunc:lQ};function dQ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{k:s,sorted:i}=n;Ce(a,"topk");let o=r.data.get(a.dataId).values,[l,u]=H8(o,a.shape,a.dtype,s,i);return[r.makeTensorInfo(l.shape,l.dtype,l.values),r.makeTensorInfo(u.shape,u.dtype,u.values)]}var pQ={kernelName:Sl,backendName:"cpu",kernelFunc:dQ};function hQ(e){let{inputs:t,attrs:r,backend:n}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=r,[d,h,p,c]=a.shape,[m,f]=u!=null?u:[h,p],g=[d,m,f,c],y=v.computeStrides(a.shape),A=y[0],x=y[1],b=y[2],w=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(g));w.fill(l);let I=n.data.get(a.dataId).values,N=n.data.get(s.dataId).values;for(let E=0;E<d;++E){let R=s.shape[0]===1?N:N.subarray(E*8,E*8+8);for(let _=0;_<m;++_)for(let M=0;M<f;++M)for(let S=0;S<c;++S){let z,O=R[6]*M+R[7]*_+1;if(O===0)continue;let H=(R[0]*M+R[1]*_+R[2])/O,K=(R[3]*M+R[4]*_+R[5])/O,D=O4(H,p,o),Q=O4(K,h,o);switch(i){case"nearest":z=AQ(I,h,p,A,x,b,E,Q,D,S,l);break;case"bilinear":z=xQ(I,h,p,A,x,b,E,Q,D,S,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let V=E*A+_*x+M*b+S;w[V]=z}return n.makeTensorInfo(g,a.dtype,w)}return{dataId:n.write(w,g,a.dtype),shape:a.shape,dtype:a.dtype}}var cQ={kernelName:Cl,backendName:"cpu",kernelFunc:hQ};function O4(e,t,r){switch(r){case"reflect":return fQ(e,t);case"wrap":return mQ(e,t);case"nearest":return yQ(e,t);case"constant":default:return gQ(e,t)}}function fQ(e,t){let r=e;if(r<0)if(t<=1)r=0;else{let n=2*t;r<n&&(r=n*Math.trunc(-r/n)+r),r=r<-t?r+n:-r-1}else if(r>t-1)if(t<=1)r=0;else{let n=2*t;r-=n*Math.trunc(r/n),r>=t&&(r=n-r-1)}return v.clamp(0,r,t-1)}function mQ(e,t){let r=e;if(r<0)if(t<=1)r=0;else{let n=t-1;r+=t*(Math.trunc(-r/n)+1)}else if(r>t-1)if(t<=1)r=0;else{let n=t-1;r-=t*Math.trunc(r/n)}return v.clamp(0,r,t-1)}function gQ(e,t){return e}function yQ(e,t){return v.clamp(0,e,t-1)}function Ep(e,t,r,n,a,s,i,o,l,u,d){let h=i*n+o*a+l*s+u;return 0<=o&&o<t&&0<=l&&l<r?e[h]:d}function AQ(e,t,r,n,a,s,i,o,l,u,d){let h=Math.round(o),p=Math.round(l);return Ep(e,t,r,n,a,s,i,h,p,u,d)}function xQ(e,t,r,n,a,s,i,o,l,u,d){let h=Math.floor(o),p=Math.floor(l),c=h+1,m=p+1,f=(m-l)*Ep(e,t,r,n,a,s,i,h,p,u,d)+(l-p)*Ep(e,t,r,n,a,s,i,h,m,u,d),g=(m-l)*Ep(e,t,r,n,a,s,i,c,p,u,d)+(l-p)*Ep(e,t,r,n,a,s,i,c,m,u,d);return(c-o)*f+(o-h)*g}function bQ(e){let{inputs:t,attrs:r,backend:n}=e,{axis:a}=r,{x:s}=t;Ce(s,"unique");let i=n.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=q8(i,a,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,o),n.makeTensorInfo([u.length],"int32",u)]}var vQ={kernelName:Cf,backendName:"cpu",kernelFunc:bQ};function wQ(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),u=0;for(let c=0;c<i;c++)c!==s&&(l[u++]=a.shape[c]);let d=new Array(i).fill(0),h=a.shape.slice();h[s]=1;let p=new Array(o);for(let c=0;c<p.length;c++){d[s]=c;let m=Lo({inputs:{x:a},backend:r,attrs:{begin:d,size:h}});p[c]=Ct({inputs:{x:m},backend:r,attrs:{shape:l}}),r.disposeIntermediateTensorInfo(m)}return p}var kQ={kernelName:Tl,backendName:"cpu",kernelFunc:wQ};function IQ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,segmentIds:s}=t,{numSegments:i}=n;Ce(a,"unsortedSegmentSum");let o=a.shape.length,l=s.shape.length,u=[],d=[],h=o-l,p=s;for(let m=0;m<h;++m){let f=G0({inputs:{input:p},backend:r,attrs:{dim:m+1}});p=f,d.push(f)}for(let m=0;m<i;++m){let f=v.createScalarValue(m,"int32"),g=r.makeTensorInfo([],"int32",f),y=m8({inputs:{a:g,b:p},backend:r}),A=qs({inputs:{x:y},backend:r,attrs:{dtype:"float32"}}),x=Cm({inputs:{a:A,b:a},backend:r}),b=Dh({inputs:{x},backend:r,attrs:{axis:0,keepDims:!1}});u.push(b),d.push(g),d.push(y),d.push(A),d.push(x),d.push(b)}let c=lI({inputs:u,backend:r,attrs:{axis:0}});return d.forEach(m=>r.disposeIntermediateTensorInfo(m)),c}var SQ={kernelName:mh,backendName:"cpu",kernelFunc:IQ},CQ=[CX,Aq,NX,RX,Iq,MX,PX,zX,DX,BX,VX,GX,HX,KX,YX,eK,rK,aK,iK,IX,lK,dK,hK,fK,wq,Cq,gK,xq,AK,bK,vK,kK,SK,TK,EK,$K,FK,_K,OK,LK,WK,UK,jK,HK,XK,ZK,JK,QK,eZ,tZ,aZ,yX,iZ,Tq,fZ,Nq,mZ,Rq,vZ,wZ,IZ,Mq,TZ,EZ,$Z,FZ,_Z,Pq,zq,bq,OZ,xK,LZ,WZ,UZ,AX,Dq,Bq,jZ,Vq,qZ,ZZ,JZ,tY,nY,sY,iY,Gq,lY,dY,hY,fY,gY,AY,bY,Hq,wY,SY,EY,Xq,Zq,MY,_Y,DY,Jq,BY,VY,UY,uI,qY,bX,tX,KY,vq,ty,YY,vX,wX,kX,QY,tJ,nJ,sJ,oJ,lJ,dJ,nX,hJ,yJ,xJ,kJ,sX,SJ,TJ,EJ,iX,TY,MJ,PJ,zJ,DJ,BJ,VJ,GJ,HJ,uX,qJ,pX,KJ,YJ,QJ,tQ,nQ,mX,rZ,sQ,oQ,uQ,pQ,cQ,Qq,vQ,kQ,SQ,WY];for(let e of CQ)qn(e);var dI={};Be(dI,{assertNotComplex:()=>Cd,bindCanvasToFramebuffer:()=>OQ,bindColorTextureToFramebuffer:()=>d0,bindTextureToProgramUniformSampler:()=>SI,bindTextureUnit:()=>wI,bindVertexBufferToProgramAttribute:()=>ny,callAndCheck:()=>we,canBeRepresented:()=>pI,createFragmentShader:()=>fI,createFramebuffer:()=>vI,createProgram:()=>mI,createStaticIndexBuffer:()=>AI,createStaticVertexBuffer:()=>yI,createTexture:()=>xI,createVertexShader:()=>cI,getBatchDim:()=>Bo,getExtensionOrThrow:()=>Rp,getFramebufferErrorMessage:()=>CI,getMaxTexturesInShader:()=>RI,getNumChannels:()=>_Q,getProgramUniformLocation:()=>II,getProgramUniformLocationOrThrow:()=>kI,getRowsCols:()=>Wo,getShapeAs3D:()=>p0,getTextureShapeFromLogicalShape:()=>NI,getWebGLDisjointQueryTimerVersion:()=>$I,getWebGLErrorMessage:()=>hI,getWebGLMaxTextureSize:()=>EI,hasExtension:()=>En,isCapableOfRenderingToFloatTexture:()=>MI,isDownloadFloatTextureEnabled:()=>FI,isReshapeFree:()=>Zp,isWebGLFenceEnabled:()=>PI,isWebGLVersionEnabled:()=>sy,linkProgram:()=>gI,logShaderSourceAndInfoLog:()=>f5,resetMaxTextureSize:()=>DQ,resetMaxTexturesInShader:()=>LQ,unbindColorTextureFromFramebuffer:()=>ay,unbindTextureUnit:()=>zQ,validateFramebuffer:()=>$p,validateProgram:()=>u0,validateTextureSize:()=>bI});var Io={},mg={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Tm(e,t){Io[e]=t}function xa(e,t){if(!(e in Io)||t!=null){let n=NQ(e,t);if(n!==null)Io[e]=n;else return console.log("Could not get context for WebGL version",e),null}let r=Io[e];return r==null||r.isContextLost()?(delete Io[e],xa(e)):(r.disable(r.DEPTH_TEST),r.disable(r.STENCIL_TEST),r.disable(r.BLEND),r.disable(r.DITHER),r.disable(r.POLYGON_OFFSET_FILL),r.disable(r.SAMPLE_COVERAGE),r.enable(r.SCISSOR_TEST),r.enable(r.CULL_FACE),r.cullFace(r.BACK),Io[e])}function TQ(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function NQ(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let r=t==null?TQ(e):t;return r.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Io[e]},!1),e===1?r.getContext("webgl",mg)||r.getContext("experimental-webgl",mg):r.getContext("webgl2",mg)}function Lh(e,t){return[t,e]}function EQ(e,t){return e*t}function r0(e){let t=v.sizeFromShape(e),r=Math.ceil(t/4);return v.sizeToSquarishShape(r)}function Sd(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function RQ(e,t){let[r,n]=Sd(e,t);return r*n*4}function c5(e,t){let r=e,n,a,s,i,o,l,u,d,h,p;return Z().getNumber("WEBGL_VERSION")===2?(n=r.R32F,a=r.R16F,s=r.RGBA16F,i=r.RGBA32F,o=r.RED,u=4,d=1,h=r.HALF_FLOAT,p=r.FLOAT,l=r.RGBA8):(n=e.RGBA,a=e.RGBA,s=e.RGBA,i=r.RGBA,o=e.RGBA,u=4,d=4,h=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT,l=e.RGBA),{internalFormatFloat:n,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:d,textureTypeHalfFloat:h,textureTypeFloat:p}}function we(e,t){let r=t();return Z().getBool("DEBUG")&&$Q(e),r}function $Q(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+hI(e,t))}var MQ=596e-10,FQ=65504;function pI(e){return!!(Z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||MQ<Math.abs(e)&&Math.abs(e)<FQ)}function hI(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Rp(e,t){return ss(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function cI(e,t){let r=ss(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(we(e,()=>e.shaderSource(r,t)),we(e,()=>e.compileShader(r)),e.getShaderParameter(r,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(r)),new Error("Failed to compile vertex shader.");return r}function fI(e,t){let r=ss(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(we(e,()=>e.shaderSource(r,t)),we(e,()=>e.compileShader(r)),Z().get("ENGINE_COMPILE_ONLY"))return r;if(e.getShaderParameter(r,e.COMPILE_STATUS)===!1)throw f5(t,e.getShaderInfoLog(r)),new Error("Failed to compile fragment shader.");return r}var PQ=/ERROR: [0-9]+:([0-9]+):/g;function f5(e,t){let r=PQ.exec(t);if(r==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let n=+r[1],a=e.split(`
`),s=a.length.toString().length+2,i=a.map((h,p)=>v.rightPad((p+1).toString(),s)+h),o=0;for(let h=0;h<i.length;h++)o=Math.max(i[h].length,o);let l=i.slice(0,n-1),u=i.slice(n-1,n),d=i.slice(n);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${v.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(d.join(`
`))}function mI(e){return ss(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function gI(e,t){if(we(e,()=>e.linkProgram(t)),!Z().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function u0(e,t){if(we(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function yI(e,t){let r=ss(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),we(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),r}function AI(e,t){let r=ss(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,r)),we(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),r}function _Q(){return Z().getNumber("WEBGL_VERSION")===2?1:4}function xI(e){return ss(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function bI(e,t){let r=Z().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let n=`[${e}x${t}]`;throw new Error("Requested texture size "+n+" is invalid.")}if(e>r||t>r){let n=`[${e}x${t}]`,a=`[${r}x${r}]`;throw new Error("Requested texture size "+n+" greater than WebGL maximum on this browser / GPU "+a+".")}}function vI(e){return ss(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function ny(e,t,r,n,a,s,i){let o=e.getAttribLocation(t,r);return o===-1?!1:(we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),we(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),we(e,()=>e.enableVertexAttribArray(o)),!0)}function wI(e,t,r){TI(e,r),we(e,()=>e.activeTexture(e.TEXTURE0+r)),we(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function zQ(e,t){TI(e,t),we(e,()=>e.activeTexture(e.TEXTURE0+t)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function kI(e,t,r){return ss(e,()=>e.getUniformLocation(t,r),'uniform "'+r+'" not present in program.')}function II(e,t,r){return e.getUniformLocation(t,r)}function SI(e,t,r,n){we(e,()=>wI(e,t,n)),we(e,()=>e.uniform1i(r,n))}function OQ(e){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),we(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function d0(e,t,r){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,r)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function ay(e,t){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function $p(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+CI(e,t))}function CI(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ss(e,t,r){let n=we(e,()=>t());if(n==null)throw new Error(r);return n}function TI(e,t){let r=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,n=t+e.TEXTURE0;if(n<e.TEXTURE0||n>r){let a=`[gl.TEXTURE0, gl.TEXTURE${r}]`;throw new Error(`textureUnit must be in ${a}.`)}}function Bo(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function Wo(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function p0(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Bo(e),...Wo(e)]),t}function NI(e,t=!1){let r=Z().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(r=r*2,e=e.map((a,s)=>s>=e.length-2?v.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let n=v.sizeFromShape(e);if(e.length<=1&&n<=r)return[1,n];if(e.length===2&&e[0]<=r&&e[1]<=r)return e;if(e.length===3&&e[0]*e[1]<=r&&e[2]<=r)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=r&&e[1]*e[2]<=r)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=r&&e[3]<=r)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=r&&e[1]*e[2]*e[3]<=r)return[e[0],e[1]*e[2]*e[3]];if(t){let a=Bo(e),s=2,i=2;return e.length&&([s,i]=Wo(e)),n=a*(s/2)*(i/2),v.sizeToSquarishShape(n).map(o=>o*2)}return v.sizeToSquarishShape(n)}function n0(e){return e%2===0}function Zp(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let r=e.slice(-1)[0],n=t.slice(-1)[0];if(r===n||n0(r)&&n0(n)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&n0(e[0])&&n0(t[0])}var h0,c0;function EI(e){if(h0==null){let t=xa(e);h0=t.getParameter(t.MAX_TEXTURE_SIZE)}return h0}function DQ(){h0=null}function LQ(){c0=null}function RI(e){if(c0==null){let t=xa(e);c0=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,c0)}function $I(e){if(e===0)return 0;let t,r=xa(e);return En(r,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:En(r,"EXT_disjoint_timer_query")?t=1:t=0,t}function En(e,t){return e.getExtension(t)!=null}function sy(e){try{if(xa(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function MI(e){if(e===0)return!1;let t=xa(e);if(e===1){if(!En(t,"OES_texture_float"))return!1}else if(!En(t,"EXT_color_buffer_float"))return!1;return iy(t)}function FI(e){if(e===0)return!1;let t=xa(e);if(e===1){if(!En(t,"OES_texture_float")||!En(t,"WEBGL_color_buffer_float"))return!1}else{if(En(t,"EXT_color_buffer_float"))return iy(t);let r="EXT_color_buffer_half_float";if(En(t,r)){let n=t.getExtension(r);return BQ(t,n)}return!1}return iy(t)}function iy(e){let t=c5(e),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let n=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,n,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(s),i}function BQ(e,t){let r=c5(e,t),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,r.internalFormatHalfFloat,a,s,0,r.textureFormatFloat,r.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(i),o}function PI(e){return e!==2?!1:xa(e).fenceSync!=null}function Cd(e,t){Array.isArray(e)||(e=[e]),e.forEach(r=>{r!=null&&v.assert(r.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Me=Z();Me.registerFlag("HAS_WEBGL",()=>Me.getNumber("WEBGL_VERSION")>0);Me.registerFlag("WEBGL_VERSION",()=>sy(2)?2:sy(1)?1:0);Me.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Me.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Me.get("WEBGL_VERSION")===2);Me.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Me.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Me.registerFlag("WEBGL_PACK",()=>Me.getBool("HAS_WEBGL"));Me.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_CLIP",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_REDUCE",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_LAZILY_UNPACK",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_CONV_IM2COL",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>EI(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>RI(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Me.getNumber("WEBGL_VERSION");return e===0?0:$I(e)});Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Me.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!xh.isMobile());Me.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>MI(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Me.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Me.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Me.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>FI(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_FENCE_API_ENABLED",()=>PI(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Me.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Me.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Me.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>xh.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Me.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Me.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Me.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Me.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function Hr(){let e,t,r,n,a,s,i,o,l,u;return Z().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",r="out",n="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=`
bool isnan_custom(float val) {
uint floatToUint = floatBitsToUint(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",r="varying",n="varying",a="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:r,varyingFs:n,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function Dl(e,t,r="index"){let n=v.computeStrides(t);return n.map((a,s)=>{let i=`int ${e[s]} = ${r} / ${a}`,o=s===n.length-1?`int ${e[s+1]} = ${r} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function Nm(e,t,r="index"){let n=v.computeStrides(t);return n.map((a,s)=>{let i=`int ${e[s]} = ${r} / outShapeStrides[${s}]`,o=s===n.length-1?`int ${e[s+1]} = ${r} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function WQ(e,t){let r=e.length,n=e.map(s=>`${t}[${s}]`),a=new Array(r-1);a[r-2]=n[r-1];for(let s=r-3;s>=0;--s)a[s]=`(${a[s+1]} * ${n[s+1]})`;return a}function VQ(e,t,r="index"){let n=e.map((s,i)=>i),a=WQ(n,t);return a.map((s,i)=>{let o=`int ${e[i]} = ${r} / ${a[i]}`,l=i===a.length-1?`int ${e[i+1]} = ${r} - ${e[i]} * ${a[i]}`:`index -= ${e[i]} * ${a[i]}`;return`${o}; ${l};`}).join("")}function m5(e){let t=v.computeStrides(e).map(r=>r.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function g5(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var _I=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,{getBroadcastDims:zI}=C;function UQ(e,t,r){let n=[];if(e.forEach(p=>{let c=v.sizeFromShape(p.shapeInfo.logicalShape);if(p.shapeInfo.isUniform?n.push(`uniform float ${p.name}${c>1?`[${c}]`:""};`):(n.push(`uniform sampler2D ${p.name};`),n.push(`uniform int offset${p.name};`)),r.enableShapeUniforms){let{uniformShape:m}=y5(r.packedInputs,p.shapeInfo.logicalShape,p.shapeInfo.texShape);switch(m.length){case 1:n.push(`uniform int ${p.name}Shape;`);break;case 2:n.push(`uniform ivec2 ${p.name}Shape;`);break;case 3:n.push(`uniform ivec3 ${p.name}Shape;`);break;case 4:n.push(`uniform ivec4 ${p.name}Shape;`);break;default:break}n.push(`uniform ivec2 ${p.name}TexShape;`)}}),r.enableShapeUniforms){switch(t.logicalShape.length){case 1:n.push("uniform int outShape;");break;case 2:n.push("uniform ivec2 outShape;"),n.push("uniform int outShapeStrides;");break;case 3:n.push("uniform ivec3 outShape;"),n.push("uniform ivec2 outShapeStrides;");break;case 4:n.push("uniform ivec4 outShape;"),n.push("uniform ivec3 outShapeStrides;");break;default:break}n.push("uniform ivec2 outTexShape;")}r.customUniforms&&r.customUniforms.forEach(p=>{n.push(`uniform ${p.type} ${p.name}${p.arrayIndex?`[${p.arrayIndex}]`:""};`)});let a=n.join(`
`),s=e.map(p=>GQ(p,t,r.packedInputs,r.enableShapeUniforms)).join(`
`),i=t.texShape,o=Hr(),l=qQ(o),u,d,h=ZQ(o);return t.isPacked?(u=jQ(t.logicalShape,i,r.enableShapeUniforms),d=KQ(o)):(u=HQ(t.logicalShape,i,r.enableShapeUniforms),d=XQ(o)),r.packedInputs&&(h+=eee),[h,l,d,a,u,s,r.userCode].join(`
`)}function Td(e,t=!1){let r=e.shapeInfo.logicalShape;switch(r.length){case 0:return hee(e,t);case 1:return fee(e,t);case 2:return gee(e,t);case 3:return Aee(e,t);case 4:return bee(e,t);case 5:return vee(e);case 6:return wee(e);default:throw new Error(`${r.length}-D input sampling is not yet supported`)}}function OI(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return pee(e);case 1:return cee(e,t);case 2:return mee(e,t);case 3:return yee(e,t);default:return xee(e,t)}}function GQ(e,t,r=!1,n){let a="";r?a+=OI(e,n):a+=Td(e,n);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(r?a+=kee(e,t):a+=Iee(e,t)),a}function jQ(e,t,r){switch(e.length){case 0:return DI();case 1:return tee(e,t,r);case 2:return uee(e,t,r);case 3:return nee(e,t,r);default:return see(e,t,r)}}function HQ(e,t,r){switch(e.length){case 0:return DI();case 1:return ree(e,t,r);case 2:return dee(e,t,r);case 3:return aee(e,t,r);case 4:return iee(e,t,r);case 5:return oee(e,t);case 6:return lee(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function qQ(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function XQ(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function KQ(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function ZQ(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${YQ}
${JQ}
${QQ}
`}var YQ=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,JQ=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,QQ=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,eee=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function DI(){return`
int getOutputCoords() {
return 0;
}
`}function tee(e,t,r){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?r?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${n[1]}.0);
}
`:n[1]===1?r?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${n[0]}.0);
}
`:r?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
}
`}function ree(e,t,r){return t[0]===1?r?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?r?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:r?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function nee(e,t,r){if(r)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),s=a*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec3(b, r, c);
}
`}function aee(e,t,r){if(r)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Nm(["r","c","d"],e)}
return ivec3(r, c, d);
}
`;let n=Dl(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec3(r, c, d);
}
`}function see(e,t,r){if(r)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),s=a*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
int b${u} = index / ${i};
index -= b${u} * ${i};
`+o,l=`b${u}, `+l;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
${o}
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec${e.length}(${l});
}
`}function iee(e,t,r){if(r)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Nm(["r","c","d","d2"],e)}
return ivec4(r, c, d, d2);
}
`;let n=Dl(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec4(r, c, d, d2);
}
`}function oee(e,t){let r=Dl(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${r}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function lee(e,t){let r=Dl(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${r}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function uee(e,t,r){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return r?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
}
`;let a=Math.ceil(e[1]/2);return r?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec2(r, c);
}
`}function dee(e,t,r){return v.arraysEqual(e,t)?r?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?r?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?r?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:r?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function Ll(e){return`offset${e}`}function pee(e){let t=e.name,r="get"+t.charAt(0).toUpperCase()+t.slice(1),n=Hr();return`
vec4 ${r}() {
return ${n.texture2D}(${t}, halfCR);
}
`}function hee(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${r};}`;let[a,s]=e.shapeInfo.texShape;if(a===1&&s===1)return`
float ${n}() {
return sampleTexture(${r}, halfCR);
}
`;let i=Ll(r);if(t)return`
float ${n}() {
vec2 uv = uvFromFlat(${r}TexShape[0], ${r}TexShape[1], ${i});
return sampleTexture(${r}, uv);
}
`;let[o,l]=e.shapeInfo.texShape;return`
float ${n}() {
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
return sampleTexture(${r}, uv);
}
`}function cee(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),a=e.shapeInfo.texShape,s=Hr();if(t)return`
vec4 ${n}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${r}TexShape[0]) / 2.0), ceil(float(${r}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${s.texture2D}(${r}, uv);
}
`;let i=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];return`
vec4 ${n}(int index) {
vec2 uv = packedUVfrom1D(
${i[0]}, ${i[1]}, index);
return ${s.texture2D}(${r}, uv);
}
`}function fee(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1);if(e.shapeInfo.isUniform)return`
float ${n}(int index) {
${Nd(e)}
}
`;let a=e.shapeInfo.texShape,s=a[0],i=a[1];if(i===1&&s===1)return`
float ${n}(int index) {
return sampleTexture(${r}, halfCR);
}
`;let o=Ll(r);return i===1?t?`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${r}TexShape[0]));
return sampleTexture(${r}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
return sampleTexture(${r}, uv);
}
`:s===1?t?`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${r}TexShape[1]), 0.5);
return sampleTexture(${r}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
return sampleTexture(${r}, uv);
}
`:t?`
float ${n}(int index) {
vec2 uv = uvFromFlat(${r}TexShape[0], ${r}TexShape[1], index + ${o});
return sampleTexture(${r}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
return sampleTexture(${r}, uv);
}
`}function mee(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=Hr();if(s!=null&&v.arraysEqual(r,s))return t?`
vec4 ${a}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
return ${l.texture2D}(${n}, uv);
}
`:`
vec4 ${a}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
return ${l.texture2D}(${n}, uv);
}
`;if(t)return`
vec4 ${a}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${n}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${l.texture2D}(${n}, uv);
}
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],d=Math.ceil(r[1]/2);return`
vec4 ${a}(int row, int col) {
vec2 uv = packedUVfrom2D(${d}, ${u[0]}, ${u[1]}, row, col);
return ${l.texture2D}(${n}, uv);
}
`}function gee(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape;if(s!=null&&v.arraysEqual(r,s)){if(t)return`
float ${a}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`;let p=s[0],c=s[1];return`
float ${a}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${c}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`}let{newShape:i,keptDims:o}=v.squeezeShape(r),l=i;if(l.length<r.length){let p=Ed(e,l),c=["row","col"];return`
${Td(p,t)}
float ${a}(int row, int col) {
return ${a}(${Rd(c,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${r[1]}, 1)));
${Nd(e)}
}
`;let u=s[0],d=s[1],h=Ll(n);return d===1?t?`
float ${a}(int row, int col) {
float index = dot(vec3(row, col, ${h}), vec3(${n}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col) {
float index = dot(vec3(row, col, ${h}), vec3(${r[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
return sampleTexture(${n}, uv);
}
`:u===1?t?`
float ${a}(int row, int col) {
float index = dot(vec3(row, col, ${h}), vec3(${n}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col) {
float index = dot(vec3(row, col, ${h}), vec3(${r[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${d}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${a}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n}Shape[1] + col + ${h};
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${r[1]} + col + ${h};
vec2 uv = uvFromFlat(${u}, ${d}, index);
return sampleTexture(${n}, uv);
}
`}function yee(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(r[0]===1){let p=r.slice(1),c=[1,2],m=Ed(e,p),f=["b","row","col"];return`
${OI(m,t)}
vec4 ${a}(int b, int row, int col) {
return ${a}(${Rd(f,c)});
}
`}let o=Hr();if(t)return`
vec4 ${a}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${n}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${o.texture2D}(${n}, uv);
}
`;let l=i[0],u=i[1],d=Math.ceil(r[2]/2),h=d*Math.ceil(r[1]/2);return`
vec4 ${a}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${l}, ${u}, ${h}, ${d}, b, row, col);
return ${o.texture2D}(${n}, uv);
}
`}function Aee(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r[1]*r[2],i=r[2],{newShape:o,keptDims:l}=v.squeezeShape(r),u=o;if(u.length<r.length){let f=Ed(e,u),g=["row","col","depth"];return`
${Td(f,t)}
float ${a}(int row, int col, int depth) {
return ${a}(${Rd(g,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${s}, ${i}, 1)));
${Nd(e)}
}
`;let d=e.shapeInfo.texShape,h=d[0],p=d[1],c=e.shapeInfo.flatOffset;if(p===s&&c==null)return t?`
float ${a}(int row, int col, int depth) {
int stride1 = ${n}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${i}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(p===i&&c==null)return t?`
float ${a}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${r[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let m=Ll(n);return t?`
float ${a}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${n}Shape[1] * ${n}Shape[2];
int stride1 = ${n}Shape[2];
int index = row * ${s} + col * ${i} + depth + ${m};
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s} + col * ${i} + depth + ${m};
vec2 uv = uvFromFlat(${h}, ${p}, index);
return sampleTexture(${n}, uv);
}
`}function xee(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),a=Hr();if(t)return`
vec4 ${n}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${r}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${r}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${r}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${r}TexShape[0]) / 2.0), ceil(float(${r}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${a.texture2D}(${r}, uv);
}
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],d=l[1],h=Math.ceil(s[i-1]/2),p=h*Math.ceil(s[i-2]/2),c="int b, int row, int col",m=`b * ${p} + (row / 2) * ${h} + (col / 2)`;for(let f=2;f<i-1;f++)c=`int b${f}, `+c,p*=s[i-f-1],m=`b${f} * ${p} + `+m;return`
vec4 ${n}(${c}) {
int index = ${m};
int texR = index / ${d};
int texC = index - texR * ${d};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${d}, ${u});
return ${a.texture2D}(${r}, uv);
}
`}function bee(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r[3],i=r[2]*s,o=r[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(r);if(l.length<r.length){let A=Ed(e,l),x=["row","col","depth","depth2"];return`
${Td(A,t)}
float ${a}(int row, int col, int depth, int depth2) {
return ${a}(${Rd(x,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, 1)));
${Nd(e)}
}
`;let d=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,p=h[0],c=h[1],m=`int stride2 = ${n}Shape[3];`,f=`int stride1 = ${n}Shape[2] * stride2;`,g=`int stride0 = ${n}Shape[1] * stride1;`;if(c===o&&d==null)return t?`
float ${a}(int row, int col, int depth, int depth2) {
${m}
${f}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${i}, ${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${c}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(c===s&&d==null)return t?`
float ${a}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n}Shape[1] * ${n}Shape[2], ${n}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${r[1]*r[2]}, ${r[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${c}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let y=Ll(n);return t?`
float ${a}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${m}
${f}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${y});
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} +
depth * ${s} + depth2;
vec2 uv = uvFromFlat(${p}, ${c}, index + ${y});
return sampleTexture(${n}, uv);
}
`}function vee(e){let t=e.shapeInfo.logicalShape,r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),a=t[4],s=t[3]*a,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let f=Ed(e,l),g=["row","col","depth","depth2","depth3"];return`
${Td(f)}
float ${n}(int row, int col, int depth, int depth2, int depth3) {
return ${n}(${Rd(g,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${a})) +
depth3;
${Nd(e)}
}
`;let d=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,p=h[0],c=h[1];if(c===o&&d==null)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${c}.0, ${p}.0);
return sampleTexture(${r}, uv);
}
`;if(c===a&&d==null)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${c}.0, ${p}.0);
return sampleTexture(${r}, uv);
}
`;let m=Ll(r);return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${a} + depth3 + ${m};
vec2 uv = uvFromFlat(${p}, ${c}, index);
return sampleTexture(${r}, uv);
}
`}function wee(e){let t=e.shapeInfo.logicalShape,r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),{newShape:a,keptDims:s}=v.squeezeShape(t);if(a.length<t.length){let g=Ed(e,a),y=["row","col","depth","depth2","depth3","depth4"];return`
${Td(g)}
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${n}(${Rd(y,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,d=t[1]*u;if(e.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${d}, ${u}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${Nd(e)}
}
`;let h=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,c=p[0],m=p[1];if(m===d&&h==null)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${c}.0);
return sampleTexture(${r}, uv);
}
`;if(m===i&&h==null)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${c}.0);
return sampleTexture(${r}, uv);
}
`;let f=Ll(r);return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${d} + col * ${u} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
vec2 uv = uvFromFlat(${c}, ${m}, index);
return sampleTexture(${r}, uv);
}
`}function Nd(e){let t=e.name,r=v.sizeFromShape(e.shapeInfo.logicalShape);return r<2?`return ${t};`:`
for (int i = 0; i < ${r}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function kee(e,t){let r=e.name,n=r.charAt(0).toUpperCase()+r.slice(1),a="get"+n+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=zI(e.shapeInfo.logicalShape,t.logicalShape),l=vt(i),u=i-s,d,h=["x","y","z","w","u","v"];s===0?d="":i<2&&o.length>=1?d="coords = 0;":d=o.map(g=>`coords.${h[g+u]} = 0;`).join(`
`);let p="";i<2&&s>0?p="coords":p=e.shapeInfo.logicalShape.map((g,y)=>`coords.${h[y+u]}`).join(", ");let c="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,f=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)c=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!f)i===1?c=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:c=`
return vec4(outputValue.x);
`;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?c="return vec4(outputValue.x);":o.indexOf(g)>-1?c="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(c="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${a}() {
${l} coords = getOutputCoords();
${d}
vec4 outputValue = get${n}(${p});
${c}
}
`}function Iee(e,t){let r=e.name,n=r.charAt(0).toUpperCase()+r.slice(1),a="get"+n+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return`
float ${a}() {
return sampleTexture(${r}, resultUV);
}
`;let u=vt(l),d=zI(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,p,c=["x","y","z","w","u","v"];o===0?p="":l<2&&d.length>=1?p="coords = 0;":p=d.map(f=>`coords.${c[f+h]} = 0;`).join(`
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${c[g+h]}`).join(", "),`
float ${a}() {
${u} coords = getOutputCoords();
${p}
return get${n}(${m});
}
`}function vt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function y5(e,t,r){let{newShape:n,keptDims:a}=v.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):n,l=!e&&s>1&&!v.arraysEqual(t,r)&&n.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:a}}function Ed(e,t){let r=JSON.parse(JSON.stringify(e));return r.shapeInfo.logicalShape=t,r}function Rd(e,t){return t.map(r=>e[r]).join(", ")}function See(e,t,r,n){let a=r.map((d,h)=>{let p={logicalShape:d.shape,texShape:d.isUniform?null:d.texData.texShape,isUniform:d.isUniform,isPacked:d.isUniform?!1:d.texData.isPacked,flatOffset:null};return d.texData!=null&&d.texData.slice!=null&&d.texData.slice.flatOffset>0&&(p.flatOffset=d.texData.slice.flatOffset),{name:t.variableNames[h],shapeInfo:p}}),s=a.map(d=>d.shapeInfo),i={logicalShape:n.shape,texShape:n.texData.texShape,isUniform:!1,isPacked:n.texData.isPacked,flatOffset:null},o=UQ(a,i,t),l=fI(e.gl,o),u=e.createProgram(l);return Z().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,...LI(e,t,u)}}function LI(e,t,r){let n={},a={},s={},i=[],o,l,u,d=null,h=null;h=e.getUniformLocation(r,"NAN",!1),Z().getNumber("WEBGL_VERSION")===1&&(d=e.getUniformLocation(r,"INFINITY",!1));let p=!1;for(let c=0;c<t.variableNames.length;c++){let m=t.variableNames[c];n[m]=e.getUniformLocation(r,m,p),n[`offset${m}`]=e.getUniformLocation(r,`offset${m}`,p),t.enableShapeUniforms&&(a[`${m}Shape`]=e.getUniformLocation(r,`${m}Shape`,p),s[`${m}TexShape`]=e.getUniformLocation(r,`${m}TexShape`,p))}return t.enableShapeUniforms&&(o=e.getUniformLocation(r,"outShape",p),u=e.getUniformLocation(r,"outShapeStrides",p),l=e.getUniformLocation(r,"outTexShape",p)),t.customUniforms&&t.customUniforms.forEach((c,m)=>{i[m]=e.getUniformLocation(r,c.name,p)}),{uniformLocations:n,customUniformLocations:i,infLoc:d,nanLoc:h,inShapesLocations:a,inTexShapesLocations:s,outShapeLocation:o,outShapeStridesLocation:u,outTexShapeLocation:l}}function D4(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((r,n)=>{let a=r.logicalShape,s=t[n],i=s.shape;if(!v.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(r.isUniform&&s.isUniform)return;let o=r.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function Cee(e,t,r,n,a){t.program.enableShapeUniforms||(D4(t.inShapeInfos,r),D4([t.outShapeInfo],[n]));let s=n.texData.texture,i=n.texData.texShape;n.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),Z().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),r.forEach((l,u)=>{let d=t.program.variableNames[u],h=t.uniformLocations[d],p=t.uniformLocations[`offset${d}`],c=t.inShapesLocations[`${d}Shape`],m=t.inTexShapesLocations[`${d}TexShape`];if(c){let{uniformShape:f}=y5(t.program.packedInputs,l.shape,l.texData.texShape);switch(f.length){case 1:e.gl.uniform1iv(c,new Int32Array(f));break;case 2:e.gl.uniform2iv(c,new Int32Array(f));break;case 3:e.gl.uniform3iv(c,new Int32Array(f));break;case 4:e.gl.uniform4iv(c,new Int32Array(f));break;default:break}}if(m&&e.gl.uniform2i(m,l.texData.texShape[0],l.texData.texShape[1]),h!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(h,l.uniformValues[0]);else{let f=l.uniformValues;f instanceof Float32Array||(f=new Float32Array(f)),e.gl.uniform1fv(h,f)}return}l.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,h,u)}});let o=t.outShapeLocation;if(o)switch(n.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(n.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(n.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(n.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(n.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(n.shape);switch(n.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,n.texData.texShape[0],n.texData.texShape[1]),t.program.customUniforms&&a&&t.program.customUniforms.forEach((l,u)=>{let d=t.customUniformLocations[u],h=a[u];if(l.type==="float")e.gl.uniform1fv(d,h);else if(l.type==="vec2")e.gl.uniform2fv(d,h);else if(l.type==="vec3")e.gl.uniform3fv(d,h);else if(l.type==="vec4")e.gl.uniform4fv(d,h);else if(l.type==="int")e.gl.uniform1iv(d,h);else if(l.type==="ivec2")e.gl.uniform2iv(d,h);else if(l.type==="ivec3")e.gl.uniform3iv(d,h);else if(l.type==="ivec4")e.gl.uniform4iv(d,h);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function Tee(e,t,r){let n="";t.concat(r).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:d,keptDims:h}=y5(e.packedInputs,i.shape,l),p="",c="",m="";if(d.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];p=`${w[0]>1}_${w[1]>1}`}else if(d.length===2&&!e.packedInputs)c=`${d[0]>1}_${d[1]>1}`;else if(d.length>2&&!e.packedInputs){let w=v.computeStrides(d);m=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let f=i.shape.length,g=d.length===2&&v.arraysEqual(i.shape,l),y=v.sizeFromShape(i.shape)===1,A=C.getBroadcastDims(i.shape,r.shape),x=!e.packedInputs&&f===r.shape.length&&v.arraysEqual(l,r.texData.texShape),b=e.packedInputs||d.length>2?"":`${l[0]>1}_${l[1]>1}`;n+=`${f}_${x}_${u?h:""}_${d.length}_${y}_${A}_${g}_${p}_${c}_${m}_${b}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;n+=`${i.shape}_${l}_${o}`}});let a=e.userCode,s=e.constructor.name;return s+="_"+n+"_"+a+`${Z().getNumber("WEBGL_VERSION")}`,s}function ln(e){return Z().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var Nee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Hr();this.outputShape=e,this.enableShapeUniforms=ln(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Nm(["r","c","d"],e):Dl(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}},Eee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Hr();this.outputShape=e,this.enableShapeUniforms=ln(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Nm(["r","c","d"],e):Dl(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}},Ree=class{constructor(e){this.variableNames=["A"],this.outTexUsage=3;let t=Hr();this.outputShape=e,this.userCode=`
${_I}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},$ee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=3;let t=Hr();this.outputShape=e,this.userCode=`
${_I}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},Mee=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let r=Hr();this.outputShape=e,this.enableShapeUniforms=ln(this.outputShape.length);let n="result";t&&(n="floor(result * 255. + 0.5)"),this.userCode=`
${this.enableShapeUniforms?g5():m5(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${r.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${r.output} = vec4(${n}, 0., 0., 0.);
}
`}},Fee=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let r=Hr();this.outputShape=e,this.enableShapeUniforms=ln(this.outputShape.length);let n="",a="result";t&&(a="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;n+=`
localCoords = coords;
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${i};
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${s};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${r.texture2D}(A, uv);
if (offset == 0) {
result[${o}] = values[0];
} else if (offset == 1) {
result[${o}] = values[1];
} else if (offset == 2) {
result[${o}] = values[2];
} else {
result[${o}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?g5():m5(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${n}
${r.output} = ${a};
}
`}},BI={};Be(BI,{bindVertexProgramAttributeStreams:()=>KI,createBufferFromOutputTexture:()=>JI,createFloat16MatrixTexture:()=>jI,createFloat16PackedMatrixTexture:()=>XI,createFloat32MatrixTexture:()=>GI,createIndexBuffer:()=>UI,createPackedMatrixTexture:()=>qI,createUnsignedBytesMatrixTexture:()=>HI,createVertexBuffer:()=>VI,createVertexShader:()=>WI,downloadByteEncodedFloatMatrixFromOutputTexture:()=>e9,downloadFloat32MatrixFromBuffer:()=>QI,downloadMatrixFromPackedOutputTexture:()=>r9,downloadPackedMatrixFromBuffer:()=>t9,getInternalFormatForFloat16MatrixTexture:()=>x5,getInternalFormatForFloat16PackedMatrixTexture:()=>w5,getInternalFormatForFloat32MatrixTexture:()=>A5,getInternalFormatForPackedMatrixTexture:()=>v5,getInternalFormatForUnsignedBytesMatrixTexture:()=>b5,uploadDenseMatrixToTexture:()=>ZI,uploadPixelDataToTexture:()=>YI});function WI(e){let t=Hr(),r=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return cI(e,r)}function VI(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return yI(e,t)}function UI(e){let t=new Uint16Array([0,1,2,2,1,3]);return AI(e,t)}function Bh(e,t,r,n,a,s){bI(t,r);let i=xI(e),o=e.TEXTURE_2D;return we(e,()=>e.bindTexture(o,i)),we(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),we(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),Z().getNumber("WEBGL_VERSION")===1?we(e,()=>e.texImage2D(o,0,n,t,r,0,a,s,null)):we(e,()=>e.texStorage2D(o,1,n,t,r)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[r,t]}}function A5(e){return e.internalFormatFloat}function GI(e,t,r,n){let[a,s]=Lh(t,r);return Bh(e,a,s,A5(n),n.textureFormatFloat,e.FLOAT)}function x5(e){return e.internalFormatHalfFloat}function jI(e,t,r,n){let[a,s]=Lh(t,r);return Bh(e,a,s,x5(n),n.textureFormatFloat,n.textureTypeHalfFloat)}function b5(e){return e.downloadTextureFormat}function HI(e,t,r,n){let[a,s]=Lh(t,r);return Bh(e,a,s,b5(n),e.RGBA,e.UNSIGNED_BYTE)}function v5(e){return e.internalFormatPackedFloat}function qI(e,t,r,n){let[a,s]=Sd(t,r);return Bh(e,a,s,v5(n),e.RGBA,e.FLOAT)}function w5(e){return e.internalFormatPackedHalfFloat}function XI(e,t,r,n){let[a,s]=Sd(t,r);return Bh(e,a,s,w5(n),e.RGBA,n.textureTypeHalfFloat)}function KI(e,t,r){return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),ny(e,t,"clipSpacePos",r,3,20,0)&&ny(e,t,"uv",r,2,20,12)}function ZI(e,t,r,n,a,s){we(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(r*n*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(r*n*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),Z().getNumber("WEBGL_VERSION")===2?we(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,r,n,e.RGBA,o,i)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,r,n,0,e.RGBA,o,i)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function YI(e,t,r){we(e,()=>e.bindTexture(e.TEXTURE_2D,t)),r.data instanceof Uint8Array?Z().getNumber("WEBGL_VERSION")===2?we(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,r.width,r.height,e.RGBA,e.UNSIGNED_BYTE,r.data)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,r.width,r.height,0,e.RGBA,e.UNSIGNED_BYTE,r.data)):Z().getNumber("WEBGL_VERSION")===2?we(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,r)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,r)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function JI(e,t,r,n){let a=e.createBuffer();we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*r;return we(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),we(e,()=>e.readPixels(0,0,r,t,e.RGBA,e.FLOAT,0)),we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function QI(e,t,r){let n=e,a=new Float32Array(r);return n.bindBuffer(n.PIXEL_PACK_BUFFER,t),n.getBufferSubData(n.PIXEL_PACK_BUFFER,0,a),n.bindBuffer(n.PIXEL_PACK_BUFFER,null),a}function e9(e,t,r,n){let[a,s]=Lh(t,r),i=4,o=new Uint8Array(EQ(t*r,i));return we(e,()=>e.readPixels(0,0,a,s,n.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function t9(e,t,r,n,a,s,i,o){let l=e,u=new Float32Array(RQ(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function r9(e,t,r){let n=new Float32Array(t*r*4);return we(e,()=>e.readPixels(0,0,r,t,e.RGBA,e.FLOAT,n)),n}var wu=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Z().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Tm(t,e)):this.gl=xa(t);let r="WEBGL_color_buffer_float",n="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),Z().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Rp(this.gl,a),En(this.gl,s))this.textureHalfFloatExtension=Rp(this.gl,s);else if(Z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(r),En(this.gl,n))this.colorBufferHalfFloatExtension=Rp(this.gl,n);else if(Z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(r="EXT_color_buffer_float",En(this.gl,r))this.colorBufferFloatExtension=this.gl.getExtension(r);else if(En(this.gl,n))this.colorBufferHalfFloatExtension=this.gl.getExtension(n);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=VI(this.gl),this.indexBuffer=UI(this.gl),this.framebuffer=vI(this.gl),this.textureConfig=c5(this.gl,this.textureHalfFloatExtension)}get debug(){return Z().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;we(e,()=>e.finish()),we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.deleteFramebuffer(this.framebuffer)),we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),we(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),GI(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),jI(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),HI(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),YI(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,r,n){this.throwIfDisposed(),ZI(this.gl,e,t,r,n,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),XI(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),qI(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(ay(this.gl,this.framebuffer),this.outputTexture=null),we(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,r){return this.downloadMatrixDriver(e,()=>e9(this.gl,t,r,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,r,n,a,s){return t9(this.gl,e,t,r,n,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return QI(this.gl,e,t)}createBufferFromTexture(e,t,r){this.bindTextureToFrameBuffer(e);let n=JI(this.gl,t,r,this.textureConfig);return this.unbindTextureToFrameBuffer(),n}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,r;if(Z().getBool("WEBGL_FENCE_API_ENABLED")){let n=e,a=n.fenceSync(n.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),r=()=>{let s=n.clientWaitSync(a,0,0);return s===n.ALREADY_SIGNALED||s===n.CONDITION_SATISFIED},t=a}else Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),r=()=>this.isQueryAvailable(t,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):r=()=>!0;return{query:t,isFencePassed:r}}downloadMatrixFromPackedTexture(e,t,r){return this.downloadMatrixDriver(e,()=>r9(this.gl,t,r))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=WI(t));let r=mI(t);return we(t,()=>t.attachShader(r,this.vertexShader)),we(t,()=>t.attachShader(r,e)),gI(t,r),this.debug&&u0(t,r),this.vertexAttrsAreBound||(this.setProgram(r),this.vertexAttrsAreBound=KI(t,this.program,this.vertexBuffer)),r}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&we(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&u0(this.gl,this.program),we(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,r=!0){return this.throwIfDisposed(),r?kI(this.gl,e,t):II(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),we(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,r){this.throwIfDisposed(),this.throwIfNoProgram(),SI(this.gl,e,t,r)}setOutputMatrixTexture(e,t,r){this.setOutputMatrixTextureDriver(e,r,t)}setOutputPackedMatrixTexture(e,t,r){this.throwIfDisposed();let[n,a]=Sd(t,r);this.setOutputMatrixTextureDriver(e,n,a)}setOutputMatrixWriteRegion(e,t,r,n){this.setOutputMatrixWriteRegionDriver(r,e,n,t)}setOutputPackedMatrixWriteRegion(e,t,r,n){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&u0(this.gl,this.program),$p(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),we(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),we(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Rp(this.gl,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let r=this.gl,n=this.getQueryTimerExtensionWebGL2(),a=r.createQuery();return r.beginQuery(n.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,r=this.getQueryTimerExtensionWebGL2();t.endQuery(r.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let r=this.gl;return r.getQueryParameter(e,r.QUERY_RESULT)/1e6}else{let r=this.getQueryTimerExtensionWebGL1();return r.getQueryObjectEXT(e,r.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let r=this.gl,n=this.getQueryTimerExtensionWebGL2(),a=r.getQueryParameter(e,r.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let r=this.getQueryTimerExtensionWebGL1(),n=r.getQueryObjectEXT(e,r.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),n&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=Pee(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:r}=this.itemsToPoll[t];r()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),d0(this.gl,e,this.framebuffer),this.debug&&$p(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(d0(this.gl,this.outputTexture,this.framebuffer),this.debug&&$p(this.gl)):ay(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let r=t();return this.unbindTextureToFrameBuffer(),r}setOutputMatrixTextureDriver(e,t,r){this.throwIfDisposed();let n=this.gl;d0(n,e,this.framebuffer),this.debug&&$p(n),this.outputTexture=e,we(n,()=>n.viewport(0,0,t,r)),we(n,()=>n.scissor(0,0,t,r))}setOutputMatrixWriteRegionDriver(e,t,r,n){this.throwIfDisposed(),we(this.gl,()=>this.gl.scissor(e,t,r,n))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function Pee(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:_ee,bincountImpl:n9,bincountReduceImpl:zee,ceilImpl:Oee,concatImpl:Dee,equalImpl:Lee,expImpl:Bee,expm1Impl:Wee,floorImpl:Vee,gatherNdImpl:Uee,gatherV2Impl:Gee,greaterImpl:jee,greaterEqualImpl:Hee,lessImpl:qee,lessEqualImpl:Xee,linSpaceImpl:Kee,logImpl:Zee,maxImpl:Yee,maximumImpl:Jee,minimumImpl:Qee,multiplyImpl:ete,negImpl:tte,notEqualImpl:rte,prodImpl:nte,rangeImpl:ate,rsqrtImpl:ste,scatterImpl:ite,sigmoidImpl:ote,simpleAbsImpl:a9,sliceImpl:lte,sparseFillEmptyRowsImpl:ute,sparseReshapeImpl:dte,sparseSegmentReductionImpl:s9,sqrtImpl:pte,stridedSliceImpl:hte,stringNGramsImpl:cte,stringSplitImpl:fte,stringToHashBucketFastImpl:mte,subImpl:gte,tileImpl:yte,topKImpl:Ate,transposeImpl:k5,uniqueImpl:xte}=Sm;function i9(e,t){return["x","y","z","w","u","v"].slice(0,t).map(r=>`${e}.${r}`)}function Br(e,t){return t===1?[e]:i9(e,t)}function bte(e,t){if(e===1)return"rc";let r="";for(let n=0;n<e;n++)r+=t[n],n<e-1&&(r+=",");return r}var vte=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=ln(this.outputShape.length),this.rank===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let t=Br("rc",this.rank),r=vt(this.rank),n=this.getOutOfBoundsCondition(t),a=this.getSetup(t),s=this.getOutput(t);this.userCode=`
void main() {
${r} rc = getOutputCoords();
if(${n}) {
setOutput(vec4(0));
} else {
${a}
setOutput(vec4(${s}));
}
}
`}}getSourceCoordsArr(e){let t=[];for(let r=0;r<=1;r++)for(let n=0;n<=1;n++){let a=`${r===0?"r":"rp1"}, ${n===0?"c":"cp1"}`;for(let s=2;s<this.rank;s++)a=`${e[e.length-1-s]},`+a;t.push(a)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let r=this.rank-2;r<this.rank;r++)t+=`${e[r]} >= ${this.enableShapeUniforms?`outShape[${r}]`:this.outputShape[r]}`,r<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),r=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],n=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
int r = ${t[0]};
int c = ${t[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${r};
bool rEdge = rp1 >= ${n};
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
cEdge ? 0. : getA(${t[1]}),
rEdge ? 0. : getA(${t[2]}),
rEdge || cEdge ? 0. : getA(${t[3]})`}},o9=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=ln(this.outputShape.length);let r="";for(let n=0;n<4;n++){let a="thisRC = rc;";n%2===1&&(a+="thisRC.z += 1;"),n>1&&(a+="thisRC.y += 1;"),r+=`
${a}
${n>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${n}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${n>0?"}":""}
`}this.userCode=`
${wte(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?g5():m5(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${r}
setOutput(result);
}
`}};function wte(e,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?VQ(["r","c","d"],"inputShape"):Dl(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var kte=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,r){let n=B4(t,r),a=W4(e,n,r);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=L4(e,n,this.gpgpu.gl,this.gpgpu.textureConfig,r);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return n===3?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):n===4?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):n===1?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):n===0?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):n===2&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,r,n){if(this.freeTextures==null)return;let a=B4(r,n),s=W4(t,a,n);s in this.freeTextures||(this.freeTextures[s]=[]);let i=L4(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,n),o=Z().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function Ite(e,t){let r=e;if(t===r.R32F)return 4;if(t===r.R16F)return 2;if(t===r.RGBA32F||t===e.RGBA)return 16;if(t===r.RGBA16F)return 8;if(t===r.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function L4(e,t,r,n,a){let s=Ste(t,n),i;if(a){let[l,u]=Sd(e[0],e[1]);i=l*u}else{let[l,u]=Lh(e[0],e[1]);i=l*u}let o=Ite(r,s);return i*o}function Ste(e,t){switch(e){case 3:return v5(t);case 4:return w5(t);case 1:return A5(t);case 0:return x5(t);case 2:return b5(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function Cte(e){return Z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?3:1:e?4:0}function B4(e,t){if(e===1)return 3;if(e===0||e==null)return Cte(t);if(e===3||e===2)return 2;throw new Error(`Unknown logical texture type ${e}`)}function W4(e,t,r){return`${e[0]}_${e[1]}_${t}_${r}`}var Xa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=ln(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},Yn="if (isnan(x)) return x;",Tte="return x;",V4="return abs(x);",Nte="return (x >= 0.0) ? x : (exp(x) - 1.0);",Ete=Yn+`
return (x < 0.0) ? 0.0 : x;
`,Rte=Yn+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,du="return x;",$te="return 1.0 / (1.0 + exp(-1.0 * x));",Mte="return x;",Fte=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,Pte=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,_te=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,zte="return 1.0 / (1.0 + exp(-1.0 * x));",To=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=ln(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},Ote=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=ln(this.outputShape.length);let t=e.length,r=Br("rc",t),n=vt(t),a=bte(t,r),s=r.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${n} rc = getOutputCoords();
vec4 packedInput = getA(${a});
setOutput(getChannel(packedInput, ${i}));
}
`}},Dte=Kn.whereImpl,Lte=1e-7,Bte=1e-4,gg={};function Wte(e){return e in gg||(gg[e]={}),gg[e]}var Vte=Z().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),Ute=600;function Gte(){return Z().global.screen==null?1024:Z().global.screen.height*Z().global.screen.width*window.devicePixelRatio*Ute/1024/1024}var l9=class extends Du{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!Z().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof wu)t=e;else{let r=xa(Z().getNumber("WEBGL_VERSION"),e);t=new wu(r)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let r=xa(Z().getNumber("WEBGL_VERSION"));t=new wu(r),this.binaryCache=Wte(Z().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new kte(this.gpgpu),this.numMBBeforeWarning=Gte(),this.texData=new Jp(this,Xt())}nextDataId(){return l9.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,r){if((Z().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Z().getBool("DEBUG"))&&this.checkNumericalProblems(e),r==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()};return this.texData.set(n,{shape:t,dtype:r,values:e,usage:1,refCount:1}),n}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,r,n,a){if(Z().getBool("DEBUG")&&this.checkNumericalProblems(t),n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:r,dtype:n,values:t,usage:1,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:r,dtype:n,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new To(i,du):h=new Xa(i,du);let p=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:n}],n),c=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),c}if(r!=null)return this.convertAndCacheOnCPU(e);if(n==="string")return r;let l=this.activeTimers!=null,u;l&&(u=v.now());let d;if(n==="complex64"){let h=this.readSync(a.real.dataId),p=this.readSync(a.imag.dataId);d=C.mergeRealAndImagArrays(h,p)}else d=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,d)}async read(e){if(this.pendingRead.has(e)){let c=this.pendingRead.get(e);return new Promise(m=>c.push(m))}let t=this.texData.get(e),{values:r,shape:n,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let c;o?c=new To(n,du):c=new Xa(n,du);let m=this.runWebGLProgram(c,[{dataId:e,shape:n,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(r!=null)return this.convertAndCacheOnCPU(e);if(Z().getBool("DEBUG")&&!Z().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Z().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&Z().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let c=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(c.texture.texture,...r0(n))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let d;if(s==="complex64"){let c=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=c[0],f=c[1];d=C.mergeRealAndImagArrays(m,f)}else if(l==null)d=this.getValuesFromTexture(e);else{let c=v.sizeFromShape(n);d=this.gpgpu.downloadFloat32MatrixFromBuffer(l,c)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let c=this.gpgpu.gl;we(c,()=>c.deleteBuffer(l))}let h=this.convertAndCacheOnCPU(e,d),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(c=>c(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Xt().removeDataId(e,this),this.pendingDeletes--),h}readToGPU(e,t={}){let r=this.texData.get(e),{values:n,shape:a,slice:s,dtype:i,isPacked:o,texture:l}=r;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let p;o?p=new To(a,du):p=new Xa(a,du);let c=this.runWebGLProgram(p,[{dataId:e,shape:a,dtype:i}],i),m=this.readToGPU(c,t);return this.disposeIntermediateTensorInfo(c),m}if(l==null)throw n!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),d=Xt().makeTensorFromTensorInfo(u),h=this.texData.get(u.dataId);return{tensorRef:d,...h.texture}}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let r=t.map(n=>v.decodeString(n));return Le(e.shape,e.dtype,r)}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let r=e[t];if(!pI(r))throw Z().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${r} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${r} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:r,isPacked:n}=this.texData.get(e),a=v.sizeFromShape(t);if(Z().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let h=this.decode(e),p=this.texData.get(h.dataId),c=this.gpgpu.downloadMatrixFromPackedTexture(p.texture.texture,...r0(t)).subarray(0,a);return this.disposeIntermediateTensorInfo(h),c}let s=Z().getBool("WEBGL_PACK")&&n===!0,i=s?p0(t):t,o=s?new $ee(i):new Ree(i),l=this.runWebGLProgram(o,[{shape:i,dtype:r,dataId:e}],"float32"),u=this.texData.get(l.dataId),d=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,a);return this.disposeIntermediateTensorInfo(l),d}timerAvailable(){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,r=[],n=!1;this.programTimersStack==null?(this.programTimersStack=r,n=!0):this.activeTimers.push(r),this.activeTimers=r,e();let a=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:r}=this.texData.get(e);return r!=null&&(this.disposeData(r.real.dataId,t),this.disposeData(r.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:r,texShape:n,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(n,r),this.textureManager.releaseTexture(t,n,a,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=Vte){return Z().getBool("WEBGL_CPU_FORWARD")&&e.every(r=>this.texData.get(r.dataId).texture==null&&v.sizeFromShape(r.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return Dte(e.shape,t)}packedUnaryOp(e,t,r){let n=new To(e.shape,t),a=this.compileAndRun(n,[e],r);return Xt().makeTensorFromTensorInfo(a)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let n=a9(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,n)}if(Z().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,V4,e.dtype);let t=new Xa(e.shape,V4),r=this.compileAndRun(t,[e]);return Xt().makeTensorFromTensorInfo(r)}makeTensorInfo(e,t,r){let n;if(t==="string"&&r!=null&&r.length>0&&v.isString(r[0])){let a=r.map(s=>v.encodeString(s));n=this.write(a,e,t)}else n=this.write(r,e,t);return this.texData.get(n).usage=null,{dataId:n,shape:e,dtype:t}}makeOutput(e,t,r){return Xt().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,r),this)}unpackTensor(e){let t=new Ote(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new vte(e.shape),r=!0;return this.runWebGLProgram(t,[e],e.dtype,null,r)}packedReshape(e,t){let r=[Bo(e.shape),...Wo(e.shape)],n={dtype:e.dtype,shape:r,dataId:e.dataId},a=[Bo(t),...Wo(t)],s=new o9(a,r),i=!0,o=[r],l=this.runWebGLProgram(s,[n],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let r=this.texData.get(e),{isPacked:n,shape:a,dtype:s}=r;if(t!=null){let h=v.sizeFromShape(a),p=t[0]*t[1]*4;v.assert(h<=p,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=p0(a),o;n?o=new Eee(i):o=new Nee(i);let l=!0,u=[t!=null?t:r0(i)],d=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:a,dataId:d.dataId}}runWebGLProgram(e,t,r,n,a=!1,s){let i=this.makeTensorInfo(e.outputShape,r),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===0){let g=s!=null?s:r0(e.outputShape);o.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(i.shape)===0)return o.values=v.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=Z().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!Zp(y.shape,g.shape)){let A=g,x=g.shape;g.shape=y.shape,g=this.packedReshape(g,x),l.push(g),y=this.texData.get(g.dataId),A.shape=x}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(i.dataId);let d={shape:i.shape,texData:o,isUniform:!1},h=Tee(e,u,d),p=this.getAndSaveBinary(h,()=>See(this.gpgpu,e,u,d)),c=this.activeTimers!=null,m;c&&(m=this.startTimer()),Z().get("ENGINE_COMPILE_ONLY")||Cee(this.gpgpu,p,u,d,n),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),c&&(m=this.endTimer(m),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(m)}));let f=Z().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let g=v.now();g-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!Z().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&a===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,r,n,a=!1){return r=r||t[0].dtype,this.runWebGLProgram(e,t,r,n,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Z().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=X(()=>{if(!Z().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Z().getBool("DEBUG");Z().set("DEBUG",!1);let t=this.abs(Se(1e-8)).dataSync()[0];if(Z().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?Lte:Bte}uploadToGPU(e){let t=this.texData.get(e),{shape:r,dtype:n,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let d=t.texShape;if(d==null&&(d=NI(r,o),t.texShape=d),a!=null){let h=p0(r),p,c=d[1],m=d[0],f=a instanceof Uint8Array||a instanceof Uint8ClampedArray;(o||!f)&&([c,m]=Sd(d[0],d[1])),o?p=new Fee(h,f):p=new Mee(h,f);let g=f?[m,c]:d,y=this.makeTensorInfo(g,n),A=this.texData.get(y.dataId);f?A.usage=2:A.usage=1,A.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),c,m,a);let x=[[m,c]],b=!0,w=this.runWebGLProgram(p,[y],n,x,b),I=this.texData.get(w.dataId);t.texShape=I.texShape,t.isPacked=I.isPacked,t.usage=I.usage,Z().get("ENGINE_COMPILE_ONLY")?this.disposeData(w.dataId):(t.texture=I.texture,t.values=null,this.texData.delete(w.dataId)),this.disposeIntermediateTensorInfo(y),l&&(this.uploadWaitMs+=v.now()-u)}else{let h=this.acquireTexture(d,i,n,o);t.texture=h}}convertAndCacheOnCPU(e,t){let r=this.texData.get(e),{dtype:n}=r;return this.releaseGPUData(e),t!=null&&(r.values=jte(t,n)),r.values}acquireTexture(e,t,r,n){if(this.numBytesInGPU+=this.computeBytes(e,r),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,n)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let r=new Promise(n=>{try{this.checkCompletion_(t),n(!0)}catch(a){throw a}});e.push(r)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await wA(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(f5(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:r,infLoc:n,nanLoc:a,inShapesLocations:s,inTexShapesLocations:i,outShapeLocation:o,outShapeStridesLocation:l,outTexShapeLocation:u}=LI(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=r,e.infLoc=n,e.nanLoc=a,e.inShapesLocations=s,e.inTexShapesLocations=i,e.outShapeLocation=o,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}},Wh=l9;Wh.nextDataId=0;function jte(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let r=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let n=0;n<r.length;++n)r[n]=Math.round(e[n]);return r}else throw new Error(`Unknown dtype ${t}`)}var Hte="0.0.0";function u9(){Z().set("WEBGL_FORCE_F16_TEXTURES",!0)}xh.isBrowser()&&$l("webgl",()=>new Wh,2);var qte={forceHalfFloat:u9},d9=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,Ou=class{constructor(e,t,r){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,r),this.enableShapeUniforms=ln(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},Em=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,Vh=class{constructor(e,t,r,n=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,r);let a=this.outputShape.length;this.enableShapeUniforms=ln(a);let s="";if(n)if(a===0||v.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${vt(a)} coords = getOutputCoords();
`,a===1)this.enableShapeUniforms?s+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=Br("coords",a);this.enableShapeUniforms?s+=`
bool nextRowOutOfBounds =
(${i[a-2]} + 1) >= outShape[${a} - 2];
bool nextColOutOfBounds =
(${i[a-1]} + 1) >= outShape[${a} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:s+=`
bool nextRowOutOfBounds =
(${i[a-2]} + 1) >= ${this.outputShape[a-2]};
bool nextColOutOfBounds =
(${i[a-1]} + 1) >= ${this.outputShape[a-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function fn(e){let{inputs:t,backend:r}=e,{x:n}=t;return r.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var Xte={kernelName:mi,backendName:"webgl",kernelFunc:fn};function qi(e){let{inputs:t,backend:r}=e,{real:n,imag:a}=t,s=r.makeTensorInfo(n.shape,"complex64"),i=r.texData.get(s.dataId),o=fn({inputs:{x:n},backend:r}),l=fn({inputs:{x:a},backend:r});return i.complexTensorInfos={real:o,imag:l},s}var Kte={kernelName:eh,backendName:"webgl",kernelFunc:qi},p9="return (a < 0.) ? b * a : a;",h9=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function Zte(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{alpha:s}=n,i=r.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Vh(h9,a.shape,i.shape):new Ou(p9,a.shape,i.shape),l=r.runWebGLProgram(o,[a,i],"float32");return r.disposeIntermediateTensorInfo(i),l}var Yte={kernelName:gi,backendName:"webgl",kernelFunc:Zte},c9="return (a < 0.) ? b * a : a;",f9=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function Jte(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t,s=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Vh(f9,n.shape,a.shape):new Ou(c9,n.shape,a.shape);return r.runWebGLProgram(s,[n,a],"float32")}var Qte={kernelName:Ni,backendName:"webgl",kernelFunc:Jte},$d="if (isnan(x)) return x;",ere=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,tre=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function it({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:r,dtype:n}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=n||i.dtype;if(o.shouldExecuteOnCPU([i])&&r!=null){let h=o.texData.get(i.dataId),p=r(h.values,l);return o.makeTensorInfo(i.shape,l,p)}let u=Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,d;return u?d=new To(i.shape,t):d=new Xa(i.shape,e),o.runWebGLProgram(d,[i],l)}}function wr({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:r=!1,supportsComplex:n=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,d=o;if(n&&l.dtype==="complex64"){let m=d.texData.get(l.dataId),f=d.texData.get(u.dataId),[g,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[b,w]=x,I={dataId:b.dataId,dtype:b.dtype,shape:l.shape},N={dataId:w.dataId,dtype:w.dtype,shape:u.shape},E=new Ou(e,l.shape,u.shape);return d.runWebGLProgram(E,[I,N],Nr(b.dtype,w.dtype))}),A=qi({inputs:{real:g,imag:y},backend:d});return d.disposeIntermediateTensorInfo(g),d.disposeIntermediateTensorInfo(y),A}let h=s||Nr(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||d.shouldExecuteOnCPU([l,u]))&&a!=null){let m=d.texData.get(l.dataId).values,f=d.texData.get(u.dataId).values,g=l.dtype==="string"?C.fromUint8ToStringArray(m):m,y=l.dtype==="string"?C.fromUint8ToStringArray(f):f,[A,x]=a(l.shape,u.shape,g,y,h),b=d.makeTensorInfo(x,h),w=d.texData.get(b.dataId);return w.values=A,b}let p=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,c;return p?c=new Vh(t,l.shape,u.shape,r):c=new Ou(e,l.shape,u.shape),d.runWebGLProgram(c,[l,u],h)}}function Rm(e,t=!1){if(e==="linear")return t?Mte:Tte;if(e==="relu")return t?Pte:Ete;if(e==="elu")return t?Fte:Nte;if(e==="relu6")return t?_te:Rte;if(e==="prelu")return t?f9:c9;if(e==="leakyrelu")return t?h9:p9;if(e==="sigmoid")return t?zte:$te;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var m9=class{constructor(e,t,r,n=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=r,this.enableShapeUniforms=ln(this.outputShape.length);let u=n?e[1]:e[2],d=Math.ceil(u/2),h=n?"i * 2, rc.y":"rc.y, i * 2",p=a?"rc.z, i * 2":"i * 2, rc.z",c=n?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?f=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:f=`vec4 activation(vec4 x) {
${i}
}`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let A="rc.x",x="rc.x";e[0]<t[0]?A=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${f}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${d}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${d}; i++) {
int batchA = ${A};
int batchB = ${x};
vec4 a = getMatrixA(batchA, ${h});
vec4 b = getMatrixB(batchB, ${p});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${c[0]} * ${m[0]});
result += (${c[1]} * ${m[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${y}
${g}
setOutput(result);
}
`}},U4={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},G4=class{constructor(e,t,r){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,r),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},j4="return a * b;";function I5(e){let{inputs:t,backend:r}=e,{a:n,b:a}=t,s=C.upcastType(n.dtype,a.dtype);if(n.dtype==="complex64"){let o=r.texData.get(n.dataId),l=r.texData.get(a.dataId),u=new G4(U4.REAL,n.shape,a.shape),d=new G4(U4.IMAG,n.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:n.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:n.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],p=r.runWebGLProgram(u,h,"float32"),c=r.runWebGLProgram(d,h,"float32"),m=qi({inputs:{real:p,imag:c},backend:r});return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),m}if(r.shouldExecuteOnCPU([n,a])){let o=r.texData.get(n.dataId),l=r.texData.get(a.dataId),[u,d]=ete(n.shape,a.shape,o.values,l.values,s),h=r.makeTensorInfo(d,s),p=r.texData.get(h.dataId);return p.values=u,h}let i;return Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Vh(j4,n.shape,a.shape):i=new Ou(j4,n.shape,a.shape),r.runWebGLProgram(i,[n,a],s)}var rre={kernelName:Si,backendName:"webgl",kernelFunc:I5};function nre(e,t,r){let n=[Bo(e.shape),...Wo(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},s=[Bo(t),...Wo(t)],i=new o9(s,n),o=!0,l=[n],u=r.runWebGLProgram(i,[a],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function ve(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{shape:s}=n,i=r,o=v.sizeFromShape(a.shape),l=v.inferFromImplicitShape(s,o),u=v.sizeFromShape(l);v.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let d=i.texData.get(a.dataId);return d.isPacked&&!Zp(a.shape,l)&&!(d.texture!==null&&Zp(d.shape,l))?nre(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var are={kernelName:fl,backendName:"webgl",kernelFunc:ve},H4=class{constructor(e,t){this.variableNames=["x"];let{windowSize:r,batchSize:n,inSize:a,outSize:s}=e;this.outputShape=[n,s];let i=Math.floor(r/4)*4,o=r%4,l="sumValue += dot(values, ones);";if(t!=null){let d=1/t;l=`sumValue += dot(values * ${v.isInt(d)?d.toPrecision(2):d}, ones);`}let u="";a%r>0&&(u=`
if (inIdx < 0 || inIdx >= ${a}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${u}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${r};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},sre=class{constructor(e,t){this.variableNames=["x"];let{windowSize:r,batchSize:n,inSize:a,outSize:s}=e;this.outputShape=[n,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(r/4)*4,d=r%4,h=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${o}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,p="vec4";t==="all"?(i="1.0",h=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,p="bvec4"):t==="any"&&(i="0.0",h=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,p="bvec4");let c="";a%r>0&&(c=`
if (inIdx < 0 || inIdx >= ${a}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${r};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${h}
}
int inIdx = inOffset + ${u};
if (${d===1}) {
${p} values = ${p}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${h}
} else if (${d===2}) {
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${h}
} else if (${d===3}) {
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${h}
}
setOutput(${l});
}
`}};function ire(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let r=t.length?t[t.length-1].outSize:e[1],n=C.computeOptimalWindowSize(r);t.push({inSize:r,windowSize:n,outSize:Math.ceil(r/n)})}return t}function Bl(e,t,r,n){let a=ire(e.shape),s=e;for(let i=0;i<a.length;i++){let{inSize:o,windowSize:l,outSize:u}=a[i],d,h;r==="mean"?d=i===0?new H4({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new H4({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):d=new sre({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},r),h=s,s=n.runWebGLProgram(d,[s],t),h.dataId!==e.dataId&&n.disposeIntermediateTensorInfo(h)}return s}var ore=class{constructor(e,t){this.variableNames=["A"];let r=new Array(e.length);for(let s=0;s<r.length;s++)r[s]=e[t[s]];this.outputShape=r,this.rank=r.length;let n=vt(this.rank),a=lre(t);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${a}));
}
`}};function lre(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let r=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],n=new Array(t);for(let a=0;a<e.length;a++)n[e[a]]=r[a];return n.join()}var ure=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let r=new Array(e.length);for(let u=0;u<r.length;u++)r[u]=e[t[u]];if(this.outputShape=r,this.rank=r.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let n=vt(this.rank),a=i9("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=a[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${a[this.rank-1]} < ${r[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${n} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${a[this.rank-1]};
if(++${a[this.rank-2]} < ${r[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function $m(e,t,r){let n=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new ure(e.shape,t):new ore(e.shape,t);return r.runWebGLProgram(n,[e],e.dtype)}function dre(e,t,r,n){let a=t,s=e.shape.length,i=v.parseAxisParam(a,e.shape),o=i,l=C.getAxesPermutation(o,s),u=l!=null,d=e;u&&(d=$m(e,l,n),o=C.getInnerMostAxes(o.length,s)),C.assertAxesAreInnerMostDims("sum",o,s);let[h,p]=C.computeOutAndReduceShapes(d.shape,o),c=h;r&&(c=C.expandShapeToKeepDim(h,i));let m=v.sizeFromShape(p),f=v.sizeFromShape(e.shape)/m,g=ve({inputs:{x:d},attrs:{shape:[f,m]},backend:n}),y=Ah(e.dtype),A=Bl(g,y,"sum",n),x=ve({inputs:{x:A},attrs:{shape:c},backend:n});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(A),u&&n.disposeIntermediateTensorInfo(d),x}function Mm(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return dre(a,s,i,r)}var pre={kernelName:Oi,backendName:"webgl",kernelFunc:Mm};function Jt(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{perm:s}=n,i=r,o=a.shape.length,l=new Array(o);for(let d=0;d<l.length;d++)l[d]=a.shape[s[d]];let u;if(i.shouldExecuteOnCPU([a])){let d=i.texData.get(a.dataId).values,h=k5(d,a.shape,a.dtype,s,l);u=i.makeTensorInfo(l,a.dtype);let p=i.texData.get(u.dataId);p.values=h}else u=$m(a,s,i);return u}var hre={kernelName:Vi,backendName:"webgl",kernelFunc:Jt},g9=1e3;function H0({a:e,b:t,transposeA:r,transposeB:n,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,d=t.shape.length,h=r?e.shape[u-2]:e.shape[u-1],p=n?t.shape[d-1]:t.shape[d-2],c=r?e.shape[u-1]:e.shape[u-2],m=n?t.shape[d-2]:t.shape[d-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(f),A=v.sizeFromShape(g),x=Rl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([c,m]);v.assert(h===p,()=>`Error in matMul: inner shapes (${h}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${r} and transposeB=${n} must match.`);let b=r?[y,h,c]:[y,c,h],w=n?[A,m,p]:[A,p,m],I=ve({inputs:{x:e},backend:a,attrs:{shape:b}}),N=ve({inputs:{x:t},backend:a,attrs:{shape:w}}),E=[I,N],R=Math.max(y,A),_=r?I.shape[1]:I.shape[2],M=s!=null,S=i!=null,z=l==="leakyrelu",O=l!=null?Rm(l,!0):null,H=M||S||z||O!=null,K;if((c===1||m===1)&&_>g9&&H===!1){let Q=I,V=N;r&&(Q=Jt({inputs:{x:I},backend:a,attrs:{perm:[0,2,1]}}),E.push(Q)),n&&(V=Jt({inputs:{x:N},backend:a,attrs:{perm:[0,2,1]}}),E.push(V));let re=m!==1,Y=m===1,ie=Q;re&&(ie=ve({inputs:{x:Q},backend:a,attrs:{shape:[R,_,1]}}),E.push(ie));let J=m===1?2:1,ae=V;Y&&(ae=ve({inputs:{x:V},backend:a,attrs:{shape:[R,1,_]}}),E.push(ae));let de=I5({inputs:{a:ie,b:ae},backend:a});K=Mm({inputs:{x:de},backend:a,attrs:{axis:J,keepDims:!0}}),E.push(de)}else{let Q=Nr(e.dtype,t.dtype),V=new m9(b,w,[R,c,m],r,n,M,O,S,z),re=[I,N];if(s!=null&&re.push(s),S&&re.push(i),z){let Y=a.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));re.push(Y),E.push(Y)}K=a.runWebGLProgram(V,re,Q)}let D=ve({inputs:{x:K},backend:a,attrs:{shape:x}});E.push(K);for(let Q of E)a.disposeIntermediateTensorInfo(Q);return D}function cre(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n;return H0({a,b:s,transposeA:l,transposeB:u,backend:r,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:d})}var fre={kernelName:Ps,backendName:"webgl",kernelFunc:cre},q4="return abs(x);";function mre(e){let{inputs:t,backend:r}=e,{x:n}=t;if(r.shouldExecuteOnCPU([n])&&n.dtype!=="complex64"){let s=r.texData.get(n.dataId),i=a9(s.values);return r.makeTensorInfo(n.shape,n.dtype,i)}let a;return Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new To(n.shape,q4):a=new Xa(n.shape,q4),r.runWebGLProgram(a,[n],n.dtype)}var gre={kernelName:jo,backendName:"webgl",kernelFunc:mre},yre=Yn+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,Are=it({opSnippet:yre}),xre={kernelName:Bu,backendName:"webgl",kernelFunc:Are},bre=Yn+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,vre=it({opSnippet:bre}),wre={kernelName:Wu,backendName:"webgl",kernelFunc:vre},X4="return a + b;",kre=wr({opSnippet:X4,packedOpSnippet:X4,supportsComplex:!0,cpuKernelImpl:_ee}),Ire={kernelName:Ja,backendName:"webgl",kernelFunc:kre},Sre=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let r=[];this.variableNames.forEach(a=>{r.push(`float v${a} = get${a}AtOutCoords();`)});let n=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
void main() {
${r.join(`
`)}
float result = ${n};
setOutput(result);
}
`}},Cre=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let r=[];this.variableNames.forEach(a=>{r.push(`vec4 v${a} = get${a}AtOutCoords();`)});let n=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
void main() {
${r.join(`
`)}
vec4 result = ${n};
setOutput(result);
}
`}};function f0(e){let{inputs:t,backend:r}=e,n=t;if(n.length===1)return fn({inputs:{x:n[0]},backend:r});if(n.length>Z().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(n.length/2),l=f0({inputs:n.slice(0,o),backend:r}),u=f0({inputs:n.slice(o),backend:r});return f0({inputs:[l,u],backend:r})}let a=n.map(o=>o.dtype).reduce((o,l)=>Nr(o,l)),s=n.map(o=>o.shape),i=Z().getBool("WEBGL_PACK")?new Cre(n[0].shape,s):new Sre(n[0].shape,s);return r.runWebGLProgram(i,n,a)}var Tre={kernelName:Zs,backendName:"webgl",kernelFunc:f0};function Nre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,d=C.getAxesPermutation(u,o),h=a;d!=null&&(h=Jt({inputs:{x:a},backend:r,attrs:{perm:d}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("all",u,o);let[p,c]=C.computeOutAndReduceShapes(h.shape,u),m=v.sizeFromShape(c),f=ve({inputs:{x:h},backend:r,attrs:{shape:[-1,m]}}),g=Bl(f,f.dtype,"all",r),y;if(i){let A=C.expandShapeToKeepDim(p,l);y=ve({inputs:{x:g},backend:r,attrs:{shape:A}})}else y=ve({inputs:{x:g},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(f),r.disposeIntermediateTensorInfo(g),d!=null&&r.disposeIntermediateTensorInfo(h),y}var Ere={kernelName:Vu,backendName:"webgl",kernelFunc:Nre};function Rre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,d=C.getAxesPermutation(u,o),h=a;d!=null&&(h=Jt({inputs:{x:a},backend:r,attrs:{perm:d}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("any",u,o);let[p,c]=C.computeOutAndReduceShapes(h.shape,u),m=v.sizeFromShape(c),f=ve({inputs:{x:h},backend:r,attrs:{shape:[-1,m]}}),g=Bl(f,f.dtype,"any",r),y;if(i){let A=C.expandShapeToKeepDim(p,l);y=ve({inputs:{x:g},backend:r,attrs:{shape:A}})}else y=ve({inputs:{x:g},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(f),r.disposeIntermediateTensorInfo(g),d!=null&&r.disposeIntermediateTensorInfo(h),y}var $re={kernelName:Uu,backendName:"webgl",kernelFunc:Rre},Mre=class{constructor(e,t,r){this.variableNames=["A"];let{windowSize:n,batchSize:a,outSize:s}=e;r||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=r?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${n}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},Fre=class{constructor(e,t,r,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${r.charAt(0).toUpperCase()+r.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),n||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=vt(o),u=Br("coords",o),d,h;if(s===1){h=o+1;let N=vt(h);d=`
${N} sourceLocR = ${N}(${u.join()}, 0);
++${u[o-1]};
${N} sourceLocG = ${N}(${u.join()}, 0);
++${u[o-2]};
${N} sourceLocA = ${N}(${u.join()}, 0);
--${u[o-1]};
${N} sourceLocB = ${N}(${u.join()}, 0);
--${u[o-2]};`}else h=o,d=`
${l} sourceLocR = coords;
++${u[o-1]};
${l} sourceLocG = coords;
++${u[o-2]};
${l} sourceLocA = coords;
--${u[o-1]};
${l} sourceLocB = coords;
--${u[o-2]};`;let p=["x","y","z","w","u","v"].slice(0,h),c="."+p[h-1],m=p.map(N=>"int "+N),f=Br("sourceLocR",h-1).concat("inIdx.r"),g=Br("sourceLocG",h-1).concat("inIdx.g"),y=Br("sourceLocB",h-1).concat("inIdx.b"),A=Br("sourceLocA",h-1).concat("inIdx.a"),x=r==="max"?"greaterThan":"lessThan",b=n?"":`
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${A.join()})));`,w=`vec4(
getAChannel(${f.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${y.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${A.join()}) : 0.)`,I=n?"":`
float getBestIndicesAChannel(${m.join()}) {
return getChannel(getBestIndicesA(${p.join()}),
vec2(${p.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${m.join()}) {
return getChannel(getA(${p.join()}),
vec2(${p.slice(-2).join()}));
}
${I}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
${d}
ivec4 srcIdx = ivec4(sourceLocR${c}, sourceLocG${c},
sourceLocB${c}, sourceLocA${c}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${w};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${b}
vec4 candidate = ${w};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function y9(e,t,r,n=null){let a=t.shape[0],s=t.shape[1];n!=null&&(a=n.shape[0],s=n.shape[1]);let i=C.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new Mre(o,r,n==null),u=[t];n!=null&&u.push(n);let d=e.runWebGLProgram(l,u,"int32");if(d.shape[1]===1)return d;let h=y9(e,t,r,d);return e.disposeIntermediateTensorInfo(d),h}function A9(e,t,r,n=null){let a=n!=null?n.shape:t.shape,s=a[a.length-1],i=C.computeOptimalWindowSize(s),o=new Fre(a,i,r,n==null),l=n==null?[t]:[t,n],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let d=A9(e,t,r,u);return e.disposeIntermediateTensorInfo(u),d}return u}function x9(e,t,r,n){let a=[r];if(C.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),a,t.shape.length),!Z().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,d]=C.computeOutAndReduceShapes(l.shape,a),h=v.sizeFromShape(d),p=ve({inputs:{x:l},backend:e,attrs:{shape:[-1,h]}});s.push(p);let c=y9(e,p,n);s.push(c);let m=ve({inputs:{x:c},backend:e,attrs:{shape:u}});return s.forEach(f=>e.disposeIntermediateTensorInfo(f)),m}return A9(e,t,n)}function Pre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=Jt({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let d=x9(r,l,i[0],"max");return u.forEach(h=>r.disposeIntermediateTensorInfo(h)),d}var _re={kernelName:Ys,backendName:"webgl",kernelFunc:Pre};function zre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=Jt({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let d=x9(r,l,i[0],"min");return u.forEach(h=>r.disposeIntermediateTensorInfo(h)),d}var Ore={kernelName:Gu,backendName:"webgl",kernelFunc:zre},Dre=Yn+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,Lre=it({opSnippet:Dre}),Bre={kernelName:ju,backendName:"webgl",kernelFunc:Lre},Wre=Yn+"return log(x + sqrt(x * x + 1.0));",Vre=it({opSnippet:Wre}),Ure={kernelName:Hu,backendName:"webgl",kernelFunc:Vre},Gre=Yn+`
return atan(x);
`,jre=it({opSnippet:Gre}),Hre={kernelName:qu,backendName:"webgl",kernelFunc:jre},qre=ere+`
return atan(a, b);
`,Xre=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+tre+`
return result;
`,Kre=wr({opSnippet:qre,packedOpSnippet:Xre}),Zre={kernelName:Ku,backendName:"webgl",kernelFunc:Kre},Yre=Yn+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Jre=it({opSnippet:Yre}),Qre={kernelName:Xu,backendName:"webgl",kernelFunc:Jre},Yp=class{constructor(e,t,r,n=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&r)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,p=e.padInfo.top,c=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),r){let N=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${p}, ${c});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${d};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${h};
wC += ${u}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${N} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${n?a?f:g:`wR * ${h} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let A="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(s/4)*4,w=s%4,I=`
if (${m}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${A}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${p}, ${c});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${d};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${b}; wC += 4) {
int xC = xCCorner + wC * ${u};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
getValue(batch, xR, xC + 3 * ${u}, d)
);
${I}
}
int xC = xCCorner + ${b};
if (${w===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${I}
} else if (${w===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
initializationValue,
initializationValue
);
${I}
} else if (${w===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
initializationValue
);
${I}
}
}
setOutput(${x});
}
`}},S5=class{constructor(e,t,r,n=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&r)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,d=e.dilationHeight,h=e.dilationWidth,p=e.effectiveFilterDepth,c=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let A=t==="avg",x="0.0";if(A||(x="-1.0 / 1e-20"),r){let R=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${p};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${c};
wR += ${d}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${h}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${R} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${n?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${c} * ${m} +
wR * ${m} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let I=Math.floor(s/4)*4,N=s%4,E=`
if (${A}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${b}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
const float initializationValue = ${x};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${x});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${p};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${c};
wR += ${d}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${I}; wC += 4) {
int xC = xCCorner + wC * ${h};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
getValue(batch, xD, xR, xC + 3 * ${h}, ch)
);
${E}
}
int xC = xCCorner + ${I};
if (${N===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${E}
} else if (${N===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
initializationValue,
initializationValue
);
${E}
} else if (${N===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
initializationValue
);
${E}
}
}
setOutput(${w});
}
}
`}};function ene(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;Cd(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=C.computePool2DInfo(a.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))return fn({inputs:{x:a},backend:r});let h=new Yp(d,"avg",!1);return r.runWebGLProgram(h,[a],"float32")}var tne={kernelName:Js,backendName:"webgl",kernelFunc:ene};function rne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n,d=[1,1,1],h=C.computePool3DInfo(a.shape,s,i,d,o,l,u),p=new S5(h,"avg",!1);return r.runWebGLProgram(p,[a],"float32")}var nne={kernelName:Qp,backendName:"webgl",kernelFunc:rne},ane=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,r=e.filterWidth,n=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,d=l-1-e.padInfo.left,h=1/(t*r);this.userCode=`
const ivec2 pads = ivec2(${u}, ${d});
const float avgMultiplier = float(${h});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},sne=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,r=e.filterHeight,n=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,p=e.effectiveFilterWidth,c=d-1-e.padInfo.front,m=h-1-e.padInfo.top,f=p-1-e.padInfo.left,g=1/(t*r*n);this.userCode=`
const ivec3 pads = ivec3(${c}, ${m}, ${f});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${d};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${a}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${h};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${p};
wC += ${u}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function ine(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=n,h=[1,1,1],p=C.computePool3DInfo(i.shape,o,l,h,u,d),c=new sne(p);return r.runWebGLProgram(c,[a],i.dtype)}var one={kernelName:tf,backendName:"webgl",kernelFunc:ine};function lne(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s;Cd([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=n,d=C.computePool2DInfo(i.shape,o,l,1,u),h=new ane(d);return r.runWebGLProgram(h,[a],i.dtype)}var une={kernelName:ef,backendName:"webgl",kernelFunc:lne};function dne(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;return H0({a,b:s,transposeA:i,transposeB:o,backend:r})}var pne={kernelName:Qs,backendName:"webgl",kernelFunc:dne},hne=class{constructor(e,t,r,n,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,r);let i="0.0";n!=null&&(C.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},cne=class{constructor(e,t,r,n,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,r);let i="vec4(0.0)";n!=null&&(C.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},fne=({inputs:e,backend:t,attrs:r})=>{let{x:n,mean:a,variance:s,offset:i,scale:o}=e;v.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=r;l==null&&(l=.001);let u=[n,a,s],d=null;i!=null&&(d=i.shape,u.push(i));let h=null;o!=null&&(h=o.shape,u.push(o));let p=Z().getBool("WEBGL_PACK_NORMALIZATION")?new cne(n.shape,a.shape,s.shape,d,h,l):new hne(n.shape,a.shape,s.shape,d,h,l);return t.runWebGLProgram(p,u,u[0].dtype)},mne={kernelName:ci,backendName:"webgl",kernelFunc:fne},gne=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=vt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let r=yne(this.rank),n,a=e.map((s,i)=>`sourceLoc.${oy[i]} = start[${i}] + coords.${oy[i]};`);n=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${a.join(`
`)}
`,this.userCode=`
void main() {
${n}
setOutput(getSource(${r}));
}
`}},oy=["x","y","z","w","u","v"];function yne(e){if(e===1)return"sourceLoc";if(e<=6)return oy.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var Ane=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=vt(this.rank),r=Br("coords",this.rank),n=Br("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${n.slice(-2).join()})`,s=`getChannel(getSource(${n.join()}), ${a})`,i=`
result.x = ${s};
if (++${r[this.rank-1]} < ${e[this.rank-1]}) {
++${n[this.rank-1]};
result.y = ${s};
--${n[this.rank-1]};
}
`,o=this.rank===1?"":`
--${r[this.rank-1]};
if (++${r[this.rank-2]} < ${e[this.rank-2]}) {
++${n[this.rank-2]};
result.z = ${s};
if (++${r[this.rank-1]} < ${e[this.rank-1]}) {
++${n[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((u,d)=>`start[${d}]`).join()});`:e.map((u,d)=>`${n[d]} = ${r[d]} + start[${d}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}};function xne(e,t,r,n){let a=n.texData.get(e.dataId),s=n.makeTensorInfo(r,e.dtype),i=n.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=r,i.dtype=e.dtype;let o=Ot.computeFlatOffset(t,v.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=n.dataRefCount.get(i.slice.origDataId)||1;return n.dataRefCount.set(i.slice.origDataId,l+1),s}function Md(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,size:i}=n,[o,l]=Ot.parseSliceParams(a,s,i);if(Ot.assertParamsValid(a,o,l),v.sizeFromShape(l)===0)return r.makeTensorInfo(l,a.dtype,[]);if(r.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=r.texData.get(a.dataId),p=lte(h.values,o,l,a.shape,a.dtype);return r.makeTensorInfo(l,a.dtype,p)}let{isPacked:u}=r.texData.get(a.dataId),d=Ot.isSliceContinous(a.shape,o,l);if(u||!d){let h=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Ane(l):new gne(l),p=[o];return r.runWebGLProgram(h,[a],a.dtype,p)}return r.uploadToGPU(a.dataId),xne(a,o,l,r)}var bne={kernelName:xl,backendName:"webgl",kernelFunc:Md},vne=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n;v.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((A,x)=>A*x),l=C.getReshaped(a.shape,s,o),u=C.getPermuted(l.length,s.length),d=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),p=C.getSliceSize(d,i,s.length),c=[],m=ve({inputs:{x:a},backend:r,attrs:{shape:l}}),f=Jt({inputs:{x:m},backend:r,attrs:{perm:u}}),g=ve({inputs:{x:f},backend:r,attrs:{shape:d}}),y=Md({inputs:{x:g},backend:r,attrs:{begin:h,size:p}});return c.push(m),c.push(f),c.push(g),c.forEach(A=>r.disposeIntermediateTensorInfo(A)),y},wne={kernelName:Ho,backendName:"webgl",kernelFunc:vne};function kne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i}=n,o=r.readSync(a.dataId),l=r.readSync(s.dataId),u=n9(o,l,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,u)}var Ine={kernelName:rf,backendName:"webgl",kernelFunc:kne};function Sne(e){let{inputs:t,backend:r}=e,{s0:n,s1:a}=t,s=r.readSync(n.dataId),i=r.readSync(a.dataId),o=C.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return r.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var Cne={kernelName:nf,backendName:"webgl",kernelFunc:Sne},Tne="return float(a != b);",b9=wr({opSnippet:Tne,cpuKernelImpl:rte,dtype:"bool"}),Nne={kernelName:ll,backendName:"webgl",kernelFunc:b9};function Uh(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.texData.get(n.dataId);return fn({inputs:{x:a.complexTensorInfos.real},backend:r})}var Ene={kernelName:uh,backendName:"webgl",kernelFunc:Uh},Rne="return float(int(x));";function $ne(e,t){let r=new Xa(e.shape,Rne),n=t.runWebGLProgram(r,[e],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function ly(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dtype:s}=n;if(s==="complex64"){if(a.dtype==="complex64")return fn({inputs:{x:a},backend:r});let i=_t(a.shape),o=ly({inputs:{x:a},backend:r,attrs:{dtype:"float32"}}),l=qi({inputs:{real:o,imag:i},backend:r});return i.dispose(),r.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Uh({inputs:{input:a},backend:r}),o=ly({inputs:{x:i},backend:r,attrs:{dtype:s}});return r.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=fn({inputs:{x:a},backend:r});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return $ne(a,r);if(s==="bool"){let i=r.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=b9({inputs:{a,b:i},backend:r});return r.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var Mne={kernelName:ei,backendName:"webgl",kernelFunc:ly},K4="return ceil(x);",Fne=it({opSnippet:K4,packedOpSnippet:K4,cpuKernelImpl:Oee}),Pne={kernelName:ti,backendName:"webgl",kernelFunc:Fne},_ne=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}},zne=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function One(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=n,o;Z().getBool("WEBGL_PACK_CLIP")?o=new zne(a.shape):o=new _ne(a.shape);let l=[[s],[i]];return r.runWebGLProgram(o,[a],a.dtype,l)}var Dne={kernelName:Qa,backendName:"webgl",kernelFunc:One},Lne=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function Z4(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function Bne(e){let{inputs:t,backend:r}=e,{x:n}=t,a=r.texData.get(n.dataId),s=new Lne(n.shape),i=[Z4(n,a.complexTensorInfos.real),Z4(n,a.complexTensorInfos.imag)];return r.runWebGLProgram(s,i,i[0].dtype)}var Wne={kernelName:th,backendName:"webgl",kernelFunc:Bne},Vne=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let r=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];r.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let n=t.length,a=t[t.length-1];r.push(`else setOutput(getT${n}(yR, yC-${a}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${r.join(`
`)}
}
`}},Une=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let r=this.outputShape,n=r.length,a=vt(n),s=Br("coords",n),i=["x","y","z","w","u","v"].slice(0,n);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),d=i.join(),h=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${d}), vec2(${u.join()}));
}`;for(let m=1;m<o.length;m++){let f=o[m-1];h+=`
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
return getChannel(
getT${m}(${a0(i,l,f)}),
vec2(${a0(u,l,f)}));
}`}let p=o.length,c=o[o.length-1];h+=`
return getChannel(
getT${p}(${a0(i,l,c)}),
vec2(${a0(u,l,c)}));`,this.userCode=`
float getValue(${i.map(m=>"int "+m)}) {
${h}
}
void main() {
${a} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[n-1]} = ${s[n-1]} + 1;
if (${s[n-1]} < ${r[n-1]}) {
result.g = getValue(${s});
}
${s[n-2]} = ${s[n-2]} + 1;
if (${s[n-2]} < ${r[n-2]}) {
result.a = getValue(${s});
}
${s[n-1]} = ${s[n-1]} - 1;
if (${s[n-2]} < ${r[n-2]} &&
${s[n-1]} < ${r[n-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function a0(e,t,r){let n=e.indexOf(t);return e.map((a,s)=>s===n?`${a} - ${r}`:a).join()}function Fm(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.texData.get(n.dataId);return fn({inputs:{x:a.complexTensorInfos.imag},backend:r})}var Gne={kernelName:sh,backendName:"webgl",kernelFunc:Fm};function gu(e,t,r){let n=e[0].dtype;if(n==="complex64"){let d=e.map(f=>Uh({inputs:{input:f},backend:r})),h=e.map(f=>Fm({inputs:{input:f},backend:r})),p=gu(d,t,r),c=gu(h,t,r),m=qi({inputs:{real:p,imag:c},backend:r});return d.forEach(f=>r.disposeIntermediateTensorInfo(f)),h.forEach(f=>r.disposeIntermediateTensorInfo(f)),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),m}let a=r.shouldExecuteOnCPU(e);if(n==="string"&&(a=!0),a){let d=e.map(y=>{let A=v.sizeFromShape(y.shape.slice(t));return ve({inputs:{x:y},backend:r,attrs:{shape:[-1,A]}})}),h=d.map(y=>({vals:r.readSync(y.dataId),shape:y.shape})),p=C.computeOutShape(d.map(y=>y.shape),1),c=d[0].shape[0]===1,m=Dee(h,p,n,c),f=C.computeOutShape(e.map(y=>y.shape),t),g=r.makeTensorInfo(f,n,m);return d.forEach(y=>r.disposeIntermediateTensorInfo(y)),g}if(e.length>Z().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let d=Math.floor(e.length/2),h=gu(e.slice(0,d),t,r),p=gu(e.slice(d),t,r),c=gu([h,p],t,r);return r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),c}if(Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let d=new Une(e.map(h=>h.shape),t);return r.runWebGLProgram(d,e,n)}let{tensors2D:s,outShape:i}=jne(e,t,r),o=new Vne(s.map(d=>d.shape)),l=r.runWebGLProgram(o,s,n);s.forEach(d=>r.disposeIntermediateTensorInfo(d));let u=ve({inputs:{x:l},attrs:{shape:i},backend:r});return r.disposeIntermediateTensorInfo(l),u}function jne(e,t,r){let n=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ve({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:r})),outShape:n}}function v9(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n,s=v.parseAxisParam(a,t[0].shape)[0],i=C.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(i)===0)return r.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>v.sizeFromShape(u.shape)>0);if(o.length===1)return fn({inputs:{x:o[0]},backend:r});let l=o.map(u=>u.shape);return C.assertParamsConsistent(l,s),gu(o,s,r)}var Hne={kernelName:qo,backendName:"webgl",kernelFunc:v9},w9=class{constructor(e,t=!1,r=null,n=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,p=e.filterWidth,c=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,y=f?2:3,A=f?3:1,x="",b="";r&&(n?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${r}
}`:a?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${r}
}`:x=`
float activation(float x) {
${r}
}
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${A}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${y}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p}; wC++) {
int xC = xCCorner + wC * ${d};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${c}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${f}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${m===1}) {
if (${f}) {
dotProd +=
getX(batch, xR, xC, ${c}) *
getW(wR, wC, ${c}, d2);
} else {
dotProd +=
getX(batch, ${c}, xR, xC) *
getW(wR, wC, ${c}, d2);
}
} else if (${m===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${c}, d2),
getW(wR, wC, ${c} + 1, d2)
);
if (${f}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${c}),
getX(batch, xR, xC, ${c} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${c}, xR, xC),
getX(batch, ${c} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${m===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${c}, d2),
getW(wR, wC, ${c} + 1, d2),
getW(wR, wC, ${c} + 2, d2)
);
if (${f}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${c}),
getX(batch, xR, xC, ${c} + 1),
getX(batch, xR, xC, ${c} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${c}, xR, xC),
getX(batch, ${c} + 1, xR, xC),
getX(batch, ${c} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${w}
${b}
setOutput(result);
}
`}},qne=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,r=e.padInfo.top,n=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.filterDepth,h=e.filterHeight,p=e.filterWidth,c=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${a}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${r}, ${n});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${d}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${c}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${m===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${c}) *
getW(wF, wR, wC, ${c}, d2);
} else if (${m===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${c}),
getX(batch, xF, xR, xC, ${c} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${c}, d2),
getW(wF, wR, wC, ${c} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${m===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${c}),
getX(batch, xF, xR, xC, ${c} + 1),
getX(batch, xF, xR, xC, ${c} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${c}, d2),
getW(wF, wR, wC, ${c} + 1, d2),
getW(wF, wR, wC, ${c} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},Xne=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=ln(this.outputShape.length);let{dataFormat:r}=t,n=Hr(),a=r==="channelsLast",s=a?0:1,i=a?1:2,o=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let u=0;u<=1;u++)for(let d=0;d<=1;d++)l+=`
blockIndex = rc.y + ${d};
pos = rc.x + ${u};
${o}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${s}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${i}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${a}) {
innerDims = vec2(d1, ch);
result[${u*2+d}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${u*2+d}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${n.output} = result;
}
`}};function k9({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=n.texData.get(e.dataId),d=r.inChannels,h=l[0]*l[1]*l[2],p=r.outChannels,c=r.dataFormat==="channelsLast",m=!1,f=!1,g,y=[];if(s!=null&&!c&&s.shape.length===3){let A=Jt({inputs:{x:s},backend:n,attrs:{perm:[1,2,0]}});y.push(A),s=A}if(!((h===1||p===1)&&d>g9)&&u.isPacked&&c&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let A=l[0]*l[1]*(l[2]+1),x={dataId:e.dataId,shape:[1,A,r.inChannels],dtype:e.dtype},b=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(Zp(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let w=ve({inputs:{x:t},backend:n,attrs:{shape:[1,r.inChannels,r.outChannels]}});y.push(w);let I=H0({a:x,b:w,backend:n,transposeA:m,transposeB:f,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),N=n.texData.get(I.dataId);v.assert(N.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=b,N.shape=r.outShape,g=fn({inputs:{x:I},backend:n}),g.shape=r.outShape,y.push(I)}else{let A=c?e:Jt({inputs:{x:e},backend:n,attrs:{perm:[0,2,3,1]}}),x=A.shape,b=x[0]*x[1]*x[2],w=ve({inputs:{x:A},backend:n,attrs:{shape:[1,b,r.inChannels]}}),I=ve({inputs:{x:t},backend:n,attrs:{shape:[1,r.inChannels,r.outChannels]}}),N=H0({a:w,b:I,transposeA:m,transposeB:f,backend:n,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),E=[r.batchSize,r.outHeight,r.outWidth,r.outChannels],R=ve({inputs:{x:N},backend:n,attrs:{shape:E}});g=c?R:Jt({inputs:{x:R},backend:n,attrs:{perm:[0,3,1,2]}}),c||(y.push(A),y.push(R)),y.push(w),y.push(I),y.push(N)}for(let A of y)n.disposeIntermediateTensorInfo(A);return g}function I9({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:d,outWidth:h,outHeight:p,dataFormat:c}=r,m=c==="channelsLast",f=l*u*d,g=p*h,y=[f,g],A=!0,x=!1,b=[];if(s!=null&&!m&&s.shape.length===3){let Y=Jt({inputs:{x:s},backend:n,attrs:{perm:[1,2,0]}});b.push(Y),s=Y}let w=ve({inputs:{x:e},backend:n,attrs:{shape:e.shape.slice(1)}}),I=ve({inputs:{x:t},backend:n,attrs:{shape:[1,f,v.sizeFromShape(t.shape)/f]}});b.push(w),b.push(I);let N=new Xne(y,r),E=[w.shape,[r.padInfo.top,r.padInfo.left],[r.strideHeight,r.strideWidth],[r.dilationHeight,r.dilationWidth],[r.inChannels],[r.filterWidth*r.inChannels],[r.outWidth]],R=n.runWebGLProgram(N,[w],"float32",E),_=ve({inputs:{x:R},backend:n,attrs:{shape:[1,y[0],y[1]]}});b.push(R),b.push(_);let M=a!=null,S=s!=null,z=o==="leakyrelu",O=o?Rm(o,!0):null,H=new m9(_.shape,I.shape,[1,g,r.outChannels],A,x,M,O,S,z),K=[_,I];if(a&&K.push(a),S&&K.push(s),z){let Y=n.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));K.push(Y),b.push(Y)}let D=n.runWebGLProgram(H,K,"float32"),Q=[1,p,h,r.outChannels],V=ve({inputs:{x:D},backend:n,attrs:{shape:Q}}),re=m?V:Jt({inputs:{x:V},backend:n,attrs:{perm:[0,3,1,2]}});m||b.push(V),b.push(D);for(let Y of b)n.disposeIntermediateTensorInfo(Y);return re}function Kne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=n,h=C.convertConv2DDataFormat(l),p=C.computeConv2DInfo(a.shape,s.shape,i,u,o,d,!1,h),c;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))c=k9({x:a,filter:s,convInfo:p,backend:r});else if(Z().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)c=I9({x:a,filter:s,convInfo:p,backend:r});else{let f=new w9(p);c=r.runWebGLProgram(f,[a,s],"float32")}let m=ve({inputs:{x:c},backend:r,attrs:{shape:p.outShape}});return r.disposeIntermediateTensorInfo(c),m}var Zne={kernelName:ri,backendName:"webgl",kernelFunc:Kne},Yne=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,r=e.strideWidth,n=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${n};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${r} - ${a};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${s}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},Jne=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,r=e.filterWidth,n=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=r-1-e.padInfo.left,l=s?1:2,u=s?2:3,d=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${d}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${r}; wC++) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${r} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},Qne=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,r=e.strideHeight,n=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${a};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${r} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},eae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,r=e.filterHeight,n=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=r-1-e.padInfo.top,u=n-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${u});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${a}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${r}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${r} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function tae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=n,h=C.convertConv2DDataFormat(l),p=C.computeConv2DInfo(a.shape,d,i,1,o,u,!1,h),c=new Yne(p);return r.runWebGLProgram(c,[a,s],"float32")}var rae={kernelName:af,backendName:"webgl",kernelFunc:tae};function nae(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=n,h=C.convertConv2DDataFormat(u),p=C.computeConv2DInfo(i,s.shape,o,1,l,d,!1,h),c=new Jne(p);return r.runWebGLProgram(c,[a,s],"float32")}var aae={kernelName:ni,backendName:"webgl",kernelFunc:nae};function sae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=n,u=C.computeConv3DInfo(a.shape,s.shape,i,l,o),d=new qne(u);return r.runWebGLProgram(d,[a,s],"float32")}var iae={kernelName:rh,backendName:"webgl",kernelFunc:sae};function oae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=n,u=C.computeConv3DInfo(a.shape,l,i,1,o),d=new Qne(u);return r.runWebGLProgram(d,[a,s],"float32")}var lae={kernelName:sf,backendName:"webgl",kernelFunc:oae};function uae(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=n,u=C.computeConv3DInfo(l,s.shape,o,1,i),d=new eae(u);return r.runWebGLProgram(d,[a,s],"float32")}var dae={kernelName:of,backendName:"webgl",kernelFunc:uae},pae=$d+`
return cos(x);
`,hae=it({opSnippet:pae}),cae={kernelName:ai,backendName:"webgl",kernelFunc:hae},fae=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,mae=it({opSnippet:fae}),gae={kernelName:si,backendName:"webgl",kernelFunc:mae},yae=class{constructor(e,t,r,n,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[d,h]=r;this.outputShape=[u,d,h,l];let p=n==="bilinear"?1:0,[c,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,y]=d>1?[`${(i-1)/(d-1)}`,"(y2-y1) * height_ratio",`y1*${c} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${c}`],[A,x,b]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
const float height_ratio = float(${f});
const float width_ratio = float(${A});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${g};
float width_scale = ${x};
float in_y = ${y};
if( in_y < 0.0 || in_y > ${c} ) {
setOutput(float(${a}));
return;
}
float in_x = ${b};
if( in_x < 0.0 || in_x > ${m} ) {
setOutput(float(${a}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${p} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},Aae=e=>{let{inputs:t,backend:r,attrs:n}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,d=new yae(a.shape,s.shape,o,l,u);return r.runWebGLProgram(d,[a,s,i],"float32")},xae={kernelName:Ko,backendName:"webgl",kernelFunc:Aae},Y4=class{constructor(e,t,r,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.op=e,this.outputShape=t;let a=t.length,s=this.op==="*"?"1.0":"0.0",i=r?s:`getX(${J4(a,"coords",this.op)})`,o=t[t.length-1],l="",u="";r?(l=n?`end != ${o-1}`:"end != 0",u=n?"end + 1":"end - 1"):(l=n?`end + pow2 < ${o}`:"end >= pow2",u=n?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${vt(a)} coords = getOutputCoords();
int end = ${Q4(a,"coords",this.op)};
float val = ${i};
int pow2 = int(pow(2.0, index));
if (${l}) {
int idx = ${u};
${Q4(a,"coords",this.op)} = idx;
val ${this.op}= getX(${J4(a,"coords",this.op)});
}
setOutput(val);
}
`}};function J4(e,t,r){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative ${r} for rank ${e} is not yet supported`)}function Q4(e,t,r){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative ${r} for rank ${e} is not yet supported`)}function S9(e,t,r,n,a,s){let i=t.shape.length,o=C.getAxesPermutation([n],i),l=t;o!=null&&(l=Jt({inputs:{x:t},backend:r,attrs:{perm:o}}));let u=C.getInnerMostAxes(1,i)[0];if(u!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${n}`);let d=l.shape[u],h=fn({inputs:{x:l},backend:r});for(let p=0;p<=Math.ceil(Math.log2(d))-1;p++){let c=new Y4(e,l.shape,!1,s),m=[[p]],f=h;h=r.runWebGLProgram(c,[h],h.dtype,m),r.disposeIntermediateTensorInfo(f)}if(a){let p=new Y4(e,l.shape,a,s),c=h;h=r.runWebGLProgram(p,[h],h.dtype),r.disposeIntermediateTensorInfo(c)}if(o!=null){let p=C.getUndoAxesPermutation(o),c=Jt({inputs:{x:h},backend:r,attrs:{perm:p}});return r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(l),c}return h}function bae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n;return S9("*",a,r,s,i,o)}var vae={kernelName:Xo,backendName:"webgl",kernelFunc:bae};function wae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n;return S9("+",a,r,s,i,o)}var kae={kernelName:ii,backendName:"webgl",kernelFunc:wae};function Iae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=n;if(a.shape.length===1){let l=r.readSync(a.dataId),u=r.readSync(s.dataId),d=n9(l,u,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,d)}else if(a.shape.length===2){let l=r.bufferSync(a),u=r.bufferSync(s),d=zee(l,u,i,o);return r.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var Sae={kernelName:lf,backendName:"webgl",kernelFunc:Iae},Cae=class{constructor(e,t,r){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Tae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockSize:s,dataFormat:i}=n,o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],d=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,p=u*s,c=d/(s*s),m=i==="NHWC"?[o,h,p,c]:[o,c,h,p],f=new Cae(m,s,i);return r.runWebGLProgram(f,[a],a.dtype)}var Nae={kernelName:Zo,backendName:"webgl",kernelFunc:Tae},C9=class{constructor(e,t=!1,r=null,n=!1,a=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=ln(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";r&&(n?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${r}
}`:a?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${r}
}`:l=`
float activation(float x) {
${r}
}
`,u="result = activation(result);");let d=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${o};
int q = d2 - d1 * ${o};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${s}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${i}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${d}
${u}
setOutput(result);
}
`}},T9=class{constructor(e,t=!1,r=null,n=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=ln(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,d=e.filterWidth,h=d,p=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<d;g++)p+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;p+=`
for (int r = 0; r < ${u}; r++) {
`;for(let g=0;g<d;g++)p+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;p+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(h+1)/2;g++){let y=g*2;if(p+=`
xC = xCCorner + ${y*l};
`,o===1){if(y<d&&(i%2===1?(p+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
`,l===1&&y>0?p+=`
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
`:p+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
} else {
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
}
`):p+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xC${y} = xTexelC${y};
`,y+1<d)){let A=i%2===0?v.nearestLargerEven(l):l;l%2===0&&i%2===1||l%2!==0&&i%2!==1?(p+=`
xCOffset = xC + imod(pads[1], 2) + ${A};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
`,l>1&&(p+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
xTexelC${y}Ready = 1;
}
`),p+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
`):A===1?p+=`
xC${y+1} = xTexelC${y};
`:p+=`
xCOffset = xC + ${A};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y+1} = xTexelC${y+1};
`}}else y<d&&(i%2===1?(p+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`,y+1<d&&(p+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
`)):(p+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(
xTexelC${y}.xy, xTexelC${y+1}.xy);
`,y+1<d&&(p+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`)));y<d&&(p+=`
wTexel = getW(r, ${y}, d1, q);
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
`,y+1<d&&(p+=`
wTexel = getW(r, ${y+1}, d1, q);
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
`))}p+=`
}
`,p+=`
}
`;let c="",m="";r&&(n?c=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${r}
}`:a?c=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${r}
}`:c=`vec4 activation(vec4 x) {
${r}
}`,m="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${c}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${s};
int q = d2 - d1 * ${s};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${p}
vec4 result = dotProd - vec4(0.000000000000001);
${f}
${m}
setOutput(result);
}
`}};function Eae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=n,d=l;d==null&&(d=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let h=C.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),p;Z().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels===1?p=new T9(h):p=new C9(h);let c=[[h.padInfo.top,h.padInfo.left],[h.strideHeight,h.strideWidth],[h.dilationHeight,h.dilationWidth],[h.inHeight,h.inWidth]];return r.runWebGLProgram(p,[a,s],"float32",c)}var Rae={kernelName:oi,backendName:"webgl",kernelFunc:Eae},$ae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,r=e.strideWidth,n=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${n};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${r} - ${a};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},Mae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,r=e.filterWidth,n=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=r-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${r}; wC++) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${r} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function Fae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=n,h=C.computeConv2DInfo(a.shape,d,i,o,l,u,!0),p=new $ae(h);return r.runWebGLProgram(p,[a,s],"float32")}var Pae={kernelName:uf,backendName:"webgl",kernelFunc:Fae};function _ae(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=n,h=C.computeConv2DInfo(d,s.shape,i,o,l,u,!0),p=new Mae(h);return r.runWebGLProgram(p,[a,s],"float32")}var zae={kernelName:df,backendName:"webgl",kernelFunc:_ae},Oae=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function Dae(e){let{inputs:t,backend:r}=e,{x:n}=t,a=[...n.shape,...n.shape],s=v.sizeFromShape(n.shape),i=ve({inputs:{x:n},backend:r,attrs:{shape:[s]}}),o=new Oae(s),l=r.runWebGLProgram(o,[i],i.dtype),u=ve({inputs:{x:l},backend:r,attrs:{shape:a}});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(l),u}var Lae={kernelName:pf,backendName:"webgl",kernelFunc:Dae},Bae=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:r,padInfo:n,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:d,left:h}=n;this.userCode=`
const ivec2 strides = ivec2(${a}, ${s});
const ivec2 pads = ivec2(${d}, ${h});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${u};
if (wIn >= 0 && wIn < ${r}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function Wae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=n,u=C.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),d,h=new Bae(u);d=r.runWebGLProgram(h,[a,s],"float32");let p=ve({inputs:{x:d},backend:r,attrs:{shape:u.outShape}});return r.disposeIntermediateTensorInfo(d),p}var Vae={kernelName:nh,backendName:"webgl",kernelFunc:Wae};function Uae(e){let{inputs:t,backend:r,attrs:n}=e,{equation:a}=n,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(a,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=C.getEinsumComputePath(o,l),h=d.length,p=null,c=i.length,m=[];for(let f=0;f<h;++f){for(let g of d[f]){let{permutationIndices:y,expandDims:A}=C.getEinsumPermutation(c,l[g]),x;C.isIdentityPermutation(y)?x=s[g]:(x=Jt({inputs:{x:s[g]},backend:r,attrs:{perm:y}}),m.push(x));let b=x.shape.slice();for(let w=0;w<A.length;++w)b.splice(A[w],0,1);v.arraysEqual(x.shape,b)||(x=ve({inputs:{x},backend:r,attrs:{shape:b}}),m.push(x)),p===null?p=x:(p=I5({inputs:{a:x,b:p},backend:r}),m.push(p))}f<h-1&&(u[f]>=0&&(p=Mm({inputs:{x:p},backend:r,attrs:{axis:u[f]-(i.length-c),keepDims:!1}}),m.push(p)),c--)}for(let f of m)f!==p&&r.disposeIntermediateTensorInfo(f);return p}var Gae={kernelName:ah,backendName:"webgl",kernelFunc:Uae},jae="return (x >= 0.0) ? x : (exp(x) - 1.0);",Hae=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,qae=it({opSnippet:jae,packedOpSnippet:Hae}),Xae={kernelName:ui,backendName:"webgl",kernelFunc:qae},Kae="return (b >= 1.0) ? a : a * (b + 1.0);",Zae=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,Yae=e=>{let{inputs:t,backend:r}=e,{dy:n,y:a}=t,s=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Vh(Zae,n.shape,a.shape):new Ou(Kae,n.shape,a.shape);return r.runWebGLProgram(s,[n,a],n.dtype)},Jae={kernelName:hf,backendName:"webgl",kernelFunc:Yae},Qae=`
return vec4(equal(a, b));
`,ese="return float(a == b);",tse=wr({opSnippet:ese,packedOpSnippet:Qae,dtype:"bool",cpuKernelImpl:Lee}),rse={kernelName:Yo,backendName:"webgl",kernelFunc:tse},nse=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${C.ERF_P};
float a1 = ${C.ERF_A1};
float a2 = ${C.ERF_A2};
float a3 = ${C.ERF_A3};
float a4 = ${C.ERF_A4};
float a5 = ${C.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,ase=it({opSnippet:nse}),sse={kernelName:Zu,backendName:"webgl",kernelFunc:ase},ise=$d+`
return exp(x);
`,ose=`
vec4 result = exp(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,N9=it({opSnippet:ise,packedOpSnippet:ose,cpuKernelImpl:Bee,dtype:"float32"}),lse={kernelName:di,backendName:"webgl",kernelFunc:N9};function uy(e){let{inputs:t,attrs:r,backend:n}=e,{dim:a}=r,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(v.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),ve({inputs:{x:s},backend:n,attrs:{shape:o}})}var use={kernelName:Jo,backendName:"webgl",kernelFunc:uy},ev="return exp(x) - 1.0;",dse=it({opSnippet:ev,packedOpSnippet:ev,cpuKernelImpl:Wee}),pse={kernelName:Qo,backendName:"webgl",kernelFunc:dse},tv=class{constructor(e,t,r){this.variableNames=["real","imag"];let n=t[1];this.outputShape=t;let a=r?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=r?`${n}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${a};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${n});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${n}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function E9(e,t,r){let n=r.texData.get(e.dataId),a=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=ve({inputs:{x:e},backend:r,attrs:{shape:[i,s]}}),l=o.shape,u=new tv("real",l,t),d=new tv("imag",l,t),h=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:l},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:l}],p=r.runWebGLProgram(u,h,"float32"),c=r.runWebGLProgram(d,h,"float32"),m=qi({inputs:{real:p,imag:c},backend:r});r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c);let f=ve({inputs:{x:m},backend:r,attrs:{shape:e.shape}});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(m),f}function hse(e){let{inputs:t,backend:r}=e,{input:n}=t;return E9(n,!1,r)}var cse={kernelName:cf,backendName:"webgl",kernelFunc:hse},fse=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function Gh(e){let{backend:t,attrs:r}=e,{shape:n,value:a}=r,{dtype:s}=r;if(s=s||v.inferDtype(a),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(n));return i.fill(a),t.makeTensorInfo(n,s,i)}else{let i=new fse(n,a),o=[[a]];return t.runWebGLProgram(i,[],s,o)}}var mse={kernelName:Yu,backendName:"webgl",kernelFunc:Gh},gse=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},yse={kernelName:el,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:r}=e,n=t,a=new gse(r.shape);return n.runWebGLProgram(a,[r],r.dtype)}},rv="return floor(x);",Ase=it({opSnippet:rv,packedOpSnippet:rv,cpuKernelImpl:Vee}),xse={kernelName:pi,backendName:"webgl",kernelFunc:Ase},bse=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,vse=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,wse=wr({opSnippet:bse,packedOpSnippet:vse,dtype:"int32"}),kse={kernelName:hi,backendName:"webgl",kernelFunc:wse},Ise=class{constructor(e){this.variableNames=["A"];let t=Hr(),[r,n]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}.0, ${r}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},Sse=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Hr(),[r,n]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}.0, ${r}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},Cse={kernelName:Lp,backendName:"webgl",kernelFunc:Tse},pu;function Tse(e){let{inputs:t,backend:r,attrs:n}=e,{pixels:a}=t,{numChannels:s}=n,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,[l,u]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],d=[u,l],h=[u,l,s];(o||i)&&(pu==null&&(pu=document.createElement("canvas").getContext("2d")),pu.canvas.width=l,pu.canvas.height=u,pu.drawImage(a,0,0,l,u),a=pu.canvas);let p=r.makeTensorInfo(d,"int32");r.texData.get(p.dataId).usage=2,r.gpgpu.uploadPixelDataToTexture(r.getTexture(p.dataId),a);let c=Z().getBool("WEBGL_PACK")?new Sse(h):new Ise(h),m=r.runWebGLProgram(c,[p],"int32");return r.disposeData(p.dataId),m}function Nse(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:m}=n,f=C.convertConv2DDataFormat(d),g=C.computeConv2DInfo(a.shape,s.shape,l,h,u,p,!1,f),y,A=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=k9({x:a,filter:s,convInfo:g,backend:r,bias:i,activation:c,preluActivationWeights:o,leakyreluAlpha:m});else if(Z().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=I9({x:a,filter:s,convInfo:g,backend:r,bias:i,activation:c,preluActivationWeights:o,leakyreluAlpha:m});else{let b=i!=null,w=o!=null,I=c==="leakyrelu",N=c?Rm(c,!1):null,E=new w9(g,b,N,w,I),R=[a,s];if(i&&R.push(i),o&&R.push(o),I){let _=r.makeTensorInfo([],"float32",v.createScalarValue(m,"float32"));R.push(_),A.push(_)}y=r.runWebGLProgram(E,R,"float32")}let x=ve({inputs:{x:y},backend:r,attrs:{shape:g.outShape}});return A.push(y),A.forEach(b=>r.disposeIntermediateTensorInfo(b)),x}var Ese={kernelName:_s,backendName:"webgl",kernelFunc:Nse};function Rse(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:c}=n,m=[],f=d;f==null&&(f=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=C.computeConv2DInfo(a.shape,s.shape,l,f,u,h,!0),y=Z().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,A=p?Rm(p,y):null,x=[a,s],b=i!=null,w=o!=null,I=p==="leakyrelu";if(b&&x.push(i),w&&x.push(o),I){let _=r.makeTensorInfo([],"float32",v.createScalarValue(c,"float32"));x.push(_),m.push(_)}let N;y?N=new T9(g,b,A,w,I):N=new C9(g,b,A,w,I);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],R=r.runWebGLProgram(N,x,"float32",E);return m.forEach(_=>r.disposeIntermediateTensorInfo(_)),R}var $se={kernelName:zs,backendName:"webgl",kernelFunc:Rse},Mse=class{constructor(e,t,r){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=r;let n=vt(t.length),a=vt(r.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${n} strides = ${n}(${this.strides});
void main() {
${a} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${s};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function Fse(e){let{inputs:t,backend:r}=e,{params:n,indices:a}=t,s=a.shape,i=s[s.length-1],o=v.sizeFromShape(n.shape),[l,u,d,h]=C.prepareAndValidate(n,a),p=ve({inputs:{x:a},backend:r,attrs:{shape:[u,i]}}),c=ve({inputs:{x:n},backend:r,attrs:{shape:[v.sizeFromShape(n.shape)/d,d]}});if(r.shouldExecuteOnCPU([n,a])||n.dtype==="string"){let y=r.readSync(a.dataId),A=r.bufferSync(n),x=Uee(y,A,n.dtype,u,i,d,h,n.shape,o);return r.makeTensorInfo(l,n.dtype,x.values)}let m=new Mse(i,h,[u,d]),f=r.runWebGLProgram(m,[c,p],c.dtype),g=ve({inputs:{x:f},backend:r,attrs:{shape:l}});return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),g}var Pse={kernelName:rl,backendName:"webgl",kernelFunc:Fse},_se=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let r=vt(this.rank),n=zse(e,2);this.userCode=`
void main() {
${r} resRC = getOutputCoords();
int index = int(getIndices(resRC.x, resRC.z));
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
setOutput(inBounds * getA(${n}));
}
`}};function zse(e,t){let r=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let a=0;a<e.length;a++)a===2?n.push("index"):n.push(`${r[a]}`);return n.join()}function R9(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=n,l=v.parseAxisParam(i,a.shape)[0];if(Z().get("DEBUG")){let A=r.readSync(s.dataId),x=a.shape[l];for(let b=0;b<A.length;++b){let w=A[b];v.assert(w<=x-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${x-1}]`)}}let u=C.segment_util.collectGatherOpShapeInfo(a,s,l,o),d=v.sizeFromShape(s.shape),h=[],p=ve({inputs:{x:a},backend:r,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),c=ve({inputs:{x:s},backend:r,attrs:{shape:[u.batchSize,d/u.batchSize]}});h.push(p),h.push(c);let m=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize];if(r.shouldExecuteOnCPU([a,s])||a.dtype==="string"){let A=r.bufferSync(c),x=r.bufferSync(p),b=Gee(x,A,m);return h.forEach(w=>r.disposeIntermediateTensorInfo(w)),r.makeTensorInfo(u.outputShape,b.dtype,b.values)}let f=new _se(p.shape,m),g=r.runWebGLProgram(f,[p,c],p.dtype);h.push(g);let y=ve({inputs:{x:g},backend:r,attrs:{shape:u.outputShape}});return h.forEach(A=>r.disposeIntermediateTensorInfo(A)),y}var Ose={kernelName:tl,backendName:"webgl",kernelFunc:R9},Dse="return float(a > b);",Lse=`
return vec4(greaterThan(a, b));
`,Bse=wr({opSnippet:Dse,packedOpSnippet:Lse,cpuKernelImpl:jee,dtype:"bool"}),Wse={kernelName:nl,backendName:"webgl",kernelFunc:Bse},Vse="return float(a >= b);",Use=`
return vec4(greaterThanEqual(a, b));
`,Gse=wr({opSnippet:Vse,packedOpSnippet:Use,dtype:"bool",cpuKernelImpl:Hee}),jse={kernelName:fi,backendName:"webgl",kernelFunc:Gse};function Hse(e){let{inputs:t,backend:r}=e,{input:n}=t;return E9(n,!0,r)}var qse={kernelName:ff,backendName:"webgl",kernelFunc:Hse},Xse="return float(!isnan(x) && !isinf(x));",Kse=it({opSnippet:Xse,dtype:"bool"}),Zse={kernelName:Ju,backendName:"webgl",kernelFunc:Kse},Yse="return float(isinf(x));",Jse=it({opSnippet:Yse,dtype:"bool"}),Qse={kernelName:Qu,backendName:"webgl",kernelFunc:Jse},eie="return float(isnan(x));",tie=it({opSnippet:eie,dtype:"bool"}),rie={kernelName:ed,backendName:"webgl",kernelFunc:tie},nie="return float(a < b);",aie=`
return vec4(lessThan(a, b));
`,sie=wr({opSnippet:nie,packedOpSnippet:aie,cpuKernelImpl:qee,dtype:"bool"}),iie={kernelName:al,backendName:"webgl",kernelFunc:sie},oie="return float(a <= b);",lie=`
return vec4(lessThanEqual(a, b));
`,uie=wr({opSnippet:oie,packedOpSnippet:lie,cpuKernelImpl:Xee,dtype:"bool"}),die={kernelName:sl,backendName:"webgl",kernelFunc:uie};function pie(e){let{backend:t,attrs:r}=e,{start:n,stop:a,num:s}=r,i=Kee(n,a,s);return t.makeTensorInfo([i.length],"float32",i)}var hie={kernelName:mf,backendName:"webgl",kernelFunc:pie},cie=$d+`
return x < 0.0 ? 0./0. : log(x);
`,fie=`
vec4 result = log(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
return result;
`,mie=it({opSnippet:cie,packedOpSnippet:fie,cpuKernelImpl:Zee}),gie={kernelName:yi,backendName:"webgl",kernelFunc:mie},yie=$d+`
return log(1.0 + x);
`,Aie=it({opSnippet:yie}),xie={kernelName:td,backendName:"webgl",kernelFunc:Aie},bie="return float(a >= 1.0 && b >= 1.0);",vie=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,wie=wr({opSnippet:bie,packedOpSnippet:vie,dtype:"bool"}),kie={kernelName:il,backendName:"webgl",kernelFunc:wie},Iie="return float(!(x >= 1.0));",Sie=it({opSnippet:Iie}),Cie={kernelName:rd,backendName:"webgl",kernelFunc:Sie},Tie="return float(a >= 1.0 || b >= 1.0);",Nie=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,Eie=wr({opSnippet:Tie,packedOpSnippet:Nie,dtype:"bool"}),Rie={kernelName:ih,backendName:"webgl",kernelFunc:Eie},$ie=class{constructor(e,t,r,n,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${r}) + float(${n}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},Mie=class{constructor(e,t,r,n,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${r}) + float(${n}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},Fie=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n,u=Z().getBool("WEBGL_PACK_NORMALIZATION")?new Mie(a.shape,s,i,o,l):new $ie(a.shape,s,i,o,l);return r.runWebGLProgram(u,[a],a.dtype)},Pie={kernelName:oh,backendName:"webgl",kernelFunc:Fie},_ie=class{constructor(e,t,r,n,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=r,this.alpha=n,this.beta=a,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${n}) * norm + float(${r});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${n})
* float(${a})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${a});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},zie=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=n,h=new _ie(a.shape,o,l,u,d);return r.runWebGLProgram(h,[a,s,i],a.dtype)},Oie={kernelName:gf,backendName:"webgl",kernelFunc:zie};function Die(e,t,r,n){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=ve({inputs:{x:e},attrs:{shape:[s,a]},backend:n}),o=Bl(i,e.dtype,"max",n),l=ve({inputs:{x:o},attrs:{shape:r},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}function $9(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,d=C.getAxesPermutation(u,o),h=d!=null,p=r.shouldExecuteOnCPU([a]),c=a;if(h){if(p){let A=r.texData.get(c.dataId).values,x=new Array(o);for(let I=0;I<x.length;I++)x[I]=a.shape[d[I]];let b=k5(A,a.shape,a.dtype,d,x);c=r.makeTensorInfo(x,a.dtype);let w=r.texData.get(c.dataId);w.values=b}else c=$m(a,d,r);u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("max",u,o);let[m,f]=C.computeOutAndReduceShapes(c.shape,u),g=m;i&&(g=C.expandShapeToKeepDim(m,l));let y;if(p){let A=r.texData.get(c.dataId).values,x=Yee(A,v.sizeFromShape(f),g,a.dtype);y=r.makeTensorInfo(g,a.dtype);let b=r.texData.get(y.dataId);b.values=x}else y=Die(c,f,g,r);return h&&r.disposeIntermediateTensorInfo(c),y}var Lie={kernelName:Ai,backendName:"webgl",kernelFunc:$9},Bie=d9+`
return max(a, b);
`,Wie=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Em+`
return result;
`,Vie=wr({opSnippet:Bie,packedOpSnippet:Wie,cpuKernelImpl:Jee}),Uie={kernelName:xi,backendName:"webgl",kernelFunc:Vie};function Gie(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;Cd(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=C.computePool2DInfo(a.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))return fn({inputs:{x:a},backend:r});let h=new Yp(d,"max",!1);return r.runWebGLProgram(h,[a],a.dtype)}var jie={kernelName:bi,backendName:"webgl",kernelFunc:Gie};function Hie(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=n,d=[1,1,1],h=C.computePool3DInfo(a.shape,s,i,d,o,u,l),p=new S5(h,"max",!1);return r.runWebGLProgram(p,[a],a.dtype)}var qie={kernelName:lh,backendName:"webgl",kernelFunc:Hie},Xie=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,r=e.strideWidth,n=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${a};
wR += ${n}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},Kie=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,r=e.strideHeight,n=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,d=o-1-e.padInfo.front,h=l-1-e.padInfo.top,p=u-1-e.padInfo.left,c=o*l*u-1;this.userCode=`
const ivec3 pads = ivec3(${d}, ${h}, ${p});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${a}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${c} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${u} +
wR * ${u} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function Zie(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=n,h=[1,1,1],p=C.computePool3DInfo(i.shape,o,l,h,u,d),c=new S5(p,"max",!0),m=r.runWebGLProgram(c,[i],i.dtype),f=new Kie(p),g=r.runWebGLProgram(f,[a,m],i.dtype);return r.disposeIntermediateTensorInfo(m),g}var Yie={kernelName:Af,backendName:"webgl",kernelFunc:Zie};function Jie(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s,output:i}=t,o=s;Cd([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:h}=n,p=C.computePool2DInfo(o.shape,l,u,1,d,h),c=!0,m=new Yp(p,"max",c),f=r.runWebGLProgram(m,[o],o.dtype),g=new Xie(p),y=r.runWebGLProgram(g,[a,f],o.dtype);return r.disposeIntermediateTensorInfo(f),y}var Qie={kernelName:yf,backendName:"webgl",kernelFunc:Jie};function eoe(e,t,r,n){let a=new Yp(r,"max",!1),s=n.runWebGLProgram(a,[e],"float32");a=new Yp(r,"max",!0,!0,t);let i=n.runWebGLProgram(a,[e],"float32");return[s,i]}var toe={kernelName:xf,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=r;v.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);let u=[1,1];v.assert(C.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let d=C.computePool2DInfo(n.shape,a,s,u,i),[h,p]=eoe(n,o,d,l);return[h,p]}};function roe(e,t,r,n){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=ve({inputs:{x:e},attrs:{shape:[s,a]},backend:n}),o=Bl(i,"float32","mean",n),l=ve({inputs:{x:o},attrs:{shape:r},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}var noe={kernelName:vi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{keepDims:a,axis:s}=t,i=r,o=n.shape.length,l=v.parseAxisParam(s,n.shape),u=l,d=C.getAxesPermutation(u,o),h=d!=null,p=i.shouldExecuteOnCPU([n]),c=[],m=n;if(h){if(p){let x=i.texData.get(m.dataId).values,b=new Array(o);for(let N=0;N<b.length;N++)b[N]=n.shape[d[N]];let w=k5(x,n.shape,n.dtype,d,b);m=i.makeTensorInfo(b,n.dtype);let I=i.texData.get(m.dataId);I.values=w}else m=$m(n,d,i);c.push(m),u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("sum",u,o);let[f,g]=C.computeOutAndReduceShapes(m.shape,u),y=f;a&&(y=C.expandShapeToKeepDim(f,l));let A=roe(m,g,y,i);for(let x of c)i.disposeIntermediateTensorInfo(x);return A}};function aoe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,d=C.getAxesPermutation(u,o),h=a;d!=null&&(h=Jt({inputs:{x:a},backend:r,attrs:{perm:d}}),u=C.getInnerMostAxes(u.length,a.shape.length)),C.assertAxesAreInnerMostDims("min",u,o);let[p,c]=C.computeOutAndReduceShapes(h.shape,u),m=v.sizeFromShape(c),f=ve({inputs:{x:h},backend:r,attrs:{shape:[-1,m]}}),g=Bl(f,f.dtype,"min",r),y;if(i){let A=C.expandShapeToKeepDim(p,l);y=ve({inputs:{x:g},backend:r,attrs:{shape:A}})}else y=ve({inputs:{x:g},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(f),r.disposeIntermediateTensorInfo(g),d!=null&&r.disposeIntermediateTensorInfo(h),y}var soe={kernelName:wi,backendName:"webgl",kernelFunc:aoe},ioe=d9+`
return min(a, b);
`,ooe=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Em+`
return result;
`,loe=wr({opSnippet:ioe,packedOpSnippet:ooe,cpuKernelImpl:Qee}),uoe={kernelName:ki,backendName:"webgl",kernelFunc:loe},doe=class{constructor(e,t,r){this.variableNames=["x"],this.outputShape=t.map((u,d)=>u[0]+e[d]+u[1]);let n=e.length,a=vt(n),s=t.map(u=>u[0]).join(","),i=t.map((u,d)=>u[0]+e[d]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n),l=r==="reflect"?0:1;if(n===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${a} start = ${a}(${s});
${a} end = ${a}(${i});
void main() {
${a} outC = getOutputCoords();
for (int i = 0; i < ${n}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${a} coords = outC - start;
setOutput(getX(${o}));
}
`}},poe=class{constructor(e,t,r){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((c,m)=>c[0]+e[m]+c[1]);let n=e.length,a=vt(n),s=t.map(c=>c[0]).join(","),i=t.map((c,m)=>c[0]+e[m]).join(","),o=Br("rc",n),l=Br("source",n),u=`${o[n-1]} < ${this.outputShape[n-1]}`,d=n===1?"source":`vec2(${l.slice(-2).join()})`,h=r==="reflect"?0:1,p="";if(n===1){let c=`
${a} source = rc;
if (source < start) {
source = start * 2 - source - ${h};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${h};
}
source -= start;
`;p=`
${a} rc = outputLoc;
${c}
result[0] = getChannel(getX(${l.join()}), ${d});
${o[n-1]} += 1;
if(${u}) {
${c}
result[1] = getChannel(getX(${l.join()}), ${d});
}
`}else{let c=`
${a} source = rc;
${a} lt = ${a}(lessThan(source, start));
${a} gte = ${a}(greaterThanEqual(source, end));
${a} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${h}) +
gte * ((end - 1) * 2 - source + ${h});
source -= start;
`;p=`
${a} rc = outputLoc;
${c}
result[0] = getChannel(getX(${l.join()}), ${d});
${o[n-1]} += 1;
if(${u}) {
${c}
result[1] = getChannel(getX(${l.join()}), ${d});
}
rc = outputLoc;
${o[n-2]} += 1;
if(${o[n-2]} < ${this.outputShape[n-2]}) {
${c}
result[2] = getChannel(getX(${l.join()}), ${d});
${o[n-1]} += 1;
if(${u}) {
${c}
result[3] = getChannel(getX(${l.join()}), ${d});
}
}
`}this.userCode=`
const ${a} start = ${a}(${s});
const ${a} end = ${a}(${i});
void main() {
${a} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${p}
setOutput(result);
}
`}},hoe=({inputs:e,backend:t,attrs:r})=>{let{x:n}=e,{paddings:a,mode:s}=r,i=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new poe(n.shape,a,s):new doe(n.shape,a,s);return t.runWebGLProgram(i,[n],n.dtype)},coe={kernelName:Ii,backendName:"webgl",kernelFunc:hoe},foe=`if (b == 0.0) return NAN;
return mod(a, b);`,moe=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+Em+`
return result;
`,goe=wr({opSnippet:foe,packedOpSnippet:moe}),yoe={kernelName:nd,backendName:"webgl",kernelFunc:goe},Aoe=class{constructor(e,t,r){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,r],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}},xoe=`
if (a == b) {
return 1.0;
};
return a / b;`,boe=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,M9=wr({opSnippet:xoe,packedOpSnippet:boe,checkOutOfBounds:!0}),voe={kernelName:li,backendName:"webgl",kernelFunc:M9},nv="return a - b;",F9=wr({opSnippet:nv,packedOpSnippet:nv,supportsComplex:!0,cpuKernelImpl:gte}),woe={kernelName:Bi,backendName:"webgl",kernelFunc:F9};function P9(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{dim:s}=n,i=v.parseAxisParam([s],a.shape),o=$9({inputs:{x:a},backend:r,attrs:{reductionIndices:i,keepDims:!1}}),l=C.expandShapeToKeepDim(o.shape,i),u=ve({inputs:{x:o},backend:r,attrs:{shape:l}}),d=F9({inputs:{a,b:u},backend:r}),h=N9({inputs:{x:d},backend:r}),p=Mm({inputs:{x:h},backend:r,attrs:{axis:i,keepDims:!1}}),c=ve({inputs:{x:p},backend:r,attrs:{shape:l}}),m=M9({inputs:{a:h,b:c},backend:r});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),m}var koe={kernelName:Di,backendName:"webgl",kernelFunc:P9};function Ioe(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=n,l=o?a:P9({inputs:{logits:a},backend:r,attrs:{dim:a.shape.length-1}}),u=l.shape[0],d=l.shape[1],h=new Aoe(u,d,s),p=[[i]],c=r.runWebGLProgram(h,[l],"int32",p);return o||r.disposeIntermediateTensorInfo(l),c}var Soe={kernelName:bf,backendName:"webgl",kernelFunc:Ioe},Coe=Yn+`
return -x;
`,Toe=`
vec4 result = -x;
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`;function Noe(e){let{inputs:t,backend:r}=e,{x:n}=t;if(r.shouldExecuteOnCPU([n])){let s=r.texData.get(n.dataId),[i,o]=tte(s.values,n.shape,n.dtype);return r.makeTensorInfo(o,n.dtype,i)}let a;return Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new To(n.shape,Toe):a=new Xa(n.shape,Coe),r.runWebGLProgram(a,[n],n.dtype)}var Eoe={kernelName:ol,backendName:"webgl",kernelFunc:Noe},Roe=Kn.nonMaxSuppressionV3Impl;function $oe(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n,u=r.readSync(a.dataId),d=r.readSync(s.dataId),{selectedIndices:h}=Roe(u,d,i,o,l);return r.makeTensorInfo([h.length],"int32",new Int32Array(h))}var Moe={kernelName:ul,backendName:"webgl",kernelFunc:$oe},Foe=Kn.nonMaxSuppressionV4Impl;function Poe(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=n,d=r.readSync(a.dataId),h=r.readSync(s.dataId),{selectedIndices:p,validOutputs:c}=Foe(d,h,i,o,l,u);return[r.makeTensorInfo([p.length],"int32",new Int32Array(p)),r.makeTensorInfo([],"int32",new Int32Array([c]))]}var _oe={kernelName:ad,backendName:"webgl",kernelFunc:Poe},zoe=Kn.nonMaxSuppressionV5Impl;function Ooe(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n,d=r.readSync(a.dataId),h=r.readSync(s.dataId),p=i,c=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=zoe(d,h,p,c,m,f);return[r.makeTensorInfo([g.length],"int32",new Int32Array(g)),r.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Doe={kernelName:dl,backendName:"webgl",kernelFunc:Ooe},Loe=class{constructor(e,t,r,n){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${n}), float(${r}),
float(index == coords.y)));
}
`}},Boe=e=>{let{inputs:t,backend:r,attrs:n}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=n,l=v.sizeFromShape(a.shape),u=new Loe(l,s,i,o),d=ve({inputs:{x:a},backend:r,attrs:{shape:[l]}}),h=r.runWebGLProgram(u,[d],a.dtype);r.disposeIntermediateTensorInfo(d);let p=[...a.shape,s],c=ve({inputs:{x:h},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(h),c},Woe={kernelName:hl,backendName:"webgl",kernelFunc:Boe};function q0(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="complex64"){let a=Uh({inputs:{input:n},backend:r}),s=q0({inputs:{x:a},backend:r}),i=Fm({inputs:{input:n},backend:r}),o=q0({inputs:{x:i},backend:r}),l=qi({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return Gh({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:r})}var Voe={kernelName:Nl,backendName:"webgl",kernelFunc:q0};function _9(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let a=Uh({inputs:{input:n},backend:r}),s=_9({inputs:{x:a},backend:r}),i=Fm({inputs:{input:n},backend:r}),o=q0({inputs:{x:i},backend:r}),l=qi({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return Gh({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:r})}var Uoe={kernelName:pl,backendName:"webgl",kernelFunc:_9};function Goe(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return uy({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{v.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=uy({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=v9({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeIntermediateTensorInfo(d)),u}var joe={kernelName:cl,backendName:"webgl",kernelFunc:Goe},Hoe=class{constructor(e,t,r){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let n=e.length,a=vt(n),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n);if(n===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${a} start = ${a}(${s});
${a} end = ${a}(${i});
void main() {
${a} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${a} coords = outC - start;
setOutput(getX(${o}));
}
}
`}},qoe=class{constructor(e,t,r){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let n=e.length,a=vt(n),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=Br("rc",n),l=Br("source",n),u=`${o[n-1]} < ${this.outputShape[n-1]}`,d=n===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[n-1]} += 1;
if(${u}) {
`,n===1?"":`}
rc = outputLoc;
${o[n-2]} += 1;
if(${o[n-2]} < ${this.outputShape[n-2]}) {`,n===1?"":` ${o[n-1]} += 1;
if(${u}) {`],p=n===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",c="";for(let m=0,f=n===1?2:4;m<f;m++)c+=`
${h[m]}
if (${p}) {
result[${m}] = float(value);
} else {
${a} source = rc - start;
result[${m}] = getChannel(getX(${l.join()}), ${d});
}
`;c+=n===1?"} ":"}}",this.userCode=`
const ${a} start = ${a}(${s});
const ${a} end = ${a}(${i});
void main() {
${a} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${c}
setOutput(result);
}
`}},z9=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,constantValue:i}=n;if(v.sizeFromShape(a.shape)===0){let u=s.map((d,h)=>d[0]+a.shape[h]+d[1]);return Gh({backend:r,attrs:{shape:u,value:i,dtype:a.dtype}})}let o=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new qoe(a.shape,s,i):new Hoe(a.shape,s,i),l=[[i]];return r.runWebGLProgram(o,[a],a.dtype,l)},Xoe={kernelName:Ci,backendName:"webgl",kernelFunc:z9},Koe=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,Zoe=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+Em+`
return result;
`,Yoe=wr({opSnippet:Koe,packedOpSnippet:Zoe}),Joe={kernelName:Ti,backendName:"webgl",kernelFunc:Yoe};function Qoe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=[],u=v.parseAxisParam(s,a.shape),d=u,h=C.getAxesPermutation(d,o),p=a;h!=null&&(p=Jt({inputs:{x:a},backend:r,attrs:{perm:h}}),d=C.getInnerMostAxes(d.length,o),l.push(p)),C.assertAxesAreInnerMostDims("prod",d,o);let c;if(r.shouldExecuteOnCPU([p])){let m=r.texData.get(p.dataId).values,{outVals:f,outShape:g,outDtype:y}=nte(p.shape,p.dtype,m,d);c=r.makeTensorInfo(g,y,f)}else{let[m,f]=C.computeOutAndReduceShapes(p.shape,d),g=v.sizeFromShape(f),y=ve({inputs:{x:p},backend:r,attrs:{shape:[-1,g]}}),A=Ah(a.dtype),x=Bl(y,A,"prod",r);c=ve({inputs:{x},backend:r,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(c);let m=C.expandShapeToKeepDim(c.shape,u);c=ve({inputs:{x:c},backend:r,attrs:{shape:m}})}return l.forEach(m=>r.disposeIntermediateTensorInfo(m)),c}var ele={kernelName:Ei,backendName:"webgl",kernelFunc:Qoe},O9=e=>{let{backend:t,attrs:r}=e,{start:n,stop:a,step:s,dtype:i}=r,o=ate(n,a,s,i);return t.makeTensorInfo([o.length],i,o)},tle={kernelName:sd,backendName:"webgl",kernelFunc:O9},rle="return 1.0 / x;",nle=it({opSnippet:rle}),ale={kernelName:id,backendName:"webgl",kernelFunc:nle},sle=Yn+`
return (x < 0.0) ? 0.0 : x;
`,ile=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,ole=it({opSnippet:sle,packedOpSnippet:ile}),lle={kernelName:Ri,backendName:"webgl",kernelFunc:ole},ule=Yn+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,dle=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,ple=it({opSnippet:ule,packedOpSnippet:dle}),hle={kernelName:Mi,backendName:"webgl",kernelFunc:ple},cle=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/d[0]},
${u[1]/d[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${h};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},fle=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/d[0]},
${u[1]/d[1]},
${u[1]/d[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${h};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${r-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function mle(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,d=Z().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new fle(a.shape,l,u,s,i):new cle(a.shape,l,u,s,i);return r.runWebGLProgram(d,[a],"float32")}var gle={kernelName:$i,backendName:"webgl",kernelFunc:mle},yle=class{constructor(e,t,r){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,a]=t,[,s,i]=e,o=[r&&s>1?n-1:n,r&&i>1?a-1:a],l=[r&&s>1?s-1:s,r&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],h=1/u,p=1/d,c=Math.ceil(h)*2+2,m=Math.ceil(p)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${d});
const float invHeightScale = float(${h});
const float invWidthScale = float(${p});
const int winHeight = int(${c});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${n-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${a-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Ale(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n,o=new yle(s.shape,a.shape,i);return r.runWebGLProgram(o,[s],s.dtype)}var xle={kernelName:wf,backendName:"webgl",kernelFunc:Ale},ble=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h=n?"0.5":"0.0",p;a?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/d[0]},
${u[1]/d[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${p};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},vle=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h=n?"0.5":"0.0",p;a?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/d[0]},
${u[1]/d[1]},
${u[1]/d[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${p};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${r-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function wle(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,d=Z().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new vle(a.shape,l,u,s,i):new ble(a.shape,l,u,s,i);return r.runWebGLProgram(d,[a],a.dtype)}var kle={kernelName:od,backendName:"webgl",kernelFunc:wle},Ile=class{constructor(e,t,r){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,a]=t,[,s,i]=e,o=[r&&s>1?n-1:n,r&&i>1?a-1:a],l=[r&&s>1?s-1:s,r&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],h=1/u,p=1/d,c=Math.ceil(h)*2+2,m=Math.ceil(p)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${d});
const float invHeightScale = float(${h});
const float invWidthScale = float(${p});
const int winHeight = int(${c});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${n}) - 1),
${r} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${a}) - 1),
${r} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Sle(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n,o=new Ile(s.shape,a.shape,i);return r.runWebGLProgram(o,[s],s.dtype)}var Cle={kernelName:vf,backendName:"webgl",kernelFunc:Sle},Tle=class{constructor(e,t){this.variableNames=["x"];let r=e.length;if(r>4)throw new Error(`WebGL backend: Reverse of rank-${r} tensor is not yet supported`);if(this.outputShape=e,r===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let n=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,a=e.map((i,o)=>n(o)).join(","),s=vt(r);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${a}));
}
`}},Nle=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let r=e.length;if(r>4)throw new Error(`WebGL backend: Reverse of rank-${r} tensor is not yet supported`);this.outputShape=e;let n=Br("rc",r),a=`${n[r-1]} + 1 < ${this.outputShape[r-1]}`,s=`${n[r-2]} + 1 < ${this.outputShape[r-2]}`,i=vt(r);r===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${a}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(n.slice())};
if(${a}){
result.g = ${l(n.slice())};
}
if(${s}) {
result.b = ${u(n.slice())};
if(${a}) {
result.a = ${d(n.slice())};
}
}
setOutput(result);
}
`;function o(c){return h(c)}function l(c){return c[r-1]="("+c[r-1]+" + 1)",h(c)}function u(c){return c[r-2]="("+c[r-2]+" + 1)",h(c)}function d(c){return c[r-1]="("+c[r-1]+" + 1)",c[r-2]="("+c[r-2]+" + 1)",h(c)}function h(c){let m=e.map((y,A)=>p(A,c)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function p(c,m){return t.indexOf(c)!==-1&&e[c]!==1?`${e[c]} - ${m[c]} - 1`:`${m[c]}`}}};function Ele(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dims:s}=n,i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return fn({inputs:{x:a},backend:r});let l=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Nle(a.shape,o):new Tle(a.shape,o);return r.runWebGLProgram(l,[a],a.dtype)}var Rle={kernelName:ml,backendName:"webgl",kernelFunc:Ele},$le=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let r=e[1],n=e[2];this.outputShape=e;let a="";typeof t=="number"?a=`float outputValue = ${t.toFixed(2)};`:a=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${a}
if(coordX >= 0 && coordX < ${n} && coordY >= 0 && coordY < ${r}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},Mle={kernelName:El,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,{radians:a,fillValue:s,center:i}=t,o=r,l=new $le(n.shape,s),[u,d]=C.getImageCenter(i,n.shape[1],n.shape[2]),h=[[u,d,Math.sin(a),Math.cos(a)]];return o.runWebGLProgram(l,[n],n.dtype,h)}},Fle=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,Ple=it({opSnippet:Fle}),_le={kernelName:gl,backendName:"webgl",kernelFunc:Ple},zle="return inversesqrt(x);",Ole=it({opSnippet:zle,cpuKernelImpl:ste}),Dle={kernelName:Fi,backendName:"webgl",kernelFunc:Ole},D9=class{constructor(e,t,r,n,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=vt(a.length),l=vt(s.length),u="";r===1?u="i":r===2&&(u="i, j");let d=`getIndices(${u})`,h="";n===1?h="i":n===2&&(h="i, coords[1]");let p=`getUpdates(${h})`,c=t>1?"strides[j]":"strides";this.userCode=`
${o} strides = ${o}(${a});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${d});
flattenedIndex += index * ${c};
}
if (flattenedIndex == coords[0]) {
sum += ${p};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function Lle(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:h}=C.calculateShapes(s,a,i),p=[h/u,u];if(h===0)return r.makeTensorInfo(i,a.dtype);let c=ve({inputs:{x:a},backend:r,attrs:{shape:[l,o]}}),m=ve({inputs:{x:s},backend:r,attrs:{shape:[l,u]}}),f=r.makeTensorInfo([],"float32",new Float32Array([0])),g=new D9(l,o,c.shape.length,m.shape.length,d,p),y=r.runWebGLProgram(g,[m,c,f],m.dtype),A=ve({inputs:{x:y},backend:r,attrs:{shape:i}});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(m),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(f),A}var Ble={kernelName:yl,backendName:"webgl",kernelFunc:Lle},Wle=class{constructor(e,t,r,n){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,r];let a="while (left < right) {",s=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,i=Z().getNumber("WEBGL_VERSION")===2?a:s,o=n==="left"?"<":"<=";this.userCode=`
int findBound(int batch, float value) {
int left = 0;
int right = numInputs;
int mid;
${i}
mid = (left + right) / 2;
if (getSortedSequence(batch, mid) ${o} value) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int valueIndex = coords[1];
float value = getValues(batch, valueIndex);
setOutput(float(findBound(batch, value)));
}
`}};function Vle(e){let{inputs:t,backend:r,attrs:n}=e,{sortedSequence:a,values:s}=t,{side:i}=n,o=new Wle(a.shape[0],a.shape[1],s.shape[1],i),l=[[a.shape[1]]];return r.runWebGLProgram(o,[a,s],"int32",l)}var Ule={kernelName:kf,backendName:"webgl",kernelFunc:Vle},Gle=class{constructor(e,t,r){this.variableNames=["c","a","b"],this.outputShape=t;let n,a;if(r>4)throw Error(`Where for rank ${r} is not yet supported`);if(r===1)a="resRC",n="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);n=o.join(),a=l.join()}let s=vt(r);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${n});
if (cVal >= 1.0) {
setOutput(getA(${a}));
} else {
setOutput(getB(${a}));
}
}
`}};function jle(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t,i=new Gle(n.shape.length,a.shape,a.shape.length);return r.runWebGLProgram(i,[n,a,s],Nr(a.dtype,s.dtype))}var Hle={kernelName:Al,backendName:"webgl",kernelFunc:jle},qle=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${C.SELU_SCALEALPHA};
float scale = ${C.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,Xle=it({opSnippet:qle}),Kle={kernelName:ld,backendName:"webgl",kernelFunc:Xle},Zle=$d+`
return 1.0 / (1.0 + exp(-1.0 * x));
`,Yle=`
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Jle=it({opSnippet:Zle,packedOpSnippet:Yle,cpuKernelImpl:ote}),Qle={kernelName:_i,backendName:"webgl",kernelFunc:Jle},eue=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,tue=it({opSnippet:eue}),rue={kernelName:ud,backendName:"webgl",kernelFunc:tue},nue=$d+`
return sin(x);
`,aue=it({opSnippet:nue}),sue={kernelName:Pi,backendName:"webgl",kernelFunc:aue},iue=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,oue=it({opSnippet:iue}),lue={kernelName:bl,backendName:"webgl",kernelFunc:oue},uue=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,due=it({opSnippet:uue}),pue={kernelName:dd,backendName:"webgl",kernelFunc:due},hue=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n;v.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,A)=>y*A),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let u=[],d=z9({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),h=C.getReshaped(d.shape,s,o,!1),p=C.getPermuted(h.length,s.length,!1),c=C.getReshapedPermuted(d.shape,s,o,!1),m=ve({inputs:{x:d},backend:r,attrs:{shape:h}}),f=Jt({inputs:{x:m},backend:r,attrs:{perm:p}}),g=ve({inputs:{x:f},backend:r,attrs:{shape:c}});return u.push(d),u.push(m),u.push(f),u.forEach(y=>r.disposeIntermediateTensorInfo(y)),g},cue={kernelName:vl,backendName:"webgl",kernelFunc:hue};function fue(e){let{inputs:t,backend:r}=e,{indices:n,values:a,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${n.shape}`);if(a.shape.length!==1)throw new Error(`Values must be a vector, saw:
${a.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=r.readSync(n.dataId),l=r.readSync(a.dataId),u=r.readSync(s.dataId),d=r.readSync(i.dataId)[0],[h,p,c,m,f]=ute(o,n.shape,n.dtype,l,a.dtype,u,d);return[r.makeTensorInfo(p,n.dtype,h),r.makeTensorInfo([p[0]],a.dtype,c),r.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),r.makeTensorInfo([f.length],n.dtype,new Int32Array(f))]}var mue={kernelName:dh,backendName:"webgl",kernelFunc:fue};function gue(e){let{inputs:t,backend:r}=e,{inputIndices:n,inputShape:a,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${n.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(r.readSync(a.dataId)),o=r.readSync(n.dataId),l=Array.from(r.readSync(s.dataId)),[u,d,h]=dte(o,n.shape,n.dtype,i,l);return[r.makeTensorInfo(d,n.dtype,u),r.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var yue={kernelName:pd,backendName:"webgl",kernelFunc:gue};function Aue(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=r.readSync(n.dataId),o=r.readSync(a.dataId),l=r.readSync(s.dataId),[u,d]=s9(i,n.shape,n.dtype,o,l,!0);return r.makeTensorInfo(d,n.dtype,u)}var xue={kernelName:ph,backendName:"webgl",kernelFunc:Aue};function bue(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=r.readSync(n.dataId),o=r.readSync(a.dataId),l=r.readSync(s.dataId),[u,d]=s9(i,n.shape,n.dtype,o,l);return r.makeTensorInfo(d,n.dtype,u)}var vue={kernelName:hh,backendName:"webgl",kernelFunc:bue};function wue(e){let{inputs:t,backend:r,attrs:n}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,sliceSize:d,strides:h,outputSize:p}=C.calculateShapes(s,a,o),c=!1;if(s.dtype==="string"){let y=r.bufferSync(a),A=r.bufferSync(s),x=v.decodeString(r.readSync(i.dataId)[0]),b=ite(y,A,o,p,d,u,l,h,x,c);return r.makeTensorInfo(o,b.dtype,b.values)}let m=new D9(u,l,a.shape.length,s.shape.length,h,[p,1],c),f=r.runWebGLProgram(m,[s,a,i],s.dtype),g=ve({inputs:{x:f},backend:r,attrs:{shape:o}});return r.disposeIntermediateTensorInfo(f),g}var kue={kernelName:ch,backendName:"webgl",kernelFunc:wue};function Iue(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=a.shape.length,d=new Array(u).fill(0),h=a.shape.slice();return l.map(p=>{let c=[...h];c[o]=p;let m=Md({inputs:{x:a},backend:r,attrs:{begin:d,size:c}});return d[o]+=p,m})}var Sue={kernelName:wl,backendName:"webgl",kernelFunc:Iue},av="return sqrt(x);",Cue=it({opSnippet:av,packedOpSnippet:av,cpuKernelImpl:pte}),Tue={kernelName:zi,backendName:"webgl",kernelFunc:Cue},Nue="return x * x;",Eue=it({opSnippet:Nue}),Rue={kernelName:hd,backendName:"webgl",kernelFunc:Eue},sv="return (a - b) * (a - b);",$ue=wr({opSnippet:sv,packedOpSnippet:sv}),Mue={kernelName:Li,backendName:"webgl",kernelFunc:$ue};function Fue({inputs:e,attrs:t,backend:r}){let{x:n}=e,a=Yn+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new Xa(n.shape,a);return r.runWebGLProgram(s,[n],n.dtype)}var Pue={kernelName:Ui,backendName:"webgl",kernelFunc:Fue},_ue=class{constructor(e,t,r){this.variableNames=["x"],this.outputShape=r;let n=r.length,a=vt(r.length),s=vt(r.length),i="";if(n===1)i="coords * strides + begin";else{let o=0;i=r.map((l,u)=>(o++,r.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
${a} begin = ${a}(${e});
${a} strides = ${a}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function zue(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n,{finalShapeSparse:c,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=Ot.sliceInfo(a.shape,s,i,o,l,u,d,h,p),w;if(f)w=ve({inputs:{x:a},backend:r,attrs:{shape:m}});else if(g||y){v.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let N=Ot.computeOutShape(A,x,b),E=Md({inputs:{x:a},backend:r,attrs:{begin:A,size:N}});w=ve({inputs:{x:E},backend:r,attrs:{shape:m}}),r.disposeIntermediateTensorInfo(E)}else if(r.shouldExecuteOnCPU([a])){let N=r.readSync(a.dataId),E=Le(a.shape,a.dtype,N),R=hte(c,E,b,A);w=r.makeTensorInfo(m,a.dtype,R.values)}else{let N=new _ue(A,b,c);w=r.runWebGLProgram(N,[a],a.dtype)}let I=ve({inputs:{x:w},backend:r,attrs:{shape:m}});return r.disposeIntermediateTensorInfo(w),I}var Oue={kernelName:kl,backendName:"webgl",kernelFunc:zue};function Due(e){let{inputs:t,backend:r,attrs:n}=e,{separator:a,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:d,dataSplits:h}=t,p=r.readSync(d.dataId),c=r.readSync(h.dataId),[m,f]=cte(p,c,a,s,i,o,l,u);return[r.makeTensorInfo([m.length],"string",m),r.makeTensorInfo(h.shape,"int32",f)]}var Lue={kernelName:fh,backendName:"webgl",kernelFunc:Due};function Bue(e){let{inputs:t,backend:r,attrs:n}=e,{skipEmpty:a}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=r.readSync(s.dataId),l=r.readSync(i.dataId)[0],[u,d,h]=fte(o,l,a),p=d.length;return[r.makeTensorInfo([p,2],"int32",u),r.makeTensorInfo([p],"string",d),r.makeTensorInfo([2],"int32",new Int32Array(h))]}var Wue={kernelName:If,backendName:"webgl",kernelFunc:Bue};function Vue(e){let{inputs:t,backend:r,attrs:n}=e,{numBuckets:a}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(a<=0)throw new Error("Number of buckets must be at least 1");let i=r.readSync(s.dataId),o=mte(i,a);return r.makeTensorInfo(s.shape,"int32",o)}var Uue={kernelName:Sf,backendName:"webgl",kernelFunc:Vue},Gue="return tan(x);",jue=it({opSnippet:Gue}),Hue={kernelName:Il,backendName:"webgl",kernelFunc:jue},que=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,Xue=it({opSnippet:que}),Kue={kernelName:Wi,backendName:"webgl",kernelFunc:Xue},Zue=class{constructor(e,t){this.variableNames=["A"];let r=new Array(e.length);for(let s=0;s<r.length;s++)r[s]=e[s]*t[s];this.outputShape=r,this.rank=r.length;let n=vt(this.rank),a=Yue(e);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${a}));
}
`}};function Yue(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let r=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],n=[];for(let a=0;a<e.length;a++)n.push(`imod(${r[a]}, ${e[a]})`);return n.join()}function L9(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reps:s}=n;if(a.dtype==="string"||a.shape.length>5){let o=r.readSync(a.dataId),l=a.dtype==="string"?o.map(h=>v.decodeString(h)):o,u=Le(a.shape,a.dtype,l),d=yte(u,s);return r.makeTensorInfo(d.shape,d.dtype,d.values)}let i=new Zue(a.shape,s);return r.runWebGLProgram(i,[a],a.dtype)}var Jue={kernelName:es,backendName:"webgl",kernelFunc:L9},Que=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},ede=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function yo(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function iv(e){let t=1;for(;t<e;)t*=2;return t}function tde(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{k:s,sorted:i}=n,o=Z().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=Z().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=a.shape,d=u[u.length-1];if(r.shouldExecuteOnCPU([a])||d<o||s>l){let R=r.readSync(a.dataId),[_,M]=Ate(R,u,a.dtype,s,i);return[r.makeTensorInfo(_.shape,_.dtype,_.values),r.makeTensorInfo(M.shape,M.dtype,M.values)]}if(s===0)return u[u.length-1]=0,[r.makeTensorInfo(u,a.dtype,[]),r.makeTensorInfo(u,"int32",[])];if(d===1)return[a,Gh({attrs:{shape:u,dtype:"int32",value:0},backend:r})];let h=r.texData.get(a.dataId),p=h!==null&&h.isPacked,c=p?r.unpackTensor(a):a,m=v.sizeFromShape(u)/d,f=ve({inputs:{x:c},attrs:{shape:[m,d]},backend:r});p&&yo(r,c);let g=iv(s),y=iv(d),A=null,x=()=>A===null?[f,f]:[f,A],b=(R,_,M)=>{let S=x(),z=new Que(M),O=[[d],[A===null?1:0],[Number.NEGATIVE_INFINITY],[R],[_]],H=A;A=r.runWebGLProgram(z,S,"int32",O),yo(r,H)};for(let R=1;R<g;R*=2){let _=R*2;for(let M=R;M>=1;M/=2)b(_,M,[m,y])}for(let R=y;R>g;R/=2){let _=x(),M=new ede([m,R/2]),S=[[d],[A===null?1:0],[g]],z=A;A=r.runWebGLProgram(M,_,"int32",S),yo(r,z);let O=g/2,H=O*2;for(let K=O;K>=1;K/=2)b(H,K,A.shape)}let w=A;A=Md({inputs:{x:A},backend:r,attrs:{begin:0,size:[m,s]}}),yo(r,w);let I=R9({inputs:{x:f,indices:A},backend:r,attrs:{axis:1,batchDims:1}});yo(r,f);let N=u.slice(0,-1);N.push(s),w=A,A=ve({inputs:{x:A},attrs:{shape:N},backend:r}),yo(r,w);let E=I;return I=ve({inputs:{x:I},attrs:{shape:N},backend:r}),yo(r,E),[I,A]}var rde={kernelName:Sl,backendName:"webgl",kernelFunc:tde},nde=class{constructor(e,t,r,n,a,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=r==="nearest"?1:2,o;switch(n){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${o} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${a});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${a});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function ade(e){let{inputs:t,backend:r,attrs:n}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,h,p,c]=a.shape,[m,f]=u!=null?u:[h,p],g=[d,m,f,c],y=new nde(h,p,i,o,l,g);return r.runWebGLProgram(y,[a,s],"float32")}var sde={kernelName:Cl,backendName:"webgl",kernelFunc:ade};function ide(e){let{inputs:t,attrs:r,backend:n}=e,{axis:a}=r,{x:s}=t;Cd(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=n.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=xte(i,a,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,o),n.makeTensorInfo([u.length],"int32",u)]}var ode={kernelName:Cf,backendName:"webgl",kernelFunc:ide};function lde(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],u=new Array(o-1),d=0;for(let f=0;f<o;f++)f!==s&&(u[d++]=i.shape[f]);let h=[],p=new Array(o).fill(0),c=i.shape.slice();c[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){p[s]=f;let g=Md({inputs:{x:i},backend:r,attrs:{begin:p,size:c}}),y=ve({inputs:{x:g},backend:r,attrs:{shape:u}});m[f]=y,h.push(g)}return h.forEach(f=>r.disposeIntermediateTensorInfo(f)),m}var ude={kernelName:Tl,backendName:"webgl",kernelFunc:lde},dde=class{constructor(e,t){this.variableNames=["x","segmentIds"];let r=e.windowSize,n=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/r);this.outputShape=[n,i];let o="0.0",l="sumValue",u=Math.floor(r/4)*4,d=r%4,h=`
sumValue += dot(values, segFilter);
`,p="";a%r>0&&(p=`
if (inIdx < 0 || inIdx >= ${a}) {
return initializationValue;
}
`);let c="";a%r>0&&(c=`
if (inIdx < 0 || inIdx >= ${a}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${p}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${c}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${r}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${h}
}
int inIdx = inOffset + ${u};
if (${d===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${h}
} else if (${d===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${h}
} else if (${d===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${h}
}
setOutput(${l});
}
`}};function pde(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,segmentIds:s}=t,{numSegments:i}=n,o=a.shape.length,l=[],u=0,d=C.getAxesPermutation([u],o),h=a;d!=null&&(h=Jt({inputs:{x:a},backend:r,attrs:{perm:d}}),l.push(h),u=C.getInnerMostAxes(1,o)[0]);let p=C.segment_util.computeOutShape(h.shape,u,i),c=v.sizeFromShape([h.shape[u]]),m=ve({inputs:{x:h},backend:r,attrs:{shape:[-1,c]}});l.push(m);let f=Ah(a.dtype),g=(b,w,I,N,E)=>{let R=b.shape[0],_=b.shape[1],M=C.segment_util.segOpComputeOptimalWindowSize(_,E),S={windowSize:M,inSize:_,batchSize:R,numSegments:E},z=new dde(S,w),O=r.compileAndRun(z,[b,I],N);if(l.push(O),O.shape[1]===E)return O;let H=O9({backend:r,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),K=L9({inputs:{x:H},backend:r,attrs:{reps:[_/M]}});return l.push(H),l.push(K),g(O,w,K,N,E)},y=g(m,"unsortedSegmentSum",s,f,i),A=ve({inputs:{x:y},backend:r,attrs:{shape:p}}),x=A;if(d!=null){l.push(A);let b=C.getUndoAxesPermutation(d);x=Jt({inputs:{x},backend:r,attrs:{perm:b}})}return l.forEach(b=>r.disposeIntermediateTensorInfo(b)),x}var hde={kernelName:mh,backendName:"webgl",kernelFunc:pde},cde=[fre,gre,xre,wre,Ire,Tre,Ere,$re,_re,Ore,Bre,Ure,Hre,Zre,Qre,tne,nne,one,une,pne,mne,wne,Ine,Cne,Mne,Pne,Dne,Kte,Wne,Hne,Zne,rae,aae,iae,lae,dae,cae,gae,xae,vae,kae,Sae,Nae,Rae,Pae,zae,Lae,Vae,Gae,Xae,Jae,rse,sse,lse,use,pse,cse,mse,yse,xse,kse,Cse,Ese,$se,Pse,Ose,Wse,jse,Xte,qse,Gne,Zse,Qse,rie,Yte,iie,die,hie,gie,xie,kie,Cie,Rie,Pie,Oie,Lie,Uie,jie,qie,Yie,Qie,toe,noe,soe,uoe,coe,yoe,Soe,rre,Eoe,Moe,_oe,Doe,Nne,Woe,Uoe,joe,Xoe,Joe,Qte,ele,tle,Ene,voe,ale,lle,hle,are,gle,xle,kle,Cle,Rle,Mle,_le,Dle,Ble,Ule,Hle,Kle,Qle,rue,sue,lue,bne,koe,pue,cue,mue,yue,xue,vue,kue,Sue,Tue,Rue,Mue,Pue,Oue,Lue,Wue,Uue,woe,pre,Hue,Kue,Jue,rde,sde,hre,ode,ude,hde,Voe];for(let e of cde)qn(e);var Xi=Z();Xi.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);Xi.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);Xi.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);Xi.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);Xi.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);Xi.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);Xi.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);Xi.registerFlag("WEBGPU_USE_IMPORT",()=>!1);var fde="return a + b;",mde="return areal * breal - aimag * bimag;",gde="return areal * bimag + aimag * breal;",yde="return a / b;",Ade="return a * b;",xde="return (a - b) * (a - b);",bde="return a - b;",vde="return f32(a == b);",wde="return vec4<f32>(a == b);",kde="return f32(a > b);",Ide="return vec4<f32>(a > b);",Sde="return f32(a >= b);",Cde="return vec4<f32>(a >= b);",Tde="return f32(a < b);",Nde="return vec4<f32>(a < b);",Ede="return f32(a <= b);",Rde="return vec4<f32>(a <= b);",$de="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",Mde=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
vec4<f32>(b >= vec4<f32>(1.0)));`,Fde=`
if (isnan(a)) { return a; }
if (isnan(b)) { return b; }
`,B9=`
if (isNaN.r) {
resultTemp.r = uniforms.NAN;
}
if (isNaN.g) {
resultTemp.g = uniforms.NAN;
}
if (isNaN.b) {
resultTemp.b = uniforms.NAN;
}
if (isNaN.a) {
resultTemp.a = uniforms.NAN;
}
`,Pde=`
let s = sign(a) * sign(b);
let ia = i32(round(a));
let ib = i32(round(b));
return f32(idiv(ia, ib, s));
`,_de=`
let ia = vec4<i32>(round(a));
let ib = vec4<i32>(round(b));
let cond = ib != vec4<i32>(0);
var resultTemp = vec4<i32>(0);
let s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4<f32>(resultTemp);
`,zde="return f32(a != b);",Ode="return vec4<f32>(a != b);",Dde=`
if(a < 0.0 && floor(b) < b) {
return uniforms.NAN;
}
if (b == 0.0) {
return 1.0;
}
if (round(abs(b) % 2.0) != 1.0) {
return pow(abs(a), b);
}
return sign(a) * pow(abs(a), b);
`,Lde=`
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
let isModRound1 = vec4<f32>(isModRound1Bool);
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
var resultTemp = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
let isExpZero = b == vec4<f32>(0.0);
if (isExpZero.r) {
resultTemp.r = 1.0;
}
if (isExpZero.g) {
resultTemp.g = 1.0;
}
if (isExpZero.b) {
resultTemp.b = 1.0;
}
if (isExpZero.a) {
resultTemp.a = 1.0;
}
let isNaN = a < vec4<f32>(0.0) & floor(b) < b;
${B9}
return resultTemp;
`,Bde="if (a < 0.0) { return b * a; } return a;",Wde=`
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
`;function ov(e,t){let r=t?B9:Fde;return t?`
var resultTemp = vec4<f32>(${e}(a, b));
let isNaN = isnanVec4(a) | isnanVec4(b);
`+r+`
return resultTemp;
`:r+`
return ${e}(a, b);
`}function jh(e,t){switch(e){case 0:return Ade;case 1:return fde;case 2:return bde;case 3:return yde;case 4:return t?wde:vde;case 5:return t?Ide:kde;case 6:return t?Cde:Sde;case 7:return t?Nde:Tde;case 8:return t?Rde:Ede;case 9:return t?Mde:$de;case 10:return t?Ode:zde;case 11:return xde;case 12:return t?_de:Pde;case 14:return t?Wde:Bde;case 15:return ov("max",t);case 16:return ov("min",t);case 13:return t?Lde:Dde;case 17:return mde;case 18:return gde;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var Vde="return abs(a);",Ude="return ceil(a);",Gde="return cos(a);",jde=`
let e2x = exp(-a);
return (e2x + 1.0 / e2x) / 2.0;
`,Hde="return exp(a) - 1.0;",qde="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",Xde=`
var resFloat = exp(a) - vec4<f32>(1.0);
if (a.r >= 0.0) {
resFloat.r = a.r;
}
if (a.g >= 0.0) {
resFloat.g = a.g;
}
if (a.b >= 0.0) {
resFloat.b = a.b;
}
if (a.a >= 0.0) {
resFloat.a = a.a;
}
return resFloat;
`,Kde="return exp(a);",Zde="return floor(a);",Yde="return a;",Jde=`if (a < 0.0) { return 1.0/0.0; }
return log(a);`,Qde="return f32(!(a >= 1.0));",epe="return -a;",tpe="if (a < 0.0) { return uniforms.alpha * a; } return a;",rpe=`
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
return (aLessThanZero * (uniforms.alpha * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
`,npe="return select(a, 0.0, a < 0.0);",ape="return clamp(a, 0.0, 6.0);",spe="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",ipe=`
return select(a, vec4<f32>(0.0), a < vec4<f32>(0.0));
`,ope="return 1.0/sqrt(a);",lpe="return 1.0 / (1.0 + exp(-1.0 * a));",upe="return sin(a);",dpe=`
let e2x = exp(a);
return (e2x - 1.0 / e2x) / 2.0;
`,ppe="return sqrt(a);",hpe="return a * a;",cpe=`
let e2x = exp(-2.0 * abs(a));
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
`,fpe="return f32(i32((a)));";function bo(e,t){switch(e){case 0:return Vde;case 2:return Gde;case 3:return jde;case 1:return Ude;case 4:return t?Xde:qde;case 5:return Kde;case 6:return Hde;case 7:return Zde;case 8:return Yde;case 9:return Jde;case 10:return Qde;case 11:return epe;case 14:return t?rpe:tpe;case 12:return t?ipe:npe;case 13:return t?spe:ape;case 15:return ope;case 18:return lpe;case 16:return upe;case 17:return dpe;case 19:return ppe;case 20:return hpe;case 21:return cpe;case 22:return fpe;default:throw new Error(`BinaryType ${e} is not implemented!`)}}function Ki(e,t=!1){if(e===null)return null;if(e==="linear")return bo(8);if(e==="relu")return bo(12,t);if(e==="elu")return bo(4,t);if(e==="relu6")return bo(13,t);if(e==="prelu")return jh(14,t);if(e==="sigmoid")return bo(18,t);if(e==="leakyrelu")return bo(14,t);throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`)}function mpe(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let r=e.length,n=e.map(s=>`${t}[${s}]`),a=new Array(r-1);a[r-2]=n[r-1];for(let s=r-3;s>=0;--s)a[s]=`(${a[s+1]} * ${n[s+1]})`;return a}function xr(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";if(e===5)return"vec5";if(e===6)return"vec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Ms(e){if(e===0)return"x";if(e===1)return"y";if(e===2)return"z";if(e===3)return"w";if(e===4)return"u";if(e===5)return"v";throw Error(`Index ${e} is not yet supported`)}function m0(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function C5(){return`
@stage(compute) @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
`}function Wl(){return`
${C5()}
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(num_workgroups) NumWorkgroups: vec3<u32>) {
localId = LocalId;
globalId = GlobalId;
numWorkgroups = NumWorkgroups;
`}function rt(){return`
${Wl()}
let index = getGlobalIndex();
`}function gpe(e,t,r,n=!1){let a=[];if(a.push(`
let workGroupSizeX = ${r.workGroupSize[0]}u;
let workGroupSizeY = ${r.workGroupSize[1]}u;
let workGroupSizeZ = ${r.workGroupSize[2]}u;
var<private> localId: vec3<u32>;
var<private> globalId: vec3<u32>;
var<private> numWorkgroups: vec3<u32>;
// Only used when the y/z dimension of workgroup size is 1.
fn getGlobalIndex() -> i32 {
if (numWorkgroups.y == 1u && numWorkgroups.z == 1u) {
return i32(globalId.x);
}
let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
localId.y * workGroupSizeX + localId.x;
let workGroupID = (globalId - localId)/vec3<u32>(
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +
workGroupID.y * numWorkgroups.x + workGroupID.x) *
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
localInvocationIndex);
}
`),n===!0)return a.push(`
struct Uniform {
size : i32,
numChannels : i32,
outShapeStrides : vec2<i32>,
dispatchSize : vec3<u32>,
};
@group(0) @binding(0) var<storage, write> result: array<${m0(t.dtype,r.isVec4)}>;
@group(0) @binding(2) var<uniform> uniforms: Uniform;
`),[lv,a.join(`
`),uv(t.shape),r.getUserCode()].join(`
`);let s=!1,i=!1,o="struct Uniforms { NAN : f32, ";r.variableNames.forEach((m,f)=>{let g=xr(e[f].shape.length);(g==="vec5"||g==="vec6")&&(i=!0),(s||i)&&(o+="@align(16) "),s=i,o+=`${m.charAt(0).toLowerCase()+m.slice(1)}Shape : ${g}, `});let l=xr(t.shape.length);i=l==="vec5"||l==="vec6",(s||i)&&(o+="@align(16) "),s=i,o+=`outShape : ${l}, `;let u=t.shape.length-1,d=xr(u);i=d==="vec5"||d==="vec6",(s||i)&&(o+="@align(16) "),s=i,o+=`
outShapeStrides: ${d}, `,r.size&&(s&&(o+="@align(16) "),s=!1,o+="size : i32, "),r.uniforms&&(s&&(o+="@align(16) "),o+=r.uniforms),o+="};",a.push(o),r.atomic?a.push(`
@group(0) @binding(0) var<storage, read_write> result: array<atomic<i32>>;
`):a.push(`
@group(0) @binding(0) var<storage, write> result: array<${m0(t.dtype,r.isVec4)}>;
`),r.variableNames.forEach((m,f)=>{a.push(`
@group(0) @binding(${1+f}) var<storage, read> ${m}: array<${m0(e[f].dtype,r.isVec4)}>;
`)}),o!==""&&a.push(`
@group(0) @binding(${1+r.variableNames.length}) var<uniform> uniforms: Uniforms;
`);let[h,p]=wpe(t.shape,r.dispatchLayout),c=[lv,a.join(`
`),uv(t.shape),h,ype(t.shape.length)];if(r.atomic||c.push(Ape(t.shape,t.dtype,r.isVec4)),p===t.shape.length){let m=e.map(f=>xpe(f,t.shape,r.isVec4,r.dispatchLayout.x.length===t.shape.length)).join(`
`);c.push(m)}return c.push(r.getUserCode()),c.join(`
`)}var lv=`
struct vec5 {x: i32, y: i32, z: i32, w: i32, u: i32};
struct vec6 {x: i32, y: i32, z: i32, w: i32, u: i32, v: i32};
// Checks whether coordinates lie within the bounds of the shape.
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
return all(coord >= vec2<i32>(0)) && all(coord < shape);
}
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
return all(coord >= vec3<i32>(0)) && all(coord < shape);
}
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
return all(coord >= vec4<i32>(0)) && all(coord < shape);
}
fn getIndexFromCoords1D(coord : i32, shape : i32) -> i32 {
return coord;
}
fn getIndexFromCoords2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
return dot(coords, vec2<i32>(shape.y, 1));
}
fn getIndexFromCoords3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
return dot(coords, vec3<i32>(shape.y * shape.z, shape.z, 1));
}
fn getIndexFromCoords4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
return dot(coords, vec4<i32>(
shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));
}
fn getIndexFromCoords5D(coords : vec5, shape : vec5) -> i32 {
let shapeStrides: vec5 = vec5(shape.y * shape.z * shape.w * shape.u, shape.z * shape.w * shape.u, shape.w * shape.u, shape.u, 1);
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u;
}
fn getIndexFromCoords6D(coords : vec6, shape : vec6) -> i32 {
let shapeStrides: vec6 = vec6(shape.y * shape.z * shape.w * shape.u * shape.v, shape.z * shape.w * shape.u * shape.v, shape.w * shape.u * shape.v, shape.u * shape.v, shape.v, 1);
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u + coords.v*shapeStrides.v;
}
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
var res: i32 = a / b;
let mod: i32 = a % b;
if (sign < 0. && mod != 0) {
res = res - 1;
}
return res;
}
// NaN defination in IEEE 754-1985 is :
// - sign = either 0 or 1.
// - biased exponent = all 1 bits.
// - fraction = anything except all 0 bits (since all 0 bits represents infinity).
// https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers
fn isnan(val: f32) -> bool {
let floatToUint: u32 = bitcast<u32>(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
fn isnanVec4(val : vec4<f32>) -> vec4<bool> {
return vec4<bool>(isnan(val[0]), isnan(val[1]), isnan(val[2]), isnan(val[3]));
}
`;function ype(e){let t="";switch(e){case 0:case 1:t+=`
fn getOutputIndexFromCoords(coords : i32) -> i32 {
return coords;
}
`;break;case 2:t+=`
fn getOutputIndexFromCoords(coords : vec2<i32>) -> i32 {
return dot(coords, vec2<i32>(uniforms.outShapeStrides, 1));
}
`;break;case 3:t+=`
fn getOutputIndexFromCoords(coords : vec3<i32>) -> i32 {
return dot(coords, vec3<i32>(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));
}
`;break;case 4:t+=`
fn getOutputIndexFromCoords(coords : vec4<i32>) -> i32 {
return dot(coords, vec4<i32>(
uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));
}
`;break;case 5:t+=`
fn getOutputIndexFromCoords(coords : vec5) -> i32 {
return coords.x * uniforms.outShapeStrides.x +
coords.y * uniforms.outShapeStrides.y +
coords.z * uniforms.outShapeStrides.z +
coords.w * uniforms.outShapeStrides.w +
coords.u;
}
`;break;case 6:t+=`
fn getOutputIndexFromCoords(coords : vec6) -> i32 {
return coords.x * uniforms.outShapeStrides.x +
coords.y * uniforms.outShapeStrides.y +
coords.z * uniforms.outShapeStrides.z +
coords.w * uniforms.outShapeStrides.w +
coords.u * uniforms.outShapeStrides.u +
coords.v;
}
`;break;default:v.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function Ape(e,t,r){let n=e.length,a=m0(t,r),s;if(r?s=`fn setOutputAtIndex(flatIndex : i32, value : vec4<f32>) {
result[flatIndex] = ${a}(value);
}
fn setOutputAtIndexI32(flatIndex : i32, value : vec4<i32>) {
result[flatIndex] = ${a}(value);
}`:s=`fn setOutputAtIndex(flatIndex : i32, value : f32) {
result[flatIndex] = ${a}(value);
}
fn setOutputAtIndexI32(flatIndex : i32, value : i32) {
result[flatIndex] = ${a}(value);
}`,n>=2){let i=["d0","d1","d2","d3","d4","d5"].slice(0,n),o=xr(n);r?s+=`
fn setOutputAtCoords(${i.map(l=>`${l} : i32`).join(", ")}, value : vec4<f32>) {
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
setOutputAtIndex(flatIndex / 4, value);
}
fn setOutputAtCoordsI32(${i.map(l=>`${l} : i32`).join(", ")}, value : vec4<i32>) {
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
setOutputAtIndexI32(flatIndex / 4, value);
}
`:s+=`
fn setOutputAtCoords(${i.map(l=>`${l} : i32`).join(", ")}, value : f32) {
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
setOutputAtIndex(flatIndex, value);
}
fn setOutputAtCoordsI32(${i.map(l=>`${l} : i32`).join(", ")}, value : i32) {
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
setOutputAtIndexI32(flatIndex, value);
}
`}return s}function xpe(e,t,r,n){let a=bpe(e,r);return e.shape.length<=t.length&&(a+=vpe(e,t,r,n)),a}function bpe(e,t){let r=e.name,n=e.shape.length,a=xr(n),s="get"+r.charAt(0).toUpperCase()+r.slice(1),i=["d0","d1","d2","d3","d4","d5"].slice(0,n),o=i.map(d=>`${d} : i32`).join(", ");if(n<1)return t?`
fn ${s}() -> vec4<f32> {
return vec4<f32>(${r}[0]);
}
`:`
fn ${s}() ->f32 {
return f32(${r}[0]);
}
`;let l=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,u=`${n}D`;return n===0&&(u="1D"),t?`
fn ${s}(${o}) -> vec4<f32> {
return vec4<f32>(${r}[getIndexFromCoords${u}(${a}(${i.join(",")}),
${l}) / 4]);
}
`:`
fn ${s}(${o}) -> f32 {
return f32(${r}[getIndexFromCoords${u}(${a}(${i.join(",")}),
${l})]);
}
`}function vpe(e,t,r,n){let a=e.name,s=a.charAt(0).toUpperCase()+a.slice(1),i="get"+s+"ByOutput",o=e.shape.length,l=t.length,u=xr(l);if(v.arraysEqual(e.shape,t)&&n)return r?`
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
return vec4<f32>(${a}[globalIndex]);
}
fn ${i}Coords(coords : ${u}) -> vec4<f32> {
return vec4<f32>(${a}[${l>1?"getOutputIndexFromCoords(coords)":"coords"} / 4]);
}
`:`
fn ${i}Index(globalIndex : i32) -> f32 {
return f32(${a}[globalIndex]);
}
fn ${i}Coords(coords : ${u}) -> f32 {
return f32(${a}[${l>1?"getOutputIndexFromCoords(coords)":"coords"}]);
}
`;let d=C.getBroadcastDims(e.shape,t),h=l-o,p="";if(o===0)return r?`
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
return get${s}();
}
fn ${i}Coords(coords : ${u}) -> vec4<f32> {
return get${s}();
}
`:`
fn ${i}Index(globalIndex : i32) -> f32{
return get${s}();
}
fn ${i}Coords(coords : ${u}) -> f32{
return get${s}();
}
`;l<2&&d.length>=1?p="coords = 0;":p=d.map(g=>`coords.${Ms(g+h)} = 0;`).join(`
`);let c="";if(l<2&&o>0)c="coords";else if(l>1){let g=xr(o),y=e.shape.map((A,x)=>`coords.${Ms(x+h)}`).join(", ");c=`${g}(${y})`}else c="coords";let m=`uniforms.${a.charAt(0).toLowerCase()+a.slice(1)}Shape`,f=`${o}D`;return r?`
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
var coords = getCoordsFromIndex(globalIndex);
${p}
return ${a}[getIndexFromCoords${f}(${c}, ${m}) / 4];
}
fn ${i}Coords(coordsIn : ${u}) -> vec4<f32> {
var coords = coordsIn;
${p}
return ${a}[getIndexFromCoords${f}(${c}, ${m}) / 4];
}
`:`
fn ${i}Index(globalIndex : i32) -> f32 {
var coords = getCoordsFromIndex(globalIndex);
${p}
return f32(${a}[getIndexFromCoords${f}(${c}, ${m})]);
}
fn ${i}Coords(coordsIn : ${u}) -> f32 {
var coords = coordsIn;
${p}
return f32(${a}[getIndexFromCoords${f}(${c}, ${m})]);
}
`}function wpe(e,t){let{x:r,y:n=[],z:a=[]}=t,s=e.length;if(r.length===s)return[`fn getOutputCoords() -> ${xr(s)}{
let globalIndex = getGlobalIndex();
return getCoordsFromIndex(globalIndex);
}
`,s];let i="",o=[r,n,a],l=0;for(let p=0;p<o.length;p++){let c=o[p];if(c.length!==0)if(l+=c.length,c.length===1)i+=`let d${c[0]} = i32(globalId[${p}]);`;else{let m=mpe(c,"uniforms.outShape");i+=`var index${p} = i32(globalId[${p}]);`;for(let f=0;f<m.length;f++)i+=`let d${c[f]} = index${p} / ${m[f]};`,f===m.length-1?i+=`let d${c[f+1]} = index${p} - d${c[f]} * ${m[f]};`:i+=`index${p} = index${p} - d${c[f]} * ${m[f]};`}}let u=[];for(let p=0;p<l;p++)u.push(`d${p}`);let d=xr(l),h=`fn getOutputCoords() -> ${d} {
${i}
`;return u.length===0?h+=`return ${d}(0); }`:h+=`return ${d}(${u.join(",")}); }`,[h,l]}function uv(e){let t=e.length;if(t<=1)return"fn getCoordsFromIndex(index : i32) -> i32 { return index; }";let r=v.computeStrides(e),n=xr(t),a=[];for(let i=0;i<t;i++)a.push(`d${i}`);if(r.length===1)return` fn getCoordsFromIndex(index : i32) -> vec2<i32> {
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
return vec2<i32>(d0, d1);
}`;let s;return s="var index2 = index;"+r.map((i,o)=>{let l=`let ${a[o]} = index2 / uniforms.outShapeStrides.${Ms(o)}`,u=o===r.length-1?`let ${a[o+1]} = index2 - ${a[o]} * uniforms.outShapeStrides.${Ms(o)}`:`index2 = index2 - ${a[o]} * uniforms.outShapeStrides.${Ms(o)}`;return`${l}; ${u};`}).join(""),`
fn getCoordsFromIndex(index : i32) -> ${n} {
${s}
return ${n}(${a.join(",")});
}
`}var W9={};Be(W9,{ArrayBufferToTypedArray:()=>U9,GPUBytesPerElement:()=>g0,computeDispatch:()=>Oe,computeWorkGroupSizeForConv2d:()=>T5,computeWorkGroupSizeForMatMul:()=>V9,computeWorkPerThreadForConv2d:()=>N5,flatDispatchLayout:()=>Ye,isWebGPUSupported:()=>E5,tilesFitEvenlyIntoShape:()=>Za});var $o=e=>{let t=1;for(let r=0;r<e.length;r++)t*=e[r];return t};function Za(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((r,n)=>r%e[n]===0)}function Oe(e,t,r=[1,1,1],n=[1,1,1]){let[a,s,i]=[Math.ceil($o(e.x.map(o=>t[o]))/(r[0]*n[0])),e.y?Math.ceil($o(e.y.map(o=>t[o]))/(r[1]*n[1])):1,e.z?Math.ceil($o(e.z.map(o=>t[o]))/(r[2]*n[2])):1];return[a,s,i]}function T5(e,t){let r=$o(e.x.map(a=>t[a])),n=$o(e.y.map(a=>t[a]));return r<=4?[4,16,1]:n<=4?[16,4,1]:[16,16,1]}function V9(e,t,r){return e===1?[32,1,1]:r===1?[1,32,1]:[8,8,1]}function N5(e,t){let r=$o(e.x.map(a=>t[a])),n=$o(e.y.map(a=>t[a]));return r<=4?[1,2,1]:n<=4?[2,1,1]:[2,2,1]}function Ye(e){return{x:e.map((t,r)=>r)}}function g0(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function U9(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function E5(){return(typeof window!="undefined"||typeof WorkerGlobalScope!="undefined")&&!!navigator.gpu}function G9(e,t,r,n){return v.assert(n%4===0&&e[0]===4,()=>"tileInner must be divisible by 4. And ColPerThread must be 4"),`
var<workgroup> mm_Asub : array<array<vec4<f32>, ${n/e[0]}>, ${t}>;
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${r/e[0]}>, ${n}>;
let RowPerThread = ${e[1]};
let ColPerThread = ${e[0]};
let TileInner = ${n};
${Wl()}
let tileRow = ${t===1?"0":"i32(localId.y) * RowPerThread"};
let tileCol = i32(localId.x);
let globalRow = ${t===1?"0":"i32(globalId.y) * RowPerThread"};
let globalCol = i32(globalId.x);
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
var acc: array<vec4<f32>, RowPerThread>;
var ACached : vec4<f32>;
var BCached : array<vec4<f32>, 4>;
// Loop over shared dimension.
var globalColA = tileCol;
let RowPerThreadB = TileInner / i32(workGroupSizeY);
let tileRowB = i32(localId.y) * RowPerThreadB;
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
let inputRow = tileRow + innerRow;
let inputCol = tileCol;
mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, globalColA, globalId);
}
globalColA = globalColA + TileInner / ColPerThread;
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol;
mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol, globalId);
}
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < TileInner / ColPerThread; k = k + 1) {
BCached[0] = mm_Bsub[k * ColPerThread][tileCol];
BCached[1] = mm_Bsub[k * ColPerThread + 1][tileCol];
BCached[2] = mm_Bsub[k * ColPerThread + 2][tileCol];
BCached[3] = mm_Bsub[k * ColPerThread + 3][tileCol];
for (var i = 0; i < RowPerThread; i = i + 1) {
ACached = mm_Asub[tileRow + i][k];
acc[i] = BCached[0] * ACached.x + acc[i];
acc[i] = BCached[1] * ACached.y + acc[i];
acc[i] = BCached[2] * ACached.z + acc[i];
acc[i] = BCached[3] * ACached.w + acc[i];
}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
mm_write(globalRow + innerRow,
globalCol,
acc[innerRow], globalId);
}
}`}var kpe=class{constructor(e,t,r,n,a,s=null,i=null,o=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread);let l=s!=null,u=o!=null;l&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.tileAOuter=t[1]===1?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.tileBOuter,this.aShape=e,this.addBias=l,this.activation=i,this.hasPreluActivationWeights=u,this.batchAEqualOne=n,this.batchBEqualOne=a,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`matMulPackedVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getShapeFit(){let e=this.aShape[2],t=this.outputShape[2],r=[this.outputShape[0],e,t],n=[this.tileAOuter,this.tileInner],a=[this.tileInner,this.tileBOuter];return[Za(n,this.aShape.slice(1)),Za(a,r.slice(1))]}getUserCode(){let e=this.fitA?"return A[batch * batchASize + row * uniforms.dimInner / 4 + col]":`if (coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A[batch * batchASize + row * uniforms.dimInner / 4 + col];
}
return vec4<f32>(0.0)`,t=this.fitB?"return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col];
}
return vec4<f32>(0.0)`,r="",n="";if(this.activation){let s=Ki(this.activation,this.isVec4);this.hasPreluActivationWeights?r=`fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
let b = getPreluActivationWeightsByOutputCoords(outCoord);
${s}
}`:r=`
fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
${s}
}`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
${r}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
${this.batchAEqualOne?`
let batchASize = 0;
let batch = 0;
`:`
let batchASize = uniforms.aShape[1] * uniforms.aShape[2] / 4;
let batch = i32(globalId.z);
`}
${e};
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
${this.batchBEqualOne?`
let batchBSize = 0;
let batch = 0;
`:`
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2] / 4;
let batch = i32(globalId.z);
`}
${t};
}
fn mm_write(row : i32, col : i32, valueIn : vec4<f32>, globalId : vec3<u32>) {
if (row < uniforms.aShape[1] && col * 4 < uniforms.bShape[2])
{
var value = valueIn;
let batch = i32(globalId.z);
let outCoord = vec3<i32>(batch, row, col * 4);
${a}
${n}
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], value);
}
}
${G9(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner)}
`}};function R5(e,t){let r=t[1]*e[1],n=t[0]*e[0],a=r>n?r:n;return`
var<workgroup> mm_Asub : array<array<f32, ${a}>, ${r}>;
var<workgroup> mm_Bsub : array<array<f32, ${n}>, ${a}>;
${Wl()}
let tileRow = i32(localId.y) * ${e[1]};
let tileCol = i32(localId.x) * ${e[0]};
let globalRow = i32(globalId.y) * ${e[1]};
let globalCol = i32(globalId.x) * ${e[0]};
let numTiles = (uniforms.dimInner - 1) / ${a} + 1;
var acc : array<array<f32, ${e[0]}>, ${e[1]}>;
var ACached : f32;
var BCached : array<f32, ${e[0]}>;
// Without this initialization strange values show up in acc.
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = 0.0;
}
}
let ColPerThreadA = ${a} / ${t[0]};
let tileColA = i32(localId.x) * ColPerThreadA;
let RowPerThreadB = ${a} / ${t[1]};
let tileRowB = i32(localId.y) * RowPerThreadB;
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ColPerThreadA; innerCol = innerCol + 1) {
let inputRow = tileRow + innerRow;
let inputCol = tileColA + innerCol;
mm_Asub[inputRow][inputCol] = mm_readA(
globalRow + innerRow,
t * ${a} + inputCol, globalId);
}
}
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol + innerCol;
mm_Bsub[inputRow][inputCol] = mm_readB(
t * ${a} + inputRow,
globalCol + innerCol, globalId);
}
}
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < ${a}; k = k + 1) {
for (var inner = 0; inner < ${e[0]}; inner = inner + 1) {
BCached[inner] = mm_Bsub[k][tileCol + inner];
}
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
ACached = mm_Asub[tileRow + innerRow][k];
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
}
}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
if ((globalCol + innerCol) < uniforms.dimBOuter &&
(globalRow + innerRow) < uniforms.dimAOuter) {
mm_write(globalRow + innerRow,
globalCol + innerCol,
acc[innerRow][innerCol], globalId);
}
}
}
}
`}function Ipe(e){return`
let TileSize = ${e[0]*4};
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
${Wl()}
let tileCol = i32(localId.x);
let globalCol = i32(globalId.x);
let globalRow = i32(globalId.y);
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
// Without this initialization strange values show up in acc.
var acc = 0.0;
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
let colA = t * TileSize + tileCol * 4;
mm_Asub[tileCol] = vec4<f32>(mm_readA(globalRow, colA, globalId),
mm_readA(globalRow, colA + 1, globalId),
mm_readA(globalRow, colA + 2, globalId),
mm_readA(globalRow, colA + 3, globalId));
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < TileSize / 4; k = k + 1) {
let rowB = t * TileSize + k * 4;
let BCached = vec4<f32>(mm_readB(rowB, globalCol, globalId),
mm_readB(rowB + 1, globalCol, globalId),
mm_readB(rowB + 2, globalCol, globalId),
mm_readB(rowB + 3, globalCol, globalId));
let ACached = mm_Asub[k];
acc = acc + dot(ACached, BCached);
}
workgroupBarrier();
}
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
mm_write(globalRow, globalCol, acc, globalId);
}
}
`}var Spe=class{constructor(e,t,r,n,a,s=!1,i=!1,o=null,l=null,u=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let d=s?e[1]:e[2];this.workGroupSize=V9(t[1],d,t[2]),(t[1]===1||t[2]===1)&&(r=1),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[r,r,1]),v.arraysEqual(this.dispatch,[1,1,1])&&(r=1,this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[r,r,1]));let h=o!=null,p=u!=null;h&&this.variableNames.push("bias"),p&&this.variableNames.push("preluActivationWeights"),this.workPerThread=r,this.aShape=e,this.transposeA=s,this.transposeB=i,this.addBias=h,this.activation=l,this.hasPreluActivationWeights=p,this.batchAEqualOne=n,this.batchBEqualOne=a;let c=this.outputShape[2],m=this.transposeB?[this.outputShape[0],c,d]:[this.outputShape[0],d,c];[this.fitA,this.fitB]=this.getShapeFit(m),this.shaderKey=`matMulPacked_${this.workPerThread}_${s}_${i}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getShapeFit(e){let t=this.workGroupSize[1]*this.workPerThread,r=this.workGroupSize[0]*this.workPerThread,n=t>r?t:r;this.outputShape[1]===1&&(n*=4),v.assert(n%this.workGroupSize[0]===0&&n%this.workGroupSize[1]===0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let a=[t,n],s=[n,r];return[Za(a,this.aShape.slice(1)),Za(s,e.slice(1))]}getUserCode(){let e;this.transposeA===!1?e=this.fitA?"return A[batch * batchASize + row * uniforms.dimInner + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A[batch * batchASize + row * uniforms.dimInner + col];
}
return 0.0;`:e=this.fitA?"return A[batch * batchASize + col * uniforms.dimAOuter + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A[batch* batchASize + col * uniforms.dimAOuter + row];
}
return 0.0;`;let t;this.transposeB===!1?t=this.fitB?"return B[batch * batchBSize + row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B[batch * batchBSize + row * uniforms.dimBOuter + col];
}
return 0.0;`:t=this.fitB?"return B[batch * batchBSize + col * uniforms.dimInner + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B[batch * batchBSize + col * uniforms.dimInner + row];
}
return 0.0;`;let r="",n="";if(this.activation){let s=Ki(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
let b = getPreluActivationWeightsByOutputCoords(outCoord);
${s}
}`:r=`
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
${s}
}
`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
${r}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
${this.batchAEqualOne?`
let batch = 0;
let batchASize = 0;
`:`
let batch = i32(globalId.z);
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
`}
${e}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
${this.batchBEqualOne?`
let batch = 0;
let batchBSize = 0;
`:`
let batch = i32(globalId.z);
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
`}
${t}
}
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
var value = valueIn;
let batch = i32(globalId.z);
let outCoord = vec3<i32>(batch, row, col);
${a}
${n}
setOutputAtCoords(batch, row, col, value);
}
${this.outputShape[1]>1?R5([this.workPerThread,this.workPerThread,1],this.workGroupSize):Ipe(this.workGroupSize)}
`}};function Cpe(){return`
var<workgroup> sumValues : array<f32, workGroupSizeX>;
${Wl()}
let coords = getOutputCoords();
let batch = coords[0];
let row = coords[1];
let col = coords[2];
var sum = 0.0;
let Length = uniforms.dimInner;
for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {
let dataA = mm_readA(batch, row, k);
let dataB = mm_readB(batch, k, col);
sum = sum + dataA * dataB;
}
sumValues[localId.x] = sum;
workgroupBarrier();
for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;
currentSize = currentSize / 2u) {
if (localId.x < currentSize)
{
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
}
workgroupBarrier();
}
if (localId.x == 0u) {
sum = sumValues[0] + sumValues[1];
mm_write(batch, row, col, sum);
}
}
`}var Tpe=class{constructor(e,t,r,n=!1,a=!1,s=null,i=null,o=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize);let l=s!=null,u=o!=null;l&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.transposeA=n,this.transposeB=a,this.addBias=l,this.activation=i,this.hasPreluActivationWeights=u,this.batchAEqualOne=t,this.batchBEqualOne=r,this.shaderKey=`matMulReduce_${this.activation}_${n}_${a}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){let e;this.transposeA===!1?e="return f32(A[batch * batchASize + row * uniforms.dimInner + col]);":e="return f32(A[batch * batchASize + col * uniforms.dimAOuter + row]);";let t;this.transposeB===!1?t="return f32(B[batch * batchBSize + row * uniforms.dimBOuter + col]);":t="return f32(B[batch * batchBSize + col * uniforms.dimInner + row]);";let r="",n="";if(this.activation){let s=Ki(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
let b = getPreluActivationWeightsByOutputCoords(outCoord);
${s}
}`:r=`
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
${s}
}
`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
${r}
fn mm_readA(batchIn: i32, row : i32, col : i32) -> f32 {
${this.batchAEqualOne?`
let batchASize = 0;
let batch = 0;
`:`
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
let batch = batchIn;
`}
${e}
}
fn mm_readB(batchIn: i32, row : i32, col : i32) -> f32 {
${this.batchBEqualOne?`
let batch = 0;
let batchBSize = 0;
`:`
let batch = batchIn;
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
`}
${t}
}
fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) {
var value = valueIn;
let outCoord = vec3<i32>(batch, row, col);
${a}
${n}
setOutputAtCoords(batch, row, col, value);
}
${Cpe()}
`}};function Npe(e){let t=e[1]/2,r=e[0],n=t>r?t:r;return`
var<workgroup> mm_Asub1 : array<array<f32, ${n}>, ${t}>;
var<workgroup> mm_Bsub1 : array<array<f32, ${r}>, ${n}>;
var<workgroup> mm_Asub2 : array<array<f32, ${n}>, ${t}>;
var<workgroup> mm_Bsub2 : array<array<f32, ${r}>, ${n}>;
// If the output size is small for matrix multiplication, avoid to use vec4
// and handle some elements per thread to optimally utilize the ALU.
// Introduces two shared memory buffers, some logical threads could handle
// arithmetic operations and others handle IO operations between barrier api,
// makes ALUs and load/store units work simultaneously, could improves
// the performance.
${Wl()}
let tileRow = i32(localId.y);
let tileCol = i32(localId.x);
let globalRow = i32(globalId.y);
let globalCol = i32(globalId.x);
// uniforms.dimInner should be greater than 0.
let numTiles = (uniforms.dimInner - 1) / ${n} + 1;
var acc = 0.0;
var globalColA = tileCol;
var globalRowB = tileRow;
for (var t = 0; t < numTiles; t = t + 1) {
if (t == 0) {
if (tileRow < ${t}) {
// Load one tile of A and B into local memory.
// globalRow is always greater than or equal tileRow.
mm_Asub1[tileRow][tileCol] =
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
globalColA = globalColA + ${n};
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
globalRowB = globalRowB + ${n};
}
} else {
if (tileRow < ${t}) {
// Load one tile of A and B into local memory.
// globalRow is always greater than or equal tileRow.
mm_Asub1[tileRow][tileCol] =
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
globalColA = globalColA + ${n};
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
globalRowB = globalRowB + ${n};
} else {
// Compute acc values for a single thread.
for (var k = 0; k < ${n}; k = k + 1) {
let subRow = tileRow - ${t};
if (subRow < 0) {
continue;
}
acc = acc + mm_Asub2[subRow][k] * mm_Bsub2[k][tileCol];
}
}
}
workgroupBarrier();
if (t != 0) {
t = t + 1;
}
if (t < numTiles) {
if (tileRow < ${t}) {
// Load one tile of A and B into local memory.
// globalRow is always greater than or equal tileRow.
mm_Asub2[tileRow][tileCol] =
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
globalColA = globalColA + ${n};
mm_Bsub2[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
globalRowB = globalRowB + ${n};
} else {
// Compute acc values for a single thread.
for (var k = 0; k < ${n}; k = k + 1) {
let subRow = tileRow - ${t};
if (subRow < 0) {
continue;
}
acc = acc + mm_Asub1[subRow][k] * mm_Bsub1[k][tileCol];
}
}
}
workgroupBarrier();
}
let writeCol = (globalRow - tileRow) / 2 + tileRow - ${t};
if (tileRow >= ${t} && writeCol >= 0) {
mm_write(writeCol, globalCol, acc, globalId);
}
}
`}var Epe=class{constructor(e,t,r,n=null,a=null,s=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,16,1],v.assert(e[1]<=16||t[2]<=16,()=>"This program can be only used when A width or B Height are small"),this.outputShape=r,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(r[2]/this.workGroupSize[0]),Math.ceil(r[1]*2/this.workGroupSize[1]),r[0]];let i=n!=null;i&&this.variableNames.push("bias");let o=s!=null;o&&this.variableNames.push("preluActivationWeights"),this.addBias=i,this.activation=a,this.hasPreluActivationWeights=o,this.batchAEqualOne=e[0]===1,this.batchBEqualOne=t[0]===1,this.shaderKey=`matMulSmallOutputSize_${this.activation}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){let e=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A[batch * batchASize + row * uniforms.dimInner + col];
}
return 0.0;`,t=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B[batch * batchBSize + row * uniforms.dimBOuter + col];
}
return 0.0;`,r="",n="";if(this.activation){let s=Ki(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
let b = getPreluActivationWeightsByOutputCoords(outCoord);
${s}
}`:r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
${s}
}`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
${r}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
${this.batchAEqualOne?`
let batch = 0;
let batchASize = 0;
`:`
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
let batch = i32(globalId.z);
`}
${e}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
${this.batchBEqualOne?`
let batch = 0;
let batchBSize = 0;
`:`
let batch = i32(globalId.z);
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
`}
${t}
}
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimBOuter))) {
let batch = i32(globalId.z);
let outCoord = vec3<i32>(batch, row, col);
var value = valueIn;
${a}
${n}
setOutputAtCoords(batch, row, col, value);
}
}
${Npe(this.workGroupSize)}
`}};function et(e){let{inputs:t,attrs:r}=e,{x:n}=t,{shape:a}=r,s=v.sizeFromShape(n.shape),i=v.inferFromImplicitShape(a,s),o=v.sizeFromShape(i);return v.assert(s===o,()=>`The new shape (${i}) has ${o} elements and the old shape (${n.shape}) has ${s} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var Rpe={kernelName:fl,backendName:"webgpu",kernelFunc:et};function $5({a:e,b:t,transposeA:r,transposeB:n,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,d=t.shape.length,h=r?e.shape[u-2]:e.shape[u-1],p=n?t.shape[d-1]:t.shape[d-2],c=r?e.shape[u-1]:e.shape[u-2],m=n?t.shape[d-2]:t.shape[d-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(f),A=v.sizeFromShape(g),x=Rl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([c,m]);v.assert(h===p,()=>`Error in matMul: inner shapes (${h}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${r} and transposeB=${n} must match.`);let b=r?[y,h,c]:[y,c,h],w=n?[A,m,p]:[A,p,m],I=et({inputs:{x:e},backend:a,attrs:{shape:b}}),N=et({inputs:{x:t},backend:a,attrs:{shape:w}}),E=[I,N],R=Math.max(y,A),_=y===1,M=A===1,S=h%4===0&&m%4===0&&!r&&!n,z;c*m<=32?z=new Tpe([R,c,m],_,M,r,n,s,l,i):!r&&!n&&(c<=16&&(m<=512||p>=2*m)||m<=16&&(c<=512||h>=2*c))?z=new Epe(b,w,[R,c,m],s,l,i):S?z=new kpe(b,[R,c,m],Z().get("WEBGPU_MATMUL_WORK_PER_THREAD"),_,M,s,l,i):z=new Spe(b,[R,c,m],Z().get("WEBGPU_MATMUL_WORK_PER_THREAD"),_,M,r,n,s,l,i);let O=[I,N];s&&O.push(s),i&&O.push(i);let H=[{type:"int32",data:[c]},{type:"int32",data:[m]},{type:"int32",data:[h]}];l==="leakyrelu"&&(H.push({type:"float32",data:[o]}),z.uniforms+=" alpha : f32,");let K=a.runWebGPUProgram(z,O,e.dtype,H),D=et({inputs:{x:K},backend:a,attrs:{shape:x}});E.push(K);for(let Q of E)a.disposeData(Q.dataId);return D}function $pe(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n;return $5({a,b:s,transposeA:l,transposeB:u,backend:r,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:d})}var Mpe={kernelName:Ps,backendName:"webgpu",kernelFunc:$pe},dv=class{constructor(e,t,r){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=C.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
fn binaryOpComplex(
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
${jh(this.op,!1)}
}
${rt()}
if(index < uniforms.size) {
let areal = getARealByOutputIndex(index);
let aimag = getAImagByOutputIndex(index);
let breal = getBRealByOutputIndex(index);
let bimag = getBImagByOutputIndex(index);
setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag));
}
}
`}},Fpe=class{constructor(e,t,r,n){this.variableNames=["A","B"],this.size=!0;let a=256;this.workGroupSize=[a,1,1],this.outputShape=C.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Ye(this.outputShape),this.lastDimensionSize=n?r[0]:t[0],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4,this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.useSharedMemoryWithB=n,this.op=e,this.shaderKey=`binaryShared_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`}getUserCode(){let e=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",t=this.useSharedMemoryWithB?`let a = getAByOutputCoords(coords);
let b = sharedBuf[${e}];`:`let a = sharedBuf[${e}];
let b = getBByOutputCoords(coords);`;return`
fn binaryOperation(a : f32, b : f32) -> f32 {
${jh(this.op,!1)}
}
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
${rt()}
// Fill in the shared memory buffer. Here we need a loop to make sure
// that all data in A|B are uploaded when |sharedMemorySize| is larger
// than work group size.
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}[localIndex]);
}
workgroupBarrier();
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
${t}
setOutputAtIndex(flatIndex, binaryOperation(a, b));
}
}
}
`}},Ppe=class{constructor(e,t,r){this.variableNames=["A","B"],this.workPerThread=4,this.isVec4=!0,this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=C.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.op=e,this.shaderKey=`binaryVec4_${e}`}getUserCode(){return`
fn binaryOperation(a : vec4<f32>, b : vec4<f32>) -> vec4<f32> {
${jh(this.op,this.isVec4)}
}
${rt()}
if (index < uniforms.size) {
let a = getAByOutputIndex(index);
let b = getBByOutputIndex(index);
setOutputAtIndex(index, binaryOperation(a, b));
}
}
`}},j9=class{constructor(e,t,r){this.variableNames=["A","B"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=C.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binary_${e}`,this.op=e}getUserCode(){return`
fn binaryOperation(a : f32, b : f32) -> f32 {
${jh(this.op,!1)}
}
${rt()}
if (index < uniforms.size) {
let a = getAByOutputIndex(index);
let b = getBByOutputIndex(index);
setOutputAtIndex(index, binaryOperation(a, b));
}
}
`}};function pv(e,t,r){if(v.arraysEqual(t,r)&&v.sizeFromShape(t)%4===0)return new Ppe(e,t,r);let n=t.length===1&&r.length>1&&t[0]<1024,a=r.length===1&&t.length>1&&r[0]<1024;return n||a?new Fpe(e,t,r,a):new j9(e,t,r)}function zn(e){let{inputs:t}=e,{x:r}=t;return e.backend.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var _pe={kernelName:mi,backendName:"webgpu",kernelFunc:zn};function Fd(e){let{inputs:t,backend:r}=e,{real:n,imag:a}=t,s=r.makeTensorInfo(n.shape,"complex64"),i=r.tensorMap.get(s.dataId),o=zn({inputs:{x:n},backend:r}),l=zn({inputs:{x:a},backend:r});return i.complexTensorInfos={real:o,imag:l},s}var zpe={kernelName:eh,backendName:"webgpu",kernelFunc:Fd},Hh=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let r=128;this.workGroupSize=[r,1,1],this.outputShape=e,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
fn unaryOperation(a : f32) -> f32 {
${bo(this.op,!1)}
}
${rt()}
if (index < uniforms.size) {
let a = getAByOutputIndex(index);
setOutputAtIndex(index, unaryOperation(a));
}
}
`}};function kr({opType:e,cpuKernelImpl:t,dtype:r}){return({inputs:n,backend:a})=>{let{x:s}=n,i=a,o=r||s.dtype;if(i.shouldExecuteOnCPU([s])&&t!=null){let u=i.tensorMap.get(s.dataId),d=t(u.values,o);return i.makeTensorInfo(s.shape,o,d)}let l=new Hh(s.shape,e);return i.runWebGPUProgram(l,[s],o)}}function qr({opSnippet:e,cpuKernelImpl:t,supportsComplex:r=!1,dtype:n}){return({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(r&&i.dtype==="complex64"){let h=l.tensorMap.get(i.dataId),p=l.tensorMap.get(o.dataId),c,m;if(e!==0)[c,m]=[[h.complexTensorInfos.real,p.complexTensorInfos.real],[h.complexTensorInfos.imag,p.complexTensorInfos.imag]].map(g=>{let[y,A]=g,x={dataId:y.dataId,dtype:y.dtype,shape:i.shape},b={dataId:A.dataId,dtype:A.dtype,shape:o.shape},w=pv(e,i.shape,o.shape);return l.runWebGPUProgram(w,[x,b],Nr(y.dtype,A.dtype))});else{let g=new dv(17,i.shape,o.shape),y=new dv(18,i.shape,o.shape),A=[{dataId:h.complexTensorInfos.real.dataId,dtype:h.complexTensorInfos.real.dtype,shape:i.shape},{dataId:h.complexTensorInfos.imag.dataId,dtype:h.complexTensorInfos.imag.dtype,shape:i.shape},{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:o.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:o.shape}];c=l.runWebGPUProgram(g,A,"float32"),m=l.runWebGPUProgram(y,A,"float32")}let f=Fd({inputs:{real:c,imag:m},backend:l});return l.disposeData(c.dataId),l.disposeData(m.dataId),f}let u=n||Nr(i.dtype,o.dtype);if((i.dtype==="string"||o.dtype==="string"||l.shouldExecuteOnCPU([i,o]))&&t!=null){let h=l.tensorMap.get(i.dataId).values,p=l.tensorMap.get(o.dataId).values,c=i.dtype==="string"?C.fromUint8ToStringArray(h):h,m=i.dtype==="string"?C.fromUint8ToStringArray(p):p,[f,g]=t(i.shape,o.shape,c,m,u);return l.makeTensorInfo(g,u,f)}let d=pv(e,i.shape,o.shape);return l.runWebGPUProgram(d,[i,o],u)}}var{addImpl:Ope,ceilImpl:Dpe,concatImpl:Lpe,equalImpl:Bpe,expImpl:Wpe,expm1Impl:Vpe,floorImpl:Upe,gatherNdImpl:Gpe,gatherV2Impl:jpe,greaterEqualImpl:Hpe,greaterImpl:qpe,lessEqualImpl:Xpe,lessImpl:Kpe,logImpl:Zpe,maxImpl:Ype,maximumImpl:Jpe,minimumImpl:Qpe,multiplyImpl:ehe,negImpl:the,notEqualImpl:rhe,prodImpl:nhe,rangeImpl:ahe,rsqrtImpl:she,scatterImpl:ihe,simpleAbsImpl:ohe,sliceImpl:lhe,stridedSliceImpl:uhe,stringNGramsImpl:dhe,subImpl:phe,tileImpl:hhe,topKImpl:che,transposeImpl:fhe,uniqueImpl:zxe}=Sm,mhe=kr({opType:0,cpuKernelImpl:ohe}),ghe={kernelName:jo,backendName:"webgpu",kernelFunc:mhe},yhe=qr({opSnippet:1,cpuKernelImpl:Ope,supportsComplex:!0}),Ahe={kernelName:Ja,backendName:"webgpu",kernelFunc:yhe},xhe=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,r)=>`T${r}`),this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(r=>{e.push(`let v${r} = get${r}ByOutputCoords(coords);`)});let t=this.variableNames.map(r=>`v${r}`).join(" + ");return`
${rt()}
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
${e.join(`
`)}
setOutputAtIndex(flatIndex, ${t});
}
}
}
`}};function bhe(e){let{inputs:t,backend:r}=e,n=t;if(n.length===1)return zn({inputs:{x:n[0]},backend:r});let a=n.map(o=>o.dtype).reduce((o,l)=>Nr(o,l)),s=n.map(o=>o.shape),i=new xhe(s);return r.runWebGPUProgram(i,n,a)}var vhe={kernelName:Zs,backendName:"webgpu",kernelFunc:bhe},H9=class{constructor(e,t,r){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="infinityValue : f32,",this.size=!0;let n=[t];C.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),n,e.length),this.op=r==="min"?"<":">";let[a]=C.computeOutAndReduceShapes(e,n);this.outputShape=a.length===0?[1]:a,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,[1,1,1]),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=`
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
`,t=()=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape.${Ms(this.inputShape.length-1)}`,r=()=>{let n="";if(this.outputShape.length===1)this.inputShape.length!==1&&(n+="outputCoords,");else for(let a=0;a<this.outputShape.length;a++)n+=`outputCoords.${Ms(a)},`;return n};return`
fn DIV_CEIL(a : u32, b : u32) -> u32 {
return ((a - 1u) / b + 1u);
}
${e}
${rt()}
let outputIndex = index / i32(workGroupSizeX);
let reduceLength = ${t()};
var bestIndex = i32(localId.x);
var bestValue = uniforms.infinityValue;
let outputCoords = getCoordsFromIndex(outputIndex);
for (var k = i32(localId.x); k < reduceLength && outputIndex < uniforms.size;
k = k + i32(workGroupSizeX)) {
let candidate = getX(${r()} k);
if (!isnan(candidate) && candidate ${this.op} bestValue) {
bestValue = candidate;
bestIndex = k;
}
}
xBestValues[localId.x] = bestValue;
xBestIndices[localId.x] = bestIndex;
workgroupBarrier();
var reduceSize = min(u32(reduceLength), workGroupSizeX);
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
currentSize = reduceSize / 2u) {
let interval = DIV_CEIL(reduceSize, 2u);
if (localId.x < currentSize) {
let candidate = xBestValues[localId.x + interval];
if (candidate ${this.op} bestValue) {
bestValue = candidate;
xBestValues[localId.x] = bestValue;
xBestIndices[localId.x] = xBestIndices[localId.x + interval];
}
}
reduceSize = interval;
workgroupBarrier();
}
if (localId.x == 0u && outputIndex < uniforms.size) {
setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]);
}
}
`}},whe=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[t[n]];this.outputShape=r,this.dispatchLayout={x:[0],y:[1]},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
let TILE_DIM = ${this.workGroupSize[0]};
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
${C5()}
fn main(@builtin(local_invocation_id) localId : vec3<u32>,
@builtin(workgroup_id) workgroupId : vec3<u32>) {
var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);
var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);
let width = uniforms.outShape[0];
let height = uniforms.outShape[1];
if (x < width && y < height) {
tile[localId.y][localId.x] = A[y * width + x];
}
workgroupBarrier();
x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);
y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);
if (x < height && y < width) {
setOutputAtIndex((y * height + x), tile[localId.x]
[localId.y]);
}
}
`}},khe=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0;let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[t[n]];this.outputShape=r,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=xr(this.outputShape.length),t=Ihe(this.newDim);return`
${rt()}
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let resRC = getCoordsFromIndex(flatIndex);
setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D(
${e}(${t}), uniforms.aShape)]);
}
}
}
`}};function Ihe(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let r=new Array(t);for(let n=0;n<e.length;n++)r[e[n]]=`resRC.${Ms(n)}`;return r.join()}function Ya(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{perm:s}=n,i=r,o=a.shape.length,l=new Array(o);for(let d=0;d<l.length;d++)l[d]=a.shape[s[d]];if(r.shouldExecuteOnCPU([a])){let d=i.tensorMap.get(a.dataId).values,h=fhe(d,a.shape,a.dtype,s,l);return r.makeTensorInfo(l,a.dtype,h)}if(a.shape.length===2&&v.arraysEqual(s,[1,0])){let d=new whe(a.shape,s);return i.runWebGPUProgram(d,[a],a.dtype)}let u=new khe(a.shape,s);return i.runWebGPUProgram(u,[a],a.dtype)}var She={kernelName:Vi,backendName:"webgpu",kernelFunc:Ya};function Che(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=Ya({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let d=new H9(l.shape,i[0],"max"),h=[{type:"float32",data:[Number.NEGATIVE_INFINITY]}],p=r.runWebGPUProgram(d,[l],"int32",h);return u.forEach(c=>r.disposeData(c.dataId)),p}var The={kernelName:Ys,backendName:"webgpu",kernelFunc:Che};function Nhe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=Ya({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let d=new H9(l.shape,i[0],"min"),h=[{type:"float32",data:[Number.POSITIVE_INFINITY]}],p=r.runWebGPUProgram(d,[l],"int32",h);return u.forEach(c=>r.disposeData(c.dataId)),p}var Ehe={kernelName:Gu,backendName:"webgpu",kernelFunc:Nhe},q9=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>, pad : vec2<i32>, dilation : vec2<i32>, convDims : vec2<i32>, filterDims : vec2<i32>,",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
var count = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
let xR = xRCorner + wR;
if (xR < 0 || xR >= uniforms.convDims.x) {
continue;
}
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
let xC = xCCorner + wC;
if (xC < 0 || xC >= uniforms.convDims.y) {
continue;
}
let value = getX(batch, xR, xC, coords[3]);
${e}
}
}
setOutputAtIndex(index, ${t});
}
}
`}},X9=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>,",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let d = coords[3];
let xRCCorner = coords.yz * uniforms.stride;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
let value = getX(batch, xRCorner, xCCorner, d);
setOutputAtIndex(index, value);
}
}
`}};function Rhe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1,d=C.computePool2DInfo(a.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))return zn({inputs:{x:a},backend:r});let h,p=[{type:"int32",data:[d.strideHeight,d.strideWidth]}];return d.filterHeight===1&&d.filterWidth===1?h=new X9(d):(h=new q9(d,"avg"),p.push({type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.dilationHeight,d.dilationWidth]},{type:"int32",data:[d.inHeight,d.inWidth]},{type:"int32",data:[d.effectiveFilterHeight,d.effectiveFilterWidth]})),r.runWebGPUProgram(h,[a],a.dtype,p)}var $he={kernelName:Js,backendName:"webgpu",kernelFunc:Rhe};function Mhe(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;return $5({a,b:s,transposeA:i,transposeB:o,backend:r})}var Fhe={kernelName:Qs,backendName:"webgpu",kernelFunc:Mhe},Phe=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${xr(e.length)}, `,this.shaderKey="slice"}getUserCode(){let e=xr(this.rank),t=_he(this.rank),r;return this.start.length===1?r=this.outputShape.map((n,a)=>"sourceLoc = uniforms.start + coords;"):r=this.outputShape.map((n,a)=>`sourceLoc.${dy[a]} = uniforms.start[${a}] + coords.${dy[a]};`),`
${rt()}
if (index < uniforms.size) {
var sourceLoc : ${e};
let coords = getCoordsFromIndex(index);
${r.join(`
`)}
setOutputAtIndex(index, getSource(${t}));
}
}
`}},dy=["x","y","z","w","u","v"];function _he(e){if(e===1)return"sourceLoc";if(e<=6)return dy.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function Pd(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,size:i}=n,[o,l]=Ot.parseSliceParams(a,s,i);if(Ot.assertParamsValid(a,o,l),r.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=r.tensorMap.get(a.dataId),p=lhe(h.values,o,l,a.shape,a.dtype);return r.makeTensorInfo(l,a.dtype,p)}if(v.sizeFromShape(l)===0)return r.makeTensorInfo(l,a.dtype,[]);let u=new Phe(o,l),d=[{type:"int32",data:o}];return r.runWebGPUProgram(u,[a],a.dtype,d)}var zhe={kernelName:xl,backendName:"webgpu",kernelFunc:Pd},Ohe=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n;v.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let o=s.reduce((A,x)=>A*x),l=C.getReshaped(a.shape,s,o),u=C.getPermuted(l.length,s.length),d=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),p=C.getSliceSize(d,i,s.length),c=[],m=et({inputs:{x:a},backend:r,attrs:{shape:l}}),f=Ya({inputs:{x:m},backend:r,attrs:{perm:u}}),g=et({inputs:{x:f},backend:r,attrs:{shape:d}}),y=Pd({inputs:{x:g},backend:r,attrs:{begin:h,size:p}});return c.push(m),c.push(f),c.push(g),c.forEach(A=>r.disposeData(A.dataId)),y},Dhe={kernelName:Ho,backendName:"webgpu",kernelFunc:Ohe},K9=qr({opSnippet:10,dtype:"bool",cpuKernelImpl:rhe}),Lhe={kernelName:ll,backendName:"webgpu",kernelFunc:K9};function qh(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.tensorMap.get(n.dataId);return zn({inputs:{x:a.complexTensorInfos.real},backend:r})}var Bhe={kernelName:uh,backendName:"webgpu",kernelFunc:qh};function Whe(e,t){let r=new Hh(e.shape,22),n=t.runWebGPUProgram(r,[e],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function py(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dtype:s}=n;if(s==="complex64"){if(a.dtype==="complex64")return zn({inputs:{x:a},backend:r});let i=_t(a.shape),o=py({inputs:{x:a},backend:r,attrs:{dtype:"float32"}}),l=Fd({inputs:{real:o,imag:i},backend:r});return i.dispose(),r.disposeData(o.dataId),l}if(a.dtype==="complex64"){let i=qh({inputs:{input:a},backend:r}),o=py({inputs:{x:i},backend:r,attrs:{dtype:s}});return r.disposeData(i.dataId),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=zn({inputs:{x:a},backend:r});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return Whe(a,r);if(s==="bool"){let i=r.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=K9({inputs:{a,b:i},backend:r});return r.disposeData(i.dataId),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var Vhe={kernelName:ei,backendName:"webgpu",kernelFunc:py},Uhe=kr({opType:1,cpuKernelImpl:Dpe}),Ghe={kernelName:ti,backendName:"webgpu",kernelFunc:Uhe},jhe=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
${rt()}
if(index < uniforms.size) {
let value = getAByOutputIndex(index);
var clampedValue : vec4<f32>;
for (var i = 0; i < 4; i = i + 1) {
if (isnan(value[i])) {
clampedValue[i] = value[i];
} else {
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
}
}
setOutputAtIndex(index, clampedValue);
}
}
`}},Hhe=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return`
${rt()}
if(index < uniforms.size) {
let value = getAByOutputIndex(index);
if (isnan(value)) {
setOutputAtIndex(index, value);
return;
}
setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal));
}
}
`}};function qhe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=n,o,l=[{type:"float32",data:[s]},{type:"float32",data:[i]}];return v.sizeFromShape(a.shape)%4===0?o=new jhe(a.shape):o=new Hhe(a.shape),r.runWebGPUProgram(o,[a],a.dtype,l)}var Xhe={kernelName:Qa,backendName:"webgpu",kernelFunc:qhe},Khe=class{constructor(e){this.uniforms="",this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((t,r)=>`T${r}`),this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t<this.offsetLength;t++)this.uniforms+=`offset${t} : i32,`;this.shaderKey="concat"}getUserCode(){let e=[];if(this.offsetLength>0){e.push("if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }");for(let n=1;n<this.offsetLength;n++)e.push(`else if (yC < uniforms.offset${[n]}){ setOutputAtCoords(coords.x, coords.y, getT${n}(yR, yC - uniforms.offset${n-1})); }`);let t=this.offsetLength,r=this.offsetLength-1;e.push(`else { setOutputAtCoords(coords.x, coords.y, getT${t}(yR, yC - uniforms.offset${r})); }`)}else e.push("setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));");return`
${rt()}
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
let yR = coords.x;
let yC = coords.y;
${e.join(`
`)}
}
}
}
`}};function Pm(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.tensorMap.get(n.dataId);return zn({inputs:{x:a.complexTensorInfos.imag},backend:r})}var Zhe={kernelName:sh,backendName:"webgpu",kernelFunc:Pm};function hy(e,t,r){let n=e[0].dtype;if(n==="complex64"){let c=e.map(A=>qh({inputs:{input:A},backend:r})),m=e.map(A=>Pm({inputs:{input:A},backend:r})),f=hy(c,t,r),g=hy(m,t,r),y=Fd({inputs:{real:f,imag:g},backend:r});return c.forEach(A=>r.disposeData(A.dataId)),m.forEach(A=>r.disposeData(A.dataId)),r.disposeData(f.dataId),r.disposeData(g.dataId),y}let a=r.shouldExecuteOnCPU(e);if(n==="string"&&(a=!0),a){let c=e.map(b=>{let w=v.sizeFromShape(b.shape.slice(t));return et({inputs:{x:b},backend:r,attrs:{shape:[-1,w]}})}),m=c.map(b=>({vals:r.readSync(b.dataId),shape:b.shape})),f=C.computeOutShape(c.map(b=>b.shape),1),g=c[0].shape[0]===1,y=Lpe(m,f,n,g),A=C.computeOutShape(e.map(b=>b.shape),t),x=r.makeTensorInfo(A,n,y);return c.forEach(b=>r.disposeData(b.dataId)),x}let{tensors2D:s,outShape:i}=Yhe(e,t,r),o=s.map(c=>c.shape),l=new Khe(o),u=[],d=new Array(o.length-1);if(d.length>0){d[0]=o[0][1],u.push({type:"int32",data:[d[0]]});for(let c=1;c<d.length;c++)d[c]=d[c-1]+o[c][1],u.push({type:"int32",data:[d[c]]})}let h=r.runWebGPUProgram(l,s,s[0].dtype,u);s.forEach(c=>r.disposeData(c.dataId));let p=et({inputs:{x:h},backend:r,attrs:{shape:i}});return r.disposeData(h.dataId),p}function Yhe(e,t,r){let n=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>et({inputs:{x:a},backend:r,attrs:{shape:[v.sizeFromShape(a.shape.slice(0,t)),v.sizeFromShape(a.shape.slice(t))]}})),outShape:n}}function Z9(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n,s=v.parseAxisParam(a,t[0].shape)[0],i=C.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(i)===0)return r.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>v.sizeFromShape(u.shape)>0);if(o.length===1)return zn({inputs:{x:o[0]},backend:r});let l=o.map(u=>u.shape);return C.assertParamsConsistent(l,s),hy(o,s,r)}var Jhe={kernelName:qo,backendName:"webgpu",kernelFunc:Z9},Qhe=class{constructor(e,t=!1,r=null,n=!1){this.variableNames=["x","W"],this.uniforms=`filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,
dimAOuter : i32, dimBOuter : i32, dimInner : i32,`,this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.outputShape[1]===1?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivationWeights=n,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.tileAOuter=this.outputShape[1]===1?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.tileBOuter,[this.fitA,this.fitB]=this.getShapeFit(),this.remainder=this.convInfo.inChannels%4===0,this.shaderKey=`conv2DMMVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}_${this.remainder}`}getShapeFit(){let e=[this.tileAOuter,this.tileInner],t=[this.tileInner,this.tileBOuter],r=this.outputShape[1]*this.outputShape[2],n=this.outputShape[3],a=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[Za(e,[r,a]),Za(t,[a,n])]}getSampleAWithRemainder(e){return`let flatIndex${e} = getIndexFromCoords4D(coord, uniforms.xShape);
let divBy4Remainder${e} = flatIndex${e} % 4;
let divBy4Index${e} = flatIndex${e} / 4;
let curData${e} = x[divBy4Index${e}];
if (divBy4Remainder${e} == 0) {
temp = curData${e};
} else {
// TODO: This could end up being a redundant load with another one in
// the same shader invocation. Perhaps there's an opportunity for
// optimization
let nextData${e} = x[divBy4Index${e} + 1];
if (divBy4Remainder${e} == 1) {
temp = vec4<f32>(curData${e}.yzw, nextData${e}.x);
} else if (divBy4Remainder${e} == 2) {
temp = vec4<f32>(curData${e}.zw, nextData${e}.xy);
} else if (divBy4Remainder${e} == 3) {
temp = vec4<f32>(curData${e}.w, nextData${e}.xyz);
}
}
`}getUserCode(){let e=G9(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner),t=`let outRow = r / uniforms.outShape[2];
let outCol = r % uniforms.outShape[2];
let WRow = c / (uniforms.filterDims[1] * uniforms.xShape[3]);
let WCol = c / uniforms.xShape[3] % uniforms.filterDims[1];
let inChCoord = c % uniforms.xShape[3];
var coord = vec4<i32>(
batch,
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
inChCoord);
var resData = vec4<f32>(0.0);
${this.remainder?`// The bounds checking is always needed since we use it to pad zero for
// the 'same' padding type.
if (coordsInBounds4D(coord, uniforms.xShape)) {
resData = x[getIndexFromCoords4D(coord, uniforms.xShape) / 4];
} else {
resData = vec4<f32>(0.0); }`:`var temp = vec4<f32>(0.0);
${this.getSampleAWithRemainder(1)}
resData = temp;
if (WCol == (uniforms.filterDims[1] - 1)) {
coord = vec4<i32>(
coord.x, coord.y + 1, coord.z + 1 - uniforms.filterDims[1], 0);
${this.getSampleAWithRemainder(2)}
if (inChCoord == 0) {
resData = vec4<f32>(resData.xyz, temp.x);
} else if (inChCoord == 1) {
resData = vec4<f32>(resData.xy, temp.xy);
} else {
resData = vec4<f32>(resData.x, temp.xyz);
}
}
`}
return resData;`,r=this.fitA?`${t}`:`if (r < uniforms.dimAOuter && c < uniforms.dimInner) {
${t}
}
return vec4<f32>(0.0);
`,n=this.fitB?"return W[row * uniforms.dimBOuter / 4 + col];":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return W[row * uniforms.dimBOuter / 4 + col];
}
return vec4<f32>(0.0);
`,a="",s="";if(this.activation){let o=Ki(this.activation,this.isVec4);this.hasPreluActivationWeights?a=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
let b = getPreluActivationWeightsByOutputCoords(outCoord);
${o}
}`:a=`
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
${o}
}`,s="value = activation(value, outCoord);"}let i=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
${a}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
let r = row;
let c = col * 4;
var batch = i32(globalId.z);
${r}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
${n}
}
fn mm_write(row : i32, col : i32, valueInput : vec4<f32>, globalId : vec3<u32>) {
var batch = i32(globalId.z);
var value = valueInput;
if (row < uniforms.dimAOuter && col * 4 < uniforms.dimBOuter)
{
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col * 4);
${i}
${s}
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], outCoord[3],
value);
}
}
${e}
`}},ece=class{constructor(e,t=!1,r=null,n=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.outShape,this.isChannelsLast=e.dataFormat==="channelsLast",this.dispatchLayout=this.isChannelsLast?{x:[3],y:[1,2],z:[0]}:{x:[1],y:[2,3],z:[0]},this.workGroupSize=T5(this.dispatchLayout,this.outputShape),this.elementsPerThread=N5(this.dispatchLayout,this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivationWeights=n,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}_${this.fitA}_${this.fitB}_${this.isChannelsLast}`}getShapeFit(){let e=this.workGroupSize[1]*this.elementsPerThread[1],t=this.workGroupSize[0]*this.elementsPerThread[0],r=e>t?e:t;v.assert(r%this.workGroupSize[0]===0&&r%this.workGroupSize[1]===0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let n=[e,r],a=[r,t],s=this.convInfo.outHeight*this.convInfo.outWidth,i=this.convInfo.outChannels,o=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[Za(n,[s,o]),Za(a,[o,i])]}getUserCode(){let e=this.isChannelsLast?`
let coord = vec4<i32>(batch, xRow, xCol, col % inChannels);
`:`
let coord = vec4<i32>(batch, col % inChannels, xRow, xCol);
`,t=this.isChannelsLast?`
let outCoord = vec4<i32>(
batch,
row / outWidth,
row % outWidth,
col);
`:`
let outCoord = vec4<i32>(
batch,
col,
row / outWidth,
row % outWidth);
`,r=R5(this.elementsPerThread,this.workGroupSize),n=`
let inChannels = uniforms.wShape[2];
let outWidth = ${this.isChannelsLast?"uniforms.outShape[2]":"uniforms.outShape[3]"};
let outRow = row / outWidth;
let outCol = row % outWidth;
let WRow = col / (uniforms.filterDims[1] * inChannels);
let WCol = col / inChannels % uniforms.filterDims[1];
let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0];
let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1];
${e}
// The bounds checking is always needed since we use it to pad zero for the
// 'same' padding type.
if(coordsInBounds4D(coord, uniforms.xShape)) {
return x[getIndexFromCoords4D(coord, uniforms.xShape)];
}
return 0.0;`,a=this.fitA?`${n}`:`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
${n}
}
return 0.0;
`,s=this.fitB?"return W[row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return W[row * uniforms.dimBOuter + col];
}
return 0.0;
`,i="",o="";if(this.activation){let u=Ki(this.activation,!1);this.hasPreluActivationWeights?i=`fn activation(a: f32, outCoord : vec4<i32>) -> f32 {
let b = getPreluActivationWeightsByOutputCoords(outCoord);
${u}
}`:i=`
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
${u}
}
`,o="value = activation(value, outCoord);"}let l=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
${i}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
var batch = i32(globalId.z);
${a}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
${s}
}
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
var batch = i32(globalId.z);
var value = valueInput;
let outWidth = ${this.isChannelsLast?"uniforms.outShape[2]":"uniforms.outShape[3]"};
${t}
${l}
${o}
result[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value;
}
${r}
`}};function tce({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=r.dataFormat==="channelsLast",u=!l,d=!1,h=l&&r.filterHeight===r.inHeight&&r.filterWidth===r.inWidth&&r.padInfo.type==="VALID",p,c;if(h){let g=r.inHeight*r.inWidth*r.inChannels;p=et({inputs:{x:e},backend:n,attrs:{shape:[1,r.batchSize,g]}}),c=et({inputs:{x:t},backend:n,attrs:{shape:[1,g,r.outChannels]}})}else p=et({inputs:{x:e},backend:n,attrs:{shape:l?[r.batchSize,r.inHeight*r.inWidth,r.inChannels]:[r.batchSize,r.inChannels,r.inHeight*r.inWidth]}}),c=et({inputs:{x:t},backend:n,attrs:{shape:[1,r.inChannels,r.outChannels]}});let m=$5({a:l?p:c,b:l?c:p,transposeA:u,transposeB:d,backend:n,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),f=et({inputs:{x:m},backend:n,attrs:{shape:r.outShape}});return n.disposeData(p.dataId),n.disposeData(c.dataId),n.disposeData(m.dataId),f}function Y9({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=a!=null,u=s!=null,d=r.dataFormat==="channelsLast",h;if(d&&r.filterHeight===r.inHeight&&r.filterWidth===r.inWidth&&r.padInfo.type==="VALID"||r.filterHeight===1&&r.filterWidth===1&&r.dilationHeight===1&&r.dilationWidth===1&&r.strideHeight===1&&r.strideWidth===1&&(r.padInfo.type==="SAME"||r.padInfo.type==="VALID"))return tce({x:e,filter:t,convInfo:r,backend:n,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});let p=(r.inChannels%4===0||r.inChannels===3&&r.padInfo.type==="VALID")&&r.outChannels%4===0&&d,c=[r.padInfo.top,r.padInfo.left],m=[{type:"int32",data:[r.filterHeight,r.filterWidth]},{type:"int32",data:[...c]},{type:"int32",data:[r.strideHeight,r.strideWidth]},{type:"int32",data:[r.dilationHeight,r.dilationWidth]}];p?h=new Qhe(r,l,o,u):h=new ece(r,l,o,u);let f=r.outHeight*r.outWidth,g=r.outChannels,y=r.filterHeight*r.filterWidth*r.inChannels;m.push({type:"int32",data:[f]},{type:"int32",data:[g]},{type:"int32",data:[y]});let A=[e,t];return l&&A.push(a),u&&A.push(s),o==="leakyrelu"&&(m.push({type:"float32",data:[i]}),h.uniforms+=" alpha : f32,"),n.runWebGPUProgram(h,A,e.dtype,m)}function rce(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=r,h=C.convertConv2DDataFormat(l),p=C.computeConv2DInfo(a.shape,s.shape,i,u,o,d,!1,h);return Y9({x:a,filter:s,convInfo:p,backend:n})}var nce={kernelName:ri,backendName:"webgpu",kernelFunc:rce},ace=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=T5(this.dispatchLayout,this.outputShape),this.elementsPerThread=N5(this.dispatchLayout,this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.shaderKey=`conv2DDerInputMM_${this.elementsPerThread}`}getUserCode(){return`
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
var batch = i32(globalId.z);
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
let outRow = row / uniforms.outShape[2];
let outCol = row % uniforms.outShape[2];
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
return 0.0;
}
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
return 0.0;
}
let coord = vec4<i32>(
batch,
i32(xR),
i32(xC),
col % uniforms.outBackprop[3]);
return x[getIndexFromCoords4D(coord, uniforms.xShape)];
}
return 0.0;
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let coordX = uniforms.filterDims.x - 1 -
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let coordY = uniforms.filterDims.y - 1 -
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
coordX >= 0 && coordY >= 0) {
let coord = vec4<i32>(coordX, coordY, col,
row % uniforms.outBackprop[3]);
return W[getIndexFromCoords4D(coord, uniforms.wShape)];
}
return 0.0;
}
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
var batch = i32(globalId.z);
var value = valueInput;
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col);
result[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value;
}
${R5(this.elementsPerThread,this.workGroupSize)}
`}},sce=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,r=this.isChannelsLast?3:1;return`
${rt()} {
if(index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let d1 = coords[${r}];
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
let dyRCorner = dyCorner.x;
let dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
let wRPerm = uniforms.filterDims.x - 1 - wR;
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
wRPerm < 0) {
continue;
}
let idyR = dyR;
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
let wCPerm = uniforms.filterDims.y - 1 - wC;
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
fract(dyC) > 0.0 || wCPerm < 0) {
continue;
}
let idyC = dyC;
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
if (${this.isChannelsLast}) {
let xValue = getDy(batch, idyR, idyC, d2);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
} else {
let xValue = getDy(batch, d2, idyR, idyC);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
}
}
}
}
setOutputAtIndex(index, dotProd);
}
}
`}};function ice(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=n,h=C.convertConv2DDataFormat(u),p=C.computeConv2DInfo(i,s.shape,o,1,l,d,!1,h),c=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[p.filterHeight-1-p.padInfo.top,p.filterWidth-1-p.padInfo.left]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.batchSize,p.outHeight,p.outWidth,p.outChannels]}],m;if(Z().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))m=new sce(p);else{m=new ace(p);let f=p.inShape[1]*p.inShape[2],g=p.inShape[3],y=p.filterHeight*p.filterWidth*p.outChannels;c.push({type:"uint32",data:[f]},{type:"uint32",data:[g]},{type:"uint32",data:[y]})}return r.runWebGPUProgram(m,[a,s],"float32",c)}var oce={kernelName:ni,backendName:"webgpu",kernelFunc:ice},lce=kr({opType:2}),uce={kernelName:ai,backendName:"webgpu",kernelFunc:lce},dce=kr({opType:3}),pce={kernelName:si,backendName:"webgpu",kernelFunc:dce},hce=class{constructor(e,t,r,n){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32,",this.workGroupSize=[64,1,1],this.size=!0;let[a]=t;this.outputShape=[a,r[0],r[1],e],this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=n==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[r,n,a]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[s,i,o]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let height_ratio = f32(${r});
let width_ratio = f32(${s});
let b = coords[0];
let y = coords[1];
let x = coords[2];
let d = coords[3];
// get box vals
let y1 = getBoxes(b, 0);
let x1 = getBoxes(b, 1);
let y2 = getBoxes(b, 2);
let x2 = getBoxes(b, 3);
// get image in batch index
let bInd = i32(round(getBoxInd(b)));
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
return;
}
let height_scale = ${n};
let width_scale = ${i};
let in_y = ${a};
if( in_y < 0.0 || in_y > ${e} ) {
setOutputAtIndex(index, uniforms.extrapolationValue);
return;
}
let in_x = ${o};
if( in_x < 0.0 || in_x > ${t} ) {
setOutputAtIndex(index, uniforms.extrapolationValue);
return;
}
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
if(${this.methodId} == 1) {
// Compute the four integer indices.
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
let top = topLeft + (topRight - topLeft) * fracCR.x;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
let newValue = top + (bottom - top) * fracCR.y;
setOutputAtIndex(index, newValue);
} else {
// Compute the coordinators of nearest neighbor point.
let sourceNearestCR = vec2<i32>(floor(
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
let newValue = getImage(
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
setOutputAtIndex(index, newValue);
}
}
}
`}},cce=e=>{let{inputs:t,backend:r,attrs:n}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,d=new hce(a.shape[3],s.shape,o,l),h=[{type:"float32",data:[u]}];return r.runWebGPUProgram(d,[a,s,i],"float32",h)},fce={kernelName:Ko,backendName:"webgpu",kernelFunc:cce},hv=class{constructor(e,t,r,n){this.variableNames=["x"],this.uniforms="index : f32,",this.size=!0;let a=128;this.workGroupSize=[a,1,1],this.outputShape=t,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.exclusive=r,this.reverse=n,this.op=e,this.shaderKey=`cum_${this.op}_${this.exclusive}_${this.reverse}`}getUserCode(){let e=this.outputShape.length,t=this.op==="*"?"1.0":"0.0",r=this.exclusive?t:`getX(${cv(e,"coords",this.op)})`,n=this.outputShape[this.outputShape.length-1],a="",s="";return this.exclusive?(a=this.reverse?`end != ${n-1}`:"end != 0",s=this.reverse?"end + 1":"end - 1"):(a=this.reverse?`end + pow2 < ${n}`:"end >= pow2",s=this.reverse?"end + pow2":"end - pow2"),`
${rt()}
if (index < uniforms.size) {
var coords = getCoordsFromIndex(index);
let end = ${fv(e,"coords",this.op)};
var val = ${r};
let pow2 = i32(pow(2.0, uniforms.index));
if (${a}) {
let idx = ${s};
${fv(e,"coords",this.op)} = idx;
val ${this.op}= getX(${cv(e,"coords",this.op)});
}
setOutputAtIndex(index, val);
}
}
`}};function cv(e,t,r){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative ${r} for rank ${e} is not yet supported`)}function fv(e,t,r){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative ${r} for rank ${e} is not yet supported`)}function J9(e,t,r,n,a,s){let i=t.shape.length,o=C.getAxesPermutation([n],i),l=t;o!=null&&(l=Ya({inputs:{x:t},backend:r,attrs:{perm:o}}));let u=C.getInnerMostAxes(1,i)[0];if(u!==i-1)throw new Error(`WebGPU cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${n}`);let d=l.shape[u],h=zn({inputs:{x:l},backend:r});for(let p=0;p<=Math.ceil(Math.log2(d))-1;p++){let c=new hv(e,l.shape,!1,s),m=h,f=[{type:"float32",data:[p]}];h=r.runWebGPUProgram(c,[h],h.dtype,f),r.disposeData(m.dataId)}if(a){let p=new hv(e,l.shape,a,s),c=h,m=[{type:"float32",data:[0]}];h=r.runWebGPUProgram(p,[h],h.dtype,m),r.disposeData(c.dataId)}if(o!=null){let p=C.getUndoAxesPermutation(o),c=Ya({inputs:{x:h},backend:r,attrs:{perm:p}});return r.disposeData(h.dataId),r.disposeData(l.dataId),c}return h}function mce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n;return J9("*",a,r,s,i,o)}var gce={kernelName:Xo,backendName:"webgpu",kernelFunc:mce};function yce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n;return J9("+",a,r,s,i,o)}var Ace={kernelName:ii,backendName:"webgpu",kernelFunc:yce},xce=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32,",this.outputShape=e,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let h = ${this.getHeightCoordString()};
let w = ${this.getWidthCoordString()};
let d = ${this.getDepthCoordString()};
let in_h = h / uniforms.blockSize;
let offset_h = h % uniforms.blockSize;
let in_w = w / uniforms.blockSize;
let offset_w = w % uniforms.blockSize;
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
${this.getOutputDepthSize()};
let in_d = d + offset_d;
let rlt = ${this.getInputSamplingString()};
setOutputAtIndex(index, rlt);
}
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function bce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockSize:s,dataFormat:i}=n,o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],d=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,p=u*s,c=d/(s*s),m=i==="NHWC"?[o,h,p,c]:[o,c,h,p],f=[{type:"int32",data:[s]}],g=new xce(m,i);return r.runWebGPUProgram(g,[a],a.dtype,f)}var vce={kernelName:Zo,backendName:"webgpu",kernelFunc:bce},Q9=class{constructor(e,t=!1,r=null,n=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, inDims : vec2<i32>,",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[0,1],y:[2],z:[3]},this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,4,4]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivation=n,this.shaderKey=`depthwise3x3_${r}`}getUserCode(){let e="",t="";if(this.activation){let n=Ki(this.activation,this.isVec4);this.hasPreluActivation?e=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
let b = getPreluActivationWeightsByOutputCoords(outCoord);
${n}
}`:e=`
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
${n}
}
`,t="dotProd[i] = activation(dotProd[i], coords);"}let r=this.addBias?"dotProd[i] = dotProd[i] + getBiasByOutputCoords(coords);":"";return`
${e}
${C5()}
fn main(@builtin(global_invocation_id) globalId: vec3<u32>) {
let batch = 0;
let r = i32(globalId.x);
let c = i32(globalId.y) * 4;
let d2 = i32(globalId.z) * 4;
let xRCCorner = vec2<i32>(r, c) * uniforms.stride - uniforms.pad;
let d1 = d2;
let q = 0;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var wVals : array<vec4<f32>, 9>;
wVals[0] = getW(0, 0, d1, q);
wVals[1] = getW(0, 1, d1, q);
wVals[2] = getW(0, 2, d1, q);
wVals[3] = getW(1, 0, d1, q);
wVals[4] = getW(1, 1, d1, q);
wVals[5] = getW(1, 2, d1, q);
wVals[6] = getW(2, 0, d1, q);
wVals[7] = getW(2, 1, d1, q);
wVals[8] = getW(2, 2, d1, q);
var xVals : array<array<vec4<f32>, 6>, 3>;
for (var wR = 0; wR < 3; wR = wR + 1) {
let xR = xRCorner + wR * uniforms.dilation[0];
for (var wC = 0; wC < 6; wC = wC + 1) {
let xC = xCCorner + wC * uniforms.dilation[1];
if (xR < 0 || xR >= uniforms.inDims[0] || xC < 0 || xC >= uniforms.inDims[1]) {
xVals[wR][wC] = vec4<f32>(0.0);
} else {
xVals[wR][wC] = getX(batch, xR, xC, d1);
}
}
}
var dotProd : array<vec4<f32>, 4>;
dotProd[0] = vec4<f32>(0.0);
dotProd[1] = vec4<f32>(0.0);
dotProd[2] = vec4<f32>(0.0);
dotProd[3] = vec4<f32>(0.0);
for (var wR = 0; wR < 3; wR = wR + 1) {
for (var wC = 0; wC < 3; wC = wC + 1) {
let indexW = wR * 3 + wC;
dotProd[0] = dotProd[0] + xVals[wR][0 + wC] * wVals[indexW];
dotProd[1] = dotProd[1] + xVals[wR][1 + wC] * wVals[indexW];
dotProd[2] = dotProd[2] + xVals[wR][2 + wC] * wVals[indexW];
dotProd[3] = dotProd[3] + xVals[wR][3 + wC] * wVals[indexW];
}
}
for (var i = 0; i < 4; i = i + 1) {
let coords = vec4<i32>(batch, r, c + i, d2);
if (coordsInBounds4D(coords, uniforms.outShape)) {
${r}
${t}
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], dotProd[i]);
}
}
}
`}},eS=class{constructor(e,t=!1,r=null,n=!1){this.variableNames=["x","W"],this.uniforms=`pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,
inDims : vec2<i32>, filterHeight : i32, filterWidth : i32,
channelMul : i32,`,this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivation=n,this.shaderKey=`depthwise_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let n=Ki(this.activation,!1);this.hasPreluActivation?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
let b = getPreluActivationWeightsByOutputCoords(outCoord);
${n}
}`:e=`
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
${n}
}
`,t="dotProd = activation(dotProd, coords);"}let r=this.addBias?"dotProd = dotProd + getBiasByOutputCoords(coords);":"";return`
${e}
fn writeResult(batch : i32, row : i32, col : i32, chan : i32,
value : f32) {
let coord = vec4<i32>(batch, row, col, chan);
if (coordsInBounds4D(coord, uniforms.outShape)) {
setOutputAtCoords(batch, row, col, chan, value);
}
}
${Wl()}
let coords = getOutputCoords();
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
let d2 = coords[3];
let d1 = d2 / uniforms.channelMul;
let q = d2 - d1 * uniforms.channelMul;
let inputRowStart = xRCCorner.x;
let inputColStart = xRCCorner.y;
let inputRowEnd = inputRowStart + uniforms.filterHeight *
uniforms.dilation[0];
let inputColEnd = inputColStart + uniforms.filterWidth *
uniforms.dilation[1];
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
// Extract if checking out of for loop for performance.
if (inputRowStart >= 0 && inputColStart >= 0 &&
inputRowEnd < uniforms.inDims[0] &&
inputColEnd < uniforms.inDims[1]) {
// Here using a constant value |this.convInfo.filterHeight| instead
// of uniform value is in order to loop unrolling.
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
let xVal = getX(batch, xR, xC, d1);
let wVal = getW(wR, wC, d1, q);
dotProd = dotProd + xVal * wVal;
}
}
} else {
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
if (xR < 0 || xR >= uniforms.inDims[0]) {
continue;
}
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
if (xC < 0 || xC >= uniforms.inDims[1]) {
continue;
}
let xVal = getX(batch, xR, xC, d1);
let wVal = getW(wR, wC, d1, q);
dotProd = dotProd + xVal * wVal;
}
}
}
${r}
${t}
writeResult(batch, coords[1], coords[2], d2, dotProd);
}
`}};function wce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=n,d=l;d==null&&(d=[1,1]);let h=C.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),p=[{type:"int32",data:[h.padInfo.top,h.padInfo.left]},{type:"int32",data:[h.strideHeight,h.strideWidth]},{type:"int32",data:[h.dilationHeight,h.dilationWidth]},{type:"int32",data:[h.inHeight,h.inWidth]}],c;return h.batchSize===1&&h.inHeight===h.outHeight&&h.inWidth===h.outWidth&&h.strideHeight===1&&h.strideWidth===1&&h.filterHeight===h.filterWidth&&h.inChannels===h.outChannels&&h.dilationHeight===1&&h.dilationWidth===1&&h.filterHeight===3&&h.inChannels%4===0?c=new Q9(h):(c=new eS(h),p.push({type:"int32",data:[h.filterHeight]},{type:"int32",data:[h.filterWidth]},{type:"int32",data:[h.outChannels/h.inChannels]})),r.runWebGPUProgram(c,[a,s],a.dtype,p)}var kce={kernelName:oi,backendName:"webgpu",kernelFunc:wce},tS=qr({opSnippet:0,cpuKernelImpl:ehe,supportsComplex:!0}),Ice={kernelName:Si,backendName:"webgpu",kernelFunc:tS},Sce=class{constructor(e,t){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32,",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[r]=C.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=r.length===0?[1]:r,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0";this.reduceType==="min"||this.reduceType==="max"?(e=`
if (isnan(candidate)) {
bestValue = uniforms.NAN;
} else if (!isnan(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue)
{ bestValue = candidate; }`,t="f32(x[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(e=" bestValue = bestValue * candidate; ",t="1.0");let r=this.reduceType==="mean"?"setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputAtIndex(outputIndex, bestValue);";return`
fn DIV_CEIL(a : u32, b : u32) -> u32 {
return ((a - 1u) / b + 1u);
}
${`
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
`}
fn getOffset(outputIndex : i32) -> i32 {
let outputCoords = getCoordsFromIndex(outputIndex);
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
return offset;
}
${rt()}
let outputIndex = index / i32(workGroupSizeX);
let offset = getOffset(outputIndex);
var bestValue = ${t};
let Length = uniforms.reduceSize;
let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX);
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
k = k + i32(workGroupSizeX)) {
let candidate = f32(x[offset + k]);
${e}
}
xBestValues[localId.x] = bestValue;
workgroupBarrier();
var reduceSize = min(u32(Length), workGroupSizeX);
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
currentSize = reduceSize / 2u) {
let interval = DIV_CEIL(reduceSize, 2u);
if (localId.x < currentSize) {
let candidate = xBestValues[localId.x + interval];
${e}
xBestValues[localId.x] = bestValue;
}
reduceSize = interval;
workgroupBarrier();
}
if (localId.x == 0u && outputIndex < uniforms.size) {
${r}
}
}
`}};function Xh(e,t,r,n,a){let s=e.shape.length,i=[],o=v.parseAxisParam(t,e.shape),l=o,u=C.getAxesPermutation(l,s),d=e;u!=null&&(d=Ya({inputs:{x:e},attrs:{perm:u},backend:a}),l=C.getInnerMostAxes(l.length,s),i.push(d)),C.assertAxesAreInnerMostDims(n,l,s);let[h,p]=C.computeOutAndReduceShapes(d.shape,l),c=h;r&&(c=C.expandShapeToKeepDim(h,o));let m;if((n==="max"||n==="prod")&&a.shouldExecuteOnCPU([d])){let f=a.tensorMap.get(d.dataId).values;switch(n){case"max":let g=Ype(f,v.sizeFromShape(p),c,e.dtype);m=a.makeTensorInfo(c,e.dtype,g);break;case"prod":let{outVals:y,outShape:A,outDtype:x}=nhe(d.shape,d.dtype,f,l);m=a.makeTensorInfo(A,x,y);break;default:throw new Error(`${n} CPU implementation is not yet supported.`)}}else{let f=v.sizeFromShape(p),g=v.sizeFromShape(d.shape)/f,y={windowSize:f,inSize:f,batchSize:g,outSize:1},A=n==="mean"?"float32":Ah(e.dtype),x=[{type:"int32",data:[f]}],b=new Sce(y,n),w=a.runWebGPUProgram(b,[d],A,x);i.push(w),m=et({inputs:{x:w},attrs:{shape:c},backend:a})}return i.forEach(f=>a.disposeData(f.dataId)),m}function M5(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return Xh(a,s,i,"sum",r)}var Cce={kernelName:Oi,backendName:"webgpu",kernelFunc:M5};function Tce(e){let{inputs:t,backend:r,attrs:n}=e,{equation:a}=n,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(a,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=C.getEinsumComputePath(o,l),h=d.length,p=null,c=i.length,m=[];for(let f=0;f<h;++f){for(let g of d[f]){let{permutationIndices:y,expandDims:A}=C.getEinsumPermutation(c,l[g]),x;C.isIdentityPermutation(y)?x=s[g]:(x=Ya({inputs:{x:s[g]},backend:r,attrs:{perm:y}}),m.push(x));let b=x.shape.slice();for(let w=0;w<A.length;++w)b.splice(A[w],0,1);v.arraysEqual(x.shape,b)||(x=et({inputs:{x},backend:r,attrs:{shape:b}}),m.push(x)),p===null?p=x:(p=tS({inputs:{a:x,b:p},backend:r}),m.push(p))}f<h-1&&(u[f]>=0&&(p=M5({inputs:{x:p},backend:r,attrs:{axis:u[f]-(i.length-c),keepDims:!1}}),m.push(p)),c--)}for(let f of m)f!==p&&r.disposeData(f.dataId);return p}var Nce={kernelName:ah,backendName:"webgpu",kernelFunc:Tce},Ece=kr({opType:4}),Rce={kernelName:ui,backendName:"webgpu",kernelFunc:Ece},$ce=qr({opSnippet:4,dtype:"bool",cpuKernelImpl:Bpe}),Mce={kernelName:Yo,backendName:"webgpu",kernelFunc:$ce},rS=kr({opType:5,cpuKernelImpl:Wpe,dtype:"float32"}),Fce={kernelName:di,backendName:"webgpu",kernelFunc:rS};function cy(e){let{inputs:t,attrs:r,backend:n}=e,{dim:a}=r,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(v.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),et({inputs:{x:s},backend:n,attrs:{shape:o}})}var Pce={kernelName:Jo,backendName:"webgpu",kernelFunc:cy},_ce=kr({opType:6,cpuKernelImpl:Vpe}),zce={kernelName:Qo,backendName:"webgpu",kernelFunc:_ce},Oce=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return`
${rt()}
if (index < uniforms.size) {
setOutputAtIndex(index, uniforms.value);
}
}
`}};function _d(e){let{backend:t,attrs:r}=e,{shape:n,value:a}=r,{dtype:s}=r;if(s=s||v.inferDtype(a),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(n));return i.fill(a),t.makeTensorInfo(n,s,i)}else{let i=new Oce(n),o=[{type:"float32",data:[a]}];return t.runWebGPUProgram(i,[],s,o)}}var Dce={kernelName:Yu,backendName:"webgpu",kernelFunc:_d},Lce=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let coordX = uniforms.xShape[2] - coords[2] - 1;
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
setOutputAtIndex(index, outputValue);
}
}
`}},Bce={kernelName:el,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:r}=e,n=t,a=new Lce(r.shape);return n.runWebGPUProgram(a,[r],r.dtype)}},Wce=kr({opType:7,cpuKernelImpl:Upe}),Vce={kernelName:pi,backendName:"webgpu",kernelFunc:Wce},Uce=qr({opSnippet:12,dtype:"int32"}),Gce={kernelName:hi,backendName:"webgpu",kernelFunc:Uce},jce=class{constructor(e,t=!1){this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.useImport=t,this.shaderKey=`fromPixels_${this.useImport}`}getUserCode(){let e=this.useImport?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
@binding(1) @group(0) var src: ${this.useImport?"texture_external":"texture_2d<f32>"};
${rt()}
let flatIndexBase = index * uniforms.numChannels;
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
let flatIndex = flatIndexBase + i;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndexBase);
let values = ${e};
result[flatIndex] = i32(floor(255.0 * values[i]));
}
}
}
`}},Hce={kernelName:Lp,backendName:"webgpu",kernelFunc:qce},hu;function qce(e){let{inputs:t,backend:r,attrs:n}=e,{pixels:a}=t,{numChannels:s}=n;if(a==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&a instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&a instanceof OffscreenCanvas,u=typeof ImageBitmap!="undefined"&&a instanceof ImageBitmap,[d,h]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],p=[h,d,s];if(Z().getBool("WEBGPU_USE_IMPORT")&&i)return mv({externalImage:a,backend:r,attrs:n,outShape:p,useImport:!0});if((i||o)&&(hu==null&&(hu=document.createElement("canvas").getContext("2d")),hu.canvas.width=d,hu.canvas.height=h,hu.drawImage(a,0,0,d,h),a=hu.canvas),u||l||i||o)return mv({externalImage:a,backend:r,attrs:n,outShape:p,useImport:!1});let c=a.data,m=c;if(s!=null&&s!==4){m=new Uint8Array(a.width*a.height*s);let y=c.length,A=0;for(let x=0;x<y;x++)x%4<s&&(m[A++]=c[x])}let f=r.makeTensorInfo(p,"int32"),g=r.tensorMap.get(f.dataId);return g.values=new Int32Array(m),r.maybeReleaseBuffer(f.dataId),r.uploadToGPU(f.dataId),f}function mv(e){let{externalImage:t,backend:r,attrs:n,outShape:a,useImport:s}=e,{numChannels:i}=n,o=v.sizeFromShape(a),l=v.computeStrides(a),u=new jce(a,s),d=[{type:"uint32",data:[o]},{type:"uint32",data:[i]},{type:"uint32",data:[...l]},{type:"uint32",data:[...u.dispatch]}];return r.runFromPixelsProgram(u,a,d,s,t)}var Xce=class{constructor(e,t,r,n,a){this.uniforms="varianceEpsilon : f32,",this.workGroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,r),this.outputShape=e,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),n!=null&&(C.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset")),a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale")),this.offsetShape=n,this.scaleShape=a,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetByOutputIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleByOutputIndex(index)"),`
${rt()}
if (index < uniforms.size)
{
let xValue = getXByOutputIndex(index);
let meanValue = getMeanByOutputIndex(index);
let varianValue = getVarianceByOutputIndex(index);
let offsetValue = ${e};
let scaleValue = ${t};
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
setOutputAtIndex(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
}
}
`}},Kce={kernelName:ci,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n,scale:a,offset:s,mean:i,variance:o}=e,{varianceEpsilon:l}=t,u=r,d=[n,i,o],h=null;s!=null&&(h=s.shape,d.push(s));let p=null;a!=null&&(p=a.shape,d.push(a));let c=new Xce(n.shape,i.shape,o.shape,h,p),m=[{type:"float32",data:[l]}];return u.runWebGPUProgram(c,d,n.dtype,m)}};function Zce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:m}=n;if(d!=="NHWC")throw new Error(`WebGPU backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let f=C.convertConv2DDataFormat(d),g=C.computeConv2DInfo(a.shape,s.shape,l,h,u,p,!1,f);return Y9({x:a,filter:s,convInfo:g,backend:r,bias:i,preluActivationWeights:o,leakyreluAlpha:m,activation:c})}var Yce={kernelName:_s,backendName:"webgpu",kernelFunc:Zce};function Jce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:c}=n,m=d;m==null&&(m=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let f=C.computeConv2DInfo(a.shape,s.shape,l,m,u,h,!0),g=[a,s],y=i!=null,A=o!=null;y&&g.push(i),A&&g.push(o);let x=[{type:"int32",data:[f.padInfo.top,f.padInfo.left]},{type:"int32",data:[f.strideHeight,f.strideWidth]},{type:"int32",data:[f.dilationHeight,f.dilationWidth]},{type:"int32",data:[f.inHeight,f.inWidth]}],b;return f.batchSize===1&&f.inHeight===f.outHeight&&f.inWidth===f.outWidth&&f.strideHeight===1&&f.strideWidth===1&&f.filterHeight===f.filterWidth&&f.inChannels===f.outChannels&&f.dilationHeight===1&&f.dilationWidth===1&&f.filterHeight===3&&f.inChannels%4===0?b=new Q9(f,y,p,A):(b=new eS(f,y,p,A),x.push({type:"int32",data:[f.filterHeight]},{type:"int32",data:[f.filterWidth]},{type:"int32",data:[f.outChannels/f.inChannels]})),p==="leakyrelu"&&(x.push({type:"float32",data:[c]}),b.uniforms+=" alpha : f32,"),r.runWebGPUProgram(b,g,"float32",x)}var Qce={kernelName:zs,backendName:"webgpu",kernelFunc:Jce},e0e=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32, strides : ${xr(e)},`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
var flattenIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexTemp = i32(round(getIndices(coords[0], j)));
let strideNum = ${e};
flattenIndex = flattenIndex + indexTemp * strideNum;
}
setOutputAtIndex(index, getA(flattenIndex, coords[1]));
}
}
`}};function t0e(e){let{inputs:t,backend:r}=e,{params:n,indices:a}=t,s=a.shape,i=s[s.length-1],o=v.sizeFromShape(n.shape),[l,u,d,h]=C.prepareAndValidate(n,a),p=et({inputs:{x:a},backend:r,attrs:{shape:[u,i]}}),c=et({inputs:{x:n},backend:r,attrs:{shape:[v.sizeFromShape(n.shape)/d,d]}});if(r.shouldExecuteOnCPU([n,a])||n.dtype==="string"){let A=r.readSync(a.dataId),x=r.bufferSync(n),b=Gpe(A,x,n.dtype,u,i,d,h,n.shape,o);return r.makeTensorInfo(l,n.dtype,b.values)}let m=new e0e(i,[u,d]),f=[{type:"int32",data:[i]},{type:"int32",data:h}],g=r.runWebGPUProgram(m,[c,p],c.dtype,f),y=et({inputs:{x:g},backend:r,attrs:{shape:l}});return r.disposeData(p.dataId),r.disposeData(c.dataId),r.disposeData(g.dataId),y}var r0e={kernelName:rl,backendName:"webgpu",kernelFunc:t0e},n0e=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=a0e(this.aShape);return`
${rt()}
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
let indexZ = i32(getIndices(resRC.x, resRC.z));
let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]);
setOutputAtIndex(index, inBounds * getA(${e}));
}
}
`}};function a0e(e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let n=0;n<e.length;n++)n===2?r.push("indexZ"):r.push(`${t[n]}`);return r.join()}function nS(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=n,l=v.parseAxisParam(i,a.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(a,s,l,o),d=v.sizeFromShape(s.shape),h=[],p=et({inputs:{x:a},backend:r,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),c=et({inputs:{x:s},backend:r,attrs:{shape:[u.batchSize,d/u.batchSize]}});h.push(p),h.push(c);let m=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize];if(r.shouldExecuteOnCPU([a,s])){let A=r.tensorMap.get(c.dataId).values,x=Le(c.shape,c.dtype,A),b=r.tensorMap.get(p.dataId).values,w=Le(p.shape,p.dtype,b),I=jpe(w,x,m);return h.forEach(N=>r.disposeData(N.dataId)),r.makeTensorInfo(u.outputShape,I.dtype,I.values)}let f=new n0e(p.shape,m),g=r.runWebGPUProgram(f,[p,c],p.dtype);h.push(g);let y=et({inputs:{x:g},backend:r,attrs:{shape:u.outputShape}});return h.forEach(A=>r.disposeData(A.dataId)),y}var s0e={kernelName:tl,backendName:"webgpu",kernelFunc:nS},i0e=qr({opSnippet:5,cpuKernelImpl:qpe,dtype:"bool"}),o0e={kernelName:nl,backendName:"webgpu",kernelFunc:i0e},l0e=qr({opSnippet:6,dtype:"bool",cpuKernelImpl:Hpe}),u0e={kernelName:fi,backendName:"webgpu",kernelFunc:l0e};function d0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{alpha:s}=n,i=[{type:"float32",data:[s]}],o=new Hh(a.shape,14);return o.uniforms="alpha : f32,",r.runWebGPUProgram(o,[a],"float32",i)}var p0e={kernelName:gi,backendName:"webgpu",kernelFunc:d0e},h0e=qr({opSnippet:7,dtype:"bool",cpuKernelImpl:Kpe}),c0e={kernelName:al,backendName:"webgpu",kernelFunc:h0e},f0e=qr({opSnippet:8,dtype:"bool",cpuKernelImpl:Xpe}),m0e={kernelName:sl,backendName:"webgpu",kernelFunc:f0e},g0e=kr({opType:9,cpuKernelImpl:Zpe}),y0e={kernelName:yi,backendName:"webgpu",kernelFunc:g0e},A0e=qr({opSnippet:9,dtype:"bool"}),x0e={kernelName:il,backendName:"webgpu",kernelFunc:A0e},b0e=kr({opType:10}),v0e={kernelName:rd,backendName:"webgpu",kernelFunc:b0e};function aS(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=n;return Xh(a,s,i,"max",r)}var w0e={kernelName:Ai,backendName:"webgpu",kernelFunc:aS},k0e=qr({opSnippet:15,cpuKernelImpl:Jpe}),I0e={kernelName:xi,backendName:"webgpu",kernelFunc:k0e};function S0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1,d=C.computePool2DInfo(a.shape,s,i,u,o,l),h,p=[];if(d.filterHeight===1&&d.filterWidth===1){if(v.arraysEqual(d.inShape,d.outShape))return zn({inputs:{x:a},backend:r});h=new X9(d),p.push({type:"int32",data:[d.strideHeight,d.strideWidth]})}else h=new q9(d,"max"),p.push({type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.dilationHeight,d.dilationWidth]},{type:"int32",data:[d.inHeight,d.inWidth]},{type:"int32",data:[d.effectiveFilterHeight,d.effectiveFilterWidth]});return r.runWebGPUProgram(h,[a],a.dtype,p)}var C0e={kernelName:bi,backendName:"webgpu",kernelFunc:S0e};function T0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{keepDims:s,axis:i}=n;return Xh(a,i,s,"mean",r)}var N0e={kernelName:vi,backendName:"webgpu",kernelFunc:T0e};function E0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return Xh(a,s,i,"min",r)}var R0e={kernelName:wi,backendName:"webgpu",kernelFunc:E0e},$0e=qr({opSnippet:16,cpuKernelImpl:Qpe}),M0e={kernelName:ki,backendName:"webgpu",kernelFunc:$0e},F0e=class{constructor(e,t,r){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,a)=>n[0]+e[a]+n[1]),this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((n,a)=>{this.uniforms+=` pad${a} : vec2<i32>,`}),this.offset=r==="reflect"?0:1,this.shaderKey=`mirrorPad_${r}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,u)=>`uniforms.pad${u}[0]`).join(","),r=this.xShape.map((l,u)=>`uniforms.pad${u}[0] + uniforms.xShape${e>1?`[${u}]`:""}`).join(","),n=e===1?"start":"start[i]",a=e===1?"end":"end[i]",s=e===1?"outC":"outC[i]",i=xr(e),o=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${rt()}
if (index < uniforms.size) {
let start = ${i}(${t});
let end = ${i}(${r});
var outC = getCoordsFromIndex(index);
for (var i = 0; i < ${e}; i = i + 1) {
if (${s} < ${n}) {
${s} = ${n} * 2 - ${s} - ${this.offset};
} else if(${s} >= ${a}) {
${s} = (${a} - 1) * 2 - ${s} + ${this.offset};
}
}
let coords = outC - start;
setOutputAtIndex(index, getX(${o}));
}
}
`}},P0e={kernelName:Ii,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{paddings:a,mode:s}=t,i=r,o=a.map(u=>({type:"int32",data:[u[0],u[1]]})),l=new F0e(n.shape,a,s);return i.runWebGPUProgram(l,[n],n.dtype,o)}};function _0e(e){let{inputs:t,backend:r}=e,{x:n}=t;if(r.shouldExecuteOnCPU([n])){let s=r.tensorMap.get(n.dataId),[i,o]=the(s.values,n.shape,n.dtype);return r.makeTensorInfo(o,n.dtype,i)}let a=new Hh(n.shape,11);return r.runWebGPUProgram(a,[n],n.dtype)}var z0e={kernelName:ol,backendName:"webgpu",kernelFunc:_0e};function O0e(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n,u=r.readSync(a.dataId),d=r.readSync(s.dataId),{selectedIndices:h}=Kn.nonMaxSuppressionV3Impl(u,d,i,o,l);return r.makeTensorInfo([h.length],"int32",new Int32Array(h))}var D0e={kernelName:ul,backendName:"webgpu",kernelFunc:O0e};function L0e(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n,d=r.readSync(a.dataId),h=r.readSync(s.dataId),p=i,c=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=Kn.nonMaxSuppressionV5Impl(d,h,p,c,m,f);return[r.makeTensorInfo([g.length],"int32",new Int32Array(g)),r.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var B0e={kernelName:dl,backendName:"webgpu",kernelFunc:L0e};function X0(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="complex64"){let a=qh({inputs:{input:n},backend:r}),s=X0({inputs:{x:a},backend:r}),i=Pm({inputs:{input:n},backend:r}),o=X0({inputs:{x:i},backend:r}),l=Fd({inputs:{real:s,imag:o},backend:r});return r.disposeData(a.dataId),r.disposeData(s.dataId),r.disposeData(i.dataId),r.disposeData(o.dataId),l}else return _d({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:r})}var W0e={kernelName:Nl,backendName:"webgpu",kernelFunc:X0};function sS(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let a=qh({inputs:{input:n},backend:r}),s=sS({inputs:{x:a},backend:r}),i=Pm({inputs:{input:n},backend:r}),o=X0({inputs:{x:i},backend:r}),l=Fd({inputs:{real:s,imag:o},backend:r});return r.disposeData(a.dataId),r.disposeData(s.dataId),r.disposeData(i.dataId),r.disposeData(o.dataId),l}else return _d({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:r})}var V0e={kernelName:pl,backendName:"webgpu",kernelFunc:sS};function U0e(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return cy({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{v.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=cy({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=Z9({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeData(d.dataId)),u}var G0e={kernelName:cl,backendName:"webgpu",kernelFunc:U0e},j0e=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((r,n)=>r[0]+e[n]+r[1]),this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((r,n)=>{this.uniforms+=` pad${n} : vec2<i32>,`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=xr(e),r=this.xShape.map((u,d)=>`uniforms.pad${d}[0]`).join(","),n=this.xShape.map((u,d)=>`uniforms.pad${d}[0] + uniforms.xShape${e>1?`[${d}]`:""}`).join(","),a=e>1?`${t}(${r})`:`${r}`,s=e>1?`${t}(${n})`:`${n}`,i=e>1?"any(outC < start)":"outC < start",o=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${rt()}
if (index < uniforms.size) {
let start = ${a};
let end = ${s};
let outC = getCoordsFromIndex(index);
if (${i} || ${o}) {
setOutputAtIndex(index, uniforms.constantValue);
} else {
let coords = outC - start;
setOutputAtIndex(index, getX(${l}));
}
}
}
`}},iS=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,constantValue:i}=n;if(s.every(u=>v.arraysEqual(u,[0,0])))return zn({inputs:{x:a},backend:r});if(v.sizeFromShape(a.shape)===0){let u=s.map((d,h)=>d[0]+a.shape[h]+d[1]);return _d({backend:r,attrs:{shape:u,value:i,dtype:a.dtype}})}let o=[{type:"float32",data:[i]}];s.map(u=>o.push({type:"int32",data:[u[0],u[1]]}));let l=new j0e(a.shape,s);return r.runWebGPUProgram(l,[a],a.dtype,o)},H0e={kernelName:Ci,backendName:"webgpu",kernelFunc:iS},q0e=qr({opSnippet:13}),X0e={kernelName:Ti,backendName:"webgpu",kernelFunc:q0e};function K0e(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t,s=new j9(14,n.shape,a.shape);return r.runWebGPUProgram(s,[n,a],"float32")}var Z0e={kernelName:Ni,backendName:"webgpu",kernelFunc:K0e};function Y0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return Xh(a,s,i,"prod",r)}var J0e={kernelName:Ei,backendName:"webgpu",kernelFunc:Y0e},Q0e=e=>{let{backend:t,attrs:r}=e,{start:n,stop:a,step:s,dtype:i}=r,o=ahe(n,a,s,i);return t.makeTensorInfo([o.length],i,o)},efe={kernelName:sd,backendName:"webgpu",kernelFunc:Q0e},oS=qr({opSnippet:3}),tfe={kernelName:li,backendName:"webgpu",kernelFunc:oS},rfe=kr({opType:12}),nfe={kernelName:Ri,backendName:"webgpu",kernelFunc:rfe},afe=kr({opType:13}),sfe={kernelName:Mi,backendName:"webgpu",kernelFunc:afe},ife=class{constructor(e,t,r){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, halfPixelCenters : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,r,e[3]],this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveOutSize = vec2<f32>(
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC =
(vec2<f32>(rc) + vec2<f32>(uniforms.halfPixelCenters)) *
effectiveInputOverOutputRatioRC - vec2<f32>(uniforms.halfPixelCenters);
// Compute the four integer indices.
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
let sourceCeilRC = vec2<i32>(
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
let top = topLeft + (topRight - topLeft) * fracRC.y;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
let newValue = top + (bottom - top) * fracRC.x;
setOutputAtIndex(index, newValue);
}
}
`}};function ofe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,size:i,halfPixelCenters:o}=n,[l,u]=i,d=s&&l>1?1:0,h=s&&u>1?1:0,p=[{type:"float32",data:[d,h]},{type:"float32",data:[o?.5:0]}],c=new ife(a.shape,l,u);return r.runWebGPUProgram(c,[a],"float32",p)}var lfe={kernelName:$i,backendName:"webgpu",kernelFunc:ofe},ufe=class{constructor(e,t,r,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, roundBase : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,r,e[3]],this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.halfPixelCenters=n,this.shaderKey=`resizeNearest_${n}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":e="vec2<f32>(rc) * effectiveInputOverOutputRatioRC",`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveOutSize = vec2<f32>(
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC = ${e};
// Compute the coordinators of nearest neighbor point.
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
let sourceNearestRC = vec2<i32>(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutputAtIndex(index, newValue);
}
}
`}};function dfe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,d=s&&l>1?1:0,h=s&&u>1?1:0,p=[{type:"float32",data:[d,h]},{type:"float32",data:[s?.5:0]}],c=new ufe(a.shape,l,u,i);return r.runWebGPUProgram(c,[a],a.dtype,p)}var pfe={kernelName:od,backendName:"webgpu",kernelFunc:dfe},hfe=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32, centerY : f32, sinRadians : f32,
cosRadians : f32,`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32,",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>,",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
uniforms.sinRadians;
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
uniforms.cosRadians;
let coordX = i32(round(coordXFloat + uniforms.centerX));
let coordY = i32(round(coordYFloat + uniforms.centerY));
${this.fillSnippet}
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
coordY < uniforms.xShape[1]) {
outputValue = getX(coords[0], coordY, coordX, coords[3]);
}
setOutputAtIndex(index, outputValue);
}
}
`}},cfe={kernelName:El,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,{radians:a,fillValue:s,center:i}=t,o=r,l=new hfe(n.shape,s),[u,d]=C.getImageCenter(i,n.shape[1],n.shape[2]),h=[{type:"float32",data:[u]},{type:"float32",data:[d]},{type:"float32",data:[Math.sin(a)]},{type:"float32",data:[Math.cos(a)]}];return typeof s=="number"?h.push({type:"float32",data:[Number.parseFloat(s.toFixed(2))]}):h.push({type:"float32",data:s}),o.runWebGPUProgram(l,[n],n.dtype,h)}},ffe=kr({opType:15,cpuKernelImpl:she}),mfe={kernelName:Fi,backendName:"webgpu",kernelFunc:ffe},gfe=class{constructor(e,t,r,n,a,s,i){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=s,this.type=i,this.dispatchLayout=Ye(e),this.dispatch=Oe(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${r}_${n}_${this.sliceDimGreaterThanOne}_${i}`;let o=xr(a.length);this.uniforms=`sliceDim : i32, strides: ${o}, size: i32,`,this.updatesRank=n,this.indicesRank=r}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,r=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",n="",a="",s="";this.updatesRank===1?(n="coords[0]",a="flattenedIndex",s=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
return index;
}
`):this.updatesRank===2&&(n="coords[0], coords[1]",a="vec2<i32>(flattenedIndex, coords[1])",s=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
let d0 = index / uniforms.updatesShape[1];
let d1 = index - d0 * uniforms.updatesShape[1];
return vec2<i32>(d0, d1);
}
`);let i=`getUpdates(${n})`,o=this.type==="int32"?"atomicAdd(&(result[flatIndex]), i32(updateValue));":`
var assumed = atomicLoad(&(result[flatIndex]));
var success = 0;
for (; success == 0;) {
let new = bitcast<f32>(assumed) + updateValue;
let newI32 = bitcast<i32>(new);
let resValue = atomicCompareExchangeWeak(&(result[flatIndex]), assumed, newI32);
assumed = resValue[0];
success = resValue[1];
}
`;return`
${s}
${rt()}
if (index < uniforms.size) {
let coords = getUpdatesCoordsFromFlatIndex(index);
var flattenedIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexInside = i32(round(${t}));
flattenedIndex = flattenedIndex + indexInside * ${r};
}
let updateValue = ${i};
let flatIndex = getOutputIndexFromCoords(${a});
${o}
}
}`}};function yfe(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:h}=C.calculateShapes(s,a,i),p=[h/u,u];if(h===0)return r.makeTensorInfo(i,a.dtype);let c=et({inputs:{x:a},backend:r,attrs:{shape:[l,o]}}),m=et({inputs:{x:s},backend:r,attrs:{shape:[l,u]}}),f=m.dtype,g=_d({backend:r,attrs:{shape:p,value:0,dtype:f}}),y=v.sizeFromShape(m.shape),A=[{type:"int32",data:[o]},{type:"int32",data:d},{type:"int32",data:[y]}],x=new gfe(m.shape,o,c.shape.length,m.shape.length,d,p,f),b=r.runWebGPUProgram(x,[m,c],f,A,g),w=et({inputs:{x:b},backend:r,attrs:{shape:i}});return r.disposeData(c.dataId),r.disposeData(m.dataId),r.disposeData(b.dataId),w}var Afe={kernelName:yl,backendName:"webgpu",kernelFunc:yfe},xfe=class{constructor(e,t,r){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=r,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let r=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[],a=[];for(let s=0;s<this.outputShape.length;s++)a.push(`${r[s]}`),s<this.cRank&&n.push(`${r[s]}`);e=n.join(),t=a.join()}return`
${rt()}
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
let cVal = getC(${e});
if (cVal >= 1.0) {
setOutputAtIndex(index, getA(${t}));
} else {
setOutputAtIndex(index, getB(${t}));
}
}
}
`}};function bfe(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t,i=new xfe(n.shape.length,a.shape,a.shape.length);return r.runWebGPUProgram(i,[n,a,s],Nr(a.dtype,s.dtype))}var vfe={kernelName:Al,backendName:"webgpu",kernelFunc:bfe},wfe=kr({opType:18}),kfe={kernelName:_i,backendName:"webgpu",kernelFunc:wfe},Ife=kr({opType:16}),Sfe={kernelName:Pi,backendName:"webgpu",kernelFunc:Ife},Cfe=kr({opType:17}),Tfe={kernelName:bl,backendName:"webgpu",kernelFunc:Cfe},lS=qr({opSnippet:2,cpuKernelImpl:phe,supportsComplex:!0}),Nfe={kernelName:Bi,backendName:"webgpu",kernelFunc:lS};function Efe(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{dim:s}=n,i=v.parseAxisParam([s],a.shape),o=aS({inputs:{x:a},backend:r,attrs:{reductionIndices:i,keepDims:!1}}),l=C.expandShapeToKeepDim(o.shape,i),u=et({inputs:{x:o},backend:r,attrs:{shape:l}}),d=lS({inputs:{a,b:u},backend:r}),h=rS({inputs:{x:d},backend:r}),p=M5({inputs:{x:h},backend:r,attrs:{axis:i,keepDims:!1}}),c=et({inputs:{x:p},backend:r,attrs:{shape:l}}),m=oS({inputs:{a:h,b:c},backend:r});return r.disposeData(o.dataId),r.disposeData(u.dataId),r.disposeData(d.dataId),r.disposeData(h.dataId),r.disposeData(p.dataId),r.disposeData(c.dataId),m}var Rfe={kernelName:Di,backendName:"webgpu",kernelFunc:Efe},$fe=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n;v.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let o=s.reduce((y,A)=>y*A),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let u=[],d=iS({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),h=C.getReshaped(d.shape,s,o,!1),p=C.getPermuted(h.length,s.length,!1),c=C.getReshapedPermuted(d.shape,s,o,!1),m=et({inputs:{x:d},backend:r,attrs:{shape:h}}),f=Ya({inputs:{x:m},backend:r,attrs:{perm:p}}),g=et({inputs:{x:f},backend:r,attrs:{shape:c}});return u.push(d),u.push(m),u.push(f),u.forEach(y=>r.disposeData(y.dataId)),g},Mfe={kernelName:vl,backendName:"webgpu",kernelFunc:$fe},Ffe=class{constructor(e,t,r,n,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.workGroupSize=[64,1,1],this.workPerThread=4,this.size=!0,this.outputShape=s,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let o=t>1;this.shaderKey=`scatter_${r}_${n}_${o}`;let l=xr(a.length);this.uniforms=`updateSize : i32, sliceDim : i32, strides: ${l},`;let u="";r===1?u="i":r===2&&(u="i, j"),this.indicesSnippet=`getIndices(${u})`;let d="";n===1?d="i":n===2&&(d="i, coords[1]"),this.updatesSnippet=`getUpdates(${d})`,this.strideString=o?"uniforms.strides[j]":"uniforms.strides"}getUserCode(){return`
${rt()}
let globalIndex = index * ${this.workPerThread};
if (globalIndex < uniforms.size) {
var sum = vec4<f32>(0.0);
var found = vec4<bool>(false);
for (var i = 0; i < uniforms.updateSize; i = i + 1) {
var flattenedIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexInside = i32(round(${this.indicesSnippet}));
flattenedIndex = flattenedIndex + indexInside * ${this.strideString};
}
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
let curIndex = globalIndex + innerIndex;
let coords = getCoordsFromIndex(curIndex);
if (flattenedIndex == coords[0]) {
sum[innerIndex] = sum[innerIndex] + ${this.updatesSnippet};
found[innerIndex] = true;
}
}
}
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
let curIndex = globalIndex + innerIndex;
if (curIndex < uniforms.size)
{
setOutputAtIndex(curIndex, mix(getDefaultValue(), sum[innerIndex], f32(found[innerIndex])));
}
}
}
}`}};function Pfe(e){let{inputs:t,backend:r,attrs:n}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,sliceSize:d,strides:h,outputSize:p}=C.calculateShapes(s,a,o),c=!1;if(s.dtype==="string"){let A=r.bufferSync(a),x=r.bufferSync(s),b=v.decodeString(r.readSync(i.dataId)[0]),w=ihe(A,x,o,p,d,u,l,h,b,c);return r.makeTensorInfo(o,w.dtype,w.values)}let m=[{type:"int32",data:[u]},{type:"int32",data:[l]},{type:"int32",data:h}],f=new Ffe(u,l,a.shape.length,s.shape.length,h,[p,1],c),g=r.runWebGPUProgram(f,[s,a,i],s.dtype,m),y=et({inputs:{x:g},backend:r,attrs:{shape:o}});return r.disposeData(g.dataId),y}var _fe={kernelName:ch,backendName:"webgpu",kernelFunc:Pfe};function zfe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=a.shape.length,d=new Array(u).fill(0),h=a.shape.slice();return l.map(p=>{let c=[...h];c[o]=p;let m=Pd({inputs:{x:a},backend:r,attrs:{begin:d,size:c}});return d[o]+=p,m})}var Ofe={kernelName:wl,backendName:"webgpu",kernelFunc:zfe},Dfe=kr({opType:19}),Lfe={kernelName:zi,backendName:"webgpu",kernelFunc:Dfe},Bfe={kernelName:hd,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:r}=e,n=t,a=new Hh(r.shape,20);return n.runWebGPUProgram(a,[r],r.dtype)}},Wfe=qr({opSnippet:11}),Vfe={kernelName:Li,backendName:"webgpu",kernelFunc:Wfe},Ufe=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=xr(this.outputShape.length);this.uniforms=`begin : ${t}, strides : ${t}, `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let r=0;t=this.outputShape.map((n,a)=>(r++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${r-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
setOutputAtIndex(index, getX(${t}));
}
}
`}};function Gfe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n,{finalShapeSparse:c,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=Ot.sliceInfo(a.shape,s,i,o,l,u,d,h,p),w;if(f)w=et({inputs:{x:a},backend:r,attrs:{shape:m}});else if(g||y){v.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let I=Ot.computeOutShape(A,x,b),N=Pd({inputs:{x:a},backend:r,attrs:{begin:A,size:I}});w=et({inputs:{x:N},backend:r,attrs:{shape:m}}),r.disposeData(N.dataId)}else if(r.shouldExecuteOnCPU([a])){let I=r.readSync(a.dataId),N=Le(a.shape,a.dtype,I),E=uhe(c,N,b,A);w=r.makeTensorInfo(m,a.dtype,E.values)}else{let I=new Ufe(c),N=[{type:"int32",data:A},{type:"int32",data:b}],E=r.runWebGPUProgram(I,[a],a.dtype,N);w=et({inputs:{x:E},backend:r,attrs:{shape:m}}),r.disposeData(E.dataId)}return w}var jfe={kernelName:kl,backendName:"webgpu",kernelFunc:Gfe};function Hfe(e){let{inputs:t,backend:r,attrs:n}=e,{separator:a,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:d,dataSplits:h}=t,p=r.readSync(d.dataId),c=r.readSync(h.dataId),[m,f]=dhe(p,c,a,s,i,o,l,u);return[r.makeTensorInfo([m.length],"string",m),r.makeTensorInfo(h.shape,"int32",f)]}var qfe={kernelName:fh,backendName:"webgpu",kernelFunc:Hfe},Xfe=kr({opType:21}),Kfe={kernelName:Wi,backendName:"webgpu",kernelFunc:Xfe},Zfe=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[n]*t[n];this.outputShape=r,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=Yfe(this.rank,"uniforms.");return`
${rt()}
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
setOutputAtIndex(index, getA(${e}));
}
}
`}};function Yfe(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let r=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let a=0;a<e;a++)n.push(`(${r[a]} % ${t}aShape[${a}])`);return n.join()}function Jfe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reps:s}=n;if(r.shouldExecuteOnCPU([a])||a.dtype==="string"||a.shape.length>=5){let o=r.readSync(a.dataId),l=a.dtype==="string"?o.map(h=>v.decodeString(h)):o,u=Le(a.shape,a.dtype,l),d=hhe(u,s);return r.makeTensorInfo(d.shape,d.dtype,d.values)}let i=new Zfe(a.shape,s);return r.runWebGPUProgram(i,[a],a.dtype)}var Qfe={kernelName:es,backendName:"webgpu",kernelFunc:Jfe},eme=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32, firstPass : i32, negativeInf : f32,
dir : i32, inc : i32,`,this.shaderKey="swap"}getUserCode(){return`
${rt()}
if (index < uniforms.size) {
let outC = getCoordsFromIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced
// above, Figure5(a) shows that element[1] is in the second half of
// the group when group size is 2, but it is in the first half of
// the group when group size is 4.
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
var i = 0;
if (isFirstInPair) {
i = elemIdx;
} else {
i = elemIdx - uniforms.inc;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.inc;
} else {
i1 = i32(getIndices(batch, i + uniforms.inc));
}
var x0 = f32(0.0);
var x1 = f32(0.0);
if (i0 < uniforms.inputSize) {
x0 = getX(batch, i0);
} else {
x0 = uniforms.negativeInf;
}
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = uniforms.negativeInf;
}
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) {
// Elements in opposite order of direction
let iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutputAtIndex(index, f32(i0));
} else {
setOutputAtIndex(index, f32(i1));
}
}
}
`}},tme=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32, firstPass : i32, k : i32,",this.shaderKey="merge"}getUserCode(){return`
${rt()}
if (index < uniforms.size) {
let outC = getCoordsFromIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
// (k=4), we only need to output the indices at positions |, the
// indices at positions _ can be thrown away, see Figure5(b) After
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
// above.
// For example, the paper shows we only need to output the orange
// bars. The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back to
// the previous sequence to find the corresponding value, we need
// to double the index. When we double the index, we basically
// interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
// position of each 2k positions by - elemIdx % k. E.g. for output
// at index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
var i = 0;
if (elemIdx < uniforms.k) {
i = elemIdx;
} else {
i = elemIdx * 2 - elemIdx % uniforms.k;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.k;
} else {
i1 = i32(getIndices(batch, i + uniforms.k));
}
let x0 = getX(batch, i0);
var x1 = f32(0.0);
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = x0;
}
if (x0 >= x1) {
setOutputAtIndex(index, f32(i0));
} else {
setOutputAtIndex(index, f32(i1));
}
}
}
`}};function cu(e,t){t!==null&&e.disposeData(t.dataId)}function gv(e){let t=1;for(;t<e;)t*=2;return t}function rme(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{k:s,sorted:i}=n,o=a.shape,l=o[o.length-1];if(r.shouldExecuteOnCPU([a])){let b=r.readSync(a.dataId),[w,I]=che(b,o,a.dtype,s,i);return[r.makeTensorInfo(w.shape,w.dtype,w.values),r.makeTensorInfo(I.shape,I.dtype,I.values)]}if(s===0)return o[o.length-1]=0,[r.makeTensorInfo(o,a.dtype,[]),r.makeTensorInfo(o,"int32",[])];if(l===1)return[a,_d({attrs:{shape:o,dtype:"int32",value:0},backend:r})];let u=v.sizeFromShape(o)/l,d=et({inputs:{x:a},attrs:{shape:[u,l]},backend:r}),h=gv(s),p=gv(l),c=null,m=()=>c===null?[d,d]:[d,c],f=(b,w,I)=>{let N=m(),E=new eme(I),R=[{type:"int32",data:[l]},{type:"int32",data:[c===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[b]},{type:"int32",data:[w]}],_=c;c=r.runWebGPUProgram(E,N,"int32",R),cu(r,_)};for(let b=1;b<h;b*=2){let w=b*2;for(let I=b;I>=1;I/=2)f(w,I,[u,p])}for(let b=p;b>h;b/=2){let w=m(),I=new tme([u,b/2]),N=[{type:"int32",data:[l]},{type:"int32",data:[c===null?1:0]},{type:"int32",data:[h]}],E=c;c=r.runWebGPUProgram(I,w,"int32",N),cu(r,E);let R=h/2,_=R*2;for(let M=R;M>=1;M/=2)f(_,M,c.shape)}let g=c;c=Pd({inputs:{x:c},backend:r,attrs:{begin:0,size:[u,s]}}),cu(r,g);let y=nS({inputs:{x:d,indices:c},backend:r,attrs:{axis:1,batchDims:1}});cu(r,d);let A=o.slice(0,-1);A.push(s),g=c,c=et({inputs:{x:c},attrs:{shape:A},backend:r}),cu(r,g);let x=y;return y=et({inputs:{x:y},attrs:{shape:A},backend:r}),cu(r,x),[y,c]}var nme={kernelName:Sl,backendName:"webgpu",kernelFunc:rme},ame=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32, fillModeId : i32, fillValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ye(this.outputShape),this.dispatch=Oe(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
fn mapCoord(outCoord : f32, len : f32) -> f32{
var inCoord = outCoord;
if(uniforms.fillModeId == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
inCoord;
}
if (inCoord < -len) {
inCoord = inCoord + sz2;
} else {
inCoord = -inCoord - 1.0;
}
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (uniforms.fillModeId == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (uniforms.fillModeId == 4) {
return clamp(outCoord, 0.0, len - 1.0);
}
return outCoord;
}
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
channel : i32) -> f32 {
var outputValue : f32;
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = uniforms.fillValue;
}
return outputValue;
}
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
var outputValue : f32;
let batch = coords[0];
let x = coords[2];
let y = coords[1];
let channel = coords[3];
let xf = f32(x);
let yf = f32(y);
let a1 = getTransforms(batch, 0);
let a2 = getTransforms(batch, 1);
let a3 = getTransforms(batch, 2);
let b1 = getTransforms(batch, 3);
let b2 = getTransforms(batch, 4);
let b3 = getTransforms(batch, 5);
let c1 = getTransforms(batch, 6);
let c2 = getTransforms(batch, 7);
let projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = uniforms.fillValue;
} else {
let inX = (a1 * xf + a2 * yf + a3) / projection;
let inY = (b1 * xf + b2 * yf + b3) / projection;
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
if (uniforms.interpolationModeId == 1) {
let coordY = i32(round(mapY));
let coordX = i32(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
let yFloor = floor(mapY);
let xFloor = floor(mapX);
let yCeil = yFloor + 1.0;
let xCeil = xFloor + 1.0;
let valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
let valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutputAtIndex(index, outputValue);
}
}
`}};function sme(e){let{inputs:t,backend:r,attrs:n}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,h,p,c]=a.shape,[m,f]=u!=null?u:[h,p],g=[d,m,f,c],y=new ame(g),A=i==="nearest"?1:2,x;switch(o){case"constant":x=1;break;case"reflect":x=2;break;case"wrap":x=3;break;case"nearest":x=4;break;default:x=1;break}let b=[{type:"int32",data:[A]},{type:"int32",data:[x]},{type:"float32",data:[l]}];return r.runWebGPUProgram(y,[a,s],"float32",b)}var ime={kernelName:Cl,backendName:"webgpu",kernelFunc:sme};function ome(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],u=new Array(o-1),d=0;for(let f=0;f<o;f++)f!==s&&(u[d++]=i.shape[f]);let h=[],p=new Array(o).fill(0),c=i.shape.slice();c[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){p[s]=f;let g=Pd({inputs:{x:i},backend:r,attrs:{begin:p,size:c}}),y=et({inputs:{x:g},backend:r,attrs:{shape:u}});m[f]=y,h.push(g)}return h.forEach(f=>r.disposeData(f.dataId)),m}var lme={kernelName:Tl,backendName:"webgpu",kernelFunc:ome},ume=[Mpe,ghe,Ahe,vhe,The,Ehe,$he,Fhe,Dhe,Vhe,Ghe,Xhe,zpe,Jhe,nce,oce,uce,pce,fce,gce,Ace,vce,kce,Nce,Rce,Mce,Fce,Pce,zce,Dce,Bce,Hce,Vce,Gce,Kce,Yce,Qce,r0e,s0e,o0e,u0e,_pe,Zhe,p0e,c0e,m0e,y0e,x0e,v0e,w0e,I0e,C0e,N0e,R0e,M0e,P0e,Ice,z0e,D0e,B0e,Lhe,V0e,G0e,H0e,X0e,Z0e,J0e,efe,Bhe,tfe,nfe,sfe,Rpe,lfe,pfe,cfe,mfe,Afe,vfe,kfe,Sfe,Tfe,zhe,jfe,qfe,Rfe,Mfe,_fe,Ofe,Lfe,Bfe,Vfe,Nfe,Cce,Kfe,Qfe,nme,ime,She,lme,W0e];for(let e of ume)qn(e);var dme=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireUploadBuffer(e,t){return this.acquireBuffer(e,t,!0)}acquireBuffer(e,t,r=!1){let n=yv(e,t);if(this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.usedBuffers.has(n)||this.usedBuffers.set(n,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(n).length>0){this.numFreeBuffers--;let s=this.freeBuffers.get(n).shift();return this.usedBuffers.get(n).push(s),s}this.numBytesAllocated+=e;let a=this.device.createBuffer({mappedAtCreation:r,size:e,usage:t});return this.usedBuffers.get(n).push(a),a}releaseBuffer(e,t,r){if(this.freeBuffers.size===0)return;let n=yv(t,r);this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.freeBuffers.get(n).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let a=this.usedBuffers.get(n),s=a.indexOf(e);if(s<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");a.splice(s,1),this.numBytesUsed-=t}releaseUploadBuffer(e,t,r){e.mapAsync(GPUMapMode.WRITE).then(()=>{this.releaseBuffer(e,t,r)},n=>{})}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}dispose(){this.freeBuffers.forEach((e,t)=>{e.forEach(r=>{r.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(r=>{r.destroy()})}),this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function yv(e,t){return`${e}_${t}`}var pme=class{constructor(e){this.device=e,this.numUsedTextures=0,this.numFreeTextures=0,this.freeTextures=new Map,this.usedTextures=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireTexture(e,t,r,n){let a=xv(r),s=e*t*a,i=Av(e,t,r,n);if(this.freeTextures.has(i)||this.freeTextures.set(i,[]),this.usedTextures.has(i)||this.usedTextures.set(i,[]),this.numBytesUsed+=s,this.numUsedTextures++,this.freeTextures.get(i).length>0){this.numFreeTextures--;let l=this.freeTextures.get(i).shift();return this.usedTextures.get(i).push(l),l}this.numBytesAllocated+=s;let o=this.device.createTexture({size:[e,t],format:r,usage:n});return this.usedTextures.get(i).push(o),o}releaseTexture(e,t,r,n,a){if(this.freeTextures.size===0)return;let s=Av(t,r,n,a);this.freeTextures.has(s)||this.freeTextures.set(s,[]),this.freeTextures.get(s).push(e),this.numFreeTextures++,this.numUsedTextures--;let i=this.usedTextures.get(s),o=i.indexOf(e);if(o<0)throw new Error("Cannot release a texture that was never provided by this texture manager");i.splice(o,1);let l=xv(n),u=t*r*l;this.numBytesUsed-=u}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){this.freeTextures.forEach((e,t)=>{e.forEach(r=>{r.destroy()})}),this.usedTextures.forEach((e,t)=>{e.forEach(r=>{r.destroy()})}),this.freeTextures=new Map,this.usedTextures=new Map,this.numUsedTextures=0,this.numFreeTextures=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function Av(e,t,r,n){return`${e}_${t}_${r}_${n}`}function xv(e){if(e==="rgba8unorm")return 16;throw new Error(`${e} is not supported!`)}var hme=(e,t,r,n,a)=>{let s=[n,...r];return a&&s.push(a),e.createBindGroup({layout:t,entries:s.map((i,o)=>({binding:o,resource:i}))})},bv=(e,t,r,n,a,s=!1)=>{let i={dtype:a.dtype,shape:a.shape},o=gpe(n,i,t,s),l=e.createShaderModule({code:o,label:t.constructor.name});return e.createComputePipeline({layout:r,compute:{module:l,entryPoint:"main"},label:t.constructor.name})};function vv(e,t,r=[],n="",a=""){return e.shaderKey+"_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(s=>s.length).join(",")+r.join(",")+e.variableNames.join(",")+n+a}var cme=Z().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),wv=(e,t)=>{let r=e.limits.maxComputeWorkgroupsPerDimension,n=t.dispatchLayout,a=t.dispatch;if(a.every(i=>i<=r))return a;v.assert(a[0]>r&&n.y===void 0&&n.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let s=Math.ceil(Math.sqrt(a[0]));return s>r?(s=Math.ceil(Math.cbrt(a[0])),v.assert(s<=r,()=>"Total dispatch size exceeds WebGPU maximum."),[s,s,s]):[s,s,1]},uS=class extends Du{constructor(e,t=!1){if(super(),this.commandQueueOwnedIds=new WeakSet,this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[],this.textureDisposalQueue=[],this.disposed=!1,this.uploadWaitMs=0,this.downloadWaitMs=0,this.dispatchNumberInEncoder=0,this.fromPixelTextureLayout=null,this.fromPixelImportTextureLayout=null,!E5())throw new Error("WebGPU is not supported on this device");this.layoutCache={},this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new dme(this.device),this.textureManager=new pme(this.device),this.tensorMap=new Jp(this,Xt()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),Z().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return uS.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}flushDisposalQueue(){this.tensorDisposalQueue.forEach(e=>{this.maybeReleaseBuffer(e),this.tensorMap.delete(e)}),this.uniformDisposalQueue.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.byteSize,e.usage)),this.stagingDisposalQueue.forEach(e=>this.bufferManager.releaseUploadBuffer(e.buffer,e.byteSize,e.usage)),this.textureDisposalQueue.forEach(e=>this.textureManager.releaseTexture(e.texture,e.width,e.height,e.format,e.usage)),this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[],this.textureDisposalQueue=[]}disposeData(e,t=!1){if(this.tensorMap.has(e)){let r=this.tensorMap.get(e);if(r.refCount--,!t&&r.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDisposalQueue.push(e),!1;this.maybeReleaseBuffer(e);let{complexTensorInfos:n}=this.tensorMap.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.tensorMap.delete(e)}return!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}getBufferManager(){return this.bufferManager}getTextureManager(){return this.textureManager}acquireBuffer(e,t=this.defaultGpuBufferUsage()){return this.bufferManager.acquireBuffer(e,t)}maybeReleaseBuffer(e){let t=this.tensorMap.get(e);t!=null&&t.bufferInfo.buffer!=null&&(this.bufferManager.releaseBuffer(t.bufferInfo.buffer,t.bufferInfo.byteSize,t.bufferInfo.usage),t.bufferInfo.buffer=null)}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,r){if(r==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()},a=v.sizeFromShape(t)*g0(r);return this.tensorMap.set(n,{dtype:r,shape:t,values:e,bufferInfo:{byteSize:a,usage:this.defaultGpuBufferUsage()},refCount:1}),n}move(e,t,r,n,a){if(n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s=v.sizeFromShape(r)*g0(n);this.tensorMap.set(e,{dtype:n,shape:r,values:t,bufferInfo:{byteSize:s,usage:this.defaultGpuBufferUsage()},refCount:a})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.flushDisposalQueue()}getBuffer(e){return this.uploadToGPU(e),this.tensorMap.get(e).bufferInfo.buffer}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.end(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e,t){let r=this.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e,0,r,0,t),this.submitQueue(),await r.mapAsync(GPUMapMode.READ);let n=r.getMappedRange().slice(0);return r.unmap(),r!=null&&this.bufferManager.releaseBuffer(r,t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),Z().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),n}convertAndCacheOnCPU(e,t){let r=this.tensorMap.get(e);return this.maybeReleaseBuffer(e),r.values=t,r.values}readSync(e){let t=this.tensorMap.get(e),{values:r}=t;if(r==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return r}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:r}=t;if(r!=null)return this.convertAndCacheOnCPU(e,r);let n;if(t.dtype==="complex64"){let a=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),s=a[0],i=a[1];n=C.mergeRealAndImagArrays(s,i)}else{let a=t.values!=null?t.values:await this.getBufferData(t.bufferInfo.buffer,t.bufferInfo.byteSize);n=U9(a,t.dtype)}return this.convertAndCacheOnCPU(e,n),n}readToGPU(e){let t=this.tensorMap.get(e),{values:r,dtype:n,shape:a,bufferInfo:s}=t;if(n==="complex64")throw new Error("Does not support reading buffer for complex64 dtype.");if(s.buffer==null)throw r!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let i=v.sizeFromShape(a)*g0(n),o=this.acquireBuffer(i);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(s.buffer,0,o,0,i),this.submitQueue();let l=this.makeTensorInfo(a,n),u=Xt().makeTensorFromTensorInfo(l),d=this.tensorMap.get(l.dataId);return d.bufferInfo.buffer=o,{tensorRef:u,buffer:o,bufSize:i}}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let r=t.map(n=>v.decodeString(n));return Le(e.shape,e.dtype,r)}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,t)}async time(e){let t=this.activeTimers,r=[],n=!1;this.programTimersStack==null?(this.programTimersStack=r,n=!0):this.activeTimers.push(r),this.activeTimers=r,e();let a=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),s=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},o=await Promise.all(a);return i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,i}getAndSavePipeline(e,t){return e in this.pipelineCache||(this.pipelineCache[e]=t()),this.pipelineCache[e]}makeTensorInfo(e,t,r){let n;if(t==="string"&&r!=null&&r.length>0&&v.isString(r[0])){let a=r.map(s=>v.encodeString(s));n=this.write(a,e,t)}else n=this.write(r,e,t);return{dataId:n,shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);return{offset:0,size:t.bufferInfo.byteSize,buffer:t.bufferInfo.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);if(t.bufferInfo.buffer==null&&(t.bufferInfo.buffer=this.acquireBuffer(t.bufferInfo.byteSize),t.values)){let r=this.bufferManager.acquireUploadBuffer(t.bufferInfo.byteSize,GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC),n=r.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(n).set(t.values):new Float32Array(n).set(t.values),r.unmap(),this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(r,0,t.bufferInfo.buffer,0,t.bufferInfo.byteSize);let a={byteSize:t.bufferInfo.byteSize,usage:GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC,buffer:r};this.stagingDisposalQueue.push(a)}}makeUniforms(e){let t=0,r=0,n=[];e.forEach(o=>{o.data.length===0&&(o.data=[1]);let l;switch(o.data.length){case 1:l=4;break;case 2:l=8;break;case 3:l=16;break;case 4:l=16;break;case 5:l=16;break;case 6:l=16;break;default:v.assert(!1,()=>`Unsupported ${o.data.length}D shape`)}(r===5||r===6)&&(l=16),t=Math.ceil(t/l)*l,r=o.data.length,n.push(t),t+=o.data.length*4});let a=new ArrayBuffer(t);e.forEach((o,l)=>{let u=n[l];o.type==="int32"?new Int32Array(a,u,o.data.length).set(o.data):o.type==="uint32"?new Uint32Array(a,u,o.data.length).set(o.data):new Float32Array(a,u,o.data.length).set(o.data)});let s=this.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);this.queue.writeBuffer(s,0,a,0,t);let i={byteSize:t,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:s};return this.uniformDisposalQueue.push(i),{offset:0,size:t,buffer:s}}createLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}});for(let a=0;a<e;a++)t.push({binding:a+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"read-only-storage"}});t.push({binding:e+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"uniform"}});let r=this.device.createBindGroupLayout({entries:t}),n=this.device.createPipelineLayout({bindGroupLayouts:[r]});return{bindGroupLayout:r,pipelineLayout:n}}getCachedOrCreateLayout(e){return e in this.layoutCache||(this.layoutCache[e]=this.createLayout(e)),this.layoutCache[e]}runWebGPUProgram(e,t,r,n,a){if(!a){if(a=this.makeTensorInfo(e.outputShape,r),v.sizeFromShape(a.shape)===0){let I=this.tensorMap.get(a.dataId);return I.values=v.getTypedArrayFromDType(a.dtype,0),a}this.uploadToGPU(a.dataId)}e.dispatch=wv(this.device,e);let s=[{type:"float32",data:[NaN]}],i=t.concat(a).map(I=>I.shape),o="int32";i.map(I=>{s.push({type:o,data:I})});let l=v.computeStrides(a.shape);if(s.push({type:o,data:l}),e.size){let I=v.sizeFromShape(e.outputShape);s.push({type:o,data:[e.isVec4?I/4:I]})}n&&(s=[...s,...n]);let u=this.makeUniforms(s),d=t.map((I,N)=>{if(I.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(I.dataId),{dtype:this.tensorMap.get(I.dataId).dtype,shape:I.shape,name:e.variableNames[N]}}),h=d.map(I=>I.dtype).concat(a.dtype),p=d.map(I=>C.getBroadcastDims(I.shape,a.shape)),c=d.map(I=>v.arraysEqual(I.shape,a.shape)).join("_"),m=p.map(I=>I.join("_")).join(";"),f=vv(e,i,h,m,c),{bindGroupLayout:g,pipelineLayout:y}=this.getCachedOrCreateLayout(e.variableNames.length),A=this.getAndSavePipeline(f,()=>bv(this.device,e,y,d,a)),x=this.activeTimers!=null,b=hme(this.device,g,t.map(I=>this.tensorToBinding(I)),this.tensorToBinding(a),u);this.ensureCommandEncoderReady();let w=this.getComputePass();return x&&this.supportTimeQuery&&w.writeTimestamp(this.querySet,0),w.setPipeline(A),w.setBindGroup(0,b),w.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),x&&this.supportTimeQuery&&w.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(I=>{this.commandQueueOwnedIds.add(I.dataId)}),this.commandQueueOwnedIds.add(a.dataId),Z().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),x&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),a}getFromPixelTextureLayout(e){return e?(this.fromPixelImportTextureLayout===null&&(this.fromPixelImportTextureLayout=this.createFromPixelTextureLayout(!0)),this.fromPixelImportTextureLayout):(this.fromPixelTextureLayout===null&&(this.fromPixelTextureLayout=this.createFromPixelTextureLayout(!1)),this.fromPixelTextureLayout)}createFromPixelTextureLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),e?t.push({binding:1,visibility:GPUShaderStage.COMPUTE,externalTexture:{}}):t.push({binding:1,visibility:GPUShaderStage.COMPUTE,texture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let r=this.device.createBindGroupLayout({entries:t}),n=this.device.createPipelineLayout({bindGroupLayouts:[r]});return{bindGroupLayout:r,pipelineLayout:n}}copyExternalImageToTexture(e,t){let r=GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING,n="rgba8unorm",a=this.textureManager.acquireTexture(t[1],t[0],n,r),s=a.createView();this.queue.copyExternalImageToTexture({source:e},{texture:a},[t[1],t[0]]);let i={width:t[1],height:t[0],format:n,usage:r,texture:a};return this.textureDisposalQueue.push(i),s}runFromPixelsProgram(e,t,r,n,a){e.dispatch=wv(this.device,e);let s=this.makeTensorInfo(t,"int32");if(v.sizeFromShape(s.shape)===0){let f=this.tensorMap.get(s.dataId);return f.values=v.getTypedArrayFromDType(s.dtype,0),s}this.uploadToGPU(s.dataId);let i=vv(e,[s.shape]),o=this.getFromPixelTextureLayout(n),l=this.getAndSavePipeline(i,()=>bv(this.device,e,o.pipelineLayout,[],s,!0)),u;if(n){let f={source:a};u=this.device.importExternalTexture(f)}else u=this.copyExternalImageToTexture(a,s.shape);let d=this.tensorToBinding(s),h=this.makeUniforms(r),p=this.device.createBindGroup({layout:o.bindGroupLayout,entries:[{binding:0,resource:{buffer:d.buffer}},{binding:1,resource:u},{binding:2,resource:{buffer:h.buffer}}]});this.ensureCommandEncoderReady();let c=this.getComputePass(),m=this.activeTimers!=null;return m&&this.supportTimeQuery&&c.writeTimestamp(this.querySet,0),c.setPipeline(l),c.setBindGroup(0,p),c.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),m&&this.supportTimeQuery&&c.writeTimestamp(this.querySet,1),this.commandQueueOwnedIds.add(s.dataId),this.dispatchNumberInEncoder++,Z().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),m&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),s}async getTimeFromQuerySet(e){let t=this.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r=this.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,r,0,16),this.submitQueue(),await r.mapAsync(GPUMapMode.READ);let n=new BigUint64Array(r.getMappedRange()),a=Number(n[1]-n[0]);return r.unmap(),this.bufferManager.releaseBuffer(r,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),a/1e6}shouldExecuteOnCPU(e,t=cme){return Z().getBool("WEBGPU_CPU_FORWARD")&&e.every(r=>this.tensorMap.get(r.dataId).bufferInfo.buffer==null&&v.sizeFromShape(r.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDisposalQueue.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.textureManager.dispose(),this.disposed=!0)}},F5=uS;F5.nextDataId=0;var dS={};Be(dS,{WebGPUBackend:()=>F5,webgpu_util:()=>W9});E5()&&$l("webgpu",async()=>{Z().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:Z().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),r=t.limits,n={},a=t.features.has("timestamp-query");n.requiredLimits={maxComputeWorkgroupStorageSize:r.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:r.maxComputeWorkgroupsPerDimension},a?n.requiredFeatures=["timestamp-query"]:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let s=await t.requestDevice(n);return new F5(s,a)},3);var Ut=(e=>(e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64",e))(Ut||{}),_m=(e=>(e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu",e))(_m||{}),pS;function fme(e){pS=e.wasm.cwrap(Ps,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function mme(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n,p=r.dataIdMap.get(a.dataId).id,c=r.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let E=r.dataIdMap.get(i.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);m=E.id}let f=o==null?0:r.dataIdMap.get(o.dataId).id,g=_m[d];if(g==null)throw new Error(`${d} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],A=u?s.shape[1]:s.shape[2],x=Rl.assertAndGetBroadcastShape(a.shape.slice(0,-2),s.shape.slice(0,-2)),b=r.makeOutput([...x,y,A],a.dtype),w=r.dataIdMap.get(b.dataId).id,I=new Uint8Array(new Int32Array(a.shape).buffer),N=new Uint8Array(new Int32Array(s.shape).buffer);return pS(p,I,a.shape.length,c,N,s.shape.length,l,u,g,m,f,h||0,w),b}var gme={kernelName:Ps,backendName:"wasm",setupFunc:fme,kernelFunc:mme};function Ir(e,t){let r;function n(s){r=s.wasm.cwrap(e,null,["number","number","number"])}function a(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),d=i.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||r(l,Ut[o.dtype],d),u}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var yme=Ir(jo);function Xr(e,t,r){let n;function a(i){n=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:d}=l,h=o.dataIdMap.get(u.dataId).id,p=o.dataIdMap.get(d.dataId).id,c=r!=null?r:u.dtype,m=C.assertAndGetBroadcastShape(u.shape,d.shape),f=o.makeOutput(m,c);if(v.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(d.shape).buffer),A=o.dataIdMap.get(f.dataId).id;return n(h,g,u.shape.length,p,y,d.shape.length,Ut[u.dtype],A),f}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var Ame=!0,xme=Xr(Ja,Ame),hS;function bme(e){hS=e.wasm.cwrap(Zs,null,["array","number","number","number"])}function vme(e){let{inputs:t,backend:r}=e,n=r.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(n.shape)===0)return n;let a=t.map(o=>r.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=r.dataIdMap.get(n.dataId).id;return hS(s,a.length,Ut[n.dtype],i),n}var wme={kernelName:Zs,backendName:"wasm",setupFunc:bme,kernelFunc:vme};function zm(e){let{inputs:{x:t},backend:r}=e,n=r.makeOutput(t.shape,t.dtype),a=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(n).set(a),n}var kme={kernelName:mi,backendName:"wasm",kernelFunc:zm},cS;function Ime(e){cS=e.wasm.cwrap(Vi,null,["number","array","number","number","number","array","number"])}function Xs(e){let{inputs:t,backend:r,attrs:n}=e,[a,s]=Cme(t.x.shape,n.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=Sme(t.x.shape,n.perm),l={dataId:t.x.dataId,shape:a,dtype:t.x.dtype};if(i){let m=zm({inputs:t,backend:r});return m.shape=o,m}let u=r.makeOutput(o,l.dtype),d=r.dataIdMap.get(l.dataId).id,h=r.dataIdMap.get(u.dataId).id,p=new Uint8Array(new Int32Array(s).buffer),c=new Uint8Array(new Int32Array(l.shape).buffer);return cS(d,c,l.shape.length,Ut[l.dtype],h,p,s.length),u}function Sme(e,t){let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[t[n]];return r}function Cme(e,t){let r=[],n=[];for(let a=0;a<e.length;++a)e[a]!==1&&r.push(e[a]),e[t[a]]!==1&&n.push(t[a]);for(let a=0;a<n.length;++a){let s=-1;for(let i=0;i<n.length;++i)n[i]>=a&&(s===-1||n[s]>n[i])&&(s=i);n[s]=a}return[r,n]}var Tme={kernelName:Vi,backendName:"wasm",kernelFunc:Xs,setupFunc:Ime};function Zi(e,t,r){let n=e.shape,a=e.shape.length,s=v.parseAxisParam(t,n),i=s,o=C.getAxesPermutation(i,a),l=null,u=!1;if(o!=null){let d=new Array(a);for(let p=0;p<d.length;p++)d[p]=n[o[p]];i=C.getInnerMostAxes(i.length,a),l=Xs({inputs:{x:e},attrs:{perm:o},backend:r});let h=r.dataIdMap.get(e.dataId).id;r.dataIdMap.get(l.dataId).id!==h&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var fS;function Nme(e){fS=e.wasm.cwrap(Vu,null,["number, number, number"])}function Eme(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:h,inputWasTransposed:p}=Zi(i,a,t);if(p){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let c=l.shape.length;C.assertAxesAreInnerMostDims("all",d,c);let[m,f]=C.computeOutAndReduceShapes(l.shape,d),g=v.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;fS(o,g,A)}if(p&&t.disposeData(u.dataId),s){let A=C.expandShapeToKeepDim(y.shape,h);y.shape=A}return y}var Rme={kernelName:Vu,backendName:"wasm",setupFunc:Nme,kernelFunc:Eme},mS;function $me(e){mS=e.wasm.cwrap(Uu,null,["number, number, number"])}function Mme(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:h,inputWasTransposed:p}=Zi(i,a,t);if(p){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let c=l.shape.length;C.assertAxesAreInnerMostDims("any",d,c);let[m,f]=C.computeOutAndReduceShapes(l.shape,d),g=v.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;mS(o,g,A)}if(p&&t.disposeData(u.dataId),s){let A=C.expandShapeToKeepDim(y.shape,h);y.shape=A}return y}var Fme={kernelName:Uu,backendName:"wasm",setupFunc:$me,kernelFunc:Mme},gS;function Pme(e){gS=e.wasm.cwrap(Ys,null,["number","number","number","number","number"])}function _me(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a}=n,{x:s}=r,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:d,inputWasTransposed:h}=Zi(s,a,t);if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let p=l.shape.slice(0,-1),c=t.makeOutput(p,"int32"),m=t.dataIdMap.get(c.dataId).id,f=v.sizeFromShape(c.shape),g=l.shape[d[0]];return gS(o,Ut[l.dtype],f,g,m),h&&t.disposeData(u.dataId),c}var zme={kernelName:Ys,backendName:"wasm",kernelFunc:_me,setupFunc:Pme},yS;function Ome(e){yS=e.wasm.cwrap(Js,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Dme(e){let{inputs:t,attrs:r,backend:n}=e,a=t.x,s=n.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r,d=C.computePool2DInfo(a.shape,i,o,1,l,u),h=d.filterHeight,p=d.filterWidth,c=d.padInfo.top,m=d.padInfo.right,f=d.padInfo.bottom,g=d.padInfo.left,y=d.strideHeight,A=d.strideWidth,x=d.inChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);if(d.dilationWidth!==1||d.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${d.dilationHeight}, ${d.dilationWidth}].`);let b=n.makeOutput(d.outShape,"float32"),w=n.dataIdMap.get(b.dataId).id;return yS(s,a.shape[0],a.shape[1],a.shape[2],h,p,c,m,f,g,y,A,x,w),b}var Lme={kernelName:Js,backendName:"wasm",setupFunc:Ome,kernelFunc:Dme};function rn(e){let{inputs:t,attrs:r}=e,{x:n}=t,{shape:a}=r,s=v.sizeFromShape(n.shape),i=v.inferFromImplicitShape(a,s);return v.assert(s===v.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${n.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var Bme={kernelName:fl,backendName:"wasm",kernelFunc:rn},AS;function Wme(e){AS=e.wasm.cwrap(Qs,null,["number","array","number","number","array","number","number","number","number"])}function Vme(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,u=s.shape.length,d=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],p=i?a.shape[l-1]:a.shape[l-2],c=o?s.shape[u-2]:s.shape[u-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),y=v.sizeFromShape(f),A=Rl.assertAndGetBroadcastShape(a.shape.slice(0,-2),s.shape.slice(0,-2)).concat([p,c]);v.assert(d===h,()=>`Error in matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,d,p]:[g,p,d],b=o?[y,c,h]:[y,h,c],w=rn({inputs:{x:a},backend:r,attrs:{shape:x}}),I=rn({inputs:{x:s},backend:r,attrs:{shape:b}}),N=r.dataIdMap.get(w.dataId).id,E=r.dataIdMap.get(I.dataId).id,R=i?w.shape[2]:w.shape[1],_=o?I.shape[1]:I.shape[2],M=Math.max(g,y),S=r.makeOutput([M,R,_],w.dtype),z=r.dataIdMap.get(S.dataId).id,O=new Uint8Array(new Int32Array(w.shape).buffer),H=new Uint8Array(new Int32Array(I.shape).buffer);return AS(N,O,w.shape.length,E,H,I.shape.length,i,o,z),r.disposeData(w.dataId),r.disposeData(I.dataId),S.shape=A,S}var Ume={kernelName:Qs,backendName:"wasm",setupFunc:Wme,kernelFunc:Vme};function Vo(e){let{inputs:{x:t},attrs:{begin:r,size:n},backend:a}=e,[s,i]=Ot.parseSliceParams(t,r,n),o=Ot.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),u=a.makeOutput(i,t.dtype),d=v.computeStrides(t.shape),h=a.dataIdMap.get(u.dataId);if(o){let m=Ot.computeFlatOffset(s,d);return t.dtype==="string"?h.stringBytes=l.slice(m,m+v.sizeFromShape(i)):a.typedArrayFromHeap(u).set(l.subarray(m,m+v.sizeFromShape(i))),u}if(t.dtype==="string"){let m=V0(l,s,i,t.shape,t.dtype);return h.stringBytes=m,u}let p=a.typedArrayFromHeap(u),c=t.shape.length;if(c===2)Gme(l,d[0],p,s,i);else if(c===3)jme(l,d[0],d[1],p,s,i);else if(c===4)Hme(l,d[0],d[1],d[2],p,s,i);else{let m=V0(l,s,i,t.shape,t.dtype);p.set(m)}return u}function Gme(e,t,r,n,a){let s=0,i=n[0],o=n[1],l=i+a[0];for(let u=i;u<l;u++){let d=u*t+o;r.set(e.subarray(d,d+a[1]),s),s+=a[1]}}function jme(e,t,r,n,a,s){let i=0,o=a[0],l=a[1],u=a[2],d=o+s[0],h=l+s[1];for(let p=o;p<d;p++)for(let c=l;c<h;c++){let m=p*t+c*r+u;n.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function Hme(e,t,r,n,a,s,i){let o=0,l=s[0],u=s[1],d=s[2],h=l+i[0],p=u+i[1],c=d+i[2],m=s[3];for(let f=l;f<h;f++)for(let g=u;g<p;g++)for(let y=d;y<c;y++){let A=f*t+g*r+y*n+m;a.set(e.subarray(A,A+i[3]),o),o+=i[3]}}var qme={kernelName:xl,backendName:"wasm",kernelFunc:Vo};function Xme(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n,o=s.reduce((y,A)=>y*A),l=C.getReshaped(a.shape,s,o),u=C.getPermuted(l.length,s.length),d=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),p=C.getSliceSize(d,i,s.length),c=rn({inputs:{x:a},backend:r,attrs:{shape:l}}),m=Xs({inputs:{x:c},backend:r,attrs:{perm:u}}),f=rn({inputs:{x:m},backend:r,attrs:{shape:d}}),g=Vo({inputs:{x:f},backend:r,attrs:{begin:h,size:p}});return r.disposeData(c.dataId),r.disposeData(m.dataId),r.disposeData(c.dataId),g}var Kme={kernelName:Ho,backendName:"wasm",kernelFunc:Xme};function Kh(e){let{inputs:{x:t},attrs:{dtype:r},backend:n}=e,a=n.makeOutput(t.shape,r),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(s),a}var Zme={kernelName:ei,backendName:"wasm",kernelFunc:Kh},Yme=Ir(ti),xS;function Jme(e){xS=e.wasm.cwrap(Qa,null,["number","number","number","number"])}function Qme(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=n,o=r.dataIdMap.get(a.dataId).id,l=r.makeOutput(a.shape,a.dtype),u=r.dataIdMap.get(l.dataId).id;return xS(o,s,i,u),l}var e1e={kernelName:Qa,backendName:"wasm",setupFunc:Jme,kernelFunc:Qme};function bS(e){let{inputs:t,backend:r}=e,n=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=C.computeOutShape(t.map(c=>c.shape),n),s=t.filter(c=>v.sizeFromShape(c.shape)>0);if(s.length===1)return zm({inputs:{x:s[0]},backend:r});let i=r.makeOutput(a,t[0].dtype);if(v.sizeFromShape(a)===0)return i;let o=s.map(c=>c.shape);if(C.assertParamsConsistent(o,n),s[0].dtype==="string"){let c=s.map(x=>{let b=v.sizeFromShape(x.shape.slice(n));return rn({inputs:{x},backend:r,attrs:{shape:[-1,b]}})}),m=c.map(x=>({vals:r.readSync(x.dataId),shape:x.shape}));a=C.computeOutShape(c.map(x=>x.shape),1);let f=c[0].shape[0]===1,g=a5(m,a,t[0].dtype,f),y=C.computeOutShape(s.map(x=>x.shape),n);i.shape=y;let A=r.dataIdMap.get(i.dataId);return A.stringBytes=C.fromStringArrayToUint8(g),c.forEach(x=>r.disposeData(x.dataId)),i}let l=v.sizeFromShape(s[0].shape.slice(0,n)),u=0,d=s.map(c=>{let m=v.sizeFromShape(c.shape.slice(n));return u+=m,m}),h=s.map(c=>r.typedArrayFromHeap(c)),p=r.typedArrayFromHeap(i);for(let c=0;c<l;c++){let m=c*u;for(let f=0;f<h.length;f++){let g=d[f],y=c*g,A=h[f].subarray(y,y+g);p.set(A,m),m+=g}}return i}var t1e={kernelName:qo,backendName:"wasm",kernelFunc:bS},vS;function r1e(e){vS=e.wasm.cwrap(ri,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function n1e(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:h,dataFormat:p}=r,c=C.convertConv2DDataFormat(p),m=C.computeConv2DInfo(a.shape,s.shape,l,u,d,h,!1,c),f=m.filterHeight,g=m.filterWidth,y=m.padInfo.top,A=m.padInfo.right,x=m.padInfo.bottom,b=m.padInfo.left,w=m.dilationHeight,I=m.dilationWidth,N=m.strideHeight,E=m.strideWidth,R=m.inChannels,_=m.outChannels,M=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let S=n.makeOutput(m.outShape,"float32"),z=n.dataIdMap.get(S.dataId).id;return vS(i,a.shape[0],a.shape[1],a.shape[2],o,f,g,y,A,x,b,M,w,I,N,E,R,_,z),S}var a1e={kernelName:ri,backendName:"wasm",setupFunc:r1e,kernelFunc:n1e},wS;function s1e(e){wS=e.wasm.cwrap(ni,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function i1e(e){let{backend:t,inputs:r,attrs:n}=e,{dy:a,filter:s}=r,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:d}=n,h=1,p=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(d,s.shape,i,h,o,u,!1,p),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:y,inHeight:A,inWidth:x,outChannels:b,outHeight:w,outWidth:I,strideHeight:N,strideWidth:E}=c,R=f-1-c.padInfo.top,_=g-1-c.padInfo.left,M=c.dataFormat==="channelsLast",S=v.computeStrides(c.inShape),z=v.computeStrides(a.shape),[O,H,K]=v.computeStrides(s.shape),D=S[0],Q=M?S[1]:S[2],V=M?S[2]:1,re=M?1:S[1],Y=z[0],ie=M?z[1]:z[2],J=M?z[2]:1,ae=M?1:z[1],de=t.makeOutput(c.inShape,"float32"),xe=t.dataIdMap.get(de.dataId).id,be=t.dataIdMap.get(a.dataId).id,Ee=t.dataIdMap.get(s.dataId).id;return wS(be,Ee,m,f,g,A,x,y,w,I,b,N,E,R,_,O,H,K,D,Q,V,re,Y,ie,J,ae,xe),de}var o1e={kernelName:ni,backendName:"wasm",setupFunc:s1e,kernelFunc:i1e},l1e=Ir(ai),u1e=Ir(si),kS=(e=>(e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest",e))(kS||{}),IS;function d1e(e){IS=e.wasm.cwrap(Ko,null,["number","number","number","number","array","number","number","number","number","number"])}function p1e(e){let{backend:t,inputs:r,attrs:n}=e,{method:a,extrapolationValue:s,cropSize:i}=n,{image:o,boxes:l,boxInd:u}=r,d=l.shape[0],[h,p]=i,c=[d,h,p,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=Kh({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,y=t.dataIdMap.get(l.dataId).id,A=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(c,"float32"),b=t.dataIdMap.get(x.dataId).id,w=new Uint8Array(new Int32Array(o.shape).buffer);return IS(g,y,A,d,w,h,p,kS[a],s,b),f!=null&&t.disposeData(f.dataId),x}var h1e={kernelName:Ko,backendName:"wasm",setupFunc:d1e,kernelFunc:p1e},SS;function c1e(e){SS=e.wasm.cwrap(Xo,null,["number","number","number","number","number","number"])}function f1e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n,l=a.shape.length;v.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumprod does not support ${a.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([s],l),d=a;u!==null&&(d=Xs({inputs:{x:a},attrs:{perm:u},backend:r}));let h=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumprod",[h],l);let p=r.makeOutput(d.shape,d.dtype),c=d.shape[h],m=r.dataIdMap.get(d.dataId).id,f=r.dataIdMap.get(p.dataId).id;SS(m,i?1:0,o?1:0,c,f,Ut[a.dtype]);let g=p;if(u!==null){let y=C.getUndoAxesPermutation(u);g=Xs({inputs:{x:p},attrs:{perm:y},backend:r}),r.disposeData(d.dataId),r.disposeData(p.dataId)}return g}var m1e={kernelName:Xo,backendName:"wasm",setupFunc:c1e,kernelFunc:f1e},CS;function g1e(e){CS=e.wasm.cwrap(ii,null,["number","number","number","number","number","number"])}function y1e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n,l=a.shape.length;v.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumsum does not support ${a.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([s],l),d=a;u!==null&&(d=Xs({inputs:{x:a},attrs:{perm:u},backend:r}));let h=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[h],l);let p=r.makeOutput(d.shape,d.dtype),c=d.shape[h],m=r.dataIdMap.get(d.dataId).id,f=r.dataIdMap.get(p.dataId).id;CS(m,i?1:0,o?1:0,c,f,Ut[a.dtype]);let g=p;if(u!==null){let y=C.getUndoAxesPermutation(u);g=Xs({inputs:{x:p},attrs:{perm:y},backend:r}),r.disposeData(d.dataId),r.disposeData(p.dataId)}return g}var A1e={kernelName:ii,backendName:"wasm",setupFunc:g1e,kernelFunc:y1e},TS;function x1e(e){TS=e.wasm.cwrap(Zo,null,["number","number","number","array","number","array","array","number","number"])}function b1e(e){let{backend:t,inputs:r,attrs:n}=e,{x:a}=r,{blockSize:s,dataFormat:i}=n,o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],d=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,p=u*s,c=d/(s*s),m=i==="NHWC"?[o,h,p,c]:[o,c,h,p],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(v.computeStrides(a.shape)).buffer),A=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer),b=t.dataIdMap.get(f.dataId).id;return TS(g,s,i==="NHWC"?1:0,y,a.shape.length-1,A,x,m.length,b),f}var v1e={kernelName:Zo,backendName:"wasm",setupFunc:x1e,kernelFunc:b1e},NS;function w1e(e){NS=e.wasm.cwrap(oi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function k1e(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:h}=r,p=u==null?[1,1]:u,c=C.computeConv2DInfo(a.shape,s.shape,l,p,d,h,!0),m=c.filterHeight,f=c.filterWidth,g=c.padInfo.top,y=c.padInfo.right,A=c.padInfo.bottom,x=c.padInfo.left,b=c.dilationHeight,w=c.dilationWidth,I=c.strideHeight,N=c.strideWidth,E=c.inChannels,R=c.outChannels,_=c.padInfo.type==="SAME"?1:0;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let M=n.makeOutput(c.outShape,"float32"),S=n.dataIdMap.get(M.dataId).id;return NS(i,a.shape[0],a.shape[1],a.shape[2],o,m,f,g,y,A,x,_,b,w,I,N,E,R,S),M}var I1e={kernelName:oi,backendName:"wasm",setupFunc:w1e,kernelFunc:k1e},S1e=Ir(ui),C1e=!1,T1e=Xr(Yo,C1e,"bool"),N1e=Ir(di,"float32");function fy(e){let{inputs:t,attrs:r,backend:n}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),rn({inputs:{x:a},backend:n,attrs:{shape:o}})}var E1e={kernelName:Jo,backendName:"wasm",kernelFunc:fy};function ES(e){let{attrs:{shape:t,value:r,dtype:n},backend:a}=e,s=a.makeOutput(t,n);return a.typedArrayFromHeap(s).fill(r),s}var R1e={kernelName:Yu,backendName:"wasm",kernelFunc:ES},RS;function $1e(e){RS=e.wasm.cwrap(el,null,["number","number","number","number","number","number"])}function M1e(e){let{inputs:t,backend:r}=e,{image:n}=t,a=r.makeOutput(n.shape,n.dtype),s=r.dataIdMap.get(n.dataId).id,i=r.dataIdMap.get(a.dataId).id,[o,l,u,d]=n.shape;return RS(s,o,l,u,d,i),a}var F1e={kernelName:el,backendName:"wasm",kernelFunc:M1e,setupFunc:$1e},P1e=Ir(pi),_1e=!1,z1e=Xr(hi,_1e),$S;function O1e(e){$S=e.wasm.cwrap(ci,null,["number","number","number","number","number","number","number"])}function D1e(e){let{backend:t,inputs:r,attrs:n}=e,{varianceEpsilon:a}=n,{x:s,mean:i,variance:o,offset:l,scale:u}=r,d=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,p=t.dataIdMap.get(o.dataId).id,c=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return $S(d,h,p,c,m,a,g),f}var L1e={kernelName:ci,backendName:"wasm",setupFunc:O1e,kernelFunc:D1e},MS;function B1e(e){MS=e.wasm.cwrap(_s,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function W1e(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:h,dimRoundingMode:p,activation:c,leakyreluAlpha:m}=r,f=C.computeConv2DInfo(a.shape,s.shape,l,d,u,p),g=_m[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=n.dataIdMap.get(a.dataId).id,A=n.dataIdMap.get(s.dataId).id,x=f.outChannels,b=0;if(i!=null){let J=n.dataIdMap.get(i.dataId);if(J.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let w=f.filterHeight,I=f.filterWidth,N=f.padInfo.top,E=f.padInfo.right,R=f.padInfo.bottom,_=f.padInfo.left,M=f.dilationHeight,S=f.dilationWidth,z=f.strideHeight,O=f.strideWidth,H=f.inChannels,K=f.padInfo.type==="SAME"?1:0,D=f.batchSize,Q=f.inHeight,V=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let re=n.makeOutput(f.outShape,"float32"),Y=n.dataIdMap.get(re.dataId).id,ie=o==null?0:n.dataIdMap.get(o.dataId).id;return MS(y,D,Q,V,A,w,I,b,N,E,R,_,K,M,S,z,O,H,x,g,ie,m||0,Y),re}var V1e={kernelName:_s,backendName:"wasm",setupFunc:B1e,kernelFunc:W1e},FS;function U1e(e){FS=e.wasm.cwrap(zs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function G1e(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:h,dimRoundingMode:p,activation:c,leakyreluAlpha:m}=r,f=C.computeConv2DInfo(a.shape,s.shape,l,d,u,p,!0),g=_m[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=n.dataIdMap.get(a.dataId).id,A=n.dataIdMap.get(s.dataId).id,x=f.outChannels,b=0;if(i!=null){let J=n.dataIdMap.get(i.dataId);if(J.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let w=f.filterHeight,I=f.filterWidth,N=f.padInfo.top,E=f.padInfo.right,R=f.padInfo.bottom,_=f.padInfo.left,M=f.dilationHeight,S=f.dilationWidth,z=f.strideHeight,O=f.strideWidth,H=f.inChannels,K=f.padInfo.type==="SAME"?1:0,D=f.batchSize,Q=f.inHeight,V=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let re=n.makeOutput(f.outShape,"float32"),Y=n.dataIdMap.get(re.dataId).id,ie=o==null?0:n.dataIdMap.get(o.dataId).id;return FS(y,D,Q,V,A,w,I,b,N,E,R,_,K,M,S,z,O,H,x,g,ie,m||0,Y),re}var j1e={kernelName:zs,backendName:"wasm",setupFunc:U1e,kernelFunc:G1e},PS;function H1e(e){PS=e.wasm.cwrap(rl,null,["number","number","number","number","number","number","array","number"])}function q1e(e){let{backend:t,inputs:r}=e,{params:n,indices:a}=r,[s,i,o,l]=Ry.prepareAndValidate(n,a),u=t.makeOutput(s,n.dtype);if(i===0)return u;let d=a.shape,h=d[d.length-1],p=t.dataIdMap.get(n.dataId).id,c=t.dataIdMap.get(a.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return PS(p,Ut[n.dtype],c,i,h,o,m,f),u}var X1e={kernelName:rl,backendName:"wasm",setupFunc:H1e,kernelFunc:q1e},_S;function K1e(e){_S=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Z1e(e){let{backend:t,inputs:r,attrs:n}=e,{x:a,indices:s}=r,{axis:i,batchDims:o}=n,l=v.parseAxisParam(i,a.shape)[0],u=t.readSync(s.dataId),d=a.shape[l];for(let N=0;N<u.length;++N){let E=u[N];v.assert(E<=d-1&&E>=0,()=>`GatherV2: the index value ${E} is not in [0, ${d-1}]`)}let h=C.segment_util.collectGatherOpShapeInfo(a,s,l,o),p=rn({inputs:{x:a},attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]},backend:t}),c=v.sizeFromShape(s.shape),m=rn({inputs:{x:s},attrs:{shape:[h.batchSize,c/h.batchSize]},backend:t}),f=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],g=t.makeOutput(f,a.dtype);if(v.sizeFromShape(a.shape)===0)return g;let y=p.shape.length-1,A=t.dataIdMap.get(p.dataId).id,x=t.dataIdMap.get(m.dataId).id,b=t.dataIdMap.get(g.dataId).id,w=new Uint8Array(new Int32Array(v.computeStrides(p.shape)).buffer),I=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer);return _S(A,Ut[a.dtype],w,y,x,h.batchSize,I,b),t.disposeData(p.dataId),t.disposeData(m.dataId),g.shape=h.outputShape,g}var Y1e={kernelName:tl,backendName:"wasm",setupFunc:K1e,kernelFunc:Z1e},J1e=!1,Q1e=Xr(nl,J1e,"bool"),e2e=!1,t2e=Xr(fi,e2e,"bool"),zS;function r2e(e){zS=e.wasm.cwrap(gi,null,["number","number","number","number"])}function n2e(e){let{inputs:{x:t},attrs:{alpha:r},backend:n}=e,a=n.dataIdMap.get(t.dataId).id,s=n.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let i=n.dataIdMap.get(s.dataId).id;zS(a,Ut[t.dtype],r,i)}return s}var a2e={kernelName:gi,backendName:"wasm",setupFunc:r2e,kernelFunc:n2e},s2e=!1,i2e=Xr(al,s2e,"bool"),o2e=!1,l2e=Xr(sl,o2e,"bool"),u2e=Ir(yi),d2e=!1,p2e=Xr(il,d2e,"bool"),OS;function h2e(e){OS=e.wasm.cwrap(Ai,null,["number","number","number","number"])}function c2e(e){let{backend:t,inputs:r,attrs:n}=e,{reductionIndices:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:h,inputWasTransposed:p}=Zi(i,a,t);if(p){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let c=l.shape.length;C.assertAxesAreInnerMostDims("max",d,c);let[m,f]=C.computeOutAndReduceShapes(l.shape,d),g=v.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;OS(o,Ut[i.dtype],g,A)}if(p&&t.disposeData(u.dataId),s){let A=C.expandShapeToKeepDim(y.shape,h);y.shape=A}return y}var f2e={kernelName:Ai,backendName:"wasm",setupFunc:h2e,kernelFunc:c2e},m2e=!1,g2e=Xr(xi,m2e),DS;function y2e(e){DS=e.wasm.cwrap(bi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function A2e(e){let{inputs:t,attrs:r,backend:n}=e,a=t.x,s=n.dataIdMap.get(a.dataId).id;v.assert(a.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${a.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r,d=C.computePool2DInfo(a.shape,i,o,1,l,u),h=d.filterHeight,p=d.filterWidth,c=d.padInfo.top,m=d.padInfo.right,f=d.padInfo.bottom,g=d.padInfo.left,y=d.dilationHeight,A=d.dilationWidth,x=d.strideHeight,b=d.strideWidth,w=d.inChannels,I=d.outChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let N=n.makeOutput(d.outShape,"float32"),E=n.dataIdMap.get(N.dataId).id;return DS(s,a.shape[0],a.shape[1],a.shape[2],h,p,c,m,f,g,y,A,x,b,w,I,E),N}var x2e={kernelName:bi,backendName:"wasm",setupFunc:y2e,kernelFunc:A2e},LS;function b2e(e){LS=e.wasm.cwrap(vi,null,["number, number, number"])}function v2e(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=Zi(i,a,t),m=h;if(c){let b=t.dataIdMap.get(d.dataId).id;b!==o&&(u=d,l=b,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=C.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(g),A=u;u.dtype!=="float32"&&(A=Kh({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(A.dataId).id);let x=t.makeOutput(f,"float32");if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;LS(l,y,b)}if(c&&t.disposeData(d.dataId),s){let b=C.expandShapeToKeepDim(x.shape,p);x.shape=b}return u.dtype!=="float32"&&t.disposeData(A.dataId),x}var w2e={kernelName:vi,backendName:"wasm",setupFunc:b2e,kernelFunc:v2e},BS;function k2e(e){BS=e.wasm.cwrap(wi,null,["number","number","number","number"])}function I2e(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=Zi(i,a,t);if(c){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x)}let m=u.shape.length;C.assertAxesAreInnerMostDims("min",h,m);let[f,g]=C.computeOutAndReduceShapes(u.shape,h),y=v.sizeFromShape(g),A=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;BS(l,Ut[i.dtype],y,x)}if(c&&t.disposeData(d.dataId),s){let x=C.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var S2e={kernelName:wi,backendName:"wasm",setupFunc:k2e,kernelFunc:I2e},C2e=!1,T2e=Xr(ki,C2e),WS=(e=>(e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric",e))(WS||{}),VS;function N2e(e){VS=e.wasm.cwrap(Ii,null,["number","array","number","number","array","array","number","number"])}function E2e(e){let{inputs:{x:t},backend:r,attrs:{paddings:n,mode:a}}=e,s=n.map((m,f)=>m[0]+t.shape[f]+m[1]),i=r.dataIdMap.get(t.dataId).id,o=r.makeOutput(s,t.dtype),l=r.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=n.map(m=>m[0]),h=n.map(m=>m[1]),p=new Uint8Array(new Int32Array(d).buffer),c=new Uint8Array(new Int32Array(h).buffer);return VS(i,u,t.shape.length,Ut[t.dtype],p,c,WS[a],l),o}var R2e={kernelName:Ii,backendName:"wasm",kernelFunc:E2e,setupFunc:N2e},$2e=!0,M2e=Xr(Si,$2e),F2e=Ir(ol);function P5(e,t){let r=new Int32Array(e.wasm.HEAPU8.buffer,t,4),n=r[0],a=r[1],s=r[2],i=r[3];return e.wasm._free(t),{pSelectedIndices:n,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var US;function P2e(e){US=e.wasm.cwrap(ul,"number",["number","number","number","number","number"])}function _2e(e){let{backend:t,inputs:r,attrs:n}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=n,{boxes:o,scores:l}=r,u=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(l.dataId).id,h=US(u,d,s,a,i),{pSelectedIndices:p,selectedSize:c,pSelectedScores:m,pValidOutputs:f}=P5(t,h);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([c],"int32",p)}var z2e={kernelName:ul,backendName:"wasm",setupFunc:P2e,kernelFunc:_2e},GS;function O2e(e){GS=e.wasm.cwrap(ad,"number",["number","number","number","number","number","bool"])}function D2e(e){let{backend:t,inputs:r,attrs:n}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=n,{boxes:l,scores:u}=r,d=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,p=GS(d,h,s,a,i,o),{pSelectedIndices:c,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=P5(t,p);t.wasm._free(f);let y=t.makeOutput([m],"int32",c),A=t.makeOutput([],"int32",g);return[y,A]}var L2e={kernelName:ad,backendName:"wasm",setupFunc:O2e,kernelFunc:D2e},jS;function B2e(e){jS=e.wasm.cwrap(dl,"number",["number","number","number","number","number","number"])}function W2e(e){let{backend:t,inputs:r,attrs:n}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=n,{boxes:l,scores:u}=r,d=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,p=jS(d,h,s,a,i,o),{pSelectedIndices:c,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=P5(t,p);t.wasm._free(g);let y=t.makeOutput([m],"int32",c),A=t.makeOutput([m],"float32",f);return[y,A]}var V2e={kernelName:dl,backendName:"wasm",setupFunc:B2e,kernelFunc:W2e},U2e=!1,G2e=Xr(ll,U2e,"bool"),HS;function j2e(e){HS=e.wasm.cwrap(hl,null,["number","number","number","number","number"])}function H2e(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=n,l=r.makeOutput([...a.shape,s],"int32"),u=r.dataIdMap.get(l.dataId).id,d=r.dataIdMap.get(a.dataId).id;return HS(d,s,i,o,u),l}var q2e={kernelName:hl,backendName:"wasm",setupFunc:j2e,kernelFunc:H2e};function X2e(e){let{inputs:{x:t},backend:r}=e,n=r.makeOutput(t.shape,t.dtype);return r.typedArrayFromHeap(n).fill(1),n}var K2e={kernelName:pl,backendName:"wasm",kernelFunc:X2e};function Z2e(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return fy({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{v.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=fy({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=bS({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeData(d.dataId)),u}var Y2e={kernelName:cl,backendName:"wasm",kernelFunc:Z2e},qS;function J2e(e){qS=e.wasm.cwrap(Ci,null,["number","array","number","number","array","array","number","number"])}function Q2e(e){let{inputs:{x:t},backend:r,attrs:{paddings:n,constantValue:a}}=e,s=n.map((m,f)=>m[0]+t.shape[f]+m[1]);if(v.sizeFromShape(t.shape)===0)return ES({backend:r,attrs:{shape:s,value:a,dtype:t.dtype}});let i=r.dataIdMap.get(t.dataId).id,o=r.makeOutput(s,t.dtype),l=r.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=n.map(m=>m[0]),h=n.map(m=>m[1]),p=new Uint8Array(new Int32Array(d).buffer),c=new Uint8Array(new Int32Array(h).buffer);return qS(i,u,t.shape.length,Ut[t.dtype],p,c,a,l),o}var XS={kernelName:Ci,backendName:"wasm",kernelFunc:Q2e,setupFunc:J2e},ege=!1,tge=Xr(Ti,ege),KS;function rge(e){KS=e.wasm.cwrap(Ni,null,["number","number","number"])}function nge(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t,s=r.dataIdMap.get(n.dataId).id,i=r.dataIdMap.get(a.dataId).id,o=s,l=n,u=l;l.dtype!=="float32"&&(u=Kh({backend:r,inputs:{x:n},attrs:{dtype:"float32"}}),o=r.dataIdMap.get(u.dataId).id);let d=r.makeOutput(n.shape,"float32"),h=r.dataIdMap.get(d.dataId).id;return KS(o,i,h),l.dtype!=="float32"&&r.disposeData(u.dataId),d}var age={kernelName:Ni,backendName:"wasm",setupFunc:rge,kernelFunc:nge},ZS;function sge(e){ZS=e.wasm.cwrap(Ei,null,["number","number","number","number"])}function ige(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=Zi(i,a,t),m=h;if(c){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=C.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(g),A=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;ZS(l,y,Ut[A.dtype],x)}if(c&&t.disposeData(d.dataId),s){let x=C.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var oge={kernelName:Ei,backendName:"wasm",setupFunc:sge,kernelFunc:ige},lge=e=>{let{backend:t,attrs:r}=e,{start:n,stop:a,step:s,dtype:i}=r,o=o5(n,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},uge={kernelName:sd,backendName:"wasm",kernelFunc:lge},dge=!0,pge=Xr(li,dge),hge=Ir(Ri),cge=Ir(Mi),YS;function fge(e){YS=e.wasm.cwrap($i,null,["number","number","number","number","number","number","number","number","number","number"])}function mge(e){let{backend:t,inputs:r,attrs:n}=e,{images:a}=r,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,[d,h,p,c]=a.shape,m=[d,l,u,c],f=t.dataIdMap.get(a.dataId),g;f.dtype!=="float32"&&(g=Kh({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,A=t.makeOutput(m,"float32");if(v.sizeFromShape(a.shape)===0)return A;let x=t.dataIdMap.get(A.dataId).id;return YS(y,d,h,p,c,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),A}var gge={kernelName:$i,backendName:"wasm",setupFunc:fge,kernelFunc:mge},JS;function yge(e){JS=e.wasm.cwrap(ml,null,["number","array","number","array","number","number"])}function Age(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dims:s}=n,i=v.parseAxisParam(s,a.shape);if(a.shape.length===0)return zm({inputs:{x:a},backend:r});let o=r.makeOutput(a.shape,a.dtype),l=r.dataIdMap.get(a.dataId).id,u=r.dataIdMap.get(o.dataId).id,d=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);JS(l,d,i.length,h,a.shape.length,u);let p=rn({inputs:{x:o},attrs:{shape:a.shape},backend:r});return r.disposeData(o.dataId),p}var xge={kernelName:ml,backendName:"wasm",kernelFunc:Age,setupFunc:yge},QS;function bge(e){QS=e.wasm.cwrap(El,null,["number","number","number","number","number","number","number","number","array","number","number"])}function vge(e){let{inputs:t,backend:r,attrs:n}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=n,l=r.makeOutput(a.shape,a.dtype),u=r.dataIdMap.get(a.dataId).id,d=r.dataIdMap.get(l.dataId).id,[h,p,c,m]=a.shape,[f,g]=C.getImageCenter(o,p,c),y=i===0,A=255,x=typeof i=="number"?[i,i,i,y?0:A]:[...i,A],b=new Uint8Array(new Int32Array(x).buffer);return QS(u,h,p,c,m,s,f,g,b,x.length,d),l}var wge={kernelName:El,backendName:"wasm",kernelFunc:vge,setupFunc:bge},kge=Ir(gl),Ige=Ir(Fi),eC;function Sge(e){eC=e.wasm.cwrap(yl,null,["number","number","number","number","number","number","array","number","number"])}function Cge(e){let{backend:t,inputs:r,attrs:n}=e,{indices:a,updates:s}=r,{shape:i}=n,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:d,strides:h,outputSize:p}=$y.calculateShapes(s,a,i),c=t.dataIdMap.get(a.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(h).buffer),g=t.dataIdMap.get(o.dataId).id;return eC(c,m,Ut[s.dtype],l,u,d,f,p,g),o}var Tge={kernelName:yl,backendName:"wasm",setupFunc:Sge,kernelFunc:Cge},tC;function Nge(e){tC=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Ege(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t,i=r.dataIdMap.get(n.dataId).id,o=r.dataIdMap.get(a.dataId).id,l=r.dataIdMap.get(s.dataId).id,u=r.makeOutput(a.shape,a.dtype),d=r.dataIdMap.get(u.dataId).id,h=n.shape.length,p=a.shape.length,c=h===0||h>1||p===1?1:v.sizeFromShape(a.shape.slice(1));return tC(i,o,l,c,d),u}var Rge={kernelName:Al,backendName:"wasm",kernelFunc:Ege,setupFunc:Nge},rC;function $ge(e){rC=e.wasm.cwrap(_i,null,["number","number"])}function Mge(e){let{backend:t,inputs:{x:r}}=e,n=t.dataIdMap.get(r.dataId).id,a=t.makeOutput(r.shape,r.dtype),s=t.dataIdMap.get(a.dataId).id;return v.sizeFromShape(a.shape)===0||rC(n,s),a}var Fge={kernelName:"Sigmoid",backendName:"wasm",setupFunc:$ge,kernelFunc:Mge},Pge=Ir(Pi),nC;function _ge(e){nC=e.wasm.cwrap(Di,null,["number","number","number","number"])}function zge(e){let{backend:t,inputs:{logits:r},attrs:{dim:n}}=e,a=t.dataIdMap.get(r.dataId).id,s=t.makeOutput(r.shape,r.dtype),i=t.dataIdMap.get(s.dataId).id,o=r.shape[n],l=v.sizeFromShape(r.shape)/o;return v.sizeFromShape(s.shape)===0||nC(a,i,o,l),s}var Oge={kernelName:Di,backendName:"wasm",setupFunc:_ge,kernelFunc:zge};function Dge(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n,o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<a.shape.length;++g)l.push([0,0]);let u=XS.kernelFunc({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),d=C.getReshaped(u.shape,s,o,!1),h=C.getPermuted(d.length,s.length,!1),p=C.getReshapedPermuted(u.shape,s,o,!1),c=rn({inputs:{x:u},backend:r,attrs:{shape:d}}),m=Xs({inputs:{x:c},backend:r,attrs:{perm:h}}),f=rn({inputs:{x:m},backend:r,attrs:{shape:p}});return r.disposeData(u.dataId),r.disposeData(c.dataId),r.disposeData(m.dataId),f}var Lge={kernelName:vl,backendName:"wasm",kernelFunc:Dge},aC;function Bge(e){aC=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function Wge(e){let{backend:t,inputs:r}=e,{indices:n,values:a,denseShape:s,defaultValue:i}=r,o=n.shape[0],l=n.shape[1],u=t.readSync(s.dataId)[0],d=[o+u,l],h=t.dataIdMap.get(n.dataId).id,p=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(i.dataId).id,m=t.makeOutput(d,n.dtype),f=t.dataIdMap.get(m.dataId).id,g=t.makeOutput(d.slice(0,1),a.dtype),y=t.dataIdMap.get(g.dataId).id,A=t.makeOutput([u],"bool"),x=t.dataIdMap.get(A.dataId).id,b=t.makeOutput([o],n.dtype),w=t.dataIdMap.get(b.dataId).id,I=t.makeOutput([4],"int32"),N=t.dataIdMap.get(I.dataId).id,E=aC(h,p,Ut[a.dtype],o,u,l,c,f,y,x,w,N),R=t.readSync(I.dataId),_;switch(R[0]){case 1:{_=C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(R[1]);break}case 2:{_=C.getSparseFillEmptyRowsNegativeIndexErrorMessage(R[1],R[2]);break}case 3:_=C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(R[1],R[2],R[3]);break;default:_=""}if(t.disposeData(I.dataId),_)throw t.disposeData(m.dataId),t.disposeData(g.dataId),t.disposeData(A.dataId),t.disposeData(b.dataId),new Error(_);let M=m,S=g;return E!==d[0]&&(M=Vo({inputs:{x:m},attrs:{begin:0,size:[E,l]},backend:t}),S=Vo({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(m.dataId),t.disposeData(g.dataId)),[M,S,A,b]}var Vge={kernelName:dh,backendName:"wasm",setupFunc:Bge,kernelFunc:Wge},sC;function Uge(e){sC=e.wasm.cwrap(pd,null,["number","number","number","number","number","number","number"])}function Gge(e){let{backend:t,inputs:r}=e,{inputIndices:n,inputShape:a,newShape:s}=r;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${n.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(n.dataId).id,o=t.dataIdMap.get(a.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=n.shape[0],d=v.sizeFromShape(s.shape),h=t.makeOutput([u,d],n.dtype),p=t.dataIdMap.get(h.dataId).id,c=t.makeOutput([d],s.dtype),m=t.dataIdMap.get(c.dataId).id,f=t.makeOutput([3],"int32"),g=t.dataIdMap.get(f.dataId).id;sC(i,o,l,u,p,m,g);let y=t.readSync(f.dataId),A;switch(y[0]){case 0:{A=C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{A=C.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:A=C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let x=Array.from(t.readSync(a.dataId)),b=Array.from(t.readSync(c.dataId));A=C.getSparseReshapeInputOutputMultipleErrorMessage(x,b);break}case 4:{let x=Array.from(t.readSync(a.dataId)),b=Array.from(t.readSync(c.dataId));A=C.getSparseReshapeInputOutputMismatchErrorMessage(x,b);break}default:A=""}if(t.disposeData(f.dataId),A)throw t.disposeData(h.dataId),t.disposeData(c.dataId),new Error(A);return[h,c]}var jge={kernelName:pd,backendName:"wasm",setupFunc:Uge,kernelFunc:Gge},iC;function oC(e){iC=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function lC(e,t){let{backend:r,inputs:n}=e,{data:a,indices:s,segmentIds:i}=n,o=s.shape[0],l=r.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=a.shape.slice();d[0]=u;let h=r.dataIdMap.get(a.dataId).id,p=r.dataIdMap.get(s.dataId).id,c=r.dataIdMap.get(i.dataId).id,m=r.makeOutput(d,a.dtype),f=r.dataIdMap.get(m.dataId).id,g=r.makeOutput([4],"int32"),y=r.dataIdMap.get(g.dataId).id;iC(h,Ut[a.dtype],a.shape[0],p,c,f,y,t,0);let A=r.readSync(g.dataId),x;switch(A[0]){case 0:{x=C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(A[1],A[2]);break;case 3:x=C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(A[1],A[2],A[3]);break;default:x=""}if(r.disposeData(g.dataId),x)throw r.disposeData(m.dataId),new Error(x);return m}function Hge(e){return lC(e,!0)}var qge={kernelName:ph,backendName:"wasm",setupFunc:oC,kernelFunc:Hge};function Xge(e){return lC(e,!1)}var Kge={kernelName:hh,backendName:"wasm",setupFunc:oC,kernelFunc:Xge};function Zge(e){let{inputs:t,attrs:r,backend:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),d=a.shape.slice();return l.map(h=>{let p=[...d];p[o]=h;let c=Vo({inputs:{x:a},attrs:{begin:u,size:p},backend:n});return u[o]+=h,c})}var Yge={kernelName:wl,backendName:"wasm",kernelFunc:Zge},Jge=Ir(zi),Qge=Ir(hd),eye=!0,tye=Xr(Li,eye),uC;function rye(e){uC=e.wasm.cwrap(Ui,null,["number","number","number","number"])}function nye(e){let{backend:t,inputs:r,attrs:n}=e,{alpha:a}=n,{x:s}=r,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return uC(i,a,Ut[s.dtype],l),o}var aye={kernelName:Ui,backendName:"wasm",setupFunc:rye,kernelFunc:nye},dC;function sye(e){dC=e.wasm.cwrap(kl,null,["number","array","number","array","array","array","array","array","number","number"])}function iye(e){let{backend:t,inputs:r,attrs:n}=e,{x:a}=r,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n,{finalShapeSparse:c,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=Ot.sliceInfo(a.shape,s,i,o,l,u,d,h,p),w;if(f)w=rn({inputs:{x:a},backend:t,attrs:{shape:m}});else if(g||y){v.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let I=Ot.computeOutShape(A,x,b),N=Vo({inputs:{x:a},backend:t,attrs:{begin:A,size:I}});w=rn({inputs:{x:N},backend:t,attrs:{shape:m}}),t.disposeData(N.dataId)}else{let I=t.makeOutput(c,"float32"),N=t.dataIdMap.get(a.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(a.shape)).buffer),R=new Uint8Array(new Int32Array(A).buffer),_=new Uint8Array(new Int32Array(x).buffer),M=new Uint8Array(new Int32Array(b).buffer),S=new Uint8Array(new Int32Array(c).buffer),z=new Uint8Array(new Int32Array(v.computeStrides(c)).buffer),O=t.dataIdMap.get(I.dataId).id;dC(N,E,a.shape.length,R,_,M,S,z,c.length,O),w=rn({inputs:{x:I},backend:t,attrs:{shape:m}}),t.disposeData(I.dataId)}return w}var oye={kernelName:kl,backendName:"wasm",setupFunc:sye,kernelFunc:iye},lye=!0,uye=Xr(Bi,lye),pC;function dye(e){pC=e.wasm.cwrap(Oi,null,["number","number","number","number"])}function pye(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=Zi(i,a,t),m=h;if(c){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=C.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(g),A=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;pC(l,y,Ut[A.dtype],x)}if(c&&t.disposeData(d.dataId),s){let x=C.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var hye={kernelName:Oi,backendName:"wasm",setupFunc:dye,kernelFunc:pye},cye=Ir(Il),fye=Ir(Wi),hC;function mye(e){hC=e.wasm.cwrap(es,null,["number","array","number","array","number","number"])}function gye(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,s=r.dataIdMap.get(a.dataId).id,{reps:i}=n,o=new Array(a.shape.length);for(let p=0;p<o.length;p++)o[p]=a.shape[p]*i[p];let l=new Uint8Array(new Int32Array(a.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),d=r.makeOutput(o,a.dtype),h=r.dataIdMap.get(d.dataId).id;return hC(s,l,a.shape.length,u,o.length,Ut[d.dtype],h),d}var yye={kernelName:es,backendName:"wasm",setupFunc:mye,kernelFunc:gye},cC;function Aye(e){cC=e.wasm.cwrap(Sl,null,["number","array","number","number","number","bool","number","number"])}var xye=({inputs:e,backend:t,attrs:r})=>{let{x:n}=e,{k:a,sorted:s}=r,i=t.dataIdMap.get(n.dataId).id,o=new Uint8Array(new Int32Array(n.shape).buffer),l=n.shape.slice();l[l.length-1]=a;let u=t.makeOutput(l,n.dtype),d=t.dataIdMap.get(u.dataId).id,h=t.makeOutput(l,"int32"),p=t.dataIdMap.get(h.dataId).id;return cC(i,o,n.shape.length,Ut[n.dtype],a,s,d,p),[u,h]},bye={kernelName:Sl,backendName:"wasm",setupFunc:Aye,kernelFunc:xye},fC;function vye(e){fC=e.wasm.cwrap(Cl,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function wye(e){let{backend:t,inputs:r,attrs:n}=e,{image:a,transforms:s}=r,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,h,p,c]=a.shape,[m,f]=u!=null?u:[h,p],g=[d,m,f,c],y=new Uint8Array(new Int32Array(v.computeStrides(a.shape)).buffer),A=t.makeOutput(g,a.dtype),x=t.dataIdMap.get(A.dataId).id,b=t.dataIdMap.get(a.dataId).id,w=t.dataIdMap.get(s.dataId).id,I=i==="nearest"?1:2,N;switch(o){case"constant":N=1;break;case"reflect":N=2;break;case"wrap":N=3;break;case"nearest":N=4;break;default:N=1;break}return fC(b,w,s.shape[0]>1,d,m,f,c,p,h,y,a.shape.length-1,I,N,l,x),A}var kye={kernelName:Cl,backendName:"wasm",setupFunc:vye,kernelFunc:wye};function Iye(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),u=0;for(let c=0;c<o;c++)c!==s&&(l[u++]=a.shape[c]);let d=new Array(i),h=new Array(o).fill(0),p=a.shape.slice();p[s]=1;for(let c=0;c<d.length;c++)h[s]=c,d[c]=Vo({inputs:{x:a},attrs:{begin:h,size:p},backend:r});return d.map(({dataId:c,dtype:m})=>({dataId:c,dtype:m,shape:l}))}var Sye={kernelName:Tl,backendName:"wasm",kernelFunc:Iye};function Cye(e){let{inputs:{x:t},backend:r}=e,n=r.makeOutput(t.shape,t.dtype);return r.typedArrayFromHeap(n).fill(0),n}var Tye={kernelName:Nl,backendName:"wasm",kernelFunc:Cye},Nye=[gme,yme,xme,wme,Rme,Fme,zme,Lme,Ume,Kme,Zme,Yme,e1e,t1e,a1e,o1e,l1e,u1e,h1e,m1e,A1e,v1e,I1e,S1e,T1e,N1e,E1e,R1e,F1e,P1e,z1e,L1e,V1e,j1e,X1e,Y1e,Q1e,t2e,kme,a2e,i2e,l2e,u2e,p2e,f2e,g2e,x2e,w2e,S2e,T2e,R2e,M2e,F2e,z2e,L2e,V2e,G2e,q2e,K2e,Y2e,XS,tge,age,oge,uge,pge,hge,cge,Bme,gge,xge,wge,kge,Ige,Tge,Rge,Fge,Pge,qme,Oge,Lge,Vge,jge,qge,Kge,Yge,Jge,Qge,tye,aye,oye,uye,hye,cye,fye,yye,bye,kye,Tme,Sye,Tye];for(let e of Nye)qn(e);var my=Z();my.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));my.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(my.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var kv=Uo(yR()),Eye=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`,Rye=Uo(AR()),mC=class extends Du{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(gC),gy=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Jp(this,Xt())}write(e,t,r){let n={id:this.dataIdNextNumber++};return this.move(n,e,t,r,1),n}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,r,n,a){let s=this.dataIdNextNumber++;if(n==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:r,dtype:n,memoryOffset:null,refCount:a});return}let i=v.sizeFromShape(r),o=i*v.bytesPerElement(n),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:r,dtype:n,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,r){let{memoryOffset:n,dtype:a,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(a==="string")return(t==null||t===0)&&(r==null||r>=i.length)?i:i.slice(t,r);t=t||0,r=r||v.sizeFromShape(s);let o=v.bytesPerElement(a),l=this.wasm.HEAPU8.slice(n+t*o,n+r*o);return Fye(l.buffer,a)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let r=this.dataIdMap.get(e);if(r.refCount--,!t&&r.refCount>0)return!1;this.wasm._free(r.memoryOffset),this.wasm.tfjs.disposeData(r.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,r){let n;if(r==null)n=this.write(null,e,t);else{let a=this.dataIdNextNumber++;n={id:a},this.dataIdMap.set(n,{id:a,memoryOffset:r,shape:e,dtype:t,refCount:1});let s=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,r)}return{dataId:n,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:r}){let n=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(r),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(n,a,s);case"int32":return new Int32Array(n,a,s);case"bool":return new Uint8Array(n,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function $ye(e){return(t,r)=>(v.fetch(e,{credentials:"same-origin"}).then(n=>{n.ok||t.env.a(`failed to load wasm binary file at '${e}'`),n.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{r(s.instance,s.module)})})}),{})}function Iv(e,t,r){if(K0!=null)return K0;let n="tfjs-backend-wasm.wasm";return e&&t?n="tfjs-backend-wasm-threaded-simd.wasm":e&&(n="tfjs-backend-wasm-simd.wasm"),zp!=null&&zp[n]!=null?zp[n]:r+n}async function Mye(){let[e,t]=await Promise.all([Z().getAsync("WASM_HAS_SIMD_SUPPORT"),Z().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((r,n)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=Eye.replace(/\n/g,"\\n"),d=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(d)}return o.endsWith(".wasm")?Iv(e,t,Mp!=null?Mp:l):l+o},_5&&(a.instantiateWasm=$ye(Iv(e,t,Mp!=null?Mp:"")));let s=!1;a.onAbort=()=>{s||Op||(Op=!0,n({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&K0==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+kv.default.toString()],{type:"text/javascript"}),i=(0,kv.default)(a)):i=(0,Rye.default)(a),i.then(o=>{s=!0,Op=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},r({wasm:o})})})}function Fye(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Pye=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],K0=null,Mp=null,zp={},Op=!1,_5=!1;function _ye(e,t=!1){if(Dy("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Op)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");K0=e,_5=t}function z5(e,t=!1){if(Op)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Mp=e;else{zp=e;let r=Pye.filter(n=>zp[n]==null);if(r.length>0)throw new Error(`There were no entries found for the following binaries: ${r.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}_5=t}var gC=-1,gy=-1;function zye(e){gC=e}function Oye(){if(gy===-1)throw new Error("WASM backend not initialized.");return gy}var Dye="0.0.0",Lye=2;$l("wasm",async()=>{let{wasm:e}=await Mye();return new mC(e)},Lye);var ks="3.17.0-20220518",Zh={tfjs:ks,"tfjs-core":ks,"tfjs-data":ks,"tfjs-layers":ks,"tfjs-converter":ks,"tfjs-backend-cpu":ks,"tfjs-backend-webgl":ks,"tfjs-backend-wasm":ks};var yC=`
precision highp float;
attribute vec2 pos;
attribute vec2 uv;
varying vec2 vUv;
uniform float flipY;
void main(void) {
vUv = uv;
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
}
`;var AC=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform float m[20];
void main(void) {
vec4 c = texture2D(texture, vUv);
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
}
`,xC=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform float m[20];
void main(void) {
vec4 c = texture2D(texture, vUv);
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
gl_FragColor.a = c.a;
}
`,bC=`
precision highp float;
varying vec2 vUv;
uniform vec2 size;
uniform sampler2D texture;
vec2 pixelate(vec2 coord, vec2 size) {
return floor( coord / size ) * size;
}
void main(void) {
gl_FragColor = vec4(0.0);
vec2 coord = pixelate(vUv, size);
gl_FragColor += texture2D(texture, coord);
}
`,vC=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform vec2 px;
void main(void) {
gl_FragColor = vec4(0.0);
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
}
`,wC=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform vec2 px;
uniform float m[9];
void main(void) {
vec4 c11 = texture2D(texture, vUv - px); // top left
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
vec4 c22 = texture2D(texture, vUv); // mid center
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
gl_FragColor =
c11 * m[0] + c12 * m[1] + c22 * m[2] +
c21 * m[3] + c22 * m[4] + c23 * m[5] +
c31 * m[6] + c32 * m[7] + c33 * m[8];
gl_FragColor.a = c22.a;
}
`;var O5=(e,t,r)=>{let n=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(n,(a,s)=>(r[s]=0,a))},D5=class{constructor(t,r,n){fe(this,"uniform",{});fe(this,"attribute",{});fe(this,"gl");fe(this,"id");fe(this,"compile",(t,r)=>{let n=this.gl.createShader(r);return n?(this.gl.shaderSource(n,t),this.gl.compileShader(n),this.gl.getShaderParameter(n,this.gl.COMPILE_STATUS)?n:(se(`filter: gl compile failed: ${this.gl.getShaderInfoLog(n)}`),null)):(se("filter: could not create shader"),null)});this.gl=t;let a=this.compile(r,this.gl.VERTEX_SHADER),s=this.compile(n,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!a||!s)){if(!this.id){se("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,a),this.gl.attachShader(this.id,s),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){se(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);return}this.gl.useProgram(this.id),O5(r,"attribute",this.attribute);for(let i in this.attribute)this.attribute[i]=this.gl.getAttribLocation(this.id,i);O5(r,"uniform",this.uniform),O5(n,"uniform",this.uniform);for(let i in this.uniform)this.uniform[i]=this.gl.getUniformLocation(this.id,i)}}};function kC(){let e=0,t=null,r=!1,n=-1,a=[null,null],s=[],i=null,o=null,l=Kr(100,100),u={},d={INTERMEDIATE:1},h=l.getContext("webgl");if(!h){se("filter: cannot get webgl context");return}this.gl=h;function p(A,x){if(!(A===l.width&&x===l.height)){if(l.width=A,l.height=x,!i){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);i=h.createBuffer(),h.bindBuffer(h.ARRAY_BUFFER,i),h.bufferData(h.ARRAY_BUFFER,b,h.STATIC_DRAW),h.pixelStorei(h.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}h.viewport(0,0,l.width,l.height),a=[null,null]}}function c(A,x){let b=h.createFramebuffer();h.bindFramebuffer(h.FRAMEBUFFER,b);let w=h.createRenderbuffer();h.bindRenderbuffer(h.RENDERBUFFER,w);let I=h.createTexture();return h.bindTexture(h.TEXTURE_2D,I),h.texImage2D(h.TEXTURE_2D,0,h.RGBA,A,x,0,h.RGBA,h.UNSIGNED_BYTE,null),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MAG_FILTER,h.LINEAR),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MIN_FILTER,h.LINEAR),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_S,h.CLAMP_TO_EDGE),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_T,h.CLAMP_TO_EDGE),h.framebufferTexture2D(h.FRAMEBUFFER,h.COLOR_ATTACHMENT0,h.TEXTURE_2D,I,0),h.bindTexture(h.TEXTURE_2D,null),h.bindFramebuffer(h.FRAMEBUFFER,null),{fbo:b,texture:I}}function m(A){return a[A]=a[A]||c(l.width,l.height),a[A]}function f(A=0){if(!o)return;let x=null,b=null,w=!1;e===0?x=t:x=m(n).texture||null,e++,r&&!(A&d.INTERMEDIATE)?(b=null,w=e%2===0):(n=(n+1)%2,b=m(n).fbo||null),h.bindTexture(h.TEXTURE_2D,x),h.bindFramebuffer(h.FRAMEBUFFER,b),h.uniform1f(o.uniform.flipY,w?-1:1),h.drawArrays(h.TRIANGLES,0,6)}function g(A){if(u[A])return o=u[A],h.useProgram((o?o.id:null)||null),o;if(o=new D5(h,yC,A),!o)return se("filter: could not get webgl program"),null;let x=Float32Array.BYTES_PER_ELEMENT,b=4*x;return h.enableVertexAttribArray(o.attribute.pos),h.vertexAttribPointer(o.attribute.pos,2,h.FLOAT,!1,b,0*x),h.enableVertexAttribArray(o.attribute.uv),h.vertexAttribPointer(o.attribute.uv,2,h.FLOAT,!1,b,2*x),u[A]=o,o}let y={colorMatrix:A=>{let x=new Float32Array(A);x[4]/=255,x[9]/=255,x[14]/=255,x[19]/=255;let b=x[18]===1&&x[3]===0&&x[8]===0&&x[13]===0&&x[15]===0&&x[16]===0&&x[17]===0&&x[19]===0?xC:AC,w=g(b);!w||(h.uniform1fv(w.uniform.m,x),f())},brightness:A=>{let x=(A||0)+1;y.colorMatrix([x,0,0,0,0,0,x,0,0,0,0,0,x,0,0,0,0,0,1,0])},saturation:A=>{let x=(A||0)*2/3+1,b=(x-1)*-.5;y.colorMatrix([x,b,b,0,0,b,x,b,0,0,b,b,x,0,0,0,0,0,1,0])},desaturate:()=>{y.saturation(-1)},contrast:A=>{let x=(A||0)+1,b=-128*(x-1);y.colorMatrix([x,0,0,0,b,0,x,0,0,b,0,0,x,0,b,0,0,0,1,0])},negative:()=>{y.contrast(-2)},hue:A=>{A=(A||0)/180*Math.PI;let x=Math.cos(A),b=Math.sin(A),w=.213,I=.715,N=.072;y.colorMatrix([w+x*(1-w)+b*-w,I+x*-I+b*-I,N+x*-N+b*(1-N),0,0,w+x*-w+b*.143,I+x*(1-I)+b*.14,N+x*-N+b*-.283,0,0,w+x*-w+b*-(1-w),I+x*-I+b*I,N+x*(1-N)+b*N,0,0,0,0,0,1,0])},desaturateLuminance:()=>{y.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{y.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{y.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{y.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{y.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{y.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{y.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{y.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:A=>{let x=new Float32Array(A),b=1/l.width,w=1/l.height,I=g(wC);!I||(h.uniform1fv(I.uniform.m,x),h.uniform2f(I.uniform.px,b,w),f())},detectEdges:()=>{y.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{y.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{y.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:A=>{let x=A||1;y.convolution.call(this,[0,-1*x,0,-1*x,1+4*x,-1*x,0,-1*x,0])},emboss:A=>{let x=A||1;y.convolution.call(this,[-2*x,-1*x,0,-1*x,1,1*x,0,1*x,2*x])},blur:A=>{let x=A/7/l.width,b=A/7/l.height,w=g(vC);!w||(h.uniform2f(w.uniform.px,0,b),f(d.INTERMEDIATE),h.uniform2f(w.uniform.px,x,0),f())},pixelate:A=>{let x=A/l.width,b=A/l.height,w=g(bC);!w||(h.uniform2f(w.uniform.size,x,b),f())}};this.add=function(A){let x=Array.prototype.slice.call(arguments,1),b=y[A];s.push({func:b,args:x})},this.reset=function(){s=[]},this.get=function(){return s},this.apply=function(A){p(A.width,A.height),e=0,t||(t=h.createTexture()),h.bindTexture(h.TEXTURE_2D,t),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_S,h.CLAMP_TO_EDGE),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_T,h.CLAMP_TO_EDGE),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MIN_FILTER,h.NEAREST),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MAG_FILTER,h.NEAREST),h.texImage2D(h.TEXTURE_2D,0,h.RGBA,h.RGBA,h.UNSIGNED_BYTE,A);for(let x=0;x<s.length;x++){r=x===s.length-1;let b=s[x];b.func.apply(this,b.args||[])}return l},this.draw=function(A){return this.add("brightness",0),this.apply(A)}}async function Om(e){let t=e.shape.length===4?Qe(e):e,r=Yt(t,3,2),n=[Bs(r[0]),Bs(r[1]),Bs(r[2])],a=[Ar(r[0]),Ar(r[1]),Ar(r[2])],s=await Promise.all(a.map(c=>c.data())),i=.99*Math.max(s[0][0],s[1][0],s[2][0]),o=[ce(r[0],n[0]),ce(r[1],n[1]),ce(r[2],n[2])],l=[ce(a[0],n[0]),ce(a[1],n[1]),ce(a[2],n[2])],u=[pe(i,l[0]),pe(i,l[1]),pe(i,l[2])],d=[L(o[0],u[0]),L(o[1],u[1]),L(o[2],u[2])],h=dr([d[0],d[1],d[2]],2),p=U(h,[1,t.shape[0],t.shape[1],3]);return te([...r,...n,...a,...o,...l,...u,...d,h,t]),p}var Dm=3840,ut=null,tr=null,zd=null,Et,is={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function Kr(e,t){let r;if(he.browser)if(he.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");r=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");r=document.createElement("canvas"),r.width=e,r.height=t}else typeof he.Canvas!="undefined"?r=new he.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(r=new globalThis.Canvas(e,t));return r}function Lm(e,t){let r=t||Kr(e.width,e.height);return r.getContext("2d").drawImage(e,0,0),r}async function Od(e,t,r=!0){if(!e)return t.debug&&se("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof nt)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof he.Canvas!="undefined"&&e instanceof he.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof nt){let n=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)n=Kt(e,0);else if(e.shape[2]===4){let a=Pl(e,[0,0,0],[-1,-1,3]);n=Kt(a,0),te(a)}}else e.shape.length===4&&(e.shape[3]===3?n=Wr(e):e.shape[3]===4&&(n=zo(e,[0,0,0,0],[-1,-1,-1,3])));if(n==null||n.shape.length!==4||n.shape[0]!==1||n.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape}`);if(n.dtype==="int32"){let a=me(n,"float32");te(n),n=a}return{tensor:n,canvas:t.filter.return?tr:null}}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&se("input stream is not ready"),{tensor:null,canvas:ut};let n=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!n||!a)return t.debug&&se("cannot determine input dimensions"),{tensor:null,canvas:ut};let s=n,i=a;if(s>Dm&&(s=Dm,i=Math.trunc(s*a/n)),i>Dm&&(i=Dm,s=Math.trunc(i*n/a)),(t.filter.width||0)>0?s=t.filter.width:(t.filter.height||0)>0&&(s=n*((t.filter.height||0)/a)),(t.filter.height||0)>0?i=t.filter.height:(t.filter.width||0)>0&&(i=a*((t.filter.width||0)/n)),!s||!i)throw new Error("input error: cannot determine dimension");(!ut||(ut==null?void 0:ut.width)!==s||(ut==null?void 0:ut.height)!==i)&&(ut=Kr(s,i));let o=ut.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?o.putImageData(e,0,0):t.filter.flip&&typeof o.translate!="undefined"?(o.translate(n,0),o.scale(-1,1),o.drawImage(e,0,0,n,a,0,0,ut==null?void 0:ut.width,ut==null?void 0:ut.height),o.setTransform(1,0,0,1,0,0)):o.drawImage(e,0,0,n,a,0,0,ut==null?void 0:ut.width,ut==null?void 0:ut.height),(!tr||ut.width!==tr.width||(ut==null?void 0:ut.height)!==(tr==null?void 0:tr.height))&&(tr=Kr(ut.width,ut.height)),t.filter.enabled&&he.webgl.supported?(Et||(Et=he.browser?new kC:null),he.filter=!!Et,!Et||!Et.add?(t.debug&&se("input process error: cannot initialize filters"),he.webgl.supported=!1,t.filter.enabled=!1,Lm(ut,tr)):(Et.reset(),t.filter.brightness!==0&&Et.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Et.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Et.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Et.add("blur",t.filter.blur),t.filter.saturation!==0&&Et.add("saturation",t.filter.saturation),t.filter.hue!==0&&Et.add("hue",t.filter.hue),t.filter.negative&&Et.add("negative"),t.filter.sepia&&Et.add("sepia"),t.filter.vintage&&Et.add("brownie"),t.filter.sepia&&Et.add("sepia"),t.filter.kodachrome&&Et.add("kodachrome"),t.filter.technicolor&&Et.add("technicolor"),t.filter.polaroid&&Et.add("polaroid"),t.filter.pixelate!==0&&Et.add("pixelate",t.filter.pixelate),Et.get()>0?tr=Et.apply(ut):tr=Et.draw(ut))):(Lm(ut,tr),Et&&(Et=null),he.filter=!!Et),!r)return{tensor:null,canvas:tr};if(!tr)throw new Error("canvas error: cannot create output");let l,u=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(he.browser&&On)l=On?On.fromPixels(e):null;else{u=e.data.length/e.height/e.width;let p=new Uint8Array(e.data.buffer);l=ft(p,[e.height,e.width,u],"int32")}else if((!zd||tr.width!==zd.width||tr.height!==zd.height)&&(zd=Kr(tr.width,tr.height)),On&&he.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=On.fromPixels(tr):(zd=Lm(tr),l=On.fromPixels(zd));else{let m=Lm(tr).getContext("2d").getImageData(0,0,s,i);u=m.data.length/s/i;let f=new Uint8Array(m.data.buffer);l=ft(f,[s,i,u])}if(u===4){let p=Pl(l,[0,0,0],[-1,-1,3]);te(l),l=p}if(!l)throw new Error("input error: cannot create tensor");let d=me(l,"float32"),h=t.filter.equalization?await Om(d):Kt(d,0);return te([l,d]),{tensor:h,canvas:t.filter.return?tr:null}}}async function IC(e,t){let r=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return r;if(!is.inputTensor)is.inputTensor=Wr(t);else if(is.inputTensor.shape[1]!==t.shape[1]||is.inputTensor.shape[2]!==t.shape[2])te(is.inputTensor),is.inputTensor=Wr(t);else{let n={};n.diff=ce(t,is.inputTensor),n.squared=L(n.diff,n.diff),n.sum=ke(n.squared);let s=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;te([is.inputTensor,n.diff,n.squared,n.sum]),is.inputTensor=Wr(t),r=s<=(e.cacheSensitivity||0)}return r}async function SC(e,t,r){let n={};if(!t||!r||t.shape.length!==4||t.shape.length!==r.shape.length)return e.debug||se("invalid input tensor or tensor shapes do not match:",t.shape,r.shape),0;if(t.shape[0]!==1||r.shape[0]!==1||t.shape[3]!==3||r.shape[3]!==3)return e.debug||se("input tensors must be of shape [1, height, width, 3]:",t.shape,r.shape),0;n.input1=Wr(t),n.input2=t.shape[1]!==r.shape[1]||t.shape[2]!==r.shape[2]?Ie.resizeBilinear(r,[t.shape[1],t.shape[2]]):Wr(r),n.diff=ce(n.input1,n.input2),n.squared=L(n.diff,n.diff),n.sum=ke(n.squared);let s=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return te([n.input1,n.input2,n.diff,n.squared,n.sum]),s}var L5=class{constructor(){fe(this,"browser");fe(this,"node");fe(this,"worker");fe(this,"platform","");fe(this,"agent","");fe(this,"backends",[]);fe(this,"initial");fe(this,"filter");fe(this,"tfjs");fe(this,"offscreen");fe(this,"perfadd",!1);fe(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});fe(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});fe(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});fe(this,"cpu",{model:void 0,flags:[]});fe(this,"kernels",[]);fe(this,"Canvas");fe(this,"Image");fe(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:Zh["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let r=t[0].match(/\(([^()]+)\)/g);this.platform=r&&r[0]?r[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(Xt().registryFactory),this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&Gr()==="wasm"&&(this.wasm.simd=await Z().getAsync("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=await Z().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let t=Kr(100,100),r=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof r!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(Gr()==="webgl"||Gr()==="humangl")){let n=Dn().gpgpu!=="undefined"?await Dn().getGPGPUContext().gl:null;n&&(this.webgl.version=n.getParameter(n.VERSION),this.webgl.renderer=n.getParameter(n.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{this.webgpu.supported&&(this.webgpu.adapter=(await navigator.gpu.requestAdapter()).name)}catch(n){this.webgpu.supported=!1}try{this.kernels=Ma(Gr()).map(n=>n.kernelName.toLowerCase())}catch(n){}}async updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},he=new L5;var os={cacheModels:!1,verbose:!0,debug:!1,modelBasePath:""};async function Uye(e,t){return os.debug&&se("load model fetch:",e,t),fetch(e,t)}function CC(e){os.cacheModels=e.cacheModels,os.verbose=e.debug,os.modelBasePath=e.modelBasePath}async function Ge(e){let t=O3(os.modelBasePath,e||""),r=t.split("/"),n="indexeddb://"+r[r.length-1].replace(".json",""),a=await Cr.listModels(),s=os.cacheModels&&Object.keys(a).includes(n),i=typeof fetch=="undefined"?{}:{fetchFunc:(u,d)=>Uye(u,d)},o=new Im(s?n:t,i),l=!1;try{o.findIOHandler(),os.debug&&se("model load handler:",o.handler);let u=await o.handler.load();o.loadSync(u),os.verbose&&se("load model:",o.modelUrl),l=!0}catch(u){se("error loading model:",t,u)}if(l&&os.cacheModels&&!s)try{let u=await o.save(n);se("model saved:",n,u)}catch(u){se("error saving model:",t,u)}return o}var B5="2.7.2";var b1={};vs(b1,{Models:()=>ic,load:()=>Qb,reset:()=>x1,validate:()=>e3});var Jn,W5=[],Hye=["white","black","asian","indian","other"],qye=[15,23,28,35.5,45.5,55.5,65],TC=0,NC=0,V5=Number.MAX_SAFE_INTEGER;async function EC(e){return he.initial&&(Jn=null),Jn?e.debug&&se("cached model:",Jn.modelUrl):Jn=await Ge(e.face.gear),Jn}async function U5(e,t,r,n){var i,o;if(!Jn)return{age:0,gender:"unknown",genderScore:0,race:[]};let a=V5<(((i=t.face.gear)==null?void 0:i.skipFrames)||0),s=(((o=t.face.gear)==null?void 0:o.skipTime)||0)>oe()-NC;return t.skipAllowed&&s&&a&&TC===n&&W5[r]?(V5++,W5[r]):(V5=0,new Promise(async l=>{var y,A;if(!(Jn!=null&&Jn.inputs[0].shape))return;let u={},d=[[0,.1,.9,.9]];u.resize=Ie.cropAndResize(e,d,[0],[Jn.inputs[0].shape[2],Jn.inputs[0].shape[1]]);let h={age:0,gender:"unknown",genderScore:0,race:[]};(y=t.face.gear)!=null&&y.enabled&&([u.age,u.gender,u.race]=Jn.execute(u.resize,["age_output","gender_output","race_output"]));let p=await u.gender.data();h.gender=p[0]>p[1]?"male":"female",h.genderScore=Math.round(100*(p[0]>p[1]?p[0]:p[1]))/100;let c=await u.race.data();for(let x=0;x<c.length;x++)c[x]>(((A=t.face.gear)==null?void 0:A.minConfidence)||.2)&&h.race.push({score:Math.round(100*c[x])/100,race:Hye[x]});h.race.sort((x,b)=>b.score-x.score);let f=Array.from(await u.age.data()).map((x,b)=>[qye[b],x]).sort((x,b)=>b[1]-x[1]),g=f[0][0];for(let x=1;x<f.length;x++)g+=f[x][1]*(f[x][0]-g);h.age=Math.round(10*g)/10,Object.keys(u).forEach(x=>te(u[x])),W5[r]=h,TC=n,NC=oe(),l(h)}))}var Je={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function $C(){Je.tf255=Se(255,"float32"),Je.tf1=Se(1,"float32"),Je.tf2=Se(2,"float32"),Je.tf05=Se(.5,"float32"),Je.tf127=Se(127.5,"float32"),Je.rgb=Nt([.2989,.587,.114],"float32")}var gn,Bm=[],MC=0,FC=0,G5=Number.MAX_SAFE_INTEGER;async function PC(e){return he.initial&&(gn=null),gn?e.debug&&se("cached model:",gn.modelUrl):gn=await Ge(e.face.ssrnet.modelPathAge),gn}async function j5(e,t,r,n){var i,o,l,u;if(!gn)return{age:0};let a=G5<(((i=t.face.ssrnet)==null?void 0:i.skipFrames)||0),s=(((o=t.face.ssrnet)==null?void 0:o.skipTime)||0)>oe()-FC;return t.skipAllowed&&a&&s&&MC===n&&((l=Bm[r])==null?void 0:l.age)&&((u=Bm[r])==null?void 0:u.age)>0?(G5++,Bm[r]):(G5=0,new Promise(async d=>{if(!(gn!=null&&gn.inputs)||!gn.inputs[0]||!gn.inputs[0].shape)return;let h={};h.resize=Ie.resizeBilinear(e,[gn.inputs[0].shape[2],gn.inputs[0].shape[1]],!1),h.enhance=L(h.resize,Je.tf255);let p={age:0};if(t.face.ssrnet.enabled&&(h.age=gn.execute(h.enhance)),h.age){let c=await h.age.data();p.age=Math.trunc(10*c[0])/10}Object.keys(h).forEach(c=>te(h[c])),Bm[r]=p,MC=n,FC=oe(),d(p)}))}var Qn,Wm=[],zC=0,OC=0,H5=Number.MAX_SAFE_INTEGER,q5=[.2989,.587,.114];async function DC(e){return he.initial&&(Qn=null),Qn?e.debug&&se("cached model:",Qn.modelUrl):Qn=await Ge(e.face.ssrnet.modelPathGender),Qn}async function X5(e,t,r,n){var i,o,l,u;if(!Qn)return{gender:"unknown",genderScore:0};let a=H5<(((i=t.face.ssrnet)==null?void 0:i.skipFrames)||0),s=(((o=t.face.ssrnet)==null?void 0:o.skipTime)||0)>oe()-OC;return t.skipAllowed&&a&&s&&zC===n&&((l=Wm[r])==null?void 0:l.gender)&&((u=Wm[r])==null?void 0:u.genderScore)>0?(H5++,Wm[r]):(H5=0,new Promise(async d=>{if(!(Qn!=null&&Qn.inputs[0].shape))return;let h={};h.resize=Ie.resizeBilinear(e,[Qn.inputs[0].shape[2],Qn.inputs[0].shape[1]],!1),h.enhance=X(()=>{let[m,f,g]=Yt(h.resize,3,3),y=L(m,q5[0]),A=L(f,q5[1]),x=L(g,q5[2]),b=Nf([y,A,x]);return L(ce(b,Je.tf05),2)});let p={gender:"unknown",genderScore:0};t.face.ssrnet.enabled&&(h.gender=Qn.execute(h.enhance));let c=await h.gender.data();p.gender=c[0]>c[1]?"female":"male",p.genderScore=c[0]>c[1]?Math.trunc(100*c[0])/100:Math.trunc(100*c[1])/100,Object.keys(h).forEach(m=>te(h[m])),Wm[r]=p,zC=n,OC=oe(),d(p)}))}var Rr,Vm=[],K5=Number.MAX_SAFE_INTEGER,BC=0,WC=0;async function VC(e){var t;return he.initial&&(Rr=null),Rr?e.debug&&se("cached model:",Rr.modelUrl):Rr=await Ge((t=e.face.antispoof)==null?void 0:t.modelPath),Rr}async function Z5(e,t,r,n){var i,o;if(!Rr)return 0;let a=(((i=t.face.antispoof)==null?void 0:i.skipTime)||0)>oe()-WC,s=K5<(((o=t.face.antispoof)==null?void 0:o.skipFrames)||0);return t.skipAllowed&&a&&s&&BC===n&&Vm[r]?(K5++,Vm[r]):(K5=0,new Promise(async l=>{let u=Ie.resizeBilinear(e,[Rr!=null&&Rr.inputs[0].shape?Rr.inputs[0].shape[2]:0,Rr!=null&&Rr.inputs[0].shape?Rr.inputs[0].shape[1]:0],!1),d=Rr==null?void 0:Rr.execute(u),h=(await d.data())[0];Vm[r]=Math.round(100*h)/100,BC=n,WC=oe(),te([u,d]),l(Vm[r])}))}var ea={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Y5={count:468,mouth:13,symmetryLine:[13,ea.midwayBetweenEyes[0]]},Jh={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},J5=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],Qh=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],Vl=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Kye=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Zye=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Yye=[33,133,362,263,1,78,308],Uwe=Kye.map(e=>Qh[e]),Gwe=Zye.map(e=>Qh[e]),jwe=Yye.map(e=>Qh[e]);function Yi(e){let t=e.map(r=>r[0]);return t.push(e[e.length-1][1]),t}var Jye=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],Qye=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],eAe=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],tAe=[[474,475],[475,476],[476,477],[477,474]],rAe=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],nAe=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],aAe=[[469,470],[470,471],[471,472],[472,469]],sAe=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]],Hwe={lips:Yi(Jye),leftEye:Yi(Qye),leftEyebrow:Yi(eAe),leftIris:Yi(tAe),rightEye:Yi(rAe),rightEyebrow:Yi(nAe),rightIris:Yi(aAe),faceOval:Yi(sAe)};var Dd=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],Um=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],rb=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],nb=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],HC=(e,t)=>{let r=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:r,endPoint:n,landmarks:e.landmarks,confidence:e.confidence}},eb=(e,t,r)=>{let n=t.shape[1],a=t.shape[2],s=[e.startPoint[1]/n,e.startPoint[0]/a,e.endPoint[1]/n,e.endPoint[0]/a],i=Ie.cropAndResize(t,[s],[0],r),o=pe(i,Je.tf255);return te(i),o},Gm=(e,t)=>{let r=Um(e),n=Dd(e),a=[t*n[0]/2,t*n[1]/2];return{startPoint:[r[0]-a[0],r[1]-a[1]],endPoint:[r[0]+a[0],r[1]+a[1]],landmarks:e.landmarks,confidence:e.confidence}},jm=e=>{let t=Um(e),r=Dd(e),n=Math.max(...r)/2;return{startPoint:[Math.round(t[0]-n),Math.round(t[1]-n)],endPoint:[Math.round(t[0]+n),Math.round(t[1]+n)],landmarks:e.landmarks,confidence:e.confidence}},qC=e=>{let t=e.map(n=>n[0]),r=e.map(n=>n[1]);return{startPoint:[Math.min(...t),Math.min(...r)],endPoint:[Math.max(...t),Math.max(...r)],landmarks:e}},tb=[[1,0,0],[0,1,0],[0,0,1]],iAe=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),oAe=(e,t)=>iAe(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var GC=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Ul=(e,t)=>{let r=0;for(let n=0;n<e.length;n++)r+=e[n]*t[n];return r},lAe=(e,t)=>{let r=[];for(let n=0;n<e.length;n++)r.push(e[n][t]);return r},jC=(e,t)=>{let r=[],n=e.length;for(let a=0;a<n;a++){r.push([]);for(let s=0;s<n;s++)r[a].push(Ul(e[a],lAe(t,s)))}return r},XC=(e,t)=>{let r=Math.cos(e),n=Math.sin(e),a=[[r,-n,0],[n,r,0],[0,0,1]],s=GC(t[0],t[1]),i=jC(s,a),o=GC(-t[0],-t[1]);return jC(i,o)},uAe=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],r=[e[0][2],e[1][2]],n=[-Ul(t[0],r),-Ul(t[1],r)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]},dAe=(e,t)=>[Ul(e,t[0]),Ul(e,t[1])];function KC(e){let t={strides:[e/16,e/8],anchors:[2,6]},r=[];for(let n=0;n<t.strides.length;n++){let a=t.strides[n],s=Math.floor((e+a-1)/a),i=Math.floor((e+a-1)/a),o=t.anchors[n];for(let l=0;l<s;l++){let u=a*(l+.5);for(let d=0;d<i;d++){let h=a*(d+.5);for(let p=0;p<o;p++)r.push([h,u])}}}return r}function ZC(e,t,r,n,a){let s=Dd(t),i=e.map(c=>[s[0]/a*(c[0]-a/2),s[1]/a*(c[1]-a/2),c[2]||0]),o=r&&r!==0&&Math.abs(r)>.2,l=o?XC(r,[0,0]):tb,u=o?i.map(c=>[...dAe(c,l),c[2]]):i,d=o?uAe(n):tb,h=Um(t),p=[Ul(h,d[0]),Ul(h,d[1])];return u.map(c=>[Math.trunc(c[0]+p[0]),Math.trunc(c[1]+p[1]),Math.trunc(c[2]||0)])}function YC(e,t,r,n){let a=t.landmarks.length>=Y5.count?Y5.symmetryLine:Jh.symmetryLine,s=0,i=tb,o;if(e&&he.kernels.includes("rotatewithoffset"))if(s=oAe(t.landmarks[a[0]],t.landmarks[a[1]]),s&&s!==0&&Math.abs(s)>.2){let u=Um(t),d=[u[0]/r.shape[2],u[1]/r.shape[1]],h=Ie.rotateWithOffset(r,s,0,d);i=XC(-s,u),o=eb(t,h,[n,n]),te(h)}else o=eb(t,r,[n,n]);else o=eb(t,r,[n,n]);return[s,i,o]}var pAe=e=>{let t=e.map(n=>n[0]),r=e.map(n=>n[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...r)+(Math.max(...r)-Math.min(...r))/2]},JC=(e,t)=>{let r=pAe(e),n=Dd(t);return{startPoint:[r[0]-n[0]/2,r[1]-n[1]/2],endPoint:[r[0]+n[0]/2,r[1]+n[1]/2]}};var QC=6,hAe=1.4,Da,eT=null,Ji=0,ec=null,Hm=()=>Ji;async function tT(e){var t;return he.initial&&(Da=null),Da?e.debug&&se("cached model:",Da.modelUrl):Da=await Ge((t=e.face.detector)==null?void 0:t.modelPath),Ji=Da.inputs[0].shape?Da.inputs[0].shape[2]:0,ec=Se(Ji,"int32"),eT=ca(KC(Ji)),Da}function cAe(e){let t={};t.boxStarts=Pe(e,[0,1],[-1,2]),t.centers=le(t.boxStarts,eT),t.boxSizes=Pe(e,[0,3],[-1,2]),t.boxSizesNormalized=pe(t.boxSizes,ec),t.centersNormalized=pe(t.centers,ec),t.halfBoxSize=pe(t.boxSizesNormalized,Je.tf2),t.starts=ce(t.centersNormalized,t.halfBoxSize),t.ends=le(t.centersNormalized,t.halfBoxSize),t.startNormalized=L(t.starts,ec),t.endNormalized=L(t.ends,ec);let r=fd([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(n=>te(t[n])),r}async function rT(e,t){var o,l,u,d;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let r={};r.resized=Ie.resizeBilinear(e,[Ji,Ji]),r.div=pe(r.resized,Je.tf127),r.normalized=ce(r.div,Je.tf05);let n=Da==null?void 0:Da.execute(r.normalized);if(Array.isArray(n)&&n.length>2){let h=n.sort((p,c)=>p.size-c.size);r.concat384=St([h[0],h[2]],2),r.concat512=St([h[1],h[3]],2),r.concat=St([r.concat512,r.concat384],1),r.batch=Qe(r.concat,0)}else Array.isArray(n)?r.batch=Qe(n[0]):r.batch=Qe(n);te(n),r.boxes=cAe(r.batch),r.logits=Pe(r.batch,[0,0],[-1,1]),r.sigmoid=Tr(r.logits),r.scores=Qe(r.sigmoid),r.nms=await Ie.nonMaxSuppressionAsync(r.boxes,r.scores,((o=t.face.detector)==null?void 0:o.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((u=t.face.detector)==null?void 0:u.minConfidence)||0);let a=await r.nms.array(),s=[],i=await r.scores.data();for(let h=0;h<a.length;h++){let p=i[a[h]];if(p>(((d=t.face.detector)==null?void 0:d.minConfidence)||0)){let c={};c.bbox=Pe(r.boxes,[a[h],0],[1,-1]),c.slice=Pe(r.batch,[a[h],QC-1],[1,-1]),c.squeeze=Qe(c.slice),c.landmarks=U(c.squeeze,[QC,-1]);let m=await c.bbox.data(),f={startPoint:[m[0],m[1]],endPoint:[m[2],m[3]],landmarks:await c.landmarks.array(),confidence:p},g=HC(f,[(e.shape[2]||0)/Ji,(e.shape[1]||0)/Ji]),y=Gm(g,t.face.scale||hAe),A=jm(y);s.push(A),Object.keys(c).forEach(x=>te(c[x]))}}return Object.keys(r).forEach(h=>te(r[h])),s}var qm={};vs(qm,{connected:()=>ib,kpt:()=>sb});var sb=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],ib={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var aT=224,fAe,mAe=5,Xm=[8,16,32,32,32];async function sT(){let e=[],t=0;for(;t<mAe;){let r=0,n=t;for(;n<Xm.length&&Xm[n]===Xm[t];)r+=2,n++;let a=Xm[t],s=Math.ceil(aT/a),i=Math.ceil(aT/a);for(let o=0;o<s;++o)for(let l=0;l<i;++l)for(let u=0;u<r;++u)e.push({x:(l+.5)/i,y:(o+.5)/s});t=n}fAe={x:Nt(e.map(r=>r.x)),y:Nt(e.map(r=>r.y))}}function ls(e,t=[1,1]){let r=[e.map(o=>o[0]),e.map(o=>o[1])],n=[Math.min(...r[0]),Math.min(...r[1])],a=[Math.max(...r[0]),Math.max(...r[1])],s=[n[0],n[1],a[0]-n[0],a[1]-n[1]],i=[s[0]/t[0],s[1]/t[1],s[2]/t[0],s[3]/t[1]];return{box:s,boxRaw:i}}function iT(e,t=[1,1]){let r=[e.map(u=>u[0]),e.map(u=>u[1])],n=[Math.min(...r[0]),Math.min(...r[1])],a=[Math.max(...r[0]),Math.max(...r[1])],s=[(n[0]+a[0])/2,(n[1]+a[1])/2],i=Math.max(s[0]-n[0],s[1]-n[1],-s[0]+a[0],-s[1]+a[1]),o=[Math.trunc(s[0]-i),Math.trunc(s[1]-i),Math.trunc(2*i),Math.trunc(2*i)],l=[o[0]/t[0],o[1]/t[1],o[2]/t[0],o[3]/t[1]];return{box:o,boxRaw:l}}function Km(e,t){let r=[e[2]*t,e[3]*t];return[e[0]-(r[0]-e[2])/2,e[1]-(r[1]-e[3])/2,r[0],r[1]]}var uT={initial:!0},yn={detector:null,landmarks:null},Ld={detector:[224,224],landmarks:[256,256]},ob=Number.MAX_SAFE_INTEGER,yAe={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},Ym=null,tc,Qi=[[0,0],[0,0],[0,0],[0,0]],oT=0,lT=e=>1-1/(1+Math.exp(e));async function dT(e){if(uT.initial&&(yn.detector=null),!yn.detector&&e.body.detector&&e.body.detector.modelPath){yn.detector=await Ge(e.body.detector.modelPath);let t=Object.values(yn.detector.modelSignature.inputs);Ld.detector[0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Ld.detector[1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}else e.debug&&yn.detector&&se("cached model:",yn.detector.modelUrl);return await sT(),yn.detector}async function pT(e){if(uT.initial&&(yn.landmarks=null),yn.landmarks)e.debug&&se("cached model:",yn.landmarks.modelUrl);else{yn.landmarks=await Ge(e.body.modelPath);let t=Object.values(yn.landmarks.modelSignature.inputs);Ld.landmarks[0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Ld.landmarks[1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return yn.landmarks}async function AAe(e,t){let r={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;let n;if(tc&&(r.cropped=Ie.cropAndResize(e,[tc],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let a=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],s=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];Qi=[[0,0],a,s,[0,0]],r.pad=Xn(r.cropped||e,Qi),r.resize=Ie.resizeBilinear(r.pad,[t,t]),n=pe(r.resize,Je.tf255)}else e.shape[1]!==t?(r.resize=Ie.resizeBilinear(r.cropped||e,[t,t]),n=pe(r.resize,Je.tf255)):n=pe(r.cropped||e,Je.tf255);return Object.keys(r).forEach(a=>te(r[a])),n}function xAe(e,t){for(let r of e)r.position=[Math.trunc(r.position[0]*(t[0]+Qi[2][0]+Qi[2][1])/t[0]-Qi[2][0]),Math.trunc(r.position[1]*(t[1]+Qi[1][0]+Qi[1][1])/t[1]-Qi[1][0]),r.position[2]],r.positionRaw=[r.position[0]/t[0],r.position[1]/t[1],2*r.position[2]/(t[0]+t[1])];if(tc)for(let r of e)r.positionRaw=[r.positionRaw[0]+tc[1],r.positionRaw[1]+tc[0],r.positionRaw[2]],r.position=[Math.trunc(r.positionRaw[0]*t[0]),Math.trunc(r.positionRaw[1]*t[1]),r.positionRaw[2]];return e}async function bAe(e){let t=e.find(o=>o.part==="leftPalm"),r=e.find(o=>o.part==="leftWrist"),n=e.find(o=>o.part==="leftIndex");t.position[2]=((r.position[2]||0)+(n.position[2]||0))/2;let a=e.find(o=>o.part==="rightPalm"),s=e.find(o=>o.part==="rightWrist"),i=e.find(o=>o.part==="rightIndex");a.position[2]=((s.position[2]||0)+(i.position[2]||0))/2}async function vAe(e,t,r){var m;let n={};[n.ld,n.segmentation,n.heatmap,n.world,n.poseflag]=(m=yn.landmarks)==null?void 0:m.execute(e,yAe.landmarks);let a=(await n.poseflag.data())[0],s=await n.ld.data(),i=await n.world.data();Object.keys(n).forEach(f=>te(n[f]));let o=[],l=5;for(let f=0;f<s.length/l;f++){let g=lT(s[l*f+3]),y=lT(s[l*f+4]),A=Math.trunc(100*g*y*a)/100,x=[s[l*f+0]/Ld.landmarks[0],s[l*f+1]/Ld.landmarks[1],s[l*f+2]+0],b=[Math.trunc(r[0]*x[0]),Math.trunc(r[1]*x[1]),x[2]],w=[i[l*f+0],i[l*f+1],i[l*f+2]+0];o.push({part:sb[f],positionRaw:x,position:b,distance:w,score:A})}if(a<(t.body.minConfidence||0))return null;bAe(o);let u=xAe(o,r),d=u.map(f=>f.position),h=ls(d,[r[0],r[1]]),p={};for(let[f,g]of Object.entries(ib)){let y=[];for(let A=0;A<g.length-1;A++){let x=u.find(w=>w.part===g[A]),b=u.find(w=>w.part===g[A+1]);x&&b&&y.push([x.position,b.position])}p[f]=y}return{id:0,score:Math.trunc(100*a)/100,box:h.box,boxRaw:h.boxRaw,keypoints:u,annotations:p}}async function lb(e,t){let r=[e.shape[2]||0,e.shape[1]||0],n=(t.body.skipTime||0)>oe()-oT,a=ob<(t.body.skipFrames||0);if(t.skipAllowed&&n&&a&&Ym!==null)ob++;else{let s={};s.landmarks=await AAe(e,256),Ym=await vAe(s.landmarks,t,r),Object.keys(s).forEach(i=>te(s[i])),oT=oe(),ob=0}return Ym?[Ym]:[]}var Bd=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var us,Gl=0,ub=[],cT=0,db=Number.MAX_SAFE_INTEGER;async function fT(e){if(he.initial&&(us=null),us)e.debug&&se("cached model:",us.modelUrl);else{us=await Ge(e.object.modelPath);let t=Object.values(us.modelSignature.inputs);Gl=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return us}async function wAe(e,t,r){if(!e)return[];let n={},a=[],s=await e.array();n.squeeze=Qe(e);let i=Yt(n.squeeze,6,1);n.stack=dr([i[1],i[0],i[3],i[2]],1),n.boxes=Qe(n.stack),n.scores=Qe(i[4]),n.classes=Qe(i[5]),te([e,...i]),n.nms=await Ie.nonMaxSuppressionAsync(n.boxes,n.scores,r.object.maxDetected,r.object.iouThreshold,r.object.minConfidence||0);let o=await n.nms.data(),l=0;for(let u of Array.from(o)){let d=Math.trunc(100*s[0][u][4])/100,h=s[0][u][5],p=Bd[h].label,[c,m]=[s[0][u][0]/Gl,s[0][u][1]/Gl],f=[c,m,s[0][u][2]/Gl-c,s[0][u][3]/Gl-m],g=[Math.trunc(f[0]*t[0]),Math.trunc(f[1]*t[1]),Math.trunc(f[2]*t[0]),Math.trunc(f[3]*t[1])];a.push({id:l++,score:d,class:h,label:p,box:g,boxRaw:f})}return Object.keys(n).forEach(u=>te(n[u])),a}async function pb(e,t){let r=(t.object.skipTime||0)>oe()-cT,n=db<(t.object.skipFrames||0);return t.skipAllowed&&r&&n&&ub.length>0?(db++,ub):(db=0,new Promise(async a=>{let s=[e.shape[2]||0,e.shape[1]||0],i=Ie.resizeBilinear(e,[Gl,Gl]),o=t.object.enabled?us==null?void 0:us.execute(i,["tower_0/detections"]):null;cT=oe(),te(i);let l=await wAe(o,s,t);ub=l,a(l)}))}var Jm={};vs(Jm,{connected:()=>cb,kpt:()=>hb});var hb=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],cb={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var $r,gT=0,Zr={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},fb=Number.MAX_SAFE_INTEGER;async function yT(e){return he.initial&&($r=null),$r?e.debug&&se("cached model:",$r.modelUrl):$r=await Ge(e.body.modelPath),$r}async function kAe(e,t){let[r,n]=e.shape,a=U(e,[n*r]),s=Ar(a,0),i=(await s.data())[0];if(te([a,s]),i>t){let o=Rn(a,0),l=yd(o,r),u=(await l.data())[0],d=pe(o,Se(r,"int32")),h=(await d.data())[0];return te([l,d]),[u,h,i]}return[0,0,i]}async function mb(e,t){let r=(t.body.skipTime||0)>oe()-gT,n=fb<(t.body.skipFrames||0);return t.skipAllowed&&r&&n&&Object.keys(Zr.keypoints).length>0?(fb++,[Zr]):(fb=0,new Promise(async a=>{var h;let s=X(()=>{if(!($r!=null&&$r.inputs[0].shape))return null;let p=Ie.resizeBilinear(e,[$r.inputs[0].shape[2],$r.inputs[0].shape[1]],!1),c=L(p,Je.tf2);return ce(c,Je.tf1)}),i;if(t.body.enabled&&(i=$r==null?void 0:$r.execute(s)),gT=oe(),te(s),i){Zr.keypoints.length=0;let p=i.squeeze();te(i);let c=p.unstack(2);te(p);for(let m=0;m<c.length;m++){let[f,g,y]=await kAe(c[m],t.body.minConfidence);y>(((h=t.body)==null?void 0:h.minConfidence)||0)&&Zr.keypoints.push({score:Math.round(100*y)/100,part:hb[m],positionRaw:[f/$r.inputs[0].shape[2],g/$r.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/$r.inputs[0].shape[2]),Math.round(e.shape[1]*g/$r.inputs[0].shape[1])]})}c.forEach(m=>te(m))}Zr.score=Zr.keypoints.reduce((p,c)=>c.score>p?c.score:p,0);let o=Zr.keypoints.map(p=>p.position[0]),l=Zr.keypoints.map(p=>p.position[1]);Zr.box=[Math.min(...o),Math.min(...l),Math.max(...o)-Math.min(...o),Math.max(...l)-Math.min(...l)];let u=Zr.keypoints.map(p=>p.positionRaw[0]),d=Zr.keypoints.map(p=>p.positionRaw[1]);Zr.boxRaw=[Math.min(...u),Math.min(...d),Math.max(...u)-Math.min(...u),Math.max(...d)-Math.min(...d)];for(let[p,c]of Object.entries(cb)){let m=[];for(let f=0;f<c.length-1;f++){let g=Zr.keypoints.find(A=>A.part===c[f]),y=Zr.keypoints.find(A=>A.part===c[f+1]);g&&y&&g.score>(t.body.minConfidence||0)&&y.score>(t.body.minConfidence||0)&&m.push([g.position,y.position])}Zr.annotations[p]=m}a([Zr])}))}var IAe=["angry","disgust","fear","happy","sad","surprise","neutral"],Bn,Qm=[],xT=0,bT=0,gb=Number.MAX_SAFE_INTEGER;async function vT(e){var t;return he.initial&&(Bn=null),Bn?e.debug&&se("cached model:",Bn.modelUrl):Bn=await Ge((t=e.face.emotion)==null?void 0:t.modelPath),Bn}async function yb(e,t,r,n){var i,o;if(!Bn)return[];let a=gb<(((i=t.face.emotion)==null?void 0:i.skipFrames)||0),s=(((o=t.face.emotion)==null?void 0:o.skipTime)||0)>oe()-bT;return t.skipAllowed&&s&&a&&xT===n&&Qm[r]&&Qm[r].length>0?(gb++,Qm[r]):(gb=0,new Promise(async l=>{var d,h;let u=[];if((d=t.face.emotion)!=null&&d.enabled){let p={},c=Bn!=null&&Bn.inputs[0].shape?Bn.inputs[0].shape[2]:0;p.resize=Ie.resizeBilinear(e,[c,c],!1),p.channels=L(p.resize,Je.rgb),p.grayscale=ke(p.channels,3,!0),p.grayscaleSub=ce(p.grayscale,Je.tf05),p.grayscaleMul=L(p.grayscaleSub,Je.tf2),p.emotion=Bn==null?void 0:Bn.execute(p.grayscaleMul),bT=oe();let m=await p.emotion.data();for(let f=0;f<m.length;f++)m[f]>(((h=t.face.emotion)==null?void 0:h.minConfidence)||0)&&u.push({score:Math.min(.99,Math.trunc(100*m[f])/100),emotion:IAe[f]});u.sort((f,g)=>g.score-f.score),Object.keys(p).forEach(f=>te(p[f]))}Qm[r]=u,xT=n,l(u)}))}var An,Ab=[],kT=0,IT=0,ST=Number.MAX_SAFE_INTEGER;async function CT(e){return he.initial&&(An=null),An?e.debug&&se("cached model:",An.modelUrl):An=await Ge(e.face.mobilefacenet.modelPath),An}async function xb(e,t,r,n){var i,o;if(!An)return[];let a=ST<(((i=t.face.embedding)==null?void 0:i.skipFrames)||0),s=(((o=t.face.embedding)==null?void 0:o.skipTime)||0)>oe()-IT;return t.skipAllowed&&s&&a&&kT===n&&Ab[r]?(ST++,Ab[r]):new Promise(async l=>{var d;let u=[];if(((d=t.face.embedding)==null?void 0:d.enabled)&&(An==null?void 0:An.inputs[0].shape)){let h={};h.crop=Ie.resizeBilinear(e,[An.inputs[0].shape[2],An.inputs[0].shape[1]],!1),h.data=An==null?void 0:An.execute(h.crop);let p=await h.data.data();u=Array.from(p)}Ab[r]=u,kT=n,IT=oe(),l(u)})}var ds,eo=0,SAe=2.3,bb=ea.leftEyeLower0,vb=ea.rightEyeLower0,Wd={leftBounds:[bb[0],bb[bb.length-1]],rightBounds:[vb[0],vb[vb.length-1]]},Vd={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function $T(e){var t;return he.initial&&(ds=null),ds?e.debug&&se("cached model:",ds.modelUrl):ds=await Ge((t=e.face.iris)==null?void 0:t.modelPath),eo=ds.inputs[0].shape?ds.inputs[0].shape[2]:0,eo===-1&&(eo=64),ds}function e1(e,t,r,n){for(let a=0;a<J5.length;a++){let{key:s,indices:i}=J5[a],o=ea[`${r}${s}`];if(!n||n.includes(s))for(let l=0;l<i.length;l++){let u=i[l];e[o[l]]=[t[u][0],t[u][1],(t[u][2]+e[o[l]][2])/2]}}}var CAe=e=>{let t=e[Wd.leftBounds[0]][2],r=e[Wd.rightBounds[0]][2];return t-r},NT=(e,t,r,n,a,s=!1)=>{let i=jm(Gm(qC([e[r],e[n]]),SAe)),o=Dd(i),l=Ie.cropAndResize(t,[[i.startPoint[1]/a,i.startPoint[0]/a,i.endPoint[1]/a,i.endPoint[0]/a]],[0],[eo,eo]);if(s&&he.kernels.includes("flipleftright")){let u=Ie.flipLeftRight(l);te(l),l=u}return{box:i,boxSize:o,crop:l}},ET=(e,t,r,n=!1)=>{let a=[];for(let s=0;s<Vd.numCoordinates;s++){let i=e[s*3],o=e[s*3+1],l=e[s*3+2];a.push([(n?1-i/eo:i/eo)*r[0]+t.startPoint[0],o/eo*r[1]+t.startPoint[1],l])}return{rawCoords:a,iris:a.slice(Vd.index)}},RT=(e,t,r)=>{let n=e[ea[`${r}EyeUpper0`][Vd.upperCenter]][2],a=e[ea[`${r}EyeLower0`][Vd.lowerCenter]][2],s=(n+a)/2;return t.map((i,o)=>{let l=s;return o===2?l=n:o===4&&(l=a),[i[0],i[1],l]})};async function MT(e,t,r,n){if(!ds)return r.debug&&se("face mesh iris detection requested, but model is not loaded"),e;let{box:a,boxSize:s,crop:i}=NT(e,t,Wd.leftBounds[0],Wd.leftBounds[1],n,!0),{box:o,boxSize:l,crop:u}=NT(e,t,Wd.rightBounds[0],Wd.rightBounds[1],n,!0),d=St([i,u]);te(i),te(u);let h=ds.execute(d);te(d);let p=await h.data();te(h);let c=p.slice(0,Vd.numCoordinates*3),{rawCoords:m,iris:f}=ET(c,a,s,!0),g=p.slice(Vd.numCoordinates*3),{rawCoords:y,iris:A}=ET(g,o,l,!1),x=CAe(e);Math.abs(x)<30?(e1(e,m,"left",null),e1(e,y,"right",null)):x<1?e1(e,m,"left",["EyeUpper0","EyeLower0"]):e1(e,y,"right",["EyeUpper0","EyeLower0"]);let b=RT(e,f,"left"),w=RT(e,A,"right");return e.concat(b).concat(w)}var xn={eyeLLower:[33,7,163,144,145,153,154,155,133],eyeRLower:[263,249,390,373,374,380,381,382,362],lips:[185,96,90,181,84,17,314,405,320,307,409,40,39,73,37,0,267,269,270,409,40,88,178,178,87,14,268,402,318,324,409,80,41,38,87,12,268,303,318,324,185,95,80,81,85,16,315,404,319,325,409,40,39,73,72,0,302,303,270,408,185,88,88,81,82,15,316,403,319,324,409,80,41,38,87,12,268,303,318,324],eyeL:[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],eyeR:[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417]};async function PT(e,t){let r={irisL:t[3].dataSync(),irisR:t[1].dataSync(),eyeL:t[0].dataSync(),eyeR:t[6].dataSync(),lips:t[5].dataSync()},n=xn.eyeRLower.reduce((s,i)=>s+=e[i][2],0)/xn.eyeRLower.length;for(let s=0;s<r.irisR.length/2;s++)e.push([r.irisR[2*s+0],r.irisR[2*s+1],n]);let a=xn.eyeLLower.reduce((s,i)=>s+=e[i][2],0)/xn.eyeLLower.length;for(let s=0;s<r.irisL.length/2;s++)e.push([r.irisL[2*s+0],r.irisL[2*s+1],a]);for(let s=0;s<r.eyeL.length/2;s++)e[xn.eyeL[s]]=[r.eyeL[2*s+0],r.eyeL[2*s+1],e[xn.eyeL[s]][2]];for(let s=0;s<r.eyeR.length/2;s++)e[xn.eyeR[s]]=[r.eyeR[2*s+0],r.eyeR[2*s+1],e[xn.eyeR[s]][2]];for(let s=0;s<r.lips.length/2;s++)e[xn.lips[s]]=[r.lips[2*s+0],r.lips[2*s+1],e[xn.lips[s]][2]];return e}var La={boxes:[],skipped:Number.MAX_SAFE_INTEGER,timestamp:0},Ba=null,Ud=0;async function _T(e,t){var o,l,u,d,h,p,c,m,f,g;let r=(((o=t.face.detector)==null?void 0:o.skipTime)||0)>oe()-La.timestamp,n=La.skipped<(((l=t.face.detector)==null?void 0:l.skipFrames)||0);!t.skipAllowed||!r||!n||La.boxes.length===0?(La.boxes=await rT(e,t),La.timestamp=oe(),La.skipped=0):La.skipped++;let a=[],s=[],i=0;for(let y=0;y<La.boxes.length;y++){let A=La.boxes[y],x=0,b,w={id:i++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if([x,b,w.tensor]=YC((u=t.face.detector)==null?void 0:u.rotation,A,e,(d=t.face.mesh)!=null&&d.enabled?Ud:Hm()),(h=t==null?void 0:t.filter)!=null&&h.equalization){let I=await Om(w.tensor);te(w.tensor),w.tensor=I}if(w.boxScore=Math.round(100*A.confidence)/100,(p=t.face.mesh)!=null&&p.enabled)if(!Ba)t.debug&&se("face mesh detection requested, but model is not loaded");else{let I=Ba.execute(w.tensor),N=I.find(S=>S.shape[S.shape.length-1]===1),E=I.find(S=>S.shape[S.shape.length-1]===1404),R=await N.data();w.faceScore=Math.round(100*R[0])/100;let _=U(E,[-1,3]),M=await _.array();if(w.faceScore<(((c=t.face.detector)==null?void 0:c.minConfidence)||1))A.confidence=w.faceScore;else{(m=t.face.attention)!=null&&m.enabled?M=await PT(M,I):(f=t.face.iris)!=null&&f.enabled&&(M=await MT(M,w.tensor,t,Ud)),w.mesh=ZC(M,A,x,b,Ud),w.meshRaw=w.mesh.map(z=>[z[0]/(e.shape[2]||0),z[1]/(e.shape[1]||0),(z[2]||0)/Ud]);for(let z of Object.keys(ea))w.annotations[z]=ea[z].map(O=>w.mesh[O]);w.score=w.faceScore;let S={...JC(w.mesh,A),confidence:A.confidence,landmarks:A.landmarks};w.box=rb(S,e),w.boxRaw=nb(S,e),s.push(S)}te([...I,_])}else{w.box=rb(A,e),w.boxRaw=nb(A,e),w.score=w.boxScore,w.mesh=A.landmarks.map(I=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*I[0]/Hm(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*I[1]/Hm()]),w.meshRaw=w.mesh.map(I=>[I[0]/(e.shape[2]||0),I[1]/(e.shape[1]||0),(I[2]||0)/Ud]);for(let I of Object.keys(Jh))w.annotations[I]=[w.mesh[Jh[I]]]}w.score>(((g=t.face.detector)==null?void 0:g.minConfidence)||1)?a.push(w):te(w.tensor)}return La.boxes=s,a}async function zT(e){var t,r,n;return he.initial&&(Ba=null),Ba?e.debug&&se("cached model:",Ba.modelUrl):(t=e.face.attention)!=null&&t.enabled?Ba=await Ge((r=e.face.attention)==null?void 0:r.modelPath):Ba=await Ge((n=e.face.mesh)==null?void 0:n.modelPath),Ud=Ba.inputs[0].shape?Ba.inputs[0].shape[2]:0,Ba}var OT=Vl,DT=Qh;var bn,t1=[],LT=0,BT=0,kb=Number.MAX_SAFE_INTEGER;async function WT(e){var t;return he.initial&&(bn=null),bn?e.debug&&se("cached model:",bn.modelUrl):bn=await Ge((t=e.face.description)==null?void 0:t.modelPath),bn}function Ib(e){let t=e.image||e.tensor||e;if(!(bn!=null&&bn.inputs[0].shape))return t;let r=Ie.resizeBilinear(t,[bn.inputs[0].shape[2],bn.inputs[0].shape[1]],!1),n=L(r,Je.tf255);return te(r),n}async function Sb(e,t,r,n){var i,o,l,u;if(!bn)return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let a=kb<(((i=t.face.description)==null?void 0:i.skipFrames)||0),s=(((o=t.face.description)==null?void 0:o.skipTime)||0)>oe()-LT;return t.skipAllowed&&a&&s&&BT===n&&((l=t1[r])==null?void 0:l.age)&&((u=t1[r])==null?void 0:u.age)>0?(kb++,t1[r]):(kb=0,new Promise(async d=>{var p,c;let h={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((p=t.face.description)!=null&&p.enabled){let m=Ib(e),f=bn==null?void 0:bn.execute(m);LT=oe(),te(m);let y=await(await f.find(R=>R.shape[1]===1)).data(),A=Math.trunc(200*Math.abs(y[0]-.5))/100;A>(((c=t.face.description)==null?void 0:c.minConfidence)||0)&&(h.gender=y[0]<=.5?"female":"male",h.genderScore=Math.min(.99,A));let x=Rn(f.find(R=>R.shape[1]===100),1),b=(await x.data())[0];te(x);let I=await f.find(R=>R.shape[1]===100).data();h.age=Math.round(I[b-1]>I[b+1]?10*b-100*I[b-1]:10*b+100*I[b+1])/10;let N=f.find(R=>R.shape[1]===1024),E=N?await N.data():[];h.descriptor=Array.from(E),f.forEach(R=>te(R))}t1[r]=h,BT=n,d(h)}))}function r1(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function rc(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function GT(e,t,r){let n=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/n,e.startPoint[0]/a,e.endPoint[1]/n,e.endPoint[0]/a]];return Ie.cropAndResize(t,s,[0],r)}function jT(e,t){let r=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:r,endPoint:n,palmLandmarks:a,confidence:e.confidence}}function n1(e,t=1.5){let r=rc(e),n=r1(e),a=[t*n[0]/2,t*n[1]/2],s=[r[0]-a[0],r[1]-a[1]],i=[r[0]+a[0],r[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function a1(e){let t=rc(e),r=r1(e),a=Math.max(...r)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function NAe(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function HT(e,t){let r=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return NAe(r)}var VT=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function to(e,t){let r=0;for(let n=0;n<e.length;n++)r+=e[n]*t[n];return r}function EAe(e,t){let r=[];for(let n=0;n<e.length;n++)r.push(e[n][t]);return r}function UT(e,t){let r=[],n=e.length;for(let a=0;a<n;a++){r.push([]);for(let s=0;s<n;s++)r[a].push(to(e[a],EAe(t,s)))}return r}function Tb(e,t){let r=Math.cos(e),n=Math.sin(e),a=[[r,-n,0],[n,r,0],[0,0,1]],s=VT(t[0],t[1]),i=UT(s,a),o=VT(-t[0],-t[1]);return UT(i,o)}function qT(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],r=[e[0][2],e[1][2]],n=[-to(t[0],r),-to(t[1],r)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]}function Nb(e,t){return[to(e,t[0]),to(e,t[1])]}var KT=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var s1=class{constructor(t){fe(this,"model");fe(this,"anchors");fe(this,"anchorsTensor");fe(this,"inputSize");fe(this,"inputSizeTensor");fe(this,"doubleInputSizeTensor");this.model=t,this.anchors=KT.map(r=>[r.x,r.y]),this.anchorsTensor=ca(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=Nt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Nt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let r={};r.boxOffsets=Pe(t,[0,0],[-1,2]),r.boxSizes=Pe(t,[0,2],[-1,2]),r.div=pe(r.boxOffsets,this.inputSizeTensor),r.boxCenterPoints=le(r.div,this.anchorsTensor),r.halfBoxSizes=pe(r.boxSizes,this.doubleInputSizeTensor),r.sub=ce(r.boxCenterPoints,r.halfBoxSizes),r.startPoints=L(r.sub,this.inputSizeTensor),r.add=le(r.boxCenterPoints,r.halfBoxSizes),r.endPoints=L(r.add,this.inputSizeTensor);let n=fd([r.startPoints,r.endPoints],1);return Object.keys(r).forEach(a=>te(r[a])),n}normalizeLandmarks(t,r){let n={};n.reshape=U(t,[-1,7,2]),n.div=pe(n.reshape,this.inputSizeTensor),n.landmarks=le(n.div,this.anchors[r]);let a=L(n.landmarks,this.inputSizeTensor);return Object.keys(n).forEach(s=>te(n[s])),a}async predict(t,r){let n={};n.resize=Ie.resizeBilinear(t,[this.inputSize,this.inputSize]),n.div=pe(n.resize,Je.tf127),n.image=ce(n.div,Je.tf1),n.batched=this.model.execute(n.image),n.predictions=Qe(n.batched),n.slice=Pe(n.predictions,[0,0],[-1,1]),n.sigmoid=Tr(n.slice),n.scores=Qe(n.sigmoid);let a=await n.scores.data();n.boxes=Pe(n.predictions,[0,1],[-1,4]),n.norm=this.normalizeBoxes(n.boxes),n.nms=await Ie.nonMaxSuppressionAsync(n.norm,n.scores,3*r.hand.maxDetected,r.hand.iouThreshold,r.hand.minConfidence);let s=await n.nms.array(),i=[];for(let o of s){let l={};l.box=Pe(n.norm,[o,0],[1,-1]),l.slice=Pe(n.predictions,[o,5],[1,14]),l.norm=this.normalizeLandmarks(l.slice,o),l.palmLandmarks=U(l.norm,[-1,2]);let u=await l.box.data(),d=u.slice(0,2),h=u.slice(2,4),p=await l.palmLandmarks.array(),c={startPoint:d,endPoint:h,palmLandmarks:p,confidence:a[o]},m=jT(c,[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]);i.push(m),Object.keys(l).forEach(f=>te(l[f]))}return Object.keys(n).forEach(o=>te(n[o])),i}};var MAe=5,ZT=1.65,YT=[0,5,9,13,17,1,2],FAe=0,PAe=2,JT=0,i1=class{constructor(t,r){fe(this,"handDetector");fe(this,"handPoseModel");fe(this,"inputSize");fe(this,"storedBoxes");fe(this,"skipped");fe(this,"detectedHands");this.handDetector=t,this.handPoseModel=r,this.inputSize=this.handPoseModel&&this.handPoseModel.inputs[0].shape?this.handPoseModel.inputs[0].shape[2]:0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let r=t.map(i=>i[0]),n=t.map(i=>i[1]),a=[Math.min(...r),Math.min(...n)],s=[Math.max(...r),Math.max(...n)];return{startPoint:a,endPoint:s}}getBoxForPalmLandmarks(t,r){let n=t.map(s=>Nb([...s,1],r)),a=this.calculateLandmarksBoundingBox(n);return n1(a1(a),MAe)}getBoxForHandLandmarks(t){let r=this.calculateLandmarksBoundingBox(t),n=n1(a1(r),ZT);n.palmLandmarks=[];for(let a=0;a<YT.length;a++)n.palmLandmarks.push(t[YT[a]].slice(0,2));return n}transformRawCoords(t,r,n,a){let s=r1(r),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(c=>[i[0]*(c[0]-this.inputSize/2),i[1]*(c[1]-this.inputSize/2),i[2]*c[2]]),l=Tb(n,[0,0]),u=o.map(c=>[...Nb(c,l),c[2]]),d=qT(a),h=[...rc(r),1],p=[to(h,d[0]),to(h,d[1])];return u.map(c=>[Math.trunc(c[0]+p[0]),Math.trunc(c[1]+p[1]),Math.trunc(c[2])])}async estimateHands(t,r){let n=!1,a,s=(r.hand.skipTime||0)>oe()-JT,i=this.skipped<(r.hand.skipFrames||0);r.skipAllowed&&s&&i&&(a=await this.handDetector.predict(t,r),this.skipped=0),r.skipAllowed&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==r.hand.maxDetected||!r.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(n=!0));let o=[];for(let l=0;l<this.storedBoxes.length;l++){let u=this.storedBoxes[l];if(!!u)if(r.hand.landmarks){let d=r.hand.rotation?HT(u.palmLandmarks[FAe],u.palmLandmarks[PAe]):0,h=rc(u),p=[h[0]/t.shape[2],h[1]/t.shape[1]],c=r.hand.rotation&&he.kernels.includes("rotatewithoffset")?Ie.rotateWithOffset(t,d,0,p):t.clone(),m=Tb(-d,h),f=n?this.getBoxForPalmLandmarks(u.palmLandmarks,m):u,g=GT(f,c,[this.inputSize,this.inputSize]),y=pe(g,Je.tf255);te(g),te(c);let[A,x]=this.handPoseModel.execute(y);JT=oe(),te(y);let b=(await A.data())[0];if(te(A),b>=r.hand.minConfidence/4){let w=U(x,[-1,3]),I=await w.array();te(x),te(w);let N=this.transformRawCoords(I,f,d,m),E=this.getBoxForHandLandmarks(N);this.storedBoxes[l]={...E,confidence:b};let R={landmarks:N,confidence:b,boxConfidence:u.confidence,fingerConfidence:b,box:{topLeft:E.startPoint,bottomRight:E.endPoint}};o.push(R)}else this.storedBoxes[l]=null;te(x)}else{let d=n1(a1(u),ZT),h={confidence:u.confidence,boxConfidence:u.confidence,fingerConfidence:0,box:{topLeft:d.startPoint,bottomRight:d.endPoint},landmarks:[]};o.push(h)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=o.length,o.length>r.hand.maxDetected&&(o.length=r.hand.maxDetected),o}};var Yr={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>Yr.nameMapping[e],getPoints:e=>Yr.pointsMapping[e]},no={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>no.nameMapping[e]},Bt={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>Bt.nameMapping[e]},ro=class{constructor(t){fe(this,"name");fe(this,"curls");fe(this,"directions");fe(this,"weights");fe(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,r,n){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([r,n])}direction(t,r,n){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([r,n])}weight(t,r){this.weights[t]=r;let n=this.weights.reduce((a,s)=>a+s,0);this.weightsRelative=this.weights.map(a=>a*5/n)}matchAgainst(t,r){let n=0;for(let a in t){let s=t[a],i=this.curls[a];if(typeof i=="undefined"){n+=this.weightsRelative[a];continue}for(let[o,l]of i)if(s===o){n+=l*this.weightsRelative[a];break}}for(let a in r){let s=r[a],i=this.directions[a];if(typeof i=="undefined"){n+=this.weightsRelative[a];continue}for(let[o,l]of i)if(s===o){n+=l*this.weightsRelative[a];break}}return n/10}};var{thumb:wa,index:ps,middle:hs,ring:jl,pinky:Hl}=Yr,{none:ka,half:zAe,full:Ia}=no,{verticalUp:Gd,verticalDown:_6e,horizontalLeft:Eb,horizontalRight:OAe,diagonalUpRight:DAe,diagonalUpLeft:jd,diagonalDownRight:z6e,diagonalDownLeft:O6e}=Bt,ao=new ro("thumbs up");ao.curl(wa,ka,1);ao.direction(wa,Gd,1);ao.direction(wa,jd,.25);ao.direction(wa,DAe,.25);for(let e of[Yr.index,Yr.middle,Yr.ring,Yr.pinky])ao.curl(e,Ia,1),ao.direction(e,Eb,1),ao.direction(e,OAe,1);var rr=new ro("victory");rr.curl(wa,zAe,.5);rr.curl(wa,ka,.5);rr.direction(wa,Gd,1);rr.direction(wa,jd,1);rr.curl(ps,ka,1);rr.direction(ps,Gd,.75);rr.direction(ps,jd,1);rr.curl(hs,ka,1);rr.direction(hs,Gd,1);rr.direction(hs,jd,.75);rr.curl(jl,Ia,1);rr.direction(jl,Gd,.2);rr.direction(jl,jd,1);rr.direction(jl,Eb,.2);rr.curl(Hl,Ia,1);rr.direction(Hl,Gd,.2);rr.direction(Hl,jd,1);rr.direction(Hl,Eb,.2);rr.weight(ps,2);rr.weight(hs,2);var so=new ro("point");so.curl(wa,Ia,1);so.curl(ps,ka,.5);so.curl(hs,Ia,.5);so.curl(jl,Ia,.5);so.curl(Hl,Ia,.5);so.weight(ps,2);so.weight(hs,2);var io=new ro("middle finger");io.curl(wa,ka,1);io.curl(ps,Ia,.5);io.curl(hs,Ia,.5);io.curl(jl,Ia,.5);io.curl(Hl,Ia,.5);io.weight(ps,2);io.weight(hs,2);var Hd=new ro("open palm");Hd.curl(wa,ka,.75);Hd.curl(ps,ka,.75);Hd.curl(hs,ka,.75);Hd.curl(jl,ka,.75);Hd.curl(Hl,ka,.75);var QT=[ao,rr,so,io,Hd];var LAe=.7,ql={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function eN(e,t,r,n){let a=(t-n)/(e-r),s=Math.atan(a)*180/Math.PI;return s<=0?s=-s:s>0&&(s=180-s),s}function rN(e,t){if(!e||!t)return[0,0];let r=eN(e[0],e[1],t[0],t[1]);if(e.length===2)return r;let n=eN(e[1],e[2],t[1],t[2]);return[r,n]}function tN(e,t=1){let r=0,n=0,a=0;return e>=75&&e<=105?r=1*t:e>=25&&e<=155?n=1*t:a=1*t,[r,n,a]}function BAe(e,t,r){let n=e[0]-t[0],a=e[0]-r[0],s=t[0]-r[0],i=e[1]-t[1],o=e[1]-r[1],l=t[1]-r[1],u=e[2]-t[2],d=e[2]-r[2],h=t[2]-r[2],p=Math.sqrt(n*n+i*i+u*u),c=Math.sqrt(a*a+o*o+d*d),m=Math.sqrt(s*s+l*l+h*h),f=(m*m+p*p-c*c)/(2*m*p);f>1?f=1:f<-1&&(f=-1);let g=Math.acos(f);g=57.2958*g%180;let y;return g>ql.NO_CURL_START_LIMIT?y=no.none:g>ql.HALF_CURL_START_LIMIT?y=no.half:y=no.full,y}function nN(e,t,r,n){let a;return n===Math.abs(e)?e>0?a=Bt.horizontalLeft:a=Bt.horizontalRight:n===Math.abs(t)?t>0?a=Bt.horizontalLeft:a=Bt.horizontalRight:r>0?a=Bt.horizontalLeft:a=Bt.horizontalRight,a}function aN(e,t,r,n){let a;return n===Math.abs(e)?e<0?a=Bt.verticalDown:a=Bt.verticalUp:n===Math.abs(t)?t<0?a=Bt.verticalDown:a=Bt.verticalUp:r<0?a=Bt.verticalDown:a=Bt.verticalUp,a}function WAe(e,t,r,n,a,s,i,o){let l,u=aN(e,t,r,n),d=nN(a,s,i,o);return u===Bt.verticalUp?d===Bt.horizontalLeft?l=Bt.diagonalUpLeft:l=Bt.diagonalUpRight:d===Bt.horizontalLeft?l=Bt.diagonalDownLeft:l=Bt.diagonalDownRight,l}function VAe(e,t,r,n){let a=e[0]-t[0],s=e[0]-r[0],i=t[0]-r[0],o=e[1]-t[1],l=e[1]-r[1],u=t[1]-r[1],d=Math.max(Math.abs(a),Math.abs(s),Math.abs(i)),h=Math.max(Math.abs(o),Math.abs(l),Math.abs(u)),p=0,c=0,m=0,f=h/(d+1e-5);f>1.5?p+=ql.DISTANCE_VOTE_POWER:f>.66?c+=ql.DISTANCE_VOTE_POWER:m+=ql.DISTANCE_VOTE_POWER;let g=Math.sqrt(a*a+o*o),y=Math.sqrt(s*s+l*l),A=Math.sqrt(i*i+u*u),x=Math.max(g,y,A),b=e[0],w=e[1],I=r[0],N=r[1];x===g?(I=r[0],N=r[1]):x===A&&(b=t[0],w=t[1]);let _=rN([b,w],[I,N]),M=tN(_,ql.TOTAL_ANGLE_VOTE_POWER);p+=M[0],c+=M[1],m+=M[2];for(let z of n){let O=tN(z,ql.SINGLE_ANGLE_VOTE_POWER);p+=O[0],c+=O[1],m+=O[2]}let S;return p===Math.max(p,c,m)?S=aN(l,o,u,h):m===Math.max(c,m)?S=nN(s,a,i,d):S=WAe(l,o,u,h,s,a,i,d),S}function sN(e){let t=[],r=[],n=[],a=[];if(!e)return{curls:n,directions:a};for(let s of Yr.all){let i=Yr.getPoints(s),o=[],l=[];for(let u of i){let d=e[u[0]],h=e[u[1]],p=rN(d,h),c=p[0],m=p[1];o.push(c),l.push(m)}t.push(o),r.push(l)}for(let s of Yr.all){let i=s===Yr.thumb?1:0,o=Yr.getPoints(s),l=e[o[i][0]],u=e[o[i+1][1]],d=e[o[3][1]],h=BAe(l,u,d),p=VAe(l,u,d,t[s].slice(i));n[s]=h,a[s]=p}return{curls:n,directions:a}}function o1(e){if(!e||e.length===0)return null;let t=sN(e),r={};for(let n of Yr.all)r[Yr.getName(n)]={curl:no.getName(t.curls[n]),direction:Bt.getName(t.directions[n])};return r}function iN(e){let t=[];if(!e||e.length===0)return t;let r=sN(e);for(let n of QT){let a=n.matchAgainst(r.curls,r.directions);a>=LAe&&t.push({name:n.name,confidence:a})}return t}var oN={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},qd,Xd,lN;async function $b(e,t){let r=await lN.estimateHands(e,t);if(!r)return[];let n=[];for(let a=0;a<r.length;a++){let s={};if(r[a].landmarks)for(let d of Object.keys(oN))s[d]=oN[d].map(h=>r[a].landmarks[h]);let i=r[a].landmarks,o=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(i&&i.length>0){for(let d of i)d[0]<o[0]&&(o[0]=d[0]),d[1]<o[1]&&(o[1]=d[1]),d[0]>o[2]&&(o[2]=d[0]),d[1]>o[3]&&(o[3]=d[1]);o[2]-=o[0],o[3]-=o[1],l=[o[0]/(e.shape[2]||0),o[1]/(e.shape[1]||0),o[2]/(e.shape[2]||0),o[3]/(e.shape[1]||0)]}else o=r[a].box?[Math.trunc(Math.max(0,r[a].box.topLeft[0])),Math.trunc(Math.max(0,r[a].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,r[a].box.bottomRight[0])-Math.max(0,r[a].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,r[a].box.bottomRight[1])-Math.max(0,r[a].box.topLeft[1]))]:[0,0,0,0],l=[r[a].box.topLeft[0]/(e.shape[2]||0),r[a].box.topLeft[1]/(e.shape[1]||0),(r[a].box.bottomRight[0]-r[a].box.topLeft[0])/(e.shape[2]||0),(r[a].box.bottomRight[1]-r[a].box.topLeft[1])/(e.shape[1]||0)];let u=o1(i);n.push({id:a,score:Math.round(100*r[a].confidence)/100,boxScore:Math.round(100*r[a].boxConfidence)/100,fingerScore:Math.round(100*r[a].fingerConfidence)/100,label:"hand",box:o,boxRaw:l,keypoints:i,annotations:s,landmarks:u})}return n}async function Mb(e){var r,n;he.initial&&(qd=null,Xd=null),!qd||!Xd?[qd,Xd]=await Promise.all([e.hand.enabled?Ge((r=e.hand.detector)==null?void 0:r.modelPath):null,e.hand.landmarks?Ge((n=e.hand.skeleton)==null?void 0:n.modelPath):null]):(e.debug&&se("cached model:",qd.modelUrl),e.debug&&se("cached model:",Xd.modelUrl));let t=new s1(qd);return lN=new i1(t,Xd),[qd,Xd]}var hr=[null,null],UAe=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],oo=[[0,0],[0,0]],GAe=["hand","fist","pinch","point","face","tip","pinchtip"],dN=4,pN=1.6,jAe=512,HAe=1.4,l1=Number.MAX_SAFE_INTEGER,Fb=0,cs=[0,0],Ht={boxes:[],hands:[]},hN={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function cN(e){var t;if(he.initial&&(hr[0]=null),hr[0])e.debug&&se("cached model:",hr[0].modelUrl);else{u1(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),hr[0]=await Ge((t=e.hand.detector)==null?void 0:t.modelPath);let r=Object.values(hr[0].modelSignature.inputs);oo[0][0]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[1].size):0,oo[0][1]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[2].size):0}return hr[0]}async function fN(e){var t;if(he.initial&&(hr[1]=null),hr[1])e.debug&&se("cached model:",hr[1].modelUrl);else{hr[1]=await Ge((t=e.hand.skeleton)==null?void 0:t.modelPath);let r=Object.values(hr[1].modelSignature.inputs);oo[1][0]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[1].size):0,oo[1][1]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[2].size):0}return hr[1]}async function qAe(e,t){let r=[];if(!e||!hr[0])return r;let n={},a=(e.shape[2]||1)/(e.shape[1]||1),s=Math.min(Math.round((e.shape[1]||0)/8)*8,jAe),i=Math.round(s*a/8)*8;n.resize=Ie.resizeBilinear(e,[s,i]),n.cast=me(n.resize,"int32"),[n.rawScores,n.rawBoxes]=await hr[0].executeAsync(n.cast,UAe),n.boxes=Qe(n.rawBoxes,[0,2]),n.scores=Qe(n.rawScores,[0]);let o=nn(n.scores,1);te(o[dN]),o.splice(dN,1),n.filtered=dr(o,1),te(o),n.max=Ar(n.filtered,1),n.argmax=Rn(n.filtered,1);let l=0;n.nms=await Ie.nonMaxSuppressionAsync(n.boxes,n.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let u=await n.nms.data(),d=await n.max.data(),h=await n.argmax.data();for(let p of Array.from(u)){let c=Pe(n.boxes,p,1),m=await c.data();te(c);let f=[m[1],m[0],m[3]-m[1],m[2]-m[0]],g=Km(f,HAe),y=[Math.trunc(f[0]*cs[0]),Math.trunc(f[1]*cs[1]),Math.trunc(f[2]*cs[0]),Math.trunc(f[3]*cs[1])],A=d[p],x=GAe[h[p]],b={id:l++,score:A,box:y,boxRaw:g,label:x};r.push(b)}return Object.keys(n).forEach(p=>te(n[p])),r.sort((p,c)=>c.score-p.score),r.length>(t.hand.maxDetected||1)&&(r.length=t.hand.maxDetected||1),r}async function Pb(e,t,r){let n={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&hr[1]&&r.hand.landmarks&&t.score>(r.hand.minConfidence||0)){let a={},s=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];a.crop=Ie.cropAndResize(e,[s],[0],[oo[1][0],oo[1][1]],"bilinear"),a.div=pe(a.crop,Je.tf255),[a.score,a.keypoints]=hr[1].execute(a.div,["Identity_1","Identity"]);let i=(await a.score.data())[0],o=(100-Math.trunc(100/(1+Math.exp(i))))/100;if(o>=(r.hand.minConfidence||0)){n.fingerScore=o,a.reshaped=U(a.keypoints,[-1,3]);let d=(await a.reshaped.array()).map(h=>[h[0]/oo[1][1],h[1]/oo[1][0],h[2]||0]).map(h=>[h[0]*t.boxRaw[2],h[1]*t.boxRaw[3],h[2]||0]);n.keypoints=d.map(h=>[cs[0]*(h[0]+t.boxRaw[0]),cs[1]*(h[1]+t.boxRaw[1]),h[2]||0]),n.landmarks=o1(n.keypoints);for(let h of Object.keys(hN))n.annotations[h]=hN[h].map(p=>n.landmarks&&n.keypoints[p]?n.keypoints[p]:null)}Object.keys(a).forEach(l=>te(a[l]))}return n}async function _b(e,t){var a,s;if(!hr[0]||!hr[1]||!((a=hr[0])!=null&&a.inputs[0].shape)||!((s=hr[1])!=null&&s.inputs[0].shape))return[];cs=[e.shape[2]||0,e.shape[1]||0],l1++;let r=(t.hand.skipTime||0)>oe()-Fb,n=l1<(t.hand.skipFrames||0);return t.skipAllowed&&r&&n?Ht.hands:new Promise(async i=>{let o=3*(t.hand.skipTime||0)>oe()-Fb,l=l1<3*(t.hand.skipFrames||0);t.skipAllowed&&Ht.hands.length===t.hand.maxDetected?Ht.hands=await Promise.all(Ht.boxes.map(d=>Pb(e,d,t))):t.skipAllowed&&o&&l&&Ht.hands.length>0?Ht.hands=await Promise.all(Ht.boxes.map(d=>Pb(e,d,t))):(Ht.boxes=await qAe(e,t),Fb=oe(),Ht.hands=await Promise.all(Ht.boxes.map(d=>Pb(e,d,t))),l1=0);let u=[...Ht.boxes];if(Ht.boxes.length=0,t.cacheSensitivity>0)for(let d=0;d<Ht.hands.length;d++){let h=iT(Ht.hands[d].keypoints,cs);if(h.box[2]/(e.shape[2]||1)>.05&&h.box[3]/(e.shape[1]||1)>.05&&Ht.hands[d].fingerScore&&Ht.hands[d].fingerScore>(t.hand.minConfidence||0)){let p=Km(h.box,pN),c=Km(h.boxRaw,pN);Ht.boxes.push({...u[d],box:p,boxRaw:c})}}for(let d=0;d<Ht.hands.length;d++){let h=ls(Ht.hands[d].keypoints,cs);Ht.hands[d].box=h.box,Ht.hands[d].boxRaw=h.boxRaw}i(Ht.hands)})}var Mr,d1=[],zb=Number.MAX_SAFE_INTEGER,gN=0,yN=0;async function AN(e){var t;return he.initial&&(Mr=null),Mr?e.debug&&se("cached model:",Mr.modelUrl):Mr=await Ge((t=e.face.liveness)==null?void 0:t.modelPath),Mr}async function Ob(e,t,r,n){var i,o;if(!Mr)return 0;let a=(((i=t.face.liveness)==null?void 0:i.skipTime)||0)>oe()-yN,s=zb<(((o=t.face.liveness)==null?void 0:o.skipFrames)||0);return t.skipAllowed&&a&&s&&gN===n&&d1[r]?(zb++,d1[r]):(zb=0,new Promise(async l=>{let u=Ie.resizeBilinear(e,[Mr!=null&&Mr.inputs[0].shape?Mr.inputs[0].shape[2]:0,Mr!=null&&Mr.inputs[0].shape?Mr.inputs[0].shape[1]:0],!1),d=Mr==null?void 0:Mr.execute(u),h=(await d.data())[0];d1[r]=Math.round(100*h)/100,gN=n,yN=oe(),te([u,d]),l(d1[r])}))}var nc={};vs(nc,{connected:()=>h1,horizontal:()=>Db,kpt:()=>p1,relative:()=>Bb,vertical:()=>Lb});var p1=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Db=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],Lb=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],Bb=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],h1={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var bN=.005,vn={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function Wb(e){for(let t of Db){let r=e.keypoints.findIndex(a=>a.part===t[0]),n=e.keypoints.findIndex(a=>a.part===t[1]);if(e.keypoints[r]&&e.keypoints[n]&&e.keypoints[r].position[0]<e.keypoints[n].position[0]){let a=e.keypoints[r];e.keypoints[r]=e.keypoints[n],e.keypoints[n]=a}}for(let t of Lb){let r=e.keypoints.findIndex(a=>a&&a.part===t[0]),n=e.keypoints.findIndex(a=>a&&a.part===t[1]);e.keypoints[r]&&e.keypoints[n]&&e.keypoints[r].position[1]<e.keypoints[n].position[1]&&e.keypoints.splice(r,1)}for(let[t,r]of Bb){let n=e.keypoints.findIndex(u=>u&&u.part===t[0]),a=e.keypoints.findIndex(u=>u&&u.part===t[1]),s=e.keypoints.findIndex(u=>u&&u.part===r[0]),i=e.keypoints.findIndex(u=>u&&u.part===r[1]);if(!e.keypoints[s]||!e.keypoints[i])continue;let o=e.keypoints[n]?[Math.abs(e.keypoints[s].position[0]-e.keypoints[n].position[0]),Math.abs(e.keypoints[i].position[0]-e.keypoints[n].position[0])]:[0,0],l=e.keypoints[a]?[Math.abs(e.keypoints[i].position[0]-e.keypoints[a].position[0]),Math.abs(e.keypoints[s].position[0]-e.keypoints[a].position[0])]:[0,0];if(o[0]>o[1]||l[0]>l[1]){let u=e.keypoints[n];e.keypoints[n]=e.keypoints[a],e.keypoints[a]=u}}}function vN(e){for(let t=0;t<e.length;t++)if(e[t]&&vn.keypoints[t]){let r=[Math.abs(e[t].positionRaw[0]-vn.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-vn.keypoints[t].positionRaw[1])];r[0]<bN&&r[1]<bN?e[t]=vn.keypoints[t]:vn.keypoints[t]=e[t]}else vn.keypoints[t]=e[t];return e}function wN(e,t){let r={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;vn.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],r.pad=Xn(e,vn.padding),r.resize=Ie.resizeBilinear(r.pad,[t,t]);let n=me(r.resize,"int32");return Object.keys(r).forEach(a=>te(r[a])),n}function kN(e,t){e.keypoints=e.keypoints.filter(n=>n&&n.position);for(let n of e.keypoints)n.position=[n.position[0]*(t[0]+vn.padding[2][0]+vn.padding[2][1])/t[0]-vn.padding[2][0],n.position[1]*(t[1]+vn.padding[1][0]+vn.padding[1][1])/t[1]-vn.padding[1][0]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1]];let r=ls(e.keypoints.map(n=>n.position),t);return e.box=r.box,e.boxRaw=r.boxRaw,e}var wn,c1=0,Vb=Number.MAX_SAFE_INTEGER,Xl={boxes:[],bodies:[],last:0};async function IN(e){return he.initial&&(wn=null),wn?e.debug&&se("cached model:",wn.modelUrl):(u1(["size"],e),wn=await Ge(e.body.modelPath)),c1=wn.inputs[0].shape?wn.inputs[0].shape[2]:0,c1<64&&(c1=256),wn}async function KAe(e,t,r){let n=e[0][0],a=[],s=0;for(let d=0;d<n.length;d++)if(s=n[d][2],s>t.body.minConfidence){let h=[n[d][1],n[d][0]];a.push({score:Math.round(100*s)/100,part:p1[d],positionRaw:h,position:[Math.round((r.shape[2]||0)*h[0]),Math.round((r.shape[1]||0)*h[1])]})}s=a.reduce((d,h)=>h.score>d?h.score:d,0);let i=[],o=ls(a.map(d=>d.position),[r.shape[2],r.shape[1]]),l={};for(let[d,h]of Object.entries(h1)){let p=[];for(let c=0;c<h.length-1;c++){let m=a.find(g=>g.part===h[c]),f=a.find(g=>g.part===h[c+1]);m&&f&&m.score>(t.body.minConfidence||0)&&f.score>(t.body.minConfidence||0)&&p.push([m.position,f.position])}l[d]=p}let u={id:0,score:s,box:o.box,boxRaw:o.boxRaw,keypoints:a,annotations:l};return Wb(u),i.push(u),i}async function ZAe(e,t,r){let n=[];for(let a=0;a<e[0].length;a++){let s=e[0][a],i=Math.round(100*s[51+4])/100;if(i>t.body.minConfidence){let o=[];for(let h=0;h<17;h++){let p=s[3*h+2];if(p>t.body.minConfidence){let c=[s[3*h+1],s[3*h+0]];o.push({part:p1[h],score:Math.round(100*p)/100,positionRaw:c,position:[Math.round((r.shape[2]||0)*c[0]),Math.round((r.shape[1]||0)*c[1])]})}}let l=ls(o.map(h=>h.position),[r.shape[2],r.shape[1]]),u={};for(let[h,p]of Object.entries(h1)){let c=[];for(let m=0;m<p.length-1;m++){let f=o.find(y=>y.part===p[m]),g=o.find(y=>y.part===p[m+1]);f&&g&&f.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&c.push([f.position,g.position])}u[h]=c}let d={id:a,score:i,box:l.box,boxRaw:l.boxRaw,keypoints:[...o],annotations:u};Wb(d),n.push(d)}}return n.sort((a,s)=>s.score-a.score),n.length>t.body.maxDetected&&(n.length=t.body.maxDetected),n}async function Ub(e,t){if(!wn||!(wn!=null&&wn.inputs[0].shape))return[];t.skipAllowed||(Xl.boxes.length=0),Vb++;let r=(t.body.skipTime||0)>oe()-Xl.last,n=Vb<(t.body.skipFrames||0);return t.skipAllowed&&r&&n?Xl.bodies:new Promise(async a=>{let s={};Vb=0,s.input=wN(e,c1),s.res=wn==null?void 0:wn.execute(s.input),Xl.last=oe();let i=await s.res.array();Xl.bodies=s.res.shape[2]===17?await KAe(i,t,e):await ZAe(i,t,e);for(let o of Xl.bodies)kN(o,[e.shape[2]||1,e.shape[1]||1]),vN(o.keypoints);Object.keys(s).forEach(o=>te(s[o])),a(Xl.bodies)})}var Kd,f1=[],CN=0,Gb=Number.MAX_SAFE_INTEGER,g1=0,m1=2.5;async function TN(e){if(!Kd||he.initial){Kd=await Ge(e.object.modelPath);let t=Object.values(Kd.modelSignature.inputs);g1=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}else e.debug&&se("cached model:",Kd.modelUrl);return Kd}async function YAe(e,t,r){let n=0,a=[];for(let l of[1,2,4])X(async()=>{let u=l*13,d=Qe(e.find(f=>f.shape[1]===u**2&&(f.shape[2]||0)===Bd.length)),h=Qe(e.find(f=>f.shape[1]===u**2&&(f.shape[2]||0)<Bd.length)),c=await h.reshape([-1,4,h.shape[1]/4]).argMax(2).array(),m=await d.array();for(let f=0;f<d.shape[0];f++)for(let g=0;g<d.shape[1];g++){let y=m[f][g];if(y>(r.object.minConfidence||0)&&g!==61){let A=(.5+Math.trunc(f%u))/u,x=(.5+Math.trunc(f/u))/u,b=c[f].map(S=>S*(u/l/g1)),[w,I]=[A-m1/l*b[0],x-m1/l*b[1]],[N,E]=[A+m1/l*b[2]-w,x+m1/l*b[3]-I],R=[w,I,N,E];R=R.map(S=>Math.max(0,Math.min(S,1)));let _=[R[0]*t[0],R[1]*t[1],R[2]*t[0],R[3]*t[1]],M={id:n++,score:Math.round(100*y)/100,class:g+1,label:Bd[g].label,box:_.map(S=>Math.trunc(S)),boxRaw:R};a.push(M)}}});e.forEach(l=>te(l));let s=a.map(l=>[l.boxRaw[1],l.boxRaw[0],l.boxRaw[3],l.boxRaw[2]]),i=a.map(l=>l.score),o=[];if(s&&s.length>0){let l=await Ie.nonMaxSuppressionAsync(s,i,r.object.maxDetected,r.object.iouThreshold,r.object.minConfidence);o=await l.data(),te(l)}return a=a.filter((l,u)=>o.includes(u)).sort((l,u)=>u.score-l.score),a}async function jb(e,t){let r=(t.object.skipTime||0)>oe()-CN,n=Gb<(t.object.skipFrames||0);return t.skipAllowed&&r&&n&&f1.length>0?(Gb++,f1):(Gb=0,!he.kernels.includes("mod")||!he.kernels.includes("sparsetodense")?f1:new Promise(async a=>{let s=[e.shape[2]||0,e.shape[1]||0],i=Ie.resizeBilinear(e,[g1,g1],!1),o=pe(i,Je.tf255),l=o.transpose([0,3,1,2]);te(o),te(i);let u;t.object.enabled&&(u=Kd.execute(l)),CN=oe(),te(l);let d=await YAe(u,s,t);f1=d,a(d)}))}var sc=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],JAe=sc.length,ac=sc.reduce((e,t,r)=>(e[t]=r,e),{}),QAe=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],oke=QAe.map(([e,t])=>[ac[e],ac[t]]),EN=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function RN(e){let t=e.reduce(({maxX:r,maxY:n,minX:a,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(r,i),maxY:Math.max(n,o),minX:Math.min(a,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function $N(e,[t,r],[n,a]){let s=t/n,i=r/a,o=(u,d)=>({id:d,score:u.score,boxRaw:[u.box[0]/a,u.box[1]/n,u.box[2]/a,u.box[3]/n],box:[Math.trunc(u.box[0]*i),Math.trunc(u.box[1]*s),Math.trunc(u.box[2]*i),Math.trunc(u.box[3]*s)],keypoints:u.keypoints.map(({score:h,part:p,position:c})=>({score:h,part:p,position:[Math.trunc(c.x*i),Math.trunc(c.y*s)],positionRaw:[c.x/n,c.y/n]})),annotations:{}});return e.map((u,d)=>o(u,d))}var y1=class{constructor(t,r){fe(this,"priorityQueue");fe(this,"numberOfElements");fe(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=r}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let r=2*t;if(r<this.numberOfElements&&this.less(r,r+1)&&r++,!this.less(t,r))break;this.exchange(t,r),t=r}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,r){return this.getValueAt(t)<this.getValueAt(r)}exchange(t,r){let n=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[r],this.priorityQueue[r]=n}};function Hb(e,t,r,n){return{y:n.get(e,t,r),x:n.get(e,t,r+JAe)}}function qb(e,t,r){let{heatmapY:n,heatmapX:a,id:s}=e,{y:i,x:o}=Hb(n,a,s,r);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function Xb(e,t,r){return e<t?t:e>r?r:e}function MN(e,t,r,n){let a=r-e,s=n-t;return a*a+s*s}function Kb(e,t){return{x:e.x+t.x,y:e.y+t.y}}var Sa,txe=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],A1=1,Zd=16,rxe=50**2;function FN(e,t,r,n,a,s,i=2){let o=y=>({y:s.get(y.y,y.x,e),x:s.get(y.y,y.x,s.shape[2]/2+e)}),l=(y,A,x)=>({y:Xb(Math.round(y.y/Zd),0,A-1),x:Xb(Math.round(y.x/Zd),0,x-1)}),[u,d]=n.shape,h=l(t.position,u,d),p=o(h),m=Kb(t.position,p);for(let y=0;y<i;y++){let A=l(m,u,d),x=Hb(A.y,A.x,r,a);m=Kb({x:A.x*Zd,y:A.y*Zd},{x:x.x,y:x.y})}let f=l(m,u,d),g=n.get(f.y,f.x,r);return{position:m,part:sc[r],score:g}}function nxe(e,t,r,n,a){let s=EN.map(([p,c])=>[ac[p],ac[c]]),i=s.map(([,p])=>p),o=s.map(([p])=>p),l=t.shape[2],u=i.length,d=new Array(l),h=qb(e.part,Zd,r);d[e.part.id]={score:e.score,part:sc[e.part.id],position:h};for(let p=u-1;p>=0;--p){let c=i[p],m=o[p];d[c]&&!d[m]&&(d[m]=FN(p,d[c],m,t,r,a))}for(let p=0;p<u;++p){let c=o[p],m=i[p];d[c]&&!d[m]&&(d[m]=FN(p,d[c],m,t,r,n))}return d}function axe(e,t,r,n,a){let[s,i]=a.shape,o=!0,l=Math.max(r-A1,0),u=Math.min(r+A1+1,s);for(let d=l;d<u;++d){let h=Math.max(n-A1,0),p=Math.min(n+A1+1,i);for(let c=h;c<p;++c)if(a.get(d,c,e)>t){o=!1;break}if(!o)break}return o}function sxe(e,t){let[r,n,a]=t.shape,s=new y1(r*n*a,({score:i})=>i);for(let i=0;i<r;++i)for(let o=0;o<n;++o)for(let l=0;l<a;++l){let u=t.get(i,o,l);u<e||axe(l,u,i,o,t)&&s.enqueue({score:u,part:{heatmapY:i,heatmapX:o,id:l}})}return s}function PN(e,{x:t,y:r},n){return e.some(({keypoints:a})=>{var i;let s=(i=a[n])==null?void 0:i.position;return s?MN(r,t,s.y,s.x)<=rxe:!1})}function ixe(e,t){return t.reduce((n,{position:a,score:s},i)=>(PN(e,a,i)||(n+=s),n),0)/t.length}function oxe(e,t,r,n,a,s){let i=[],o=sxe(s,t);for(;i.length<a&&!o.empty();){let l=o.dequeue(),u=qb(l.part,Zd,e);if(PN(i,u,l.part.id))continue;let d=nxe(l,t,e,r,n);d=d.filter(c=>c.score>s);let h=ixe(i,d),p=RN(d);h>s&&i.push({keypoints:d,box:p,score:Math.round(100*h)/100})}return i}async function Zb(e,t){let r=X(()=>{if(!Sa.inputs[0].shape)return[];let i=Ie.resizeBilinear(e,[Sa.inputs[0].shape[2],Sa.inputs[0].shape[1]]),o=ce(pe(me(i,"float32"),127.5),1),u=Sa.execute(o,txe).map(d=>Qe(d,[0]));return u[1]=Tr(u[1]),u}),n=await Promise.all(r.map(i=>i.buffer()));for(let i of r)te(i);let a=await oxe(n[0],n[1],n[2],n[3],t.body.maxDetected,t.body.minConfidence);return Sa.inputs[0].shape?$N(a,[e.shape[1],e.shape[2]],[Sa.inputs[0].shape[2],Sa.inputs[0].shape[1]]):[]}async function _N(e){return!Sa||he.initial?Sa=await Ge(e.body.modelPath):e.debug&&se("cached model:",Sa.modelUrl),Sa}var Wa,Yb=!1;async function Jb(e){return!Wa||he.initial?Wa=await Ge(e.segmentation.modelPath):e.debug&&se("cached model:",Wa.modelUrl),Wa}async function ON(e,t,r){var f,g;if(Yb)return{data:[],canvas:null,alpha:null};Yb=!0,Wa||await Jb(r);let n=await Od(e,r),a=((f=n.tensor)==null?void 0:f.shape[2])||0,s=((g=n.tensor)==null?void 0:g.shape[1])||0;if(!n.tensor)return{data:[],canvas:null,alpha:null};let i={};i.resize=Ie.resizeBilinear(n.tensor,[Wa.inputs[0].shape?Wa.inputs[0].shape[1]:0,Wa.inputs[0].shape?Wa.inputs[0].shape[2]:0],!1),te(n.tensor),i.norm=pe(i.resize,Je.tf255),i.res=Wa.execute(i.norm),i.squeeze=Qe(i.res,0),i.squeeze.shape[2]===2?(i.softmax=xd(i.squeeze),[i.bg,i.fg]=nn(i.softmax,2),i.expand=Kt(i.fg,2),i.pad=Kt(i.expand,0),i.crop=Ie.cropAndResize(i.pad,[[0,0,.5,.5]],[0],[a,s]),i.data=Qe(i.crop,0)):i.data=Ie.resizeBilinear(i.squeeze,[s,a]);let o=Array.from(await i.data.data());if(he.node&&!he.Canvas&&typeof ImageData=="undefined")return r.debug&&se("canvas support missing"),Object.keys(i).forEach(y=>te(i[y])),{data:o,canvas:null,alpha:null};let l=Kr(a,s);On&&await On.toPixels(i.data,l);let u=l.getContext("2d");r.segmentation.blur&&r.segmentation.blur>0&&(u.filter=`blur(${r.segmentation.blur}px)`);let d=u.getImageData(0,0,a,s),h=Kr(a,s),p=h.getContext("2d");n.canvas&&p.drawImage(n.canvas,0,0),p.globalCompositeOperation="darken",r.segmentation.blur&&r.segmentation.blur>0&&(p.filter=`blur(${r.segmentation.blur}px)`),p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none";let c=p.getImageData(0,0,a,s);for(let y=0;y<a*s;y++)c.data[4*y+3]=d.data[4*y+0];p.putImageData(c,0,0);let m=null;if(t&&h){m=Kr(a,s);let y=await Od(t,r);te(y.tensor);let A=m.getContext("2d");A.drawImage(y.canvas,0,0,m.width,m.height),A.drawImage(h,0,0)}return Object.keys(i).forEach(y=>te(i[y])),Yb=!1,{data:o,canvas:h,alpha:l}}var ic=class{constructor(){fe(this,"ssrnetage",null);fe(this,"gear",null);fe(this,"blazeposedetect",null);fe(this,"blazepose",null);fe(this,"centernet",null);fe(this,"efficientpose",null);fe(this,"mobilefacenet",null);fe(this,"emotion",null);fe(this,"facedetect",null);fe(this,"faceiris",null);fe(this,"facemesh",null);fe(this,"faceres",null);fe(this,"ssrnetgender",null);fe(this,"handpose",null);fe(this,"handskeleton",null);fe(this,"handtrack",null);fe(this,"liveness",null);fe(this,"movenet",null);fe(this,"nanodet",null);fe(this,"posenet",null);fe(this,"segmentation",null);fe(this,"antispoof",null)}};function x1(e){for(let t of Object.keys(e.models))e.models[t]=null}async function Qb(e){var t,r,n,a,s,i,o,l,u,d,h,p,c,m,f,g,y,A,x,b,w,I,N,E,R,_,M,S,z,O,H;he.initial&&x1(e),e.config.hand.enabled&&(!e.models.handpose&&((r=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await Mb(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((a=(n=e.config.hand.detector)==null?void 0:n.modelPath)==null?void 0:a.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await Mb(e.config))),e.config.body.enabled&&!e.models.blazepose&&((i=(s=e.config.body)==null?void 0:s.modelPath)==null?void 0:i.includes("blazepose"))&&(e.models.blazepose=pT(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=dT(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((l=(o=e.config.body)==null?void 0:o.modelPath)==null?void 0:l.includes("efficientpose"))&&(e.models.efficientpose=yT(e.config)),e.config.body.enabled&&!e.models.movenet&&((d=(u=e.config.body)==null?void 0:u.modelPath)==null?void 0:d.includes("movenet"))&&(e.models.movenet=IN(e.config)),e.config.body.enabled&&!e.models.posenet&&((p=(h=e.config.body)==null?void 0:h.modelPath)==null?void 0:p.includes("posenet"))&&(e.models.posenet=_N(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=tT(e.config)),e.config.face.enabled&&((c=e.config.face.antispoof)==null?void 0:c.enabled)&&!e.models.antispoof&&(e.models.antispoof=VC(e.config)),e.config.face.enabled&&((m=e.config.face.liveness)==null?void 0:m.enabled)&&!e.models.liveness&&(e.models.liveness=AN(e.config)),e.config.face.enabled&&((f=e.config.face.description)==null?void 0:f.enabled)&&!e.models.faceres&&(e.models.faceres=WT(e.config)),e.config.face.enabled&&((g=e.config.face.emotion)==null?void 0:g.enabled)&&!e.models.emotion&&(e.models.emotion=vT(e.config)),e.config.face.enabled&&((y=e.config.face.iris)==null?void 0:y.enabled)&&!((A=e.config.face.attention)!=null&&A.enabled)&&!e.models.faceiris&&(e.models.faceiris=$T(e.config)),e.config.face.enabled&&((x=e.config.face.mesh)==null?void 0:x.enabled)&&!e.models.facemesh&&(e.models.facemesh=zT(e.config)),e.config.face.enabled&&((b=e.config.face.gear)==null?void 0:b.enabled)&&!e.models.gear&&(e.models.gear=EC(e.config)),e.config.face.enabled&&((w=e.config.face.ssrnet)==null?void 0:w.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=PC(e.config)),e.config.face.enabled&&((I=e.config.face.ssrnet)==null?void 0:I.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=DC(e.config)),e.config.face.enabled&&((N=e.config.face.mobilefacenet)==null?void 0:N.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=CT(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((R=(E=e.config.hand.detector)==null?void 0:E.modelPath)==null?void 0:R.includes("handtrack"))&&(e.models.handtrack=cN(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((M=(_=e.config.hand.detector)==null?void 0:_.modelPath)==null?void 0:M.includes("handtrack"))&&(e.models.handskeleton=fN(e.config)),e.config.object.enabled&&!e.models.centernet&&((z=(S=e.config.object)==null?void 0:S.modelPath)==null?void 0:z.includes("centernet"))&&(e.models.centernet=fT(e.config)),e.config.object.enabled&&!e.models.nanodet&&((H=(O=e.config.object)==null?void 0:O.modelPath)==null?void 0:H.includes("nanodet"))&&(e.models.nanodet=TN(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=Jb(e.config));for await(let K of Object.keys(e.models))e.models[K]&&typeof e.models[K]!="undefined"&&(e.models[K]=await e.models[K])}async function e3(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let r of Object.keys(e.models)){let n=e.models[r];if(!n)continue;let a=[],s=n==null?void 0:n.executor;if(s&&s.graph.nodes)for(let o of Object.values(s.graph.nodes)){let l=o.op.toLowerCase();a.includes(l)||a.push(l)}else!s&&e.config.debug&&se("model signature not determined:",r);let i=[];for(let o of a)!t.includes(o)&&!e.env.kernels.includes(o)&&!e.env.kernels.includes(o.replace("_",""))&&!e.env.kernels.includes(o.replace("native",""))&&!e.env.kernels.includes(o.replace("v2",""))&&i.push(o);e.config.debug&&i.length>0&&se("model validation failed:",r,i)}}var Rt={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function lxe(){let e=Rt.gl;!e||(Rt.extensions=e.getSupportedExtensions())}async function LN(e){var t;if(e.config.backend==="humangl"&&(Rt.name in Xt().registry&&(!Rt.gl||!Rt.gl.getParameter(Rt.gl.VERSION))&&(se("error: humangl backend invalid context"),x1(e)),!By(Rt.name))){try{Rt.canvas=await Kr(100,100)}catch(n){se("error: cannot create canvas:",n);return}try{if(Rt.gl=(t=Rt.canvas)==null?void 0:t.getContext("webgl2",Rt.webGLattr),!Rt.gl.getParameter(Rt.gl.VERSION).includes("2.0")){se("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}Rt.canvas&&(Rt.canvas.addEventListener("webglcontextlost",async a=>{throw se("error: humangl:",a.type),se("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),Rt.canvas.addEventListener("webglcontextrestored",a=>{se("error: humangl context restored:",a)}),Rt.canvas.addEventListener("webglcontextcreationerror",a=>{se("error: humangl context create:",a)}))}catch(n){se("error: cannot get WebGL context:",n);return}try{Tm(2,Rt.gl)}catch(n){se("error: cannot set WebGL context:",n);return}try{let n=new wu(Rt.gl);$l(Rt.name,()=>new Wh(n),Rt.priority)}catch(n){se("error: cannot register WebGL backend:",n);return}try{Ma("webgl").forEach(a=>{let s={...a,backendName:Rt.name};qn(s)})}catch(n){se("error: cannot update WebGL backend registration:",n);return}let r=Dn().getGPGPUContext?Dn().getGPGPUContext().gl:null;if(r)se(`humangl webgl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`);else{se("error: no current gl context:",r,Rt.gl);return}try{ba.set("WEBGL_VERSION",2)}catch(n){se("error: cannot set WebGL backend flags:",n);return}lxe(),se("backend registered:",Rt.name)}}function uxe(){if(!he.kernels.includes("mod")){let e={kernelName:"Mod",backendName:Gr(),kernelFunc:t=>X(()=>ce(t.inputs.a,L(pe(t.inputs.a,t.inputs.b),t.inputs.b)))};qn(e),he.kernels.push("mod")}if(!he.kernels.includes("floormod")){let e={kernelName:"FloorMod",backendName:Gr(),kernelFunc:t=>X(()=>vh(t.inputs.a/t.inputs.b)*t.inputs.b+yd(t.inputs.a,t.inputs.b))};qn(e),he.kernels.push("floormod")}}async function v1(e,t=!1){if(e.state="backend",t||he.initial||e.config.backend&&e.config.backend.length>0&&Gr()!==e.config.backend){let r=oe();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&se("running inside web worker"),he.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&se("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),he.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&se(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),he.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")se("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let a=await navigator.gpu.requestAdapter();e.config.debug&&se("enumerated webgpu adapter:",a)}e.config.backend==="humangl"&&await LN(e);let n=Object.keys(Xt().registryFactory);if(e.config.debug&&se("available backends:",n),n.includes(e.config.backend)||(se(`error: backend ${e.config.backend} not found in registry`),e.config.backend=he.node?"tensorflow":"webgl",e.config.debug&&se(`override: setting backend ${e.config.backend}`)),e.config.debug&&se("setting backend:",e.config.backend),e.config.backend==="wasm"){if(e.config.debug&&se("wasm path:",e.config.wasmPath),typeof(Ue==null?void 0:Ue.setWasmPaths)!="undefined")await z5(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let a=await Z().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await Z().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&se(`wasm execution: ${a?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),e.config.debug&&!a&&se("warning: wasm simd support is not enabled")}try{await Ly(e.config.backend),await cd(),$C()}catch(a){return se("error: cannot set backend:",e.config.backend,a),!1}}if(Gr()==="humangl"&&(ba.set("CHECK_COMPUTATION_FOR_ERRORS",!1),ba.set("WEBGL_CPU_FORWARD",!0),ba.set("WEBGL_USE_SHAPES_UNIFORMS",!0),ba.set("CPU_HANDOFF_SIZE_THRESHOLD",256),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(se("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),ba.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),Dn().getGPGPUContext)){let n=await Dn().getGPGPUContext().gl;e.config.debug&&se(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}Gr(),Oy(),await cd(),e.performance.initBackend=Math.trunc(oe()-r),e.config.backend=Gr(),await he.updateBackend(),uxe()}return!0}function u1(e,t){for(let r of e){let n={kernelName:r,backendName:t.backend,kernelFunc:()=>{t.debug&&se("kernelFunc",r,t.backend)}};qn(n)}he.kernels=Ma(Gr()).map(r=>r.kernelName.toLowerCase())}var o3={};vs(o3,{all:()=>i3,body:()=>Jd,canvas:()=>s3,face:()=>Yd,gesture:()=>tp,hand:()=>Qd,object:()=>ep,options:()=>Fr,person:()=>a3});var Wn=e=>{if(!e)se("draw error: invalid canvas");else if(!e.getContext)se("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)se("draw error: cannot get canvas context");else return t}return null},Kl=e=>Math.round(e*180/Math.PI),fs=(e,t)=>{if(!t.useDepth||typeof e=="undefined")return t.color;let r=Uint8ClampedArray.from([127+2*e,127-2*e,255]);return`rgba(${r[0]}, ${r[1]}, ${r[2]}, ${t.alpha})`};function ms(e,t,r,n,a){e.fillStyle=fs(n,a),e.beginPath(),e.arc(t,r,a.pointSize,0,2*Math.PI),e.fill()}function Va(e,t,r,n,a,s){if(e.beginPath(),e.lineWidth=s.lineWidth,s.useCurves){let i=(t+t+n)/2,o=(r+r+a)/2;e.ellipse(i,o,n/2,a/2,0,0,2*Math.PI)}else e.moveTo(t+s.roundRect,r),e.lineTo(t+n-s.roundRect,r),e.quadraticCurveTo(t+n,r,t+n,r+s.roundRect),e.lineTo(t+n,r+a-s.roundRect),e.quadraticCurveTo(t+n,r+a,t+n-s.roundRect,r+a),e.lineTo(t+s.roundRect,r+a),e.quadraticCurveTo(t,r+a,t,r+a-s.roundRect),e.lineTo(t,r+s.roundRect),e.quadraticCurveTo(t,r,t+s.roundRect,r),e.closePath();e.stroke()}function t3(e,t,r){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let n of t)e.strokeStyle=fs(n[2],r),e.lineTo(Math.trunc(n[0]),Math.trunc(n[1]));e.stroke(),r.fillPolygons&&(e.closePath(),e.fill())}}function WN(e,t,r){if(!(t.length<2)){if(e.lineWidth=r.lineWidth,!r.useCurves||t.length<=2){t3(e,t,r);return}e.moveTo(t[0][0],t[0][1]);for(let n=0;n<t.length-2;n++){let a=(t[n][0]+t[n+1][0])/2,s=(t[n][1]+t[n+1][1])/2;e.quadraticCurveTo(t[n][0],t[n][1],a,s)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),r.fillPolygons&&(e.closePath(),e.fill())}}function r3(e,t,r,n=5){let a,s,i;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(r[0],r[1]),a=Math.atan2(r[1]-t[1],r[0]-t[0]),s=n*Math.cos(a)+r[0],i=n*Math.sin(a)+r[1],e.moveTo(s,i),a+=1/3*(2*Math.PI),s=n*Math.cos(a)+r[0],i=n*Math.sin(a)+r[1],e.lineTo(s,i),a+=1/3*(2*Math.PI),s=n*Math.cos(a)+r[0],i=n*Math.sin(a)+r[1],e.lineTo(s,i),e.closePath(),e.stroke(),e.fill()}var Fr={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",alpha:.5,font:'small-caps 16px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawAttention:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1};var dt;function pxe(e,t){if(dt.drawLabels){let r=[];if(r.push(`face: ${Math.trunc(100*e.score)}%`),e.genderScore&&r.push(`${e.gender||""} ${Math.trunc(100*e.genderScore)}%`),e.age&&r.push(`age: ${e.age||""}`),e.iris&&r.push(`distance: ${e.iris}`),e.real&&r.push(`real: ${Math.trunc(100*e.real)}%`),e.live&&r.push(`live: ${Math.trunc(100*e.live)}%`),e.emotion&&e.emotion.length>0){let n=e.emotion.map(a=>`${Math.trunc(100*a.score)}% ${a.emotion}`);n.length>3&&(n.length=3),r.push(n.join(" "))}e.rotation&&e.rotation.angle&&e.rotation.gaze&&(e.rotation.angle.roll&&r.push(`roll: ${Kl(e.rotation.angle.roll)}\xB0 yaw:${Kl(e.rotation.angle.yaw)}\xB0 pitch:${Kl(e.rotation.angle.pitch)}\xB0`),e.rotation.gaze.bearing&&r.push(`gaze: ${Kl(e.rotation.gaze.bearing)}\xB0`)),r.length===0&&r.push("face"),t.fillStyle=dt.color;for(let n=r.length-1;n>=0;n--){let a=Math.max(e.box[0],0),s=n*dt.lineHeight+e.box[1];dt.shadowColor&&dt.shadowColor!==""&&(t.fillStyle=dt.shadowColor,t.fillText(r[n],a+5,s+16)),t.fillStyle=dt.labelColor,t.fillText(r[n],a+4,s+15)}}}function hxe(e,t){if(e.annotations&&e.annotations.leftEyeIris&&e.annotations.leftEyeIris[0]){t.strokeStyle=dt.useDepth?"rgba(255, 200, 255, 0.3)":dt.color,t.beginPath();let r=Math.abs(e.annotations.leftEyeIris[3][0]-e.annotations.leftEyeIris[1][0])/2,n=Math.abs(e.annotations.leftEyeIris[4][1]-e.annotations.leftEyeIris[2][1])/2;t.ellipse(e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1],r,n,0,0,2*Math.PI),t.stroke(),dt.fillPolygons&&(t.fillStyle=dt.useDepth?"rgba(255, 255, 200, 0.3)":dt.color,t.fill())}if(e.annotations&&e.annotations.rightEyeIris&&e.annotations.rightEyeIris[0]){t.strokeStyle=dt.useDepth?"rgba(255, 200, 255, 0.3)":dt.color,t.beginPath();let r=Math.abs(e.annotations.rightEyeIris[3][0]-e.annotations.rightEyeIris[1][0])/2,n=Math.abs(e.annotations.rightEyeIris[4][1]-e.annotations.rightEyeIris[2][1])/2;t.ellipse(e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1],r,n,0,0,2*Math.PI),t.stroke(),dt.fillPolygons&&(t.fillStyle=dt.useDepth?"rgba(255, 255, 200, 0.3)":dt.color,t.fill())}}function cxe(e,t){var r;if(dt.drawGaze&&((r=e.rotation)==null?void 0:r.angle)&&typeof Path2D!="undefined"){t.strokeStyle="pink";let n=e.box[0]+e.box[2]/2-e.box[3]*Kl(e.rotation.angle.yaw)/90,a=e.box[1]+e.box[3]/2+e.box[2]*Kl(e.rotation.angle.pitch)/90,s=new Path2D(`
M ${e.box[0]+e.box[2]/2} ${e.box[1]}
C
${n} ${e.box[1]},
${n} ${e.box[1]+e.box[3]},
${e.box[0]+e.box[2]/2} ${e.box[1]+e.box[3]}
`),i=new Path2D(`
M ${e.box[0]} ${e.box[1]+e.box[3]/2}
C
${e.box[0]} ${a},
${e.box[0]+e.box[2]} ${a},
${e.box[0]+e.box[2]} ${e.box[1]+e.box[3]/2}
`);t.stroke(i),t.stroke(s)}}function fxe(e,t){var r,n,a,s;if(dt.drawGaze&&((n=(r=e.rotation)==null?void 0:r.gaze)==null?void 0:n.strength)&&((s=(a=e.rotation)==null?void 0:a.gaze)==null?void 0:s.bearing)&&e.annotations.leftEyeIris&&e.annotations.rightEyeIris&&e.annotations.leftEyeIris[0]&&e.annotations.rightEyeIris[0]){t.strokeStyle="pink",t.fillStyle="pink";let i=[e.annotations.leftEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.leftEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];r3(t,[e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1]],[i[0],i[1]],4);let o=[e.annotations.rightEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.rightEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];r3(t,[e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1]],[o[0],o[1]],4)}}function mxe(e,t){if(dt.drawPolygons&&e.mesh.length>=468){t.lineWidth=1;for(let r=0;r<Vl.length/3;r++){let n=[Vl[r*3+0],Vl[r*3+1],Vl[r*3+2]].map(a=>e.mesh[a]);t3(t,n,dt)}hxe(e,t)}}function gxe(e,t){if(dt.drawPoints&&e.mesh.length>=468)for(let r=0;r<e.mesh.length;r++)ms(t,e.mesh[r][0],e.mesh[r][1],e.mesh[r][2],dt),dt.drawAttention&&(xn.lips.includes(r)&&ms(t,e.mesh[r][0],e.mesh[r][1],e.mesh[r][2]+127,dt),xn.eyeL.includes(r)&&ms(t,e.mesh[r][0],e.mesh[r][1],e.mesh[r][2]-127,dt),xn.eyeR.includes(r)&&ms(t,e.mesh[r][0],e.mesh[r][1],e.mesh[r][2]-127,dt))}function yxe(e,t){dt.drawBoxes&&Va(t,e.box[0],e.box[1],e.box[2],e.box[3],dt)}async function Yd(e,t,r){if(dt=Gt(Fr,r),!t||!e)return;let n=Wn(e);if(!!n){n.font=dt.font,n.strokeStyle=dt.color,n.fillStyle=dt.color;for(let a of t)yxe(a,n),pxe(a,n),a.mesh&&a.mesh.length>0&&(gxe(a,n),mxe(a,n),cxe(a,n),fxe(a,n))}}async function Jd(e,t,r){var s;let n=Gt(Fr,r);if(!t||!e)return;let a=Wn(e);if(!!a){a.lineJoin="round";for(let i=0;i<t.length;i++){if(a.strokeStyle=n.color,a.fillStyle=n.color,a.lineWidth=n.lineWidth,a.font=n.font,n.drawBoxes&&t[i].box&&((s=t[i].box)==null?void 0:s.length)===4&&(Va(a,t[i].box[0],t[i].box[1],t[i].box[2],t[i].box[3],n),n.drawLabels&&(n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(`body ${100*t[i].score}%`,t[i].box[0]+3,1+t[i].box[1]+n.lineHeight,t[i].box[2])),a.fillStyle=n.labelColor,a.fillText(`body ${100*t[i].score}%`,t[i].box[0]+2,0+t[i].box[1]+n.lineHeight,t[i].box[2]))),n.drawPoints&&t[i].keypoints)for(let o=0;o<t[i].keypoints.length;o++)!t[i].keypoints[o].score||t[i].keypoints[o].score===0||(a.fillStyle=fs(t[i].keypoints[o].position[2],n),ms(a,t[i].keypoints[o].position[0],t[i].keypoints[o].position[1],0,n));if(n.drawLabels&&t[i].keypoints){a.font=n.font;for(let o of t[i].keypoints)!o.score||o.score===0||(a.fillStyle=fs(o.position[2],n),a.fillText(`${o.part} ${Math.trunc(100*o.score)}%`,o.position[0]+4,o.position[1]+4))}if(n.drawPolygons&&t[i].keypoints&&t[i].annotations)for(let o of Object.values(t[i].annotations))for(let l of o)WN(a,l,n)}}}async function Qd(e,t,r){let n=Gt(Fr,r);if(!t||!e)return;let a=Wn(e);if(!!a){a.lineJoin="round",a.font=n.font;for(let s of t){if(n.drawBoxes&&(a.strokeStyle=n.color,a.fillStyle=n.color,Va(a,s.box[0],s.box[1],s.box[2],s.box[3],n),n.drawLabels&&(n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(`hand:${Math.trunc(100*s.score)}%`,s.box[0]+3,1+s.box[1]+n.lineHeight,s.box[2])),a.fillStyle=n.labelColor,a.fillText(`hand:${Math.trunc(100*s.score)}%`,s.box[0]+2,0+s.box[1]+n.lineHeight,s.box[2])),a.stroke()),n.drawPoints&&s.keypoints&&s.keypoints.length>0)for(let i of s.keypoints)a.fillStyle=fs(i[2],n),ms(a,i[0],i[1],0,n);if(n.drawLabels&&s.annotations){let i=(o,l)=>{if(!o||o.length===0||!o[0])return;let u=o[o.length-1][2]||-256;a.fillStyle=fs(u,n),a.fillText(l,o[o.length-1][0]+4,o[o.length-1][1]+4)};a.font=n.font,i(s.annotations.index,"index"),i(s.annotations.middle,"middle"),i(s.annotations.ring,"ring"),i(s.annotations.pinky,"pinky"),i(s.annotations.thumb,"thumb"),i(s.annotations.palm,"palm")}if(n.drawPolygons&&s.annotations){let i=o=>{if(!(!o||o.length===0||!o[0]))for(let l=0;l<o.length;l++){a.beginPath();let u=o[l][2]||0;a.strokeStyle=fs(l*u,n),a.moveTo(o[l>0?l-1:0][0],o[l>0?l-1:0][1]),a.lineTo(o[l][0],o[l][1]),a.stroke()}};a.lineWidth=n.lineWidth,i(s.annotations.index),i(s.annotations.middle),i(s.annotations.ring),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function ep(e,t,r){let n=Gt(Fr,r);if(!t||!e)return;let a=Wn(e);if(!!a){a.lineJoin="round",a.font=n.font;for(let s of t)if(n.drawBoxes){if(a.strokeStyle=n.color,a.fillStyle=n.color,Va(a,s.box[0],s.box[1],s.box[2],s.box[3],n),n.drawLabels){let i=`${s.label} ${Math.round(100*s.score)}%`;n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(i,s.box[0]+3,1+s.box[1]+n.lineHeight,s.box[2])),a.fillStyle=n.labelColor,a.fillText(i,s.box[0]+2,0+s.box[1]+n.lineHeight,s.box[2])}a.stroke()}}}async function tp(e,t,r){let n=Gt(Fr,r);if(!(!t||!e)&&n.drawGestures){let a=Wn(e);if(!a)return;a.font=n.font,a.fillStyle=n.color;let s=1;for(let i=0;i<t.length;i++){let o=[],l=[];if([o,l]=Object.entries(t[i]),l.length>1&&l[1].length>0){let u=o[1]>0?`#${o[1]}`:"",d=`${o[0]} ${u}: ${l[1]}`;n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(d,8,2+s*n.lineHeight)),a.fillStyle=n.labelColor,a.fillText(d,6,0+s*n.lineHeight),s+=1}}}}var n3=0;async function a3(e,t,r){let n=Gt(Fr,r);if(!t||!e)return;let a=Wn(e);if(!!a){a.lineJoin="round",a.font=n.font;for(let s=0;s<t.length;s++)if(n.drawBoxes){if(a.strokeStyle=n.color,a.fillStyle=n.color,Va(a,t[s].box[0],t[s].box[1],t[s].box[2],t[s].box[3],n),n.drawLabels){let i=`person #${s}`;n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(i,t[s].box[0]+3,1+t[s].box[1]+n.lineHeight,t[s].box[2])),a.fillStyle=n.labelColor,a.fillText(i,t[s].box[0]+2,0+t[s].box[1]+n.lineHeight,t[s].box[2])}a.stroke()}}}async function s3(e,t){if(!e||!t)return;let r=Wn(t);!r||r.drawImage(e,0,0)}async function i3(e,t,r){if(!t||!t.performance||!t||!e)return null;let n=oe(),a=Gt(Fr,r),s=Promise.all([Yd(e,t.face,a),Jd(e,t.body,a),Qd(e,t.hand,a),ep(e,t.object,a),tp(e,t.gesture,a)]);return n3=he.perfadd?n3+Math.round(oe()-n):Math.round(oe()-n),t.performance.draw=n3,s}var rp=.1,l3=.5;function Axe(e,t,r){let n=!1,a=r.length-1;for(let s=0;s<r.length;a=s++)r[s].y>t!=r[a].y>t&&e<(r[a].x-r[s].x)*(t-r[s].y)/(r[a].y-r[s].y)+r[s].x&&(n=!n);return n}async function VN(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,r=e.tensor.shape[1]||0,n=await e.tensor.buffer(),a=[];for(let i of ea.silhouette)a.push({x:(e.mesh[i][0]-e.box[0])/e.box[2],y:(e.mesh[i][1]-e.box[1])/e.box[3]});rp&&rp>0&&(a=a.map(i=>({x:i.x>.5?i.x+rp:i.x-rp,y:i.y>.5?i.y+rp:i.y-rp})));for(let i=0;i<t;i++)for(let o=0;o<r;o++)Axe(i/t,o/t,a)||(n.set(l3*n.get(0,o,i,0),0,o,i,0),n.set(l3*n.get(0,o,i,1),0,o,i,1),n.set(l3*n.get(0,o,i,2),0,o,i,2));let s=n.toTensor();return te(n),s}var bxe=e=>{let t=(h,p)=>Math.atan2(h[1]-p[1],h[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let r=[0,-.1],n=1,a=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),s=a?e.mesh[473]:e.mesh[468],i=a?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],o=a?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(i[0]-s[0])/o[0]-r[0],n*(s[1]-i[1])/o[1]-r[1]],u=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},UN=(e,t)=>{let r=f=>{let g=Math.sqrt(f[0]*f[0]+f[1]*f[1]+f[2]*f[2]);return f[0]/=g,f[1]/=g,f[2]/=g,f},n=(f,g)=>{let y=f[0]-g[0],A=f[1]-g[1],x=f[2]-g[2];return[y,A,x]},a=(f,g)=>{let y=f[1]*g[2]-f[2]*g[1],A=f[2]*g[0]-f[0]*g[2],x=f[0]*g[1]-f[1]*g[0];return[y,A,x]},s=f=>{let[g,y,A,x,b,w,I,N,E]=f,R,_,M;return x<1?x>-1?(M=Math.asin(x),_=Math.atan2(-I,g),R=Math.atan2(-w,b)):(M=-Math.PI/2,_=-Math.atan2(N,E),R=0):(M=Math.PI/2,_=Math.atan2(N,E),R=0),isNaN(R)&&(R=0),isNaN(_)&&(_=0),isNaN(M)&&(M=0),{pitch:2*-R,yaw:2*-_,roll:2*-M}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let o=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[i[10],i[152],i[234],i[454]].map(f=>[f[0]*t[0]/o,f[1]*t[1]/o,f[2]]),u=r(n(l[1],l[0])),d=r(n(l[3],l[2])),h=r(a(d,u));d=a(u,h);let p=[d[0],d[1],d[2],u[0],u[1],u[2],h[0],h[1],h[2]],c=s(p),m=i.length===478?bxe(e):{bearing:0,strength:0};return{angle:c,matrix:p,gaze:m}};var u3=async(e,t)=>{var c,m,f,g,y,A,x,b,w,I,N,E,R,_,M,S,z,O,H,K,D,Q;let r=oe(),n,a,s,i,o,l,u,d,h=[];e.state="run:face";let p=await _T(t,e.config);if(e.performance.face=he.perfadd?(e.performance.face||0)+Math.trunc(oe()-r):Math.trunc(oe()-r),!t.shape||t.shape.length!==4)return[];if(!p)return[];for(let V=0;V<p.length;V++){if(e.analyze("Get Face"),!p[V].tensor||p[V].tensor.isDisposedInternal){se("Face object is disposed:",p[V].tensor);continue}if((c=e.config.face.detector)!=null&&c.mask){let ae=await VN(p[V]);te(p[V].tensor),p[V].tensor=ae}let re=p[V].mesh&&p[V].mesh.length>200?UN(p[V],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?i=(m=e.config.face.emotion)!=null&&m.enabled?yb(p[V].tensor||ft([]),e.config,V,p.length):[]:(e.state="run:emotion",r=oe(),i=(f=e.config.face.emotion)!=null&&f.enabled?await yb(p[V].tensor||ft([]),e.config,V,p.length):[],e.performance.emotion=he.perfadd?(e.performance.emotion||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?l=(g=e.config.face.antispoof)!=null&&g.enabled?Z5(p[V].tensor||ft([]),e.config,V,p.length):0:(e.state="run:antispoof",r=oe(),l=(y=e.config.face.antispoof)!=null&&y.enabled?await Z5(p[V].tensor||ft([]),e.config,V,p.length):0,e.performance.antispoof=he.perfadd?(e.performance.antispoof||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?u=(A=e.config.face.liveness)!=null&&A.enabled?Ob(p[V].tensor||ft([]),e.config,V,p.length):0:(e.state="run:liveness",r=oe(),u=(x=e.config.face.liveness)!=null&&x.enabled?await Ob(p[V].tensor||ft([]),e.config,V,p.length):0,e.performance.liveness=he.perfadd?(e.performance.antispoof||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?a=(b=e.config.face.gear)!=null&&b.enabled?U5(p[V].tensor||ft([]),e.config,V,p.length):null:(e.state="run:gear",r=oe(),a=(w=e.config.face.gear)!=null&&w.enabled?await U5(p[V].tensor||ft([]),e.config,V,p.length):null,e.performance.gear=Math.trunc(oe()-r)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(n=(I=e.config.face.ssrnet)!=null&&I.enabled?j5(p[V].tensor||ft([]),e.config,V,p.length):null,s=(N=e.config.face.ssrnet)!=null&&N.enabled?X5(p[V].tensor||ft([]),e.config,V,p.length):null):(e.state="run:ssrnet",r=oe(),n=(E=e.config.face.ssrnet)!=null&&E.enabled?await j5(p[V].tensor||ft([]),e.config,V,p.length):null,s=(R=e.config.face.ssrnet)!=null&&R.enabled?await X5(p[V].tensor||ft([]),e.config,V,p.length):null,e.performance.ssrnet=Math.trunc(oe()-r)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?o=(_=e.config.face.mobilefacenet)!=null&&_.enabled?xb(p[V].tensor||ft([]),e.config,V,p.length):null:(e.state="run:mobilefacenet",r=oe(),o=(M=e.config.face.mobilefacenet)!=null&&M.enabled?await xb(p[V].tensor||ft([]),e.config,V,p.length):null,e.performance.mobilefacenet=Math.trunc(oe()-r)),e.analyze("End MobileFaceNet:"),e.analyze("Start Description:"),e.config.async?d=(S=e.config.face.description)!=null&&S.enabled?Sb(p[V].tensor||ft([]),e.config,V,p.length):null:(e.state="run:description",r=oe(),d=(z=e.config.face.description)!=null&&z.enabled?await Sb(p[V].tensor||ft([]),e.config,V,p.length):null,e.performance.description=he.perfadd?(e.performance.description||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End Description:"),e.config.async&&([n,s,i,o,d,a,l,u]=await Promise.all([n,s,i,o,d,a,l,u])),e.analyze("Finish Face:"),((O=e.config.face.ssrnet)==null?void 0:O.enabled)&&n&&s&&(d={...d,age:n.age,gender:s.gender,genderScore:s.genderScore}),((H=e.config.face.gear)==null?void 0:H.enabled)&&a&&(d={...d,age:a.age,gender:a.gender,genderScore:a.genderScore,race:a.race}),((K=e.config.face.mobilefacenet)==null?void 0:K.enabled)&&o&&(d.descriptor=o),(D=e.config.face.iris)!=null&&D.enabled;let Y=p[V].annotations&&p[V].annotations.leftEyeIris&&p[V].annotations.leftEyeIris[0]&&p[V].annotations.rightEyeIris&&p[V].annotations.rightEyeIris[0]&&p[V].annotations.leftEyeIris.length>0&&p[V].annotations.rightEyeIris.length>0&&p[V].annotations.leftEyeIris[0]!==null&&p[V].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(p[V].annotations.leftEyeIris[3][0]-p[V].annotations.leftEyeIris[1][0]),Math.abs(p[V].annotations.rightEyeIris[4][1]-p[V].annotations.rightEyeIris[2][1]))/t.shape[2]:0,ie=(Q=e.config.face.detector)!=null&&Q.return?Qe(p[V].tensor):null;te(p[V].tensor),p[V].tensor&&delete p[V].tensor;let J={...p[V],id:V};d!=null&&d.age&&(J.age=d.age),d!=null&&d.gender&&(J.gender=d.gender),d!=null&&d.genderScore&&(J.genderScore=d==null?void 0:d.genderScore),d!=null&&d.descriptor&&(J.embedding=d==null?void 0:d.descriptor),d!=null&&d.race&&(J.race=d==null?void 0:d.race),i&&(J.emotion=i),l&&(J.real=l),u&&(J.live=u),Y&&Y!==0&&(J.iris=Math.trunc(500/Y/11.7)/100),re&&(J.rotation=re),ie&&(J.tensor=ie),h.push(J),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),h};var GN=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++){let n=e[r].keypoints.find(l=>l.part==="leftWrist"),a=e[r].keypoints.find(l=>l.part==="rightWrist"),s=e[r].keypoints.find(l=>l.part==="nose");s&&n&&a&&n.position[1]<s.position[1]&&a.position[1]<s.position[1]?t.push({body:r,gesture:"i give up"}):s&&n&&n.position[1]<s.position[1]?t.push({body:r,gesture:"raise left hand"}):s&&a&&a.position[1]<s.position[1]&&t.push({body:r,gesture:"raise right hand"});let i=e[r].keypoints.find(l=>l.part==="leftShoulder"),o=e[r].keypoints.find(l=>l.part==="rightShoulder");i&&o&&Math.abs(i.positionRaw[1]-o.positionRaw[1])>.1&&t.push({body:r,gesture:`leaning ${i.position[1]>o.position[1]?"left":"right"}`})}return t},jN=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++)if(e[r].mesh&&e[r].mesh.length>450){let n=(e[r].mesh[33][2]||0)-(e[r].mesh[263][2]||0),a=e[r].mesh[33][0]-e[r].mesh[263][0];Math.abs(n/a)<=.15?t.push({face:r,gesture:"facing center"}):t.push({face:r,gesture:`facing ${n<0?"left":"right"}`}),Math.abs(e[r].mesh[374][1]-e[r].mesh[386][1])/Math.abs(e[r].mesh[443][1]-e[r].mesh[450][1])<.2&&t.push({face:r,gesture:"blink left eye"}),Math.abs(e[r].mesh[145][1]-e[r].mesh[159][1])/Math.abs(e[r].mesh[223][1]-e[r].mesh[230][1])<.2&&t.push({face:r,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[r].mesh[13][1]-e[r].mesh[14][1])/Math.abs(e[r].mesh[10][1]-e[r].mesh[152][1]));o>10&&t.push({face:r,gesture:`mouth ${Math.trunc(o)}% open`});let l=e[r].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:r,gesture:`head ${l<0?"up":"down"}`})}return t},HN=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++){if(!e[r].annotations||!e[r].annotations.leftEyeIris||!e[r].annotations.leftEyeIris[0]||!e[r].annotations.rightEyeIris||!e[r].annotations.rightEyeIris[0])continue;let n=e[r].annotations.leftEyeIris[3][0]-e[r].annotations.leftEyeIris[1][0],a=e[r].annotations.leftEyeIris[4][1]-e[r].annotations.leftEyeIris[2][1],s=Math.abs(n*a),i=e[r].annotations.rightEyeIris[3][0]-e[r].annotations.rightEyeIris[1][0],o=e[r].annotations.rightEyeIris[4][1]-e[r].annotations.rightEyeIris[2][1],l=Math.abs(i*o),u=!1;Math.abs(s-l)/Math.max(s,l)<.25&&(u=!0,t.push({iris:r,gesture:"facing center"}));let h=Math.abs(e[r].mesh[263][0]-e[r].annotations.leftEyeIris[0][0])/e[r].box[2],p=Math.abs(e[r].mesh[33][0]-e[r].annotations.rightEyeIris[0][0])/e[r].box[2];(h>.06||p>.06)&&(u=!1),h>p?h>.05&&t.push({iris:r,gesture:"looking right"}):p>.05&&t.push({iris:r,gesture:"looking left"});let c=Math.abs(e[r].mesh[145][1]-e[r].annotations.rightEyeIris[0][1])/e[r].box[3],m=Math.abs(e[r].mesh[374][1]-e[r].annotations.leftEyeIris[0][1])/e[r].box[3];(m<.01||c<.01||m>.022||c>.022)&&(u=!1),(m<.01||c<.01)&&t.push({iris:r,gesture:"looking down"}),(m>.022||c>.022)&&t.push({iris:r,gesture:"looking up"}),u&&t.push({iris:r,gesture:"looking center"})}return t},qN=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++){let n=[];if(e[r].annotations)for(let[a,s]of Object.entries(e[r].annotations))a!=="palmBase"&&Array.isArray(s)&&s[0]&&n.push({name:a.toLowerCase(),position:s[0]});if(n&&n.length>0){let a=n.reduce((i,o)=>(i.position[2]||0)<(o.position[2]||0)?i:o);t.push({hand:r,gesture:`${a.name} forward`});let s=n.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:r,gesture:`${s.name} up`})}if(e[r].keypoints){let a=iN(e[r].keypoints);for(let s of a)t.push({hand:r,gesture:s.name})}}return t};var Ne={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null},d3=0;function XN(e,t){var i,o,l,u,d,h,p,c,m,f,g,y,A,x,b,w,I,N,E,R,_,M,S,z,O,H,K;let r=oe();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null};let n=Date.now()-e.timestamp,a=n<1e3?8-Math.log(n+1):1;if(e.canvas&&(Ne.canvas=e.canvas),e.error&&(Ne.error=e.error),!Ne.body||e.body.length!==Ne.body.length)Ne.body=JSON.parse(JSON.stringify(e.body));else for(let D=0;D<e.body.length;D++){let Q=e.body[D].box.map((J,ae)=>((a-1)*Ne.body[D].box[ae]+J)/a),V=e.body[D].boxRaw.map((J,ae)=>((a-1)*Ne.body[D].boxRaw[ae]+J)/a),re=e.body[D].keypoints.map((J,ae)=>{var de,xe,be,Ee,$e,De,We,Xe,ot;return{score:J.score,part:J.part,position:[Ne.body[D].keypoints[ae]?((a-1)*(Ne.body[D].keypoints[ae].position[0]||0)+(J.position[0]||0))/a:J.position[0],Ne.body[D].keypoints[ae]?((a-1)*(Ne.body[D].keypoints[ae].position[1]||0)+(J.position[1]||0))/a:J.position[1],Ne.body[D].keypoints[ae]?((a-1)*(Ne.body[D].keypoints[ae].position[2]||0)+(J.position[2]||0))/a:J.position[2]],positionRaw:[Ne.body[D].keypoints[ae]?((a-1)*(Ne.body[D].keypoints[ae].positionRaw[0]||0)+(J.positionRaw[0]||0))/a:J.positionRaw[0],Ne.body[D].keypoints[ae]?((a-1)*(Ne.body[D].keypoints[ae].positionRaw[1]||0)+(J.positionRaw[1]||0))/a:J.positionRaw[1],Ne.body[D].keypoints[ae]?((a-1)*(Ne.body[D].keypoints[ae].positionRaw[2]||0)+(J.positionRaw[2]||0))/a:J.positionRaw[2]],distance:[Ne.body[D].keypoints[ae]?((a-1)*(((de=Ne.body[D].keypoints[ae].distance)==null?void 0:de[0])||0)+(((xe=J.distance)==null?void 0:xe[0])||0))/a:(be=J.distance)==null?void 0:be[0],Ne.body[D].keypoints[ae]?((a-1)*(((Ee=Ne.body[D].keypoints[ae].distance)==null?void 0:Ee[1])||0)+((($e=J.distance)==null?void 0:$e[1])||0))/a:(De=J.distance)==null?void 0:De[1],Ne.body[D].keypoints[ae]?((a-1)*(((We=Ne.body[D].keypoints[ae].distance)==null?void 0:We[2])||0)+(((Xe=J.distance)==null?void 0:Xe[2])||0))/a:(ot=J.distance)==null?void 0:ot[2]]}}),Y={},ie={connected:{}};(o=(i=t.body)==null?void 0:i.modelPath)!=null&&o.includes("efficientpose")?ie=Jm:(u=(l=t.body)==null?void 0:l.modelPath)!=null&&u.includes("blazepose")?ie=qm:(h=(d=t.body)==null?void 0:d.modelPath)!=null&&h.includes("movenet")&&(ie=nc);for(let[J,ae]of Object.entries(ie.connected)){let de=[];for(let xe=0;xe<ae.length-1;xe++){let be=re.find($e=>$e.part===ae[xe]),Ee=re.find($e=>$e.part===ae[xe+1]);be&&Ee&&de.push([be.position,Ee.position])}Y[J]=de}Ne.body[D]={...e.body[D],box:Q,boxRaw:V,keypoints:re,annotations:Y}}if(!Ne.hand||e.hand.length!==Ne.hand.length)Ne.hand=JSON.parse(JSON.stringify(e.hand));else for(let D=0;D<e.hand.length;D++){let Q=e.hand[D].box.map((ie,J)=>((a-1)*Ne.hand[D].box[J]+ie)/a),V=e.hand[D].boxRaw.map((ie,J)=>((a-1)*Ne.hand[D].boxRaw[J]+ie)/a);Ne.hand[D].keypoints.length!==e.hand[D].keypoints.length&&(Ne.hand[D].keypoints=e.hand[D].keypoints);let re=e.hand[D].keypoints&&e.hand[D].keypoints.length>0?e.hand[D].keypoints.map((ie,J)=>ie.map((ae,de)=>((a-1)*(Ne.hand[D].keypoints[J][de]||1)+(ae||0))/a)):[],Y={};if(Object.keys(Ne.hand[D].annotations).length!==Object.keys(e.hand[D].annotations).length)Ne.hand[D].annotations=e.hand[D].annotations,Y=Ne.hand[D].annotations;else if(e.hand[D].annotations)for(let ie of Object.keys(e.hand[D].annotations))Y[ie]=e.hand[D].annotations[ie]&&e.hand[D].annotations[ie][0]?e.hand[D].annotations[ie].map((J,ae)=>J.map((de,xe)=>((a-1)*Ne.hand[D].annotations[ie][ae][xe]+de)/a)):null;Ne.hand[D]={...e.hand[D],box:Q,boxRaw:V,keypoints:re,annotations:Y}}if(!Ne.face||e.face.length!==Ne.face.length)Ne.face=JSON.parse(JSON.stringify(e.face));else for(let D=0;D<e.face.length;D++){let Q=e.face[D].box.map((re,Y)=>((a-1)*Ne.face[D].box[Y]+re)/a),V=e.face[D].boxRaw.map((re,Y)=>((a-1)*Ne.face[D].boxRaw[Y]+re)/a);if(e.face[D].rotation){let re={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};re.matrix=(p=e.face[D].rotation)==null?void 0:p.matrix,re.angle={roll:((a-1)*(((m=(c=Ne.face[D].rotation)==null?void 0:c.angle)==null?void 0:m.roll)||0)+(((g=(f=e.face[D].rotation)==null?void 0:f.angle)==null?void 0:g.roll)||0))/a,yaw:((a-1)*(((A=(y=Ne.face[D].rotation)==null?void 0:y.angle)==null?void 0:A.yaw)||0)+(((b=(x=e.face[D].rotation)==null?void 0:x.angle)==null?void 0:b.yaw)||0))/a,pitch:((a-1)*(((I=(w=Ne.face[D].rotation)==null?void 0:w.angle)==null?void 0:I.pitch)||0)+(((E=(N=e.face[D].rotation)==null?void 0:N.angle)==null?void 0:E.pitch)||0))/a},re.gaze={bearing:((a-1)*(((_=(R=Ne.face[D].rotation)==null?void 0:R.gaze)==null?void 0:_.bearing)||0)+(((S=(M=e.face[D].rotation)==null?void 0:M.gaze)==null?void 0:S.bearing)||0))/a,strength:((a-1)*(((O=(z=Ne.face[D].rotation)==null?void 0:z.gaze)==null?void 0:O.strength)||0)+(((K=(H=e.face[D].rotation)==null?void 0:H.gaze)==null?void 0:K.strength)||0))/a},Ne.face[D]={...e.face[D],rotation:re,box:Q,boxRaw:V}}Ne.face[D]={...e.face[D],box:Q,boxRaw:V}}if(!Ne.object||e.object.length!==Ne.object.length)Ne.object=JSON.parse(JSON.stringify(e.object));else for(let D=0;D<e.object.length;D++){let Q=e.object[D].box.map((re,Y)=>((a-1)*Ne.object[D].box[Y]+re)/a),V=e.object[D].boxRaw.map((re,Y)=>((a-1)*Ne.object[D].boxRaw[Y]+re)/a);Ne.object[D]={...e.object[D],box:Q,boxRaw:V}}if(e.persons){let D=e.persons;if(!Ne.persons||D.length!==Ne.persons.length)Ne.persons=JSON.parse(JSON.stringify(D));else for(let Q=0;Q<D.length;Q++)Ne.persons[Q].box=D[Q].box.map((V,re)=>((a-1)*Ne.persons[Q].box[re]+V)/a)}e.gesture&&(Ne.gesture=e.gesture);let s=oe();return d3=he.perfadd?d3+Math.round(s-r):Math.round(s-r),e.performance&&(Ne.performance={...e.performance,interpolate:d3}),Ne}var c3={};vs(c3,{distance:()=>oc,match:()=>h3,similarity:()=>p3});function oc(e,t,r={order:2,multiplier:25}){let n=0;for(let a=0;a<e.length;a++){let s=!r.order||r.order===2?e[a]-t[a]:Math.abs(e[a]-t[a]);n+=!r.order||r.order===2?s*s:s**r.order}return(r.multiplier||20)*n}var KN=(e,t,r,n)=>{if(e===0)return 1;let a=t===2?Math.sqrt(e):e**(1/t),s=(1-a/100-r)/(n-r);return Math.max(Math.min(s,1),0)};function p3(e,t,r={order:2,multiplier:25,min:.2,max:.8}){let n=oc(e,t,r);return KN(n,r.order||2,r.min||0,r.max||1)}function h3(e,t,r={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0||e.length!==t[0].length)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let n=Number.MAX_SAFE_INTEGER,a=-1;for(let i=0;i<t.length;i++){let o=oc(e,t[i],r);if(o<n&&(n=o,a=i),n<(r.threshold||0))break}let s=KN(n,r.order||2,r.min||0,r.max||1);return{index:a,distance:n,similarity:s}}function ZN(e,t,r,n,a){var o,l,u,d,h,p,c,m,f,g,y,A,x,b,w,I;let s=0,i=[];for(let N of e){let E={id:s++,face:N,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let O of t)N.box[0]>O.box[0]&&N.box[0]<O.box[0]+O.box[2]&&N.box[1]+N.box[3]>O.box[1]&&N.box[1]+N.box[3]<O.box[1]+O.box[3]&&(E.body=O);if(E.body)for(let O of r)O.box[0]+O.box[2]>E.body.box[0]&&O.box[0]+O.box[2]<E.body.box[0]+E.body.box[2]&&O.box[1]+O.box[3]>E.body.box[1]&&O.box[1]+O.box[3]<E.body.box[1]+E.body.box[3]&&E.hands&&(E.hands.left=O),O.box[0]<E.body.box[0]+E.body.box[2]&&O.box[0]>E.body.box[0]&&O.box[1]+O.box[3]>E.body.box[1]&&O.box[1]+O.box[3]<E.body.box[1]+E.body.box[3]&&E.hands&&(E.hands.right=O);for(let O of n)O.face!==void 0&&O.face===N.id?(o=E.gestures)==null||o.push(O):O.iris!==void 0&&O.iris===N.id?(l=E.gestures)==null||l.push(O):O.body!==void 0&&O.body===((u=E.body)==null?void 0:u.id)?(d=E.gestures)==null||d.push(O):O.hand!==void 0&&O.hand===((p=(h=E.hands)==null?void 0:h.left)==null?void 0:p.id)?(c=E.gestures)==null||c.push(O):O.hand!==void 0&&O.hand===((f=(m=E.hands)==null?void 0:m.right)==null?void 0:f.id)&&((g=E.gestures)==null||g.push(O));let R=[],_=[],M=O=>{O&&O.length===4&&(R.push(O[0],O[0]+O[2]),_.push(O[1],O[1]+O[3]))};M((y=E.face)==null?void 0:y.box),M((A=E.body)==null?void 0:A.box),M((b=(x=E.hands)==null?void 0:x.left)==null?void 0:b.box),M((I=(w=E.hands)==null?void 0:w.right)==null?void 0:I.box);let S=Math.min(...R),z=Math.min(..._);E.box=[S,z,Math.max(...R)-S,Math.max(..._)-z],a&&a[1]&&a[2]&&(E.boxRaw=[E.box[0]/a[2],E.box[1]/a[1],E.box[2]/a[2],E.box[3]/a[1]]),i.push(E)}return i}var w1=`
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,k1=`
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
2Q==`;async function Cxe(e){let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),r,n;switch(e.config.warmup){case"face":r=await t(w1);break;case"body":case"full":r=await t(k1);break;default:r=null}if(r){let a=await createImageBitmap(r);n=await e.detect(a,e.config),a.close()}return n}async function Txe(e){return new Promise(t=>{let r;switch(e.config.warmup){case"face":r="data:image/jpeg;base64,"+w1;break;case"full":case"body":r="data:image/jpeg;base64,"+k1;break;default:r=null}let n;if(typeof Image!="undefined")n=new Image;else if(he.Image)n=new he.Image;else return;n.onload=async()=>{let a=Kr(n.naturalWidth,n.naturalHeight);if(!a)se("Warmup: Canvas not found"),t(void 0);else{let s=a.getContext("2d");s&&s.drawImage(n,0,0);let i=await e.image(a),o=await e.detect(i.tensor,e.config);t(o)}},r?n.src=r:t(void 0)})}async function Nxe(e){let t=a=>Buffer.from(a,"base64"),r;e.config.warmup==="face"?r=t(w1):r=t(k1);let n;if("node"in Ue){let a=(void 0).decodeJpeg(r),s=a.expandDims(0);e.tf.dispose(a),n=await e.detect(s,e.config),e.tf.dispose(s)}else e.config.debug&&se("Warmup tfjs-node not loaded");return n}async function Exe(e){let t;return typeof createImageBitmap=="function"?t=await Cxe(e):typeof Image!="undefined"||he.Canvas!==void 0?t=await Txe(e):t=await Nxe(e),t}async function Rxe(e){let t=Gr(),r=Dn();if(t!=="webgl"&&t!=="humangl"||!r||!r.checkCompileCompletion)return;Z().set("ENGINE_COMPILE_ONLY",!0);let n=Xt().state.numTensors,a=[];for(let[o,l]of Object.entries(e).filter(([u,d])=>u!==null&&d!==null)){let u=l.inputs&&l.inputs[0]&&l.inputs[0].shape?[...l.inputs[0].shape]:[1,64,64,3],d=l.inputs&&l.inputs[0]&&l.inputs[0].dtype?l.inputs[0].dtype:"float32";for(let p=0;p<u.length;p++)u[p]===-1&&(u[p]=p===0?1:64);let h=_t(u,d);try{let p=l.execute(h);a.push(o),Array.isArray(p)?p.forEach(c=>te(c)):te(p)}catch(p){se("compile fail model:",o)}te(h)}let s=await r.checkCompileCompletionAsync();r.getUniformLocations(),se("compile pass models:",a),se("compile pass kernels:",s.length),Z().set("ENGINE_COMPILE_ONLY",!1);let i=Xt().state.numTensors;i-n>0&&se("tensor leak:",i-n)}async function YN(e,t){let r=oe();return e.state="warmup",t&&(e.config=Gt(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:oe(),persons:[],error:null}:new Promise(async n=>{await Rxe(e.models);let a=await Exe(e),s=oe();e.config.debug&&se("warmup",e.config.warmup,Math.round(s-r),"ms"),e.emit("warmup"),n(a)})}var np,lc,uc,I1,f3=class{constructor(t){fe(this,"version");fe(this,"config");fe(this,"result");fe(this,"state");fe(this,"process");fe(this,"tf");fe(this,"env");fe(this,"draw");fe(this,"models");fe(this,"events");fe(this,"faceTriangulation");fe(this,"faceUVMap");fe(this,"performance");yp(this,np,void 0);yp(this,lc,void 0);yp(this,uc,void 0);fe(this,"gl");fe(this,"analyze",(...t)=>{if(!gp(this,lc))return;let r=this.tf.engine().state.numTensors,n=gp(this,np);Ap(this,np,r);let a=r-n;a!==0&&se(...t,a)});yp(this,I1,t=>{if(!gp(this,uc))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof nt))return"input must be a tensor";try{this.tf.getBackend()}catch(r){return"backend not loaded"}return null});fe(this,"similarity",p3);fe(this,"distance",oc);fe(this,"match",h3);fe(this,"emit",t=>{var r;this.events&&this.events.dispatchEvent&&((r=this.events)==null||r.dispatchEvent(new Event(t)))});this.env=he,ws.wasmPath=Zh["tfjs-core"].includes("-")?"https://vladmandic.github.io/tfjs/dist/":`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${zy}/dist/`,ws.modelBasePath=he.browser?"../models/":"file://models/",ws.backend=he.browser?"humangl":"tensorflow",this.version=B5,Object.defineProperty(this,"version",{value:B5}),this.config=JSON.parse(JSON.stringify(ws)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=Gt(this.config,t)),CC(this.config),this.tf=Ue,this.state="idle",Ap(this,np,0),Ap(this,lc,!1),Ap(this,uc,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new ic,this.draw={options:Fr,canvas:(r,n)=>s3(r,n),face:(r,n,a)=>Yd(r,n,a),body:(r,n,a)=>Jd(r,n,a),hand:(r,n,a)=>Qd(r,n,a),gesture:(r,n,a)=>tp(r,n,a),object:(r,n,a)=>ep(r,n,a),person:(r,n,a)=>a3(r,n,a),all:(r,n,a)=>i3(r,n,a)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=OT,this.faceUVMap=DT,this.gl=Rt,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(ws)),this.config.backend=t}validate(t){return rg(ws,t||this.config)}now(){return oe()}image(t,r=!0){return Od(t,this.config,r)}async segmentation(t,r){return ON(t,r,this.config)}enhance(t){return Ib(t)}compare(t,r){return SC(this.config,t,r)}async init(){await v1(this,!0),await this.tf.ready()}async load(t){this.state="load";let r=oe(),n=Object.values(this.models).filter(i=>i).length;t&&(this.config=Gt(this.config,t)),this.env.initial&&(this.config.debug&&se(`version: ${this.version}`),this.config.debug&&se(`tfjs version: ${this.tf.version["tfjs-core"]}`),await v1(this)||se("error: backend check failed"),await cd(),this.env.browser&&(this.config.debug&&se("configuration:",this.config),this.config.debug&&se("environment:",this.env),this.config.debug&&se("tf flags:",this.tf.ENV.flags))),await Qb(this),this.env.initial&&this.config.debug&&se("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(i=>i).length!==n&&(await e3(this),this.emit("load"));let s=Math.trunc(oe()-r);s>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+s:s)}next(t=this.result){return XN(t,this.config)}async warmup(t){let r=oe(),n=await YN(this,t),a=oe();return this.performance.warmup=Math.trunc(a-r),n}async profile(t,r){let n=await this.tf.profile(()=>this.detect(t,r)),a={};for(let o of n.kernels)a[o.name]?a[o.name]+=o.kernelTimeMs:a[o.name]=o.kernelTimeMs;let s=[];Object.entries(a).forEach(o=>s.push({name:o[0],ms:o[1]})),s.sort((o,l)=>l.ms-o.ms),s.length=20;let i={};for(let o of s)i[o.name]=o.ms;return i}async detect(t,r){return this.state="detect",new Promise(async n=>{var g,y,A,x,b,w,I,N,E,R,_,M,S,z,O,H,K,D,Q,V,re,Y;this.state="config";let a;this.config=Gt(this.config,r),this.state="check";let s=gp(this,I1).call(this,t);s&&(se(s,t),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:oe(),persons:[],error:s}));let i=oe();await v1(this),await this.load(),a=oe(),this.state="image";let o=await Od(t,this.config);if(this.process=o,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(oe()-a):Math.trunc(oe()-a),this.analyze("Get Image:"),!o.tensor){this.config.debug&&se("could not convert input to tensor"),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:oe(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),a=oe(),this.config.skipAllowed=await IC(this.config,o.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(oe()-a):Math.trunc(oe()-a),this.analyze("Check Changed:");let l=[],u=[],d=[],h=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?u3(this,o.tensor):[],this.performance.face&&delete this.performance.face):(a=oe(),l=this.config.face.enabled?await u3(this,o.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let p=this.config.body.maxDetected===-1?Gt(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?u=this.config.body.enabled?Zb(o.tensor,p):[]:(y=this.config.body.modelPath)!=null&&y.includes("blazepose")?u=this.config.body.enabled?lb(o.tensor,p):[]:(A=this.config.body.modelPath)!=null&&A.includes("efficientpose")?u=this.config.body.enabled?mb(o.tensor,p):[]:(x=this.config.body.modelPath)!=null&&x.includes("movenet")&&(u=this.config.body.enabled?Ub(o.tensor,p):[]),this.performance.body&&delete this.performance.body):(a=oe(),(b=this.config.body.modelPath)!=null&&b.includes("posenet")?u=this.config.body.enabled?await Zb(o.tensor,p):[]:(w=this.config.body.modelPath)!=null&&w.includes("blazepose")?u=this.config.body.enabled?await lb(o.tensor,p):[]:(I=this.config.body.modelPath)!=null&&I.includes("efficientpose")?u=this.config.body.enabled?await mb(o.tensor,p):[]:(N=this.config.body.modelPath)!=null&&N.includes("movenet")&&(u=this.config.body.enabled?await Ub(o.tensor,p):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let c=this.config.hand.maxDetected===-1?Gt(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((R=(E=this.config.hand.detector)==null?void 0:E.modelPath)!=null&&R.includes("handdetect")?d=this.config.hand.enabled?$b(o.tensor,c):[]:(M=(_=this.config.hand.detector)==null?void 0:_.modelPath)!=null&&M.includes("handtrack")&&(d=this.config.hand.enabled?_b(o.tensor,c):[]),this.performance.hand&&delete this.performance.hand):(a=oe(),(z=(S=this.config.hand.detector)==null?void 0:S.modelPath)!=null&&z.includes("handdetect")?d=this.config.hand.enabled?await $b(o.tensor,c):[]:(H=(O=this.config.hand.detector)==null?void 0:O.modelPath)!=null&&H.includes("handtrack")&&(d=this.config.hand.enabled?await _b(o.tensor,c):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((K=this.config.object.modelPath)!=null&&K.includes("nanodet")?h=this.config.object.enabled?jb(o.tensor,this.config):[]:(D=this.config.object.modelPath)!=null&&D.includes("centernet")&&(h=this.config.object.enabled?pb(o.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(a=oe(),(Q=this.config.object.modelPath)!=null&&Q.includes("nanodet")?h=this.config.object.enabled?await jb(o.tensor,this.config):[]:(V=this.config.object.modelPath)!=null&&V.includes("centernet")&&(h=this.config.object.enabled?await pb(o.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,u,d,h]=await Promise.all([l,u,d,h])),this.state="detect:gesture";let m=[];this.config.gesture.enabled&&(a=oe(),m=[...jN(l),...GN(u),...qN(d),...HN(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(oe()-i):Math.trunc(oe()-i);let f=((Y=(re=this.process)==null?void 0:re.tensor)==null?void 0:Y.shape)||[];this.result={face:l,body:u,hand:d,gesture:m,object:h,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return ZN(l,u,d,m,f)}},te(o.tensor),this.emit("detect"),this.state="idle",n(this.result)})}};np=new WeakMap,lc=new WeakMap,uc=new WeakMap,I1=new WeakMap;return ZE(Mxe);})();
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use backend file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2022 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2022 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2022 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2022 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the 'License');
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an 'AS IS' BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* Human main module
* @default Human Library
* @summary <https://github.com/vladmandic/human>
* @author <https://github.com/vladmandic>
* @copyright <https://github.com/vladmandic>
* @license MIT
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */