human/dist/human.js

5091 lines
1.3 MiB

/*
Human library
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
var Human=(()=>{var f9=Object.defineProperty;var Jn=(e,t)=>{for(var n in t)f9(e,n,{get:t[n],enumerable:!0})};var u5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)},ur=(e,t,n)=>(u5(e,t,"read from private field"),n?n.call(e):t.get(e)),us=(e,t,n,r)=>(u5(e,t,"write to private field"),r?r.call(e,n):t.set(e,n),n);var boe={};Jn(boe,{Human:()=>Ik,default:()=>Ik});function pt(e,t){let n=e.endsWith("/")?"":"/",a=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!a.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${a} Expecting JSON file`);return a}function le(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var Ye=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Qn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(a=>{let s=n[a],i=r[a];Array.isArray(s)&&Array.isArray(i)?n[a]=s.concat(...i):t(s)&&t(i)?n[a]=Qn(s,i):n[a]=i}),n),{})}function c5(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let r=n[0].match(/\(([^()]+)\)/g);e=r?r[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var gu={};Jn(gu,{Abs:()=>oo,Acos:()=>lo,Acosh:()=>uo,AdadeltaOptimizer:()=>tp,AdagradOptimizer:()=>np,AdamOptimizer:()=>rp,AdamaxOptimizer:()=>ap,Add:()=>Ca,AddN:()=>ds,All:()=>co,Any:()=>ho,ArgMax:()=>ps,ArgMin:()=>vu,Asin:()=>po,Asinh:()=>fo,Atan:()=>mo,Atan2:()=>yo,Atanh:()=>Ao,AvgPool:()=>fs,AvgPool3D:()=>ku,AvgPool3DGrad:()=>Oh,AvgPoolGrad:()=>Dh,BackendWasm:()=>Dv,BatchMatMul:()=>ms,BatchToSpaceND:()=>Iu,Bincount:()=>zh,BroadcastTo:()=>nw,Callback:()=>N4,CallbackList:()=>k6,Cast:()=>As,Ceil:()=>ys,ClipByValue:()=>Ra,Complex:()=>Ph,ComplexAbs:()=>Su,Concat:()=>go,Conv2D:()=>gs,Conv2DBackpropFilter:()=>Lh,Conv2DBackpropInput:()=>xs,Conv3D:()=>Nu,Conv3DBackpropFilterV2:()=>Wh,Conv3DBackpropInputV2:()=>Bh,Cos:()=>ws,Cosh:()=>xo,CropAndResize:()=>wo,Cumsum:()=>bs,CustomCallback:()=>S6,DataStorage:()=>Rh,DenseBincount:()=>Vh,DepthToSpace:()=>bo,DepthwiseConv2dNative:()=>_s,DepthwiseConv2dNativeBackpropFilter:()=>jh,DepthwiseConv2dNativeBackpropInput:()=>Uh,Diag:()=>Hh,Dilation2D:()=>Tu,Dilation2DBackpropFilter:()=>qh,Dilation2DBackpropInput:()=>Gh,ENV:()=>_r,EarlyStopping:()=>E4,Einsum:()=>Xh,Elu:()=>_o,EluGrad:()=>Kh,Environment:()=>ew,Equal:()=>ko,Erf:()=>vo,Exp:()=>ks,ExpandDims:()=>Io,Expm1:()=>So,FFT:()=>Zh,Fill:()=>Eu,FlipLeftRight:()=>No,Floor:()=>Is,FloorDiv:()=>Ss,FromPixels:()=>dd,FusedBatchNorm:()=>Ns,FusedConv2D:()=>oi,FusedDepthwiseConv2D:()=>li,GPGPUContext:()=>bp,GatherNd:()=>Eo,GatherV2:()=>To,GraphModel:()=>s8,Greater:()=>Co,GreaterEqual:()=>Ts,History:()=>I6,IFFT:()=>Yh,Identity:()=>Es,Imag:()=>Jh,InputSpec:()=>Ft,IsFinite:()=>Ro,IsInf:()=>Mo,IsNan:()=>Fo,KernelBackend:()=>wu,LRN:()=>Mu,LRNGrad:()=>ed,LayerVariable:()=>x6,LayersModel:()=>ga,LeakyRelu:()=>Cs,Less:()=>$o,LessEqual:()=>Do,LinSpace:()=>Qh,Log:()=>Rs,Log1p:()=>Oo,LogSoftmax:()=>rw,LogicalAnd:()=>zo,LogicalNot:()=>Cu,LogicalOr:()=>Ru,MathBackendCPU:()=>lp,MathBackendWebGL:()=>Wl,Max:()=>Ms,MaxPool:()=>$s,MaxPool3D:()=>Fu,MaxPool3DGrad:()=>nd,MaxPoolGrad:()=>td,MaxPoolWithArgmax:()=>rd,Maximum:()=>Fs,Mean:()=>Ds,Min:()=>Os,Minimum:()=>zs,MirrorPad:()=>Ps,Mod:()=>Po,MomentumOptimizer:()=>sp,Multinomial:()=>ad,Multiply:()=>Ls,Neg:()=>Lo,NonMaxSuppressionV3:()=>Bo,NonMaxSuppressionV4:()=>Vo,NonMaxSuppressionV5:()=>jo,NotEqual:()=>Wo,OP_SCOPE_SUFFIX:()=>fw,OneHot:()=>Ws,OnesLike:()=>Uo,Optimizer:()=>fa,Pack:()=>Ho,PadV2:()=>Bs,Pool:()=>mI,Pow:()=>Vs,Prelu:()=>js,Prod:()=>Go,RMSPropOptimizer:()=>ip,RNN:()=>Zr,Range:()=>$u,Rank:()=>zf,Real:()=>sd,RealDiv:()=>vs,Reciprocal:()=>qo,Reduction:()=>hn,Relu:()=>Us,Relu6:()=>Gs,Reshape:()=>Xo,ResizeBilinear:()=>Hs,ResizeBilinearGrad:()=>od,ResizeNearestNeighbor:()=>Du,ResizeNearestNeighborGrad:()=>id,Reverse:()=>qs,RotateWithOffset:()=>ol,Round:()=>Xs,Rsqrt:()=>Ks,SGDOptimizer:()=>dc,ScatterNd:()=>Ko,Select:()=>Zo,Selu:()=>Yo,Sequential:()=>Kl,Sigmoid:()=>Ys,Sign:()=>el,Sin:()=>Zs,Sinh:()=>Qo,Slice:()=>Jo,Softmax:()=>ei,Softplus:()=>tl,SpaceToBatchND:()=>Ou,SparseReshape:()=>ld,SparseToDense:()=>ud,SplitV:()=>nl,Sqrt:()=>Js,Square:()=>zu,SquaredDifference:()=>ti,Step:()=>Fa,StridedSlice:()=>rl,Sub:()=>ni,Sum:()=>Qs,SymbolicTensor:()=>Mr,Tan:()=>ri,Tanh:()=>ai,Tensor:()=>Pe,TensorBuffer:()=>Ot,Tile:()=>Ma,TopK:()=>al,Transform:()=>cd,Transpose:()=>si,Unique:()=>hd,Unpack:()=>sl,UnsortedSegmentSum:()=>Pu,Variable:()=>Hu,ZerosLike:()=>il,_FusedMatMul:()=>ii,abs:()=>zt,acos:()=>um,acosh:()=>cm,add:()=>se,addN:()=>Pa,all:()=>kd,any:()=>Zu,argMax:()=>mi,argMin:()=>hm,asin:()=>dm,asinh:()=>pm,atan:()=>fm,atan2:()=>mm,atanh:()=>Am,avgPool:()=>Ju,avgPool3d:()=>xm,backend:()=>Kw,backend_util:()=>E,basicLSTMCell:()=>qN,batchNorm:()=>gi,batchNorm2d:()=>Qw,batchNorm3d:()=>eb,batchNorm4d:()=>tb,batchToSpaceND:()=>Qu,bincount:()=>nb,booleanMaskAsync:()=>QC,broadcastTo:()=>gl,browser:()=>pi,buffer:()=>Be,callbacks:()=>Zae,cast:()=>ge,ceil:()=>wm,clipByValue:()=>En,clone:()=>Wr,complex:()=>$a,concat:()=>rt,concat1d:()=>rb,concat2d:()=>xl,concat3d:()=>ab,concat4d:()=>sb,constraints:()=>Gv,conv1d:()=>Sd,conv2d:()=>ca,conv2dTranspose:()=>Nd,conv3d:()=>_m,conv3dTranspose:()=>ob,copyRegisteredKernels:()=>gI,cos:()=>ec,cosh:()=>Td,cosineWindow:()=>Zm,cumsum:()=>Ed,customGrad:()=>Vr,data:()=>i8,denseBincount:()=>lb,deprecationWarn:()=>om,depthToSpace:()=>vm,depthwiseConv2d:()=>wl,deregisterOp:()=>Jae,device_util:()=>qu,diag:()=>_T,dilation2d:()=>km,disableDeprecationWarnings:()=>oN,dispose:()=>_e,disposeVariables:()=>lN,div:()=>Ae,divNoNan:()=>Im,dot:()=>ub,dropout:()=>Cb,einsum:()=>cb,elu:()=>bl,enableDebugMode:()=>iN,enableProdMode:()=>sN,enclosingPowerOfTwo:()=>Rb,engine:()=>ua,env:()=>J,equal:()=>Wa,erf:()=>Sm,exp:()=>tr,expandDims:()=>Qt,expm1:()=>Nm,eye:()=>Tm,fft:()=>cc,fill:()=>tc,findBackend:()=>lm,findBackendFactory:()=>fN,floor:()=>_l,floorDiv:()=>vd,forceHalfFloat:()=>q3,fused:()=>Ua,gather:()=>xi,gatherND:()=>Eb,gather_util:()=>em,getBackend:()=>dN,getGradient:()=>$f,getKernel:()=>pd,getKernelsForBackend:()=>ul,gpgpu_util:()=>y3,grad:()=>JT,grads:()=>QT,greater:()=>pr,greaterEqual:()=>Va,ifft:()=>Sl,imag:()=>Cd,image:()=>Le,inTopKAsync:()=>cR,initializers:()=>Qv,input:()=>d6,io:()=>Nn,irfft:()=>Gd,isFinite:()=>hb,isInf:()=>db,isNaN:()=>Em,keep:()=>Ht,kernel_impls:()=>Hr,layers:()=>h6,leakyRelu:()=>nc,less:()=>Rd,lessEqual:()=>wi,linalg:()=>jb,linspace:()=>pb,loadGraphModel:()=>ct,loadLayersModel:()=>Aae,localResponseNormalization:()=>Cm,log:()=>Pn,log1p:()=>Md,logSigmoid:()=>mb,logSoftmax:()=>$d,logSumExp:()=>Fm,logicalAnd:()=>fr,logicalNot:()=>rc,logicalOr:()=>Dd,logicalXor:()=>xb,losses:()=>EM,matMul:()=>Ve,math:()=>Cw,max:()=>Rn,maxPool:()=>ac,maxPool3d:()=>$m,maxPoolWithArgmax:()=>wb,maximum:()=>jr,mean:()=>It,memory:()=>_d,meshgrid:()=>bE,metrics:()=>k4,min:()=>vl,minimum:()=>kl,mirrorPad:()=>Dm,mod:()=>Om,model:()=>fae,models:()=>I4,moments:()=>Od,movingAverage:()=>nR,mul:()=>P,multiRNNCell:()=>EE,multinomial:()=>bb,neg:()=>kt,nextFrame:()=>op,norm:()=>Zd,notEqual:()=>vi,oneHot:()=>fl,ones:()=>Ln,onesLike:()=>Wn,op:()=>D,outerProduct:()=>$E,pad:()=>ha,pad1d:()=>zE,pad2d:()=>LE,pad3d:()=>BE,pad4d:()=>jE,pool:()=>_b,pow:()=>da,prelu:()=>ic,print:()=>kw,prod:()=>zd,profile:()=>an,rand:()=>JE,randomGamma:()=>nC,randomNormal:()=>vb,randomUniform:()=>Il,range:()=>Pd,ready:()=>hN,real:()=>oc,reciprocal:()=>Lm,registerBackend:()=>Al,registerCallbackConstructor:()=>yae,registerGradient:()=>aw,registerKernel:()=>ui,registerOp:()=>Yae,regularizers:()=>S4,relu:()=>Ur,relu6:()=>Ld,removeBackend:()=>pN,reshape:()=>H,reverse:()=>Bn,reverse1d:()=>hC,reverse2d:()=>pC,reverse3d:()=>mC,reverse4d:()=>yC,rfft:()=>hc,round:()=>Wm,rsqrt:()=>Wd,scalar:()=>xe,scatterND:()=>Tb,scatter_util:()=>tm,selu:()=>Bd,separableConv2d:()=>Bm,sequential:()=>mae,serialization:()=>re,setBackend:()=>cN,setPlatform:()=>mN,setWasmPath:()=>cQ,setWasmPaths:()=>hQ,setWebGLContext:()=>yp,setdiff1dAsync:()=>kb,shared:()=>tA,sigmoid:()=>Tn,sign:()=>Vm,signal:()=>TM,sin:()=>Vd,sinh:()=>jd,slice:()=>Re,slice1d:()=>Ud,slice2d:()=>jm,slice3d:()=>Hd,slice4d:()=>lc,slice_util:()=>un,softmax:()=>uc,softplus:()=>bi,spaceToBatchND:()=>sc,sparse:()=>Ub,sparseToDense:()=>Km,spectral:()=>NM,split:()=>Lt,sqrt:()=>en,square:()=>ot,squaredDifference:()=>qd,squeeze:()=>ja,stack:()=>cn,step:()=>Nl,stridedSlice:()=>Um,sub:()=>ye,sum:()=>Te,sumOutType:()=>yd,tan:()=>Hm,tanh:()=>yi,tensor:()=>Ir,tensor1d:()=>sn,tensor2d:()=>Mn,tensor3d:()=>wd,tensor4d:()=>jC,tensor5d:()=>UC,tensor6d:()=>HC,tensor_util:()=>vr,test_util:()=>Gw,tidy:()=>z,tile:()=>Ba,time:()=>uN,topk:()=>Gm,train:()=>Ii,transpose:()=>Je,truncatedNormal:()=>Xd,unique:()=>Kd,unregisterGradient:()=>yI,unregisterKernel:()=>AI,unsortedSegmentSum:()=>qm,unstack:()=>mr,upcastType:()=>dr,util:()=>_,valueAndGrad:()=>eE,valueAndGrads:()=>tE,variable:()=>Ib,variableGrads:()=>fb,version:()=>Pie,version_converter:()=>Jse,version_core:()=>aN,version_cpu:()=>v_,version_layers:()=>wy,version_wasm:()=>zv,version_webgl:()=>G3,webgl:()=>pB,webgl_util:()=>H_,where:()=>Cn,whereAsync:()=>Xm,zeros:()=>Rt,zerosLike:()=>He});var m9=Object.create,Ch=Object.defineProperty,A9=Object.getPrototypeOf,y9=Object.prototype.hasOwnProperty,g9=Object.getOwnPropertyNames,x9=Object.getOwnPropertyDescriptor,w9=e=>Ch(e,"__esModule",{value:!0}),_t=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Me=(e,t)=>{for(var n in t)Ch(e,n,{get:t[n],enumerable:!0})},b9=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of g9(t))!y9.call(e,r)&&r!=="default"&&Ch(e,r,{get:()=>t[r],enumerable:!(n=x9(t,r))||n.enumerable});return e},ao=e=>b9(w9(Ch(e!=null?m9(A9(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),_9=_t(()=>{}),v9=_t((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=h.toString();for(var d=0;d<h.length;d++){c+=h.charCodeAt(d);var p=.02519603282416938*c;c=p>>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),k9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),I9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,h==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),S9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,c.i=d+1&7,f};function u(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p<d.length;++p)m[p&7]=m[p&7]<<15^d.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],h.x=m,h.i=0,p=256;p>0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),N9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,f,m;return c.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,c.i=p,m+(h^h>>>16)|0};function u(h,d){var p,f,m,A,y,g=[],x=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,x=Math.max(x,d.length)),m=0,A=-32;A<x;++A)d&&(f^=d.charCodeAt((A+32)%d.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),T9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,f=c.d,m=c.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-f|0,c.d=f<<16^p>>>16^m,c.a=m-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h<u.length+20;h++)c.b^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),h5=_t(()=>{}),E9=_t((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",c=r.pow(s,i),u=r.pow(2,o),h=u*2,d=s-1,p;function f(w,b,k){var N=[];b=b==!0?{entropy:!0}:b||{};var C=g(y(b.entropy?[w,v(n)]:w==null?x():w,3),N),F=new m(N),O=function(){for(var L=F.g(i),V=c,j=0;L<u;)L=(L+j)*s,V*=s,j=F.g(1);for(;L>=h;)L/=2,V/=2,j>>>=1;return(L+j)/V};return O.int32=function(){return F.g(4)|0},O.quick=function(){return F.g(4)/4294967296},O.double=O,g(v(F.S),n),(b.pass||k||function(L,V,j,U){return U&&(U.S&&A(U,F),L.state=function(){return A(F,{})}),j?(r[l]=L,V):L})(O,C,"global"in b?b.global:this==r,b.state)}r["seed"+l]=f;function m(w){var b,k=w.length,N=this,C=0,F=N.i=N.j=0,O=N.S=[];for(k||(w=[k++]);C<s;)O[C]=C++;for(C=0;C<s;C++)O[C]=O[F=d&F+w[C%k]+(b=O[C])],O[F]=b;(N.g=function(L){for(var V,j=0,U=N.i,X=N.j,G=N.S;L--;)V=G[U=d&U+1],j=j*s+G[d&(G[U]=G[X=d&X+V])+(G[X]=V)];return N.i=U,N.j=X,j})(s)}function A(w,b){return b.i=w.i,b.j=w.j,b.S=w.S.slice(),b}function y(w,b){var k=[],N=typeof w,C;if(b&&N=="object")for(C in w)try{k.push(y(w[C],b-1))}catch(F){}return k.length?k:N=="string"?w:w+"\0"}function g(w,b){for(var k=w+"",N,C=0;C<k.length;)b[d&C]=d&(N^=b[d&C]*19)+k.charCodeAt(C++);return v(b)}function x(){try{var w;return p&&(w=p.randomBytes)?w=w(s):(w=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(w)),v(w)}catch(N){var b=a.navigator,k=b&&b.plugins;return[+new Date,a,k,a.screen,v(n)]}}function v(w){return String.fromCharCode.apply(0,w)}if(g(r.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{p=h5()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}),d5=_t((e,t)=>{var n=v9(),r=k9(),a=I9(),s=S9(),i=N9(),o=T9(),l=E9();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),xu=_t(()=>{}),C9=_t(()=>{}),R9=_t(()=>{}),M9=_t((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};function s(){return Q.buffer!=je&&Yt(Q.buffer),_n}function i(){return Q.buffer!=je&&Yt(Q.buffer),bt}function o(){return Q.buffer!=je&&Yt(Q.buffer),vn}function l(){return Q.buffer!=je&&Yt(Q.buffer),Zn}function c(){return Q.buffer!=je&&Yt(Q.buffer),on}var u=typeof a!="undefined"?a:{},h,d;u.ready=new Promise(function(S,T){h=S,d=T});var p={},f;for(f in u)u.hasOwnProperty(f)&&(p[f]=u[f]);var m=[],A="./this.program",y=function(S,T){throw T},g=!1,x=!1,v=!1,w=!1;g=typeof window=="object",x=typeof importScripts=="function",v=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",w=!g&&!v&&!x;var b=u.ENVIRONMENT_IS_PTHREAD||!1;b&&(je=u.buffer);var k="";function N(S){return u.locateFile?u.locateFile(S,k):k+S}var C,F,O,L,V,j;if(v){x?k=xu().dirname(k)+"/":k=__dirname+"/",C=function(S,T){return V||(V=require("fs")),j||(j=xu()),S=j.normalize(S),V.readFileSync(S,T?null:"utf8")},O=function(S){var T=C(S,!0);return T.buffer||(T=new Uint8Array(T)),pe(T.buffer),T},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(S){if(!(S instanceof yu))throw S}),process.on("unhandledRejection",aa),y=function(S){process.exit(S)},u.inspect=function(){return"[Emscripten Module object]"};var U;try{U=C9()}catch(S){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),S}global.Worker=U.Worker}else w?(typeof read!="undefined"&&(C=function(S){return read(S)}),O=function(S){var T;return typeof readbuffer=="function"?new Uint8Array(readbuffer(S)):(T=read(S,"binary"),pe(typeof T=="object"),T)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(y=function(S){quit(S)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(g||x)&&(x?k=self.location.href:typeof document!="undefined"&&document.currentScript&&(k=document.currentScript.src),typeof r!="undefined"&&r&&(k=r),k.indexOf("blob:")!==0?k=k.substr(0,k.lastIndexOf("/")+1):k="",v?(C=function(S,T){return V||(V=require("fs")),j||(j=xu()),S=j.normalize(S),V.readFileSync(S,T?null:"utf8")},O=function(S){var T=C(S,!0);return T.buffer||(T=new Uint8Array(T)),pe(T.buffer),T}):(C=function(S){var T=new XMLHttpRequest;return T.open("GET",S,!1),T.send(null),T.responseText},x&&(O=function(S){var T=new XMLHttpRequest;return T.open("GET",S,!1),T.responseType="arraybuffer",T.send(null),new Uint8Array(T.response)}),F=function(S,T,W){var q=new XMLHttpRequest;q.open("GET",S,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){T(q.response);return}W()},q.onerror=W,q.send(null)}),L=function(S){document.title=S});v&&typeof performance=="undefined"&&(global.performance=R9().performance);var X=u.print||console.log.bind(console),G=u.printErr||console.warn.bind(console);for(f in p)p.hasOwnProperty(f)&&(u[f]=p[f]);p=null,u.arguments&&(m=u.arguments),u.thisProgram&&(A=u.thisProgram),u.quit&&(y=u.quit);var ee=Atomics.load,Y=Atomics.store,ae=Atomics.compareExchange,te;u.wasmBinary&&(te=u.wasmBinary);var ie=u.noExitRuntime||!0;typeof WebAssembly!="object"&&aa("no native wasm support detected");var Q,he,oe=!1,me;function pe(S,T){S||aa("Assertion failed: "+T)}function Ie(S){var T=u["_"+S];return pe(T,"Cannot call unknown function "+S+", make sure it is exported"),T}function Se(S,T,W,q,de){var ue={string:function(Sn){var ro=0;if(Sn!=null&&Sn!==0){var l5=(Sn.length<<2)+1;ro=eo(l5),tt(Sn,ro,l5)}return ro},array:function(Sn){var ro=eo(Sn.length);return Ke(Sn,ro),ro}};function ce(Sn){return T==="string"?$e(Sn):T==="boolean"?Boolean(Sn):Sn}var be=Ie(S),nt=[],jt=0;if(q)for(var Dt=0;Dt<q.length;Dt++){var Na=ue[W[Dt]];Na?(jt===0&&(jt=Au()),nt[Dt]=Na(q[Dt])):nt[Dt]=q[Dt]}var no=be.apply(null,nt);return no=ce(no),jt!==0&&Qi(jt),no}function Fe(S,T,W,q){W=W||[];var de=W.every(function(ce){return ce==="number"}),ue=T!=="string";return ue&&de&&!q?Ie(S):function(){return Se(S,T,W,arguments,q)}}function Oe(S,T,W){for(var q=T+W,de="";!(T>=q);){var ue=S[T++];if(!ue)return de;if(!(ue&128)){de+=String.fromCharCode(ue);continue}var ce=S[T++]&63;if((ue&224)==192){de+=String.fromCharCode((ue&31)<<6|ce);continue}var be=S[T++]&63;if((ue&240)==224?ue=(ue&15)<<12|ce<<6|be:ue=(ue&7)<<18|ce<<12|be<<6|S[T++]&63,ue<65536)de+=String.fromCharCode(ue);else{var nt=ue-65536;de+=String.fromCharCode(55296|nt>>10,56320|nt&1023)}}return de}function $e(S,T){return S?Oe(i(),S,T):""}function et(S,T,W,q){if(!(q>0))return 0;for(var de=W,ue=W+q-1,ce=0;ce<S.length;++ce){var be=S.charCodeAt(ce);if(be>=55296&&be<=57343){var nt=S.charCodeAt(++ce);be=65536+((be&1023)<<10)|nt&1023}if(be<=127){if(W>=ue)break;T[W++]=be}else if(be<=2047){if(W+1>=ue)break;T[W++]=192|be>>6,T[W++]=128|be&63}else if(be<=65535){if(W+2>=ue)break;T[W++]=224|be>>12,T[W++]=128|be>>6&63,T[W++]=128|be&63}else{if(W+3>=ue)break;T[W++]=240|be>>18,T[W++]=128|be>>12&63,T[W++]=128|be>>6&63,T[W++]=128|be&63}}return T[W]=0,W-de}function tt(S,T,W){return et(S,i(),T,W)}function it(S){for(var T=0,W=0;W<S.length;++W){var q=S.charCodeAt(W);q>=55296&&q<=57343&&(q=65536+((q&1023)<<10)|S.charCodeAt(++W)&1023),q<=127?++T:q<=2047?T+=2:q<=65535?T+=3:T+=4}return T}function Ke(S,T){s().set(S,T)}function dt(S,T){return S%T>0&&(S+=T-S%T),S}var je,_n,bt,Kn,Zt,vn,Zn,zn,on;function Yt(S){je=S,u.HEAP8=_n=new Int8Array(S),u.HEAP16=Kn=new Int16Array(S),u.HEAP32=vn=new Int32Array(S),u.HEAPU8=bt=new Uint8Array(S),u.HEAPU16=Zt=new Uint16Array(S),u.HEAPU32=Zn=new Uint32Array(S),u.HEAPF32=zn=new Float32Array(S),u.HEAPF64=on=new Float64Array(S)}var Or=u.INITIAL_MEMORY||16777216;if(b)Q=u.wasmMemory,je=u.buffer;else if(u.wasmMemory)Q=u.wasmMemory;else if(Q=new WebAssembly.Memory({initial:Or/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),v&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(je=Q.buffer),Or=je.byteLength,Yt(je);var or,lr=[],ba=[],na=[],_a=[],qi=[],zr=!1,lh=!1;b||ba.push({func:function(){vh()}});function J0(){if(!b){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)ch(u.preRun.shift());Ki(lr)}}function ou(){zr=!0,!b&&Ki(ba)}function Q0(){b||Ki(na)}function uh(){b||(lh=!0)}function kn(){if(!b){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)e1(u.postRun.shift());Ki(qi)}}function ch(S){lr.unshift(S)}function e1(S){qi.unshift(S)}var ra=0,va=null,is=null;function t1(S){pe(!b,"addRunDependency cannot be used in a pthread worker"),ra++,u.monitorRunDependencies&&u.monitorRunDependencies(ra)}function n1(S){if(ra--,u.monitorRunDependencies&&u.monitorRunDependencies(ra),ra==0&&(va!==null&&(clearInterval(va),va=null),is)){var T=is;is=null,T()}}u.preloadedImages={},u.preloadedAudios={};function aa(S){u.onAbort&&u.onAbort(S),b&&console.error("Pthread aborting at "+new Error().stack),S+="",G(S),oe=!0,me=1,S="abort("+S+"). Build with -s ASSERTIONS=1 for more info.";var T=new WebAssembly.RuntimeError(S);throw d(T),T}function hh(S,T){return String.prototype.startsWith?S.startsWith(T):S.indexOf(T)===0}var Xi="data:application/octet-stream;base64,";function dh(S){return hh(S,Xi)}var r1="file://";function ph(S){return hh(S,r1)}var In="tfjs-backend-wasm-threaded-simd.wasm";dh(In)||(In=N(In));function fh(S){try{if(S==In&&te)return new Uint8Array(te);if(O)return O(S);throw"both async and sync fetching of the wasm failed"}catch(T){aa(T)}}function a1(){if(!te&&(g||x)){if(typeof fetch=="function"&&!ph(In))return fetch(In,{credentials:"same-origin"}).then(function(S){if(!S.ok)throw"failed to load wasm binary file at '"+In+"'";return S.arrayBuffer()}).catch(function(){return fh(In)});if(F)return new Promise(function(S,T){F(In,function(W){S(new Uint8Array(W))},T)})}return Promise.resolve().then(function(){return fh(In)})}function s1(){var S={a:K1};function T(ce,be){var nt=ce.exports;if(u.asm=nt,or=u.asm.F,he=be,!b){var jt=ke.unusedWorkers.length;ke.unusedWorkers.forEach(function(Dt){ke.loadWasmModuleToWorker(Dt,function(){--jt||n1("wasm-instantiate")})})}}b||t1("wasm-instantiate");function W(ce){T(ce.instance,ce.module)}function q(ce){return a1().then(function(be){return WebAssembly.instantiate(be,S)}).then(ce,function(be){G("failed to asynchronously prepare wasm: "+be),aa(be)})}function de(){return!te&&typeof WebAssembly.instantiateStreaming=="function"&&!dh(In)&&!ph(In)&&typeof fetch=="function"?fetch(In,{credentials:"same-origin"}).then(function(ce){var be=WebAssembly.instantiateStreaming(ce,S);return be.then(W,function(nt){return G("wasm streaming compile failed: "+nt),G("falling back to ArrayBuffer instantiation"),q(W)})}):q(W)}if(u.instantiateWasm)try{var ue=u.instantiateWasm(S,T);return ue}catch(ce){return G("Module.instantiateWasm callback failed with error: "+ce),!1}return de().catch(d),{}}var i1={9816:function(){throw"Canceled!"},9834:function(S,T){setTimeout(function(){n5(S,T)},0)}};function mh(){ke.initRuntime()}function Ki(S){for(;S.length>0;){var T=S.shift();if(typeof T=="function"){T(u);continue}var W=T.func;typeof W=="number"?T.arg===void 0?or.get(W)():or.get(W)(T.arg):W(T.arg===void 0?null:T.arg)}}function lu(S,T){if(S<=0||S>s().length||S&!0||T<0)return-28;if(T==0)return 0;T>=2147483647&&(T=Infinity);var W=Atomics.load(o(),to>>2),q=0;if(W==S){var de=Atomics.compareExchange(o(),to>>2,W,0);if(de==W&&(--T,q=1,T<=0))return 1}var ue=Atomics.notify(o(),S>>2,T);if(ue>=0)return ue+q;throw"Atomics.notify returned an unexpected value "+ue}u._emscripten_futex_wake=lu;function o1(S){if(b)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in killThread!";o()[S+12>>2]=0;var T=ke.pthreads[S];T.worker.terminate(),ke.freeThreadData(T),ke.runningWorkers.splice(ke.runningWorkers.indexOf(T.worker),1),T.worker.pthread=void 0}function l1(S){if(b)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cancelThread!";var T=ke.pthreads[S];T.worker.postMessage({cmd:"cancel"})}function u1(S){if(b)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cleanupThread!";var T=ke.pthreads[S];if(T){o()[S+12>>2]=0;var W=T.worker;ke.returnWorkerToPool(W)}}var ke={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var S=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),T=0;T<S;++T)ke.allocateUnusedWorker()},initRuntime:function(){for(var S=ls(228),T=0;T<228/4;++T)l()[S/4+T]=0;o()[S+12>>2]=S;var W=S+152;o()[W>>2]=W;for(var q=ls(512),T=0;T<128;++T)l()[q/4+T]=0;Atomics.store(l(),S+100>>2,q),Atomics.store(l(),S+40>>2,S),wf(S,!x,1),t5(S)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;ke.threadExitHandlers.length>0;)ke.threadExitHandlers.pop()();b&&Ji()&&e5()},runExitHandlersAndDeinitThread:function(S,T){Atomics.store(l(),S+56>>2,1),Atomics.store(l(),S+60>>2,0),ke.runExitHandlers(),Atomics.store(l(),S+4>>2,T),Atomics.store(l(),S+0>>2,1),lu(S+0,2147483647),wf(0,0,0)},threadExit:function(S){var T=Ji();T&&(ke.runExitHandlersAndDeinitThread(T,S),b&&postMessage({cmd:"exit"}))},threadCancel:function(){ke.runExitHandlersAndDeinitThread(Ji(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var S in ke.pthreads){var T=ke.pthreads[S];T&&T.worker&&ke.returnWorkerToPool(T.worker)}ke.pthreads={};for(var W=0;W<ke.unusedWorkers.length;++W){var q=ke.unusedWorkers[W];q.terminate()}ke.unusedWorkers=[];for(var W=0;W<ke.runningWorkers.length;++W){var q=ke.runningWorkers[W],T=q.pthread;ke.freeThreadData(T),q.terminate()}ke.runningWorkers=[]},freeThreadData:function(S){if(S){if(S.threadInfoStruct){var T=o()[S.threadInfoStruct+100>>2];o()[S.threadInfoStruct+100>>2]=0,mu(T),mu(S.threadInfoStruct)}S.threadInfoStruct=0,S.allocatedOwnStack&&S.stackBase&&mu(S.stackBase),S.stackBase=0,S.worker&&(S.worker.pthread=null)}},returnWorkerToPool:function(S){ke.runWithoutMainThreadQueuedCalls(function(){delete ke.pthreads[S.pthread.threadInfoStruct],ke.unusedWorkers.push(S),ke.runningWorkers.splice(ke.runningWorkers.indexOf(S),1),ke.freeThreadData(S.pthread),S.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(S){o()[o5>>2]=0;try{S()}finally{o()[o5>>2]=1}},receiveObjectTransfer:function(S){},loadWasmModuleToWorker:function(S,T){S.onmessage=function(W){var q=W.data,de=q.cmd;if(S.pthread&&(ke.currentProxiedOperationCallerThread=S.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=Ji()){var ue=ke.pthreads[q.targetThread];ue?ue.worker.postMessage(W.data,q.transferList):console.error('Internal error! Worker sent a message "'+de+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),ke.currentProxiedOperationCallerThread=void 0;return}if(de==="processQueuedMainThreadWork")gf();else if(de==="spawnThread")bh(W.data);else if(de==="cleanupThread")u1(q.thread);else if(de==="killThread")o1(q.thread);else if(de==="cancelThread")l1(q.thread);else if(de==="loaded")S.loaded=!0,T&&T(S),S.runPthread&&(S.runPthread(),delete S.runPthread);else if(de==="print")X("Thread "+q.threadId+": "+q.text);else if(de==="printErr")G("Thread "+q.threadId+": "+q.text);else if(de==="alert")alert("Thread "+q.threadId+": "+q.text);else if(de==="exit"){var ce=S.pthread&&Atomics.load(l(),S.pthread.threadInfoStruct+64>>2);ce&&ke.returnWorkerToPool(S)}else if(de==="exitProcess")try{p9(q.returnCode)}catch(be){if(be instanceof yu)return;throw be}else de==="cancelDone"?ke.returnWorkerToPool(S):de==="objectTransfer"?ke.receiveObjectTransfer(W.data):W.data.target==="setimmediate"?S.postMessage(W.data):G("worker sent an unknown command "+de);ke.currentProxiedOperationCallerThread=void 0},S.onerror=function(W){G("pthread sent an error! "+W.filename+":"+W.lineno+": "+W.message)},v&&(S.on("message",function(W){S.onmessage({data:W})}),S.on("error",function(W){S.onerror(W)}),S.on("exit",function(W){})),S.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||r,wasmMemory:Q,wasmModule:he})},allocateUnusedWorker:function(){var S=N("tfjs-backend-wasm-threaded-simd.worker.js");ke.unusedWorkers.push(new Worker(S))},getNewWorker:function(){return ke.unusedWorkers.length==0&&(ke.allocateUnusedWorker(),ke.loadWasmModuleToWorker(ke.unusedWorkers[0])),ke.unusedWorkers.length>0?ke.unusedWorkers.pop():null},busySpinWait:function(S){for(var T=performance.now()+S;performance.now()<T;);}};function c1(S,T){s5(S,T),Qi(S)}u.establishStackSpace=c1;function h1(){return ie}u.getNoExitRuntime=h1;function d1(S,T){return or.get(S)(T)}u.invokeEntryPoint=d1;function p1(S,T,W,q){aa("Assertion failed: "+$e(S)+", at: "+[T?$e(T):"unknown filename",W,q?$e(q):"unknown function"])}function f1(S,T){var W=_main(S,T)}var os;v?os=function(){var S=process.hrtime();return S[0]*1e3+S[1]/1e6}:b?os=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?os=dateNow:os=function(){return performance.now()};function m1(S){return o()[J2()>>2]=S,S}function A1(S,T){if(b)return ka(1,1,S,T)}function y1(S,T){if(S==T)postMessage({cmd:"processQueuedMainThreadWork"});else if(b)postMessage({targetThread:S,cmd:"processThreadQueue"});else{var W=ke.pthreads[S],q=W&&W.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function g1(){aa()}function x1(S,T,W){var q=k1(T,W);return i1[S].apply(null,q)}function w1(S,T){}function b1(S,T,W){if(S<=0||S>s().length||S&!0)return-28;if(g){if(Atomics.load(o(),S>>2)!=T)return-6;for(var q=performance.now(),de=q+W,ue=Atomics.exchange(o(),to>>2,S);;){if(q=performance.now(),q>de)return ue=Atomics.exchange(o(),to>>2,0),-73;if(ue=Atomics.exchange(o(),to>>2,0),ue==0)break;if(gf(),Atomics.load(o(),S>>2)!=T)return-6;ue=Atomics.exchange(o(),to>>2,S)}return 0}else{var ce=Atomics.wait(o(),S>>2,T,W);if(ce==="timed-out")return-73;if(ce==="not-equal")return-6;if(ce==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ce}}function _1(S,T,W){i().copyWithin(S,T,T+W)}function v1(){return v?require("os").cpus().length:navigator.hardwareConcurrency}function ka(S,T){for(var W=arguments.length-2,q=Au(),de=W,ue=eo(de*8),ce=ue>>3,be=0;be<W;be++){var nt=arguments[2+be];c()[ce+be]=nt}var jt=a5(S,de,ue,T);return Qi(q),jt}var uu=[],cu=[];function k1(S,T){cu.length=0;var W;for(T>>=2;W=i()[S++];){var q=W<105;q&&T&1&&T++,cu.push(q?c()[T++>>1]:o()[T]),++T}return cu}function I1(S,T,W){uu.length=T;for(var q=W>>3,de=0;de<T;de++)uu[de]=c()[q+de];var ue=S<0,ce=ue?i1[-S-1]:X1[S];return ce.apply(null,uu)}function S1(){return i().length}function N1(S){try{return Q.grow(S-je.byteLength+65535>>>16),Yt(Q.buffer),1}catch(T){}}function T1(S){var T=S1();if(S<=T)return!1;var W=2147483648;if(S>W)return!1;for(var q=1;q<=4;q*=2){var de=T*(1+.2/q);de=Math.min(de,S+100663296);var ue=Math.min(W,dt(Math.max(S,de),65536)),ce=N1(ue);if(ce)return!0}return!1}var We={inEventHandler:0,removeAllEventListeners:function(){for(var S=We.eventHandlers.length-1;S>=0;--S)We._removeHandler(S);We.eventHandlers=[],We.deferredCalls=[]},registerRemoveEventListeners:function(){We.removeEventListenersRegistered||(_a.push(We.removeAllEventListeners),We.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(S,T,W){function q(ce,be){if(ce.length!=be.length)return!1;for(var nt in ce)if(ce[nt]!=be[nt])return!1;return!0}for(var de in We.deferredCalls){var ue=We.deferredCalls[de];if(ue.targetFunction==S&&q(ue.argsList,W))return}We.deferredCalls.push({targetFunction:S,precedence:T,argsList:W}),We.deferredCalls.sort(function(ce,be){return ce.precedence<be.precedence})},removeDeferredCalls:function(S){for(var T=0;T<We.deferredCalls.length;++T)We.deferredCalls[T].targetFunction==S&&(We.deferredCalls.splice(T,1),--T)},canPerformEventHandlerRequests:function(){return We.inEventHandler&&We.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(We.canPerformEventHandlerRequests())for(var S=0;S<We.deferredCalls.length;++S){var T=We.deferredCalls[S];We.deferredCalls.splice(S,1),--S,T.targetFunction.apply(null,T.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(S,T){for(var W=0;W<We.eventHandlers.length;++W)We.eventHandlers[W].target==S&&(!T||T==We.eventHandlers[W].eventTypeString)&&We._removeHandler(W--)},_removeHandler:function(S){var T=We.eventHandlers[S];T.target.removeEventListener(T.eventTypeString,T.eventListenerFunc,T.useCapture),We.eventHandlers.splice(S,1)},registerOrRemoveHandler:function(S){var T=function(q){++We.inEventHandler,We.currentEventHandler=S,We.runDeferredCalls(),S.handlerFunc(q),We.runDeferredCalls(),--We.inEventHandler};if(S.callbackfunc)S.eventListenerFunc=T,S.target.addEventListener(S.eventTypeString,T,S.useCapture),We.eventHandlers.push(S),We.registerRemoveEventListeners();else for(var W=0;W<We.eventHandlers.length;++W)We.eventHandlers[W].target==S.target&&We.eventHandlers[W].eventTypeString==S.eventTypeString&&We._removeHandler(W--)},queueEventHandlerOnThread_iiii:function(S,T,W,q,de){var ue=Au(),ce=eo(12);o()[ce>>2]=W,o()[ce+4>>2]=q,o()[ce+8>>2]=de,xf(0,S,637534208,T,q,ce),Qi(ue)},getTargetThreadForEventCallback:function(S){switch(S){case 1:return 0;case 2:return ke.currentProxiedOperationCallerThread;default:return S}},getNodeNameForTarget:function(S){return S?S==window?"#window":S==screen?"#screen":S&&S.nodeName?S.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function E1(S){var T=it(S)+1,W=ls(T);return tt(S,W,T),W}function C1(S,T,W,q){var de=Au(),ue=eo(12),ce=0;T&&(ce=E1(T)),o()[ue>>2]=ce,o()[ue+4>>2]=W,o()[ue+8>>2]=q,xf(0,S,657457152,0,ce,ue),Qi(de)}function R1(S,T,W,q){T=T?$e(T):"",C1(S,T,W,q)}function M1(S){return S>2?$e(S):S}var F1=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function $1(S){S=M1(S);var T=F1[S]||(typeof document!="undefined"?document.querySelector(S):void 0);return T}function hu(S){return $1(S)}function Ah(S,T,W){var q=hu(S);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=T,o()[q.canvasSharedPtr+4>>2]=W),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var de=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var ue=q.GLctxObject.GLctx.getParameter(2978);de=ue[0]===0&&ue[1]===0&&ue[2]===q.width&&ue[3]===q.height}q.width=T,q.height=W,de&&q.GLctxObject.GLctx.viewport(0,0,T,W)}else if(q.canvasSharedPtr){var ce=o()[q.canvasSharedPtr+8>>2];return R1(ce,S,T,W),1}else return-4;return 0}function yh(S,T,W){return b?ka(2,1,S,T,W):Ah(S,T,W)}function D1(S,T,W){var q=hu(S);return q?Ah(S,T,W):yh(S,T,W)}function O1(S){}function z1(S,T){}function P1(S){var T=S.getExtension("ANGLE_instanced_arrays");if(T)return S.vertexAttribDivisor=function(W,q){T.vertexAttribDivisorANGLE(W,q)},S.drawArraysInstanced=function(W,q,de,ue){T.drawArraysInstancedANGLE(W,q,de,ue)},S.drawElementsInstanced=function(W,q,de,ue,ce){T.drawElementsInstancedANGLE(W,q,de,ue,ce)},1}function L1(S){var T=S.getExtension("OES_vertex_array_object");if(T)return S.createVertexArray=function(){return T.createVertexArrayOES()},S.deleteVertexArray=function(W){T.deleteVertexArrayOES(W)},S.bindVertexArray=function(W){T.bindVertexArrayOES(W)},S.isVertexArray=function(W){return T.isVertexArrayOES(W)},1}function W1(S){var T=S.getExtension("WEBGL_draw_buffers");if(T)return S.drawBuffers=function(W,q){T.drawBuffersWEBGL(W,q)},1}function B1(S){return!!(S.multiDrawWebgl=S.getExtension("WEBGL_multi_draw"))}var Qe={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(S){Qe.lastError||(Qe.lastError=S)},getNewId:function(S){for(var T=Qe.counter++,W=S.length;W<T;W++)S[W]=null;return T},getSource:function(S,T,W,q){for(var de="",ue=0;ue<T;++ue){var ce=q?o()[q+ue*4>>2]:-1;de+=$e(o()[W+ue*4>>2],ce<0?void 0:ce)}return de},createContext:function(S,T){var W=S.getContext("webgl",T);if(!W)return 0;var q=Qe.registerContext(W,T);return q},registerContext:function(S,T){var W=ls(8);o()[W+4>>2]=Ji();var q={handle:W,attributes:T,version:T.majorVersion,GLctx:S};return S.canvas&&(S.canvas.GLctxObject=q),Qe.contexts[W]=q,(typeof T.enableExtensionsByDefault=="undefined"||T.enableExtensionsByDefault)&&Qe.initExtensions(q),W},makeContextCurrent:function(S){return Qe.currentContext=Qe.contexts[S],u.ctx=Ia=Qe.currentContext&&Qe.currentContext.GLctx,!(S&&!Ia)},getContext:function(S){return Qe.contexts[S]},deleteContext:function(S){Qe.currentContext===Qe.contexts[S]&&(Qe.currentContext=null),typeof We=="object"&&We.removeAllHandlersOnTarget(Qe.contexts[S].GLctx.canvas),Qe.contexts[S]&&Qe.contexts[S].GLctx.canvas&&(Qe.contexts[S].GLctx.canvas.GLctxObject=void 0),mu(Qe.contexts[S].handle),Qe.contexts[S]=null},initExtensions:function(S){if(S||(S=Qe.currentContext),!S.initExtensionsDone){S.initExtensionsDone=!0;var T=S.GLctx;P1(T),L1(T),W1(T),T.disjointTimerQueryExt=T.getExtension("EXT_disjoint_timer_query"),B1(T);var W=T.getSupportedExtensions()||[];W.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&T.getExtension(q)})}},populateUniformTable:function(S){for(var T=Qe.programs[S],W=Qe.programInfos[S]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=W.uniforms,de=Ia.getProgramParameter(T,35718),ue=0;ue<de;++ue){var ce=Ia.getActiveUniform(T,ue),be=ce.name;W.maxUniformLength=Math.max(W.maxUniformLength,be.length+1),be.slice(-1)=="]"&&(be=be.slice(0,be.lastIndexOf("[")));var nt=Ia.getUniformLocation(T,be);if(nt){var jt=Qe.getNewId(Qe.uniforms);q[be]=[ce.size,jt],Qe.uniforms[jt]=nt;for(var Dt=1;Dt<ce.size;++Dt){var Na=be+"["+Dt+"]";nt=Ia.getUniformLocation(T,Na),jt=Qe.getNewId(Qe.uniforms),Qe.uniforms[jt]=nt}}}}},V1=["default","low-power","high-performance"];function j1(S,T){var W=T>>2,q=o()[W+(24>>2)],de={alpha:!!o()[W+(0>>2)],depth:!!o()[W+(4>>2)],stencil:!!o()[W+(8>>2)],antialias:!!o()[W+(12>>2)],premultipliedAlpha:!!o()[W+(16>>2)],preserveDrawingBuffer:!!o()[W+(20>>2)],powerPreference:V1[q],failIfMajorPerformanceCaveat:!!o()[W+(28>>2)],majorVersion:o()[W+(32>>2)],minorVersion:o()[W+(36>>2)],enableExtensionsByDefault:o()[W+(40>>2)],explicitSwapControl:o()[W+(44>>2)],proxyContextToMainThread:o()[W+(48>>2)],renderViaOffscreenBackBuffer:o()[W+(52>>2)]},ue=hu(S);if(!ue||de.explicitSwapControl)return 0;var ce=Qe.createContext(ue,de);return ce}function U1(S,T){return j1(S,T)}var Zi={mappings:{},buffers:[null,[],[]],printChar:function(S,T){var W=Zi.buffers[S];T===0||T===10?((S===1?X:G)(Oe(W,0)),W.length=0):W.push(T)},varargs:void 0,get:function(){Zi.varargs+=4;var S=o()[Zi.varargs-4>>2];return S},getStr:function(S){var T=$e(S);return T},get64:function(S,T){return S}};function gh(S){return b?ka(3,1,S):0}function xh(S,T,W,q,de){if(b)return ka(4,1,S,T,W,q,de)}function wh(S,T,W,q){if(b)return ka(5,1,S,T,W,q);for(var de=0,ue=0;ue<W;ue++){for(var ce=o()[T+ue*8>>2],be=o()[T+(ue*8+4)>>2],nt=0;nt<be;nt++)Zi.printChar(S,i()[ce+nt]);de+=be}return o()[q>>2]=de,0}function H1(S){var T=ke.threadExitHandlers.pop();S&&T()}function G1(S,T){ke.threadExitHandlers.push(function(){or.get(S)(T)})}function bh(S){if(b)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var T=ke.getNewWorker();if(T.pthread!==void 0)throw"Internal error!";if(!S.pthread_ptr)throw"Internal error, no pthread ptr!";ke.runningWorkers.push(T);for(var W=ls(128*4),q=0;q<128;++q)o()[W+q*4>>2]=0;var de=S.stackBase+S.stackSize,ue=ke.pthreads[S.pthread_ptr]={worker:T,stackBase:S.stackBase,stackSize:S.stackSize,allocatedOwnStack:S.allocatedOwnStack,threadInfoStruct:S.pthread_ptr},ce=ue.threadInfoStruct>>2;Atomics.store(l(),ce+(64>>2),S.detached),Atomics.store(l(),ce+(100>>2),W),Atomics.store(l(),ce+(40>>2),ue.threadInfoStruct),Atomics.store(l(),ce+(80>>2),S.stackSize),Atomics.store(l(),ce+(76>>2),de),Atomics.store(l(),ce+(104>>2),S.stackSize),Atomics.store(l(),ce+(104+8>>2),de),Atomics.store(l(),ce+(104+12>>2),S.detached);var be=Q2(),nt=be+40;Atomics.store(l(),ce+(172>>2),nt),T.pthread=ue;var jt={cmd:"run",start_routine:S.startRoutine,arg:S.arg,threadInfoStruct:S.pthread_ptr,stackBase:S.stackBase,stackSize:S.stackSize};T.runPthread=function(){jt.time=performance.now(),T.postMessage(jt,S.transferList)},T.loaded&&(T.runPthread(),delete T.runPthread)}function q1(S,T,W,q){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!S)return G("pthread_create called with a null thread pointer!"),28;var de=[],ue=0;if(b&&(de.length===0||ue))return r5(687865856,S,T,W,q);if(ue)return ue;var ce=0,be=0,nt=0;T&&T!=-1?(ce=o()[T>>2],ce+=81920,be=o()[T+8>>2],nt=o()[T+12>>2]!==0):ce=2097152;var jt=be==0;jt?be=i5(16,ce):(be-=ce,pe(be>0));for(var Dt=ls(228),Na=0;Na<228>>2;++Na)l()[(Dt>>2)+Na]=0;o()[S>>2]=Dt,o()[Dt+12>>2]=Dt;var no=Dt+152;o()[no>>2]=no;var Sn={stackBase:be,stackSize:ce,allocatedOwnStack:jt,detached:nt,startRoutine:W,pthread_ptr:Dt,arg:q,transferList:de};return b?(Sn.cmd="spawnThread",postMessage(Sn,de)):bh(Sn),0}function _h(S){if(b)return ka(6,1,S);switch(S){case 30:return 16384;case 85:var T=2147483648;return T/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return m1(28),-1}b||ke.initMainThreadBlock();var Ia,X1=[null,A1,yh,gh,xh,wh,_h],K1={e:p1,r:f1,x:y1,b:g1,y:x1,j:w1,c:b1,d:lu,f:os,p:_1,z:v1,u:I1,q:T1,v:D1,i:O1,t:z1,w:U1,m:gh,n:xh,g:wh,o:mh,a:Q||u.wasmMemory,k:H1,l:G1,h:q1,s:_h},Y2=s1(),vh=u.___wasm_call_ctors=function(){return(vh=u.___wasm_call_ctors=u.asm.A).apply(null,arguments)},Z1=u._init=function(){return(Z1=u._init=u.asm.B).apply(null,arguments)},Y1=u._register_tensor=function(){return(Y1=u._register_tensor=u.asm.C).apply(null,arguments)},J1=u._dispose_data=function(){return(J1=u._dispose_data=u.asm.D).apply(null,arguments)},Q1=u._dispose=function(){return(Q1=u._dispose=u.asm.E).apply(null,arguments)},ef=u._Abs=function(){return(ef=u._Abs=u.asm.G).apply(null,arguments)},tf=u._Add=function(){return(tf=u._Add=u.asm.H).apply(null,arguments)},nf=u._AddN=function(){return(nf=u._AddN=u.asm.I).apply(null,arguments)},rf=u._All=function(){return(rf=u._All=u.asm.J).apply(null,arguments)},af=u._Any=function(){return(af=u._Any=u.asm.K).apply(null,arguments)},sf=u._ArgMax=function(){return(sf=u._ArgMax=u.asm.L).apply(null,arguments)},of=u._AvgPool=function(){return(of=u._AvgPool=u.asm.M).apply(null,arguments)},lf=u._BatchMatMul=function(){return(lf=u._BatchMatMul=u.asm.N).apply(null,arguments)},uf=u._Ceil=function(){return(uf=u._Ceil=u.asm.O).apply(null,arguments)},cf=u._ClipByValue=function(){return(cf=u._ClipByValue=u.asm.P).apply(null,arguments)},hf=u._Conv2D=function(){return(hf=u._Conv2D=u.asm.Q).apply(null,arguments)},df=u._Conv2DBackpropInput=function(){return(df=u._Conv2DBackpropInput=u.asm.R).apply(null,arguments)},pf=u._Cos=function(){return(pf=u._Cos=u.asm.S).apply(null,arguments)},ff=u._CropAndResize=function(){return(ff=u._CropAndResize=u.asm.T).apply(null,arguments)},mf=u._Cumsum=function(){return(mf=u._Cumsum=u.asm.U).apply(null,arguments)},Af=u._DepthToSpace=function(){return(Af=u._DepthToSpace=u.asm.V).apply(null,arguments)},kh=u._DepthwiseConv2dNative=function(){return(kh=u._DepthwiseConv2dNative=u.asm.W).apply(null,arguments)},Ih=u._Equal=function(){return(Ih=u._Equal=u.asm.X).apply(null,arguments)},Sh=u._Exp=function(){return(Sh=u._Exp=u.asm.Y).apply(null,arguments)},du=u._FlipLeftRight=function(){return(du=u._FlipLeftRight=u.asm.Z).apply(null,arguments)},Yi=u._Floor=function(){return(Yi=u._Floor=u.asm._).apply(null,arguments)},yf=u._FloorDiv=function(){return(yf=u._FloorDiv=u.asm.$).apply(null,arguments)},pu=u._FusedBatchNorm=function(){return(pu=u._FusedBatchNorm=u.asm.aa).apply(null,arguments)},K=u._FusedConv2D=function(){return(K=u._FusedConv2D=u.asm.ba).apply(null,arguments)},ne=u._FusedDepthwiseConv2D=function(){return(ne=u._FusedDepthwiseConv2D=u.asm.ca).apply(null,arguments)},Ne=u._Gather=function(){return(Ne=u._Gather=u.asm.da).apply(null,arguments)},Ze=u._GatherNd=function(){return(Ze=u._GatherNd=u.asm.ea).apply(null,arguments)},Nt=u._Greater=function(){return(Nt=u._Greater=u.asm.fa).apply(null,arguments)},yt=u._GreaterEqual=function(){return(yt=u._GreaterEqual=u.asm.ga).apply(null,arguments)},Ue=u._LeakyRelu=function(){return(Ue=u._LeakyRelu=u.asm.ha).apply(null,arguments)},Ge=u._Less=function(){return(Ge=u._Less=u.asm.ia).apply(null,arguments)},Jt=u._LessEqual=function(){return(Jt=u._LessEqual=u.asm.ja).apply(null,arguments)},sa=u._Log=function(){return(sa=u._Log=u.asm.ka).apply(null,arguments)},ia=u._LogicalAnd=function(){return(ia=u._LogicalAnd=u.asm.la).apply(null,arguments)},Nh=u._Max=function(){return(Nh=u._Max=u.asm.ma).apply(null,arguments)},fu=u._MaxPool=function(){return(fu=u._MaxPool=u.asm.na).apply(null,arguments)},Yn=u._Maximum=function(){return(Yn=u._Maximum=u.asm.oa).apply(null,arguments)},Sa=u._Mean=function(){return(Sa=u._Mean=u.asm.pa).apply(null,arguments)},Th=u._Min=function(){return(Th=u._Min=u.asm.qa).apply(null,arguments)},Sk=u._Minimum=function(){return(Sk=u._Minimum=u.asm.ra).apply(null,arguments)},Nk=u._MirrorPad=function(){return(Nk=u._MirrorPad=u.asm.sa).apply(null,arguments)},Tk=u._Multiply=function(){return(Tk=u._Multiply=u.asm.ta).apply(null,arguments)},Ek=u._Neg=function(){return(Ek=u._Neg=u.asm.ua).apply(null,arguments)},Ck=u._NonMaxSuppressionV3=function(){return(Ck=u._NonMaxSuppressionV3=u.asm.va).apply(null,arguments)},Rk=u._NonMaxSuppressionV4=function(){return(Rk=u._NonMaxSuppressionV4=u.asm.wa).apply(null,arguments)},Mk=u._NonMaxSuppressionV5=function(){return(Mk=u._NonMaxSuppressionV5=u.asm.xa).apply(null,arguments)},Fk=u._NotEqual=function(){return(Fk=u._NotEqual=u.asm.ya).apply(null,arguments)},$k=u._OneHot=function(){return($k=u._OneHot=u.asm.za).apply(null,arguments)},Dk=u._PadV2=function(){return(Dk=u._PadV2=u.asm.Aa).apply(null,arguments)},Ok=u._Pow=function(){return(Ok=u._Pow=u.asm.Ba).apply(null,arguments)},zk=u._Prelu=function(){return(zk=u._Prelu=u.asm.Ca).apply(null,arguments)},Pk=u._Prod=function(){return(Pk=u._Prod=u.asm.Da).apply(null,arguments)},Lk=u._RealDiv=function(){return(Lk=u._RealDiv=u.asm.Ea).apply(null,arguments)},Wk=u._Relu=function(){return(Wk=u._Relu=u.asm.Fa).apply(null,arguments)},Bk=u._Relu6=function(){return(Bk=u._Relu6=u.asm.Ga).apply(null,arguments)},Vk=u._ResizeBilinear=function(){return(Vk=u._ResizeBilinear=u.asm.Ha).apply(null,arguments)},jk=u._Reverse=function(){return(jk=u._Reverse=u.asm.Ia).apply(null,arguments)},Uk=u._RotateWithOffset=function(){return(Uk=u._RotateWithOffset=u.asm.Ja).apply(null,arguments)},Hk=u._Round=function(){return(Hk=u._Round=u.asm.Ka).apply(null,arguments)},Gk=u._Rsqrt=function(){return(Gk=u._Rsqrt=u.asm.La).apply(null,arguments)},qk=u._ScatterNd=function(){return(qk=u._ScatterNd=u.asm.Ma).apply(null,arguments)},Xk=u._SelectV2=function(){return(Xk=u._SelectV2=u.asm.Na).apply(null,arguments)},Kk=u._Sigmoid=function(){return(Kk=u._Sigmoid=u.asm.Oa).apply(null,arguments)},Zk=u._Sin=function(){return(Zk=u._Sin=u.asm.Pa).apply(null,arguments)},Yk=u._Softmax=function(){return(Yk=u._Softmax=u.asm.Qa).apply(null,arguments)},Jk=u._Sqrt=function(){return(Jk=u._Sqrt=u.asm.Ra).apply(null,arguments)},Qk=u._Square=function(){return(Qk=u._Square=u.asm.Sa).apply(null,arguments)},e9=u._SquaredDifference=function(){return(e9=u._SquaredDifference=u.asm.Ta).apply(null,arguments)},t9=u._Step=function(){return(t9=u._Step=u.asm.Ua).apply(null,arguments)},n9=u._StridedSlice=function(){return(n9=u._StridedSlice=u.asm.Va).apply(null,arguments)},r9=u._Sub=function(){return(r9=u._Sub=u.asm.Wa).apply(null,arguments)},a9=u._Sum=function(){return(a9=u._Sum=u.asm.Xa).apply(null,arguments)},s9=u._Tan=function(){return(s9=u._Tan=u.asm.Ya).apply(null,arguments)},i9=u._Tanh=function(){return(i9=u._Tanh=u.asm.Za).apply(null,arguments)},o9=u._Tile=function(){return(o9=u._Tile=u.asm._a).apply(null,arguments)},l9=u._TopK=function(){return(l9=u._TopK=u.asm.$a).apply(null,arguments)},u9=u._Transpose=function(){return(u9=u._Transpose=u.asm.ab).apply(null,arguments)},c9=u.__FusedMatMul=function(){return(c9=u.__FusedMatMul=u.asm.bb).apply(null,arguments)},ls=u._malloc=function(){return(ls=u._malloc=u.asm.cb).apply(null,arguments)},mu=u._free=function(){return(mu=u._free=u.asm.db).apply(null,arguments)},J2=u.___errno_location=function(){return(J2=u.___errno_location=u.asm.eb).apply(null,arguments)},Q2=u._emscripten_get_global_libc=function(){return(Q2=u._emscripten_get_global_libc=u.asm.fb).apply(null,arguments)},Ji=u._pthread_self=function(){return(Ji=u._pthread_self=u.asm.gb).apply(null,arguments)},e5=u.___pthread_tsd_run_dtors=function(){return(e5=u.___pthread_tsd_run_dtors=u.asm.hb).apply(null,arguments)},gf=u._emscripten_main_thread_process_queued_calls=function(){return(gf=u._emscripten_main_thread_process_queued_calls=u.asm.ib).apply(null,arguments)},h9=u._emscripten_current_thread_process_queued_calls=function(){return(h9=u._emscripten_current_thread_process_queued_calls=u.asm.jb).apply(null,arguments)},t5=u._emscripten_register_main_browser_thread_id=function(){return(t5=u._emscripten_register_main_browser_thread_id=u.asm.kb).apply(null,arguments)},n5=u.__emscripten_do_dispatch_to_thread=function(){return(n5=u.__emscripten_do_dispatch_to_thread=u.asm.lb).apply(null,arguments)},r5=u._emscripten_sync_run_in_main_thread_4=function(){return(r5=u._emscripten_sync_run_in_main_thread_4=u.asm.mb).apply(null,arguments)},a5=u._emscripten_run_in_main_runtime_thread_js=function(){return(a5=u._emscripten_run_in_main_runtime_thread_js=u.asm.nb).apply(null,arguments)},xf=u.__emscripten_call_on_thread=function(){return(xf=u.__emscripten_call_on_thread=u.asm.ob).apply(null,arguments)},d9=u._emscripten_tls_init=function(){return(d9=u._emscripten_tls_init=u.asm.pb).apply(null,arguments)},wf=u.__emscripten_thread_init=function(){return(wf=u.__emscripten_thread_init=u.asm.qb).apply(null,arguments)},Au=u.stackSave=function(){return(Au=u.stackSave=u.asm.rb).apply(null,arguments)},Qi=u.stackRestore=function(){return(Qi=u.stackRestore=u.asm.sb).apply(null,arguments)},eo=u.stackAlloc=function(){return(eo=u.stackAlloc=u.asm.tb).apply(null,arguments)},s5=u._emscripten_stack_set_limits=function(){return(s5=u._emscripten_stack_set_limits=u.asm.ub).apply(null,arguments)},i5=u._memalign=function(){return(i5=u._memalign=u.asm.vb).apply(null,arguments)},o5=u.__emscripten_allow_main_runtime_queued_calls=9808,to=u.__emscripten_main_thread_futex=11432;u.cwrap=Fe,u.PThread=ke,u.PThread=ke,u.wasmMemory=Q,u.ExitStatus=yu;var Eh;function yu(S){this.name="ExitStatus",this.message="Program terminated with exit("+S+")",this.status=S}is=function S(){Eh||bf(),Eh||(is=S)};function bf(S){if(S=S||m,ra>0)return;if(b){h(u),ou(),postMessage({cmd:"loaded"});return}if(J0(),ra>0)return;function T(){Eh||(Eh=!0,u.calledRun=!0,!oe&&(ou(),Q0(),h(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),kn()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),T()},1)):T()}u.run=bf;function p9(S,T){if(!(T&&ie&&S===0)){if(!T&&b)throw postMessage({cmd:"exitProcess",returnCode:S}),new yu(S);ie||(ke.terminateAllThreads(),me=S,uh(),u.onExit&&u.onExit(S),oe=!0),y(S,new yu(S))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return b&&(ie=!1,ke.initWorker()),bf(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),F9=_t((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i,o;s.ready=new Promise(function(K,ne){i=K,o=ne});var l={},c;for(c in s)s.hasOwnProperty(c)&&(l[c]=s[c]);var u=[],h="./this.program",d=function(K,ne){throw ne},p=!1,f=!1,m=!1,A=!1;p=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!p&&!m&&!f;var y="";function g(K){return s.locateFile?s.locateFile(K,y):y+K}var x,v,w,b,k,N;m?(f?y=xu().dirname(y)+"/":y=__dirname+"/",x=function(K,ne){return k||(k=require("fs")),N||(N=xu()),K=N.normalize(K),k.readFileSync(K,ne?null:"utf8")},w=function(K){var ne=x(K,!0);return ne.buffer||(ne=new Uint8Array(ne)),X(ne.buffer),ne},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof yf))throw K}),process.on("unhandledRejection",zr),d=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(x=function(K){return read(K)}),w=function(K){var ne;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(ne=read(K,"binary"),X(typeof ne=="object"),ne)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(d=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||f)&&(f?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),r&&(y=r),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.send(null),ne.responseText},f&&(w=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.responseType="arraybuffer",ne.send(null),new Uint8Array(ne.response)}),v=function(K,ne,Ne){var Ze=new XMLHttpRequest;Ze.open("GET",K,!0),Ze.responseType="arraybuffer",Ze.onload=function(){if(Ze.status==200||Ze.status==0&&Ze.response){ne(Ze.response);return}Ne()},Ze.onerror=Ne,Ze.send(null)},b=function(K){document.title=K});var C=s.print||console.log.bind(console),F=s.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(s[c]=l[c]);l=null,s.arguments&&(u=s.arguments),s.thisProgram&&(h=s.thisProgram),s.quit&&(d=s.quit);var O;s.wasmBinary&&(O=s.wasmBinary);var L=s.noExitRuntime||!0;typeof WebAssembly!="object"&&zr("no native wasm support detected");var V,j=!1,U;function X(K,ne){K||zr("Assertion failed: "+ne)}function G(K){var ne=s["_"+K];return X(ne,"Cannot call unknown function "+K+", make sure it is exported"),ne}function ee(K,ne,Ne,Ze,Nt){var yt={string:function(Yn){var Sa=0;if(Yn!=null&&Yn!==0){var Th=(Yn.length<<2)+1;Sa=du(Th),he(Yn,Sa,Th)}return Sa},array:function(Yn){var Sa=du(Yn.length);return oe(Yn,Sa),Sa}};function Ue(Yn){return ne==="string"?ie(Yn):ne==="boolean"?Boolean(Yn):Yn}var Ge=G(K),Jt=[],sa=0;if(Ze)for(var ia=0;ia<Ze.length;ia++){var Nh=yt[Ne[ia]];Nh?(sa===0&&(sa=Ih()),Jt[ia]=Nh(Ze[ia])):Jt[ia]=Ze[ia]}var fu=Ge.apply(null,Jt);return fu=Ue(fu),sa!==0&&Sh(sa),fu}function Y(K,ne,Ne,Ze){Ne=Ne||[];var Nt=Ne.every(function(Ue){return Ue==="number"}),yt=ne!=="string";return yt&&Nt&&!Ze?G(K):function(){return ee(K,ne,Ne,arguments,Ze)}}var ae=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function te(K,ne,Ne){for(var Ze=ne+Ne,Nt=ne;K[Nt]&&!(Nt>=Ze);)++Nt;if(Nt-ne>16&&K.subarray&&ae)return ae.decode(K.subarray(ne,Nt));for(var yt="";ne<Nt;){var Ue=K[ne++];if(!(Ue&128)){yt+=String.fromCharCode(Ue);continue}var Ge=K[ne++]&63;if((Ue&224)==192){yt+=String.fromCharCode((Ue&31)<<6|Ge);continue}var Jt=K[ne++]&63;if((Ue&240)==224?Ue=(Ue&15)<<12|Ge<<6|Jt:Ue=(Ue&7)<<18|Ge<<12|Jt<<6|K[ne++]&63,Ue<65536)yt+=String.fromCharCode(Ue);else{var sa=Ue-65536;yt+=String.fromCharCode(55296|sa>>10,56320|sa&1023)}}return yt}function ie(K,ne){return K?te(Se,K,ne):""}function Q(K,ne,Ne,Ze){if(!(Ze>0))return 0;for(var Nt=Ne,yt=Ne+Ze-1,Ue=0;Ue<K.length;++Ue){var Ge=K.charCodeAt(Ue);if(Ge>=55296&&Ge<=57343){var Jt=K.charCodeAt(++Ue);Ge=65536+((Ge&1023)<<10)|Jt&1023}if(Ge<=127){if(Ne>=yt)break;ne[Ne++]=Ge}else if(Ge<=2047){if(Ne+1>=yt)break;ne[Ne++]=192|Ge>>6,ne[Ne++]=128|Ge&63}else if(Ge<=65535){if(Ne+2>=yt)break;ne[Ne++]=224|Ge>>12,ne[Ne++]=128|Ge>>6&63,ne[Ne++]=128|Ge&63}else{if(Ne+3>=yt)break;ne[Ne++]=240|Ge>>18,ne[Ne++]=128|Ge>>12&63,ne[Ne++]=128|Ge>>6&63,ne[Ne++]=128|Ge&63}}return ne[Ne]=0,Ne-Nt}function he(K,ne,Ne){return Q(K,Se,ne,Ne)}function oe(K,ne){Ie.set(K,ne)}function me(K,ne){return K%ne>0&&(K+=ne-K%ne),K}var pe,Ie,Se,Fe,Oe,$e,et,tt,it;function Ke(K){pe=K,s.HEAP8=Ie=new Int8Array(K),s.HEAP16=Fe=new Int16Array(K),s.HEAP32=$e=new Int32Array(K),s.HEAPU8=Se=new Uint8Array(K),s.HEAPU16=Oe=new Uint16Array(K),s.HEAPU32=et=new Uint32Array(K),s.HEAPF32=tt=new Float32Array(K),s.HEAPF64=it=new Float64Array(K)}var dt=s.INITIAL_MEMORY||16777216,je,_n=[],bt=[],Kn=[],Zt=[],vn=!1;bt.push({func:function(){mh()}});function Zn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Or(s.preRun.shift());va(_n)}function zn(){vn=!0,va(bt)}function on(){va(Kn)}function Yt(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)or(s.postRun.shift());va(Zt)}function Or(K){_n.unshift(K)}function or(K){Zt.unshift(K)}var lr=0,ba=null,na=null;function _a(K){lr++,s.monitorRunDependencies&&s.monitorRunDependencies(lr)}function qi(K){if(lr--,s.monitorRunDependencies&&s.monitorRunDependencies(lr),lr==0&&(ba!==null&&(clearInterval(ba),ba=null),na)){var ne=na;na=null,ne()}}s.preloadedImages={},s.preloadedAudios={};function zr(K){s.onAbort&&s.onAbort(K),K+="",F(K),j=!0,U=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var ne=new WebAssembly.RuntimeError(K);throw o(ne),ne}function lh(K,ne){return String.prototype.startsWith?K.startsWith(ne):K.indexOf(ne)===0}var J0="data:application/octet-stream;base64,";function ou(K){return lh(K,J0)}var Q0="file://";function uh(K){return lh(K,Q0)}var kn="tfjs-backend-wasm.wasm";ou(kn)||(kn=g(kn));function ch(K){try{if(K==kn&&O)return new Uint8Array(O);if(w)return w(K);throw"both async and sync fetching of the wasm failed"}catch(ne){zr(ne)}}function e1(){if(!O&&(p||f)){if(typeof fetch=="function"&&!uh(kn))return fetch(kn,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+kn+"'";return K.arrayBuffer()}).catch(function(){return ch(kn)});if(v)return new Promise(function(K,ne){v(kn,function(Ne){K(new Uint8Array(Ne))},ne)})}return Promise.resolve().then(function(){return ch(kn)})}function ra(){var K={a:s1};function ne(Ue,Ge){var Jt=Ue.exports;s.asm=Jt,V=s.asm.i,Ke(V.buffer),je=s.asm.o,qi("wasm-instantiate")}_a("wasm-instantiate");function Ne(Ue){ne(Ue.instance)}function Ze(Ue){return e1().then(function(Ge){return WebAssembly.instantiate(Ge,K)}).then(Ue,function(Ge){F("failed to asynchronously prepare wasm: "+Ge),zr(Ge)})}function Nt(){return!O&&typeof WebAssembly.instantiateStreaming=="function"&&!ou(kn)&&!uh(kn)&&typeof fetch=="function"?fetch(kn,{credentials:"same-origin"}).then(function(Ue){var Ge=WebAssembly.instantiateStreaming(Ue,K);return Ge.then(Ne,function(Jt){return F("wasm streaming compile failed: "+Jt),F("falling back to ArrayBuffer instantiation"),Ze(Ne)})}):Ze(Ne)}if(s.instantiateWasm)try{var yt=s.instantiateWasm(K,ne);return yt}catch(Ue){return F("Module.instantiateWasm callback failed with error: "+Ue),!1}return Nt().catch(o),{}}function va(K){for(;K.length>0;){var ne=K.shift();if(typeof ne=="function"){ne(s);continue}var Ne=ne.func;typeof Ne=="number"?ne.arg===void 0?je.get(Ne)():je.get(Ne)(ne.arg):Ne(ne.arg===void 0?null:ne.arg)}}function is(){zr()}function t1(K,ne,Ne){Se.copyWithin(K,ne,ne+Ne)}function n1(){return Se.length}function aa(K){try{return V.grow(K-pe.byteLength+65535>>>16),Ke(V.buffer),1}catch(ne){}}function hh(K){var ne=n1(),Ne=2147483648;if(K>Ne)return!1;for(var Ze=1;Ze<=4;Ze*=2){var Nt=ne*(1+.2/Ze);Nt=Math.min(Nt,K+100663296);var yt=Math.min(Ne,me(Math.max(K,Nt),65536)),Ue=aa(yt);if(Ue)return!0}return!1}var Xi={mappings:{},buffers:[null,[],[]],printChar:function(K,ne){var Ne=Xi.buffers[K];ne===0||ne===10?((K===1?C:F)(te(Ne,0)),Ne.length=0):Ne.push(ne)},varargs:void 0,get:function(){Xi.varargs+=4;var K=$e[Xi.varargs-4>>2];return K},getStr:function(K){var ne=ie(K);return ne},get64:function(K,ne){return K}};function dh(K){return 0}function r1(K,ne,Ne,Ze,Nt){}function ph(K,ne,Ne,Ze){for(var Nt=0,yt=0;yt<Ne;yt++){for(var Ue=$e[ne+yt*8>>2],Ge=$e[ne+(yt*8+4)>>2],Jt=0;Jt<Ge;Jt++)Xi.printChar(K,Se[Ue+Jt]);Nt+=Ge}return $e[Ze>>2]=Nt,0}function In(){return 6}function fh(K){return $e[kh()>>2]=K,K}function a1(K){switch(K){case 30:return 16384;case 85:var ne=2147483648;return ne/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return fh(28),-1}var s1={a:is,d:t1,e:hh,f:dh,c:r1,b:ph,g:In,h:a1},i1=ra(),mh=s.___wasm_call_ctors=function(){return(mh=s.___wasm_call_ctors=s.asm.j).apply(null,arguments)},Ki=s._init=function(){return(Ki=s._init=s.asm.k).apply(null,arguments)},lu=s._register_tensor=function(){return(lu=s._register_tensor=s.asm.l).apply(null,arguments)},o1=s._dispose_data=function(){return(o1=s._dispose_data=s.asm.m).apply(null,arguments)},l1=s._dispose=function(){return(l1=s._dispose=s.asm.n).apply(null,arguments)},u1=s._Abs=function(){return(u1=s._Abs=s.asm.p).apply(null,arguments)},ke=s._Add=function(){return(ke=s._Add=s.asm.q).apply(null,arguments)},c1=s._AddN=function(){return(c1=s._AddN=s.asm.r).apply(null,arguments)},h1=s._All=function(){return(h1=s._All=s.asm.s).apply(null,arguments)},d1=s._Any=function(){return(d1=s._Any=s.asm.t).apply(null,arguments)},p1=s._ArgMax=function(){return(p1=s._ArgMax=s.asm.u).apply(null,arguments)},f1=s._AvgPool=function(){return(f1=s._AvgPool=s.asm.v).apply(null,arguments)},os=s._BatchMatMul=function(){return(os=s._BatchMatMul=s.asm.w).apply(null,arguments)},m1=s._Ceil=function(){return(m1=s._Ceil=s.asm.x).apply(null,arguments)},A1=s._ClipByValue=function(){return(A1=s._ClipByValue=s.asm.y).apply(null,arguments)},y1=s._Conv2D=function(){return(y1=s._Conv2D=s.asm.z).apply(null,arguments)},g1=s._Conv2DBackpropInput=function(){return(g1=s._Conv2DBackpropInput=s.asm.A).apply(null,arguments)},x1=s._Cos=function(){return(x1=s._Cos=s.asm.B).apply(null,arguments)},w1=s._CropAndResize=function(){return(w1=s._CropAndResize=s.asm.C).apply(null,arguments)},b1=s._Cumsum=function(){return(b1=s._Cumsum=s.asm.D).apply(null,arguments)},_1=s._DepthToSpace=function(){return(_1=s._DepthToSpace=s.asm.E).apply(null,arguments)},v1=s._DepthwiseConv2dNative=function(){return(v1=s._DepthwiseConv2dNative=s.asm.F).apply(null,arguments)},ka=s._Equal=function(){return(ka=s._Equal=s.asm.G).apply(null,arguments)},uu=s._Exp=function(){return(uu=s._Exp=s.asm.H).apply(null,arguments)},cu=s._FlipLeftRight=function(){return(cu=s._FlipLeftRight=s.asm.I).apply(null,arguments)},k1=s._Floor=function(){return(k1=s._Floor=s.asm.J).apply(null,arguments)},I1=s._FloorDiv=function(){return(I1=s._FloorDiv=s.asm.K).apply(null,arguments)},S1=s._FusedBatchNorm=function(){return(S1=s._FusedBatchNorm=s.asm.L).apply(null,arguments)},N1=s._FusedConv2D=function(){return(N1=s._FusedConv2D=s.asm.M).apply(null,arguments)},T1=s._FusedDepthwiseConv2D=function(){return(T1=s._FusedDepthwiseConv2D=s.asm.N).apply(null,arguments)},We=s._Gather=function(){return(We=s._Gather=s.asm.O).apply(null,arguments)},E1=s._GatherNd=function(){return(E1=s._GatherNd=s.asm.P).apply(null,arguments)},C1=s._Greater=function(){return(C1=s._Greater=s.asm.Q).apply(null,arguments)},R1=s._GreaterEqual=function(){return(R1=s._GreaterEqual=s.asm.R).apply(null,arguments)},M1=s._LeakyRelu=function(){return(M1=s._LeakyRelu=s.asm.S).apply(null,arguments)},F1=s._Less=function(){return(F1=s._Less=s.asm.T).apply(null,arguments)},$1=s._LessEqual=function(){return($1=s._LessEqual=s.asm.U).apply(null,arguments)},hu=s._Log=function(){return(hu=s._Log=s.asm.V).apply(null,arguments)},Ah=s._LogicalAnd=function(){return(Ah=s._LogicalAnd=s.asm.W).apply(null,arguments)},yh=s._Max=function(){return(yh=s._Max=s.asm.X).apply(null,arguments)},D1=s._MaxPool=function(){return(D1=s._MaxPool=s.asm.Y).apply(null,arguments)},O1=s._Maximum=function(){return(O1=s._Maximum=s.asm.Z).apply(null,arguments)},z1=s._Mean=function(){return(z1=s._Mean=s.asm._).apply(null,arguments)},P1=s._Min=function(){return(P1=s._Min=s.asm.$).apply(null,arguments)},L1=s._Minimum=function(){return(L1=s._Minimum=s.asm.aa).apply(null,arguments)},W1=s._MirrorPad=function(){return(W1=s._MirrorPad=s.asm.ba).apply(null,arguments)},B1=s._Multiply=function(){return(B1=s._Multiply=s.asm.ca).apply(null,arguments)},Qe=s._Neg=function(){return(Qe=s._Neg=s.asm.da).apply(null,arguments)},V1=s._NonMaxSuppressionV3=function(){return(V1=s._NonMaxSuppressionV3=s.asm.ea).apply(null,arguments)},j1=s._NonMaxSuppressionV4=function(){return(j1=s._NonMaxSuppressionV4=s.asm.fa).apply(null,arguments)},U1=s._NonMaxSuppressionV5=function(){return(U1=s._NonMaxSuppressionV5=s.asm.ga).apply(null,arguments)},Zi=s._NotEqual=function(){return(Zi=s._NotEqual=s.asm.ha).apply(null,arguments)},gh=s._OneHot=function(){return(gh=s._OneHot=s.asm.ia).apply(null,arguments)},xh=s._PadV2=function(){return(xh=s._PadV2=s.asm.ja).apply(null,arguments)},wh=s._Pow=function(){return(wh=s._Pow=s.asm.ka).apply(null,arguments)},H1=s._Prelu=function(){return(H1=s._Prelu=s.asm.la).apply(null,arguments)},G1=s._Prod=function(){return(G1=s._Prod=s.asm.ma).apply(null,arguments)},bh=s._RealDiv=function(){return(bh=s._RealDiv=s.asm.na).apply(null,arguments)},q1=s._Relu=function(){return(q1=s._Relu=s.asm.oa).apply(null,arguments)},_h=s._Relu6=function(){return(_h=s._Relu6=s.asm.pa).apply(null,arguments)},Ia=s._ResizeBilinear=function(){return(Ia=s._ResizeBilinear=s.asm.qa).apply(null,arguments)},X1=s._Reverse=function(){return(X1=s._Reverse=s.asm.ra).apply(null,arguments)},K1=s._RotateWithOffset=function(){return(K1=s._RotateWithOffset=s.asm.sa).apply(null,arguments)},Y2=s._Round=function(){return(Y2=s._Round=s.asm.ta).apply(null,arguments)},vh=s._Rsqrt=function(){return(vh=s._Rsqrt=s.asm.ua).apply(null,arguments)},Z1=s._ScatterNd=function(){return(Z1=s._ScatterNd=s.asm.va).apply(null,arguments)},Y1=s._SelectV2=function(){return(Y1=s._SelectV2=s.asm.wa).apply(null,arguments)},J1=s._Sigmoid=function(){return(J1=s._Sigmoid=s.asm.xa).apply(null,arguments)},Q1=s._Sin=function(){return(Q1=s._Sin=s.asm.ya).apply(null,arguments)},ef=s._Softmax=function(){return(ef=s._Softmax=s.asm.za).apply(null,arguments)},tf=s._Sqrt=function(){return(tf=s._Sqrt=s.asm.Aa).apply(null,arguments)},nf=s._Square=function(){return(nf=s._Square=s.asm.Ba).apply(null,arguments)},rf=s._SquaredDifference=function(){return(rf=s._SquaredDifference=s.asm.Ca).apply(null,arguments)},af=s._Step=function(){return(af=s._Step=s.asm.Da).apply(null,arguments)},sf=s._StridedSlice=function(){return(sf=s._StridedSlice=s.asm.Ea).apply(null,arguments)},of=s._Sub=function(){return(of=s._Sub=s.asm.Fa).apply(null,arguments)},lf=s._Sum=function(){return(lf=s._Sum=s.asm.Ga).apply(null,arguments)},uf=s._Tan=function(){return(uf=s._Tan=s.asm.Ha).apply(null,arguments)},cf=s._Tanh=function(){return(cf=s._Tanh=s.asm.Ia).apply(null,arguments)},hf=s._Tile=function(){return(hf=s._Tile=s.asm.Ja).apply(null,arguments)},df=s._TopK=function(){return(df=s._TopK=s.asm.Ka).apply(null,arguments)},pf=s._Transpose=function(){return(pf=s._Transpose=s.asm.La).apply(null,arguments)},ff=s.__FusedMatMul=function(){return(ff=s.__FusedMatMul=s.asm.Ma).apply(null,arguments)},mf=s._malloc=function(){return(mf=s._malloc=s.asm.Na).apply(null,arguments)},Af=s._free=function(){return(Af=s._free=s.asm.Oa).apply(null,arguments)},kh=s.___errno_location=function(){return(kh=s.___errno_location=s.asm.Pa).apply(null,arguments)},Ih=s.stackSave=function(){return(Ih=s.stackSave=s.asm.Qa).apply(null,arguments)},Sh=s.stackRestore=function(){return(Sh=s.stackRestore=s.asm.Ra).apply(null,arguments)},du=s.stackAlloc=function(){return(du=s.stackAlloc=s.asm.Sa).apply(null,arguments)};s.cwrap=Y;var Yi;function yf(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}na=function K(){Yi||pu(),Yi||(na=K)};function pu(K){if(K=K||u,lr>0||(Zn(),lr>0))return;function ne(){Yi||(Yi=!0,s.calledRun=!0,!j&&(zn(),on(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Yt()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ne()},1)):ne()}if(s.run=pu,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return pu(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),$9=_t((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=String(h);for(var d=0;d<h.length;d++){c+=h.charCodeAt(d);var p=.02519603282416938*c;c=p>>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),D9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),O9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,h==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),z9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,c.i=d+1&7,f};function u(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p<d.length;++p)m[p&7]=m[p&7]<<15^d.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],h.x=m,h.i=0,p=256;p>0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),P9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,f,m;return c.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,c.i=p,m+(h^h>>>16)|0};function u(h,d){var p,f,m,A,y,g=[],x=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,x=Math.max(x,d.length)),m=0,A=-32;A<x;++A)d&&(f^=d.charCodeAt((A+32)%d.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),L9=_t((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,f=c.d,m=c.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-f|0,c.d=f<<16^p>>>16^m,c.a=m-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h<u.length+20;h++)c.b^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),W9=_t((e,t)=>{(function(n,r,a){var s=256,i=6,o=52,l="random",c=a.pow(s,i),u=a.pow(2,o),h=u*2,d=s-1,p;function f(w,b,k){var N=[];b=b==!0?{entropy:!0}:b||{};var C=g(y(b.entropy?[w,v(r)]:w==null?x():w,3),N),F=new m(N),O=function(){for(var L=F.g(i),V=c,j=0;L<u;)L=(L+j)*s,V*=s,j=F.g(1);for(;L>=h;)L/=2,V/=2,j>>>=1;return(L+j)/V};return O.int32=function(){return F.g(4)|0},O.quick=function(){return F.g(4)/4294967296},O.double=O,g(v(F.S),r),(b.pass||k||function(L,V,j,U){return U&&(U.S&&A(U,F),L.state=function(){return A(F,{})}),j?(a[l]=L,V):L})(O,C,"global"in b?b.global:this==a,b.state)}function m(w){var b,k=w.length,N=this,C=0,F=N.i=N.j=0,O=N.S=[];for(k||(w=[k++]);C<s;)O[C]=C++;for(C=0;C<s;C++)O[C]=O[F=d&F+w[C%k]+(b=O[C])],O[F]=b;(N.g=function(L){for(var V,j=0,U=N.i,X=N.j,G=N.S;L--;)V=G[U=d&U+1],j=j*s+G[d&(G[U]=G[X=d&X+V])+(G[X]=V)];return N.i=U,N.j=X,j})(s)}function A(w,b){return b.i=w.i,b.j=w.j,b.S=w.S.slice(),b}function y(w,b){var k=[],N=typeof w,C;if(b&&N=="object")for(C in w)try{k.push(y(w[C],b-1))}catch(F){}return k.length?k:N=="string"?w:w+"\0"}function g(w,b){for(var k=w+"",N,C=0;C<k.length;)b[d&C]=d&(N^=b[d&C]*19)+k.charCodeAt(C++);return v(b)}function x(){try{var w;return p&&(w=p.randomBytes)?w=w(s):(w=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(w)),v(w)}catch(N){var b=n.navigator,k=b&&b.plugins;return[+new Date,n,k,n.screen,v(r)]}}function v(w){return String.fromCharCode.apply(0,w)}if(g(a.random(),r),typeof t=="object"&&t.exports){t.exports=f;try{p=h5()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return f}):a["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}),p5=_t((e,t)=>{var n=$9(),r=D9(),a=O9(),s=z9(),i=P9(),o=L9(),l=W9();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),B9=_t(()=>{}),_f={};Me(_f,{bin:()=>k5,browser:()=>C5,default:()=>V9,dependencies:()=>E5,description:()=>A5,devDependencies:()=>N5,jsdelivr:()=>w5,license:()=>S5,main:()=>g5,miniprogram:()=>v5,module:()=>x5,name:()=>f5,private:()=>y5,repository:()=>I5,scripts:()=>T5,types:()=>_5,unpkg:()=>b5,version:()=>m5});var f5="@tensorflow/tfjs",m5="3.5.0",A5="An open-source machine learning framework.",y5=!1,g5="dist/tf.node.js",x5="dist/index.js",w5="dist/tf.min.js",b5="dist/tf.min.js",_5="dist/index.d.ts",v5="dist/miniprogram",k5={"tfjs-custom-module":"dist/tools/custom_module/cli.js"},I5={type:"git",url:"https://github.com/tensorflow/tfjs.git"},S5="Apache-2.0",N5={"@babel/core":"^7.9.0","@babel/polyfill":"^7.10.4","@babel/preset-env":"^7.9.5","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@types/argparse":"^1.0.38","@types/jasmine":"2.8.7","@types/node":"~10.17.50","@types/shelljs":"^0.8.4","@types/yargs":"^15.0.7","clang-format":"~1.2.2",commander:"~2.14.1",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-babel":"^4.4.0","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~4.2.2",shelljs:"~0.8.1","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"1.0.0-pre.50"},T5={build:"tsc && yarn build-cli && yarn bundle","build-ci":"tsc && yarn build-cli && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-converter":"cd ../tfjs-converter && yarn && yarn build","build-converter-ci":"cd ../tfjs-converter && yarn && yarn build-ci","build-data":"cd ../tfjs-data && yarn && yarn build","build-data-ci":"cd ../tfjs-data && yarn && yarn build-ci","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-converter && yarn build-data && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-converter-ci && yarn build-data-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-cli":"tsc --project ./tools/custom_module/tsconfig.json && chmod +x ./dist/tools/custom_module/cli.js","run-custom-build":"ts-node -s ./tools/custom_module/cli.ts","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",test:"yarn && yarn build-deps && yarn build && karma start","test-dev":"karma start","test-tools":"ts-node --project ./tools/custom_module/tsconfig.json run_tools_tests.ts","test-ci":"./scripts/test-ci.sh"},E5={"@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-backend-webgl":"3.5.0","@tensorflow/tfjs-converter":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@tensorflow/tfjs-data":"3.5.0","@tensorflow/tfjs-layers":"3.5.0",argparse:"^1.0.10",chalk:"^4.1.0","core-js":"3","regenerator-runtime":"^0.13.5",yargs:"^16.0.3"},C5={"node-fetch":!1,util:!1,crypto:!1},V9={name:f5,version:m5,description:A5,private:y5,main:g5,module:x5,jsdelivr:w5,unpkg:b5,types:_5,miniprogram:v5,bin:k5,repository:I5,license:S5,devDependencies:N5,scripts:T5,dependencies:E5,browser:C5},vf={};Me(vf,{browser:()=>X5,default:()=>j9,dependencies:()=>q5,description:()=>F5,devDependencies:()=>H5,engines:()=>V5,jsdelivr:()=>O5,"jsnext:main":()=>L5,license:()=>U5,main:()=>D5,miniprogram:()=>B5,module:()=>W5,name:()=>R5,private:()=>$5,repository:()=>j5,scripts:()=>G5,sideEffects:()=>K5,types:()=>P5,unpkg:()=>z5,version:()=>M5});var R5="@tensorflow/tfjs-core",M5="3.5.0",F5="Hardware-accelerated JavaScript library for machine intelligence",$5=!1,D5="dist/tf-core.node.js",O5="dist/tf-core.min.js",z5="dist/tf-core.min.js",P5="dist/index.d.ts",L5="dist/index.js",W5="dist/index.js",B5="dist/miniprogram",V5={yarn:">= 1.3.2"},j5={type:"git",url:"https://github.com/tensorflow/tfjs-core.git"},U5="Apache-2.0",H5={"@bazel/bazelisk":"^1.3.0","@bazel/typescript":"^0.27.8","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"link:../tfjs-backend-cpu","@types/jasmine":"~3.0.0","@types/node":"~9.6.0","@types/node-fetch":"~2.1.2","clang-format":"~1.2.4",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-jasmine":"~1.1.0","karma-typescript":"~4.1.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2",shelljs:"~0.8.3","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21",yargs:"~13.2.2"},G5={"build-ci":"./scripts/enumerate-tests.js --ci && tsc && yarn bundle-ci && yarn build-test-snippets",build:"node ./scripts/enumerate-tests.js && tsc && yarn bundle",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-npm":"./scripts/build-npm.sh","build-deps":"yarn build && yarn build-cpu-backend","build-cpu-backend":"cd ../tfjs-backend-cpu && yarn && yarn build","build-cpu-backend-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build:bazel":"bazelisk build //...","build-test-snippets":"yarn tsc --project ./scripts/test_snippets/tsconfig.json","format-all":"clang-format -i -style=Google --glob=src/**/*.ts","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build && rollup -c && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-webworker":"karma start --worker","run-browserstack":"karma start --browserstack","test-bundle-size":"./scripts/test-bundle-size.js","test-node":"rimraf dist/ && yarn build-deps && yarn build && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-dev":"tsc && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_node.js","test-async-backends":"rimraf dist/ && yarn build && ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-async-backends-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-snippets":"yarn build && yarn build-cpu-backend && ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts","test-snippets-ci":"ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts"},q5={"@types/offscreencanvas":"~2019.3.0","@types/seedrandom":"2.4.27","@types/webgl-ext":"0.0.30","node-fetch":"~2.6.1",seedrandom:"2.4.3"},X5={"node-fetch":!1,util:!1,crypto:!1,worker_threads:!1},K5=["./dist/index.js","./dist/engine.js","./dist/tensor.js","./dist/base_side_effects.js","./dist/flags.js","./dist/platforms/*.js","./dist/register_all_gradients.js","./dist/public/chained_ops/*.js","./dist/io/*.js"],j9={name:R5,version:M5,description:F5,private:$5,main:D5,jsdelivr:O5,unpkg:z5,types:P5,"jsnext:main":L5,module:W5,miniprogram:B5,engines:V5,repository:j5,license:U5,devDependencies:H5,scripts:G5,dependencies:q5,browser:X5,sideEffects:K5},kf={};Me(kf,{browser:()=>dx,default:()=>U9,dependencies:()=>hx,description:()=>J5,devDependencies:()=>lx,jsdelivr:()=>tx,"jsnext:main":()=>ax,license:()=>ox,main:()=>ex,miniprogram:()=>ix,module:()=>sx,name:()=>Z5,peerDependencies:()=>cx,private:()=>Q5,scripts:()=>ux,types:()=>rx,unpkg:()=>nx,version:()=>Y5});var Z5="@tensorflow/tfjs-data",Y5="3.5.0",J5="TensorFlow Data API in JavaScript",Q5=!1,ex="dist/tf-data.node.js",tx="dist/tf-data.min.js",nx="dist/tf-data.min.js",rx="dist/index.d.ts",ax="dist/index.js",sx="dist/index.js",ix="dist/miniprogram",ox="Apache-2.0",lx={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@tensorflow/tfjs-layers":"3.5.0","@types/jasmine":"~2.5.53","@types/seedrandom":"^2.4.27","@types/utf8":"~2.1.6","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~7.0.0",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"^1.0.0-pre.50"},ux={build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-backend-cpu-ci","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-dev":"tsc && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-browsers":"karma start --browsers='Chrome,Firefox'","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/test_node.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose"},cx={"@tensorflow/tfjs-core":"3.5.0",seedrandom:"~2.4.3"},hx={"@types/node-fetch":"^2.1.2","node-fetch":"~2.6.1"},dx={fs:!1,"node-fetch":!1,string_decoder:!1,crypto:!1},U9={name:Z5,version:Y5,description:J5,private:Q5,main:ex,jsdelivr:tx,unpkg:nx,types:rx,"jsnext:main":ax,module:sx,miniprogram:ix,license:ox,devDependencies:lx,scripts:ux,peerDependencies:cx,dependencies:hx,browser:dx},If={};Me(If,{default:()=>H9,description:()=>mx,devDependencies:()=>Ix,jsdelivr:()=>_x,"jsnext:main":()=>wx,license:()=>Ax,main:()=>gx,miniprogram:()=>kx,module:()=>bx,name:()=>px,peerDependencies:()=>Nx,private:()=>yx,scripts:()=>Sx,types:()=>xx,unpkg:()=>vx,version:()=>fx});var px="@tensorflow/tfjs-layers",fx="3.5.0",mx="TensorFlow layers API in JavaScript",Ax="Apache-2.0 AND MIT",yx=!1,gx="dist/tf-layers.node.js",xx="dist/index.d.ts",wx="dist/index.js",bx="dist/index.js",_x="dist/tf-layers.min.js",vx="dist/tf-layers.min.js",kx="dist/miniprogram",Ix={"@babel/polyfill":"^7.8.7","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-backend-webgl":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@types/jasmine":"~2.5.53","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},Sx={prep:"yarn install && yarn build-ci",build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-npm":"./scripts/build-npm.sh",format:"./tools/clang_format_ts.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts","run-browserstack":"karma start --browsers='bs_chrome_mac' --singleRun --reporters='dots,karma-typescript'",lint:"tslint -p . -t verbose"},Nx={"@tensorflow/tfjs-core":"3.5.0"},H9={name:px,version:fx,description:mx,license:Ax,private:yx,main:gx,types:xx,"jsnext:main":wx,module:bx,jsdelivr:_x,unpkg:vx,miniprogram:kx,devDependencies:Ix,scripts:Sx,peerDependencies:Nx},Sf={};Me(Sf,{default:()=>G9,description:()=>Cx,devDependencies:()=>Bx,jsdelivr:()=>Ox,"jsnext:main":()=>Mx,license:()=>Lx,main:()=>Rx,miniprogram:()=>zx,module:()=>Fx,name:()=>Tx,peerDependencies:()=>Wx,repository:()=>Px,scripts:()=>Vx,types:()=>$x,unpkg:()=>Dx,version:()=>Ex});var Tx="@tensorflow/tfjs-converter",Ex="3.5.0",Cx="Tensorflow model converter for javascript",Rx="dist/tf-converter.node.js",Mx="dist/index.js",Fx="dist/index.js",$x="dist/index.d.ts",Dx="dist/tf-converter.min.js",Ox="dist/tf-converter.min.js",zx="dist/miniprogram",Px={type:"git",url:"https://github.com/tensorflow/tfjs-converter.git"},Lx="Apache-2.0",Wx={"@tensorflow/tfjs-core":"3.5.0"},Bx={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-replace":"^2.3.3","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.5.0","@tensorflow/tfjs-core":"3.5.0","@types/argparse":"^1.0.38","@types/deep-equal":"^1.0.1","@types/jasmine":"~2.8.6","@types/long":"~3.0.32","@types/node-fetch":"1.6.9",ajv:"~6.3.0",argparse:"^1.0.10","babel-core":"~6.26.3","babel-plugin-external-helpers":"~6.22.0","babel-preset-env":"~1.7.0","clang-format":"~1.2.2",copyfiles:"~1.2.0","deep-equal":"^1.0.1","jasmine-core":"~3.5.0","node-fetch":"~2.6.1",opn:"~5.1.0",protobufjs:"~6.8.6",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-morph":"^7.1.3","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"~0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},Vx={build:"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle","build-ci":"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && yarn gen-json --test && yarn gen-kernel2ops && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/run_tests.ts","test-dev":"tsc && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose","make-version":"sh -c ./scripts/make-version","gen-doc":"ts-node -s ./scripts/gen_doc.ts","gen-json":"ts-node -s ./scripts/gen_json.ts","model-summary":"ts-node -s ./tools/model_summary.ts",pb2json:"ts-node -s ./tools/pb2json_converter.ts","build-pip-package":"yarn gen-json --test && cd python && ./build-pip-package.sh --test /tmp/tfjs-pips","run-python-tests":"yarn gen-json --test && cd python && ./run-python-tests.sh","gen-kernel2ops":"ts-node -s scripts/kernels_to_ops.ts --out metadata/kernel2op.json"},G9={name:Tx,version:Ex,description:Cx,main:Rx,"jsnext:main":Mx,module:Fx,types:$x,unpkg:Dx,jsdelivr:Ox,miniprogram:zx,repository:Px,license:Lx,peerDependencies:Wx,devDependencies:Bx,scripts:Vx},q9=1e-7,X9=1e-4,Rh=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},wu=class{refCount(e){return cr("refCount")}incRef(e){return cr("incRef")}timerAvailable(){return!0}time(e){return cr("time")}read(e){return cr("read")}readSync(e){return cr("readSync")}numDataIds(){return cr("numDataIds")}disposeData(e,t){return cr("disposeData")}write(e,t,n){return cr("write")}move(e,t,n,r,a){return cr("move")}memory(){return cr("memory")}floatPrecision(){return cr("floatPrecision")}epsilon(){return this.floatPrecision()===32?q9:X9}dispose(){return cr("dispose")}};function cr(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function jx(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function K9(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r,a,s=0;for(;n>0;)s=Math.random()*n|0,n--,r=e[n],a=t[n],e[n]=e[s],t[n]=t[s],e[s]=r,t[s]=a}function bu(e,t,n){return Math.max(e,Math.min(t,n))}function Z9(e){return e%2==0?e:e+1}function Y9(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function J9(e,t){let n=Math.random();return t*n+(1-n)*e}function Q9(e,t){let n=0;for(let r=0;r<e.length;r++){let a=Number(e[r])-Number(t[r]);n+=a*a}return n}function M(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function ln(e,t,n=""){M(oa(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function cs(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function hs(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||rn(e)&&!n)for(let r=0;r<e.length;++r)hs(e[r],t,n);else t.push(e);return t}function Et(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function eI(e){return e.length===0}function oa(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Ut(e){return e%1==0}function tI(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function nI(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function rI(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return jx(t),t}function _u(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function aI(e,t=r=>0,n){return new Promise((r,a)=>{let s=0,i=()=>{if(e()){r();return}s++;let o=t(s);if(n!=null&&s>=n){a();return}setTimeout(i,o)};i()})}function sI(e,t){let n=1,r=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let a=e.slice();return a[r]=t/n,a}function hr(e,t){let n=t.length;return e=e==null?t.map((r,a)=>a):[].concat(e),M(e.every(r=>r>=-n&&r<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(r=>Ut(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function Ux(e,t){let n=[],r=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:hr(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),r.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),r.push(o))}return{newShape:n,keptDims:r}}function Hx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Gx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function qx(e,t){for(let n=0;n<e.length;n++){let r=e[n];if(isNaN(r)||!isFinite(r))throw Error(`A tensor of type ${t} being uploaded contains ${r}.`)}}function Xx(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function iI(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function rn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function Nf(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function Kx(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Ta(e){return typeof e=="string"||e instanceof String}function Zx(e){return typeof e=="boolean"}function Yx(e){return typeof e=="number"}function Mh(e){return Array.isArray(e)?Mh(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":Yx(e)?"float32":Ta(e)?"string":Zx(e)?"bool":"float32"}function Ea(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Fh(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function so(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let r=t-3;r>=0;--r)n[r]=n[r+1]*e[r+1];return n}function Jx(e,t,n,r=!1){let a=new Array;if(t.length===1){let s=t[0]*(r?2:1);for(let i=0;i<s;i++)a[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,c)=>l*c)*(r?2:1);for(let l=0;l<s;l++)a[l]=Jx(e+l*o,i,n,r)}return a}function io(e,t,n=!1){if(e.length===0)return t[0];let r=e.reduce((a,s)=>a*s)*(n?2:1);if(r===0)return[];if(r!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return Jx(0,e,t,n)}function Tf(e,t){let n=$h(e,t);for(let r=0;r<n.length;r++)n[r]=1;return n}function $h(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function oI(e,t){let n=e.reduce((r,a)=>r*a,1);if(t==null||t==="float32")return io(e,new Float32Array(n));if(t==="int32")return io(e,new Int32Array(n));if(t==="bool")return io(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Ef(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function lI(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let a=0;a<e.length-1;++a)r+=n[a]*e[a];return r}function uI(e,t,n){if(t===0)return[];if(t===1)return[e];let r=new Array(t);for(let a=0;a<r.length-1;++a)r[a]=Math.floor(e/n[a]),e-=r[a]*n[a];return r[r.length-1]=e,r}function Cf(e){return e&&e.then&&typeof e.then=="function"}var Qx="tfjsflags",ew=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=cI,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let r=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${r}.`),this.set(e,r)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Cf(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);Qx in e&&e[Qx].split(",").forEach(t=>{let[n,r]=t.split(":");this.urlFlags[n]=hI(n,r)})}};function cI(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(dI(t,r[0],r[1]),r.join("="))),t}function dI(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function hI(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function J(){return _r}var _r=null;function pI(e){_r=e}var Rf;function tw(){if(Rf==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Rf=e}return Rf}function fI(){let e=tw();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Mf(e,t){let n=fI();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var oo="Abs",lo="Acos",uo="Acosh",Ca="Add",ds="AddN",co="All",ho="Any",ps="ArgMax",vu="ArgMin",po="Asin",fo="Asinh",mo="Atan",Ao="Atanh",yo="Atan2",fs="AvgPool",Dh="AvgPoolGrad",ku="AvgPool3D",Oh="AvgPool3DGrad",ms="BatchMatMul",Iu="BatchToSpaceND",zh="Bincount",nw="BroadcastTo",As="Cast",ys="Ceil",Ra="ClipByValue",Ph="Complex",Su="ComplexAbs",go="Concat",gs="Conv2D",Lh="Conv2DBackpropFilter",xs="Conv2DBackpropInput",Nu="Conv3D",Wh="Conv3DBackpropFilterV2",Bh="Conv3DBackpropInputV2",ws="Cos",xo="Cosh",bs="Cumsum",wo="CropAndResize",Vh="DenseBincount",bo="DepthToSpace",_s="DepthwiseConv2dNative",jh="DepthwiseConv2dNativeBackpropFilter",Uh="DepthwiseConv2dNativeBackpropInput",Hh="Diag",Tu="Dilation2D",Gh="Dilation2DBackpropInput",qh="Dilation2DBackpropFilter",vs="RealDiv",Xh="Einsum",_o="Elu",Kh="EluGrad",vo="Erf",ko="Equal",ks="Exp",Io="ExpandDims",So="Expm1",Zh="FFT",Eu="Fill",No="FlipLeftRight",Is="Floor",Ss="FloorDiv",Ns="FusedBatchNorm",To="GatherV2",Eo="GatherNd",Co="Greater",Ts="GreaterEqual",Es="Identity",Yh="IFFT",Jh="Imag",Ro="IsFinite",Mo="IsInf",Fo="IsNan",Cs="LeakyRelu",$o="Less",Do="LessEqual",Qh="LinSpace",Rs="Log",Oo="Log1p",zo="LogicalAnd",Cu="LogicalNot",Ru="LogicalOr",rw="LogSoftmax",Mu="LRN",ed="LRNGrad",Ms="Max",Fs="Maximum",$s="MaxPool",td="MaxPoolGrad",Fu="MaxPool3D",nd="MaxPool3DGrad",rd="MaxPoolWithArgmax",Ds="Mean",Os="Min",zs="Minimum",Ps="MirrorPad",Po="Mod",ad="Multinomial",Ls="Multiply",Lo="Neg",Wo="NotEqual",Bo="NonMaxSuppressionV3",Vo="NonMaxSuppressionV4",jo="NonMaxSuppressionV5",Uo="OnesLike",Ws="OneHot",Ho="Pack",Bs="PadV2",mI="Pool",Vs="Pow",js="Prelu",Go="Prod",$u="Range",sd="Real",qo="Reciprocal",Us="Relu",Xo="Reshape",Du="ResizeNearestNeighbor",id="ResizeNearestNeighborGrad",Hs="ResizeBilinear",od="ResizeBilinearGrad",Gs="Relu6",qs="Reverse",Xs="Round",Ks="Rsqrt",Ko="ScatterNd",Zo="Select",Yo="Selu",Jo="Slice",Zs="Sin",Qo="Sinh",el="Sign",Ys="Sigmoid",tl="Softplus",Js="Sqrt",Qs="Sum",Ou="SpaceToBatchND",nl="SplitV",ei="Softmax",ld="SparseReshape",ud="SparseToDense",ti="SquaredDifference",zu="Square",rl="StridedSlice",ni="Sub",ri="Tan",ai="Tanh",Ma="Tile",al="TopK",cd="Transform",si="Transpose",hd="Unique",sl="Unpack",Pu="UnsortedSegmentSum",il="ZerosLike",Fa="Step",dd="FromPixels",ol="RotateWithOffset",ii="_FusedMatMul",oi="FusedConv2D",li="FusedDepthwiseConv2D",ll=Mf("kernelRegistry",()=>new Map),Lu=Mf("gradRegistry",()=>new Map);function pd(e,t){let n=Ff(e,t);return ll.get(n)}function $f(e){return Lu.get(e)}function ul(e){let t=ll.entries(),n=[];for(;;){let{done:r,value:a}=t.next();if(r)break;let[s,i]=a,[o]=s.split("_");o===e&&n.push(i)}return n}function ui(e){let{kernelName:t,backendName:n}=e,r=Ff(t,n);ll.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),ll.set(r,e)}function aw(e){let{kernelName:t}=e;Lu.has(t)&&J().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Lu.set(t,e)}function AI(e,t){let n=Ff(e,t);if(!ll.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);ll.delete(n)}function yI(e){if(!Lu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Lu.delete(e)}function gI(e,t){ul(e).forEach(n=>{let r=Object.assign({},n,{backendName:t});ui(r)})}function Ff(e,t){return`${t}_${e}`}var _={};Me(_,{arraysEqual:()=>oa,assert:()=>M,assertNonNegativeIntegerDimensions:()=>Ef,assertNonNull:()=>cs,assertShapesMatch:()=>ln,bytesFromStringArray:()=>Kx,bytesPerElement:()=>Nf,checkConversionForErrors:()=>qx,clamp:()=>bu,computeStrides:()=>so,createScalarValue:()=>xI,createShuffledIndices:()=>rI,decodeString:()=>md,distSquared:()=>Q9,encodeString:()=>Bu,fetch:()=>wI,flatten:()=>hs,getArrayFromDType:()=>Gx,getTypedArrayFromDType:()=>Hx,hasEncodingLoss:()=>iI,indexToLoc:()=>uI,inferDtype:()=>Mh,inferFromImplicitShape:()=>sI,isBoolean:()=>Zx,isFunction:()=>Ea,isInt:()=>Ut,isNumber:()=>Yx,isPromise:()=>Cf,isScalarShape:()=>eI,isString:()=>Ta,isTypedArray:()=>rn,isValidDtype:()=>Xx,locToIndex:()=>lI,makeOnesTypedArray:()=>Tf,makeZerosNestedTypedArray:()=>oI,makeZerosTypedArray:()=>$h,nearestDivisor:()=>Fh,nearestLargerEven:()=>Z9,now:()=>Wu,parseAxisParam:()=>hr,randUniform:()=>J9,repeatedTry:()=>aI,rightPad:()=>_u,shuffle:()=>jx,shuffleCombo:()=>K9,sizeFromShape:()=>Et,sizeToSquarishShape:()=>nI,squeezeShape:()=>Ux,sum:()=>Y9,tanh:()=>tI,toNestedArray:()=>io,toTypedArray:()=>fd});function xI(e,t){return t==="string"?Bu(e):fd([e],t)}function bI(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function fd(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=hs(e)),J().getBool("DEBUG")&&qx(e,t),bI(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r<n.length;++r)Math.round(e[r])!==0&&(n[r]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Wu(){return J().platform.now()}function wI(e,t){return J().platform.fetch(e,t)}function Bu(e,t="utf-8"){return t=t||"utf-8",J().platform.encode(e,t)}function md(e,t="utf-8"){return t=t||"utf-8",J().platform.decode(e,t)}var kI=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new vI)}profileKernel(e,t,n){let r,a=()=>{r=n()},s,i=Wu();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(a);else{a();for(let o of r)o.dataSync();s=Promise.resolve({kernelMs:Wu()-i})}if(J().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<r.length;o++){let l=r[o];l.data().then(c=>{_I(c,l.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:a,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),r,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function _I(e,t,n){if(t!=="float32")return!1;for(let r=0;r<e.length;r++){let a=e[r];if(isNaN(a)||!isFinite(a))return console.warn(`Found ${a} in the result of '${n}'`),!0}return!1}var vI=class{logKernelProfile(e,t,n,r,a,s){let i=typeof r=="number"?_u(`${r}ms`,9):r.error,o=_u(e,25),l=t.rank,c=t.size,u=_u(t.shape.toString(),14),h="";for(let d in a){let p=a[d];if(p!=null){let f=p.shape||t.shape,m=f.length;h+=`${d}: ${m}D ${m>0?f:""} `}}console.log(`%c${o} %c${i} %c${l}D ${u} %c${c} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function II(e,t,n){let r={},a={};for(let l=0;l<t.length;l++)r[t[l].id]=!0;for(let l=0;l<e.length;l++){let c=e[l],u=c.inputs;for(let h in u){let d=u[h],p=!1;for(let f=0;f<t.length;f++)if(r[d.id]){c.outputs.forEach(m=>r[m.id]=!0),p=!0,a[c.id]=!0;break}if(p)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let h=0;h<c.outputs.length;h++)if(s[c.outputs[h].id]){for(let d in u)s[u[d].id]=!0,i[c.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let c=e[l];if(a[c.id]&&i[c.id]){let u={};for(let d in c.inputs){let p=c.inputs[d];r[p.id]&&(u[d]=p)}let h=Object.assign({},c);h.inputs=u,h.outputs=c.outputs,o.push(h)}}return o}function SI(e,t,n,r){for(let a=t.length-1;a>=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let c=e[l.id];c!=null?i.push(c):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let c=n(()=>o[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=s.inputs[l];if(!oa(c.shape,u.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let h=e[u.id];e[u.id]=r(h,c),h.dispose()}}}}var sw=20,Vu=3,Df=7;function TI(e,t,n,r){let a=so(t),s=NI(e,t,n,a),i=t.length,o=Ad(e,t,n,a,s),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(c=>" "+c).join(`
`)),l.join(`
`)}function NI(e,t,n,r){let a=Et(t),s=r[r.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Uu(e):e;if(o>1)for(let c=0;c<a/s;c++){let u=c*s;for(let h=0;h<s;h++)i[h]=Math.max(i[h],ju(l[u+h],0,n).length)}return i}function ju(e,t,n){let r;return Array.isArray(e)?r=`${parseFloat(e[0].toFixed(Df))} + ${parseFloat(e[1].toFixed(Df))}j`:Ta(e)?r=`'${e}'`:n==="bool"?r=iw(e):r=parseFloat(e.toFixed(Df)).toString(),_u(r,t)}function iw(e){return e===0?"false":"true"}function Ad(e,t,n,r,a,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=Uu(e);return[ju(m[0],0,n)]}return n==="bool"?[iw(e[0])]:[e[0].toString()]}if(l===1){if(o>sw){let A=Vu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-Vu)*i,o*i));return n==="complex64"&&(y=Uu(y),g=Uu(g)),["["+y.map((x,v)=>ju(x,a[v],n)).join(", ")+", ..., "+g.map((x,v)=>ju(x,a[o-Vu+v],n)).join(", ")+"]"]}let m=n==="complex64"?Uu(e):Array.from(e);return["["+m.map((A,y)=>ju(A,a[y],n)).join(", ")+"]"]}let c=t.slice(1),u=r.slice(1),h=r[0]*i,d=[];if(o>sw){for(let m=0;m<Vu;m++){let A=m*h,y=A+h;d.push(...Ad(e.slice(A,y),c,n,u,a,!1))}d.push("...");for(let m=o-Vu;m<o;m++){let A=m*h,y=A+h;d.push(...Ad(e.slice(A,y),c,n,u,a,m===o-1))}}else for(let m=0;m<o;m++){let A=m*h,y=A+h;d.push(...Ad(e.slice(A,y),c,n,u,a,m===o-1))}let p=l===2?",":"";d[0]="["+d[0]+p;for(let m=1;m<d.length-1;m++)d[m]=" "+d[m]+p;let f=`,
`;for(let m=2;m<l;m++)f+=`
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":f),d}function Uu(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Ot=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Et(e),n!=null){let r=n.length;M(r===this.size,()=>`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Gx(t,this.size),this.strides=so(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;r<e.length-1;++r)n+=this.strides[r]*e[r];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Pr().makeTensor(this.values,this.shape,this.dtype)}},Pr=null,cl=null,EI=null;function CI(e){Pr=e}function RI(e){cl=e}function MI(e){EI=e}var Pe=class{constructor(e,t,n,r){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Et(e),this.strides=so(e),this.dataId=n,this.id=r,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return cl.buffer(this.shape,this.dtype,e)}bufferSync(){return cl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return io(this.shape,e,this.dtype==="complex64")}arraySync(){return io(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Pr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>md(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Pr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>md(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Pr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Pr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return cl.print(this,e)}clone(){return this.throwIfDisposed(),cl.clone(this)}toString(e=!1){let t=this.dataSync();return TI(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),cl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Pr().makeVariable(this,e,t,n)}};Object.defineProperty(Pe,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return Mf("Tensor",()=>Pe)}Z();var Hu=class extends Pe{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!oa(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Pr().disposeTensor(this),this.dataId=e.dataId,Pr().incRef(this,null)}dispose(){Pr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Hu,Symbol.hasInstance,{value:e=>e instanceof Pe&&e.assign!=null&&e.assign instanceof Function});var vr={};Me(vr,{assertTypesMatch:()=>ow,getTensorsInContainer:()=>Of,isTensorInList:()=>FI,makeTypesMatch:()=>vt});var zf;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(zf||(zf={}));var Pf;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Pf||(Pf={}));var Lf;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Lf||(Lf={}));var Wf;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Wf||(Wf={}));var Bf;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Bf||(Bf={}));var $I={float32:Wf,int32:Pf,bool:Lf,complex64:Bf};function dr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return $I[e][t]}function yd(e){return dr(e,"int32")}function vt(e,t){if(e.dtype===t.dtype)return[e,t];let n=dr(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function ow(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function FI(e,t){return t.some(n=>n.id===e.id)}function Of(e){let t=[],n=new Set;return lw(e,t,n),t}function lw(e,t,n){if(e==null)return;if(e instanceof Pe){t.push(e);return}if(!DI(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),lw(s,t,n))}}function DI(e){return Array.isArray(e)||typeof e=="object"}function Vf(e){return e.kernelName!=null}var uw=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Gu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new uw}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new kI(this.backendInstance),!0}setupRegisteredKernels(){ul(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){ul(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof wu)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(r<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=a,{success:a,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:r,asyncInit:a}=this.initializeBackend(n);if(a||r)return{name:n,asyncInit:a}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),r=n.backend,a=this.readSync(t),s=r.refCount(t);r.disposeData(t,!0),n.backend=e,e.move(t,a,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let r;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Gu.nextTensorId++}nextVariableId(){return Gu.nextVariableId++}clone(e){let t=$.runKernel(Es,{x:e}),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return $.runKernel(As,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if(pd(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Vf(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Vf(e)){let{kernelName:p,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let A=pd(p,this.backendName);M(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:f,attrs:m,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,g);let x=g.map(v=>{if(v.rank!=null)return v;let{dataId:w,shape:b,dtype:k}=v;return this.makeTensorFromDataId(w,b,k)});if(r){let v=this.getTensorsForGradient(p,f,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:p}=e,f=m=>{!r||(n=m.map(A=>this.keep(this.clone(A))))};i=()=>{let m=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,f));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,A),A}}let{inputs:c,attrs:u}=e,h=Vf(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,c,t,h,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(p=>c[p]!=null?c[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=$f(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&Ta(e[0])&&(a=e.map(o=>Bu(o)));let s=r.write(a,t,n),i=new Pe(t,n,s,this.nextTensorId());if(this.trackTensor(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=Kx(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new Pe(t,n,e,this.nextTensorId());return this.trackTensor(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new Hu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Nf(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Hu||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Nf(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=$f(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let h=n[u],d=$h(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return c}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Of(e),n=new Set(t.map(a=>a.id));for(let a=0;a<this.state.activeScope.track.length;a++){let s=this.state.activeScope.track[a];!s.kept&&!n.has(s.id)&&s.dispose()}let r=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(a=>{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(a instanceof Pe,()=>"The result y returned by f() must be a tensor.");let s=II(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?OI(a.shape):n,SI(i,s,l=>this.tidy(l),zI);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return M(Ea(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(i=>i instanceof Pe),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),M(n.value instanceof Pe,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(Ea(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),c=Array.isArray(l)?l:[l];M(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(c.every(h=>h instanceof Pe),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((h,d)=>{u[d]=()=>h}),u};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Wu(),n=await this.backend.time(e);return n.wallMs=Wu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new uw;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Gu.nextTensorId=0;Gu.nextVariableId=0;function OI(e){let t=Tf(Et(e),"float32");return $.makeTensor(t,e,"float32")}function cw(){let e=tw();if(e._tfengine==null){let t=new ew(e);e._tfengine=new Gu(t)}return pI(e._tfengine.ENV),CI(()=>e._tfengine),e._tfengine}var $=cw();function zI(e,t){let n={a:e,b:t};return $.runKernel(Ca,n)}var qu={};Me(qu,{isBrowser:()=>hw,isMobile:()=>PI});function LI(){return typeof navigator!="undefined"&&navigator!=null}function PI(e){if(e||LI()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function hw(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var kr=J();kr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});kr.registerFlag("IS_BROWSER",()=>hw());kr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");kr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));kr.registerFlag("PROD",()=>!1);kr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>kr.getBool("DEBUG"));kr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);kr.registerFlag("IS_TEST",()=>!1);kr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);kr.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Lr(e,t){let n=e;if(rn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||rn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&dw(e,r,[]),r}function dw(e,t,n){if(n=n||[],!Array.isArray(e)&&!rn(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a<e.length;++a)dw(e[a],r,n.concat(a))}function pw(e,t,n,r){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${r}' must be ${e} tensor, but got ${t} tensor`)}}function R(e,t,n,r="numeric"){if(e instanceof Pe)return pw(r,e.dtype,t,n),e;let a=Mh(e);if(a!=="string"&&["bool","int32","float32"].indexOf(r)>=0&&(a=r),pw(r,a,t,n),e==null||!rn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Lr(e,a);!rn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?fd(e,a):hs(e,[],!0);return $.makeTensor(i,s,a)}function Xu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>R(a,`${t}[${s}]`,n,r))}var fw="__op";function D(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+fw;let a=(...s)=>{$.startScope(n);try{let i=r(...s);return Cf(i)&&console.error("Cannot return a Promise inside of tidy."),$.endScope(i),i}catch(i){throw $.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function WI(e,t){let n=R(e,"real","complex"),r=R(t,"imag","complex");ln(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return $.runKernel(Ph,a)}var $a=D({complex_:WI});function Da(e,t,n,r){if(r==null&&(r=Mh(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!rn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Ef(t);let a=Et(t),s=Et(n);M(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Et(t.slice(i)):!0;M(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!rn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?fd(e,r):hs(e,[],!0),$.makeTensor(e,t,r)}function Ir(e,t,n){let r=Lr(e,n);return Da(e,t,r,n)}var jf={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},gd=4;async function VI(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<a.length;++i){let o=a[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let c={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async h=>{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+gd*d.length,f=new Uint8Array(p),m=0;for(let A=0;A<d.length;A++){let y=d[A],g=new Uint8Array(new Uint32Array([y.length]).buffer);f.set(g,m),m+=gd,f.set(y,m),m+=y.length}h(f)});r.push(u)}else r.push(l.data());t!=null&&(c.group=t),n.push(c)}let s=await Promise.all(r);return{data:BI(s),specs:n}}function mw(e,t){let n={},r,a=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,c=Et(l),u;if("quantization"in s){let h=s.quantization;if(h.dtype==="uint8"||h.dtype==="uint16"){if(!("min"in h&&"scale"in h))throw new Error(`Weight ${s.name} with quantization ${h.dtype} doesn't have corresponding metadata min and scale.`)}else if(h.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${h.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${h.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=jf[h.dtype],p=e.slice(a,a+c*d),f=h.dtype==="uint8"?new Uint8Array(p):new Uint16Array(p);if(o==="float32")if(h.dtype==="uint8"||h.dtype==="uint16"){u=new Float32Array(f.length);for(let m=0;m<f.length;m++){let A=f[m];u[m]=A*h.scale+h.min}}else if(h.dtype==="float16")r===void 0&&(r=jI()),u=r(f);else throw new Error(`Unsupported quantization type ${h.dtype} for weight type float32.`);else if(o==="int32"){if(h.dtype!=="uint8"&&h.dtype!=="uint16")throw new Error(`Unsupported quantization type ${h.dtype} for weight type int32.`);u=new Int32Array(f.length);for(let m=0;m<f.length;m++){let A=f[m];u[m]=Math.round(A*h.scale+h.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=c*d}else if(o==="string"){let h=Et(s.shape);u=[];for(let d=0;d<h;d++){let p=new Uint32Array(e.slice(a,a+gd))[0];a+=gd;let f=new Uint8Array(e.slice(a,a+p));u.push(f),a+=p}}else{let h=jf[o],d=e.slice(a,a+c*h);if(o==="float32")u=new Float32Array(d);else if(o==="int32")u=new Int32Array(d);else if(o==="bool")u=new Uint8Array(d);else if(o==="complex64"){u=new Float32Array(d);let p=new Float32Array(u.length/2),f=new Float32Array(u.length/2);for(let y=0;y<p.length;y++)p[y]=u[y*2],f[y]=u[y*2+1];let m=Ir(p,l,"float32"),A=Ir(f,l,"float32");n[i]=$a(m,A),m.dispose(),A.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=c*h}o!=="complex64"&&(n[i]=Ir(u,l,o))}return n}function BI(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var Uf=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Aw(e){return Uf?Buffer.byteLength(e):new Blob([e]).size}function UI(e){if(Uf)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r<a;r++)n+=String.fromCharCode(t[r]);return btoa(n)}function HI(e){if(Uf){let r=Buffer.from(e,"base64");return r.buffer.slice(r.byteOffset,r.byteOffset+r.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let r=0;r<t.length;++r)n.set([t.charCodeAt(r)],r);return n.buffer}function Hf(e){if(e.length===1)return e[0];let t=0;e.forEach(a=>{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function yw(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Ku(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Aw(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Aw(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function GI(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function qI(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function XI(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function jI(){let e=GI(),t=qI(),n=XI();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i<r.length;i++){let o=r[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Tt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Tt.instance==null&&(Tt.instance=new Tt),Tt.instance}static registerSaveRouter(e){Tt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Tt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Tt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Tt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Tt.getInstance().loadRouters:Tt.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},KI=e=>Tt.registerSaveRouter(e),ZI=e=>Tt.registerLoadRouter(e),YI=e=>Tt.getSaveHandlers(e),JI=(e,t)=>Tt.getLoadHandlers(e,t),Gf="tensorflowjs",qf=1,ci="models_store",Oa="model_info_store";function gw(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Xf(e){let t=e.result;t.createObjectStore(ci,{keyPath:"modelPath"}),t.createObjectStore(Oa,{keyPath:"modelPath"})}var hi=class{constructor(e){if(this.indexedDB=gw(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(Gf,qf);a.onupgradeneeded=()=>Xf(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(ci,"readonly"),o=i.objectStore(ci).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=Ku(t),o=s.transaction(Oa,"readwrite"),l=o.objectStore(Oa),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(ci,"readwrite");let h=u.objectStore(ci).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(Oa);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=f=>(s.close(),r(h.error))}},c.onerror=h=>(s.close(),r(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};hi.URL_SCHEME="indexeddb://";var xw=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(hi.URL_SCHEME)?QI(e.slice(hi.URL_SCHEME.length)):null;Tt.registerSaveRouter(xw);Tt.registerLoadRouter(xw);function QI(e){return new hi(e)}function eS(e){return e.startsWith(hi.URL_SCHEME)?e.slice(hi.URL_SCHEME.length):e}var tS=class{constructor(){this.indexedDB=gw()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Gf,qf);n.onupgradeneeded=()=>Xf(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(Oa,"readonly"),s=a.objectStore(Oa).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=eS(e),new Promise((t,n)=>{let r=this.indexedDB.open(Gf,qf);r.onupgradeneeded=()=>Xf(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(Oa,"readwrite"),i=s.objectStore(Oa),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=a.transaction(ci,"readwrite");let h=l.objectStore(ci).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};c.onsuccess=u,c.onerror=h=>(u(),a.close(),n(o.error))}},o.onerror=c=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},la="/",hl="tensorflowjs_models",ww="info",nS="model_topology",rS="weight_specs",aS="weight_data",sS="model_metadata";function bw(e){return{info:[hl,e,ww].join(la),topology:[hl,e,nS].join(la),weightSpecs:[hl,e,rS].join(la),weightData:[hl,e,aS].join(la),modelMetadata:[hl,e,sS].join(la)}}function iS(e){let t=e.split(la);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(la)}function oS(e){return e.startsWith(di.URL_SCHEME)?e.slice(di.URL_SCHEME.length):e}var di=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=bw(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=Ku(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,UI(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=HI(s),t}};di.URL_SCHEME="localstorage://";var _w=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(di.URL_SCHEME)?lS(e.slice(di.URL_SCHEME.length)):null;Tt.registerSaveRouter(_w);Tt.registerLoadRouter(_w);function lS(e){return new di(e)}var uS=class{constructor(){M(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=hl+la,n=la+ww;for(let r=0;r<this.LS.length;++r){let a=this.LS.key(r);if(a.startsWith(t)&&a.endsWith(n)){let s=iS(a);e[s]=JSON.parse(this.LS.getItem(a))}}return e}async removeModel(e){e=oS(e);let t=bw(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},dl="://",er=class{constructor(){this.managers={}}static getInstance(){return er.instance==null&&(er.instance=new er),er.instance}static registerManager(e,t){M(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(dl)&&(e=e.slice(0,e.indexOf(dl))),M(e.length>0,()=>"scheme must not be an empty string.");let n=er.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function xd(e){if(e.indexOf(dl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${er.getSchemes().join(",")}`);return{scheme:e.split(dl)[0],path:e.split(dl)[1]}}async function vw(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Tt.getLoadHandlers(e);M(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=Tt.getSaveHandlers(t);M(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=xd(e).scheme,l=xd(e).path,c=o===xd(e).scheme,u=await a.load();n&&c&&await er.getManager(o).removeModel(l);let h=await i.save(u);return n&&!c&&await er.getManager(o).removeModel(l),h.modelArtifactsInfo}async function cS(){let e=er.getSchemes(),t={};for(let n of e){let r=await er.getManager(n).listModels();for(let a in r){let s=n+dl+a;t[s]=r[a]}}return t}async function hS(e){let t=xd(e);return er.getManager(t.scheme).removeModel(t.path)}async function dS(e,t){return vw(e,t,!1)}async function pS(e,t){return vw(e,t,!0)}var fS=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new fS);try{er.registerManager(di.URL_SCHEME,new uS)}catch(e){}try{er.registerManager(hi.URL_SCHEME,new tS)}catch(e){}}var mS={importFetch:()=>_9()},Kf,AS=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(Kf==null&&(Kf=mS.importFetch()),Kf(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new AS);function Be(e,t="float32",n){return t=t||"float32",Ef(e),new Ot(e,t,n)}function yS(e,t){let n=R(e,"x","cast");if(!Xx(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return $.runKernel(As,r,a)}var ge=D({cast_:yS});function gS(e){let t={x:R(e,"x","clone","string_or_numeric")};return $.runKernel(Es,t)}var Wr=D({clone_:gS});function kw(e,t=!1){console.log(e.toString(t))}cw();var xS={buffer:Be,cast:ge,clone:Wr,print:kw};RI(xS);var Nn={};Me(Nn,{browserFiles:()=>wS,browserHTTPRequest:()=>_S,concatenateArrayBuffers:()=>Hf,copyModel:()=>dS,decodeWeights:()=>mw,encodeWeights:()=>VI,fromMemory:()=>vS,getLoadHandlers:()=>JI,getModelArtifactsInfoForJSON:()=>Ku,getSaveHandlers:()=>YI,http:()=>Yf,isHTTPScheme:()=>Zf,listModels:()=>cS,loadWeights:()=>bS,moveModel:()=>pS,registerLoadRouter:()=>ZI,registerSaveRouter:()=>KI,removeModel:()=>hS,weightsLoaderFactory:()=>Iw,withSaveHandler:()=>kS});var IS="model",SS=".json",NS=".weights.bin";function Sw(e){return new Promise(t=>setTimeout(t)).then(e)}var pl=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(pl.URL_SCHEME)&&(e=e.slice(pl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=IS),this.modelTopologyFileName=e+SS,this.weightDataFileName=e+NS}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await Sw(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Sw(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Ku(e)}}}};pl.URL_SCHEME="downloads://";var TS=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let u=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(f=>{h.push(f),d.push(null)}),u.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(f=>{let m=new FileReader;m.onload=A=>{let y=A.target.result,g=h.indexOf(f);if(d[g]=y,d.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:u,weightData:Hf(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},m.onerror=A=>r(`Failed to weights data from file of path '${f}'.`),m.readAsArrayBuffer(c[f])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>yw(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=yw(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},CS=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(pl.URL_SCHEME)?ES(e.slice(pl.URL_SCHEME.length)):null;Tt.registerSaveRouter(CS);function ES(e="model"){return new pl(e)}function wS(e){return new TS(e)}function Nw(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(c=>{let u=n+ ++a/e.length*(r-n);return t(u),c}),l);function i(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),M(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function Tw(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,r=e.map(c=>n(c,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await Nw(r,t.onProgress,a,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await Nw(i,t.onProgress,o,l)}async function bS(e,t="",n,r){return Iw(a=>Tw(a,{requestInit:r}))(e,t,n)}function Iw(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=jf[y]*Et(A.shape),x=()=>{a[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:A,groupOffset:m,sizeBytes:g})};r!=null?r.forEach((v,w)=>{v===A.name&&(x(),i[w]=!0)}):x(),o.push(A.name),m+=g})}),!i.every(p=>p)){let p=r.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,f,m)=>(f&&p.push(m),p),[]),c=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;c.push(m)})});let u=await e(c),h={},d=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let x=0;x<f;x++)m+=u[d+x].byteLength;let A=new ArrayBuffer(m),y=new Uint8Array(A),g=0;for(let x=0;x<f;x++){let v=new Uint8Array(u[d+x]);y.set(v,g),g+=v.byteLength}s[p].forEach(x=>{let v=A.slice(x.groupOffset,x.groupOffset+x.sizeBytes),w=mw(v,[x.manifestEntry]);for(let b in w)h[b]=w[b]}),d+=f}),h}}var RS="application/octet-stream",MS="application/json",Jf=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:MS}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:RS}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:Ku(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let f=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?f+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":f+=" Please make sure the server is serving valid JSON for this request.",new Error(f)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;r!=null&&([c,u]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=FS(t),a=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(a+u+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await Tw(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Hf(l)]}};Jf.URL_SCHEME_REGEX=/^https?:\/\//;function FS(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function Zf(e){return e.match(Jf.URL_SCHEME_REGEX)!=null}var Ew=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Zf(r)):n=Zf(e),n)return Yf(e,t)}return null};Tt.registerSaveRouter(Ew);Tt.registerLoadRouter(Ew);function Yf(e,t){return new Jf(e,t)}function _S(e,t){return Yf(e,t)}var Qf=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},$S=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function vS(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Qf(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Qf({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Qf({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function kS(e){return new $S(e)}var Cw={};Me(Cw,{confusionMatrix:()=>DS});function OS(e,t,n=!1,r=!1){let a=R(e,"a","matMul"),s=R(t,"b","matMul");[a,s]=vt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return $.runKernel(ms,i,o)}var Ve=D({matMul_:OS});function zS(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return $.runKernel(Ws,a,s)}var fl=D({oneHot_:zS});function PS(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{M(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return $.runKernel(si,r,a)}var Je=D({transpose_:PS});function LS(e,t,n){let r=R(e,"labels","confusionMatrix"),a=R(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),M(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),M(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=fl(ge(r,"int32"),n),i=fl(ge(a,"int32"),n),o=Je(s),l=Ve(o,i);return ge(l,"int32")}var DS=D({confusionMatrix_:LS}),pi={};Me(pi,{fromPixels:()=>VS,fromPixelsAsync:()=>WS,toPixels:()=>BS});function wd(e,t,n){if(cs(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Lr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Da(e,t,r,n)}var ml;function Rw(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(pd(dd,$.backendName)!=null){let d={pixels:e},p={numChannels:t};return $.runKernel(dd,d,p)}let[l,c]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:r||n?u=e.data:(s||a||o)&&(ml==null&&(ml=document.createElement("canvas").getContext("2d")),ml.canvas.width=l,ml.canvas.height=c,ml.drawImage(e,0,0,l,c),u=ml.getImageData(0,0,l,c).data);let h;if(t===4)h=new Int32Array(u);else{let d=l*c;h=new Int32Array(d*t);for(let p=0;p<d;p++)for(let f=0;f<t;++f)h[p*t+f]=u[p*4+f]}return wd(h,[c,l,t],"int32")}function jS(e){return e!=null&&e.data instanceof Uint8Array}function US(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function HS(e){return e!=null&&e.width!==0&&e.height!==0}function GS(e){return US()&&!(e instanceof ImageBitmap)&&HS(e)&&!jS(e)}async function WS(e,t=3){let n=null;if(J().getBool("WRAP_TO_IMAGEBITMAP")&&GS(e)){let r;try{r=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(a){r=null}r!=null&&r.width===e.width&&r.height===e.height?n=r:n=e}else n=e;return Rw(n,t)}async function BS(e,t){let n=R(e,"img","toPixels");if(!(e instanceof Pe)){let c=n;n=ge(c,"int32"),c.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[r,a]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let c=0;c<r*a;++c){let u=[0,0,0,255];for(let d=0;d<s;d++){let p=i[c*s+d];if(n.dtype==="float32"){if(p<0||p>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(u[0]=p*o,u[1]=p*o,u[2]=p*o):u[d]=p*o}let h=c*4;l[h+0]=Math.round(u[0]),l[h+1]=Math.round(u[1]),l[h+2]=Math.round(u[2]),l[h+3]=Math.round(u[3])}if(t!=null){t.width=a,t.height=r;let c=t.getContext("2d"),u=new ImageData(l,a,r);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var VS=D({fromPixels_:Rw}),em={};Me(em,{prepareAndValidate:()=>Mw});function Mw(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Et(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;h<a.length-1;++h)i*=a[h];let o=e.shape,l=a.slice();l.pop();let c=1;for(let h=s;h<n;++h)c*=o[h],l.push(o[h]);let u=[...so(e.shape).map(h=>h/c),1].slice(0,s);return[l,i,c,u]}var tm={};Me(tm,{calculateShapes:()=>Fw,validateInput:()=>rm,validateUpdateShape:()=>nm});function nm(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank<a)throw new Error(s+` update.rank < ${a}. `);if(e.length<r+(n.rank-a))throw new Error(s+` Output shape length < ${r+(n.rank-a)}`);if(n.rank!==a+e.length-r)throw new Error(s+` update.rank != ${a+e.length-r}`);for(let i=0;i<a;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-a;++i)if(n.shape[i+a]!==e[i+r])throw new Error(s+` updates.shape[${i+a}] (${n.shape[i+a]}) != shape[${i+a}] (${e[i+a]})`)}function rm(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}nm(n,t,e)}function Fw(e,t,n){let r=t.shape.length,a=r>1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;h<s;++h)i*=n[h];let o=a<1?1:a,l=Et(t.shape)/o,c=[...so(n.slice(0,a)),1],u=Et(n);return{sliceRank:a,numUpdates:l,sliceSize:i,strides:c,outputSize:u}}var un={};Me(un,{assertParamsValid:()=>qS,computeFlatOffset:()=>KS,computeOutShape:()=>$w,getNormalizedAxes:()=>Ow,isSliceContinous:()=>XS,maskToAxes:()=>bd,parseSliceParams:()=>Vw,sliceInfo:()=>ZS,startForAxis:()=>Ww,startIndicesWithElidedDims:()=>zw,stopForAxis:()=>Bw,stopIndicesWithElidedDims:()=>Pw,stridesForAxis:()=>Lw,stridesWithElidedDims:()=>Dw});function qS(e,t,n){let r=e.shape.length;M(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),M(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a<r;++a)M(t[a]+n[a]<=e.shape[a],()=>`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function bd(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function $w(e,t,n){let r=[];for(let a=0;a<e.length;a++)r[a]=Math.ceil((t[a]-e[a])/n[a]);return r}function Dw(e,t,n,r){let a=[...e];for(let s=a.length;s<r.length;s++)a.push(1);for(let s=0;s<n;s++)s===0?a[t]=1:(a.splice(t,0,1),a.pop());return a}function jw(e,t,n){return n<=e?n:n-(t-1)}function Uw(e,t){let n=[];for(let r=0;r<e;r++)n.push(t+r);return n}function Ow(e,t,n,r,a,s,i,o,l){let c=e.length,u=new Array(c),h=new Array(c),d=new Array(c);if(t.length&&n>0){let p=t[0],f=n+1;u=zw(i,p,f,r,e),h=Pw(o,p,f,a,e),d=Dw(s,p,f,e)}else for(let p=0;p<c;p++)u[p]=Ww(i,r,s,e,p,l),h[p]=Bw(o,a,s,e,p,l),d[p]=Lw(s,p,l);return{begin:u,end:h,strides:d}}function zw(e,t,n,r,a){let s=[...a],i=Uw(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=jw(t,n,o),c=r[l];e&1<<l&&(c=0),s[o]=c}return s}function Pw(e,t,n,r,a){let s=[...a],i=Uw(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=jw(t,n,o),c=r[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),s[o]=c}for(let o=0;o<s.length;o++){let l=a[o];s[o]<0&&(s[o]+=l),s[o]=bu(0,s[o],a[o])}return s}function Lw(e,t,n){let r=e[t];return(n&1<<t||r==null)&&(r=1),r}function Ww(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=bu(0,i,l-1),i}function Bw(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=bu(0,i,l):i=bu(-1,i,l-1),i}function XS(e,t,n){let r=n.length;for(let a=0;a<n.length;a++)if(n[a]>1){r=a;break}for(let a=r+1;a<n.length;a++)if(t[a]>0||n[a]!==e[a])return!1;return!0}function KS(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r<e.length-1;r++)n+=e[r]*t[r];return n}function Vw(e,t,n){let r,a=e.shape.length;typeof t=="number"?r=[t,...new Array(a-1).fill(0)]:t.length<a?r=t.concat(new Array(a-t.length).fill(0)):r=t.slice(),r.forEach(i=>{M(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.length<a?s=n.concat(new Array(a-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(M(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function ZS(e,t,n,r,a,s,i,o,l){let c=t.slice(),u=n.slice(),h=r;r==null&&(h=new Array(c.length));let d=bd(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-c.length,f=bd(o),m=e.slice();f.forEach(b=>{c[b]=0,u[b]=1,m.splice(b,0,1)});let{begin:A,end:y,strides:g}=Ow(m,d,p,c,u,h,a,s,i);c=A,u=y,h=g;let x=bd(l);x.forEach(b=>{u[b]=c[b]+1,h[b]=1});let v=$w(c,u,h),w=v.filter((b,k)=>x.indexOf(k)===-1);return{nonStrided:h.every(b=>b===1),$begin:c,$end:u,$strides:h,size:v,newShape:m,outShape:w}}var re={};Me(re,{Serializable:()=>Hw,SerializationMap:()=>fi,registerClass:()=>za});var Hw=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},fi=class{constructor(){this.classNameMap={}}static getMap(){return fi.instance==null&&(fi.instance=new fi),fi.instance}static register(e){fi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function za(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),fi.register(e)}var Gw={};Me(Gw,{TEST_EPSILON_FLOAT16:()=>qw,encodeStrings:()=>Xw,expectArrayBuffersEqual:()=>nN,expectArraysClose:()=>YS,expectArraysEqual:()=>QS,expectNumbersClose:()=>eN,expectPromiseToFail:()=>JS,expectValuesInRange:()=>tN,testEpsilon:()=>am});var rN=.001,qw=.1;function YS(e,t,n){return n==null&&(n=am()),sm(e,t,(r,a)=>im(r,a,n))}function am(){return $.backend.floatPrecision()===32?rN:qw}function sm(e,t,n){let r=!0;if((rn(e)||rn(t))&&(r=!1),rn(e)&&rn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Lr(e),o=Lr(t);if(!oa(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=rn(e)?e:hs(e),s=rn(t)?t:hs(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}.
Actual: ${a}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=a[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${a}.
Expected: ${s}.`)}}function JS(e,t){e().then(()=>t.fail(),()=>t())}function QS(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ta(e)||Ta(e[0])||Ta(t)||Ta(t[0])?sm(e,n,(r,a)=>r==a):sm(e,t,(r,a)=>im(r,a,0))}function eN(e,t,n){if(n==null&&(n=am()),!im(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function im(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function tN(e,t,n){for(let r=0;r<e.length;r++)if(e[r]<t||e[r]>n)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function nN(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function Xw(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?Xw(n):e[t]=Bu(n)}return e}var aN="3.5.0";function sN(){J().set("PROD",!0)}function iN(){J().set("DEBUG",!0)}function oN(){J().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function om(e){J().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}MI(om);function lN(){$.disposeVariables()}function ua(){return $}function _d(){return $.memory()}function an(e){return $.profile(e)}function z(e,t){return $.tidy(e,t)}function _e(e){Of(e).forEach(t=>t.dispose())}function Ht(e){return $.keep(e)}function uN(e){return $.time(e)}function cN(e){return $.setBackend(e)}function hN(){return $.ready()}function dN(){return $.backendName}function pN(e){$.removeBackend(e)}function lm(e){return $.findBackend(e)}function fN(e){return $.findBackendFactory(e)}function Al(e,t,n=1){return $.registerBackend(e,t,n)}function Kw(){return $.backend}function mN(e,t){J().setPlatform(e,t)}function AN(e,t){let n=R(e,"a","add"),r=R(t,"b","add");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ca,a)}var se=D({add_:AN});function yN(e,t){let n=R(e,"a","floorDiv"),r=R(t,"b","floorDiv");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ss,a)}var vd=D({floorDiv_:yN});function gN(e,t){let n=R(e,"a","div"),r=R(t,"b","div");if([n,r]=vt(n,r),n.dtype==="int32"&&r.dtype==="int32")return vd(n,r);let a={a:n,b:r},s={};return $.runKernel(vs,a,s)}var Ae=D({div_:gN});function xN(e,t){let n=R(e,"a","mul"),r=R(t,"b","mul");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Ls,a)}var P=D({mul_:xN});function wN(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return $.runKernel(Su,n)}else{let n={x:t};return $.runKernel(oo,n)}}var zt=D({abs_:wN});function bN(e){let t={x:R(e,"x","acos")};return $.runKernel(lo,t)}var um=D({acos_:bN});function _N(e){let t={x:R(e,"x","acosh")};return $.runKernel(uo,t)}var cm=D({acosh_:_N});function vN(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>R(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!oa(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return $.runKernel(ds,r)}var Pa=D({addN_:vN});function kN(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return $.runKernel(co,r,a)}var kd=D({all_:kN});function IN(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return $.runKernel(ho,r,a)}var Zu=D({any_:IN});function SN(e,t=0){let n={x:R(e,"x","argMax")},r={axis:t};return $.runKernel(ps,n,r)}var mi=D({argMax_:SN});function NN(e,t=0){let n={x:R(e,"x","argMin")},r={axis:t};return $.runKernel(vu,n,r)}var hm=D({argMin_:NN});function TN(e){let t={x:R(e,"x","asin")};return $.runKernel(po,t)}var dm=D({asin_:TN});function EN(e){let t={x:R(e,"x","asinh")};return $.runKernel(fo,t)}var pm=D({asinh_:EN});function CN(e){let t={x:R(e,"x","atan")};return $.runKernel(mo,t)}var fm=D({atan_:CN});function RN(e,t){let n=R(e,"a","atan2"),r=R(t,"b","atan2");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(yo,a)}var mm=D({atan2_:RN});function MN(e){let t={x:R(e,"x","atanh")};return $.runKernel(Ao,t)}var Am=D({atanh_:MN});function FN(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=Zw(a);return Yu(e,o,n,s,r,null,null,l)}function Yw(e,t,n,r,a,s,i="channelsLast"){let[o,l]=Id(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Yu(e,c,n,r,a,s,!1,i)}function $N(e,t,n,r,a,s,i="NDHWC"){let[o,l,c]=ym(t),u,h;if(i==="NDHWC")h="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Jw(e,u,n,r,a,!1,h,s)}function Yu(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,c,u,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,h]=e;else if(o==="channelsFirst")[l,h,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,f]=t,[m,A]=Id(n),[y,g]=Id(r),x=yl(d,y),v=yl(p,g),{padInfo:w,outHeight:b,outWidth:k}=DN(a,c,u,m,A,x,v,s,o),N=i?f*h:f,C;return o==="channelsFirst"?C=[l,N,b,k]:o==="channelsLast"&&(C=[l,b,k,N]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:h,outHeight:b,outWidth:k,outChannels:N,padInfo:w,strideHeight:m,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:g,inShape:e,outShape:C,filterShape:t}}function Jw(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,c,u,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,h,d]=e;else if(i==="channelsFirst")[l,d,c,u,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,f,m,,A]=t,[y,g,x]=ym(n),[v,w,b]=ym(r),k=yl(p,v),N=yl(f,w),C=yl(m,b),{padInfo:F,outDepth:O,outHeight:L,outWidth:V}=ON(a,c,u,h,y,g,x,k,N,C,o),j=s?A*d:A,U;return i==="channelsFirst"?U=[l,j,O,L,V]:i==="channelsLast"&&(U=[l,O,L,V,j]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:h,inChannels:d,outDepth:O,outHeight:L,outWidth:V,outChannels:j,padInfo:F,strideDepth:y,strideHeight:g,strideWidth:x,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:k,effectiveFilterHeight:N,effectiveFilterWidth:C,dilationDepth:v,dilationHeight:w,dilationWidth:b,inShape:e,outShape:U,filterShape:t}}function zN(e,t,n,r,a){r==null&&(r=gm(e,t,n));let s=e[0],i=e[1],o=Ai((s-t+2*r)/n+1,a),l=Ai((i-t+2*r)/n+1,a);return[o,l]}function PN(e,t,n,r,a,s){a==null&&(a=gm(e,t,r));let i=e[0],o=e[1],l=e[2],c=Ai((i-t+2*a)/r+1,s),u=Ai((o-t+2*a)/r+1,s),h=Ai((l-t+2*a)/r+1,s);return[c,u,h,n]}function gm(e,t,n,r=1){let a=yl(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function Id(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function ym(e){return typeof e=="number"?[e,e,e]:e}function yl(e,t){return t<=1?e:e+(e-1)*(t-1)}function DN(e,t,n,r,a,s,i,o,l){let c,u,h;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=zN([t,n],s,r,e,o);u=d[0],h=d[1]}else if(e==="same"){u=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(u-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),f=Math.floor(d/2),m=d-f,A=Math.floor(p/2),y=p-A;c={top:f,bottom:m,left:A,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];c={top:d,bottom:p,left:f,right:m,type:d===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=Ai((t-s+d+p)/r+1,o),h=Ai((n-i+f+m)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:h}}function ON(e,t,n,r,a,s,i,o,l,c,u){let h,d,p,f;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let m=PN([t,n,r,1],o,1,a,e,u);d=m[0],p=m[1],f=m[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),f=Math.ceil(r/i);let m=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(f-1)*i+c-r,g=Math.floor(m/2),x=m-g,v=Math.floor(A/2),w=A-v,b=Math.floor(y/2),k=y-b;h={top:v,bottom:w,left:b,right:k,front:g,back:x,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),f=Math.ceil((r-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:f}}function Ai(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function La(e){let[t,n,r]=Id(e);return t===1&&n===1&&r===1}function Br(e,t){return La(e)||La(t)}function Zw(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function LN(e,t){let n={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return $.runKernel(Xo,n,r)}var H=D({reshape_:LN});function WN(e,t,n,r,a){let s=R(e,"x","avgPool","float32"),i=1;M(Br(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&M(Ut(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(fs,c,u);return h=ge(h,s.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Ju=D({avgPool_:WN});function BN(e,t,n,r,a,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Ut(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(ku,c,u);return h=ge(h,o.dtype),l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var xm=D({avgPool3d_:BN});function VN(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=Xu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),n.length===1)return Wr(n[0]);let r=n,a={axis:t};return $.runKernel(go,r,a)}var rt=D({concat_:VN});function jN(e){let t={x:R(e,"x","sigmoid")};return $.runKernel(Ys,t)}var Tn=D({sigmoid_:jN});function UN(e,t,n){let r=R(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return $.runKernel(Jo,a,s)}var Re=D({slice_:UN});function HN(e){let t={x:R(e,"x","tanh")};return $.runKernel(ai,t)}var yi=D({tanh_:HN});function GN(e,t,n,r,a,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),c=R(r,"data","basicLSTMCell"),u=R(a,"c","basicLSTMCell"),h=R(s,"h","basicLSTMCell"),d=rt([c,h],1),p=Ve(d,o),f=se(p,l),m=f.shape[0],A=f.shape[1]/4,y=[m,A],g=Re(f,[0,0],y),x=Re(f,[0,A],y),v=Re(f,[0,A*2],y),w=Re(f,[0,A*3],y),b=se(P(Tn(g),yi(x)),P(u,Tn(se(i,v)))),k=P(yi(b),Tn(w));return[b,k]}var qN=D({basicLSTMCell_:GN});function XN(e,t,n){let r=R(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);M(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return $.runKernel(Iu,s,i)}var Qu=D({batchToSpaceND_:XN});function KN(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function ZN(e,t,n,r,a,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;r!=null&&(u=R(r,"offset","batchNorm")),M(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:KN(i),scale:c,offset:u,mean:o,variance:l},d={varianceEpsilon:s},p=$.runKernel(Ns,h,d);return H(p,i.shape)}var gi=D({batchNorm_:ZN});function YN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),M(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),gi(i,o,l,u,c,s)}var Qw=D({batchNorm2d_:YN});function JN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),M(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),gi(i,o,l,u,c,s)}var eb=D({batchNorm3d_:JN});function QN(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),M(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),M(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),gi(i,o,l,u,c,s)}var tb=D({batchNorm4d_:QN});function eT(e,t,n){let r=R(e,"x","bincount"),a=R(t,"weights","bincount");M(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return $.runKernel(zh,s,i)}var nb=D({bincount_:eT});function tT(e,t){let n=R(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=H(n,l)}let a=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Wr(n);let i={x:n},o={reps:s};return $.runKernel(Ma,i,o)}var gl=D({broadcastTo_:tT});function nT(e){let t={x:R(e,"x","ceil")};return $.runKernel(ys,t)}var wm=D({ceil_:nT});function rT(e,t,n){let r=R(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return $.runKernel(Ra,a,s)}var En=D({clipByValue_:rT});function aT(e){return rt(e,0)}var rb=D({concat1d_:aT});function sT(e,t){return rt(e,t)}var xl=D({concat2d_:sT});function iT(e,t){return rt(e,t)}var ab=D({concat3d_:iT});function oT(e,t){return rt(e,t)}var sb=D({concat4d_:oT});function lT(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","conv2d"),l=R(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&M(Ut(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?c.shape[3]:c.shape[1];M(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),M(Br(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:c,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},f=$.runKernel(gs,d,p);return u?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var ca=D({conv2d_:lT});function uT(e,t,n,r,a="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1]])),M(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&M(Ut(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(Br(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),M(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=H(c,[c.shape[0],1,c.shape[1],c.shape[2]]),p=ca(d,h,[1,n],r,"NHWC",[1,s],i);return u?H(p,[p.shape[2],p.shape[3]]):H(p,[p.shape[0],p.shape[2],p.shape[3]])}var Sd=D({conv1d_:uT});function cT(e,t,n,r,a,s="NHWC",i){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),M(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];M(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),M(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&M(Ut(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},f=$.runKernel(xs,d,p);return c?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var bm=D({conv2DBackpropInput_:cT});function hT(e,t,n,r,a,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return bm(n,i,o,r,a,"NHWC",s)}var Nd=D({conv2dTranspose_:hT});function dT(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),M(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),M(Br(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let u={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=$.runKernel(Nu,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var _m=D({conv3d_:dT});function pT(e,t,n,r,a){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];M(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),M(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=$.runKernel(Bh,u,h);return o?H(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var ib=D({conv3DBackpropInput_:pT});function fT(e,t,n,r,a){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return ib(n,s,i,r,a)}var ob=D({conv3dTranspose_:fT});function mT(e){let t={x:R(e,"x","cos")};return $.runKernel(ws,t)}var ec=D({cos_:mT});function AT(e){let t={x:R(e,"x","cosh")};return $.runKernel(xo,t)}var Td=D({cosh_:AT});function yT(e,t=0,n=!1,r=!1){let a={x:R(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return $.runKernel(bs,a,s)}var Ed=D({cumsum_:yT});function gT(e,t,n,r=!1){let a=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");M(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),M(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return $.runKernel(Vh,i,o)}var lb=D({denseBincount_:gT});function xT(e,t,n="NHWC"){let r=R(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${a} and ${t} for depthToSpace with input shape
${r.shape}`),M(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${r.shape}`),M(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return $.runKernel(bo,o,l)}var vm=D({depthToSpace_:xT});function wT(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d"),l=R(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&M(Ut(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:c,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=$.runKernel(_s,h,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var wl=D({depthwiseConv2d_:wT});function bT(e){let t={x:R(e,"x","diag")};return $.runKernel(Hh,t)}var _T=D({diag_:bT});function vT(e,t,n,r,a=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");M(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),M(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),M(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=$.runKernel(Tu,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var km=D({dilation2d_:vT});function kT(e,t){let n=e.length,r=[];for(let a=0;a<n;a++){let s=n-1-a,i=e[s]||1;(t[t.length-1-a]||1)>1&&i===1&&r.unshift(s)}return r}function Pt(e,t){let n=[];for(let r=0;r<t.length;r++){let a=e[e.length-r-1],s=t.length-r-1,i=t[s];(a==null||a===1&&i>1)&&n.unshift(s)}return n}function ft(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a<r;a++){let s=e[e.length-a-1];s==null&&(s=1);let i=t[t.length-a-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function IT(e,t){let n=R(e,"a","equal"),r=R(t,"b","equal");[n,r]=vt(n,r),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(ko,a)}var Wa=D({equal_:IT});function ST(e,t,n){let r=R(t,"a","where"),a=R(n,"b","where"),s=R(e,"condition","where","bool"),i=ft(ft(s.shape,r.shape),a.shape),o=gl(s,i),l=gl(r,i),c=gl(a,i),u={condition:o,t:l,e:c};return $.runKernel(Zo,u)}var Cn=D({where_:ST});function NT(e){let t={x:R(e,"x","zerosLike")};return $.runKernel(il,t)}var He=D({zerosLike_:NT});function TT(e,t){let n=R(e,"a","div"),r=R(t,"b","div");[n,r]=vt(n,r);let a=Ae(n,r),s=He(a),i=Wa(r,s);return Cn(i,s,a)}var Im=D({divNoNan_:TT});function ET(e,t){let n=R(e,"t1","dot"),r=R(t,"t2","dot");M((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(M(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=H(n,[1,-1]),o=H(r,[-1,1]),l=Ve(i,o);return H(l,[])}else if(n.rank===1&&r.rank===2){let i=H(n,[1,-1]),o=H(r,[r.shape[0],r.shape[1]]),l=Ve(i,o);return H(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=H(r,[-1,1]),o=Ve(n,i);return H(o,[o.size])}else{let i=H(r,[r.shape[0],r.shape[1]]);return Ve(n,i)}}var ub=D({dot_:ET});function CT(e,...t){let n=t.map((a,s)=>R(a,`tensors${s}`,"einsum")),r={equation:e};return $.runKernel(Xh,n,r)}var cb=D({einsum_:CT});function RT(e){let t={x:R(e,"x","elu")};return $.runKernel(_o,t)}var bl=D({elu_:RT});function MT(e){let t=R(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ge(t,"float32"));let n={x:t};return $.runKernel(vo,n)}var Sm=D({erf_:MT});function FT(e){let t={x:R(e,"x","exp")};return $.runKernel(ks,t)}var tr=D({exp_:FT});function $T(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return $.runKernel(Io,r,a)}var Qt=D({expandDims_:$T});function DT(e){let t={x:R(e,"x","expm1")};return $.runKernel(So,t)}var Nm=D({expm1_:DT});function OT(e,t){let n=R(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return $.runKernel(Ma,r,a)}var Ba=D({tile_:OT});function zT(e,t,n,r="float32"){t==null&&(t=e);let a=Be([e,t],r),s=e<=t?e:t;for(let o=0;o<s;++o)a.set(1,o,o);let i=H(a.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Ba(Qt(i,0),[n[0],1,1]);if(n.length===2)return Ba(Qt(Qt(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ba(Qt(Qt(Qt(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Tm=D({eye_:zT});function tc(e,t,n){let r={shape:e,value:t,dtype:n};return $.runKernel(Eu,{},r)}function PT(e){let t={x:R(e,"x","floor")};return $.runKernel(Is,t)}var _l=D({floor_:PT});function LT(e,t,n=0,r=0){let a=R(e,"x","gather"),s=R(t,"indices","gather","int32"),i={x:a,indices:s},o={axis:n,batchDims:r};return $.runKernel(To,i,o)}var xi=D({gather_:LT});function WT(e,t){let n=R(e,"a","greater"),r=R(t,"b","greater");[n,r]=vt(n,r),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Co,a)}var pr=D({greater_:WT});function BT(e,t){let n=R(e,"a","greaterEqual"),r=R(t,"b","greaterEqual");[n,r]=vt(n,r),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Ts,a)}var Va=D({greaterEqual_:BT});function VT(e){let t={input:R(e,"input","imag")};return $.runKernel(Jh,t)}var Cd=D({imag_:VT});function jT(e){let t={x:R(e,"x","isFinite")};return $.runKernel(Ro,t)}var hb=D({isFinite_:jT});function UT(e){let t={x:R(e,"x","isInf")};return $.runKernel(Mo,t)}var db=D({isInf_:UT});function HT(e){let t={x:R(e,"x","isNaN")};return $.runKernel(Fo,t)}var Em=D({isNaN_:HT});function GT(e,t=.2){let n={x:R(e,"x","leakyRelu")},r={alpha:t};return $.runKernel(Cs,n,r)}var nc=D({leakyRelu_:GT});function qT(e,t){let n=R(e,"a","less"),r=R(t,"b","less");[n,r]=vt(n,r),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel($o,a)}var Rd=D({less_:qT});function XT(e,t){let n=R(e,"a","lessEqual"),r=R(t,"b","lessEqual");[n,r]=vt(n,r),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Do,a)}var wi=D({lessEqual_:XT});function pb(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let r={start:e,stop:t,num:n};return $.runKernel(Qh,{},r)}function KT(e,t=5,n=1,r=1,a=.5){let s=R(e,"x","localResponseNormalization");M(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),M(Ut(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:r,beta:a},u=$.runKernel(Mu,l,c);return o?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Cm=D({localResponseNormalization_:KT});function ZT(e){let t={x:R(e,"x","log")};return $.runKernel(Rs,t)}var Pn=D({log_:ZT});function YT(e){let t={x:R(e,"x","log1p")};return $.runKernel(Oo,t)}var Md=D({log1p_:YT});function JT(e){return M(Ea(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=R(t,"x","tf.grad","string_or_numeric"),a=n!=null?R(n,"dy","tf.grad"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(r),[r],a);return a!=null&&ln(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Fd(i),i[0]})}}function QT(e){return M(Ea(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=Xu(t,"args","tf.grads","string_or_numeric"),a=n!=null?R(n,"dy","tf.grads"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(...r),r,a);return a!=null&&ln(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Fd(i),i})}}function eE(e){return M(Ea(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof Pe,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof Pe,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=$.gradients(()=>e(t),[t],n);return Fd(r),{grad:r[0],value:a}}}function tE(e){return M(Ea(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(a=>a instanceof Pe),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof Pe,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=$.gradients(()=>e(...t),t,n);return n!=null&&ln(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Fd(r.grads),r}}function fb(e,t){M(Ea(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(c=>c instanceof Hu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in $.registeredVariables)t.push($.registeredVariables[c])}let r=n?t.filter(c=>!c.trainable):null,a=t.length;t=t.filter(c=>c.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=$.gradients(e,t,null,s);M(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),r!=null&&r.forEach(c=>l[c.name]=null),{value:i,grads:l}}function Vr(e){return $.customGrad(e)}function Fd(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function nE(e){let t={x:R(e,"x","neg")};return $.runKernel(Lo,t)}var kt=D({neg_:nE});function rE(e){let t={x:R(e,"x","softplus")};return $.runKernel(tl,t)}var bi=D({softplus_:rE});function aE(e){let t=R(e,"x","logSigmoid");return Vr(n=>({value:kt(bi(kt(n))),gradFunc:r=>P(r,Tn(kt(n)))}))(t)}var mb=D({logSigmoid_:aE});function sE(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return $.runKernel(Ms,r,a)}var Rn=D({max_:sE});function iE(e,t){let n=R(e,"a","sub"),r=R(t,"b","sub");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(ni,a)}var ye=D({sub_:iE});function oE(e,t=null,n=!1){let r=R(e,"x","sum");r.dtype==="bool"&&(r=ge(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(Qs,a,s)}var Te=D({sum_:oE});function lE(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Vr((r,a)=>{let s=!0,i=Rn(r,t,!0),o=ye(r,i),l=ye(ge(o,"float32"),Pn(Te(tr(o),t,s)));return a([l]),{value:l,gradFunc:(c,u)=>{let[h]=u,d=!0,p=tr(h);return ye(c,P(Te(c,t,d),p))}}})(n)}var $d=D({logSoftmax_:lE});function Rm(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function Ab(e,t,n){let r=e.length+t.length,a=[],s=0,i=0;for(let o=0;o<r;o++)n.indexOf(o)===-1?a.push(e[s++]):a.push(t[i++]);return a}function yb(e,t){let n=[],r=e.length;for(let s=0;s<r;s++)t.indexOf(s)===-1&&n.push(e[s]);let a=t.map(s=>e[s]);return[n,a]}function _i(e,t){let n=t.map(r=>1);return Ab(e,n,t)}function uE(e,t,n){M(Rm(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function gb(e,t){if(Rm(e,t))return null;let n=[];for(let r=0;r<t;++r)e.indexOf(r)===-1&&n.push(r);return e.forEach(r=>n.push(r)),n}function Mm(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function cE(e,t){let n=[];for(let r=t-e;r<t;++r)n.push(r);return n}function hE(e,t=null,n=!1){let r=R(e,"x","logSumExp"),a=hr(t,r.shape),s=Rn(r,a,!0),i=ye(r,s),o=tr(i),l=Te(o,a),c=Pn(l),u=se(H(s,c.shape),c);if(n){let h=_i(u.shape,a);return H(u,h)}return u}var Fm=D({logSumExp_:hE});function dE(e,t){let n=R(e,"a","logicalAnd","bool"),r=R(t,"b","logicalAnd","bool");ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(zo,a)}var fr=D({logicalAnd_:dE});function pE(e){let t={x:R(e,"x","logicalNot","bool")};return $.runKernel(Cu,t)}var rc=D({logicalNot_:pE});function fE(e,t){let n=R(e,"a","logicalOr","bool"),r=R(t,"b","logicalOr","bool");ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Ru,a)}var Dd=D({logicalOr_:fE});function mE(e,t){let n=R(e,"a","logicalXor","bool"),r=R(t,"b","logicalXor","bool");return ft(n.shape,r.shape),fr(Dd(e,t),rc(fr(e,t)))}var xb=D({logicalXor_:mE});function AE(e,t,n,r,a){let s=R(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),M(Br(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&M(Ut(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel($s,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var ac=D({maxPool_:AE});function yE(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Ut(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(Fu,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var $m=D({maxPool3d_:yE});function gE(e,t,n,r,a=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=$.runKernel(rd,s,i);return{result:o[0],indexes:o[1]}}var wb=D({maxPoolWithArgmax_:gE});function xE(e,t){let n=R(e,"a","maximum"),r=R(t,"b","maximum");[n,r]=vt(n,r),n.dtype==="bool"&&(n=ge(n,"int32"),r=ge(r,"int32")),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Fs,a)}var jr=D({maximum_:xE});function wE(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return $.runKernel(Ds,r,a)}var It=D({mean_:wE});function Rt(e,t="float32"){if(t==="complex64"){let r=Rt(e,"float32"),a=Rt(e,"float32");return $a(r,a)}let n=$h(Et(e),t);return $.makeTensor(n,e,t)}function Ln(e,t="float32"){if(t==="complex64"){let r=Ln(e,"float32"),a=Rt(e,"float32");return $a(r,a)}let n=Tf(Et(e),t);return $.makeTensor(n,e,t)}function bE(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let r=R(e,"x","meshgrid",e instanceof Pe?e.dtype:"float32");if(t===void 0)return[r];let a=R(t,"y","meshgrid",t instanceof Pe?t.dtype:"float32"),s=Et(r.shape),i=Et(a.shape);return n==="xy"?(r=H(r,[1,-1]),a=H(a,[-1,1]),[Ve(Ln([i,1],r.dtype),r),Ve(a,Ln([1,s],a.dtype))]):(r=H(r,[-1,1]),a=H(a,[1,-1]),[Ve(r,Ln([1,i],r.dtype)),Ve(Ln([s,1],a.dtype),a)])}function _E(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return $.runKernel(Os,r,a)}var vl=D({min_:_E});function vE(e,t){let n=R(e,"a","minimum"),r=R(t,"b","minimum");[n,r]=vt(n,r),n.dtype==="bool"&&(n=ge(n,"int32"),r=ge(r,"int32")),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(zs,a)}var kl=D({minimum_:vE});function kE(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=R(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o<r.rank;o++)M(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),M(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return $.runKernel(Ps,i,s)}var Dm=D({mirrorPad_:kE});function IE(e,t){let n=R(e,"a","mod"),r=R(t,"b","mod");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Po,a)}var Om=D({mod_:IE});function SE(e){let t=R(e,"x","square"),n={};return $.runKernel("Square",{x:t},n)}var ot=D({square_:SE});function NE(e,t=null,n=!1){e=R(e,"x","moments");let r=hr(t,e.shape),a=It(e,r,n),s=a.shape;n||(s=_i(a.shape,r));let i=ot(ye(ge(e,"float32"),H(a,s))),o=It(i,r,n);return{mean:a,variance:o}}var Od=D({moments_:NE});function TE(e,t,n,r){let a=R(t,"data","multiRNNCell"),s=Xu(n,"c","multiRNNCell"),i=Xu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h<e.length;h++){let d=e[h](o,s[h],i[h]);l.push(d[0]),l.push(d[1]),o=d[1]}let c=[],u=[];for(let h=0;h<l.length;h+=2)c.push(l[h]),u.push(l[h+1]);return[c,u]}var EE=D({multiRNNCell_:TE});function CE(e,t,n,r=!1){let a=R(e,"logits","multinomial"),s=a.size,i=a.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},c=$.runKernel(ad,o,l);return i===1?H(c,[c.size]):c}var bb=D({multinomial_:CE});function RE(e,t){let n=R(e,"a","notEqual"),r=R(t,"b","notEqual");[n,r]=vt(n,r),ft(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Wo,a)}var vi=D({notEqual_:RE});function ME(e){let t={x:R(e,"x","onesLike")};return $.runKernel(Uo,t)}var Wn=D({onesLike_:ME});function FE(e,t){let n=R(e,"v1","outerProduct"),r=R(t,"v2","outerProduct");M(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=H(n,[-1,1]),s=H(r,[1,-1]);return Ve(a,s)}var $E=D({outerProduct_:FE});function DE(e,t,n=0){let r=R(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return $.runKernel(Bs,s,a)}var ha=D({pad_:DE});function OE(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ha(e,[t],n)}var zE=D({pad1d_:OE});function PE(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ha(e,t,n)}var LE=D({pad2d_:PE});function WE(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ha(e,t,n)}var BE=D({pad3d_:WE});function VE(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ha(e,t,n)}var jE=D({pad4d_:VE});function UE(e,t,n){let r=R(e,"x","spaceToBatchND");M(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return $.runKernel(Ou,a,s)}var sc=D({spaceToBatchND_:UE});function qE(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=R(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(Br(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let c=Yw(o.shape,t,s,a,r),u=[c.dilationHeight,c.dilationWidth],h;r==="same"?h=GE([c.filterHeight,c.filterWidth],u):h=[[0,0],[0,0]];let d=u[0]===1&&u[1]===1,[p,f]=HE([c.inHeight,c.inWidth],u,h),m=d?r:"valid",A=d?o:sc(o,u,p),y=(n==="avg"?()=>Ju(A,t,s,m):()=>ac(A,t,s,m))(),g=d?y:Qu(y,u,f);return l?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function HE(e,t,n){let r=n.map(u=>u[0]),a=n.map(u=>u[1]),s=e.concat(r,a),i=t.map((u,h)=>(u-s[h]%u)%u),o=a.map((u,h)=>u+i[h]),l=t.map((u,h)=>[r[h],o[h]]),c=t.map((u,h)=>[0,i[h]]);return[l,c]}function GE(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var _b=D({pool_:qE});function XE(e,t){let n=R(e,"base","pow"),r=R(t,"exp","pow");[n,r]=vt(n,r);let a={a:n,b:r};return $.runKernel(Vs,a)}var da=D({pow_:XE});function KE(e,t){let n=R(e,"x","prelu"),r=R(t,"alpha","prelu"),a={x:n,alpha:r};return $.runKernel(js,a)}var ic=D({prelu_:KE});function ZE(e,t=null,n=!1){let r=R(e,"x","prod");r.dtype==="bool"&&(r=ge(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(Go,a,s)}var zd=D({prod_:ZE});function YE(e,t,n){let r=Et(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<r;s++)a[s]=t();return $.makeTensor(a,e,n)}var JE=D({rand_:YE}),zm=ao(d5()),Pm=class{constructor(e,t,n,r,a){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=r,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=a||Math.random();this.random=zm.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let r=this.nextVal;return this.nextVal=NaN,r}let e,t,n=!1;for(;!n;){let r,a,s;do r=2*this.random()-1,a=2*this.random()-1,s=r*r+a*a;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},QE=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=zm.alea(a.toString()),this.randn=new Pm(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),a<t||Math.log(a)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},eC=class{constructor(e=0,t=1,n,r){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=zm.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function tC(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new QE(t,n,r,a),i=Be(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var nC=D({randomGamma_:tC});function rC(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error(`Unsupported data type ${r}`);let s=new Pm(t,n,r,!1,a),i=Be(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var vb=D({randomNormal_:rC});function aC(e,t=0,n=1,r="float32",a){let s=Be(e,r),i=new eC(t,n,null,a);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Il=D({randomUniform_:aC});function Pd(e,t,n=1,r="float32"){if(n===0)throw new Error("Cannot have a step of zero");let a={start:e,stop:t,step:n,dtype:r};return $.runKernel($u,{},a)}function sC(e){let t={input:R(e,"input","real")};return $.runKernel(sd,t)}var oc=D({real_:sC});function iC(e){let t={x:R(e,"x","reciprocal")};return $.runKernel(qo,t)}var Lm=D({reciprocal_:iC});function oC(e){let t={x:R(e,"x","relu")};return $.runKernel(Us,t)}var Ur=D({relu_:oC});function lC(e){let t={x:R(e,"x","relu6")};return $.runKernel(Gs,t)}var Ld=D({relu6_:lC});function uC(e,t){let n={x:R(e,"x","reverse")},r={dims:t};return $.runKernel(qs,n,r)}var Bn=D({reverse_:uC});function cC(e){let t=R(e,"x","reverse");return M(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Bn(t,0)}var hC=D({reverse1d_:cC});function dC(e,t){let n=R(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Bn(n,t)}var pC=D({reverse2d_:dC});function fC(e,t){let n=R(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Bn(n,t)}var mC=D({reverse3d_:fC});function AC(e,t){let n=R(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Bn(n,t)}var yC=D({reverse4d_:AC});function gC(e){let t={x:R(e,"x","round")};return $.runKernel(Xs,t)}var Wm=D({round_:gC});function xC(e){let t={x:R(e,"x","rsqrt")};return $.runKernel(Ks,t)}var Wd=D({rsqrt_:xC});function xe(e,t){if((rn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&rn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Da(e,[],[],t)}function wC(e){let t={x:R(e,"x","selu")};return $.runKernel(Yo,t)}var Bd=D({selu_:wC});function bC(e,t,n,r,a,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),c=R(n,"pointwiseFilter","separableConv2d"),u=o,h=!1;if(o.rank===3&&(h=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),M(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let d=l.shape[2],p=l.shape[3];M(c.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${c.shape[2]}.`);let f=wl(u,l,r,a,i,s),m=ca(f,c,1,"valid",i);return h?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Bm=D({separableConv2d_:bC});async function _C(e,t){let n=R(e,"x","setdiff1d"),r=R(t,"y","setdiff1d");M(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let u=0;u<a.length;u++)i.has(a[u])||o++;let l=new Ot([o],n.dtype),c=new Ot([o],"int32");for(let u=0,h=0;u<a.length;u++)i.has(a[u])||(l.values[h]=a[u],c.values[h]=u,h++);return[l.toTensor(),c.toTensor()]}var kb=_C;function vC(e){let t={x:R(e,"x","sign")};return $.runKernel(el,t)}var Vm=D({sign_:vC});function kC(e){let t={x:R(e,"x","sin")};return $.runKernel(Zs,t)}var Vd=D({sin_:kC});function IC(e){let t={x:R(e,"x","sinh")};return $.runKernel(Qo,t)}var jd=D({sinh_:IC});function SC(e,t,n){let r=R(e,"x","slice1d");return M(r.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Re(r,[t],[n])}var Ud=D({slice1d_:SC});function NC(e,t,n){let r=R(e,"x","slice2d");return M(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var jm=D({slice2d_:NC});function TC(e,t,n){let r=R(e,"x","slice3d");return M(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var Hd=D({slice3d_:TC});function EC(e,t,n){let r=R(e,"x","slice4d");return M(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Re(r,t,n)}var lc=D({slice4d_:EC});function CC(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return $.runKernel(ei,r,a)}var uc=D({softmax_:CC});function RC(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Zh,t)}var cc=D({fft_:RC});function MC(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Yh,t)}var Sl=D({ifft_:MC});function FC(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=H(e,[n,t]);r=Sl(a)}else{let a=[n,2*(t-1)],s=H(oc(e),[n,t]),i=H(Cd(e),[n,t]),o=Bn(Re(s,[0,1],[n,t-2]),1),l=P(Bn(Re(i,[0,1],[n,t-2]),1),xe(-1)),c=rt([s,o],1),u=rt([i,l],1),h=H($a(c,u),[a[0],a[1]]);r=Sl(h)}if(r=oc(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=H(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var Gd=D({irfft_:FC});function $C(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return $.runKernel(nl,r,a)}var Lt=D({split_:$C});function DC(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t<n){let f=e.shape.map(A=>0),m=e.shape.map(A=>A);m[e.shape.length-1]=t,a=Re(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,a=rt([e,Rt(f)],e.shape.length-1),n=t}else a=e;let s=He(a),i=H($a(a,s),[r,n]),o=cc(i),l=Math.floor(n/2)+1,c=oc(o),u=Cd(o),h=Lt(c,[l,n-l],c.shape.length-1),d=Lt(u,[l,n-l],u.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,H($a(h[0],d[0]),p)}var hc=D({rfft_:DC});function OC(e){let t={x:R(e,"x","sqrt")};return $.runKernel(Js,t)}var en=D({sqrt_:OC});function zC(e,t){let n=R(e,"a","squaredDifference"),r=R(t,"b","squaredDifference");[n,r]=vt(n,r),ft(n.shape,r.shape);let a={a:n,b:r},s={};return $.runKernel(ti,a,s)}var qd=D({squaredDifference_:zC});function PC(e,t){let n=R(e,"x","squeeze");return H(n,Ux(n.shape,t).newShape)}var ja=D({squeeze_:PC});function LC(e,t=0){let n=Xu(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return $.runKernel(Ho,r,a)}var cn=D({stack_:LC});function WC(e,t=0){let n={x:R(e,"x","step")},r={alpha:t};return $.runKernel(Fa,n,r)}var Nl=D({step_:WC});function BC(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let c={x:R(e,"x","stridedSlice")},u={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return $.runKernel(rl,c,u)}var Um=D({stridedSlice_:BC});function VC(e){let t={x:R(e,"x","tan")};return $.runKernel(ri,t)}var Hm=D({tan_:VC});function sn(e,t){cs(e);let n=Lr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Da(e,null,n,t)}function Mn(e,t,n){if(cs(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Lr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Da(e,t,r,n)}function jC(e,t,n){if(cs(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Lr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Da(e,t,r,n)}function UC(e,t,n){if(cs(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Lr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Da(e,t,r,n)}function HC(e,t,n){if(cs(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Lr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,Da(e,t,r,n)}function GC(e,t=1,n=!0){let r=R(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=$.runKernel(al,s,i);return{values:o,indices:l}}var Gm=D({topk_:GC});function qC(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Pm(t,n,r,!0,a),i=Be(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Xd=D({truncatedNormal_:qC});function XC(e,t=0){let n=R(e,"x","unique","string_or_numeric");M(n.rank>0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=$.runKernel(hd,r,a);return{values:s,indices:i}}var Kd=D({unique_:XC});function KC(e,t,n){let r=R(e,"x","unsortedSegmentSum"),a=R(t,"segmentIds","unsortedSegmentSum","int32");M(Ut(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return $.runKernel(Pu,s,i)}var qm=D({unsortedSegmentSum_:KC});function ZC(e,t=0){let n=R(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return $.runKernel(sl,r,a)}var mr=D({unstack_:ZC});function Ib(e,t=!0,n,r){return $.makeVariable(e,t,n,r)}function Sb(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let r=Be(e,"int32"),a=Be([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=r.indexToLoc(n[s]),o=s*e.length;a.values.set(i,o)}return a.toTensor()}async function YC(e){let t=R(e,"condition","whereAsync","bool"),n=await t.data(),r=Sb(t.shape,n);return e!==t&&t.dispose(),r}var Xm=YC;async function JC(e,t,n){let r=R(e,"tensor","boolMask"),a=R(t,"mask","boolMask","bool"),s=n==null?0:n,i=a.rank,o=r.shape;M(i>0,()=>"mask cannot be scalar"),ln(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=s;m<s+i;m++)l*=o[m];let c=o.slice(0,s).concat([l],o.slice(s+i)),u=H(r,c),h=H(a,[-1]),d=await Xm(h),p=ja(d,[1]),f=xi(u,p,s);return e!==r&&r.dispose(),t!==a&&a.dispose(),p.dispose(),u.dispose(),h.dispose(),d.dispose(),f}var QC=JC;function eR(e,t="euclidean",n=null,r=!1){e=R(e,"x","norm");let a=Nb(e,t,n),s=a.shape;if(r){let i=hr(n,e.shape);s=_i(a.shape,i)}return H(a,s)}function Nb(e,t,n=null){if(e.rank===0)return zt(e);if(e.rank!==1&&n===null)return Nb(H(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Te(zt(e),n);if(t===Infinity)return Rn(zt(e),n);if(t===-Infinity)return vl(zt(e),n);if(t==="euclidean"||t===2)return en(Te(da(zt(e),xe(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Rn(Te(zt(e),n[0]),n[1]-1);if(t===Infinity)return Rn(Te(zt(e),n[1]),n[0]);if(t===-Infinity)return vl(Te(zt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return en(Te(ot(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Zd=D({norm_:eR});function tR(e,t,n,r,a=!0){let s=R(e,"v","movingAverage"),i=R(t,"x","movingAverage"),o=R(n,"decay","movingAverage");ow(s,i),M(oa(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=xe(1),c=ye(l,o),u=P(ye(i,s),c);if(a){M(r!=null,()=>"When using zeroDebias: true, step is required.");let h=R(r,"step","movingAverage");u=Ae(u,ye(l,da(o,h)))}return se(s,u)}var nR=D({movingAverage_:tR});function rR(e,t,n){let r=R(e,"indices","scatterND","int32"),a=R(t,"updates","scatterND");rm(a,r,n);let s={indices:r,updates:a},i={shape:n};return $.runKernel(Ko,s,i)}var Tb=D({scatterND_:rR});function aR(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function sR(e,t,n,r=0){let a=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense"),i=R(r,"defaultValue","sparseToDense",s.dtype);aR(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return $.runKernel(ud,o,l)}var Km=D({sparseToDense_:sR});function iR(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND"),indices:n};return $.runKernel(Eo,r)}var Eb=D({gatherND_:iR});function oR(e,t){if(t==null)return e.shape.slice();if(oa(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r<e.shape.length;r++)t[r]==null&&e.shape[r]!=null?n.push(e.shape[r]):n.push(t[r]);return n}return t}function lR(e,t,n,r){let a=R(e,"x","dropout");if(M(a.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Pe?a.clone():a;let s=oR(a,n),i=1-t,o=Ae(_l(se(Il(s,0,1,"float32",r),i)),i);return P(a,o)}var Cb=D({dropout_:lR});function Rb(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Zm(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+r-1);a[s]=t-n*Math.cos(i)}return sn(a,"float32")}async function uR(e,t,n=1){let r=R(e,"predictions","inTopK"),a=R(t,"targets","inTopK");M(r.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),M(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),ln(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];M(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,c]=[i.length/s,s],u=Hx("bool",l);for(let h=0;h<l;h++){let d=h*c,p=i.subarray(d,d+c),f=[];for(let m=0;m<p.length;m++)f.push({value:p[m],index:m});f.sort((m,A)=>A.value-m.value),u[h]=0;for(let m=0;m<n;m++)if(f[m].index===o[h]){u[h]=1;break}}return e!==r&&r.dispose(),t!==a&&a.dispose(),Ir(u,a.shape,"bool")}var cR=uR,Ua={};Me(Ua,{conv2d:()=>hR,depthwiseConv2d:()=>dR,matMul:()=>pR});function fR(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];M(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),M(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&M(Ut(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return $.runKernel(Lh,h,d)}var Ym=D({conv2DBackpropFilter_:fR});function Yd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return P(e,Nl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Jd(e,t){let n=t,r=Pt(e.shape,t.shape);return r.length>0&&(n=Te(n,r)),H(n,e.shape)}function Qd(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Ur(e);if(t==="elu")return bl(e);if(t==="relu6")return Ld(e);if(t==="prelu")return ic(e,n);if(t==="leakyrelu")return nc(e,r);if(t==="sigmoid")return Tn(e);throw new Error(`Unknown fused activation ${t}.`)}var ep=(e,t)=>!(e>0)||t==="linear";function mR({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",ep($.state.gradientDepth,l)===!1){let w=ca(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),Qd(w,l,c,u)}let h=R(e,"x","conv2d"),d=R(t,"filter","conv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&M(Ut(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),M(Br(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let m=Yu(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=vt(A,h),ft(m.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused conv2d"));let g=(w,b)=>{let[k,N,C,F]=b,O=Yd(w,C,l);M(La(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let L=bm(N.shape,O,k,n,r),V=Ym(N,O,k.shape,n,r),j=[L,V];if(F!=null){let U=Jd(F,O);j.push(U)}return j},x={x:p,filter:d,bias:A,preluActivationWeights:y},v={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Vr((w,b,k)=>{let N=$.runKernel(oi,x,v);return k([b,w,N]),f&&(N=H(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d):Vr((w,b,k,N)=>{let C=$.runKernel(oi,x,v);return N([b,w,C,k]),f&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(p,d,A)}var hR=D({fusedConv2d_:mR});function AR(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return $.runKernel(jh,c,u)}var Mb=D({depthwiseConv2dNativeBackpropFilter_:AR});function yR(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=$.runKernel(Uh,c,u);return l?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Fb=D({depthwiseConv2dNativeBackpropInput_:yR});function gR({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(ep($.state.gradientDepth,l)===!1){let w=wl(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),Qd(w,l,c,u)}let h=R(e,"x","depthwiseConv2d"),d=R(t,"filter","depthwiseConv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=H(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),M(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),M(Br(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&M(Ut(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let m=Yu(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=vt(A,h),ft(m.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused depthwiseConv2d"));let g=(w,b)=>{M(La(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[k,N,C,F]=b,O=Yd(w,C,l),L=Fb(N.shape,O,k,n,r,s,i),V=Mb(N,O,k.shape,n,r,s,i);if(F!=null){let j=Jd(A,O);return[L,V,j]}return[L,V]},x={x:p,filter:d,bias:A,preluActivationWeights:y},v={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Vr((w,b,k)=>{let N=$.runKernel(li,x,v);return k([b,w,N]),f&&(N=H(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d):Vr((w,b,k,N)=>{let C=$.runKernel(li,x,v);return N([b,w,C,k]),f&&(C=H(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:g}})(p,d,A)}var dR=D({fusedDepthwiseConv2d_:gR});function xR({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(ep($.state.gradientDepth,s)===!1){let F=Ve(e,t,n,r);return a!=null&&(F=se(F,a)),Qd(F,s,i,o)}let l=R(e,"a","fused matMul"),c=R(t,"b","fused matMul");[l,c]=vt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?c.shape[c.rank-1]:c.shape[c.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?c.shape[c.rank-2]:c.shape[c.rank-1],f=l.shape.slice(0,-2),m=c.shape.slice(0,-2),A=Et(f),y=Et(m);M(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),M(oa(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),M(u===h,()=>`Error in fused matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),x=n?H(l,[A,u,d]):H(l,[A,d,u]),v=r?H(c,[y,p,h]):H(c,[y,h,p]),w;a!=null&&(w=R(a,"bias","fused matMul"),[w]=vt(w,l),ft(g,w.shape));let b;i!=null&&(b=R(i,"prelu weights","fused matMul"));let k=(F,O)=>{let[L,V,j,U]=O,X=Yd(H(F,j.shape),j,s),G,ee;if(!n&&!r?(G=Ve(X,V,!1,!0),ee=Ve(L,X,!0,!1)):!n&&r?(G=Ve(X,V,!1,!1),ee=Ve(X,L,!0,!1)):n&&!r?(G=Ve(V,X,!1,!0),ee=Ve(L,X,!1,!1)):(G=Ve(V,X,!0,!0),ee=Ve(X,L,!0,!0)),a!=null){let Y=Jd(U,X);return[G,ee,Y]}else return[G,ee]},N={a:x,b:v,bias:w,preluActivationWeights:b},C={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?Vr((F,O,L)=>{let V=$.runKernel(ii,N,C);return L([F,O,V]),{value:H(V,g),gradFunc:k}})(x,v):Vr((F,O,L,V)=>{let j=$.runKernel(ii,N,C);return V([F,O,j,L]),{value:H(j,g),gradFunc:k}})(x,v,w)}var pR=D({fusedMatMul_:xR});function wR(e){return Zm(e,.54,.46)}var bR=D({hammingWindow_:wR});function _R(e){return Zm(e,.5,.5)}var $b=D({hannWindow_:_R});function vR(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Re(e,s,t)),s+=n;if(r)for(;s<e.size;){let o=s+t-e.size,l=rt([Re(e,s,t-o),tc([o],a)]);i.push(l),s+=n}return i.length===0?Mn([],[0,t]):H(rt(i),[i.length,t])}var Db=D({frame_:vR});function kR(e,t,n,r,a=$b){r==null&&(r=Rb(t));let s=Db(e,t,n),i=P(s,a(t));return hc(i,r)}var IR=D({stft_:kR});function SR(e,t,n,r,a="bilinear",s=0){let i=R(e,"image","cropAndResize"),o=R(t,"boxes","cropAndResize","float32"),l=R(n,"boxInd","cropAndResize","int32"),c=o.shape[0];M(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),M(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),M(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),M(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),M(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let u={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return $.runKernel(wo,u,h)}var NR=D({cropAndResize_:SR});function TR(e){let t=R(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return $.runKernel(No,n,{})}var ER=D({flipLeftRight_:TR});function CR(e,t,n=0,r=.5){let a=R(e,"image","rotateWithOffset","float32");M(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return $.runKernel(ol,s,i)}var RR=D({rotateWithOffset_:CR});function Tl(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),M(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),M(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function MR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),o=Tl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return $.runKernel(Bo,{boxes:s,scores:i},l)}var FR=D({nonMaxSuppression_:MR});function DR(e,t,n){let r=$R(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function $R(e,t,n){return zR(e,t,n||OR)}function OR(e,t){return e>t?1:e<t?-1:0}function zR(e,t,n){let r=0,a=e.length,s=0,i=!1;for(;r<a;){s=r+(a-r>>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function Ob(e,t,n,r,a){return Jm(e,t,n,r,a,0)}function zb(e,t,n,r,a,s){return Jm(e,t,n,r,a,0,!1,s,!0)}function Pb(e,t,n,r,a,s){return Jm(e,t,n,r,a,s,!0)}function Jm(e,t,n,r,a,s,i=!1,o=!1,l=!1){let c=[];for(let A=0;A<t.length;A++)t[A]>a&&c.push({score:t[A],boxIndex:A,suppressBeginIndex:0});c.sort(Lb);let u=s>0?-.5/s:0,h=[],d=[];for(;h.length<n&&c.length>0;){let A=c.pop(),{score:y,boxIndex:g,suppressBeginIndex:x}=A;if(y<a)break;let v=!1;for(let w=h.length-1;w>=x;--w){let b=PR(e,g,h[w]);if(b>=r){v=!0;break}if(A.score=A.score*LR(r,u,b),A.score<=a)break}A.suppressBeginIndex=h.length,v||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&DR(c,A,Lb))}let p=h.length,f=n-p;o&&f>0&&(h.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:h};return i&&(m.selectedScores=d),l&&(m.validOutputs=p),m}function PR(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),c=Math.min(a[0],a[2]),u=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),f=(h-c)*(d-u);if(p<=0||f<=0)return 0;let m=Math.max(s,c),A=Math.max(i,u),y=Math.min(o,h),g=Math.min(l,d),x=Math.max(y-m,0)*Math.max(g-A,0);return x/(p+f-x)}function LR(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function Lb(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function WR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=Tl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:h}=Ob(c,u,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),sn(h,"int32")}var BR=WR;function VR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=Tl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=$.runKernel(jo,c,u);return{selectedIndices:h[0],selectedScores:h[1]}}var jR=D({nonMaxSuppressionWithScore_:VR});async function UR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=Tl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],h=c[1],{selectedIndices:d,selectedScores:p}=Pb(u,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:sn(d,"int32"),selectedScores:sn(p)}}var HR=UR;function GR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=Tl(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:c,iouThreshold:u,scoreThreshold:h,padToMaxOutputSize:s},f=$.runKernel(Vo,d,p);return{selectedIndices:f[0],validOutputs:f[1]}}var qR=D({nonMaxSuppressionPadded_:GR});async function XR(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=Tl(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=zb(d,p,c,u,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:sn(f,"int32"),validOutputs:xe(m,"int32")}}var KR=XR;function ZR(e,t,n=!1,r=!1){let a=R(e,"images","resizeBilinear");M(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=$.runKernel(Hs,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Wb=D({resizeBilinear_:ZR});function YR(e,t,n=!1,r=!1){let a=R(e,"images","resizeNearestNeighbor");M(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=H(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=$.runKernel(Du,o,l);return i?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Bb=D({resizeNearestNeighbor_:YR});function JR(e,t,n="nearest",r="constant",a=0,s){let i=R(e,"image","transform","float32"),o=R(t,"transforms","transform","float32");M(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},c={interpolation:n,fillMode:r,fillValue:a,outputShape:s};return $.runKernel(cd,l,c)}var QR=D({transform_:JR});function eM(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=R(e,"a","bandPart");M(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(Pd(0,s,1,"int32"),[-1,1]),l=Pd(0,i,1,"int32"),c=ye(o,l),u=fr(wi(c,xe(+t,"int32")),Va(c,xe(-n,"int32"))),h=Rt([s,i],r.dtype);return H(cn(mr(H(r,[-1,s,i])).map(d=>Cn(u,d,h))),a)}var tM=D({bandPart_:eM});function nM(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s<e.length;++s)M(e[s].shape[0]===a,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Lt(e,e.shape[0],0).map(a=>ja(a,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a<e.length;++a)n.push($.tidy(()=>{let s=r[a];if(a>0)for(let i=0;i<a;++i){let o=P(Te(P(n[i],s)),n[i]);s=ye(s,o)}return Ae(s,Zd(s,"euclidean"))}));return t?cn(n,0):n}var rM=D({gramSchmidt_:nM});function aM(e,t=!1){if(M(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Vb(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),r=mr(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[c,u]=Vb(l,t);a.push(c),s.push(u)});let i=H(cn(a,0),e.shape),o=H(cn(s,0),e.shape);return[i,o]}}function Vb(e,t=!1){return $.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=Tm(n),s=Wr(e),i=Mn([[1]],[1,1]),o=Wr(i),l=n>=r?r:n;for(let c=0;c<l;++c){let u=s,h=o,d=a;[o,s,a]=$.tidy(()=>{let p=Re(s,[c,c],[n-c,1]),f=Zd(p),m=Re(s,[c,c],[1,1]),A=Cn(pr(m,0),Mn([[-1]]),Mn([[1]])),y=ye(m,P(A,f)),g=Ae(p,y);g.shape[0]===1?o=Wr(i):o=rt([i,Re(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let x=kt(Ae(Ve(A,y),f)),v=Re(s,[c,0],[n-c,r]),w=P(x,o),b=Je(o);if(c===0)s=ye(v,Ve(w,Ve(b,v)));else{let C=ye(v,Ve(w,Ve(b,v)));s=rt([Re(s,[0,0],[c,r]),C],0)}let k=Je(w),N=Re(a,[0,c],[n,a.shape[1]-c]);if(c===0)a=ye(N,Ve(Ve(N,o),k));else{let C=ye(N,Ve(Ve(N,o),k));a=rt([Re(a,[0,0],[n,c]),C],1)}return[o,s,a]}),_e([u,h,d])}return!t&&n>r&&(a=Re(a,[0,0],[n,r]),s=Re(s,[0,0],[r,r])),[a,s]})}var sM=D({qr_:aM}),hn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(hn||(hn={}));function iM(e,t,n=hn.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=R(t,"weights","computeWeightedLoss"));let s=a==null?r:P(r,a);if(n===hn.NONE)return s;if(n===hn.SUM)return Te(s);if(n===hn.MEAN){if(a==null)return It(s);{let i=r.size/a.size,o=Ae(Te(s),Te(a));return i>1?Ae(o,xe(i)):o}}if(n===hn.SUM_BY_NONZERO_WEIGHTS){if(a==null)return Ae(Te(s),xe(r.size));{let i=P(a,Ln(r.shape)),o=ge(Te(vi(i,xe(0))),"float32");return Ae(Te(s),o)}}throw Error(`Unknown reduction: ${n}`)}var pa=D({computeWeightedLoss_:iM});function oM(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=R(n,"weights","absoluteDifference")),ln(a.shape,s.shape,"Error in absoluteDifference: ");let o=zt(ye(a,s));return pa(o,i,r)}var lM=D({absoluteDifference_:oM});function uM(e,t,n,r,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;r!=null&&(o=R(r,"weights","cosineDistance")),ln(s.shape,i.shape,"Error in cosineDistance: ");let l=xe(1),c=ye(l,Te(P(s,i),n,!0));return pa(c,o,a)}var cM=D({cosineDistance_:uM});function hM(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;n!=null&&(i=R(n,"weights","hingeLoss")),ln(a.shape,s.shape,"Error in hingeLoss: ");let o=xe(1);a=ye(P(xe(2),a),o);let l=Ur(ye(o,P(a,s)));return pa(l,i,r)}var dM=D({hingeLoss_:hM});function pM(e,t,n,r=1,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;n!=null&&(o=R(n,"weights","huberLoss")),ln(s.shape,i.shape,"Error in huberLoss: ");let l=xe(r),c=zt(ye(i,s)),u=kl(c,l),h=ye(c,u),d=se(P(xe(.5),ot(u)),P(l,h));return pa(d,o,a)}var fM=D({huberLoss_:pM});function mM(e,t,n,r=1e-7,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;n!=null&&(o=R(n,"weights","logLoss")),ln(s.shape,i.shape,"Error in logLoss: ");let l=xe(1),c=xe(r),u=kt(P(s,Pn(se(i,c)))),h=P(ye(l,s),Pn(se(ye(l,i),c))),d=ye(u,h);return pa(d,o,a)}var AM=D({logLoss_:mM});function yM(e,t,n,r=hn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=R(n,"weights","meanSquaredError")),ln(a.shape,s.shape,"Error in meanSquaredError: ");let o=qd(a,s);return pa(o,i,r)}var gM=D({meanSquaredError_:yM});function xM(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),r=R(t,"logits","sigmoidCrossEntropyWithLogits");ln(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Ur(r),s=P(r,n),i=Md(tr(kt(zt(r))));return se(ye(a,s),i)}function wM(e,t,n,r=0,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","sigmoidCrossEntropy")),ln(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let c=xe(r),u=xe(1),h=xe(.5);s=se(P(s,ye(u,c)),P(h,c))}let l=xM(s,i);return pa(l,o,a)}var bM=D({sigmoidCrossEntropy_:wM});function _M(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Vr((r,a,s)=>{let i=Fm(a,[n],!0),o=ye(ge(a,"float32"),i);s([r,o]);let l=kt(P(o,r));return{value:Te(l,[n]),gradFunc:(c,u)=>{let[h,d]=u,p=_i(c.shape,[n]);return[P(H(c,p),ye(ge(h,"float32"),tr(d))),P(H(c,p),ye(tr(d),ge(h,"float32")))]}}})(e,t)}function vM(e,t,n,r=0,a=hn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","softmaxCrossEntropy")),ln(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let c=xe(r),u=xe(1),h=xe(s.shape[1]);s=se(P(s,ye(u,c)),Ae(c,h))}let l=_M(s,i);return pa(l,o,a)}var kM=D({softmaxCrossEntropy_:vM});function IM(e,t,n){let r=R(e,"inputIndices","sparseReshape"),a=R(t,"inputShape","sparseReshape"),s=R(n,"newShape","sparseReshape");if(r.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${a.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:r,inputShape:a,newShape:s},o=$.runKernel(ld,i);return{outputIndices:o[0],outputShape:o[1]}}var SM=D({sparseReshape_:IM}),NM={fft:cc,ifft:Sl,rfft:hc,irfft:Gd},TM={hammingWindow:bR,hannWindow:$b,frame:Db,stft:IR},Le={flipLeftRight:ER,resizeNearestNeighbor:Bb,resizeBilinear:Wb,rotateWithOffset:RR,cropAndResize:NR,nonMaxSuppression:FR,nonMaxSuppressionAsync:BR,nonMaxSuppressionWithScore:jR,nonMaxSuppressionWithScoreAsync:HR,nonMaxSuppressionPadded:qR,nonMaxSuppressionPaddedAsync:KR,transform:QR},jb={bandPart:tM,gramSchmidt:rM,qr:sM},EM={absoluteDifference:lM,computeWeightedLoss:pa,cosineDistance:cM,hingeLoss:dM,huberLoss:fM,logLoss:AM,meanSquaredError:gM,sigmoidCrossEntropy:bM,softmaxCrossEntropy:kM},Ub={sparseReshape:SM},fa=class extends Hw{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return _e(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return fb(e,t)}dispose(){this.iterations_!=null&&_e(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:xe(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(fa,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var tp=class extends fa{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:z(()=>He(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:z(()=>He(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;z(()=>{let l=se(P(i,this.rho),P(ot(s),1-this.rho)),c=P(Ae(en(se(o,this.epsilon)),en(se(i,this.epsilon))),s),u=se(P(o,this.rho),P(ot(c),1-this.rho));i.assign(l),o.assign(u);let h=se(P(c,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(_e(this.accumulatedGrads.map(e=>e.variable)),_e(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};tp.className="Adadelta";za(tp);var np=class extends fa{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:z(()=>tc(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;z(()=>{let i=se(s,ot(a));s.assign(i);let o=se(P(Ae(a,en(se(i,$.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&_e(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};np.className="Adagrad";za(np);var rp=class extends fa{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],z(()=>{this.accBeta1=xe(t).variable(),this.accBeta2=xe(n).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);z(()=>{let n=ye(1,this.accBeta1),r=ye(1,this.accBeta2);t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:z(()=>He(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:z(()=>He(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,h=se(P(c,this.beta1),P(l,1-this.beta1)),d=se(P(u,this.beta2),P(ot(l),1-this.beta2)),p=Ae(h,n),f=Ae(d,r);c.assign(h),u.assign(d);let m=se(P(Ae(p,se(en(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(P(this.accBeta1,this.beta1)),this.accBeta2.assign(P(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&_e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&_e(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),z(()=>{this.accBeta1.assign(da(this.beta1,this.iterations_+1)),this.accBeta2.assign(da(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};rp.className="Adam";za(rp);var ap=class extends fa{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],z(()=>{this.iteration=xe(0).variable(),this.accBeta1=xe(t).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);z(()=>{let n=ye(1,this.accBeta1),r=Ae(-this.learningRate,se(P(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:He(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:He(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,h=se(P(c,this.beta1),P(l,1-this.beta1)),d=P(u,this.beta2),p=zt(l),f=jr(d,p);c.assign(h),u.assign(f);let m=se(P(Ae(r,n),Ae(h,se(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(P(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&_e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&_e(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};ap.className="Adamax";za(ap);var dc=class extends fa{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=$.registeredVariables[t];z(()=>{let s=se(P(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Ht(xe(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};dc.className="SGD";za(dc);var sp=class extends dc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=xe(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:z(()=>He(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&z(()=>{let i,o=se(P(this.m,a),s);this.useNesterov?i=se(P(this.c,se(s,P(o,this.m))),r):i=se(P(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&_e(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};sp.className="Momentum";za(sp);var ip=class extends fa{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=$.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:z(()=>He(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:z(()=>He(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:z(()=>He(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;z(()=>{let l=se(P(i,this.decay),P(ot(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=se(P(c,this.decay),P(s,1-this.decay)),h=Ae(P(s,this.learningRate),en(ye(l,se(ot(u),this.epsilon)))),d=se(P(o,this.momentum),h);i.assign(l),c.assign(u),o.assign(d);let p=ye(r,d);r.assign(p)}else{let c=se(P(i,this.decay),P(ot(s),1-this.decay)),u=se(P(o,this.momentum),Ae(P(s,this.learningRate),en(se(c,this.epsilon))));i.assign(c),o.assign(u);let h=ye(r,u);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&_e(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&_e(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&_e(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};ip.className="RMSProp";za(ip);var ki=class{static sgd(e){return new dc(e)}static momentum(e,t,n=!1){return new sp(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new ip(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new rp(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new tp(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new ap(e,t,n,r,a)}static adagrad(e,t=.1){return new np(e,t)}},Ii={sgd:ki.sgd,momentum:ki.momentum,adadelta:ki.adadelta,adagrad:ki.adagrad,rmsprop:ki.rmsprop,adamax:ki.adamax,adam:ki.adam},CM=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function op(){return new Promise(e=>CM(()=>e()))}var E={};Me(E,{ERF_A1:()=>BM,ERF_A2:()=>VM,ERF_A3:()=>jM,ERF_A4:()=>UM,ERF_A5:()=>HM,ERF_P:()=>WM,PARALLELIZE_THRESHOLD:()=>Qm,SELU_SCALE:()=>Gb,SELU_SCALEALPHA:()=>Hb,applyActivation:()=>Qd,assertAndGetBroadcastShape:()=>ft,assertAxesAreInnerMostDims:()=>uE,assertParamsConsistent:()=>RM,assignToTypedArray:()=>QM,axesAreInnerMostDims:()=>Rm,calculateShapes:()=>Fw,checkEinsumDimSizes:()=>aF,combineLocations:()=>Ab,complexWithEvenIndex:()=>ZM,complexWithOddIndex:()=>YM,computeConv2DInfo:()=>Yu,computeConv3DInfo:()=>Jw,computeDefaultPad:()=>gm,computeDilation2DInfo:()=>FN,computeOptimalWindowSize:()=>FM,computeOutAndReduceShapes:()=>yb,computeOutShape:()=>MM,computePool2DInfo:()=>Yw,computePool3DInfo:()=>$N,convertConv2DDataFormat:()=>Zw,decodeEinsumEquation:()=>nF,eitherStridesOrDilationsAreOne:()=>Br,expandShapeToKeepDim:()=>_i,exponent:()=>tF,exponents:()=>eF,fromStringArrayToUint8:()=>uF,fromUint8ToStringArray:()=>lF,getAxesPermutation:()=>gb,getBroadcastDims:()=>kT,getComplexWithIndex:()=>JM,getEinsumComputePath:()=>sF,getEinsumPermutation:()=>rF,getFusedBiasGradient:()=>Jd,getFusedDyActivation:()=>Yd,getImageCenter:()=>$M,getInnerMostAxes:()=>cE,getPermuted:()=>OM,getReductionAxes:()=>Pt,getReshaped:()=>DM,getReshapedPermuted:()=>zM,getSliceBeginCoords:()=>PM,getSliceSize:()=>LM,getUndoAxesPermutation:()=>Mm,isIdentityPermutation:()=>iF,log:()=>qM,mergeRealAndImagArrays:()=>XM,prepareAndValidate:()=>Mw,prepareSplitSize:()=>oF,segment_util:()=>qb,shouldFuse:()=>ep,slice_util:()=>un,splitRealAndImagArrays:()=>KM,tupleValuesAreOne:()=>La,upcastType:()=>dr,validateInput:()=>rm,validateUpdateShape:()=>nm,warn:()=>GM});function RM(e,t){let n=e[0].length;e.forEach((a,s)=>{M(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i<n;i++)M(i===t||a[i]===r[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function MM(e,t){let n=e[0].slice();for(let r=1;r<e.length;r++)n[t]+=e[r][t];return n}var Qm=30;function FM(e){return e<=Qm?e:Fh(e,Math.floor(Math.sqrt(e)))}function $M(e,t,n){let r=n*(typeof e=="number"?e:e[0]),a=t*(typeof e=="number"?e:e[1]);return[r,a]}function DM(e,t,n,r=!0){let a=[];if(r)a=a.concat(t.slice(0)),a.push(e[0]/n),a=a.concat(e.slice(1));else{a=a.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)a=a.concat([e[i+1]/t[i],t[i]]);a=a.concat(e.slice(s+1))}return a}function OM(e,t,n=!0){let r=[];if(n){r.push(t);for(let a=t+1;a<e;++a)a<=2*t?(r.push(a),r.push(a-(t+1))):r.push(a)}else{let a=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function zM(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?r?a.push(t[s-1]*e[s]):a.push(e[s]/t[s-1]):a.push(e[s]);return a}function PM(e,t){let n=[0];for(let r=0;r<t;++r)n.push(e[r][0]);return n}function LM(e,t,n){let r=e.slice(0,1);for(let a=0;a<n;++a)r.push(e[a+1]-t[a][0]-t[a][1]);return r}var Hb=1.7580993408473768,Gb=1.0507009873554805,WM=.3275911,BM=.254829592,VM=-.284496736,jM=1.421413741,UM=-1.453152027,HM=1.061405429;function GM(...e){J().getBool("IS_TEST")||console.warn(...e)}function qM(...e){J().getBool("IS_TEST")||console.log(...e)}function XM(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let r=0;r<n.length;r+=2)n[r]=e[r/2],n[r+1]=t[r/2];return n}function KM(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let r=0;r<e.length;r+=2)t[r/2]=e[r],n[r/2]=e[r+1];return{real:t,imag:n}}function ZM(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=0;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function YM(e){let t=Math.floor(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=2;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function JM(e,t){let n=e[t*2],r=e[t*2+1];return{real:n,imag:r}}function QM(e,t,n,r){e[r*2]=t,e[r*2+1]=n}function eF(e,t){let n=new Float32Array(e/2),r=new Float32Array(e/2);for(let a=0;a<Math.ceil(e/2);a++){let s=(t?2:-2)*Math.PI*(a/e);n[a]=Math.cos(s),r[a]=Math.sin(s)}return{real:n,imag:r}}function tF(e,t,n){let r=(n?2:-2)*Math.PI*(e/t),a=Math.cos(r),s=Math.sin(r);return{real:a,imag:s}}var eA="->",cF=/->/g,Xb=",",Kb="...";function nF(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(cF,"").length)/eA.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${eA}").`);let[r,a]=e.split(eA);M(r.indexOf(Kb)===-1,()=>`The ellipsis notation ("${Kb}") is not supported yet.`);let s=r.split(Xb),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let d=0;d<a.length;++d){let p=a[d];if(!s.some(f=>f.indexOf(p)!==-1))throw new Error(`Output subscripts contain the label ${p} not present in the input subscripts.`);o.indexOf(p)===-1&&o.push(p)}for(let d=0;d<r.length;++d){let p=r[d];o.indexOf(p)===-1&&p!==Xb&&o.push(p)}let l=new Array(s.length);for(let d=0;d<i;++d){if(new Set(s[d].split("")).size!==s[d].length)throw new Error(`Found duplicate axes in input component ${s[d]}. Support for duplicate axes in input is not implemented yet.`);l[d]=[];for(let p=0;p<s[d].length;++p)l[d].push(o.indexOf(s[d][p]))}let c=o.length,u=a.length,h=[];for(let d=u;d<c;++d)h.push(d);return{allDims:o,summedDims:h,idDims:l}}function rF(e,t){let n=new Array(e);n.fill(-1);for(let a=0;a<t.length;++a)n[t[a]]=a;let r=[];for(let a=0;a<e;++a)n[a]===-1&&r.push(a);return n=n.filter(a=>a!==-1),{permutationIndices:n,expandDims:r}}function aF(e,t,n){let r=new Array(e);for(let a=0;a<n.length;++a){let s=n[a].shape;for(let i=0;i<t[a].length;++i)r[t[a][i]]===void 0?r[t[a][i]]=s[i]:M(r[t[a][i]]===s[i],()=>`Expected dimension ${r[t[a][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function sF(e,t){let n=e,r=[],a=0;e.length===0&&n.push(-1),a=e.length+1;for(let i=0;i<a;++i)r.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=hF(t,o);for(let c of l)s.indexOf(c)===-1&&(r[i].push(c),s.push(c))}return{path:n,steps:r}}function iF(e){return e.every((t,n)=>t===n)}function hF(e,t){let n=[];for(let r=0;r<e.length;++r)(e[r].length===0||e[r].indexOf(t)!==-1||t===-1)&&n.push(r);return n}function oF(e,t,n=0){let r=[];if(typeof t=="number")M(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);M(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}M(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var qb={};Me(qb,{collectGatherOpShapeInfo:()=>fF,computeOutShape:()=>pF,segOpComputeOptimalWindowSize:()=>dF});function dF(e,t){let n=!1,r;for(e<=Qm?(r=e,n=!0):r=Fh(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Fh(e,r+1);return r}function pF(e,t,n){let r=[],a=e.length;for(let s=0;s<a;s++)s!==t?r.push(e[s]):r.push(n);return r}function fF(e,t,n,r){let a=t.shape.length,s=e.shape.length;if(r!==0&&(r<-a||r>a))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) (
${s}).`);if(n<r)throw new Error(`batchDims (${r}) must be less than or equal to axis (${n}).`);for(let h=0;h<r;++h)if(e.shape[h]!==t.shape[h])throw new Error(`x.shape[${h}]: ${e.shape[h]} should be equal to indices.shape[${h}]: ${t.shape[h]}.`);let i=e.shape[n],o=[],l=1,c=1,u=1;for(let h=0;h<r;++h)o.push(e.shape[h]),l*=e.shape[h];for(let h=r;h<n;h++)o.push(e.shape[h]),c*=e.shape[h];for(let h=r;h<a;h++)o.push(t.shape[h]);for(let h=n+1;h<s;h++)o.push(e.shape[h]),u*=e.shape[h];return{batchSize:l,sliceSize:u,outerSize:c,dimSize:i,outputShape:o}}function lF(e){try{return e.map(t=>md(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function uF(e){return e.map(t=>Bu(t))}var Hr={};Me(Hr,{nonMaxSuppressionV3Impl:()=>Ob,nonMaxSuppressionV4Impl:()=>zb,nonMaxSuppressionV5Impl:()=>Pb,whereImpl:()=>Sb});function ve(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&_.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var mF=Hr.whereImpl,lp=class extends wu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Rh(this,ua())}nextDataId(){return lp.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&E.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&_.isString(n[0])){let a=n.map(s=>_.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,a){this.data.set(e,{values:t,dtype:r,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return E.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>_.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return ua().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=_.now();return e(),{kernelMs:_.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ve([e],"where");let t=this.readSync(e.dataId);return mF(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};lp.nextDataId=0;var tA={};Me(tA,{addImpl:()=>Yb,bincountImpl:()=>nA,bincountReduceImpl:()=>Jb,ceilImpl:()=>Qb,concatImpl:()=>rA,expImpl:()=>e_,expm1Impl:()=>t_,floorImpl:()=>n_,gatherV2Impl:()=>r_,greaterImpl:()=>a_,lessImpl:()=>s_,linSpaceImpl:()=>i_,logImpl:()=>o_,maxImpl:()=>l_,maximumImpl:()=>u_,minimumImpl:()=>c_,multiplyImpl:()=>aA,negImpl:()=>h_,notEqualImpl:()=>d_,prodImpl:()=>p_,rangeImpl:()=>iA,rsqrtImpl:()=>f_,simpleAbsImpl:()=>Zb,sliceImpl:()=>up,sparseReshapeImpl:()=>m_,squaredDifferenceImpl:()=>A_,stridedSliceImpl:()=>y_,subImpl:()=>g_,tileImpl:()=>x_,topKImpl:()=>w_,transposeImpl:()=>sA,uniqueImpl:()=>b_});function Zb(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var AF=e=>{let{x:t}=e.inputs,n=e.backend;ve(t,"abs");let r=new Float32Array(_.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=Zb(a),n.makeOutput(r,t.shape,"float32")},yF={kernelName:oo,backendName:"cpu",kernelFunc:AF};function Mt(e){return(t,n,r,a,s)=>{let i=E.assertAndGetBroadcastShape(t,n),o=i.length,l=_.computeStrides(i),c=_.sizeFromShape(i),u=_.getTypedArrayFromDType(s,c),h=t.length,d=n.length,p=_.computeStrides(t),f=_.computeStrides(n),m=E.getBroadcastDims(t,i),A=E.getBroadcastDims(n,i);if(m.length+A.length===0)for(let y=0;y<u.length;++y)u[y]=e(r[y%r.length],a[y%a.length]);else for(let y=0;y<u.length;++y){let g=_.indexToLoc(y,o,l),x=g.slice(-h);m.forEach(k=>x[k]=0);let v=_.locToIndex(x,h,p),w=g.slice(-d);A.forEach(k=>w[k]=0);let b=_.locToIndex(w,d,f);u[y]=e(r[v],a[b])}return[u,i]}}function Vn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var gF={kernelName:Ph,backendName:"cpu",kernelFunc:Vn};function cp(e,t,n="float32"){if(n==="complex64"){let a=cp(e,t,"float32"),s=cp(e,t,"float32");return Vn({inputs:{real:a,imag:s},backend:e})}let r=_.makeZerosTypedArray(_.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Gr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var xF={kernelName:Es,backendName:"cpu",kernelFunc:Gr};function Si(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var wF={kernelName:sd,backendName:"cpu",kernelFunc:Si};function Ha(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Gr({inputs:{x:a},backend:n});let i=cp(n,a.shape,a.dtype),o=Ha({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Vn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Si({inputs:{input:a},backend:n}),o=Ha({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!_.hasEncodingLoss(a.dtype,s)){let i=Gr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=_.toTypedArray([0],a.dtype),[l,c]=Mt((u,h)=>u!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var bF={kernelName:As,backendName:"cpu",kernelFunc:Ha};function Gt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;ve([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=Ha({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),h=u.complexTensorInfos.real,d=u.complexTensorInfos.imag,p=l.data.get(h.dataId).values,f=l.data.get(d.dataId).values,m=Ha({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(m.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(g.dataId).values,[w,b,k]=n(i.shape,o.shape,p,f,x,v),N=l.makeTensorInfo(k,"float32",w),C=l.makeTensorInfo(k,"float32",b),F=Vn({inputs:{real:N,imag:C},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(N),l.disposeIntermediateTensorInfo(C),F}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}}}function oA(e){return(t,n,r,a,s,i)=>{let o=E.assertAndGetBroadcastShape(t,n),l=_.sizeFromShape(o),c=o.length,u=_.computeStrides(o),h=_.getTypedArrayFromDType("float32",l),d=_.getTypedArrayFromDType("float32",l),p=E.getBroadcastDims(t,o),f=E.getBroadcastDims(n,o),m=E.mergeRealAndImagArrays(r,a),A=E.mergeRealAndImagArrays(s,i),y=t.length,g=_.computeStrides(t),x=n.length,v=_.computeStrides(n);if(p.length+f.length===0)for(let w=0;w<h.length;w++){let b=w%m.length,k=w%A.length,N=e(m[b*2],m[b*2+1],A[k*2],A[k*2+1]);h[w]=N.real,d[w]=N.imag}else for(let w=0;w<h.length;w++){let b=_.indexToLoc(w,c,u),k=b.slice(-y);p.forEach(L=>k[L]=0);let N=_.locToIndex(k,y,g),C=b.slice(-x);f.forEach(L=>C[L]=0);let F=_.locToIndex(C,x,v),O=e(m[N*2],m[N*2+1],A[F*2],A[F*2+1]);h[w]=O.real,d[w]=O.imag}return[h,d,o]}}var Yb=Mt((e,t)=>e+t),_F=oA((e,t,n,r)=>({real:e+n,imag:t+r})),pc=Gt(Ca,Yb,_F),vF={kernelName:Ca,backendName:"cpu",kernelFunc:pc};function nA(e,t,n,r,a){let s=_.sizeFromShape(r),i=_.makeZerosTypedArray(a,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function Jb(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=Be([a,n],t.dtype);for(let o=0;o<a;o++)for(let l=0;l<s;l++){let c=e.get(o,l);if(c<0)throw new Error("Input x must be non-negative!");c>=n||(r?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function El(e){return(t,n,r)=>{let a=_.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)a[s]=e(t[s],r);return a}}function at(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=_.sizeFromShape(i.shape),u=n||i.dtype,h=_.getArrayFromDType(u,c);for(let d=0;d<c;++d)h[d]=t(l[d],a);return o.makeTensorInfo(i.shape,u,h)}}function Cl(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,a);return o.makeTensorInfo(i.shape,c,u)}}var Qb=El(e=>Math.ceil(e)),kF=Cl(ys,Qb),IF={kernelName:ys,backendName:"cpu",kernelFunc:kF};function rA(e,t,n,r){let a=_.getArrayFromDType(n,_.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=_.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?E.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;c<i.shape[0];++c){let u=c*t[1]+s;for(let h=0;h<i.shape[1];++h)a[u+h]=o[l++]}s+=i.shape[1]})}return a}var e_=El(e=>Math.exp(e)),__=Cl(ks,e_),SF={kernelName:ks,backendName:"cpu",kernelFunc:__},t_=El(e=>Math.expm1(e)),NF=Cl(So,t_),TF={kernelName:So,backendName:"cpu",kernelFunc:NF},n_=El(e=>Math.floor(e)),EF=Cl(Is,n_),CF={kernelName:Is,backendName:"cpu",kernelFunc:EF};function r_(e,t,n){let r=Be(n,e.dtype);for(let a=0;a<r.size;++a){let s=r.indexToLoc(a).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let c=e.locToIndex(s);r.values[a]=e.values[c]}return r}var a_=Mt((e,t)=>e>t?1:0),RF=Gt(Co,a_,null,"bool"),MF={kernelName:Co,backendName:"cpu",kernelFunc:RF},s_=Mt((e,t)=>e<t?1:0),FF=Gt($o,s_,null,"bool"),$F={kernelName:$o,backendName:"cpu",kernelFunc:FF};function i_(e,t,n){let r=(t-e)/(n-1),a=_.makeZerosTypedArray(n,"float32");a[0]=e;for(let s=1;s<a.length;s++)a[s]=a[s-1]+r;return a}var o_=El(e=>Math.log(e)),DF=Cl(Rs,o_),OF={kernelName:Rs,backendName:"cpu",kernelFunc:DF};function l_(e,t,n,r){let a=_.getTypedArrayFromDType(r,_.sizeFromShape(n));for(let s=0;s<a.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let c=e[i+l];c>o&&(o=c)}a[s]=o}return a}var u_=Mt((e,t)=>Math.max(e,t)),zF=Gt(Fs,u_),PF={kernelName:Fs,backendName:"cpu",kernelFunc:zF},c_=Mt((e,t)=>Math.min(e,t)),LF=Gt(zs,c_),WF={kernelName:zs,backendName:"cpu",kernelFunc:LF},aA=Mt((e,t)=>e*t),BF=oA((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),hp=Gt(Ls,aA,BF),VF={kernelName:Ls,backendName:"cpu",kernelFunc:hp};function h_(e,t,n){let r=_.createScalarValue(-1,n);return aA([],t,r,e,n)}function jF(e){let{inputs:t,backend:n}=e,{x:r}=t;ve(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=h_(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var UF={kernelName:Lo,backendName:"cpu",kernelFunc:jF},d_=Mt((e,t)=>e!==t?1:0),HF=Gt(Wo,d_,null,"bool"),GF={kernelName:Wo,backendName:"cpu",kernelFunc:HF};function sA(e,t,n,r,a){let s=t.length,i=_.sizeFromShape(t),o=_.computeStrides(t),l=_.computeStrides(a),c=_.getTypedArrayFromDType(n,_.sizeFromShape(a));for(let u=0;u<i;++u){let h=_.indexToLoc(u,s,o),d=new Array(h.length);for(let f=0;f<d.length;f++)d[f]=h[r[f]];let p=_.locToIndex(d,s,l);c[p]=e[u]}return c}function nr(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{perm:s}=n;ve(a,"transpose");let i=a.shape.length,o=new Array(i);for(let u=0;u<o.length;u++)o[u]=a.shape[s[u]];let l=r.data.get(a.dataId).values,c=sA(l,a.shape,a.dtype,s,o);return{dataId:r.write(c,o,a.dtype),shape:o,dtype:a.dtype}}var qF={kernelName:si,backendName:"cpu",kernelFunc:nr};function p_(e,t,n,r){let[a,s]=E.computeOutAndReduceShapes(e,r),i=dr(t,"int32"),o=_.makeZerosTypedArray(_.sizeFromShape(a),i),l=_.sizeFromShape(s);for(let c=0;c<o.length;++c){let u=c*l,h=1;for(let d=0;d<l;++d)h*=n[u+d];o[c]=h}return{outVals:o,outShape:a,outDtype:i}}function XF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"prod");let o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=E.getAxesPermutation(l,o),u=l,h=a,d=[];c!=null&&(h=nr({inputs:{x:a},backend:n,attrs:{perm:c}}),d.push(h),u=E.getInnerMostAxes(u.length,o));let p=n.data.get(h.dataId).values,{outVals:f,outShape:m,outDtype:A}=p_(h.shape,h.dtype,p,u),y=m;return i&&(y=E.expandShapeToKeepDim(m,l)),d.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,f)}var KF={kernelName:Go,backendName:"cpu",kernelFunc:XF};function iA(e,t,n,r){let a=e===t,s=e<t&&n<0,i=t<e&&n>1;if(a||s||i)return _.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=_.makeZerosTypedArray(o,r);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}var f_=El(e=>1/Math.sqrt(e)),ZF=Cl(Ks,f_),YF={kernelName:Ks,backendName:"cpu",kernelFunc:ZF};function up(e,t,n,r,a){let s=un.isSliceContinous(r,t,n),i=_.sizeFromShape(n),o=_.computeStrides(r);if(s){let h=un.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?E.fromUint8ToStringArray(e):e,c=Be(r,a,l),u=Be(n,a);for(let h=0;h<u.size;++h){let d=u.indexToLoc(h),p=d.map((f,m)=>f+t[m]);u.set(c.get(...p),...d)}return a==="string"?E.fromStringArrayToUint8(u.values):u.values}function Ni(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;ve(a,"slice");let[o,l]=un.parseSliceParams(a,s,i);un.assertParamsValid(a,o,l);let c=n.data.get(a.dataId).values,u=up(c,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,u)}var JF={kernelName:Jo,backendName:"cpu",kernelFunc:Ni};function m_(e,t,n,r,a){let s=_.sizeFromShape(r),i=t[0],o=a.length,l=[],c=1,u=-1;for(let A=0;A<o;++A){let y=a[A];if(y===-1){if(u!==-1)throw new Error(`only one output dimension may be -1, not both ${u} and ${A}`);u=A,l.push(1)}else{if(y<0)throw new Error(`size ${A} must be non-negative, not ${y}`);c*=y,l.push(y)}}if(u!==-1){if(c<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let A=Math.trunc(s/c);if(c*A!==s)throw new Error(`Input to reshape is a SparseTensor with ${s}
dense values, but the requested shape requires a multiple of ${c}. inputShape=${r} outputShape= ${l}`);l[u]=A}let h=_.sizeFromShape(l);if(h!==s)throw new Error(`Input to reshape is a tensor with ${s} dense values, but the requested shape has ${h}. inputShape=${r} outputShape=${l}`);let d=r.length,p=[];if(d>0){p[d-1]=1;for(let A=d-2;A>=0;--A)p[A]=p[A+1]*r[A+1]}let f=[];if(o>0){f[o-1]=1;for(let A=o-2;A>=0;--A)f[A]=f[A+1]*l[A+1]}let m=_.getArrayFromDType(n,i*o);for(let A=0;A<i;++A){let y=0;for(let g=0;g<d;++g)y+=e[A*d+g]*p[g];for(let g=0;g<o;++g)m[A*o+g]=Math.trunc(y/f[g]),y%=f[g]}return[m,[i,o],l]}var A_=Mt((e,t)=>{let n=e-t;return n*n}),QF=Gt(ti,A_),e$={kernelName:ti,backendName:"cpu",kernelFunc:QF};function y_(e,t,n,r){let a=Be(e,t.dtype);for(let s=0;s<a.size;s++){let i=a.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+r[l];a.set(t.get(...o),...i)}return a}var g_=Mt((e,t)=>e-t),t$=oA((e,t,n,r)=>({real:e-n,imag:t-r})),lA=Gt(ni,g_,t$),n$={kernelName:ni,backendName:"cpu",kernelFunc:lA};function x_(e,t){let n=new Array(e.rank);for(let a=0;a<n.length;a++)n[a]=e.shape[a]*t[a];let r=Be(n,e.dtype);for(let a=0;a<r.values.length;++a){let s=r.indexToLoc(a),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);r.values[a]=e.values[o]}return r}function w_(e,t,n,r,a){let s=t[t.length-1],[i,o]=[e.length/s,s],l=_.getTypedArrayFromDType(n,i*r),c=_.getTypedArrayFromDType("int32",i*r);for(let h=0;h<i;h++){let d=h*o,p=e.subarray(d,d+o),f=[];for(let g=0;g<p.length;g++)f.push({value:p[g],index:g});f.sort((g,x)=>x.value-g.value);let m=h*r,A=l.subarray(m,m+r),y=c.subarray(m,m+r);for(let g=0;g<r;g++)A[g]=f[g].value,y[g]=f[g].index}let u=t.slice();return u[u.length-1]=r,[Be(u,n,l),Be(u,"int32",c)]}function b_(e,t,n,r){let a=_.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let f=0;f<a;f++)s[0]*=n[f];s[1]=n[a];for(let f=a+1;f<n.length;f++)s[2]*=n[f];let i={},o=new Int32Array(n[a]),l=new Ot(s,r,e),c=[],u=s[0]===1&&s[2]===1;for(let f=0;f<n[a];f++){let m;if(u)m=e[f].toString();else{let A=[];for(let y=0;y<s[0];y++)for(let g=0;g<s[2];g++)A.push(l.get(y,f,g));m=A.join(",")}if(i[m]!==void 0)o[f]=i[m];else{let A=Object.keys(i).length;i[m]=A,o[f]=A,c.push(f)}}let h=s.slice();h[1]=Object.keys(i).length;let d=new Ot(h,r);c.forEach((f,m)=>{for(let A=0;A<s[0];A++)for(let y=0;y<s[2];y++)d.set(l.get(A,f,y),A,m,y)});let p=n.slice();return p[a]=h[1],{outputValues:d.values,outputShape:p,indices:o}}var v_="3.5.0";Al("cpu",()=>new lp,1);var k_=at(_o,e=>e>=0?e:Math.exp(e)-1),r$={kernelName:_o,backendName:"cpu",kernelFunc:k_};function I_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;ve([a],"leakyRelu");let i=_.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=_.getTypedArrayFromDType("float32",i);for(let c=0;c<o.length;c++)l[c]=o[c]<0?s*o[c]:o[c];return n.makeTensorInfo(a.shape,"float32",l)}var a$={kernelName:Cs,backendName:"cpu",kernelFunc:I_},s$=Mt((e,t)=>e<0?t*e:e);function S_(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;ve([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=s$(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var i$={kernelName:js,backendName:"cpu",kernelFunc:S_},N_=at(Us,e=>Math.max(0,e)),o$={kernelName:Us,backendName:"cpu",kernelFunc:N_},T_=at(Gs,e=>Math.min(Math.max(0,e),6)),l$={kernelName:Gs,backendName:"cpu",kernelFunc:T_},E_=at(Ys,e=>1/(1+Math.exp(-e))),u$={kernelName:Ys,backendName:"cpu",kernelFunc:E_};function uA(e,t,n,r,a){if(n==="linear")return Gr({inputs:{x:t},backend:e});if(n==="relu")return N_({inputs:{x:t},backend:e});if(n==="elu")return k_({inputs:{x:t},backend:e});if(n==="relu6")return T_({inputs:{x:t},backend:e});if(n==="prelu")return S_({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return I_({inputs:{x:t},backend:e,attrs:{alpha:a}});if(n==="sigmoid")return E_({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function mt(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=_.sizeFromShape(a.shape),o=_.inferFromImplicitShape(s,i),l=_.sizeFromShape(o);_.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let c=n.data.get(a.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,h=c.complexTensorInfos.imag;u.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var c$={kernelName:Xo,backendName:"cpu",kernelFunc:mt};function C_(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;ve([a,s],"matMul");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=_.sizeFromShape(f),y=_.sizeFromShape(m),g=A===y||A===1||y===1;_.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let x=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);_.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[A,u,d]:[A,d,u],w=o?[y,p,h]:[y,h,p],b=mt({inputs:{x:a},backend:n,attrs:{shape:v}}),k=mt({inputs:{x:s},backend:n,attrs:{shape:w}}),N=i?b.shape[1]:b.shape[2],C=i?b.shape[2]:b.shape[1],F=o?k.shape[1]:k.shape[2],O=Math.max(A,y),L=n.data.get(b.dataId).values,V=n.data.get(k.dataId).values,j=_.computeStrides(b.shape),U=_.computeStrides(k.shape),[X,G,ee]=i?[j[0],1,j[1]]:[j[0],j[1],1],[Y,ae,te]=o?[1,U[1],U[0]]:[U[1],1,U[0]],ie=C*F,Q=Be([O,C,F],b.dtype),he=Q.values,oe=n.blockSize;for(let me=0;me<O;me++)for(let pe=0;pe<C;pe+=oe)for(let Ie=0;Ie<F;Ie+=oe)for(let Se=0;Se<N;Se+=oe){let Fe=Math.min(pe+oe,C),Oe=Math.min(Ie+oe,F),$e=Math.min(Se+oe,N);for(let et=pe;et<Fe;et++)for(let tt=Ie;tt<Oe;tt++){let it=0;for(let Ke=Se;Ke<$e;Ke++){let dt=Math.min(me,A-1)*X,je=Math.min(me,y-1)*te,_n=L[dt+et*G+Ke*ee],bt=V[Ke*Y+tt*ae+je];it+=_n*bt}he[me*ie+(et*F+tt)]+=it}}return n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(k),n.makeTensorInfo(x,Q.dtype,Q.values)}var h$={kernelName:ms,backendName:"cpu",kernelFunc:C_};function d$(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r,d,p,f,m=[];d=C_({inputs:{a,b:s},attrs:{transposeA:l,transposeB:c},backend:n}),i&&(p=pc({inputs:{a:d,b:i},backend:n}),m.push(d),d=p),u&&(f=uA(n,d,u,o,h),m.push(d),d=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return d}var p$={kernelName:ii,backendName:"cpu",kernelFunc:d$},f$=at(lo,e=>Math.acos(e)),m$={kernelName:lo,backendName:"cpu",kernelFunc:f$},A$=at(uo,e=>Math.acosh(e)),y$={kernelName:uo,backendName:"cpu",kernelFunc:A$};function g$(e){let{inputs:t,backend:n}=e,r=t;ve(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=Be(r[0].shape,r[0].dtype),i=s.values;for(let o=0;o<r.length;o++){let l=a[o];for(let c=0;c<i.length;c++)i[c]+=l[c]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var x$={kernelName:ds,backendName:"cpu",kernelFunc:g$};function w$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"all");let o=_.parseAxisParam(s,a.shape),l=o,c=E.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=nr({inputs:{x:a},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,a.shape.length)),E.assertAxesAreInnerMostDims("all",l,u.shape.length);let[h,d]=E.computeOutAndReduceShapes(u.shape,l),p=_.sizeFromShape(d),f=_.makeZerosTypedArray(_.sizeFromShape(h),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;y<f.length;++y){let g=y*p,x=m[g];for(let v=0;v<p;++v){let w=m[g+v];x=x&&w}f[y]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let A=n.makeTensorInfo(h,u.dtype,f);if(i){let y=E.expandShapeToKeepDim(h,o),g=mt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var b$={kernelName:co,backendName:"cpu",kernelFunc:w$};function _$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"any");let o=_.parseAxisParam(s,a.shape),l=o,c=E.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=nr({inputs:{x:a},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,a.shape.length)),E.assertAxesAreInnerMostDims("any",l,u.shape.length);let[h,d]=E.computeOutAndReduceShapes(u.shape,l),p=_.sizeFromShape(d),f=_.makeZerosTypedArray(_.sizeFromShape(h),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;y<f.length;++y){let g=y*p,x=m[g];for(let v=0;v<p;++v){let w=m[g+v];x=x||w}f[y]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let A=n.makeTensorInfo(h,u.dtype,f);if(i){let y=E.expandShapeToKeepDim(h,o),g=mt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var v$={kernelName:ho,backendName:"cpu",kernelFunc:_$};function k$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;ve(a,"argMax");let i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=nr({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],E.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[u,h]=E.computeOutAndReduceShapes(l.shape,i),d=_.sizeFromShape(u),p=_.makeZerosTypedArray(d,"int32"),f=_.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let y=A*f,g=m[y],x=0;for(let v=0;v<f;++v){let w=m[y+v];w>g&&(g=w,x=v)}p[A]=x}return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var I$={kernelName:ps,backendName:"cpu",kernelFunc:k$};function S$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;ve(a,"argMin");let i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=nr({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],E.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,h]=E.computeOutAndReduceShapes(l.shape,i),d=_.sizeFromShape(u),p=_.makeZerosTypedArray(d,"int32"),f=_.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let y=A*f,g=m[y],x=0;for(let v=0;v<f;++v){let w=m[y+v];w<g&&(g=w,x=v)}p[A]=x}return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var N$={kernelName:vu,backendName:"cpu",kernelFunc:S$},T$=at(po,e=>Math.asin(e)),E$={kernelName:po,backendName:"cpu",kernelFunc:T$},C$=at(fo,e=>Math.asinh(e)),R$={kernelName:fo,backendName:"cpu",kernelFunc:C$},M$=at(mo,e=>Math.atan(e)),F$={kernelName:mo,backendName:"cpu",kernelFunc:M$},$$=Mt((e,t)=>Math.atan2(e,t)),D$=Gt(yo,$$),O$={kernelName:yo,backendName:"cpu",kernelFunc:D$},z$=at(Ao,e=>Math.atanh(e)),P$={kernelName:Ao,backendName:"cpu",kernelFunc:z$};function cA(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,c=a.dilationWidth,u=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Be(a.outShape,n),A=m.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],x=a.outShape[3];for(let v=0;v<a.batchSize;++v){let w=v*y,b=v*r[0];for(let k=0;k<a.inChannels;++k)for(let N=0;N<a.outHeight;++N){let C=N*i-d,F=Math.max(0,C),O=Math.min(a.inHeight,u+C),L=w+N*g;for(let V=0;V<a.outWidth;++V){let j=V*o-p,U=Math.max(0,j),X=Math.min(a.inWidth,h+j),G=f,ee=0,Y=0;for(let te=F;te<O;te+=l){let ie=b+te*r[1];for(let Q=U;Q<X;Q+=c){let he=ie+Q*r[2],oe=e[he+k];s==="max"&&oe>G?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let ae=L+V*x+k;A[ae]=s==="avg"?ee/Y:G}}}return m}function R_(e,t,n,r,a=!1,s=!1){let i=Be(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,c=r.dilationHeight,u=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,f=r.padInfo.left,m=Be(t,n,e);for(let A=0;A<r.batchSize;++A)for(let y=0;y<r.inChannels;++y)for(let g=0;g<r.outHeight;++g){let x=g*o-p,v=x;for(;v<0;)v+=c;let w=Math.min(r.inHeight,h+x);for(let b=0;b<r.outWidth;++b){let k=b*l-f,N=k;for(;N<0;)N+=u;let C=Math.min(r.inWidth,d+k),F=Number.NEGATIVE_INFINITY,O=-1;for(let L=v;L<w;L+=c){let V=L-x;for(let j=N;j<C;j+=u){let U=j-k,X=m.get(A,L,j,y);X>F&&(F=X,a?O=s?((A*r.inHeight+L)*r.inWidth+j)*r.inChannels+y:(L*r.inWidth+j)*r.inChannels+y:O=V*d+U)}}i.set(O,A,g,b,y)}}return i}function M_(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,c=a.dilationDepth,u=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,f=a.effectiveFilterWidth,m=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Be(a.outShape,n),v=x.values,w=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],b=a.outShape[2]*a.outShape[3]*a.outShape[4],k=a.outShape[3]*a.outShape[4],N=a.outShape[4];for(let C=0;C<a.batchSize;++C){let F=C*w,O=C*r[0];for(let L=0;L<a.inChannels;++L)for(let V=0;V<a.outDepth;++V){let j=V*i-m,U=j;for(;U<0;)U+=c;let X=Math.min(a.inDepth,d+j),G=F+V*b;for(let ee=0;ee<a.outHeight;++ee){let Y=ee*o-A,ae=Y;for(;ae<0;)ae+=u;let te=Math.min(a.inHeight,p+Y),ie=G+ee*k;for(let Q=0;Q<a.outWidth;++Q){let he=Q*l-y,oe=he;for(;oe<0;)oe+=h;let me=Math.min(a.inWidth,f+he),pe=ie+Q*N,Ie=g,Se=0,Fe=0;for(let $e=U;$e<X;$e+=c){let et=O+$e*r[1];for(let tt=ae;tt<te;tt+=u){let it=et+tt*r[2];for(let Ke=oe;Ke<me;Ke+=h){let dt=it+Ke*r[3],je=e[dt+L];if(s==="max"&&je>Ie?Ie=je:s==="avg"&&(Se+=je,Fe++),isNaN(Ie))break}if(isNaN(Ie))break}if(isNaN(Ie))break}let Oe=pe+L;v[Oe]=s==="avg"?Se/Fe:Ie}}}}return x}function L$(e,t){let n=Be(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let A=0;A<t.inChannels;++A)for(let y=0;y<t.outDepth;++y){let g=y*r-d,x=g;for(;x<0;)x+=i;let v=Math.min(t.inDepth,c+g);for(let w=0;w<t.outHeight;++w){let b=w*a-p,k=b;for(;k<0;)k+=o;let N=Math.min(t.inHeight,u+b);for(let C=0;C<t.outWidth;++C){let F=C*s-f,O=F;for(;O<0;)O+=l;let L=Math.min(t.inWidth,h+F),V=Number.NEGATIVE_INFINITY,j=-1;for(let U=x;U<v;U+=i){let X=U-g;for(let G=k;G<N;G+=o){let ee=G-b;for(let Y=O;Y<L;Y+=l){let ae=Y-F,te=e.get(m,U,G,Y,A);te>=V&&(V=te,j=X*u*h+ee*u+ae)}}}n.set(j,m,y,w,C,A)}}}return n}function W$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ve(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))h=Gr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=_.computeStrides(a.shape),f=cA(d,a.shape,a.dtype,p,u,"avg");h=n.makeTensorInfo(u.outShape,a.dtype,f.values)}return h}var B$={kernelName:fs,backendName:"cpu",kernelFunc:W$};function V$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;ve(a,"avgPool3d");let u=E.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=M_(h,a.shape,a.dtype,_.computeStrides(a.shape),u,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var j$={kernelName:ku,backendName:"cpu",kernelFunc:V$};function U$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;ve([a,s],"avgPool3DGrad");let u=E.computePool3DInfo(s.shape,i,o,1,l,c),h=u.strideDepth,d=u.strideHeight,p=u.strideWidth,f=u.filterDepth,m=u.filterHeight,A=u.filterWidth,y=u.dilationDepth,g=u.dilationHeight,x=u.dilationWidth,v=u.effectiveFilterDepth,w=u.effectiveFilterHeight,b=u.effectiveFilterWidth,k=v-1-u.padInfo.front,N=b-1-u.padInfo.left,C=w-1-u.padInfo.top,F=Be(s.shape,"float32"),O=1/(f*m*A),L=n.bufferSync(a);for(let V=0;V<u.batchSize;++V)for(let j=0;j<u.inChannels;++j)for(let U=0;U<u.inDepth;++U)for(let X=0;X<u.inHeight;++X)for(let G=0;G<u.inWidth;++G){let ee=U-k,Y=X-C,ae=G-N,te=0;for(let ie=0;ie<v;ie+=y){let Q=(ee+ie)/h;if(!(Q<0||Q>=u.outDepth||Math.floor(Q)!==Q))for(let he=0;he<w;he+=g){let oe=(Y+he)/d;if(!(oe<0||oe>=u.outHeight||Math.floor(oe)!==oe))for(let me=0;me<b;me+=x){let pe=(ae+me)/p;pe<0||pe>=u.outWidth||Math.floor(pe)!==pe||(te+=L.get(V,Q,oe,pe,j))}}}F.set(te*O,V,U,X,G,j)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var H$={kernelName:Oh,backendName:"cpu",kernelFunc:U$};function G$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;ve([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=E.computePool2DInfo(i.shape,o,l,1,c),h=u.strideHeight,d=u.strideWidth,p=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,A=u.dilationWidth,y=u.effectiveFilterHeight,g=u.effectiveFilterWidth,x=g-1-u.padInfo.left,v=y-1-u.padInfo.top,w=Be(i.shape,"float32"),b=1/(p*f),k=n.data.get(a.dataId).values,N=Be(a.shape,"float32",k);for(let C=0;C<u.batchSize;++C)for(let F=0;F<u.inChannels;++F)for(let O=0;O<u.inHeight;++O)for(let L=0;L<u.inWidth;++L){let V=O-v,j=L-x,U=0;for(let X=0;X<y;X+=m){let G=(V+X)/h;if(!(G<0||G>=u.outHeight||Math.floor(G)!==G))for(let ee=0;ee<g;ee+=A){let Y=(j+ee)/d;Y<0||Y>=u.outWidth||Math.floor(Y)!==Y||(U+=N.get(C,G,Y,F))}}w.set(U*b,C,O,L,F)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var q$={kernelName:Dh,backendName:"cpu",kernelFunc:G$};function X$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;_.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ve([a,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=r;c==null&&(c=.001);let u=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),f=i?n.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),A=f.length,y=p.length,g=d.length,x=h.length,v=0,w=0,b=0,k=0;for(let N=0;N<u.length;++N)m[N]=f[v++]+(u[N]-h[w++])*p[b++]/Math.sqrt(d[k++]+c),v>=A&&(v=0),w>=x&&(w=0),b>=y&&(b=0),k>=g&&(k=0);return n.makeTensorInfo(a.shape,a.dtype,m)}var K$={kernelName:Ns,backendName:"cpu",kernelFunc:X$};function Z$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;ve([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=E.getReshaped(a.shape,s,o),c=E.getPermuted(l.length,s.length),u=E.getReshapedPermuted(a.shape,s,o),h=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(u,i,s.length),p=mt({inputs:{x:a},backend:n,attrs:{shape:l}}),f=nr({inputs:{x:p},backend:n,attrs:{perm:c}}),m=mt({inputs:{x:f},backend:n,attrs:{shape:u}}),A=Ni({inputs:{x:m},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var Y$={kernelName:Iu,backendName:"cpu",kernelFunc:Z$};function J$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,c=nA(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var Q$={kernelName:zh,backendName:"cpu",kernelFunc:J$},eD=at(Ra,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),tD={kernelName:Ra,backendName:"cpu",kernelFunc:eD},nD=e=>{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(_.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;c<o.length;c++){let u=o[c],h=l[c];r[c]=Math.hypot(u,h)}return n.makeOutput(r,t.shape,"float32")},rD={kernelName:Su,backendName:"cpu",kernelFunc:nD};function Rl(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.imag,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var aD={kernelName:Jh,backendName:"cpu",kernelFunc:Rl};function Ml(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=_.parseAxisParam(a,t[0].shape)[0],i=E.computeOutShape(t.map(m=>m.shape),s);if(_.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>_.sizeFromShape(m.shape)>0);if(o.length===1)return Gr({inputs:{x:o[0]},backend:n});let l=o.map(m=>m.shape);if(E.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let m=o.map(v=>Si({inputs:{input:v},backend:n})),A=o.map(v=>Rl({inputs:{input:v},backend:n})),y=Ml({inputs:m,backend:n,attrs:{axis:s}}),g=Ml({inputs:A,backend:n,attrs:{axis:s}}),x=Vn({inputs:{real:y,imag:g},backend:n});return m.forEach(v=>n.disposeIntermediateTensorInfo(v)),A.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),x}let c=o.map(m=>{let A=_.sizeFromShape(m.shape.slice(s));return mt({inputs:{x:m},backend:n,attrs:{shape:[-1,A]}})}),u=c.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));i=E.computeOutShape(c.map(m=>m.shape),1);let h=c[0].shape[0]===1,d=rA(u,i,t[0].dtype,h),p=E.computeOutShape(o.map(m=>m.shape),s),f=n.makeTensorInfo(p,t[0].dtype,d);return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var sD={kernelName:go,backendName:"cpu",kernelFunc:Ml};function F_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r;ve([a,s],"conv2d");let h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,x=d.dataFormat==="channelsLast",v=new Ot(d.outShape,a.dtype),w=_.computeStrides(a.shape),b=_.computeStrides(s.shape),k=w[0],N=x?w[1]:w[2],C=x?w[2]:1,F=x?1:w[1],O=v.strides[0],L=x?v.strides[1]:v.strides[2],V=x?v.strides[2]:1,j=x?1:v.strides[1],U=n.data.get(a.dataId).values,X=n.data.get(s.dataId).values,G=v.values;for(let ee=0;ee<d.batchSize;++ee){let Y=ee*k,ae=ee*O;for(let te=0;te<d.outHeight;++te){let ie=ae+te*L,Q=te*d.strideHeight-g;for(let he=0;he<p;++he){let oe=Q+he*m;if(oe<0||oe>=d.inHeight)continue;let me=he*b[0],pe=Y+oe*N;for(let Ie=0;Ie<d.outWidth;++Ie){let Se=ie+Ie*V,Fe=Ie*d.strideWidth-y;for(let Oe=0;Oe<f;++Oe){let $e=Fe+Oe*A;if($e<0||$e>=d.inWidth)continue;let et=me+Oe*b[1],tt=pe+$e*C,it=et;for(let Ke=0;Ke<d.inChannels;++Ke){let dt=U[tt+Ke*F];for(let je=0;je<d.outChannels;++je)G[Se+je*j]+=dt*X[it+je];it+=d.outChannels}}}}}}return n.makeTensorInfo(v.shape,v.dtype,G)}var iD={kernelName:gs,backendName:"cpu",kernelFunc:F_};function oD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=r;ve([a,s],"conv2dBackpropFilter");let h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,u,i,1,o,c,!1,h),{strideHeight:p,strideWidth:f,filterHeight:m,filterWidth:A}=d,y=d.dataFormat==="channelsLast",g=new Ot(d.filterShape,"float32"),x=d.padInfo.left,v=d.padInfo.top,w=n.data.get(a.dataId).values,b=n.data.get(s.dataId).values,k=new Ot(a.shape,a.dtype,w),N=new Ot(s.shape,s.dtype,b);for(let C=0;C<m;++C){let F=Math.max(0,Math.ceil((v-C)/p)),O=Math.min(d.outHeight,(d.inHeight+v-C)/p);for(let L=0;L<A;++L){let V=Math.max(0,Math.ceil((x-L)/f)),j=Math.min(d.outWidth,(d.inWidth+x-L)/f);for(let U=0;U<d.inChannels;++U)for(let X=0;X<d.outChannels;++X){let G=0;for(let ee=0;ee<d.batchSize;++ee)for(let Y=F;Y<O;++Y){let ae=C+Y*p-v;for(let te=V;te<j;++te){let ie=L+te*f-x;y?G+=k.get(ee,ae,ie,U)*N.get(ee,Y,te,X):G+=k.get(ee,U,ae,ie)*N.get(ee,X,Y,te)}}g.set(G,C,L,U,X)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var lD={kernelName:Lh,backendName:"cpu",kernelFunc:oD};function uD(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=r;ve([a,s],"conv2dBackpropInput");let h=_.computeStrides(s.shape),d=_.computeStrides(a.shape),p=E.convertConv2DDataFormat(c),f=E.computeConv2DInfo(i,s.shape,o,1,l,u,!1,p),m=new Ot(f.inShape,"float32"),A=m.values,y=n.data.get(a.dataId).values,g=n.data.get(s.dataId).values,[x,v,w]=h,{batchSize:b,filterHeight:k,filterWidth:N,inChannels:C,inHeight:F,inWidth:O,outChannels:L,outHeight:V,outWidth:j,strideHeight:U,strideWidth:X}=f;p=f.dataFormat;let G=k-1-f.padInfo.top,ee=N-1-f.padInfo.left,Y=p==="channelsLast",ae=m.strides[0],te=Y?m.strides[1]:m.strides[2],ie=Y?m.strides[2]:1,Q=Y?1:m.strides[1],he=d[0],oe=Y?d[1]:d[2],me=Y?d[2]:1,pe=Y?1:d[1];for(let Ie=0;Ie<b;++Ie)for(let Se=0;Se<C;++Se)for(let Fe=0;Fe<F;++Fe){let Oe=Fe-G,$e=Math.max(0,Math.ceil(Oe/U)),et=Math.min(V,(k+Oe)/U);for(let tt=0;tt<O;++tt){let it=tt-ee,Ke=Math.max(0,Math.ceil(it/X)),dt=Math.min(j,(N+it)/X),je=0;for(let bt=$e;bt<et;++bt){let Kn=bt*U-Oe;for(let Zt=Ke;Zt<dt;++Zt){let vn=Zt*X-it,Zn=he*Ie+oe*bt+me*Zt,zn=x*(k-1-Kn)+v*(N-1-vn)+w*Se;for(let on=0;on<L;++on){let Yt=y[Zn+pe*on],Or=g[zn+on];je+=Yt*Or}}}let _n=ae*Ie+te*Fe+ie*tt+Q*Se;A[_n]=je}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var cD={kernelName:xs,backendName:"cpu",kernelFunc:uD};function hD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r;ve([a,s],"conv3d");let c=E.computeConv3DInfo(a.shape,s.shape,i,l,o),{filterDepth:u,filterHeight:h,filterWidth:d,dilationDepth:p,dilationHeight:f,dilationWidth:m,padInfo:A}=c,y=A.front,g=A.left,x=A.top,v=new Ot(c.outShape,a.dtype),w=n.data.get(a.dataId).values,b=n.data.get(s.dataId).values,k=v.values,N=_.computeStrides(a.shape),C=_.computeStrides(s.shape);for(let F=0;F<c.batchSize;++F){let O=F*N[0],L=F*v.strides[0];for(let V=0;V<c.outDepth;++V){let j=L+V*v.strides[1],U=V*c.strideDepth-y;for(let X=0;X<u;++X){let G=U+X*p;if(G<0||G>=c.inDepth)continue;let ee=X*C[0],Y=O+G*N[1];for(let ae=0;ae<c.outHeight;++ae){let te=j+ae*v.strides[2],ie=ae*c.strideHeight-x;for(let Q=0;Q<h;++Q){let he=ie+Q*f;if(he<0||he>=c.inHeight)continue;let oe=ee+Q*C[1],me=Y+he*N[2];for(let pe=0;pe<c.outWidth;++pe){let Ie=te+pe*c.outChannels,Se=pe*c.strideWidth-g;for(let Fe=0;Fe<d;++Fe){let Oe=Se+Fe*m;if(Oe<0||Oe>=c.inWidth)continue;let $e=oe+Fe*C[2],et=me+Oe*c.inChannels,tt=$e;for(let it=0;it<c.inChannels;++it){let Ke=w[et+it];for(let dt=0;dt<c.outChannels;++dt)k[Ie+dt]+=Ke*b[tt+dt];tt+=c.outChannels}}}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var dD={kernelName:Nu,backendName:"cpu",kernelFunc:hD};function pD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r;ve([a,s],"conv3dBackpropFilterV2");let c=_.computeStrides(a.shape),u=_.computeStrides(s.shape),h=E.computeConv3DInfo(a.shape,l,i,1,o),d=h.strideDepth,p=h.strideHeight,f=h.strideWidth,m=h.filterDepth,A=h.filterHeight,y=h.filterWidth,g=new Ot(h.filterShape,"float32"),x=g.values,[v,w,b,k]=g.strides,N=n.data.get(s.dataId).values,[C,F,O,L]=u,V=n.data.get(a.dataId).values,[j,U,X,G]=c,ee=h.padInfo.front,Y=h.padInfo.left,ae=h.padInfo.top;for(let te=0;te<m;++te){let ie=Math.max(0,Math.ceil((ee-te)/d)),Q=Math.min(h.outDepth,(h.inDepth+ee-te)/d),he=te*v;for(let oe=0;oe<A;++oe){let me=Math.max(0,Math.ceil((ae-oe)/p)),pe=Math.min(h.outHeight,(h.inHeight+ae-oe)/p),Ie=oe*w+he;for(let Se=0;Se<y;++Se){let Fe=Math.max(0,Math.ceil((Y-Se)/f)),Oe=Math.min(h.outWidth,(h.inWidth+Y-Se)/f),$e=Se*b+Ie;for(let et=0;et<h.inChannels;++et){let tt=et*k+$e;for(let it=0;it<h.outChannels;++it){let Ke=0;for(let dt=0;dt<h.batchSize;++dt){let je=dt*j,_n=dt*C;for(let bt=ie;bt<Q;++bt){let Kn=(te+bt*d-ee)*U+je,Zt=bt*F+_n;for(let vn=me;vn<pe;++vn){let Zn=(oe+vn*p-ae)*X+Kn,zn=vn*O+Zt;for(let on=Fe;on<Oe;++on){let Yt=(Se+on*f-Y)*G+Zn,Or=on*L+zn;Ke+=V[Yt+et]*N[Or+it]}}}}x[tt+it]=Ke}}}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var fD={kernelName:Wh,backendName:"cpu",kernelFunc:pD};function mD(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r;ve([a],"conv3dBackpropInputV2");let c=_.computeStrides(a.shape),u=_.computeStrides(s.shape),h=E.computeConv3DInfo(l,s.shape,o,1,i),d=new Ot(h.inShape,"float32"),p=d.values,[f,m,A,y]=d.strides,g=n.data.get(a.dataId).values,[x,v,w,b]=c,k=n.data.get(s.dataId).values,[N,C,F,O]=u,{batchSize:L,filterDepth:V,filterHeight:j,filterWidth:U,inChannels:X,inDepth:G,inHeight:ee,inWidth:Y,outChannels:ae,outDepth:te,outHeight:ie,outWidth:Q,strideDepth:he,strideHeight:oe,strideWidth:me}=h,pe=V-1-h.padInfo.front,Ie=j-1-h.padInfo.top,Se=U-1-h.padInfo.left;for(let Fe=0;Fe<L;++Fe)for(let Oe=0;Oe<X;++Oe)for(let $e=0;$e<G;++$e){let et=$e-pe,tt=Math.max(0,Math.ceil(et/he)),it=Math.min(te,(V+et)/he);for(let Ke=0;Ke<ee;++Ke){let dt=Ke-Ie,je=Math.max(0,Math.ceil(dt/oe)),_n=Math.min(ie,(j+dt)/oe);for(let bt=0;bt<Y;++bt){let Kn=bt-Se,Zt=Math.max(0,Math.ceil(Kn/me)),vn=Math.min(Q,(U+Kn)/me),Zn=0;for(let zn=tt;zn<it;++zn){let on=zn*he-et;for(let Yt=je;Yt<_n;++Yt){let Or=Yt*oe-dt;for(let or=Zt;or<vn;++or){let lr=or*me-Kn,ba=x*Fe+v*zn+w*Yt+b*or,na=N*(V-1-on)+C*(j-1-Or)+F*(U-1-lr)+O*Oe;for(let _a=0;_a<ae;++_a){let qi=g[ba+_a],zr=k[na+_a];Zn+=qi*zr}}}}p[f*Fe+m*$e+A*Ke+y*bt+Oe]=Zn}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var AD={kernelName:Bh,backendName:"cpu",kernelFunc:mD},yD=at(ws,e=>Math.cos(e)),gD={kernelName:ws,backendName:"cpu",kernelFunc:yD},xD=at(xo,e=>Math.cosh(e)),wD={kernelName:xo,backendName:"cpu",kernelFunc:xD};function bD(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,[u,h,d,p]=a.shape,f=s.shape[0],[m,A]=o,y=Be([f,m,A,p],"float32"),g=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(a.dataId).values,w=_.computeStrides(a.shape),b=_.computeStrides(y.shape);for(let k=0;k<f;k++){let N=k*4,C=g[N],F=g[N+1],O=g[N+2],L=g[N+3],V=x[k];if(V>=u)continue;let j=m>1?(O-C)*(h-1)/(m-1):0,U=A>1?(L-F)*(d-1)/(A-1):0;for(let X=0;X<m;X++){let G=m>1?C*(h-1)+X*j:.5*(C+O)*(h-1);if(G<0||G>h-1){for(let ee=0;ee<A;ee++)for(let Y=0;Y<p;Y++){let ae=Y+ee*b[2]+X*b[1]+k*b[0];y.values[ae]=c}continue}if(l==="bilinear"){let ee=Math.floor(G),Y=Math.ceil(G),ae=G-ee;for(let te=0;te<A;te++){let ie=A>1?F*(d-1)+te*U:.5*(F+L)*(d-1);if(ie<0||ie>d-1){for(let me=0;me<p;me++){let pe=me+te*b[2]+X*b[1]+k*b[0];y.values[pe]=c}continue}let Q=Math.floor(ie),he=Math.ceil(ie),oe=ie-Q;for(let me=0;me<p;me++){let pe=me+Q*w[2]+ee*w[1]+V*w[0],Ie=v[pe];pe=me+he*w[2]+ee*w[1]+V*w[0];let Se=v[pe];pe=me+Q*w[2]+Y*w[1]+V*w[0];let Fe=v[pe];pe=me+he*w[2]+Y*w[1]+V*w[0];let Oe=v[pe],$e=Ie+(Se-Ie)*oe,et=Fe+(Oe-Fe)*oe;pe=me+te*b[2]+X*b[1]+k*b[0],y.values[pe]=$e+(et-$e)*ae}}}else for(let ee=0;ee<A;++ee){let Y=A>1?F*(d-1)+ee*U:.5*(F+L)*(d-1);if(Y<0||Y>d-1){for(let ie=0;ie<p;ie++){let Q=ie+ee*b[2]+X*b[1]+k*b[0];y.values[Q]=c}continue}let ae=Math.round(Y),te=Math.round(G);for(let ie=0;ie<p;ie++){let Q=ie+ae*w[2]+te*w[1]+V*w[0],he=ie+ee*b[2]+X*b[1]+k*b[0];y.values[he]=v[Q]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var _D={kernelName:wo,backendName:"cpu",kernelFunc:bD};function vD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r;ve(a,"cumsum");let l=E.getAxesPermutation([s],a.shape.length),c=a;l!=null&&(c=nr({inputs:{x:a},backend:n,attrs:{perm:l}}));let u=E.getInnerMostAxes(1,a.shape.length)[0];if(u!==c.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${c.shape.length-1} but got axis=${u}`);let h=dr(c.dtype,"int32"),d=_.makeZerosTypedArray(_.sizeFromShape(c.shape),h),p=n.data.get(c.dataId).values,f=c.shape[c.shape.length-1],m=o?(y,g)=>y+f-g-1:(y,g)=>y+g;for(let y=0;y<p.length;y+=f)for(let g=0;g<f;g++){let x=m(y,g);if(g===0)d[x]=i?0:p[x];else{let v=m(y,g-1);d[x]=i?p[v]+d[v]:p[x]+d[v]}}let A=n.makeTensorInfo(c.shape,h,d);if(l!=null){let y=E.getUndoAxesPermutation(l),g=nr({inputs:{x:A},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(c),g}return A}var kD={kernelName:bs,backendName:"cpu",kernelFunc:vD};function ID(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.data.get(a.dataId).values,c=n.data.get(s.dataId).values,u=nA(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(a.shape.length===2){let l=n.bufferSync(a),c=n.bufferSync(s),u=Jb(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var SD={kernelName:Vh,backendName:"cpu",kernelFunc:ID};function ND(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;_.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],c=a.shape[2],u=a.shape[3],h=l*s,d=c*s,p=u/(s*s),f=n.data.get(a.dataId).values,m=new Float32Array(o*h*d*p),A=0;for(let y=0;y<o;++y)for(let g=0;g<h;++g){let x=Math.floor(g/s),v=g%s;for(let w=0;w<d;++w){let b=Math.floor(w/s),k=w%s,N=(v*s+k)*p;for(let C=0;C<p;++C){let F=C+N+u*(b+c*(x+l*y));m[A++]=f[F]}}}return n.makeTensorInfo([o,h,d,p],a.dtype,m)}var TD={kernelName:bo,backendName:"cpu",kernelFunc:ND};function $_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=r;ve([a,s],"depthwiseConv2DNative");let u=_.computeStrides(a.shape),h=_.computeStrides(s.shape),d=l;d==null&&(d=[1,1]),_.assert(E.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=E.computeConv2DInfo(a.shape,s.shape,i,d,o,c,!0),{filterHeight:f,filterWidth:m,dilationHeight:A,dilationWidth:y,padInfo:g}=p,x=g.left,v=g.top,w=p.outChannels/p.inChannels,b=new Ot(p.outShape,a.dtype),k=n.data.get(a.dataId).values,N=n.data.get(s.dataId).values,C=b.values;for(let F=0;F<p.batchSize;++F){let O=F*u[0],L=F*b.strides[0];for(let V=0;V<p.outHeight;++V){let j=L+V*b.strides[1],U=V*p.strideHeight-v;for(let X=0;X<f;++X){let G=U+X*A;if(G<0||G>=p.inHeight)continue;let ee=X*h[0],Y=O+G*u[1];for(let ae=0;ae<p.outWidth;++ae){let te=j+ae*b.strides[2],ie=ae*p.strideWidth-x;for(let Q=0;Q<m;++Q){let he=ie+Q*y;if(he<0||he>=p.inWidth)continue;let oe=ee+Q*h[1],me=Y+he*p.inChannels,pe=te,Ie=oe;for(let Se=0;Se<p.inChannels;++Se){let Fe=k[me+Se];for(let Oe=0;Oe<w;++Oe)C[pe+Oe]+=Fe*N[Ie+Oe];pe+=w,Ie+=w}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var ED={kernelName:_s,backendName:"cpu",kernelFunc:$_};function CD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=r;ve([a,s],"depthwiseConv2dNativeBackpropFilter");let h=E.computeConv2DInfo(a.shape,u,i,o,l,c,!0),{strideHeight:d,strideWidth:p,filterHeight:f,filterWidth:m}=h,A=new Ot(h.filterShape,"float32"),y=h.padInfo.left,g=h.padInfo.top,x=h.outChannels/h.inChannels,v=n.data.get(a.dataId).values,w=new Ot(a.shape,a.dtype,v),b=n.data.get(s.dataId).values,k=new Ot(s.shape,s.dtype,b);for(let N=0;N<f;++N){let C=Math.max(0,Math.ceil((g-N)/d)),F=Math.min(h.outHeight,(h.inHeight+g-N)/d);for(let O=0;O<m;++O){let L=Math.max(0,Math.ceil((y-O)/p)),V=Math.min(h.outWidth,(h.inWidth+y-O)/p);for(let j=0;j<h.outChannels;++j){let U=Math.trunc(j/x),X=j%x,G=0;for(let ee=0;ee<h.batchSize;++ee)for(let Y=C;Y<F;++Y){let ae=N+Y*d-g;for(let te=L;te<V;++te){let ie=O+te*p-y;G+=w.get(ee,ae,ie,U)*k.get(ee,Y,te,j)}}A.set(G,N,O,U,X)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var RD={kernelName:jh,backendName:"cpu",kernelFunc:CD};function MD(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=r;ve([a,s],"depthwiseConv2DNativeBackpropInput");let h=_.computeStrides(a.shape),d=_.computeStrides(s.shape),p=E.computeConv2DInfo(u,s.shape,i,o,l,c,!0),f=new Ot(p.inShape,"float32"),m=f.values,[A,y,g]=f.strides,x=n.data.get(a.dataId).values,[v,w,b]=h,k=n.data.get(s.dataId).values,[N,C,F]=d,{batchSize:O,filterHeight:L,filterWidth:V,inChannels:j,inHeight:U,inWidth:X,outChannels:G,outHeight:ee,outWidth:Y,strideHeight:ae,strideWidth:te}=p,ie=L-1-p.padInfo.top,Q=V-1-p.padInfo.left,he=G/j;for(let oe=0;oe<O;++oe)for(let me=0;me<j;++me)for(let pe=0;pe<U;++pe){let Ie=pe-ie,Se=Math.max(0,Math.ceil(Ie/ae)),Fe=Math.min(ee,(L+Ie)/ae);for(let Oe=0;Oe<X;++Oe){let $e=Oe-Q,et=Math.max(0,Math.ceil($e/te)),tt=Math.min(Y,(V+$e)/te),it=0;for(let Ke=Se;Ke<Fe;++Ke){let dt=Ke*ae-Ie;for(let je=et;je<tt;++je){let _n=je*te-$e,bt=v*oe+w*Ke+b*je,Kn=N*(L-1-dt)+C*(V-1-_n)+F*me;for(let Zt=0;Zt<he;++Zt){let vn=me*he+Zt,Zn=x[bt+vn],zn=k[Kn+Zt];it+=Zn*zn}}}m[A*oe+y*pe+g*Oe+me]=it}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var FD={kernelName:Uh,backendName:"cpu",kernelFunc:MD};function $D(e){let{inputs:t,backend:n}=e,{x:r}=t,a=_.sizeFromShape(r.shape),s=n.data.get(r.dataId).values,i=Be([a,a],r.dtype),o=i.values;for(let c=0;c<s.length;c++)o[c*a+c]=s[c];let l=[...r.shape,...r.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var DD={kernelName:Hh,backendName:"cpu",kernelFunc:$D},OD={kernelName:Tu,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(r.dataId).values,u=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:f,inWidth:m,inChannels:A,outHeight:y,outWidth:g,padInfo:x,strideHeight:v,strideWidth:w,filterHeight:b,filterWidth:k,dilationHeight:N,dilationWidth:C,outShape:F}=E.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),O=_.sizeFromShape(F),L=F.length,V=_.getArrayFromDType(r.dtype,O);for(let j=0;j<p;++j)for(let U=0;U<y;++U){let X=U*v-x.top;for(let G=0;G<g;++G){let ee=G*w-x.left;for(let Y=0;Y<A;++Y){let ae=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<b;++ie){let Q=X+ie*N;if(Q>=0&&Q<f)for(let he=0;he<k;++he){let oe=ee+he*C;if(oe>=0&&oe<m){let me=_.locToIndex([j,Q,oe,Y],u,_.computeStrides(r.shape)),pe=_.locToIndex([ie,he,Y],d,_.computeStrides(a.shape)),Ie=c[me]+h[pe];Ie>ae&&(ae=Ie)}}}let te=_.locToIndex([j,U,G,Y],L,_.computeStrides(F));V[te]=ae}}}return{dataId:l.write(_.toTypedArray(V,r.dtype),F,r.dtype),shape:F,dtype:r.dtype}}},zD={kernelName:qh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=_.toNestedArray(r.shape,c.data.get(r.dataId).values),h=_.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:v,filterHeight:w,filterWidth:b,dilationHeight:k,dilationWidth:N,outShape:C}=E.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);_.assert(s.rank===C.length,()=>`Error in ${qh}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let F=_.toNestedArray(C,c.data.get(s.dataId).values),O=_.makeZerosNestedTypedArray(a.shape,a.dtype);for(let L=0;L<d;++L)for(let V=0;V<A;++V){let j=V*x-g.top;for(let U=0;U<y;++U){let X=U*v-g.left;for(let G=0;G<m;++G){let ee=Number.MIN_SAFE_INTEGER,Y=0,ae=0;for(let te=0;te<w;++te){let ie=j+te*k;if(ie>=0&&ie<p)for(let Q=0;Q<b;++Q){let he=X+Q*N;if(he>=0&&he<f){let oe=u[L][ie][he][G]+h[te][Q][G];oe>ee&&(ee=oe,Y=te,ae=Q)}}}O[Y][ae][G]+=F[L][V][U][G]}}}return{dataId:c.write(_.toTypedArray(O,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},PD={kernelName:Gh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=_.toNestedArray(r.shape,c.data.get(r.dataId).values),h=_.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:v,filterHeight:w,filterWidth:b,dilationHeight:k,dilationWidth:N,outShape:C}=E.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);_.assert(s.rank===C.length,()=>`Error in ${Gh}, dy must have the same rank as output ${C.length}, but got ${s.rank}`);let F=_.toNestedArray(C,c.data.get(s.dataId).values),O=_.makeZerosNestedTypedArray(r.shape,r.dtype);for(let L=0;L<d;++L)for(let V=0;V<A;++V){let j=V*x-g.top;for(let U=0;U<y;++U){let X=U*v-g.left;for(let G=0;G<m;++G){let ee=Number.MIN_SAFE_INTEGER,Y=j<0?0:j,ae=X<0?0:X;for(let te=0;te<w;++te){let ie=j+te*k;if(ie>=0&&ie<p)for(let Q=0;Q<b;++Q){let he=X+Q*N;if(he>=0&&he<f){let oe=u[L][ie][he][G]+h[te][Q][G];oe>ee&&(ee=oe,Y=ie,ae=he)}}}O[L][Y][ae][G]+=F[L][V][U][G]}}}return{dataId:c.write(_.toTypedArray(O,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function fc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"sum");let o;a.dtype==="bool"?o=Ha({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=Gr({inputs:{x:a},backend:n});let l=o.shape.length,c=_.parseAxisParam(s,o.shape),u=E.getAxesPermutation(c,l),h=c,d=o;u!=null&&(d=nr({inputs:{x:o},backend:n,attrs:{perm:u}}),h=E.getInnerMostAxes(h.length,l)),E.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,f]=E.computeOutAndReduceShapes(d.shape,h),m=E.upcastType(d.dtype,"int32"),A=cp(n,p,m),y=_.sizeFromShape(f),g=n.data.get(A.dataId).values,x=n.data.get(d.dataId).values;for(let v=0;v<g.length;++v){let w=v*y,b=0;for(let k=0;k<y;++k)b+=x[w+k];g[v]=b}if(i){let v=E.expandShapeToKeepDim(A.shape,c),w=A;A=mt({inputs:{x:A},backend:n,attrs:{shape:v}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(o),u!=null&&n.disposeIntermediateTensorInfo(d),A}var LD={kernelName:Qs,backendName:"cpu",kernelFunc:fc};function WD(e){let{inputs:t,backend:n,attrs:r}=e,{equation:a}=r,s=t,{allDims:i,summedDims:o,idDims:l}=E.decodeEinsumEquation(a,s.length);E.checkEinsumDimSizes(i.length,l,s);let{path:c,steps:u}=E.getEinsumComputePath(o,l),h=u.length,d=null,p=i.length,f=[];for(let m=0;m<h;++m){for(let A of u[m]){let{permutationIndices:y,expandDims:g}=E.getEinsumPermutation(p,l[A]),x;E.isIdentityPermutation(y)?x=s[A]:(x=nr({inputs:{x:s[A]},backend:n,attrs:{perm:y}}),f.push(x));let v=x.shape.slice();for(let w=0;w<g.length;++w)v.splice(g[w],0,1);_.arraysEqual(x.shape,v)||(x=mt({inputs:{x},backend:n,attrs:{shape:v}}),f.push(x)),d===null?d=x:(d=hp({inputs:{a:x,b:d},backend:n}),f.push(d))}m<h-1&&(c[m]>=0&&(d=fc({inputs:{x:d},backend:n,attrs:{axis:c[m]-(i.length-p),keepDims:!1}}),f.push(d)),p--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var BD={kernelName:Xh,backendName:"cpu",kernelFunc:WD};function VD(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;ve([r,a],"eluGrad");let s=new Float32Array(_.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l<i.length;++l){let c=i[l];c>=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(a.shape,"float32",s)}var jD={kernelName:Kh,backendName:"cpu",kernelFunc:VD},UD=Mt((e,t)=>e===t?1:0),D_=Gt(ko,UD,null,"bool"),HD={kernelName:ko,backendName:"cpu",kernelFunc:D_},GD=E.ERF_P,qD=E.ERF_A1,XD=E.ERF_A2,KD=E.ERF_A3,ZD=E.ERF_A4,YD=E.ERF_A5,JD=at(vo,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+GD*n);return t*(1-((((YD*r+ZD)*r+KD)*r+XD)*r+qD)*r*Math.exp(-n*n))}),QD={kernelName:vo,backendName:"cpu",kernelFunc:JD};function dp(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(_.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),mt({inputs:{x:a},backend:n,attrs:{shape:o}})}var eO={kernelName:Io,backendName:"cpu",kernelFunc:dp},tO=Mt((e,t)=>e/t),hA=Gt(vs,tO),dA={kernelName:vs,backendName:"cpu",kernelFunc:hA};function O_(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[a,s],u=_.sizeFromShape(c),h=_.getTypedArrayFromDType("float32",u),d=_.getTypedArrayFromDType("float32",u);for(let A=0;A<a;A++){let y=Ni({inputs:{x:o},backend:n,attrs:{begin:[A,0],size:[1,s]}}),g=Ni({inputs:{x:l},backend:n,attrs:{begin:[A,0],size:[1,s]}}),x=Vn({inputs:{real:y,imag:g},backend:n}),{real:v,imag:w}=nO(x,t,n),b=E.mergeRealAndImagArrays(v,w);for(let k=0;k<s;k++){let N=E.getComplexWithIndex(b,k);h[A*s+k]=N.real,d[A*s+k]=N.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(x)}let p=n.makeTensorInfo(c,"float32",h),f=n.makeTensorInfo(c,"float32",d),m=Vn({inputs:{real:p,imag:f},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),m}function nO(e,t,n){let r=_.sizeFromShape(e.shape),a=n.data.get(e.dataId),s=n.data.get(a.complexTensorInfos.real.dataId).values,i=n.data.get(a.complexTensorInfos.imag.dataId).values;if(rO(r)){let o=pA(s,i,r,t,n),l=[e.shape[0],e.shape[1]];if(t){let c=n.makeTensorInfo(l,"float32",o.real),u=n.makeTensorInfo(l,"float32",o.imag),h=n.makeTensorInfo([],"float32",_.createScalarValue(r,"float32")),d=Gr({inputs:{x:h},backend:n}),p=dA.kernelFunc({inputs:{a:c,b:h},backend:n}),f=dA.kernelFunc({inputs:{a:u,b:d},backend:n}),m=n.data.get(p.dataId).values,A=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),{real:m,imag:A}}return o}else{let o=E.mergeRealAndImagArrays(s,i),l=aO(o,r,t);return E.splitRealAndImagArrays(l)}}function rO(e){return(e&e-1)==0}function pA(e,t,n,r,a){if(n===1)return{real:e,imag:t};let s=E.mergeRealAndImagArrays(e,t),i=n/2,o=E.complexWithEvenIndex(s),l=o.real,c=o.imag,u=[l.length],h=a.makeTensorInfo(u,"float32",l),d=a.makeTensorInfo(u,"float32",c),p=Vn({inputs:{real:h,imag:d},backend:a}),f=E.complexWithOddIndex(s),m=f.real,A=f.imag,y=[m.length],g=a.makeTensorInfo(y,"float32",m),x=a.makeTensorInfo(y,"float32",A),v=Vn({inputs:{real:g,imag:x},backend:a}),w=pA(l,c,i,r,a),b=w.real,k=w.imag,N=[b.length],C=a.makeTensorInfo(N,"float32",b),F=a.makeTensorInfo(N,"float32",k),O=Vn({inputs:{real:C,imag:F},backend:a}),L=pA(m,A,i,r,a),V=L.real,j=L.imag,U=[V.length],X=a.makeTensorInfo(U,"float32",V),G=a.makeTensorInfo(U,"float32",j),ee=Vn({inputs:{real:X,imag:G},backend:a}),Y=E.exponents(n,r),ae=[Y.real.length],te=a.makeTensorInfo(ae,"float32",Y.real),ie=a.makeTensorInfo(ae,"float32",Y.imag),Q=Vn({inputs:{real:te,imag:ie},backend:a}),he=hp({inputs:{a:Q,b:ee},backend:a}),oe=pc({inputs:{a:O,b:he},backend:a}),me=lA({inputs:{a:O,b:he},backend:a}),pe=Si({inputs:{input:oe},backend:a}),Ie=Si({inputs:{input:me},backend:a}),Se=Rl({inputs:{input:oe},backend:a}),Fe=Rl({inputs:{input:me},backend:a}),Oe=Ml({inputs:[pe,Ie],backend:a,attrs:{axis:0}}),$e=Ml({inputs:[Se,Fe],backend:a,attrs:{axis:0}}),et=a.data.get(Oe.dataId).values,tt=a.data.get($e.dataId).values;return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(x),a.disposeIntermediateTensorInfo(v),a.disposeIntermediateTensorInfo(C),a.disposeIntermediateTensorInfo(F),a.disposeIntermediateTensorInfo(O),a.disposeIntermediateTensorInfo(X),a.disposeIntermediateTensorInfo(G),a.disposeIntermediateTensorInfo(ee),a.disposeIntermediateTensorInfo(te),a.disposeIntermediateTensorInfo(ie),a.disposeIntermediateTensorInfo(Q),a.disposeIntermediateTensorInfo(he),a.disposeIntermediateTensorInfo(oe),a.disposeIntermediateTensorInfo(me),a.disposeIntermediateTensorInfo(pe),a.disposeIntermediateTensorInfo(Se),a.disposeIntermediateTensorInfo(Ie),a.disposeIntermediateTensorInfo(Fe),a.disposeIntermediateTensorInfo(Oe),a.disposeIntermediateTensorInfo($e),{real:et,imag:tt}}function aO(e,t,n){let r=new Float32Array(t*2);for(let a=0;a<t;a++){let s=0,i=0;for(let o=0;o<t;o++){let l=E.exponent(a*o,t,n),c=E.getComplexWithIndex(e,o);s+=c.real*l.real-c.imag*l.imag,i+=c.real*l.imag+c.imag*l.real}n&&(s/=t,i/=t),E.assignToTypedArray(r,s,i,a)}return r}function sO(e){let{inputs:t,backend:n}=e,{input:r}=t,a=_.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=mt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=O_(o,!1,n),c=mt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var iO={kernelName:Zh,backendName:"cpu",kernelFunc:sO};function fA(e){let{backend:t,attrs:n}=e,{shape:r,value:a,dtype:s}=n,i=s||_.inferDtype(a),o=_.getArrayFromDType(i,_.sizeFromShape(r));return oO(o,a,i),t.makeTensorInfo(r,i,o)}var lO={kernelName:Eu,backendName:"cpu",kernelFunc:fA};function oO(e,t,n){e.fill(t)}var uO={kernelName:No,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,a=n,s=_.getTypedArrayFromDType(r.dtype,_.sizeFromShape(r.shape)),[i,o,l,c]=r.shape,u=a.data.get(r.dataId).values;for(let h=0;h<i;h++){let d=h*l*o*c;for(let p=0;p<o;p++){let f=p*(l*c);for(let m=0;m<l;m++){let A=m*c;for(let y=0;y<c;y++){let g=[i,p,m,y][2],x=Math.round(l-g),v=d+f+A+y,w=u[v];if(x>=0&&x<l){let b=x*c,k=d+f+b+y;w=u[k]}s[v]=w}}}}return{dataId:a.write(s,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},cO=Mt((e,t)=>Math.floor(e/t)),hO=Gt(Ss,cO,null,"int32"),dO={kernelName:Ss,backendName:"cpu",kernelFunc:hO};function pO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=F_({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=pc({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=uA(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var fO={kernelName:oi,backendName:"cpu",kernelFunc:pO};function mO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=$_({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=pc({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=uA(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var AO={kernelName:li,backendName:"cpu",kernelFunc:mO};function yO(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=_.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,c,u,h]=E.prepareAndValidate(r,a);if(c===0)return n.makeTensorInfo(l,r.dtype,[]);let d=Be([c,u],r.dtype),p=n.data.get(a.dataId).values,f=n.data.get(r.dataId).values;for(let m=0;m<c;m++){let A=[],y=0;for(let g=0;g<o;g++){let x=p[m*o+g];y+=x*h[g],A.push(x)}if(y<0||y>=s/u)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;g<u;g++)d.values[m*u+g]=f[y*u+g]}return n.makeTensorInfo(l,d.dtype,d.values)}var gO={kernelName:Eo,backendName:"cpu",kernelFunc:yO};function xO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r;ve([a,s],"gatherV2");let l=o;o==null&&(l=0);let c=_.sizeFromShape(s.shape),u=_.parseAxisParam(i,a.shape)[0],h=E.segment_util.collectGatherOpShapeInfo(a,s,u,l),d=mt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),p=mt({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,c/h.batchSize]}}),f=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],m=n.bufferSync(p),A=n.bufferSync(d),y=r_(A,m,f);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.makeTensorInfo(h.outputShape,y.dtype,y.values)}var wO={kernelName:To,backendName:"cpu",kernelFunc:xO},bO=Mt((e,t)=>e>=t?1:0),_O=Gt(Ts,bO,null,"bool"),vO={kernelName:Ts,backendName:"cpu",kernelFunc:_O};function kO(e){let{inputs:t,backend:n}=e,{input:r}=t,a=_.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=mt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=O_(o,!0,n),c=mt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var IO={kernelName:Yh,backendName:"cpu",kernelFunc:kO},SO=at(Ro,e=>Number.isFinite(e)?1:0,"bool"),NO={kernelName:Ro,backendName:"cpu",kernelFunc:SO},TO=at(Mo,e=>Math.abs(e)===Infinity?1:0,"bool"),EO={kernelName:Mo,backendName:"cpu",kernelFunc:TO},CO=at(Fo,e=>Number.isNaN(e)?1:0,"bool"),RO={kernelName:Fo,backendName:"cpu",kernelFunc:CO},MO=Mt((e,t)=>e<=t?1:0),FO=Gt(Do,MO,null,"bool"),$O={kernelName:Do,backendName:"cpu",kernelFunc:FO};function DO(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=i_(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var OO={kernelName:Qh,backendName:"cpu",kernelFunc:DO},zO=at(Oo,e=>Math.log1p(e)),PO={kernelName:Oo,backendName:"cpu",kernelFunc:zO},LO=Mt((e,t)=>e&&t),WO=Gt(zo,LO,null,"bool"),BO={kernelName:zo,backendName:"cpu",kernelFunc:WO},VO=at(Cu,e=>e?0:1,"bool"),jO={kernelName:Cu,backendName:"cpu",kernelFunc:VO},UO=Mt((e,t)=>e||t),HO=Gt(Ru,UO,null,"bool"),GO={kernelName:Ru,backendName:"cpu",kernelFunc:HO};function qO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;ve(a,"LRN");let c=a.shape[3],u=c-1,h=n.data.get(a.dataId).values,d=_.sizeFromShape(a.shape),p=new Float32Array(d);function f(m){let A=m%c,y=m-A+Math.max(0,A-s),g=m-A+Math.min(A+s,u),x=0;for(;y<=g;y++){let v=h[y];x+=v*v}return x}for(let m=0;m<d;m++){let A=f(m),y=h[m]*Math.pow(i+o*A,-l);p[m]=y}return n.makeTensorInfo(a.shape,a.dtype,p)}var XO={kernelName:Mu,backendName:"cpu",kernelFunc:qO};function KO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=r;ve(i,"LRNGrad");let h=_.sizeFromShape(i.shape),d=i.shape[3],p=n.data.get(i.dataId).values,f=n.data.get(a.dataId).values,m=n.data.get(s.dataId).values,A=new Float32Array(h),y=h;for(let g=0;g<y;g++){let x=g%d,v=g-x+Math.max(0,x-o),w=g-x+Math.min(d,x+o+1),b=0;for(let k=v;k<w;k++)b+=Math.pow(f[k],2);b=c*b+l;for(let k=v;k<w;k++){let N=-2*c*u*f[k]*m[g]/b;g===k&&(N+=Math.pow(b,-u)),N*=p[g],A[k]+=N}}return n.makeTensorInfo(i.shape,a.dtype,A)}var ZO={kernelName:ed,backendName:"cpu",kernelFunc:KO};function z_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=n,l=a.shape,c=l.length,u=_.parseAxisParam(s,l),h=u,d=E.getAxesPermutation(h,c),p=o.data.get(a.dataId).values;if(d!=null){let v=new Array(c);for(let w=0;w<v.length;w++)v[w]=l[d[w]];p=sA(p,l,a.dtype,d,v),h=E.getInnerMostAxes(h.length,c),l=v}ve(a,"max"),E.assertAxesAreInnerMostDims("max",h,c);let[f,m]=E.computeOutAndReduceShapes(l,h),A=_.sizeFromShape(m),y=l_(p,A,f,a.dtype),g=o.write(y,f,a.dtype),x=f;return i&&(x=E.expandShapeToKeepDim(f,u)),{dataId:g,shape:x,dtype:a.dtype}}var YO={kernelName:Ms,backendName:"cpu",kernelFunc:z_};function JO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ve(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))h=Gr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=_.computeStrides(a.shape),f=cA(d,a.shape,a.dtype,p,u,"max");h=n.makeTensorInfo(u.outShape,a.dtype,f.values)}return h}var QO={kernelName:$s,backendName:"cpu",kernelFunc:JO};function ez(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;ve(a,"maxPool3d");let u=E.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=M_(h,a.shape,a.dtype,_.computeStrides(a.shape),u,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var tz={kernelName:Fu,backendName:"cpu",kernelFunc:ez};function nz(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;ve([a,s],"maxPool3DGrad");let u=E.computePool3DInfo(s.shape,i,o,1,l,c),h=n.bufferSync(s),d=L$(h,u),p=u.strideDepth,f=u.strideHeight,m=u.strideWidth,A=u.dilationDepth,y=u.dilationHeight,g=u.dilationWidth,x=u.effectiveFilterDepth,v=u.effectiveFilterHeight,w=u.effectiveFilterWidth,b=x-1-u.padInfo.front,k=w-1-u.padInfo.left,N=v-1-u.padInfo.top,C=Be(s.shape,"float32"),F=n.bufferSync(a);for(let O=0;O<u.batchSize;++O)for(let L=0;L<u.inChannels;++L)for(let V=0;V<u.inDepth;++V)for(let j=0;j<u.inHeight;++j)for(let U=0;U<u.inWidth;++U){let X=V-b,G=j-N,ee=U-k,Y=0;for(let ae=0;ae<x;ae+=A){let te=(X+ae)/p;if(!(te<0||te>=u.outDepth||Math.floor(te)!==te))for(let ie=0;ie<v;ie+=y){let Q=(G+ie)/f;if(!(Q<0||Q>=u.outHeight||Math.floor(Q)!==Q))for(let he=0;he<w;he+=g){let oe=(ee+he)/m;if(oe<0||oe>=u.outWidth||Math.floor(oe)!==oe)continue;let me=x*v*w-1-d.get(O,te,Q,oe,L),pe=ae*v*w+ie*w+he,Ie=me===pe?1:0;Ie!==0&&(Y+=F.get(O,te,Q,oe,L)*Ie)}}}C.set(Y,O,V,j,U,L)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var rz={kernelName:nd,backendName:"cpu",kernelFunc:nz};function az(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;ve([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=E.computePool2DInfo(o.shape,l,c,1,u,h),p=n.data.get(o.dataId).values,f=Be(d.outShape,o.dtype,R_(p,o.shape,o.dtype,d).values),m=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,x=d.effectiveFilterHeight,v=d.effectiveFilterWidth,w=v-1-d.padInfo.left,b=x-1-d.padInfo.top,k=Be(o.shape,"float32"),N=n.data.get(a.dataId).values,C=Be(a.shape,"float32",N);for(let F=0;F<d.batchSize;++F)for(let O=0;O<d.inChannels;++O)for(let L=0;L<d.inHeight;++L)for(let V=0;V<d.inWidth;++V){let j=L-b,U=V-w,X=0;for(let G=0;G<x;G+=y){let ee=(j+G)/m;if(!(ee<0||ee>=d.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y<v;Y+=g){let ae=(U+Y)/A;if(ae<0||ae>=d.outWidth||Math.floor(ae)!==ae)continue;let te=x*v-1-f.get(F,ee,ae,O),ie=G*v+Y,Q=te===ie?1:0;Q!==0&&(X+=C.get(F,ee,ae,O)*Q)}}k.set(X,F,L,V,O)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var sz={kernelName:td,backendName:"cpu",kernelFunc:az};function iz(e,t,n,r,a){let s=_.computeStrides(t),i=cA(e,t,n,s,a,"max"),o=R_(e,t,n,a,!0,r);return[i.values,o.values]}var oz={kernelName:rd,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ve(r,"MaxPoolWithArgmax");let c=l.data.get(r.dataId).values,u=E.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=iz(c,r.shape,r.dtype,o,u),p=l.write(h,u.outShape,r.dtype),f=l.write(d,u.outShape,r.dtype);return[{dataId:p,shape:u.outShape,dtype:r.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function lz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=_.parseAxisParam(s,a.shape),l=E.computeOutAndReduceShapes(a.shape,o)[1],c=_.sizeFromShape(l),u=[],h=n.makeTensorInfo([],"float32",new Float32Array([c]));u.push(h);let d=Ha({inputs:{x:a},backend:n,attrs:{dtype:"float32"}});u.push(d);let p=hA({inputs:{a:d,b:h},backend:n});u.push(p);let f=fc({inputs:{x:p},backend:n,attrs:{axis:s,keepDims:i}});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var uz={kernelName:Ds,backendName:"cpu",kernelFunc:lz};function cz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ve(a,"min");let o=_.parseAxisParam(s,a.shape),l=o,c=E.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=nr({inputs:{x:a},backend:n,attrs:{perm:c}}),l=E.getInnerMostAxes(l.length,a.shape.length)),E.assertAxesAreInnerMostDims("min",l,u.shape.length);let[h,d]=E.computeOutAndReduceShapes(u.shape,l),p=_.sizeFromShape(d),f=_.makeZerosTypedArray(_.sizeFromShape(h),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;y<f.length;++y){let g=y*p,x=m[g];for(let v=0;v<p;++v){let w=m[g+v];w<x&&(x=w)}f[y]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let A=n.makeTensorInfo(h,u.dtype,f);if(i){let y=E.expandShapeToKeepDim(h,o),g=mt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var hz={kernelName:Os,backendName:"cpu",kernelFunc:cz};function dz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,mode:i}=r;ve(a,"mirrorPad");let o=s.map((g,x)=>g[0]+a.shape[x]+g[1]),l=s.map(g=>g[0]),c=s.map((g,x)=>g[0]+a.shape[x]),u=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=_.computeStrides(a.shape),f=_.sizeFromShape(o),m=o.length,A=_.computeStrides(o),y=_.getTypedArrayFromDType(a.dtype,f);for(let g=0;g<f;g++){let x=_.indexToLoc(g,m,A);for(let w=0;w<m;w++)x[w]<l[w]?x[w]=l[w]*2-x[w]-u:x[w]>=c[w]&&(x[w]=(c[w]-1)*2-x[w]+u);x=x.map((w,b)=>w-l[b]);let v=_.locToIndex(x,d,p);y[g]=h[v]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var pz={kernelName:Ps,backendName:"cpu",kernelFunc:dz},fz=Mt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),mz=Gt(Po,fz),Az={kernelName:Po,backendName:"cpu",kernelFunc:mz},yz=ao(d5());function P_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=_.parseAxisParam([o],a.shape),c=z_({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=E.expandShapeToKeepDim(c.shape,l),h=mt({inputs:{x:c},backend:n,attrs:{shape:u}}),d=lA({inputs:{a,b:h},backend:n}),p=__({inputs:{x:d},backend:n}),f=fc({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),m=mt({inputs:{x:f},backend:n,attrs:{shape:u}}),A=hA({inputs:{a:p,b:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var gz={kernelName:ei,backendName:"cpu",kernelFunc:P_};function xz(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;ve(a,"multinomial");let l=o?a:P_({inputs:{logits:a},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],h=n.data.get(l.dataId).values,d=[c,s],p=_.makeZerosTypedArray(_.sizeFromShape(d),"int32");for(let f=0;f<c;++f){let m=f*u,A=new Float32Array(u-1);A[0]=h[m];for(let x=1;x<A.length;++x)A[x]=A[x-1]+h[m+x];let y=yz.alea(i.toString()),g=f*s;for(let x=0;x<s;++x){let v=y();p[g+x]=A.length;for(let w=0;w<A.length;w++)if(v<A[w]){p[g+x]=w;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",p)}var wz={kernelName:ad,backendName:"cpu",kernelFunc:xz},bz=Hr.nonMaxSuppressionV3Impl;function _z(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r;ve(a,"NonMaxSuppression");let c=n.data.get(a.dataId).values,u=n.data.get(s.dataId).values,{selectedIndices:h}=bz(c,u,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var vz={kernelName:Bo,backendName:"cpu",kernelFunc:_z},kz=Hr.nonMaxSuppressionV4Impl;function Iz(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=r;ve(a,"NonMaxSuppressionPadded");let u=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,{selectedIndices:d,validOutputs:p}=kz(u,h,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var Sz={kernelName:Vo,backendName:"cpu",kernelFunc:Iz},Nz=Hr.nonMaxSuppressionV5Impl;function Tz(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=r;ve(a,"NonMaxSuppressionWithScore");let u=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,d=i,p=o,f=l,m=c,{selectedIndices:A,selectedScores:y}=Nz(u,h,d,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Ez={kernelName:jo,backendName:"cpu",kernelFunc:Tz};function Cz(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r;ve(a,"oneHot");let l=_.sizeFromShape(a.shape),c=new Float32Array(l*s);c.fill(o);let u=n.data.get(a.dataId).values;for(let h=0;h<l;++h)u[h]>=0&&u[h]<s&&(c[h*s+u[h]]=i);return n.makeTensorInfo([...a.shape,s],"int32",c)}var Rz={kernelName:Ws,backendName:"cpu",kernelFunc:Cz};function pp(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(r.dtype==="complex64"){let a=Si({inputs:{input:r},backend:n}),s=pp({inputs:{x:a},backend:n}),i=Rl({inputs:{input:r},backend:n}),o=pp({inputs:{x:i},backend:n}),l=Vn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return fA({backend:n,attrs:{shape:r.shape,value:0,dtype:r.dtype}})}var Mz={kernelName:il,backendName:"cpu",kernelFunc:pp};function L_(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(r.dtype==="complex64"){let a=Si({inputs:{input:r},backend:n}),s=L_({inputs:{x:a},backend:n}),i=Rl({inputs:{input:r},backend:n}),o=pp({inputs:{x:i},backend:n}),l=Vn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return fA({backend:n,attrs:{shape:r.shape,value:1,dtype:r.dtype}})}var Fz={kernelName:Uo,backendName:"cpu",kernelFunc:L_};function W_(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return dp({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=dp({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=Ml({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var $z={kernelName:Ho,backendName:"cpu",kernelFunc:W_};function Dz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;ve(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),c=n.data.get(a.dataId).values,u=_.sizeFromShape(a.shape),h=a.shape.length,d=_.computeStrides(a.shape),p=_.sizeFromShape(o),f=o.length,m=_.computeStrides(o),A=_.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;y<u;y++){let g=_.indexToLoc(y,h,d).map((v,w)=>v+l[w]),x=_.locToIndex(g,f,m);A[x]=c[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var B_={kernelName:Bs,backendName:"cpu",kernelFunc:Dz},Oz=Mt((e,t)=>Math.pow(e,t)),zz=Gt(Vs,Oz),Pz={kernelName:Vs,backendName:"cpu",kernelFunc:zz};function Lz(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=iA(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var Wz={kernelName:$u,backendName:"cpu",kernelFunc:Lz},Bz=at(qo,e=>1/e),Vz={kernelName:qo,backendName:"cpu",kernelFunc:Bz};function jz(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;ve(a,"resizeBilinear");let l=_.computeStrides(a.shape),[c,u]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(_.sizeFromShape([h,c,u,f])),y=[s&&c>1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=0,v=y[0]/g[0],w=y[1]/g[1];for(let b=0;b<h;b++)for(let k=0;k<c;k++){let N;i?N=v*(k+.5)-.5:N=v*k;let C=Math.max(0,Math.floor(N)),F=N-C,O=Math.min(d-1,Math.ceil(N)),L=b*l[0]+C*l[1],V=b*l[0]+O*l[1];for(let j=0;j<u;j++){let U;i?U=w*(j+.5)-.5:U=w*j;let X=Math.max(0,Math.floor(U)),G=U-X,ee=Math.min(p-1,Math.ceil(U)),Y=L+X*l[2],ae=V+X*l[2],te=L+ee*l[2],ie=V+ee*l[2];for(let Q=0;Q<f;Q++){let he=m[Y+Q],oe=m[ae+Q],me=m[te+Q],pe=m[ie+Q],Ie=he+(me-he)*G,Se=oe+(pe-oe)*G,Fe=Ie+(Se-Ie)*F;A[x++]=Fe}}}return n.makeTensorInfo([h,c,u,f],"float32",A)}var Uz={kernelName:Hs,backendName:"cpu",kernelFunc:jz};function Hz(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;ve([s,a],"resizeBilinearGrad");let o=_.computeStrides(a.shape),[l,c,u,h]=a.shape,[,d,p]=s.shape,f=new Float32Array(l*c*u*h),m=[i&&d>1?c-1:c,i&&p>1?u-1:u],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=m[0]/A[0],g=m[1]/A[1],x=n.data.get(s.dataId).values,v=0;for(let w=0;w<l;w++){let b=w*o[0];for(let k=0;k<d;k++){let N=k*y,C=Math.floor(N),F=Math.min(Math.ceil(N),c-1),O=b+C*o[1],L=b+F*o[1],V=N-C,j=1-V;for(let U=0;U<p;U++){let X=U*g,G=Math.floor(X),ee=Math.min(Math.ceil(X),u-1),Y=X-G,ae=1-Y,te=O+G*o[2],ie=O+ee*o[2],Q=L+G*o[2],he=L+ee*o[2],oe=j*ae,me=j*Y,pe=V*ae,Ie=V*Y;for(let Se=0;Se<h;Se++){let Fe=x[v++];f[te+Se]+=Fe*oe,f[ie+Se]+=Fe*me,f[Q+Se]+=Fe*pe,f[he+Se]+=Fe*Ie}}}}return n.makeTensorInfo([l,u,c,h],"float32",f)}var Gz={kernelName:od,backendName:"cpu",kernelFunc:Hz};function qz(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;ve(a,"resizeNearestNeighbor");let l=_.computeStrides(a.shape),[c,u]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(h*c*u*f),y=[s&&c>1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=y[0]/g[0],v=y[1]/g[1],w=0;for(let b=0;b<h;b++){let k=b*l[0];for(let N=0;N<c;N++){let C=i?x*(N+.5):x*N,F=Math.min(d-1,s?Math.round(C):Math.floor(C));i&&(F=Math.max(0,F));let O=k+F*l[1];for(let L=0;L<u;L++){let V=i?v*(L+.5):v*L,j=Math.min(p-1,s?Math.round(V):Math.floor(V));i&&(j=Math.max(0,j));let U=O+j*l[2];for(let X=0;X<f;X++){let G=m[U+X];A[w++]=G}}}}return n.makeTensorInfo([h,c,u,f],a.dtype,A)}var Xz={kernelName:Du,backendName:"cpu",kernelFunc:qz};function Kz(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;ve([s,a],"resizeNearestNeighborGrad");let o=_.computeStrides(a.shape),l=_.computeStrides(s.shape),[c,u,h,d]=a.shape,[,p,f]=s.shape,m=new Float32Array(c*u*h*d),A=n.data.get(s.dataId).values,y=[i&&p>1?u-1:u,i&&f>1?h-1:h],g=[i&&p>1?p-1:p,i&&f>1?f-1:f],x=y[0]/g[0],v=y[1]/g[1],w=1/x,b=1/v,k=Math.ceil(w)*2+2,N=Math.ceil(b)*2+2;for(let C=0;C<c;C++){let F=C*o[0];for(let O=0;O<u;O++){let L=F+O*o[1],V=Math.floor(O*w),j=Math.floor(V-k/2);for(let U=0;U<h;U++){let X=L+U*o[2],G=Math.floor(U*b),ee=Math.floor(G-N/2);for(let Y=0;Y<d;Y++){let ae=0;for(let te=0;te<k;te++){let ie=te+j;if(ie<0||ie>=p)continue;let Q=F+ie*l[1],he=ie*x,oe=Math.min(u-1,i?Math.round(he):Math.floor(he));if(O===oe)for(let me=0;me<N;me++){let pe=me+ee;if(pe<0||pe>=f)continue;let Ie=Q+pe*l[2],Se=pe*v,Fe=Math.min(h-1,i?Math.round(Se):Math.floor(Se));U===Fe&&(ae+=A[Ie+Y])}}m[X+Y]=ae}}}}return n.makeTensorInfo(a.shape,a.dtype,m)}var Zz={kernelName:id,backendName:"cpu",kernelFunc:Kz};function Yz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;ve(a,"reverse");let i=a.shape.length,o=_.parseAxisParam(s,a.shape);if(i===0)return Gr({inputs:{x:a},backend:n});let l=new Ot(a.shape,a.dtype),c=n.bufferSync(a);for(let u=0;u<l.size;u++){let h=l.indexToLoc(u),d=h.slice();o.forEach(p=>d[p]=a.shape[p]-1-d[p]),l.set(c.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var Jz={kernelName:qs,backendName:"cpu",kernelFunc:Yz},Qz={kernelName:ol,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=_.getTypedArrayFromDType(r.dtype,_.sizeFromShape(r.shape)),[c,u,h,d]=r.shape,[p,f]=E.getImageCenter(i,u,h),m=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let x=0;x<c;x++){let v=x*h*u*d;for(let w=0;w<u;w++){let b=w*(h*d);for(let k=0;k<h;k++){let N=k*d;for(let C=0;C<d;C++){let F=[c,w,k,C],O=F[2],L=F[1],V=(O-p)*y-(L-f)*A,j=(O-p)*A+(L-f)*y;V=Math.round(V+p),j=Math.round(j+f);let U=s;if(typeof s!="number"&&(C===3?U=m:U=s[C]),V>=0&&V<h&&j>=0&&j<u){let G=j*(h*d),ee=V*d,Y=v+G+ee+C;U=g[Y]}let X=v+b+N+C;l[X]=U}}}}return{dataId:o.write(l,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},eP=at(Xs,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),tP={kernelName:Xs,backendName:"cpu",kernelFunc:eP};function V_(e,t,n,r,a,s,i,o,l,c){let u=[r/a,a],h=e.values,d=t.values;if(r===0)return Be(n,t.dtype);let p=Be(u,t.dtype);p.values.fill(l);for(let f=0;f<s;f++){let m=[],A=0;for(let y=0;y<i;y++){let g=h[f*i+y];m.push(g),A+=g*o[y]}if(A<0||A>=r/a)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y<a;y++)c?p.values[A*a+y]+=d[f*a+y]:p.values[A*a+y]=t.rank===0?d[0]:d[f*a+y]}return p}function nP(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:h}=E.calculateShapes(s,a,i),d=!0,p=n.bufferSync(a),f=n.bufferSync(s),m=V_(p,f,i,h,c,l,o,u,0,d);return n.makeTensorInfo(i,m.dtype,m.values)}var rP={kernelName:Ko,backendName:"cpu",kernelFunc:nP};function aP(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t;ve([r,a,s],"select");let i=r.shape.length,o=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=n.data.get(s.dataId).values,u=dr(a.dtype,s.dtype),h=_.makeZerosTypedArray(_.sizeFromShape(a.shape),u),d=0,p=i===0||i>1||a.shape.length===1?1:_.sizeFromShape(a.shape.slice(1));for(let f=0;f<o.length;f++)for(let m=0;m<p;m++)o[f]===1?h[d++]=l[f]:h[d++]=c[f];return n.makeTensorInfo(a.shape,u,h)}var sP={kernelName:Zo,backendName:"cpu",kernelFunc:aP},iP=E.SELU_SCALEALPHA,oP=E.SELU_SCALE,lP=at(Yo,e=>e>=0?oP*e:iP*(Math.exp(e)-1)),uP={kernelName:Yo,backendName:"cpu",kernelFunc:lP},cP=at(el,e=>e<0?-1:e>0?1:0),hP={kernelName:el,backendName:"cpu",kernelFunc:cP},dP=at(Zs,e=>Math.sin(e)),pP={kernelName:Zs,backendName:"cpu",kernelFunc:dP},fP=at(Qo,e=>Math.sinh(e)),mP={kernelName:Qo,backendName:"cpu",kernelFunc:fP},AP=11920928955078125e-23,j_=Math.log(AP)+2,yP=at(tl,e=>{let t=e>-j_,n=e<j_,r=Math.exp(e),a;return n?a=r:t?a=e:a=Math.log(1+r),a}),gP={kernelName:tl,backendName:"cpu",kernelFunc:yP};function xP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;ve([a],"spaceToBatchND");let o=_.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let A=1+s.length;A<a.shape.length;++A)l.push([0,0]);let c=B_.kernelFunc({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),u=E.getReshaped(c.shape,s,o,!1),h=E.getPermuted(u.length,s.length,!1),d=E.getReshapedPermuted(c.shape,s,o,!1),p=mt({inputs:{x:c},backend:n,attrs:{shape:u}}),f=nr({inputs:{x:p},backend:n,attrs:{perm:h}}),m=mt({inputs:{x:f},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),m}var wP={kernelName:Ou,backendName:"cpu",kernelFunc:xP};function bP(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:a,newShape:s}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(a.dataId).values),o=n.data.get(r.dataId).values,l=Array.from(n.data.get(s.dataId).values),[c,u,h]=m_(o,r.shape,r.dtype,i,l);return[n.makeTensorInfo(u,r.dtype,c),n.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var _P={kernelName:ld,backendName:"cpu",kernelFunc:bP};function vP(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=E.calculateShapes(s,a,o),p=!1,f=n.bufferSync(a),m=n.bufferSync(s),A=n.data.get(i.dataId).values[0],y=V_(f,m,o,d,u,c,l,h,A,p);return n.makeTensorInfo(o,y.dtype,y.values)}var kP={kernelName:ud,backendName:"cpu",kernelFunc:vP};function IP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=_.parseAxisParam(i,a.shape)[0],l=E.prepareSplitSize(a,s,o),c=new Array(a.shape.length).fill(0),u=a.shape.slice();return l.map(h=>{let d=[...u];d[o]=h;let p=Ni({inputs:{x:a},backend:n,attrs:{begin:c,size:d}});return c[o]+=h,p})}var SP={kernelName:nl,backendName:"cpu",kernelFunc:IP},NP=at(Js,e=>Math.sqrt(e)),TP={kernelName:Js,backendName:"cpu",kernelFunc:NP},EP={kernelName:zu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;ve(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i<a.length;++i){let o=a[i];s[i]=o*o}return{dataId:r.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},CP=at(Fa,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),RP={kernelName:Fa,backendName:"cpu",kernelFunc:CP};function MP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r;ve(a,"stridedSlice");let{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=un.sliceInfo(a.shape,s,i,o,l,c,u,h,d),x=mt({inputs:{x:a},backend:n,attrs:{shape:y}}),v;if(p){let b=Ni({inputs:{x},backend:n,attrs:{begin:f,size:A}});v=mt({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))v=n.makeTensorInfo(g,a.dtype,[]);else{let b=n.bufferSync(x),k=y_(g,b,m,f);v=n.makeTensorInfo(k.shape,k.dtype,k.values)}let w=mt({inputs:{x:v},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),w}var FP={kernelName:rl,backendName:"cpu",kernelFunc:MP},$P=at(ri,e=>Math.tan(e)),DP={kernelName:ri,backendName:"cpu",kernelFunc:$P},OP=at(ai,e=>Math.tanh(e)),zP={kernelName:ai,backendName:"cpu",kernelFunc:OP};function PP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;ve(a,"tile");let i=x_(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var LP={kernelName:Ma,backendName:"cpu",kernelFunc:PP};function WP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;ve(a,"topk");let o=n.data.get(a.dataId).values,[l,c]=w_(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var BP={kernelName:al,backendName:"cpu",kernelFunc:WP};function UP(e){let{inputs:t,attrs:n,backend:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=n,[u,h,d,p]=a.shape,[f,m]=c!=null?c:[h,d],A=[u,f,m,p],y=_.computeStrides(a.shape),g=y[0],x=y[1],v=y[2],w=_.getTypedArrayFromDType(a.dtype,_.sizeFromShape(A));w.fill(l);let b=r.data.get(a.dataId).values,k=r.data.get(s.dataId).values;for(let N=0;N<u;++N){let C=s.shape[0]===1?k:k.subarray(N*8,N*8+8);for(let F=0;F<f;++F)for(let O=0;O<m;++O)for(let L=0;L<p;++L){let V,j=C[6]*O+C[7]*F+1;if(j===0)continue;let U=(C[0]*O+C[1]*F+C[2])/j,X=(C[3]*O+C[4]*F+C[5])/j,G=U_(U,d,o),ee=U_(X,h,o);switch(i){case"nearest":V=VP(b,h,d,g,x,v,N,ee,G,L,l);break;case"bilinear":V=jP(b,h,d,g,x,v,N,ee,G,L,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let Y=N*g+F*x+O*v+L;w[Y]=V}return r.makeTensorInfo(A,a.dtype,w)}return{dataId:r.write(w,A,a.dtype),shape:a.shape,dtype:a.dtype}}var HP={kernelName:cd,backendName:"cpu",kernelFunc:UP};function U_(e,t,n){switch(n){case"reflect":return GP(e,t);case"wrap":return qP(e,t);case"nearest":return KP(e,t);case"constant":default:return XP(e,t)}}function GP(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=2*t;n<r&&(n=r*Math.trunc(-n/r)+n),n=n<-t?n+r:-n-1}else if(n>t-1)if(t<=1)n=0;else{let r=2*t;n-=r*Math.trunc(n/r),n>=t&&(n=r-n-1)}return _.clamp(0,n,t-1)}function qP(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=t-1;n+=t*(Math.trunc(-n/r)+1)}else if(n>t-1)if(t<=1)n=0;else{let r=t-1;n-=t*Math.trunc(n/r)}return _.clamp(0,n,t-1)}function XP(e,t){return e}function KP(e,t){return _.clamp(0,e,t-1)}function mc(e,t,n,r,a,s,i,o,l,c,u){let h=i*r+o*a+l*s+c;return 0<=o&&o<t&&0<=l&&l<n?e[h]:u}function VP(e,t,n,r,a,s,i,o,l,c,u){let h=Math.round(o),d=Math.round(l);return mc(e,t,n,r,a,s,i,h,d,c,u)}function jP(e,t,n,r,a,s,i,o,l,c,u){let h=Math.floor(o),d=Math.floor(l),p=h+1,f=d+1,m=(f-l)*mc(e,t,n,r,a,s,i,h,d,c,u)+(l-d)*mc(e,t,n,r,a,s,i,h,f,c,u),A=(f-l)*mc(e,t,n,r,a,s,i,p,d,c,u)+(l-d)*mc(e,t,n,r,a,s,i,p,f,c,u);return(p-o)*m+(o-h)*A}function ZP(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;ve(s,"unique");let i=r.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:c}=b_(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var YP={kernelName:hd,backendName:"cpu",kernelFunc:ZP};function JP(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),c=0;for(let p=0;p<i;p++)p!==s&&(l[c++]=a.shape[p]);let u=new Array(i).fill(0),h=a.shape.slice();h[s]=1;let d=new Array(o);for(let p=0;p<d.length;p++){u[s]=p;let f=Ni({inputs:{x:a},backend:n,attrs:{begin:u,size:h}});d[p]=mt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return d}var QP={kernelName:sl,backendName:"cpu",kernelFunc:JP};function eL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r;ve(a,"unsortedSegmentSum");let o=a.shape.length,l=s.shape.length,c=[],u=[],h=o-l,d=s;for(let f=0;f<h;++f){let m=dp({inputs:{input:d},backend:n,attrs:{dim:f+1}});d=m,u.push(m)}for(let f=0;f<i;++f){let m=_.createScalarValue(f,"int32"),A=n.makeTensorInfo([],"int32",m),y=D_({inputs:{a:A,b:d},backend:n}),g=Ha({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),x=hp({inputs:{a:g,b:a},backend:n}),v=fc({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});c.push(v),u.push(A),u.push(y),u.push(g),u.push(x),u.push(v)}let p=W_({inputs:c,backend:n,attrs:{axis:0}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var tL={kernelName:Pu,backendName:"cpu",kernelFunc:eL},nL=[p$,yF,m$,y$,vF,x$,b$,v$,I$,N$,E$,R$,F$,O$,P$,B$,j$,H$,q$,h$,K$,Y$,Q$,bF,IF,tD,gF,rD,sD,lD,cD,iD,fD,AD,dD,gD,wD,_D,kD,SD,TD,ED,RD,FD,DD,OD,PD,zD,dA,BD,r$,jD,HD,QD,SF,eO,TF,iO,lO,uO,CF,dO,fO,AO,gO,wO,MF,vO,xF,IO,aD,NO,EO,RO,a$,$F,$O,OO,OF,PO,BO,jO,GO,XO,ZO,PF,QO,tz,rz,sz,oz,YO,uz,hz,WF,pz,Az,wz,VF,UF,vz,Sz,Ez,GF,Rz,Fz,$z,B_,Pz,i$,KF,Wz,wF,Vz,o$,l$,c$,Uz,Gz,Xz,Zz,Jz,Qz,tP,YF,rP,sP,uP,u$,hP,pP,mP,JF,gz,gP,wP,_P,kP,SP,TP,EP,e$,RP,FP,n$,LD,DP,zP,LP,BP,qF,HP,YP,QP,tL,Mz];for(let e of nL)ui(e);var H_={};Me(H_,{assertNotComplex:()=>Fl,bindCanvasToFramebuffer:()=>sL,bindColorTextureToFramebuffer:()=>mp,bindTextureToProgramUniformSampler:()=>i3,bindTextureUnit:()=>r3,bindVertexBufferToProgramAttribute:()=>mA,callAndCheck:()=>we,canBeRepresented:()=>G_,createFragmentShader:()=>K_,createFramebuffer:()=>n3,createProgram:()=>Z_,createStaticIndexBuffer:()=>Q_,createStaticVertexBuffer:()=>J_,createTexture:()=>e3,createVertexShader:()=>X_,getBatchDim:()=>Ti,getExtensionOrThrow:()=>Ac,getFramebufferErrorMessage:()=>o3,getMaxTexturesInShader:()=>c3,getNumChannels:()=>rL,getProgramUniformLocation:()=>s3,getProgramUniformLocationOrThrow:()=>a3,getRowsCols:()=>Ei,getShapeAs3D:()=>Ap,getTextureShapeFromLogicalShape:()=>l3,getWebGLDisjointQueryTimerVersion:()=>h3,getWebGLErrorMessage:()=>q_,getWebGLMaxTextureSize:()=>u3,hasExtension:()=>rr,isCapableOfRenderingToFloatTexture:()=>d3,isDownloadFloatTextureEnabled:()=>p3,isReshapeFree:()=>gc,isWebGLFenceEnabled:()=>f3,isWebGLVersionEnabled:()=>yA,linkProgram:()=>Y_,resetMaxTextureSize:()=>iL,resetMaxTexturesInShader:()=>oL,unbindColorTextureFromFramebuffer:()=>AA,unbindTextureUnit:()=>aL,validateFramebuffer:()=>yc,validateProgram:()=>fp,validateTextureSize:()=>t3});var Ci={},gA={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function yp(e,t){Ci[e]=t}function qr(e){if(!(e in Ci)){let n=lL(e);if(n!==null)Ci[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Ci[e];return t.isContextLost()?(delete Ci[e],qr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Ci[e])}function uL(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function lL(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=uL(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Ci[e]},!1),e===1?t.getContext("webgl",gA)||t.getContext("experimental-webgl",gA):t.getContext("webgl2",gA)}var xc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(xc||(xc={}));var ar;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(ar||(ar={}));var tn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(tn||(tn={}));function wc(e,t){return[t,e]}function cL(e,t){return e*t}function bc(e){let t=_.sizeFromShape(e),n=Math.ceil(t/4);return _.sizeToSquarishShape(n)}function $l(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function hL(e,t){let[n,r]=$l(e,t);return n*r*4}function xA(e,t){let n=e,r,a,s,i,o,l,c,u,h,d;return J().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:h,textureTypeFloat:d}}function we(e,t){let n=t();return J().getBool("DEBUG")&&dL(e),n}function dL(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+q_(e,t))}var pL=596e-10,fL=65504;function G_(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||pL<Math.abs(e)&&Math.abs(e)<fL)}function q_(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Ac(e,t){return ma(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function X_(e,t){let n=ma(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(we(e,()=>e.shaderSource(n,t)),we(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function K_(e,t){let n=ma(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(we(e,()=>e.shaderSource(n,t)),we(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw mL(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var AL=/ERROR: [0-9]+:([0-9]+):/g;function mL(e,t){let n=AL.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(`
`),s=a.length.toString().length+2,i=a.map((h,d)=>_.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;h<i.length;h++)o=Math.max(i[h].length,o);let l=i.slice(0,r-1),c=i.slice(r-1,r),u=i.slice(r);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${_.rightPad(c[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
`))}function Z_(e){return ma(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function Y_(e,t){if(we(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function fp(e,t){if(we(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function J_(e,t){let n=ma(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),we(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Q_(e,t){let n=ma(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),we(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function rL(){return J().getNumber("WEBGL_VERSION")===2?1:4}function e3(e){return ma(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function t3(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function n3(e){return ma(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function mA(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),we(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),we(e,()=>e.enableVertexAttribArray(o)),!0)}function r3(e,t,n){m3(e,n),we(e,()=>e.activeTexture(e.TEXTURE0+n)),we(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function aL(e,t){m3(e,t),we(e,()=>e.activeTexture(e.TEXTURE0+t)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function a3(e,t,n){return ma(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function s3(e,t,n){return e.getUniformLocation(t,n)}function i3(e,t,n,r){we(e,()=>r3(e,t,r)),we(e,()=>e.uniform1i(n,r))}function sL(e){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),we(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function mp(e,t,n){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function AA(e,t){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function yc(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+o3(e,t))}function o3(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ma(e,t,n){let r=we(e,()=>t());if(r==null)throw new Error(n);return r}function m3(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(r<e.TEXTURE0||r>n){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function Ti(e,t=2){return _.sizeFromShape(e.slice(0,e.length-t))}function Ei(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Ap(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Ti(e),...Ei(e)]),t}function l3(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?_.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=_.squeezeShape(e).newShape);let r=_.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=Ti(e),s=2,i=2;return e.length&&([s,i]=Ei(e)),r=a*(s/2)*(i/2),_.sizeToSquarishShape(r).map(o=>o*2)}return _.sizeToSquarishShape(r)}function gp(e){return e%2==0}function gc(e,t){if(e=e.slice(-2),t=t.slice(-2),_.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||gp(n)&&gp(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&gp(e[0])&&gp(t[0])}var xp,wp;function u3(e){if(xp==null){let t=qr(e);xp=t.getParameter(t.MAX_TEXTURE_SIZE)}return xp}function iL(){xp=null}function oL(){wp=null}function c3(e){if(wp==null){let t=qr(e);wp=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,wp)}function h3(e){if(e===0)return 0;let t,n=qr(e);return rr(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:rr(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function rr(e,t){return e.getExtension(t)!=null}function yA(e){try{if(qr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function d3(e){if(e===0)return!1;let t=qr(e);if(e===1){if(!rr(t,"OES_texture_float"))return!1}else if(!rr(t,"EXT_color_buffer_float"))return!1;return wA(t)}function p3(e){if(e===0)return!1;let t=qr(e);if(e===1){if(!rr(t,"OES_texture_float")||!rr(t,"WEBGL_color_buffer_float"))return!1}else{if(rr(t,"EXT_color_buffer_float"))return wA(t);let n="EXT_color_buffer_half_float";if(rr(t,n)){let r=t.getExtension(n);return yL(t,r)}return!1}return wA(t)}function wA(e){let t=xA(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function yL(e,t){let n=xA(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function f3(e){return e!==2?!1:qr(e).fenceSync!=null}function Fl(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&_.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ce=J();Ce.registerFlag("HAS_WEBGL",()=>Ce.getNumber("WEBGL_VERSION")>0);Ce.registerFlag("WEBGL_VERSION",()=>yA(2)?2:yA(1)?1:0);Ce.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ce.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ce.get("WEBGL_VERSION")===2);Ce.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ce.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ce.registerFlag("WEBGL_PACK",()=>Ce.getBool("HAS_WEBGL"));Ce.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_CLIP",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_REDUCE",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_CONV_IM2COL",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>u3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>c3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ce.getNumber("WEBGL_VERSION");return e===0?0:h3(e)});Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ce.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!qu.isMobile());Ce.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>d3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ce.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ce.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ce.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>p3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_FENCE_API_ENABLED",()=>f3(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ce.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ce.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ce.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>qu.isMobile()&&Ce.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function dn(){let e,t,n,r,a,s,i,o,l,c;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",c=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",r="varying",a="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,c=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function Ri(e,t,n="index"){let r=_.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function bA(e){let t=_.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}var A3=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,gL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=xc.DENSE;let t=bc(e),n=dn();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Ri(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${n.output} = result;
}
`}},xL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=xc.DENSE;let t=bc(e),n=dn();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Ri(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${n.output} = result;
}
`}},wL=class{constructor(e){this.variableNames=["A"],this.outTexUsage=ar.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=`
${A3}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},bL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=ar.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=`
${A3}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},_L=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=dn(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
${bA(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / ${s};
int c = imod(flatIndex, ${s});
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
vec4 values = ${r.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${r.output} = vec4(${i}, 0., 0., 0.);
}
`}},vL=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=dn(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=`
localCoords = coords;
if(localCoords[2] + ${c} < ${e[2]}) {
localCoords[2] += ${c};
if(localCoords[1] + ${l} < ${e[1]}) {
localCoords[1] += ${l};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
r = flatIndex / ${s};
c = imod(flatIndex, ${s});
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
values = ${r.texture2D}(A, uv);
if(offset == 0) {
result[${u}] = values[0];
} else if(offset == 1) {
result[${u}] = values[1];
} else if(offset == 2) {
result[${u}] = values[2];
} else {
result[${u}] = values[3];
}
}
}
`}this.userCode=`
${bA(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${i}
${r.output} = ${o};
}
`}},y3={};Me(y3,{bindVertexProgramAttributeStreams:()=>S3,createBufferFromOutputTexture:()=>E3,createFloat16MatrixTexture:()=>_3,createFloat16PackedMatrixTexture:()=>I3,createFloat32MatrixTexture:()=>b3,createIndexBuffer:()=>w3,createPackedMatrixTexture:()=>k3,createUnsignedBytesMatrixTexture:()=>v3,createVertexBuffer:()=>x3,createVertexShader:()=>g3,downloadByteEncodedFloatMatrixFromOutputTexture:()=>R3,downloadFloat32MatrixFromBuffer:()=>C3,downloadMatrixFromPackedOutputTexture:()=>F3,downloadPackedMatrixFromBuffer:()=>M3,getInternalFormatForFloat16MatrixTexture:()=>vA,getInternalFormatForFloat16PackedMatrixTexture:()=>SA,getInternalFormatForFloat32MatrixTexture:()=>_A,getInternalFormatForPackedMatrixTexture:()=>IA,getInternalFormatForUnsignedBytesMatrixTexture:()=>kA,uploadDenseMatrixToTexture:()=>N3,uploadPixelDataToTexture:()=>T3});function g3(e){let t=dn(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return X_(e,n)}function x3(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return J_(e,t)}function w3(e){let t=new Uint16Array([0,1,2,2,1,3]);return Q_(e,t)}function _c(e,t,n,r,a,s){t3(t,n);let i=e3(e),o=e.TEXTURE_2D;return we(e,()=>e.bindTexture(o,i)),we(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),we(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),we(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function _A(e){return e.internalFormatFloat}function b3(e,t,n,r){let[a,s]=wc(t,n);return _c(e,a,s,_A(r),r.textureFormatFloat,e.FLOAT)}function vA(e){return e.internalFormatHalfFloat}function _3(e,t,n,r){let[a,s]=wc(t,n);return _c(e,a,s,vA(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function kA(e){return e.downloadTextureFormat}function v3(e,t,n,r){let[a,s]=wc(t,n);return _c(e,a,s,kA(r),e.RGBA,e.UNSIGNED_BYTE)}function IA(e){return e.internalFormatPackedFloat}function k3(e,t,n,r){let[a,s]=$l(t,n);return _c(e,a,s,IA(r),e.RGBA,e.FLOAT)}function SA(e){return e.internalFormatPackedHalfFloat}function I3(e,t,n,r){let[a,s]=$l(t,n);return _c(e,a,s,SA(r),e.RGBA,r.textureTypeHalfFloat)}function S3(e,t,n){let r=0,a=3*4,s=3*4+2*4;return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),mA(e,t,"clipSpacePos",n,3,s,r)&&mA(e,t,"uv",n,2,s,a)}function N3(e,t,n,r,a,s){we(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),we(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function T3(e,t,n){we(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function E3(e,t,n,r){let a=e.createBuffer();we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return we(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),we(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function C3(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function R3(e,t,n,r){let[a,s]=wc(t,n),i=4,o=new Uint8Array(cL(t*n,i));return we(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function M3(e,t,n,r,a,s,i,o){let l=e,c=new Float32Array(hL(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function F3(e,t,n){let r=new Float32Array(t*n*4);return we(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var bp=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,yp(t,e)):this.gl=qr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Ac(this.gl,a),rr(this.gl,s))this.textureHalfFloatExtension=Ac(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),rr(this.gl,r))this.colorBufferHalfFloatExtension=Ac(this.gl,r);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",rr(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(rr(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=x3(this.gl),this.indexBuffer=w3(this.gl),this.framebuffer=n3(this.gl),this.textureConfig=xA(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;we(e,()=>e.finish()),we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.deleteFramebuffer(this.framebuffer)),we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),we(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),b3(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),_3(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),v3(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),T3(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),N3(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),I3(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),k3(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(AA(this.gl,this.framebuffer),this.outputTexture=null),we(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>R3(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return M3(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return C3(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=E3(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>F3(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=K_(t,e),r=g3(t),a=Z_(t);return we(t,()=>t.attachShader(a,r)),we(t,()=>t.attachShader(a,n)),Y_(t,a),this.debug&&fp(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=S3(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&we(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&fp(this.gl,this.program),we(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?a3(this.gl,e,t):s3(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),we(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),i3(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=$l(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&fp(this.gl,this.program),yc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),we(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),we(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Ac(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await _.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=kL(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&_.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),mp(this.gl,e,this.framebuffer),this.debug&&yc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(mp(this.gl,this.outputTexture,this.framebuffer),this.debug&&yc(this.gl)):AA(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;mp(r,e,this.framebuffer),this.debug&&yc(r),this.outputTexture=e,we(r,()=>r.viewport(0,0,t,n)),we(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),we(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function kL(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:$3}=E;function FL(e,t,n,r){let a=[];e.forEach(p=>{let f=_.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${f>1?`[${f}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(`
`),i=e.map(p=>IL(p,t,r)).join(`
`),o=t.texShape,l=dn(),c=TL(l),u,h,d=RL(l);return t.isPacked?(u=SL(t.logicalShape,o),h=CL(l)):(u=NL(t.logicalShape,o),h=EL(l)),r&&(d+=ML),[d,c,h,s,u,i,n].join(`
`)}function Dl(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return $L(e);case 1:return DL(e);case 2:return OL(e);case 3:return zL(e);case 4:return PL(e);case 5:return LL(e);case 6:return WL(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function D3(e){switch(e.shapeInfo.logicalShape.length){case 0:return BL(e);case 1:return VL(e);case 2:return jL(e);case 3:return UL(e);default:return HL(e)}}function IL(e,t,n=!1){let r="";n?r+=D3(e):r+=Dl(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=GL(e,t):r+=qL(e,t)),r}function SL(e,t){switch(e.length){case 0:return O3();case 1:return XL(e,t);case 2:return YL(e,t);case 3:return KL(e,t);default:return ZL(e,t)}}function NL(e,t){switch(e.length){case 0:return O3();case 1:return JL(e,t);case 2:return rW(e,t);case 3:return QL(e,t);case 4:return eW(e,t);case 5:return tW(e,t);case 6:return nW(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function TL(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function EL(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function CL(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function RL(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${aW}
${sW}
${iW}
`}var aW=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,sW=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,iW=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,ML=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function O3(){return`
int getOutputCoords() {
return 0;
}
`}function XL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
int getOutputCoords() {
return 2 * int(resultUV.x * ${n[1]}.0);
}
`:n[1]===1?`
int getOutputCoords() {
return 2 * int(resultUV.y * ${n[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
}
`}function JL(e,t){return t[0]===1?`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function KL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function QL(e,t){let n=Ri(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec3(r, c, d);
}
`}function ZL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),s=a,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
int b${l} = index / ${s};
index -= b${l} * ${s};
`+i,o=`b${l}, `+o;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
${i}
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${o});
}
`}function eW(e,t){let n=Ri(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec4(r, c, d, d2);
}
`}function tW(e,t){let n=Ri(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function nW(e,t){let n=Ri(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function YL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(_.arraysEqual(e,t))return`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
}
`;let r=Math.ceil(e[1]/2);return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function rW(e,t){return _.arraysEqual(e,t)?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function Mi(e){return`offset${e}`}function BL(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=dn();return`
vec4 ${n}() {
return ${r.texture2D}(${t}, halfCR);
}
`}function $L(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
float ${n}() {
return sampleTexture(${t}, halfCR);
}
`;let[s,i]=e.shapeInfo.texShape,o=Mi(t);return`
float ${n}() {
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
return sampleTexture(${t}, uv);
}
`}function VL(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=e.shapeInfo.texShape,a=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],s=dn();return`
vec4 ${n}(int index) {
vec2 uv = packedUVfrom1D(
${a[0]}, ${a[1]}, index);
return ${s.texture2D}(${t}, uv);
}
`}function DL(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
float ${n}(int index) {
${Ol(e)}
}
`;let r=e.shapeInfo.texShape,a=r[0],s=r[1];if(s===1&&a===1)return`
float ${n}(int index) {
return sampleTexture(${t}, halfCR);
}
`;let i=Mi(t);return s===1?`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
return sampleTexture(${t}, uv);
}
`:a===1?`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
return sampleTexture(${t}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = uvFromFlat(${a}, ${s}, index + ${i});
return sampleTexture(${t}, uv);
}
`}function jL(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=a[0],i=a[1],o=dn();if(a!=null&&_.arraysEqual(t,a))return`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
return ${o.texture2D}(${n}, uv);
}
`;let l=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(t[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${c}, ${l[0]}, ${l[1]}, row, col);
return ${o.texture2D}(${n}, uv);
}
`}function OL(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape;if(a!=null&&_.arraysEqual(t,a)){let h=a[0],d=a[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${d}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`}let{newShape:s,keptDims:i}=_.squeezeShape(t),o=s;if(o.length<t.length){let h=zl(e,o),d=["row","col"];return`
${Dl(h)}
float ${r}(int row, int col) {
return ${r}(${Pl(d,i)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
${Ol(e)}
}
`;let l=a[0],c=a[1],u=Mi(n);return c===1?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${n}, uv);
}
`:l===1?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${t[1]} + col + ${u};
vec2 uv = uvFromFlat(${l}, ${c}, index);
return sampleTexture(${n}, uv);
}
`}function UL(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(t[0]===1){let h=t.slice(1),d=[1,2],p=zl(e,h),f=["b","row","col"];return`
${D3(p)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${Pl(f,d)});
}
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),c=l*Math.ceil(t[1]/2),u=dn();return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${i}, ${o}, ${c}, ${l}, b, row, col);
return ${u.texture2D}(${n}, uv);
}
`}function zL(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=_.squeezeShape(t),l=i;if(l.length<t.length){let f=zl(e,l),m=["row","col","depth"];return`
${Dl(f)}
float ${r}(int row, int col, int depth) {
return ${r}(${Pl(m,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${a}, ${s}, 1)));
${Ol(e)}
}
`;let c=e.shapeInfo.texShape,u=c[0],h=c[1],d=e.shapeInfo.flatOffset;if(h===a&&d==null)return`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${u}.0);
return sampleTexture(${n}, uv);
}
`;if(h===s&&d==null)return`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${h}.0, ${u}.0);
return sampleTexture(${n}, uv);
}
`;let p=Mi(n);return`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${s} + depth + ${p};
vec2 uv = uvFromFlat(${u}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function HL(e){let t=e.shapeInfo.logicalShape,n=t.length,r=e.name,a="get"+r.charAt(0).toUpperCase()+r.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],c=Math.ceil(t[n-1]/2),u=c*Math.ceil(t[n-2]/2),h="int b, int row, int col",d=`b * ${u} + (row / 2) * ${c} + (col / 2)`;for(let f=2;f<n-1;f++)h=`int b${f}, `+h,u*=t[n-f-1],d=`b${f} * ${u} + `+d;let p=dn();return`
vec4 ${a}(${h}) {
int index = ${d};
int texR = index / ${l};
int texC = index - texR * ${l};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
return ${p.texture2D}(${r}, uv);
}
`}function PL(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[3],s=t[2]*a,i=t[1]*s,{newShape:o,keptDims:l}=_.squeezeShape(t);if(o.length<t.length){let f=zl(e,o),m=["row","col","depth","depth2"];return`
${Dl(f)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${Pl(m,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${s}, ${a}, 1)));
${Ol(e)}
}
`;let c=e.shapeInfo.flatOffset,u=e.shapeInfo.texShape,h=u[0],d=u[1];if(d===i&&c==null)return`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${s}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(d===a&&c==null)return`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${t[1]*t[2]}, ${t[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let p=Mi(n);return`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${s} +
depth * ${a} + depth2;
vec2 uv = uvFromFlat(${h}, ${d}, index + ${p});
return sampleTexture(${n}, uv);
}
`}function LL(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[4],s=t[3]*a,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:c}=_.squeezeShape(t);if(l.length<t.length){let m=zl(e,l),A=["row","col","depth","depth2","depth3"];return`
${Dl(m)}
float ${r}(int row, int col, int depth, int depth2, int depth3) {
return ${r}(${Pl(A,c)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${a})) +
depth3;
${Ol(e)}
}
`;let u=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,d=h[0],p=h[1];if(p===o&&u==null)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;if(p===a&&u==null)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;let f=Mi(n);return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${a} + depth3 + ${f};
vec2 uv = uvFromFlat(${d}, ${p}, index);
return sampleTexture(${n}, uv);
}
`}function WL(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:a,keptDims:s}=_.squeezeShape(t);if(a.length<t.length){let A=zl(e,a),y=["row","col","depth","depth2","depth3","depth4"];return`
${Dl(A)}
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${r}(${Pl(y,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,c=t[2]*l,u=t[1]*c;if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${u}, ${c}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${Ol(e)}
}
`;let h=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],f=d[1];if(f===u&&h==null)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${c}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(f===i&&h==null)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let m=Mi(n);return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${u} + col * ${c} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${m};
vec2 uv = uvFromFlat(${p}, ${f}, index);
return sampleTexture(${n}, uv);
}
`}function Ol(e){let t=e.name,n=_.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function GL(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=$3(e.shapeInfo.logicalShape,t.logicalShape),l=lt(i),c=i-s,u,h=["x","y","z","w","u","v"];s===0?u="":i<2&&o.length>=1?u="coords = 0;":u=o.map(A=>`coords.${h[A+c]} = 0;`).join(`
`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((A,y)=>`coords.${h[y+c]}`).join(", ");let p="return outputValue;",f=_.sizeFromShape(e.shapeInfo.logicalShape)===1,m=_.sizeFromShape(t.logicalShape)===1;if(s===1&&!f&&!m)p=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(f&&!m)i===1?p=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:p=`
return vec4(outputValue.x);
`;else if(o.length){let A=s-2,y=s-1;o.indexOf(A)>-1&&o.indexOf(y)>-1?p="return vec4(outputValue.x);":o.indexOf(A)>-1?p="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(p="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${a}() {
${l} coords = getOutputCoords();
${u}
vec4 outputValue = get${r}(${d});
${p}
}
`}function qL(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&_.arraysEqual(i,s))return`
float ${a}() {
return sampleTexture(${n}, resultUV);
}
`;let c=lt(l),u=$3(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&u.length>=1?d="coords = 0;":d=u.map(m=>`coords.${p[m+h]} = 0;`).join(`
`);let f="";return l<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,A)=>`coords.${p[A+h]}`).join(", "),`
float ${a}() {
${c} coords = getOutputCoords();
${d}
return get${r}(${f});
}
`}function lt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function zl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Pl(e,t){return t.map(n=>e[n]).join(", ")}function oW(e,t,n,r){let a=t.userCode,s=n.map((p,f)=>{let m={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(m.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[f],shapeInfo:m}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=FL(s,o,a,t.packedInputs),c=e.createProgram(l),u=null,h=e.getUniformLocation(c,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d={};for(let p=0;p<t.variableNames.length;p++){let f=t.variableNames[p],m=!1;d[f]=e.getUniformLocation(c,f,m),d[`offset${f}`]=e.getUniformLocation(c,`offset${f}`,m)}return{program:t,source:l,webGLProgram:c,uniformLocations:d,inShapeInfos:i,outShapeInfo:o,infLoc:u,nanLoc:h}}function z3(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,r)=>{let a=n.logicalShape,s=t[r],i=s.shape;if(!_.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!_.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function lW(e,t,n,r,a){z3(t.inShapeInfos,n),z3([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(_.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(u,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function uW(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:cW,bincountImpl:P3,bincountReduceImpl:hW,ceilImpl:dW,concatImpl:pW,expImpl:fW,expm1Impl:mW,floorImpl:AW,gatherV2Impl:yW,greaterImpl:gW,lessImpl:xW,linSpaceImpl:wW,logImpl:bW,maxImpl:_W,maximumImpl:vW,minimumImpl:kW,multiplyImpl:IW,negImpl:SW,prodImpl:NW,rangeImpl:TW,rsqrtImpl:EW,simpleAbsImpl:L3,sliceImpl:CW,sparseReshapeImpl:RW,stridedSliceImpl:MW,subImpl:FW,tileImpl:$W,topKImpl:DW,transposeImpl:NA,uniqueImpl:OW}=tA;function W3(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function pn(e,t){return t===1?[e]:W3(e,t)}function zW(e,t){if(e===1)return"rc";let n="";for(let r=0;r<e;r++)n+=t[r],r<e-1&&(n+=",");return n}var BW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let n=pn("rc",t),r=lt(t),a=PW(t,e,n),s=LW(t,e[e.length-1],e[e.length-2],n),i=WW(e,n);this.userCode=`
void main() {
${r} rc = getOutputCoords();
if(${a}) {
setOutput(vec4(0));
} else {
${s}
setOutput(vec4(${i}));
}
}
`}}};function VW(e,t){let n=[];for(let r=0;r<=1;r++)for(let a=0;a<=1;a++){let s=`${r===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function PW(e,t,n){if(e===1)return`rc > ${t[0]}`;let r="";for(let a=e-2;a<e;a++)r+=`${n[a]} >= ${t[a]}`,a<e-1&&(r+="||");return r}function LW(e,t,n,r){if(e===1)return"";let a=r.slice(-2);return`
int r = ${a[0]};
int c = ${a[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${t};
bool rEdge = rp1 >= ${n};
`}function WW(e,t){let n=e.length,r=VW(n,t);return n===1?`getA(rc),
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${r[0]}),
cEdge ? 0. : getA(${r[1]}),
rEdge ? 0. : getA(${r[2]}),
rEdge || cEdge ? 0. : getA(${r[3]})`}var B3=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=`
${a}
${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${r}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${r>0?"}":""}
`}this.userCode=`
${jW(t)}
${bA(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${e[1]};
int cols = ${e[2]};
${n}
setOutput(result);
}
`}};function jW(e){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${Ri(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var UW=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=j3(t,n),a=U3(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=V3(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===tn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===tn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===tn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===tn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===tn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=j3(n,r),s=U3(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=V3(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function HW(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function V3(e,t,n,r,a){let s=GW(t,r),i;if(a){let[l,c]=$l(e[0],e[1]);i=l*c}else{let[l,c]=wc(e[0],e[1]);i=l*c}let o=HW(n,s);return i*o}function GW(e,t){switch(e){case tn.PACKED_2X2_FLOAT32:return IA(t);case tn.PACKED_2X2_FLOAT16:return SA(t);case tn.UNPACKED_FLOAT32:return _A(t);case tn.UNPACKED_FLOAT16:return vA(t);case tn.PACKED_4X1_UNSIGNED_BYTE:return kA(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function qW(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?tn.PACKED_2X2_FLOAT32:tn.UNPACKED_FLOAT32:e?tn.PACKED_2X2_FLOAT16:tn.UNPACKED_FLOAT16}function j3(e,t){if(e===ar.UPLOAD)return tn.PACKED_2X2_FLOAT32;if(e===ar.RENDER||e==null)return qW(t);if(e===ar.DOWNLOAD||e===ar.PIXELS)return tn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function U3(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Ga=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},Sr="if (isnan(x)) return x;",XW="return x;",H3="return abs(x);",KW="return (x >= 0.0) ? x : (exp(x) - 1.0);",ZW=Sr+`
return (x < 0.0) ? 0.0 : x;
`,YW=Sr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,_p="return x;",JW="return 1.0 / (1.0 + exp(-1.0 * x));",QW="return x;",eB=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,tB=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,nB=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,rB="return 1.0 / (1.0 + exp(-1.0 * x));",Ll=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},aB=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=pn("rc",t),r=lt(t),a=zW(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${r} rc = getOutputCoords();
vec4 packedInput = getA(${a});
setOutput(getChannel(packedInput, ${i}));
}
`}},sB=Hr.whereImpl,iB=1e-7,oB=1e-4,TA={};function lB(e){return e in TA||(TA[e]={}),TA[e]}var uB=128,cB=600;function hB(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*cB/1024/1024}var Wl=class extends wu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=qr(J().getNumber("WEBGL_VERSION"));this.binaryCache=lB(J().getNumber("WEBGL_VERSION")),this.gpgpu=new bp(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new UW(this.gpgpu),this.numMBBeforeWarning=hB(),this.texData=new Rh(this,ua())}nextDataId(){return Wl.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:ar.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,a){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:ar.UPLOAD,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new Ll(i,_p):h=new Ga(i,_p);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,c;l&&(c=_.now());let u;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);u=E.mergeRealAndImagArrays(h,d)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=_.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(f=>p.push(f))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new Ll(r,_p):p=new Ga(r,_p);let f=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let p=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...bc(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=p[0],m=p[1];u=E.mergeRealAndImagArrays(f,m)}else if(l==null)u=this.getValuesFromTexture(e);else{let p=_.sizeFromShape(r);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}c!=null&&this.disposeIntermediateTensorInfo(c);let h=this.convertAndCacheOnCPU(e,u),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ua().removeDataId(e,this),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>_.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!G_(n))throw J().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:r}=this.texData.get(e),a=_.sizeFromShape(t);if(J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let h=this.decode(e),d=this.texData.get(h.dataId),p=this.gpgpu.downloadMatrixFromPackedTexture(d.texture,...bc(t)).subarray(0,a);return this.disposeIntermediateTensorInfo(h),p}let s=J().getBool("WEBGL_PACK")&&r===!0,i=s?Ap(t):t,o=s?new bL(i):new wL(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),c=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,a);return this.disposeIntermediateTensorInfo(l),u}timerAvailable(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=_.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=_.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=_.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:_.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=_.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=uB){return J().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&_.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){E.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return sB(e.shape,t)}packedUnaryOp(e,t,n){let r=new Ll(e.shape,t),a=this.compileAndRun(r,[e],n);return ua().makeTensorFromDataId(a.dataId,a.shape,a.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let r=L3(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,r)}if(J().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,H3,e.dtype);let t=new Ga(e.shape,H3),n=this.compileAndRun(t,[e]);return ua().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&_.isString(n[0])){let a=n.map(s=>_.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return ua().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new aB(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new BW(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Ti(e.shape),...Ei(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[Ti(t),...Ei(t)],s=new B3(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=Ap(r),i;n?i=new xL(s):i=new gL(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===xc.DENSE){let m=bc(e.outputShape);i.texShape=m.map(A=>A*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),_.sizeFromShape(s.shape)===0)return i.values=_.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(m.dataId);if(A.texture==null){if(!e.packedInputs&&_.sizeFromShape(m.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=m.shape)}else if(!!A.isPacked!=!!e.packedInputs)m=A.isPacked?this.unpackTensor(m):this.packTensor(m),o.push(m),A=this.texData.get(m.dataId);else if(A.isPacked&&!gc(A.shape,m.shape)){let y=m,g=m.shape;m.shape=A.shape,m=this.packedReshape(m,g),o.push(m),A=this.texData.get(m.dataId),y.shape=g}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:A,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=uW(e,l,c),h=this.getAndSaveBinary(u,()=>oW(this.gpgpu,e,l,c)),d=this.activeTimers!=null,p;d&&(p=this.startTimer()),lW(this.gpgpu,h,l,c,r),o.forEach(m=>this.disposeIntermediateTensorInfo(m)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let f=J().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=_.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let m=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),m}return s}compileAndRun(e,t,n,r,a=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=z(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(xe(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?iB:oB}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=_.now());let u=t.texShape;if(u==null&&(u=l3(n,o),t.texShape=u),a!=null){let h=Ap(n),d,p=u[1],f=u[0],m=a instanceof Uint8Array;o?([p,f]=$l(u[0],u[1]),d=new vL(h,[f,p],m)):d=new _L(h,[f,p],m);let A=this.makeTensorInfo([f,p],r);m?this.texData.get(A.dataId).usage=ar.PIXELS:this.texData.get(A.dataId).usage=ar.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,f,a);let y=!0,g=this.runWebGLProgram(d,[A],r,null,y),x=this.texData.get(g.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=_.now()-c)}else{let h=this.acquireTexture(u,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=dB(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*_.bytesPerElement(t)}};Wl.nextDataId=0;function dB(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;r<n.length;++r)n[r]=Math.round(e[r]);return n}else throw new Error(`Unknown dtype ${t}`)}var G3="3.5.0";function q3(){J().set("WEBGL_FORCE_F16_TEXTURES",!0)}qu.isBrowser()&&Al("webgl",()=>new Wl,2);var pB={forceHalfFloat:q3},X3=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,Bl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},vp=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,vc=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||_.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${lt(a)} coords = getOutputCoords();
`,a===1)s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=pn("coords",a);s+=`
bool nextRowOutOfBounds =
(${i[a-2]} + 1) >= ${this.outputShape[a-2]};
bool nextColOutOfBounds =
(${i[a-1]} + 1) >= ${this.outputShape[a-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function jn(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var fB={kernelName:Es,backendName:"webgl",kernelFunc:jn};function qa(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=jn({inputs:{x:r},backend:n}),l=jn({inputs:{x:a},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var mB={kernelName:Ph,backendName:"webgl",kernelFunc:qa},K3="return (a < 0.) ? b * a : a;",Z3=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function AB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",_.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new vc(Z3,a.shape,i.shape):new Bl(K3,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var yB={kernelName:Cs,backendName:"webgl",kernelFunc:AB},Y3="return (a < 0.) ? b * a : a;",J3=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function gB(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new vc(J3,r.shape,a.shape):new Bl(Y3,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var xB={kernelName:js,backendName:"webgl",kernelFunc:gB},Q3="if (isnan(x)) return x;",wB=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,bB=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function Xe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let c=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new Ll(i.shape,t):u=new Ga(i.shape,e),o.runWebGLProgram(u,[i],l)}}function nn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(r&&l.dtype==="complex64"){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[A,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[v,w]=x,b={dataId:v.dataId,dtype:v.dtype,shape:l.shape},k={dataId:w.dataId,dtype:w.dtype,shape:c.shape},N=new Bl(e,l.shape,c.shape);return u.runWebGLProgram(N,[b,k],dr(v.dtype,w.dtype))}),g=qa({inputs:{real:A,imag:y},backend:u});return u.disposeIntermediateTensorInfo(A),u.disposeIntermediateTensorInfo(y),g}let h=s||dr(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&a!=null){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[A,y]=a(l.shape,c.shape,f.values,m.values,h),g=u.makeTensorInfo(y,h),x=u.texData.get(g.dataId);return x.values=A,g}let d=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new vc(t,l.shape,c.shape,n):p=new Bl(e,l.shape,c.shape),u.runWebGLProgram(p,[l,c],h)}}function kp(e,t=!1){if(e==="linear")return t?QW:XW;if(e==="relu")return t?tB:ZW;if(e==="elu")return t?eB:KW;if(e==="relu6")return t?nB:YW;if(e==="prelu")return t?J3:Y3;if(e==="leakyrelu")return t?Z3:K3;if(e==="sigmoid")return t?rB:JW;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var e7=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=r?e[1]:e[2],u=Math.ceil(c/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",A="";i&&(o?m=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?m=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:m=`vec4 activation(vec4 x) {
${i}
}`,A="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let g="rc.x",x="rc.x";e[0]<t[0]?g=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${m}
const float sharedDimension = ${u}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${u}; i++) {
int batchA = ${g};
int batchB = ${x};
vec4 a = getMatrixA(batchA, ${h});
vec4 b = getMatrixB(batchB, ${d});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${p[0]} * ${f[0]});
result += (${p[1]} * ${f[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${y}
${A}
setOutput(result);
}
`}},t7={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},n7=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},r7="return a * b;";function EA(e){let{inputs:t,backend:n}=e,{a:r,b:a}=t,s=E.upcastType(r.dtype,a.dtype);if(r.dtype==="complex64"){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),c=new n7(t7.REAL,r.shape,a.shape),u=new n7(t7.IMAG,r.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:r.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),f=qa({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}if(n.shouldExecuteOnCPU([r,a])){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),[c,u]=IW(r.shape,a.shape,o.values,l.values,s),h=n.makeTensorInfo(u,s),d=n.texData.get(h.dataId);return d.values=c,h}let i;return J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new vc(r7,r.shape,a.shape):i=new Bl(r7,r.shape,a.shape),n.runWebGLProgram(i,[r,a],s)}var _B={kernelName:Ls,backendName:"webgl",kernelFunc:EA};function vB(e,t,n){let r=[Ti(e.shape),...Ei(e.shape)],a={dtype:e.dtype,shape:r,dataId:e.dataId},s=[Ti(t),...Ei(t)],i=new B3(s,r),o=!0,l=n.runWebGLProgram(i,[a],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function fe(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=n,o=_.sizeFromShape(a.shape),l=_.inferFromImplicitShape(s,o),c=_.sizeFromShape(l);_.assert(o===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(a.dataId);return u.isPacked&&!gc(a.shape,l)&&!(u.texture!==null&&gc(u.shape,l))?vB(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var kB={kernelName:Xo,backendName:"webgl",kernelFunc:fe},a7=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${_.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";a%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${a}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},IB=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,h=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
}
`,d="vec4";t==="all"?(i="1.0",h=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,d="bvec4"):t==="any"&&(i="0.0",h=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,d="bvec4");let p="";a%n>0&&(p=`
if (inIdx < 0 || inIdx >= ${a}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${p}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${h}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
${d} values = ${d}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${h}
} else if (${u===2}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${h}
} else if (${u===3}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${h}
}
setOutput(${l});
}
`}};function SB(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=E.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function Fi(e,t,n,r){let a=SB(e.shape),s=e;for(let i=0;i<a.length;i++){let{inSize:o,windowSize:l,outSize:c}=a[i],u,h;n==="mean"?u=i===0?new a7({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c},o):new a7({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c}):u=new IB({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c},n),h=s,s=r.runWebGLProgram(u,[s],t),h.dataId!==e.dataId&&r.disposeIntermediateTensorInfo(h)}return s}var TB=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let r=lt(this.rank),a=NB(t);this.userCode=`
void main() {
${r} resRC = getOutputCoords();
setOutput(getA(${a}));
}
`}};function NB(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a<e.length;a++)r[e[a]]=n[a];return r.join()}var EB=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=lt(this.rank),a=W3("rc",this.rank),s=new Array(this.rank);for(let c=0;c<t.length;c++)s[t[c]]=a[c];let i=`vec2(${s.slice(-2).join()})`,o=`++${a[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${r} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${a[this.rank-1]};
if(++${a[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function Ip(e,t,n){let r=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new EB(e.shape,t):new TB(e.shape,t);return n.runWebGLProgram(r,[e],e.dtype)}function CB(e,t,n,r){let a=t,s=e.shape.length,i=_.parseAxisParam(a,e.shape),o=i,l=E.getAxesPermutation(o,s),c=l!=null,u=e;c&&(u=Ip(e,l,r),o=E.getInnerMostAxes(o.length,s)),E.assertAxesAreInnerMostDims("sum",o,s);let[h,d]=E.computeOutAndReduceShapes(u.shape,o),p=h;n&&(p=E.expandShapeToKeepDim(h,i));let f=_.sizeFromShape(d),m=_.sizeFromShape(e.shape)/f,A=fe({inputs:{x:u},attrs:{shape:[m,f]},backend:r}),y=yd(e.dtype),g=Fi(A,y,"sum",r),x=fe({inputs:{x:g},attrs:{shape:p},backend:r});return r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(g),c&&r.disposeIntermediateTensorInfo(u),x}function Sp(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;return CB(a,s,i,n)}var RB={kernelName:Qs,backendName:"webgl",kernelFunc:Sp};function fn(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{perm:s}=r,i=n,o=a.shape.length,l=new Array(o);for(let u=0;u<l.length;u++)l[u]=a.shape[s[u]];let c;if(i.shouldExecuteOnCPU([a])){let u=i.texData.get(a.dataId).values,h=NA(u,a.shape,a.dtype,s,l);c=i.makeTensorInfo(l,a.dtype);let d=i.texData.get(c.dataId);d.values=h}else c=Ip(a,s,i);return c}var MB={kernelName:si,backendName:"webgl",kernelFunc:fn},s7=1e3;function Np({a:e,b:t,transposeA:n,transposeB:r,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,h=n?e.shape[c-2]:e.shape[c-1],d=r?t.shape[u-1]:t.shape[u-2],p=n?e.shape[c-1]:e.shape[c-2],f=r?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),A=t.shape.slice(0,-2),y=_.sizeFromShape(m),g=_.sizeFromShape(A),x=y===g||y===1||g===1;_.assert(c>=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${A}).`);let v=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,f]);_.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let w=n?[y,h,p]:[y,p,h],b=r?[g,f,d]:[g,d,f],k=fe({inputs:{x:e},backend:a,attrs:{shape:w}}),N=fe({inputs:{x:t},backend:a,attrs:{shape:b}}),C=[k,N],F=Math.max(y,g),O=n?k.shape[1]:k.shape[2],L=s!=null,V=i!=null,j=l==="leakyrelu",U=l!=null?kp(l,!0):null,X=L||V||j||U!=null,G;if((p===1||f===1)&&O>s7&&X===!1){let Y=k,ae=N;n&&(Y=fn({inputs:{x:k},backend:a,attrs:{perm:[0,2,1]}}),C.push(Y)),r&&(ae=fn({inputs:{x:N},backend:a,attrs:{perm:[0,2,1]}}),C.push(ae));let te=f!==1,ie=f===1,Q=Y;te&&(Q=fe({inputs:{x:Y},backend:a,attrs:{shape:[F,O,1]}}),C.push(Q));let he=f===1?2:1,oe=ae;ie&&(oe=fe({inputs:{x:ae},backend:a,attrs:{shape:[F,1,O]}}),C.push(oe));let me=EA({inputs:{a:Q,b:oe},backend:a});G=Sp({inputs:{x:me},backend:a,attrs:{axis:he,keepDims:!0}}),C.push(me)}else{let Y=dr(e.dtype,t.dtype),ae=new e7(w,b,[F,p,f],n,r,L,U,V,j),te=[k,N];if(s!=null&&te.push(s),V&&te.push(i),j){let ie=a.makeTensorInfo([],"float32",_.createScalarValue(o,"float32"));te.push(ie),C.push(ie)}G=a.runWebGLProgram(ae,te,Y)}let ee=fe({inputs:{x:G},backend:a,attrs:{shape:v}});C.push(G);for(let Y of C)a.disposeIntermediateTensorInfo(Y);return ee}function FB(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r;return Np({a,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:u})}var $B={kernelName:ii,backendName:"webgl",kernelFunc:FB},i7="return abs(x);";function DB(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=L3(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Ll(r.shape,i7):a=new Ga(r.shape,i7),n.runWebGLProgram(a,[r],r.dtype)}var OB={kernelName:oo,backendName:"webgl",kernelFunc:DB},zB=Sr+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,PB=Xe({opSnippet:zB}),LB={kernelName:lo,backendName:"webgl",kernelFunc:PB},WB=Sr+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,BB=Xe({opSnippet:WB}),VB={kernelName:uo,backendName:"webgl",kernelFunc:BB},o7="return a + b;",jB=nn({opSnippet:o7,packedOpSnippet:o7,supportsComplex:!0,cpuKernelImpl:cW}),UB={kernelName:Ca,backendName:"webgl",kernelFunc:jB},HB=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${r};
setOutput(result);
}
`}},GB=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${r};
setOutput(result);
}
`}};function Tp(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return jn({inputs:{x:r[0]},backend:n});if(r.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=Tp({inputs:r.slice(0,o),backend:n}),c=Tp({inputs:r.slice(o),backend:n});return Tp({inputs:[l,c],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>dr(o,l)),s=r.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new GB(r[0].shape,s):new HB(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var qB={kernelName:ds,backendName:"webgl",kernelFunc:Tp};function XB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,o)),E.assertAxesAreInnerMostDims("all",c,o);let[d,p]=E.computeOutAndReduceShapes(h.shape,c),f=_.sizeFromShape(p),m=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=Fi(m,m.dtype,"all",n),y;if(i){let g=E.expandShapeToKeepDim(d,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var KB={kernelName:co,backendName:"webgl",kernelFunc:XB};function ZB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,o)),E.assertAxesAreInnerMostDims("any",c,o);let[d,p]=E.computeOutAndReduceShapes(h.shape,c),f=_.sizeFromShape(p),m=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=Fi(m,m.dtype,"any",n),y;if(i){let g=E.expandShapeToKeepDim(d,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var YB={kernelName:ho,backendName:"webgl",kernelFunc:ZB},JB=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${r};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${r}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},QB=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,_.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=lt(o),c=pn("coords",o),u,h;if(s===1){h=o+1;let k=lt(h);u=`
${k} sourceLocR = ${k}(${c.join()}, 0);
++${c[o-1]};
${k} sourceLocG = ${k}(${c.join()}, 0);
++${c[o-2]};
${k} sourceLocA = ${k}(${c.join()}, 0);
--${c[o-1]};
${k} sourceLocB = ${k}(${c.join()}, 0);
--${c[o-2]};`}else h=o,u=`
${l} sourceLocR = coords;
++${c[o-1]};
${l} sourceLocG = coords;
++${c[o-2]};
${l} sourceLocA = coords;
--${c[o-1]};
${l} sourceLocB = coords;
--${c[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],f=d.map(k=>"int "+k),m=pn("sourceLocR",h-1).concat("inIdx.r"),A=pn("sourceLocG",h-1).concat("inIdx.g"),y=pn("sourceLocB",h-1).concat("inIdx.b"),g=pn("sourceLocA",h-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=r?"":`
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
getBestIndicesAChannel(${A.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${g.join()})));`,w=`vec4(
getAChannel(${m.join()}),
hasNextCol ? getAChannel(${A.join()}) : 0.,
hasNextRow ? getAChannel(${y.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,b=r?"":`
float getBestIndicesAChannel(${f.join()}) {
return getChannel(getBestIndicesA(${d.join()}),
vec2(${d.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${f.join()}) {
return getChannel(getA(${d.join()}),
vec2(${d.slice(-2).join()}));
}
${b}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${c[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${c[o-2]} < ${i[o-2]-1};
${u}
ivec4 srcIdx = ivec4(sourceLocR${p}, sourceLocG${p},
sourceLocB${p}, sourceLocA${p}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${w};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${v}
vec4 candidate = ${w};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function l7(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=E.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new JB(o,n,r==null),c=[t];r!=null&&c.push(r);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let h=l7(e,t,n,u);return e.disposeIntermediateTensorInfo(u),h}function u7(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=E.computeOptimalWindowSize(s),o=new QB(a,i,n,r==null),l=r==null?[t]:[t,r],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=u7(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function c7(e,t,n,r){let a=[n];if(E.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=E.computeOutAndReduceShapes(t.shape,a),l=_.sizeFromShape(o),c=fe({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=l7(e,c,r);s.push(u);let h=fe({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return u7(e,t,r)}function eV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=fn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=c7(n,l,i[0],"max");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var tV={kernelName:ps,backendName:"webgl",kernelFunc:eV};function nV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=_.parseAxisParam(s,a.shape),o=E.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=fn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=E.getInnerMostAxes(i.length,l.shape.length)),E.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=c7(n,l,i[0],"min");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var rV={kernelName:vu,backendName:"webgl",kernelFunc:nV},aV=Sr+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,sV=Xe({opSnippet:aV}),iV={kernelName:po,backendName:"webgl",kernelFunc:sV},oV=Sr+"return log(x + sqrt(x * x + 1.0));",lV=Xe({opSnippet:oV}),uV={kernelName:fo,backendName:"webgl",kernelFunc:lV},cV=Sr+`
return atan(x);
`,hV=Xe({opSnippet:cV}),dV={kernelName:mo,backendName:"webgl",kernelFunc:hV},pV=wB+`
return atan(a, b);
`,fV=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+bB+`
return result;
`,mV=nn({opSnippet:pV,packedOpSnippet:fV}),AV={kernelName:yo,backendName:"webgl",kernelFunc:mV},yV=Sr+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,gV=Xe({opSnippet:yV}),xV={kernelName:Ao,backendName:"webgl",kernelFunc:gV},kc=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let k=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${p});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${h};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${k} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${r?a?m:A:`wR * ${h} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let g="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,w=s%4,b=`
if (${f}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${g}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${p});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${v}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${b}
}
int xC = xCCorner + ${v};
if (${w===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${b}
} else if (${w===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${b}
} else if (${w===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${b}
}
}
setOutput(${x});
}
`}},CA=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",x="0.0";if(g||(x="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${m}, ${A}, ${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${d};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${p};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f};
wC += ${h}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${C} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${r?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${f} +
wR * ${f} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let v="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let b=Math.floor(s/4)*4,k=s%4,N=`
if (${g}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${v}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${m}, ${A}, ${y});
const float initializationValue = ${x};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${x});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${d};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${p};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${b}; wC += 4) {
int xC = xCCorner + wC * ${h};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
getValue(batch, xD, xR, xC + 3 * ${h}, ch)
);
${N}
}
int xC = xCCorner + ${b};
if (${k===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${N}
} else if (${k===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
initializationValue,
initializationValue
);
${N}
} else if (${k===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
initializationValue
);
${N}
}
}
setOutput(${w});
}
}
`}};function wV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;Fl(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))return jn({inputs:{x:a},backend:n});let h=new kc(u,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var bV={kernelName:fs,backendName:"webgl",kernelFunc:wV};function _V(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r,u=[1,1,1],h=E.computePool3DInfo(a.shape,s,i,u,o,l,c),d=new CA(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var vV={kernelName:ku,backendName:"webgl",kernelFunc:_V},kV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,h=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${c}, ${u});
const float avgMultiplier = float(${h});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},IV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=u-1-e.padInfo.front,f=h-1-e.padInfo.top,m=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=`
const ivec3 pads = ivec3(${p}, ${f}, ${m});
const float avgMultiplier = float(${A});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${u};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${a}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${h};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${d};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function SV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=E.computePool3DInfo(i.shape,o,l,h,c,u),p=new IV(d);return n.runWebGLProgram(p,[a],i.dtype)}var NV={kernelName:Oh,backendName:"webgl",kernelFunc:SV};function TV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;Fl([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=E.computePool2DInfo(i.shape,o,l,1,c),h=new kV(u);return n.runWebGLProgram(h,[a],i.dtype)}var EV={kernelName:Dh,backendName:"webgl",kernelFunc:TV};function CV(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return Np({a,b:s,transposeA:i,transposeB:o,backend:n})}var RV={kernelName:ms,backendName:"webgl",kernelFunc:CV},MV=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},FV=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(E.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},$V=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;_.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[r,a,s],u=null;i!=null&&(u=i.shape,c.push(i));let h=null;o!=null&&(h=o.shape,c.push(o));let d=J().getBool("WEBGL_PACK_NORMALIZATION")?new FV(r.shape,a.shape,s.shape,u,h,l):new MV(r.shape,a.shape,s.shape,u,h,l);return t.runWebGLProgram(d,c,c[0].dtype)},DV={kernelName:Ns,backendName:"webgl",kernelFunc:$V},zV=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=`uniform int start[${this.rank}];`,r=OV(this.rank),a,s=e.map((i,o)=>`sourceLoc.${RA[o]} = start[${o}] + coords.${RA[o]};`);a=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${s.join(`
`)}
`,this.userCode=`
${n}
void main() {
${a}
setOutput(getSource(${r}));
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},RA=["x","y","z","w","u","v"];function OV(e){if(e===1)return"sourceLoc";if(e<=6)return RA.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var PV=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=pn("coords",this.rank),r=pn("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=`
result.x = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${r[this.rank-1]};
result.y = ${s};
--${r[this.rank-1]};
}
`,o=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${r[this.rank-2]};
result.z = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${r[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${r[u]} = ${n[u]} + start[${u}];`).join(`
`);this.userCode=`
uniform int start[${this.rank}];
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function LV(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=un.computeFlatOffset(t,_.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function Ic(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=un.parseSliceParams(a,s,i);if(un.assertParamsValid(a,o,l),_.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=CW(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:c}=n.texData.get(a.dataId),u=un.isSliceContinous(a.shape,o,l);if(c||!u){let h=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new PV(l):new zV(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),LV(a,o,l,n)}var WV={kernelName:Jo,backendName:"webgl",kernelFunc:Ic},BV=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;_.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,x)=>g*x),l=E.getReshaped(a.shape,s,o),c=E.getPermuted(l.length,s.length),u=E.getReshapedPermuted(a.shape,s,o),h=E.getSliceBeginCoords(i,s.length),d=E.getSliceSize(u,i,s.length),p=[],f=fe({inputs:{x:a},backend:n,attrs:{shape:l}}),m=fn({inputs:{x:f},backend:n,attrs:{perm:c}}),A=fe({inputs:{x:m},backend:n,attrs:{shape:u}}),y=Ic({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(f),p.push(m),p.push(A),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},VV={kernelName:Iu,backendName:"webgl",kernelFunc:BV};function jV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),c=P3(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var UV={kernelName:zh,backendName:"webgl",kernelFunc:jV},HV="return float(a != b);",h7=nn({opSnippet:HV,dtype:"bool"}),GV={kernelName:Wo,backendName:"webgl",kernelFunc:h7};function Sc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return jn({inputs:{x:a.complexTensorInfos.real},backend:n})}var qV={kernelName:sd,backendName:"webgl",kernelFunc:Sc},XV="return float(int(x));";function KV(e,t){let n=new Ga(e.shape,XV),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function MA(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return jn({inputs:{x:a},backend:n});let i=Rt(a.shape),o=MA({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=qa({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Sc({inputs:{input:a},backend:n}),o=MA({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!_.hasEncodingLoss(a.dtype,s)){let i=jn({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return KV(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",_.getTypedArrayFromDType("bool",1)),o=h7({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var ZV={kernelName:As,backendName:"webgl",kernelFunc:MA},d7="return ceil(x);",YV=Xe({opSnippet:d7,packedOpSnippet:d7,cpuKernelImpl:dW}),JV={kernelName:ys,backendName:"webgl",kernelFunc:YV},QV=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},ej=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function tj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;J().getBool("WEBGL_PACK_CLIP")?o=new ej(a.shape):o=new QV(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var nj={kernelName:Ra,backendName:"webgl",kernelFunc:tj},rj=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function p7(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function aj(e){let{inputs:t,backend:n}=e,{x:r}=t,a=n.texData.get(r.dataId),s=new rj(r.shape),i=[p7(r,a.complexTensorInfos.real),p7(r,a.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var sj={kernelName:Su,backendName:"webgl",kernelFunc:aj},ij=class{constructor(e){this.outputShape=[],this.outputShape=E.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let r=t.length,a=t[t.length-1];n.push(`else setOutput(getT${r}(yR, yC-${a}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},oj=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=E.computeOutShape(e,t);let n=this.outputShape,r=n.length,a=lt(r),s=pn("coords",r),i=["x","y","z","w","u","v"].slice(0,r);this.variableNames=e.map((f,m)=>`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f<o.length;f++)o[f]=o[f-1]+e[f][t];let l=i[t],c=i.slice(-2),u=i.join(),h=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${u}), vec2(${c.join()}));
}`;for(let f=1;f<o.length;f++){let m=o[f-1];h+=`
if (${l} < ${o[f]} && ${l} >= ${o[f-1]}) {
return getChannel(
getT${f}(${Ep(i,l,m)}),
vec2(${Ep(c,l,m)}));
}`}let d=o.length,p=o[o.length-1];h+=`
return getChannel(
getT${d}(${Ep(i,l,p)}),
vec2(${Ep(c,l,p)}));`,this.userCode=`
float getValue(${i.map(f=>"int "+f)}) {
${h}
}
void main() {
${a} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[r-1]} = ${s[r-1]} + 1;
if (${s[r-1]} < ${n[r-1]}) {
result.g = getValue(${s});
}
${s[r-2]} = ${s[r-2]} + 1;
if (${s[r-2]} < ${n[r-2]}) {
result.a = getValue(${s});
}
${s[r-1]} = ${s[r-1]} - 1;
if (${s[r-2]} < ${n[r-2]} &&
${s[r-1]} < ${n[r-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function Ep(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function Cp(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return jn({inputs:{x:a.complexTensorInfos.imag},backend:n})}var lj={kernelName:Jh,backendName:"webgl",kernelFunc:Cp};function Vl(e,t,n){let r=e[0].dtype;if(r==="complex64"){let u=e.map(m=>Sc({inputs:{input:m},backend:n})),h=e.map(m=>Cp({inputs:{input:m},backend:n})),d=Vl(u,t,n),p=Vl(h,t,n),f=qa({inputs:{real:d,imag:p},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),h.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}let a=n.shouldExecuteOnCPU(e);if(r==="string"&&(a=!0),a){let u=e.map(y=>{let g=_.sizeFromShape(y.shape.slice(t));return fe({inputs:{x:y},backend:n,attrs:{shape:[-1,g]}})}),h=u.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),d=E.computeOutShape(u.map(y=>y.shape),1),p=u[0].shape[0]===1,f=pW(h,d,r,p),m=E.computeOutShape(e.map(y=>y.shape),t),A=n.makeTensorInfo(m,r,f);return u.forEach(y=>n.disposeIntermediateTensorInfo(y)),A}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),h=Vl(e.slice(0,u),t,n),d=Vl(e.slice(u),t,n),p=Vl([h,d],t,n);return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new oj(e.map(h=>h.shape),t);return n.runWebGLProgram(u,e,r)}let{tensors2D:s,outShape:i}=uj(e,t,n),o=new ij(s.map(u=>u.shape)),l=n.runWebGLProgram(o,s,r);s.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=fe({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),c}function uj(e,t,n){let r=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>fe({inputs:{x:a},attrs:{shape:[-1,_.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function f7(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=_.parseAxisParam(a,t[0].shape)[0],i=E.computeOutShape(t.map(c=>c.shape),s);if(_.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>_.sizeFromShape(c.shape)>0);if(o.length===1)return jn({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return E.assertParamsConsistent(l,s),Vl(o,s,n)}var cj={kernelName:go,backendName:"webgl",kernelFunc:f7},m7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",A=m?1:2,y=m?2:3,g=m?3:1,x="",v="";n&&(r?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:a?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:x=`
float activation(float x) {
${n}
}
`,v="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${g}];
ivec2 xRCCorner =
ivec2(coords[${A}], coords[${y}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${p}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${m}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${f===1}) {
if (${m}) {
dotProd +=
getX(batch, xR, xC, ${p}) *
getW(wR, wC, ${p}, d2);
} else {
dotProd +=
getX(batch, ${p}, xR, xC) *
getW(wR, wC, ${p}, d2);
}
} else if (${f===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${p}, d2),
getW(wR, wC, ${p} + 1, d2)
);
if (${m}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${p}),
getX(batch, xR, xC, ${p} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${p}, xR, xC),
getX(batch, ${p} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${f===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${p}, d2),
getW(wR, wC, ${p} + 1, d2),
getW(wR, wC, ${p} + 2, d2)
);
if (${m}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${p}),
getX(batch, xR, xC, ${p} + 1),
getX(batch, xR, xC, ${p} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${p}, xR, xC),
getX(batch, ${p} + 1, xR, xC),
getX(batch, ${p} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${w}
${v}
setOutput(result);
}
`}},hj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${a}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${n}, ${r});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${u}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${p}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${f===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${p}) *
getW(wF, wR, wC, ${p}, d2);
} else if (${f===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${p}),
getX(batch, xF, xR, xC, ${p} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${p}, d2),
getW(wF, wR, wC, ${p} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${f===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${p}),
getX(batch, xF, xR, xC, ${p} + 1),
getX(batch, xF, xR, xC, ${p} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${p}, d2),
getW(wF, wR, wC, ${p} + 1, d2),
getW(wF, wR, wC, ${p} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},dj=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:h}=n,{left:d,top:p}=o,f=a*r,m=dn(),A=h==="channelsLast",y=A?0:1,g=A?1:2,x="";for(let v=0;v<=1;v++)for(let w=0;w<=1;w++)x+=`
blockIndex = rc.y + ${w};
pos = rc.x + ${v};
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
offsetY = int(blockIndex / (${l})) * ${i} - ${p};
d0 = offsetY + ${u} * (pos / ${f});
if(d0 < ${t[y]} && d0 >= 0) {
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.);
d1 = offsetX + ${c} * (int(mod(float(pos), ${f}.) / ${a}.));
if(d1 < ${t[g]} && d1 >= 0) {
ch = int(mod(float(pos), ${a}.));
if (${A}) {
innerDims = vec2(d1, ch);
result[${v*2+w}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${v*2+w}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${x}
${m.output} = result;
}
`}};function A7({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=r.texData.get(e.dataId),u=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",f=!1,m=!1,A,y=[],g=(h===1||d===1)&&u>s7,x=l[2]%2!=0&&!!c.isPacked;if(g||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let v=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],w=fe({inputs:{x:e},backend:r,attrs:{shape:[1,v,n.inChannels]}}),b=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),k=Np({a:w,b,transposeA:f,transposeB:m,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=fe({inputs:{x:k},backend:r,attrs:{shape:n.outShape}}),y.push(w),y.push(b),y.push(k)}else{let v=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),w={dataId:e.dataId,shape:[1,v,n.inChannels],dtype:e.dtype},b=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,_.assert(gc(c.shape,w.shape),()=>`packed reshape ${c.shape} to ${w.shape} isn't free`);let k=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(k);let N=Np({a:w,b:k,backend:r,transposeA:f,transposeB:m,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=r.texData.get(N.dataId);_.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=b,C.shape=n.outShape,A=jn({inputs:{x:N},backend:r}),A.shape=n.outShape,y.push(N)}for(let v of y)r.disposeIntermediateTensorInfo(v);return A}function y7({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:h,outHeight:d,dataFormat:p}=n,f=p==="channelsLast",m=l*c*u,A=d*h,y=[m,A],g=!0,x=!1,v=[],w=fe({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),b=fe({inputs:{x:t},backend:r,attrs:{shape:[1,m,_.sizeFromShape(t.shape)/m]}});v.push(w),v.push(b);let k=new dj(y,w.shape,n),N=r.runWebGLProgram(k,[w],"float32"),C=fe({inputs:{x:N},backend:r,attrs:{shape:[1,y[0],y[1]]}});v.push(N),v.push(C);let F=a!=null,O=s!=null,L=o==="leakyrelu",V=o?kp(o,!0):null,j=new e7(C.shape,b.shape,[1,A,n.outChannels],g,x,F,V,O,L),U=[C,b];if(a&&U.push(a),O&&U.push(s),L){let Y=r.makeTensorInfo([],"float32",_.createScalarValue(i,"float32"));U.push(Y),v.push(Y)}let X=r.runWebGLProgram(j,U,"float32"),G=f?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],ee=fe({inputs:{x:X},backend:r,attrs:{shape:G}});v.push(X);for(let Y of v)r.disposeIntermediateTensorInfo(Y);return ee}function pj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r,h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=A7({x:a,filter:s,convInfo:d,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=y7({x:a,filter:s,convInfo:d,backend:n});else{let m=new m7(d);p=n.runWebGLProgram(m,[a,s],"float32")}let f=fe({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),f}var fj={kernelName:gs,backendName:"webgl",kernelFunc:pj},mj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${r};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${a};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${s}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},Aj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${u}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},yj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${a};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${r} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},gj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=r-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${a}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${r}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${r} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function xj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=r,h=E.convertConv2DDataFormat(l),d=E.computeConv2DInfo(a.shape,u,i,1,o,c,!1,h),p=new mj(d);return n.runWebGLProgram(p,[a,s],"float32")}var wj={kernelName:Lh,backendName:"webgl",kernelFunc:xj};function bj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=r,h=E.convertConv2DDataFormat(c),d=E.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),p=new Aj(d);return n.runWebGLProgram(p,[a,s],"float32")}var _j={kernelName:xs,backendName:"webgl",kernelFunc:bj};function vj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=E.computeConv3DInfo(a.shape,s.shape,i,l,o),u=new hj(c);return n.runWebGLProgram(u,[a,s],"float32")}var kj={kernelName:Nu,backendName:"webgl",kernelFunc:vj};function Ij(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,c=E.computeConv3DInfo(a.shape,l,i,1,o),u=new yj(c);return n.runWebGLProgram(u,[a,s],"float32")}var Sj={kernelName:Wh,backendName:"webgl",kernelFunc:Ij};function Nj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,c=E.computeConv3DInfo(l,s.shape,o,1,i),u=new gj(c);return n.runWebGLProgram(u,[a,s],"float32")}var Tj={kernelName:Bh,backendName:"webgl",kernelFunc:Nj},Ej=Q3+`
return cos(x);
`,Cj=Xe({opSnippet:Ej}),Rj={kernelName:ws,backendName:"webgl",kernelFunc:Cj},Mj=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,Fj=Xe({opSnippet:Mj}),$j={kernelName:xo,backendName:"webgl",kernelFunc:Fj},Dj=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,h]=n;this.outputShape=[c,u,h,l];let d=r==="bilinear"?1:0,[p,f]=[`${i-1}.0`,`${o-1}.0`],[m,A,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[g,x,v]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
const float height_ratio = float(${m});
const float width_ratio = float(${g});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${A};
float width_scale = ${x};
float in_y = ${y};
if( in_y < 0.0 || in_y > ${p} ) {
setOutput(float(${a}));
return;
}
float in_x = ${v};
if( in_x < 0.0 || in_x > ${f} ) {
setOutput(float(${a}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${d} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},Oj=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,u=new Dj(a.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[a,s,i],"float32")},zj={kernelName:wo,backendName:"webgl",kernelFunc:Oj},w7=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${g7(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
uniform float index;
void main() {
${lt(r)} coords = getOutputCoords();
int end = ${x7(r,"coords")};
float val = ${a};
int pow2 = int(pow(2.0, index));
if (${i}) {
int idx = ${o};
${x7(r,"coords")} = idx;
val += getX(${g7(r,"coords")});
}
setOutput(val);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function g7(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function x7(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Pj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,c=E.getAxesPermutation([s],l),u=a;c!=null&&(u=fn({inputs:{x:a},backend:n,attrs:{perm:c}}));let h=E.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=u.shape[h],p=jn({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(d))-1;f++){let m=new w7(u.shape,!1,o),A=m.getCustomSetupFunc(f),y=p;p=n.runWebGLProgram(m,[p],p.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let f=new w7(u.shape,i,o),m=p;p=n.runWebGLProgram(f,[p],p.dtype),n.disposeIntermediateTensorInfo(m)}if(c!=null){let f=E.getUndoAxesPermutation(c),m=fn({inputs:{x:p},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(u),m}return p}var Lj={kernelName:bs,backendName:"webgl",kernelFunc:Pj};function Wj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),c=n.readSync(s.dataId),u=P3(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(a.shape.length===2){let l=n.bufferSync(a),c=n.bufferSync(s),u=hW(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var Bj={kernelName:Vh,backendName:"webgl",kernelFunc:Wj},Vj=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function jj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=new Vj(f,s,i);return n.runWebGLProgram(m,[a],a.dtype)}var Uj={kernelName:bo,backendName:"webgl",kernelFunc:jj},b7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:a?A=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:A=`
float activation(float x) {
${n}
}
`,y="result = activation(result);");let g=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${A}
const ivec2 strides = ivec2(${c}, ${u});
const ivec2 pads = ivec2(${o}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${m};
int q = d2 - d1 * ${m};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${h};
if (xR < 0 || xR >= ${s}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${d};
if (xC < 0 || xC >= ${i}) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${g}
${y}
setOutput(result);
}
`}},_7=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.outChannels/e.inChannels,i=e.inHeight,o=e.inWidth,l=e.padInfo.top,c=e.padInfo.left,u=e.strideHeight,h=e.strideWidth,d=e.dilationHeight,p=e.dilationWidth,f=e.filterHeight,m=e.filterWidth,A=m,y=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let w=0;w<m;w++)y+=`
vec4 xTexelC${w*2};
vec4 xC${w};`;for(let w=0;w<f;w++){for(let b=0;b<m;b++)y+=`
xTexelC${b*2} = vec4(0.0);
xC${b} = vec4(0.0);`;y+=`
xR = xRCorner + ${w*d};
if (xR >=0 && xR < ${i}) {
`;for(let b=0;b<A/2+1;b++){let k=b*2;if(y+=`
xC = xCCorner + ${k*p};
`,h===1){if(k<m&&(c%2==1?(y+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < ${o}) {
xTexelC${k} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= ${o}) {
xTexelC${k}.zw = vec2(0.0);
}
}
`,p===1&&k>0?y+=`
xC${k} = vec4(xTexelC${k-2}.zw, xTexelC${k}.xy);
`:y+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < ${o}) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= ${o}) {
previous.zw = vec2(0.0);
}
xC${k} = vec4(previous.zw, xTexelC${k}.xy);
} else {
xC${k} = vec4(0.0, 0.0, xTexelC${k}.xy);
}
`):y+=`
if (xC >= 0 && xC < ${o}) {
xTexelC${k} = getX(batch, xR, xC, d1);
if (xC + 1 >= ${o}) {
xTexelC${k}.zw = vec2(0.0);
}
}
xC${k} = xTexelC${k};
`,k+1<m)){let N=c%2==0?_.nearestLargerEven(p):p;p%2==0&&c%2==1||p%2!=0&&c%2!=1?(y+=`
xCOffset = xC + ${c%2} + ${N};
if (xCOffset >= 0 && xCOffset < ${o}) {
xTexelC${k+2} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= ${o}) {
xTexelC${k+2}.zw = vec2(0.0);
}
}
`,p>1&&(y+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < ${o}) {
xTexelC${k} = getX(batch, xR, xCOffset, d1);
}
`),y+=`
xC${k+1} = vec4(xTexelC${k}.zw, xTexelC${k+2}.xy);
`):N===1?y+=`
xC${k+1} = xTexelC${k};
`:y+=`
xCOffset = xC + ${N};
if (xCOffset >= 0 && xCOffset < ${o}) {
xTexelC${k+2} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= ${o}) {
xTexelC${k+2}.zw = vec2(0.0);
}
}
xC${k+1} = xTexelC${k+2};
`}}else k<m&&(c%2==1?(y+=`
xCOffset = xC + 1 - ${h};
if(xCOffset >= 0 && xCOffset < ${o}) {
xTexelC${k} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= ${o}) {
xTexelC${k}.zw = vec2(0.0);
}
}
if(xC + 1 >= 0 && xC + 1 < ${o}) {
xTexelC${k+2} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= ${o}) {
xTexelC${k+2}.zw = vec2(0.0);
}
}
xC${k} = vec4(xTexelC${k}.zw, xTexelC${k+2}.zw);
`,k+1<m&&(y+=`
final = vec4(0.0);
xCOffset = xC + 1 + ${h};
if(xCOffset >= 0 && xCOffset < ${o}) {
final = getX(batch, xR, xCOffset, d1);
}
xC${k+1} = vec4(xTexelC${k+2}.xy, final.xy);
`)):(y+=`
if(xC >= 0 && xC < ${o}) {
xTexelC${k} = getX(batch, xR, xC, d1);
if (xC + 1 >= ${o}) {
xTexelC${k}.zw = vec2(0.0);
}
}
xCOffset = xC + ${h};
if(xCOffset >= 0 && xCOffset < ${o}) {
xTexelC${k+2} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= ${o}) {
xTexelC${k+2}.zw = vec2(0.);
}
}
xC${k} = vec4(
xTexelC${k}.xy, xTexelC${k+2}.xy);
`,k+1<m&&(y+=`
xC${k+1} = vec4(xTexelC${k}.zw, xTexelC${k+2}.zw);
`)));k<m&&(y+=`
wTexel = getW(${w}, ${k}, d1, q);
dotProd += xC${k} * vec4(wTexel.xz, wTexel.xz);
`,k+1<m&&(y+=`
wTexel = getW(${w}, ${k+1}, d1, q);
dotProd += xC${k+1} * vec4(wTexel.xz, wTexel.xz);
`))}y+=`
}
`}let g="",x="";n&&(r?g=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:a?g=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:g=`vec4 activation(vec4 x) {
${n}
}`,x="result = activation(result);");let v=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${g}
const ivec2 strides = ivec2(${u}, ${h});
const ivec2 pads = ivec2(${l}, ${c});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${s};
int q = d2 - d1 * ${s};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${y}
vec4 result = dotProd - vec4(0.000000000000001);
${v}
${x}
setOutput(result);
}
`}};function Hj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=r,u=l;u==null&&(u=[1,1]),_.assert(E.eitherStridesOrDilationsAreOne(i,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let h=E.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!0),d;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new _7(h):d=new b7(h),n.runWebGLProgram(d,[a,s],"float32")}var Gj={kernelName:_s,backendName:"webgl",kernelFunc:Hj},qj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${r};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${a};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},Xj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function Kj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=r,h=E.computeConv2DInfo(a.shape,u,i,o,l,c,!0),d=new qj(h);return n.runWebGLProgram(d,[a,s],"float32")}var Zj={kernelName:jh,backendName:"webgl",kernelFunc:Kj};function Yj(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=r,h=E.computeConv2DInfo(u,s.shape,i,o,l,c,!0),d=new Xj(h);return n.runWebGLProgram(d,[a,s],"float32")}var Jj={kernelName:Uh,backendName:"webgl",kernelFunc:Yj},Qj=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function eU(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=_.sizeFromShape(r.shape),i=fe({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new Qj(s),l=n.runWebGLProgram(o,[i],i.dtype),c=fe({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var tU={kernelName:Hh,backendName:"webgl",kernelFunc:eU},nU=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:h}=r;this.userCode=`
const ivec2 strides = ivec2(${a}, ${s});
const ivec2 pads = ivec2(${u}, ${h});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function rU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=E.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),u,h=new nU(c);u=n.runWebGLProgram(h,[a,s],"float32");let d=fe({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),d}var aU={kernelName:Tu,backendName:"webgl",kernelFunc:rU};function sU(e){let{inputs:t,backend:n,attrs:r}=e,{equation:a}=r,s=t,{allDims:i,summedDims:o,idDims:l}=E.decodeEinsumEquation(a,s.length);E.checkEinsumDimSizes(i.length,l,s);let{path:c,steps:u}=E.getEinsumComputePath(o,l),h=u.length,d=null,p=i.length,f=[];for(let m=0;m<h;++m){for(let A of u[m]){let{permutationIndices:y,expandDims:g}=E.getEinsumPermutation(p,l[A]),x;E.isIdentityPermutation(y)?x=s[A]:(x=fn({inputs:{x:s[A]},backend:n,attrs:{perm:y}}),f.push(x));let v=x.shape.slice();for(let w=0;w<g.length;++w)v.splice(g[w],0,1);_.arraysEqual(x.shape,v)||(x=fe({inputs:{x},backend:n,attrs:{shape:v}}),f.push(x)),d===null?d=x:(d=EA({inputs:{a:x,b:d},backend:n}),f.push(d))}m<h-1&&(c[m]>=0&&(d=Sp({inputs:{x:d},backend:n,attrs:{axis:c[m]-(i.length-p),keepDims:!1}}),f.push(d)),p--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var iU={kernelName:Xh,backendName:"webgl",kernelFunc:sU},oU="return (x >= 0.0) ? x : (exp(x) - 1.0);",lU=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,uU=Xe({opSnippet:oU,packedOpSnippet:lU}),cU={kernelName:_o,backendName:"webgl",kernelFunc:uU},hU="return (b >= 1.0) ? a : a * (b + 1.0);",dU=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,pU=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new vc(dU,r.shape,a.shape):new Bl(hU,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},fU={kernelName:Kh,backendName:"webgl",kernelFunc:pU},mU=`
return vec4(equal(a, b));
`,AU="return float(a == b);",yU=nn({opSnippet:AU,packedOpSnippet:mU,dtype:"bool"}),gU={kernelName:ko,backendName:"webgl",kernelFunc:yU},xU=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${E.ERF_P};
float a1 = ${E.ERF_A1};
float a2 = ${E.ERF_A2};
float a3 = ${E.ERF_A3};
float a4 = ${E.ERF_A4};
float a5 = ${E.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,wU=Xe({opSnippet:xU}),bU={kernelName:vo,backendName:"webgl",kernelFunc:wU},v7="return exp(x);",k7=Xe({opSnippet:v7,packedOpSnippet:v7,cpuKernelImpl:fW}),_U={kernelName:ks,backendName:"webgl",kernelFunc:k7};function FA(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(_.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),fe({inputs:{x:s},backend:r,attrs:{shape:o}})}var vU={kernelName:Io,backendName:"webgl",kernelFunc:FA},I7="return exp(x) - 1.0;",kU=Xe({opSnippet:I7,packedOpSnippet:I7,cpuKernelImpl:mW}),IU={kernelName:So,backendName:"webgl",kernelFunc:kU},S7=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${a};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${r});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${r}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function N7(e,t,n){let r=n.texData.get(e.dataId),a=_.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=fe({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new S7("real",l,t),u=new S7("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),f=qa({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let m=fe({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(f),m}function SU(e){let{inputs:t,backend:n}=e,{input:r}=t;return N7(r,!1,n)}var NU={kernelName:Zh,backendName:"webgl",kernelFunc:SU},TU=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
uniform float value;
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function $A(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||_.inferDtype(a),s==="string"){let i=_.getArrayFromDType(s,_.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new TU(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var EU={kernelName:Eu,backendName:"webgl",kernelFunc:$A},CU=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},RU={kernelName:No,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new CU(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},T7="return floor(x);",MU=Xe({opSnippet:T7,packedOpSnippet:T7,cpuKernelImpl:AW}),FU={kernelName:Is,backendName:"webgl",kernelFunc:MU},$U=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,DU=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,OU=nn({opSnippet:$U,packedOpSnippet:DU,dtype:"int32"}),zU={kernelName:Ss,backendName:"webgl",kernelFunc:OU},PU=class{constructor(e){this.variableNames=["A"];let t=dn(),[n,r]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},LU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=dn(),[n,r]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${r}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},BU={kernelName:dd,backendName:"webgl",kernelFunc:WU},jl;function WU(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,[l,c]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],u=[c,l],h=[c,l,s];(o||i)&&(jl==null&&(jl=document.createElement("canvas").getContext("2d")),jl.canvas.width=l,jl.canvas.height=c,jl.drawImage(a,0,0,l,c),a=jl.canvas);let d=n.makeTensorInfo(u,"int32");n.texData.get(d.dataId).usage=ar.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),a);let p=J().getBool("WEBGL_PACK")?new LU(h):new PU(h),f=n.runWebGLProgram(p,[d],"int32");return n.disposeData(d.dataId),f}function VU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=E.convertConv2DDataFormat(u),A=E.computeConv2DInfo(a.shape,s.shape,l,h,c,d,!1,m),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=A7({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=y7({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else{let v=i!=null,w=o!=null,b=p==="leakyrelu",k=p?kp(p,!1):null,N=new m7(A,v,k,w,b),C=[a,s];if(i&&C.push(i),o&&C.push(o),b){let F=n.makeTensorInfo([],"float32",_.createScalarValue(f,"float32"));C.push(F),g.push(F)}y=n.runWebGLProgram(N,C,"float32")}let x=fe({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var jU={kernelName:oi,backendName:"webgl",kernelFunc:VU};function UU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,f=[],m=u;m==null&&(m=[1,1]),_.assert(E.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let A=E.computeConv2DInfo(a.shape,s.shape,l,m,c,h,!0),y=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=d?kp(d,y):null,x=[a,s],v=i!=null,w=o!=null,b=d==="leakyrelu";if(v&&x.push(i),w&&x.push(o),b){let C=n.makeTensorInfo([],"float32",_.createScalarValue(p,"float32"));x.push(C),f.push(C)}let k;y?k=new _7(A,v,g,w,b):k=new b7(A,v,g,w,b);let N=n.runWebGLProgram(k,x,"float32");return f.forEach(C=>n.disposeIntermediateTensorInfo(C)),N}var HU={kernelName:li,backendName:"webgl",kernelFunc:UU},GU=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=lt(t.length),a=lt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${r} strides = ${r}(${this.strides});
void main() {
${a} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${s};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function qU(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,c,u]=E.prepareAndValidate(r,a),h=fe({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=fe({inputs:{x:r},backend:n,attrs:{shape:[_.sizeFromShape(r.shape)/c,c]}}),p=new GU(i,u,[l,c]),f=n.runWebGLProgram(p,[d,h],d.dtype),m=fe({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(f),m}var XU={kernelName:Eo,backendName:"webgl",kernelFunc:qU},ZU=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=lt(this.rank),r=KU(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function KU(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;a<e.length;a++)a===2?r.push("int(getIndices(resRC.x, resRC.z))"):r.push(`${n[a]}`);return r.join()}function YU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r,l=_.parseAxisParam(i,a.shape)[0],c=E.segment_util.collectGatherOpShapeInfo(a,s,l,o),u=_.sizeFromShape(s.shape),h=[],d=fe({inputs:{x:a},backend:n,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),p=fe({inputs:{x:s},backend:n,attrs:{shape:[c.batchSize,u/c.batchSize]}});h.push(d),h.push(p);let f=[c.batchSize,c.outerSize,u/c.batchSize,c.sliceSize];if(n.shouldExecuteOnCPU([a,s])||a.dtype==="string"){let g=n.bufferSync(p),x=n.bufferSync(d),v=yW(x,g,f);return h.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(c.outputShape,v.dtype,v.values)}let m=new ZU(d.shape,f),A=n.runWebGLProgram(m,[d,p],d.dtype);h.push(A);let y=fe({inputs:{x:A},backend:n,attrs:{shape:c.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var JU={kernelName:To,backendName:"webgl",kernelFunc:YU},QU="return float(a > b);",eH=`
return vec4(greaterThan(a, b));
`,tH=nn({opSnippet:QU,packedOpSnippet:eH,cpuKernelImpl:gW,dtype:"bool"}),nH={kernelName:Co,backendName:"webgl",kernelFunc:tH},rH="return float(a >= b);",aH=`
return vec4(greaterThanEqual(a, b));
`,sH=nn({opSnippet:rH,packedOpSnippet:aH,dtype:"bool"}),iH={kernelName:Ts,backendName:"webgl",kernelFunc:sH};function oH(e){let{inputs:t,backend:n}=e,{input:r}=t;return N7(r,!0,n)}var lH={kernelName:Yh,backendName:"webgl",kernelFunc:oH},uH="return float(!isnan(x) && !isinf(x));",cH=Xe({opSnippet:uH,dtype:"bool"}),hH={kernelName:Ro,backendName:"webgl",kernelFunc:cH},dH="return float(isinf(x));",pH=Xe({opSnippet:dH,dtype:"bool"}),fH={kernelName:Mo,backendName:"webgl",kernelFunc:pH},mH="return float(isnan(x));",AH=Xe({opSnippet:mH,dtype:"bool"}),yH={kernelName:Fo,backendName:"webgl",kernelFunc:AH},gH="return float(a < b);",xH=`
return vec4(lessThan(a, b));
`,wH=nn({opSnippet:gH,packedOpSnippet:xH,cpuKernelImpl:xW,dtype:"bool"}),bH={kernelName:$o,backendName:"webgl",kernelFunc:wH},_H="return float(a <= b);",vH=`
return vec4(lessThanEqual(a, b));
`,kH=nn({opSnippet:_H,packedOpSnippet:vH,dtype:"bool"}),IH={kernelName:Do,backendName:"webgl",kernelFunc:kH};function SH(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=wW(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var NH={kernelName:Qh,backendName:"webgl",kernelFunc:SH},TH=`if (x < 0.0) return NAN;
return log(x);`,EH=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,CH=Xe({opSnippet:TH,packedOpSnippet:EH,cpuKernelImpl:bW}),RH={kernelName:Rs,backendName:"webgl",kernelFunc:CH},MH="return log(1.0 + x);",FH=Xe({opSnippet:MH}),$H={kernelName:Oo,backendName:"webgl",kernelFunc:FH},DH="return float(a >= 1.0 && b >= 1.0);",OH=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,zH=nn({opSnippet:DH,packedOpSnippet:OH,dtype:"bool"}),PH={kernelName:zo,backendName:"webgl",kernelFunc:zH},LH="return float(!(x >= 1.0));",WH=Xe({opSnippet:LH}),BH={kernelName:Cu,backendName:"webgl",kernelFunc:WH},VH="return float(a >= 1.0 || b >= 1.0);",jH=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,UH=nn({opSnippet:VH,packedOpSnippet:jH,dtype:"bool"}),HH={kernelName:Ru,backendName:"webgl",kernelFunc:UH},GH=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},qH=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},XH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,c=J().getBool("WEBGL_PACK_NORMALIZATION")?new qH(a.shape,s,i,o,l):new GH(a.shape,s,i,o,l);return n.runWebGLProgram(c,[a],a.dtype)},KH={kernelName:Mu,backendName:"webgl",kernelFunc:XH},ZH=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${r}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${r})
* float(${a})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${a});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},YH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=r,h=new ZH(a.shape,o,l,c,u);return n.runWebGLProgram(h,[a,s,i],a.dtype)},JH={kernelName:ed,backendName:"webgl",kernelFunc:YH};function QH(e,t,n,r){let a=_.sizeFromShape(t),s=_.sizeFromShape(e.shape)/a,i=fe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=Fi(i,e.dtype,"max",r),l=fe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function E7(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=u!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let g=n.texData.get(p.dataId).values,x=new Array(o);for(let b=0;b<x.length;b++)x[b]=a.shape[u[b]];let v=NA(g,a.shape,a.dtype,u,x);p=n.makeTensorInfo(x,a.dtype);let w=n.texData.get(p.dataId);w.values=v}else p=Ip(a,u,n);c=E.getInnerMostAxes(c.length,o)}E.assertAxesAreInnerMostDims("max",c,o);let[f,m]=E.computeOutAndReduceShapes(p.shape,c),A=f;i&&(A=E.expandShapeToKeepDim(f,l));let y;if(d){let g=n.texData.get(p.dataId).values,x=_W(g,_.sizeFromShape(m),A,a.dtype);y=n.makeTensorInfo(A,a.dtype);let v=n.texData.get(y.dataId);v.values=x}else y=QH(p,m,A,n);return h&&n.disposeIntermediateTensorInfo(p),y}var eG={kernelName:Ms,backendName:"webgl",kernelFunc:E7},tG=X3+`
return max(a, b);
`,nG=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+vp+`
return result;
`,rG=nn({opSnippet:tG,packedOpSnippet:nG,cpuKernelImpl:vW}),aG={kernelName:Fs,backendName:"webgl",kernelFunc:rG};function sG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;Fl(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;_.assert(E.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=E.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&_.arraysEqual(u.inShape,u.outShape))return jn({inputs:{x:a},backend:n});let h=new kc(u,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var iG={kernelName:$s,backendName:"webgl",kernelFunc:sG};function oG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=r,u=[1,1,1],h=E.computePool3DInfo(a.shape,s,i,u,o,c,l),d=new CA(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var lG={kernelName:Fu,backendName:"webgl",kernelFunc:oG},uG=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${a};
wR += ${r}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},cG=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=c-1-e.padInfo.left,p=o*l*c-1;this.userCode=`
const ivec3 pads = ivec3(${u}, ${h}, ${d});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${a}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${p} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function hG(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=E.computePool3DInfo(i.shape,o,l,h,c,u),p=new CA(d,"max",!0),f=n.runWebGLProgram(p,[i],i.dtype),m=new cG(d),A=n.runWebGLProgram(m,[a,f],i.dtype);return n.disposeIntermediateTensorInfo(f),A}var dG={kernelName:nd,backendName:"webgl",kernelFunc:hG};function pG(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;Fl([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=E.computePool2DInfo(o.shape,l,c,1,u,h),p=!0,f=new kc(d,"max",p),m=n.runWebGLProgram(f,[o],o.dtype),A=new uG(d),y=n.runWebGLProgram(A,[a,m],o.dtype);return n.disposeIntermediateTensorInfo(m),y}var fG={kernelName:td,backendName:"webgl",kernelFunc:pG};function mG(e,t,n,r){let a=new kc(n,"max",!1),s=r.runWebGLProgram(a,[e],"float32");a=new kc(n,"max",!0,!0,t);let i=r.runWebGLProgram(a,[e],"float32");return[s,i]}var AG={kernelName:rd,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;_.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let c=[1,1];_.assert(E.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=E.computePool2DInfo(r.shape,a,s,c,i),[h,d]=mG(r,o,u,l);return[h,d]}};function yG(e,t,n,r){let a=_.sizeFromShape(t),s=_.sizeFromShape(e.shape)/a,i=fe({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=Fi(i,"float32","mean",r),l=fe({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var gG={kernelName:Ds,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=_.parseAxisParam(s,r.shape),c=l,u=E.getAxesPermutation(c,o),h=u!=null,d=i.shouldExecuteOnCPU([r]),p=[],f=r;if(h){if(d){let x=i.texData.get(f.dataId).values,v=new Array(o);for(let k=0;k<v.length;k++)v[k]=r.shape[u[k]];let w=NA(x,r.shape,r.dtype,u,v);f=i.makeTensorInfo(v,r.dtype);let b=i.texData.get(f.dataId);b.values=w}else f=Ip(r,u,i);p.push(f),c=E.getInnerMostAxes(c.length,o)}E.assertAxesAreInnerMostDims("sum",c,o);let[m,A]=E.computeOutAndReduceShapes(f.shape,c),y=m;a&&(y=E.expandShapeToKeepDim(m,l));let g=yG(f,A,y,i);for(let x of p)i.disposeIntermediateTensorInfo(x);return g}};function xG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=_.parseAxisParam(s,a.shape),c=l,u=E.getAxesPermutation(c,o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=E.getInnerMostAxes(c.length,a.shape.length)),E.assertAxesAreInnerMostDims("min",c,o);let[d,p]=E.computeOutAndReduceShapes(h.shape,c),f=_.sizeFromShape(p),m=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=Fi(m,m.dtype,"min",n),y;if(i){let g=E.expandShapeToKeepDim(d,l);y=fe({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=fe({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var wG={kernelName:Os,backendName:"webgl",kernelFunc:xG},bG=X3+`
return min(a, b);
`,_G=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+vp+`
return result;
`,vG=nn({opSnippet:bG,packedOpSnippet:_G,cpuKernelImpl:kW}),kG={kernelName:zs,backendName:"webgl",kernelFunc:vG},IG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let r=e.length,a=lt(r),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${a} start = ${a}(${s});
${a} end = ${a}(${i});
void main() {
${a} outC = getOutputCoords();
for (int i = 0; i < ${r}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${a} coords = outC - start;
setOutput(getX(${o}));
}
`}},SG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,f)=>p[0]+e[f]+p[1]);let r=e.length,a=lt(r),s=t.map(p=>p[0]).join(","),i=t.map((p,f)=>p[0]+e[f]).join(","),o=pn("rc",r),l=pn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=`
${a} source = rc;
if (source < start) {
source = start * 2 - source - ${h};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${h};
}
source -= start;
`;d=`
${a} rc = outputLoc;
${p}
result[0] = getChannel(getX(${l.join()}), ${u});
${o[r-1]} += 1;
if(${c}) {
${p}
result[1] = getChannel(getX(${l.join()}), ${u});
}
`}else{let p=`
${a} source = rc;
${a} lt = ${a}(lessThan(source, start));
${a} gte = ${a}(greaterThanEqual(source, end));
${a} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${h}) +
gte * ((end - 1) * 2 - source + ${h});
source -= start;
`;d=`
${a} rc = outputLoc;
${p}
result[0] = getChannel(getX(${l.join()}), ${u});
${o[r-1]} += 1;
if(${c}) {
${p}
result[1] = getChannel(getX(${l.join()}), ${u});
}
rc = outputLoc;
${o[r-2]} += 1;
if(${o[r-2]} < ${this.outputShape[r-2]}) {
${p}
result[2] = getChannel(getX(${l.join()}), ${u});
${o[r-1]} += 1;
if(${c}) {
${p}
result[3] = getChannel(getX(${l.join()}), ${u});
}
}
`}this.userCode=`
const ${a} start = ${a}(${s});
const ${a} end = ${a}(${i});
void main() {
${a} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}},NG=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new SG(r.shape,a,s):new IG(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},TG={kernelName:Ps,backendName:"webgl",kernelFunc:NG},EG=`if (b == 0.0) return NAN;
return mod(a, b);`,CG=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+vp+`
return result;
`,RG=nn({opSnippet:EG,packedOpSnippet:CG}),MG={kernelName:Po,backendName:"webgl",kernelFunc:RG},FG=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
uniform float seed;
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},$G=`
if (a == b) {
return 1.0;
};
return a / b;`,DG=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,C7=nn({opSnippet:$G,packedOpSnippet:DG,checkOutOfBounds:!0}),OG={kernelName:vs,backendName:"webgl",kernelFunc:C7},R7="return a - b;",M7=nn({opSnippet:R7,packedOpSnippet:R7,supportsComplex:!0,cpuKernelImpl:FW}),zG={kernelName:ni,backendName:"webgl",kernelFunc:M7};function F7(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=_.parseAxisParam([s],a.shape),o=E7({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=E.expandShapeToKeepDim(o.shape,i),c=fe({inputs:{x:o},backend:n,attrs:{shape:l}}),u=M7({inputs:{a,b:c},backend:n}),h=k7({inputs:{x:u},backend:n}),d=Sp({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=fe({inputs:{x:d},backend:n,attrs:{shape:l}}),f=C7({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}var PG={kernelName:ei,backendName:"webgl",kernelFunc:F7};function LG(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:F7({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),c=l.shape[0],u=l.shape[1],h=new FG(c,u,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var WG={kernelName:ad,backendName:"webgl",kernelFunc:LG},$7="return -x;";function BG(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=SW(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Ll(r.shape,$7):a=new Ga(r.shape,$7),n.runWebGLProgram(a,[r],r.dtype)}var VG={kernelName:Lo,backendName:"webgl",kernelFunc:BG},jG=Hr.nonMaxSuppressionV3Impl;function UG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,c=n.readSync(a.dataId),u=n.readSync(s.dataId),{selectedIndices:h}=jG(c,u,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var HG={kernelName:Bo,backendName:"webgl",kernelFunc:UG},GG=Hr.nonMaxSuppressionV4Impl;function qG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=GG(u,h,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var XG={kernelName:Vo,backendName:"webgl",kernelFunc:qG},KG=Hr.nonMaxSuppressionV5Impl;function ZG(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,f=l,m=c,{selectedIndices:A,selectedScores:y}=KG(u,h,d,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var YG={kernelName:jo,backendName:"webgl",kernelFunc:ZG},JG=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${r}), float(${n}),
float(index == coords.y)));
}
`}},QG=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=_.sizeFromShape(a.shape),c=new JG(l,s,i,o),u=fe({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(c,[u],a.dtype);n.disposeIntermediateTensorInfo(u);let d=[...a.shape,s],p=fe({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},eq={kernelName:Ws,backendName:"webgl",kernelFunc:QG};function Rp(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=Sc({inputs:{input:r},backend:n}),s=Rp({inputs:{x:a},backend:n}),i=Cp({inputs:{input:r},backend:n}),o=Rp({inputs:{x:i},backend:n}),l=qa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return $A({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var tq={kernelName:il,backendName:"webgl",kernelFunc:Rp};function D7(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=Sc({inputs:{input:r},backend:n}),s=D7({inputs:{x:a},backend:n}),i=Cp({inputs:{input:r},backend:n}),o=Rp({inputs:{x:i},backend:n}),l=qa({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return $A({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var nq={kernelName:Uo,backendName:"webgl",kernelFunc:D7};function rq(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return FA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=FA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=f7({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var aq={kernelName:Ho,backendName:"webgl",kernelFunc:rq},sq=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let r=e.length,a=lt(r),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=`
int start = ${s};
int end = ${i};
uniform float value;
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${a} start = ${a}(${s});
${a} end = ${a}(${i});
uniform float value;
void main() {
${a} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${a} coords = outC - start;
setOutput(getX(${o}));
}
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},iq=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let r=e.length,a=lt(r),s=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=pn("rc",r),l=pn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1;
if(${c}) {
`,r===1?"":`}
rc = outputLoc;
${o[r-2]} += 1;
if(${o[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${o[r-1]} += 1;
if(${c}) {`],d=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let f=0,m=r===1?2:4;f<m;f++)p+=`
${h[f]}
if (${d}) {
result[${f}] = float(value);
} else {
${a} source = rc - start;
result[${f}] = getChannel(getX(${l.join()}), ${u});
}
`;p+=r===1?"} ":"}}",this.userCode=`
const ${a} start = ${a}(${s});
const ${a} end = ${a}(${i});
uniform float value;
void main() {
${a} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${p}
setOutput(result);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},O7=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new iq(a.shape,s,i):new sq(a.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[a],a.dtype,l)},oq={kernelName:Bs,backendName:"webgl",kernelFunc:O7},lq=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,uq=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+vp+`
return result;
`,cq=nn({opSnippet:lq,packedOpSnippet:uq}),hq={kernelName:Vs,backendName:"webgl",kernelFunc:cq};function dq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],c=_.parseAxisParam(s,a.shape),u=c,h=E.getAxesPermutation(u,o),d=a;h!=null&&(d=fn({inputs:{x:a},backend:n,attrs:{perm:h}}),u=E.getInnerMostAxes(u.length,o),l.push(d)),E.assertAxesAreInnerMostDims("prod",u,o);let p;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:A,outDtype:y}=NW(d.shape,d.dtype,f,u);p=n.makeTensorInfo(A,y,m)}else{let[f,m]=E.computeOutAndReduceShapes(d.shape,u),A=_.sizeFromShape(m),y=fe({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),g=yd(a.dtype),x=Fi(y,g,"prod",n);p=fe({inputs:{x},backend:n,attrs:{shape:f}}),l.push(y),l.push(x)}if(i){l.push(p);let f=E.expandShapeToKeepDim(p.shape,c);p=fe({inputs:{x:p},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var pq={kernelName:Go,backendName:"webgl",kernelFunc:dq},z7=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=TW(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},fq={kernelName:$u,backendName:"webgl",kernelFunc:z7},mq="return 1.0 / x;",Aq=Xe({opSnippet:mq}),yq={kernelName:qo,backendName:"webgl",kernelFunc:Aq},gq=Sr+`
return (x < 0.0) ? 0.0 : x;
`,xq=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,wq=Xe({opSnippet:gq,packedOpSnippet:xq}),bq={kernelName:Us,backendName:"webgl",kernelFunc:wq},_q=Sr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,vq=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,kq=Xe({opSnippet:_q,packedOpSnippet:vq}),Iq={kernelName:Gs,backendName:"webgl",kernelFunc:kq},Sq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${h};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},Nq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/u[0]},
${c[1]/u[1]},
${c[1]/u[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${h};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function Tq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Nq(a.shape,l,c,s,i):new Sq(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],"float32")}var Eq={kernelName:Hs,backendName:"webgl",kernelFunc:Tq},Cq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${h});
const float invWidthScale = float(${d});
const int winHeight = int(${p});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${r-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${a-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Rq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new Cq(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Mq={kernelName:od,backendName:"webgl",kernelFunc:Rq},Fq=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}};function $q(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=new Fq(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],a.dtype)}var Dq={kernelName:Du,backendName:"webgl",kernelFunc:$q},Oq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${h});
const float invWidthScale = float(${d});
const int winHeight = int(${p});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${a}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function zq(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new Oq(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Pq={kernelName:id,backendName:"webgl",kernelFunc:zq},Lq=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let r=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,a=e.map((i,o)=>r(o)).join(","),s=lt(n);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${a}));
}
`}},Wq=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=pn("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=lt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${a}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(r.slice())};
if(${a}){
result.g = ${l(r.slice())};
}
if(${s}) {
result.b = ${c(r.slice())};
if(${a}) {
result.a = ${u(r.slice())};
}
}
setOutput(result);
}
`;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function c(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function u(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let f=e.map((y,g)=>d(g,p)),m=f.join(","),A=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${A}))`}function d(p,f){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${f[p]} - 1`:`${f[p]}`}}};function Bq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=_.parseAxisParam(s,a.shape);if(i===0)return jn({inputs:{x:a},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Wq(a.shape,o):new Lq(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var Vq={kernelName:qs,backendName:"webgl",kernelFunc:Bq},jq=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],r=e[2];this.outputShape=e;let a="";typeof t=="number"?a=`float outputValue = ${t.toFixed(2)};`:a=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
uniform vec4 params;
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${a}
if(coordX >= 0 && coordX < ${r} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}getCustomSetupFunc(e,t,n,r){return(a,s)=>{this.paramsLoc==null&&(this.paramsLoc=a.getUniformLocationNoThrow(s,"params")),a.gl.uniform4f(this.paramsLoc,e,t,n,r)}}},Uq={kernelName:ol,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new jq(r.shape,s),[c,u]=E.getImageCenter(i,r.shape[1],r.shape[2]),h=l.getCustomSetupFunc(c,u,Math.sin(a),Math.cos(a));return o.runWebGLProgram(l,[r],r.dtype,h)}},Hq=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,Gq=Xe({opSnippet:Hq}),qq={kernelName:Xs,backendName:"webgl",kernelFunc:Gq},Xq="return inversesqrt(x);",Kq=Xe({opSnippet:Xq,cpuKernelImpl:EW}),Zq={kernelName:Ks,backendName:"webgl",kernelFunc:Kq},P7=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=lt(a.length),l=lt(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=`
${o} strides = ${o}(${a});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${u});
flattenedIndex += index * ${p};
}
if (flattenedIndex == coords[0]) {
sum += ${d};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function Yq(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:h}=E.calculateShapes(s,a,i),d=[h/c,c];if(h===0)return n.makeTensorInfo(i,a.dtype);let p=fe({inputs:{x:a},backend:n,attrs:{shape:[l,o]}}),f=fe({inputs:{x:s},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new P7(l,o,p.shape.length,f.shape.length,u,d),y=n.runWebGLProgram(A,[f,p,m],f.dtype),g=fe({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),g}var Jq={kernelName:Ko,backendName:"webgl",kernelFunc:Yq},Qq=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,a;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c<t.length;c++)l.push(`${i[c]}`),c<e&&o.push(`${i[c]}`);r=o.join(),a=l.join()}let s=lt(n);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${r});
if (cVal >= 1.0) {
setOutput(getA(${a}));
} else {
setOutput(getB(${a}));
}
}
`}};function eX(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=new Qq(r.shape.length,a.shape,a.shape.length);return n.runWebGLProgram(i,[r,a,s],dr(a.dtype,s.dtype))}var tX={kernelName:Zo,backendName:"webgl",kernelFunc:eX},nX=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${E.SELU_SCALEALPHA};
float scale = ${E.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,rX=Xe({opSnippet:nX}),aX={kernelName:Yo,backendName:"webgl",kernelFunc:rX},sX="return 1.0 / (1.0 + exp(-1.0 * x));",iX=Xe({opSnippet:sX}),oX={kernelName:Ys,backendName:"webgl",kernelFunc:iX},lX=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,uX=Xe({opSnippet:lX}),cX={kernelName:el,backendName:"webgl",kernelFunc:uX},hX=Q3+`
return sin(x);
`,dX=Xe({opSnippet:hX}),pX={kernelName:Zs,backendName:"webgl",kernelFunc:dX},fX=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,mX=Xe({opSnippet:fX}),AX={kernelName:Qo,backendName:"webgl",kernelFunc:mX},yX=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,gX=Xe({opSnippet:yX}),xX={kernelName:tl,backendName:"webgl",kernelFunc:gX},wX=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;_.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let c=[],u=O7({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),h=E.getReshaped(u.shape,s,o,!1),d=E.getPermuted(h.length,s.length,!1),p=E.getReshapedPermuted(u.shape,s,o,!1),f=fe({inputs:{x:u},backend:n,attrs:{shape:h}}),m=fn({inputs:{x:f},backend:n,attrs:{perm:d}}),A=fe({inputs:{x:m},backend:n,attrs:{shape:p}});return c.push(u),c.push(f),c.push(m),c.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},bX={kernelName:Ou,backendName:"webgl",kernelFunc:wX};function _X(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:a,newShape:s}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(a.dataId)),o=n.readSync(r.dataId),l=Array.from(n.readSync(s.dataId)),[c,u,h]=RW(o,r.shape,r.dtype,i,l);return[n.makeTensorInfo(u,r.dtype,c),n.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var vX={kernelName:ld,backendName:"webgl",kernelFunc:_X};function kX(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,strides:u,outputSize:h}=E.calculateShapes(s,a,o),d=!1,p=new P7(c,l,a.shape.length,s.shape.length,u,[h,1],d),f=n.runWebGLProgram(p,[s,a,i],s.dtype),m=fe({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),m}var IX={kernelName:ud,backendName:"webgl",kernelFunc:kX};function SX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=_.parseAxisParam(i,a.shape)[0],l=E.prepareSplitSize(a,s,o),c=a.shape.length,u=new Array(c).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let f=Ic({inputs:{x:a},backend:n,attrs:{begin:u,size:p}});return u[o]+=d,f})}var NX={kernelName:nl,backendName:"webgl",kernelFunc:SX},TX="return sqrt(x);",EX=Xe({opSnippet:TX}),CX={kernelName:Js,backendName:"webgl",kernelFunc:EX},RX="return x * x;",MX=Xe({opSnippet:RX}),FX={kernelName:zu,backendName:"webgl",kernelFunc:MX},L7="return (a - b) * (a - b);",$X=nn({opSnippet:L7,packedOpSnippet:L7}),DX={kernelName:ti,backendName:"webgl",kernelFunc:$X};function OX({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=Sr+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new Ga(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var zX={kernelName:Fa,backendName:"webgl",kernelFunc:OX},PX=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=lt(n.length),s=lt(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${a} begin = ${a}(${e});
${a} strides = ${a}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function LX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=un.sliceInfo(a.shape,s,i,o,l,c,u,h,d),x=fe({inputs:{x:a},backend:n,attrs:{shape:y}}),v;if(p){let b=Ic({inputs:{x},backend:n,attrs:{begin:f,size:A}});v=fe({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))v=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let b=n.texData.get(x.dataId).values,k=Be(x.shape,x.dtype,b),N=MW(g,k,m,f);v=n.makeTensorInfo(g,x.dtype,N.values)}else{let b=new PX(f,m,g);v=n.runWebGLProgram(b,[x],x.dtype)}let w=fe({inputs:{x:v},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),w}var WX={kernelName:rl,backendName:"webgl",kernelFunc:LX},BX="return tan(x);",VX=Xe({opSnippet:BX}),jX={kernelName:ri,backendName:"webgl",kernelFunc:VX},UX=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,HX=Xe({opSnippet:UX}),GX={kernelName:ai,backendName:"webgl",kernelFunc:HX},XX=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let r=lt(this.rank),a=qX(e);this.userCode=`
void main() {
${r} resRC = getOutputCoords();
setOutput(getA(${a}));
}
`}};function qX(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;a<e.length;a++)r.push(`imod(${n[a]}, ${e[a]})`);return r.join()}function W7(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;if(a.dtype==="string"||a.shape.length>5){let o=n.readSync(a.dataId).map(u=>_.decodeString(u)),l=Be(a.shape,a.dtype,o),c=$W(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new XX(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var KX={kernelName:Ma,backendName:"webgl",kernelFunc:W7};function ZX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,c]=DW(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var YX={kernelName:al,backendName:"webgl",kernelFunc:ZX},JX=class{constructor(e,t,n,r,a,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(r){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${o} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${a});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${a});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function QX(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=r,[u,h,d,p]=a.shape,[f,m]=c!=null?c:[h,d],A=[u,f,m,p],y=new JX(h,d,i,o,l,A);return n.runWebGLProgram(y,[a,s],"float32")}var eK={kernelName:cd,backendName:"webgl",kernelFunc:QX};function tK(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;Fl(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=OW(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var nK={kernelName:hd,backendName:"webgl",kernelFunc:tK};function rK(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],c=new Array(o-1),u=0;for(let m=0;m<o;m++)m!==s&&(c[u++]=i.shape[m]);let h=[],d=new Array(o).fill(0),p=i.shape.slice();p[s]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[s]=m;let A=Ic({inputs:{x:i},backend:n,attrs:{begin:d,size:p}}),y=fe({inputs:{x:A},backend:n,attrs:{shape:c}});f[m]=y,h.push(A)}return h.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var aK={kernelName:sl,backendName:"webgl",kernelFunc:rK},sK=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,h=`
sumValue += dot(values, segFilter);
`,d="";a%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${a}) {
return initializationValue;
}
`);let p="";a%n>0&&(p=`
if (inIdx < 0 || inIdx >= ${a}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${p}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${h}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${h}
} else if (${u===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${h}
} else if (${u===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${h}
}
setOutput(${l});
}
`}};function iK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],c=0,u=E.getAxesPermutation([c],o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),l.push(h),c=E.getInnerMostAxes(1,o)[0]);let d=E.segment_util.computeOutShape(h.shape,c,i),p=_.sizeFromShape([h.shape[c]]),f=fe({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(f);let m=yd(a.dtype),A=(v,w,b,k,N)=>{let C=v.shape[0],F=v.shape[1],O=E.segment_util.segOpComputeOptimalWindowSize(F,N),L={windowSize:O,inSize:F,batchSize:C,numSegments:N},V=new sK(L,w),j=n.compileAndRun(V,[v,b],k);if(l.push(j),j.shape[1]===N)return j;let U=z7({backend:n,attrs:{start:0,stop:N,step:1,dtype:"float32"}}),X=W7({inputs:{x:U},backend:n,attrs:{reps:[F/O]}});return l.push(U),l.push(X),A(j,w,X,k,N)},y=A(f,"unsortedSegmentSum",s,m,i),g=fe({inputs:{x:y},backend:n,attrs:{shape:d}}),x=g;if(u!=null){l.push(g);let v=E.getUndoAxesPermutation(u);x=fn({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var oK={kernelName:Pu,backendName:"webgl",kernelFunc:iK},lK=[KH,JH,$B,OB,LB,VB,UB,qB,KB,YB,tV,rV,iV,uV,AV,dV,xV,vV,bV,NV,EV,RV,DV,VV,UV,ZV,JV,nj,sj,mB,cj,wj,_j,fj,Sj,Tj,kj,Rj,$j,zj,Lj,Bj,Uj,Zj,Jj,Gj,tU,aU,iU,cU,fU,gU,bU,_U,vU,IU,NU,EU,RU,FU,zU,BU,jU,HU,XU,JU,nH,iH,fB,lH,lj,hH,fH,yH,yB,bH,IH,NH,$H,RH,PH,BH,HH,eG,lG,iG,dG,fG,AG,aG,gG,wG,kG,TG,MG,WG,_B,VG,HG,XG,YG,GV,eq,nq,aq,oq,hq,xB,pq,fq,qV,OG,yq,Iq,bq,kB,Eq,Mq,Dq,Pq,Vq,Uq,qq,Zq,Jq,tX,aX,oX,cX,pX,AX,WV,PG,xX,bX,vX,IX,NX,CX,FX,DX,zX,WX,zG,RB,jX,GX,KX,YX,eK,MB,nK,aK,oK,tq];for(let e of lK)ui(e);var Fn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Fn||(Fn={}));var Nc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(Nc||(Nc={}));var B7;function uK(e){B7=e.wasm.cwrap(ii,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function cK(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,f=0;if(i!=null){let N=n.dataIdMap.get(i.dataId);if(N.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${N.shape.length}.`);f=N.id}let m=o==null?0:n.dataIdMap.get(o.dataId).id,A=Nc[u];if(A==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=c?s.shape[1]:s.shape[2],x=a.shape[0],v=n.makeOutput([x,y,g],a.dtype),w=n.dataIdMap.get(v.dataId).id,b=new Uint8Array(new Int32Array(a.shape).buffer),k=new Uint8Array(new Int32Array(s.shape).buffer);return B7(d,b,a.shape.length,p,k,s.shape.length,l,c,A,f,m,h||0,w),v}var hK={kernelName:ii,backendName:"wasm",setupFunc:uK,kernelFunc:cK};function mn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return _.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var dK=mn(oo);function An(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,h=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,p=n!=null?n:c.dtype,f=E.assertAndGetBroadcastShape(c.shape,u.shape),m=o.makeOutput(f,p);if(_.sizeFromShape(f)===0)return m;let A=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),g=o.dataIdMap.get(m.dataId).id,x=()=>r(h,A,c.shape.length,d,y,u.shape.length,Fn[c.dtype],g);if(t&&c.dtype==="float32")return x(),m;let v=E.getBroadcastDims(c.shape,f),w=E.getBroadcastDims(u.shape,f),b=v.every((N,C)=>N===C),k=w.every((N,C)=>N===C);if(b&&k)return x(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var pK=!0,fK=An(Ca,pK),V7;function mK(e){V7=e.wasm.cwrap(ds,null,["array","number","number","number"])}function AK(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(_.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return V7(s,a.length,Fn[r.dtype],i),r}var yK={kernelName:ds,backendName:"wasm",setupFunc:mK,kernelFunc:AK};function Mp(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var gK={kernelName:Es,backendName:"wasm",kernelFunc:Mp},j7;function xK(e){j7=e.wasm.cwrap(si,null,["number","array","number","number","number","array","number"])}function Fp(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=bK(t.x.shape,r.perm),i=!0;for(let f=0;f<s.length;f++)s[f]!==f&&(i=!1);let o=wK(t.x.shape,r.perm),l={dataId:t.x.dataId,shape:a,dtype:t.x.dtype};if(i){let f=Mp({inputs:t,backend:n});return f.shape=o,f}let c=n.makeOutput(o,l.dtype),u=n.dataIdMap.get(l.dataId).id,h=n.dataIdMap.get(c.dataId).id,d=new Uint8Array(new Int32Array(s).buffer),p=new Uint8Array(new Int32Array(l.shape).buffer);return j7(u,p,l.shape.length,Fn[l.dtype],h,d,s.length),c}function wK(e,t){let n=new Array(e.length);for(let r=0;r<n.length;r++)n[r]=e[t[r]];return n}function bK(e,t){let n=[],r=[];for(let a=0;a<e.length;++a)e[a]!==1&&n.push(e[a]),e[t[a]]!==1&&r.push(t[a]);for(let a=0;a<r.length;++a){let s=-1;for(let i=0;i<r.length;++i)r[i]>=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var _K={kernelName:si,backendName:"wasm",kernelFunc:Fp,setupFunc:xK};function Xa(e,t,n){let r=e.shape,a=e.shape.length,s=_.parseAxisParam(t,r),i=s,o=E.getAxesPermutation(i,a),l=null,c=!1;if(o!=null){let u=new Array(a);for(let d=0;d<u.length;d++)u[d]=r[o[d]];i=E.getInnerMostAxes(i.length,a),l=Fp({inputs:{x:e},attrs:{perm:o},backend:n});let h=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==h&&(c=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:c}}var U7;function vK(e){U7=e.wasm.cwrap(co,null,["number, number, number"])}function kK(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:h,inputWasTransposed:d}=Xa(i,a,t);if(d){let g=t.dataIdMap.get(c.dataId).id;l=c,o=g}let p=l.shape.length;E.assertAxesAreInnerMostDims("all",u,p);let[f,m]=E.computeOutAndReduceShapes(l.shape,u),A=_.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(_.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;U7(o,A,g)}if(d&&t.disposeData(c.dataId),s){let g=E.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var IK={kernelName:co,backendName:"wasm",setupFunc:vK,kernelFunc:kK},H7;function SK(e){H7=e.wasm.cwrap(ho,null,["number, number, number"])}function NK(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:h,inputWasTransposed:d}=Xa(i,a,t);if(d){let g=t.dataIdMap.get(c.dataId).id;l=c,o=g}let p=l.shape.length;E.assertAxesAreInnerMostDims("any",u,p);let[f,m]=E.computeOutAndReduceShapes(l.shape,u),A=_.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(_.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;H7(o,A,g)}if(d&&t.disposeData(c.dataId),s){let g=E.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var TK={kernelName:ho,backendName:"wasm",setupFunc:SK,kernelFunc:NK},G7;function EK(e){G7=e.wasm.cwrap(ps,null,["number","number","number","number","number"])}function CK(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:c,axes:u,inputWasTransposed:h}=Xa(s,a,t);if(h){let y=t.dataIdMap.get(c.dataId).id;y!==i&&(l=c,o=y)}let d=l.shape.slice(0,-1),p=t.makeOutput(d,"int32"),f=t.dataIdMap.get(p.dataId).id,m=_.sizeFromShape(p.shape),A=l.shape[u[0]];return G7(o,Fn[l.dtype],m,A,f),h&&t.disposeData(c.dataId),p}var RK={kernelName:ps,backendName:"wasm",kernelFunc:CK,setupFunc:EK},q7;function MK(e){q7=e.wasm.cwrap(fs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function FK(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(a.shape,i,o,1,l,c),h=u.filterHeight,d=u.filterWidth,p=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,A=u.padInfo.left,y=u.strideHeight,g=u.strideWidth,x=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let v=r.makeOutput(u.outShape,"float32"),w=r.dataIdMap.get(v.dataId).id;return q7(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,f,m,A,y,g,x,w),v}var $K={kernelName:fs,backendName:"wasm",setupFunc:MK,kernelFunc:FK};function Nr(e){let{inputs:t,attrs:n}=e,{x:r}=t,{shape:a}=n,s=_.sizeFromShape(r.shape),i=_.inferFromImplicitShape(a,s);return _.assert(s===_.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:i,dtype:r.dtype}}var DK={kernelName:Xo,backendName:"wasm",kernelFunc:Nr},X7;function OK(e){X7=e.wasm.cwrap(ms,null,["number","array","number","number","array","number","number","number","number"])}function zK(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=_.sizeFromShape(f),y=_.sizeFromShape(m),g=A===y||A===1||y===1;_.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let x=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);_.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[A,u,d]:[A,d,u],w=o?[y,p,h]:[y,h,p],b=Nr({inputs:{x:a},backend:n,attrs:{shape:v}}),k=Nr({inputs:{x:s},backend:n,attrs:{shape:w}}),N=n.dataIdMap.get(b.dataId).id,C=n.dataIdMap.get(k.dataId).id,F=i?b.shape[2]:b.shape[1],O=o?k.shape[1]:k.shape[2],L=Math.max(A,y),V=n.makeOutput([L,F,O],b.dtype),j=n.dataIdMap.get(V.dataId).id,U=new Uint8Array(new Int32Array(b.shape).buffer),X=new Uint8Array(new Int32Array(k.shape).buffer);return X7(N,U,b.shape.length,C,X,k.shape.length,i,o,j),n.disposeData(b.dataId),n.disposeData(k.dataId),V.shape=x,V}var PK={kernelName:ms,backendName:"wasm",setupFunc:OK,kernelFunc:zK};function $p(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var LK={kernelName:As,backendName:"wasm",kernelFunc:$p},WK=mn(ys),K7;function BK(e){K7=e.wasm.cwrap(Ra,null,["number","number","number","number"])}function VK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(l.dataId).id;return K7(o,s,i,c),l}var jK={kernelName:Ra,backendName:"wasm",setupFunc:BK,kernelFunc:VK};function Z7(e){let{inputs:t,backend:n}=e,r=_.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=E.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>_.sizeFromShape(p.shape)>0);if(s.length===1)return Mp({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(_.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(E.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(x=>{let v=_.sizeFromShape(x.shape.slice(r));return Nr({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),f=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));a=E.computeOutShape(p.map(x=>x.shape),1);let m=p[0].shape[0]===1,A=rA(f,a,t[0].dtype,m),y=E.computeOutShape(s.map(x=>x.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=E.fromStringArrayToUint8(A),p.forEach(x=>n.disposeData(x.dataId)),i}let l=_.sizeFromShape(s[0].shape.slice(0,r)),c=0,u=s.map(p=>{let f=_.sizeFromShape(p.shape.slice(r));return c+=f,f}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p<l;p++){let f=p*c;for(let m=0;m<h.length;m++){let A=u[m],y=p*A,g=h[m].subarray(y,y+A);d.set(g,f),f+=A}}return i}var UK={kernelName:go,backendName:"wasm",kernelFunc:Z7},Y7;function HK(e){Y7=e.wasm.cwrap(gs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function GK(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:h,dataFormat:d}=n,p=E.convertConv2DDataFormat(d),f=E.computeConv2DInfo(a.shape,s.shape,l,c,u,h,!1,p),m=f.filterHeight,A=f.filterWidth,y=f.padInfo.top,g=f.padInfo.right,x=f.padInfo.bottom,v=f.padInfo.left,w=f.dilationHeight,b=f.dilationWidth,k=f.strideHeight,N=f.strideWidth,C=f.inChannels,F=f.outChannels,O=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let L=r.makeOutput(f.outShape,"float32"),V=r.dataIdMap.get(L.dataId).id;return Y7(i,a.shape[0],a.shape[1],a.shape[2],o,m,A,y,g,x,v,O,w,b,k,N,C,F,V),L}var qK={kernelName:gs,backendName:"wasm",setupFunc:HK,kernelFunc:GK},J7;function XK(e){J7=e.wasm.cwrap(xs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function KK(e){let{backend:t,inputs:n,attrs:r}=e,{dy:a,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,inputShape:u}=r,h=1,d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(u,s.shape,i,h,o,c,!1,d),{batchSize:f,filterHeight:m,filterWidth:A,inChannels:y,inHeight:g,inWidth:x,outChannels:v,outHeight:w,outWidth:b,strideHeight:k,strideWidth:N}=p,C=m-1-p.padInfo.top,F=A-1-p.padInfo.left,O=p.dataFormat==="channelsLast",L=_.computeStrides(p.inShape),V=_.computeStrides(a.shape),[j,U,X]=_.computeStrides(s.shape),G=L[0],ee=O?L[1]:L[2],Y=O?L[2]:1,ae=O?1:L[1],te=V[0],ie=O?V[1]:V[2],Q=O?V[2]:1,he=O?1:V[1],oe=t.makeOutput(p.inShape,"float32"),me=t.dataIdMap.get(oe.dataId).id,pe=t.dataIdMap.get(a.dataId).id,Ie=t.dataIdMap.get(s.dataId).id;return J7(pe,Ie,f,m,A,g,x,y,w,b,v,k,N,C,F,j,U,X,G,ee,Y,ae,te,ie,Q,he,me),oe}var ZK={kernelName:xs,backendName:"wasm",setupFunc:XK,kernelFunc:KK},YK=mn(ws),DA;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(DA||(DA={}));var Q7;function JK(e){Q7=e.wasm.cwrap(wo,null,["number","number","number","number","array","number","number","number","number","number"])}function QK(e){let{backend:t,inputs:n,attrs:r}=e,{method:a,extrapolationValue:s,cropSize:i}=r,{image:o,boxes:l,boxInd:c}=n,u=l.shape[0],[h,d]=i,p=[u,h,d,o.shape[3]],f=t.dataIdMap.get(o.dataId),m;o.dtype!=="float32"&&(m=$p({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let A=f.id,y=t.dataIdMap.get(l.dataId).id,g=t.dataIdMap.get(c.dataId).id,x=t.makeOutput(p,"float32"),v=t.dataIdMap.get(x.dataId).id,w=new Uint8Array(new Int32Array(o.shape).buffer);return Q7(A,y,g,u,w,h,d,DA[a],s,v),m!=null&&t.disposeData(m.dataId),x}var eZ={kernelName:wo,backendName:"wasm",setupFunc:JK,kernelFunc:QK},ev;function tZ(e){ev=e.wasm.cwrap(bs,null,["number","number","number","number","number","number"])}function nZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length;_.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumsum does not support ${a.dtype} tensors in the WASM backend`);let c=E.getAxesPermutation([s],l),u=a;c!==null&&(u=Fp({inputs:{x:a},attrs:{perm:c},backend:n}));let h=E.getInnerMostAxes(1,l)[0];E.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(u.shape,u.dtype),p=u.shape[h],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(d.dataId).id;ev(f,i?1:0,o?1:0,p,m,Fn[a.dtype]);let A=d;if(c!==null){let y=E.getUndoAxesPermutation(c);A=Fp({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return A}var rZ={kernelName:bs,backendName:"wasm",setupFunc:tZ,kernelFunc:nZ},tv;function aZ(e){tv=e.wasm.cwrap(bo,null,["number","number","number","array","number","array","array","number","number"])}function sZ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;_.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(_.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(f).buffer),x=new Uint8Array(new Int32Array(_.computeStrides(f)).buffer),v=t.dataIdMap.get(m.dataId).id;return tv(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,x,f.length,v),m}var iZ={kernelName:bo,backendName:"wasm",setupFunc:aZ,kernelFunc:sZ},nv;function oZ(e){nv=e.wasm.cwrap(_s,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function lZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:h}=n,d=c==null?[1,1]:c,p=E.computeConv2DInfo(a.shape,s.shape,l,d,u,h,!0),f=p.filterHeight,m=p.filterWidth,A=p.padInfo.top,y=p.padInfo.right,g=p.padInfo.bottom,x=p.padInfo.left,v=p.dilationHeight,w=p.dilationWidth,b=p.strideHeight,k=p.strideWidth,N=p.inChannels,C=p.outChannels,F=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let O=r.makeOutput(p.outShape,"float32"),L=r.dataIdMap.get(O.dataId).id;return nv(i,a.shape[0],a.shape[1],a.shape[2],o,f,m,A,y,g,x,F,v,w,b,k,N,C,L),O}var uZ={kernelName:_s,backendName:"wasm",setupFunc:oZ,kernelFunc:lZ},cZ=!1,hZ=An(ko,cZ,"bool"),dZ=mn(ks);function OA(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(_.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Nr({inputs:{x:a},backend:r,attrs:{shape:o}})}var pZ={kernelName:Io,backendName:"wasm",kernelFunc:OA};function fZ(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var mZ={kernelName:Eu,backendName:"wasm",kernelFunc:fZ},rv;function AZ(e){rv=e.wasm.cwrap(No,null,["number","number","number","number","number","number"])}function yZ(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,c,u]=r.shape;return rv(s,o,l,c,u,i),a}var gZ={kernelName:No,backendName:"wasm",kernelFunc:yZ,setupFunc:AZ},xZ=mn(Is),wZ=!1,bZ=An(Ss,wZ),av;function _Z(e){av=e.wasm.cwrap(Ns,null,["number","number","number","number","number","number","number"])}function vZ(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,f=c!=null?t.dataIdMap.get(c.dataId).id:0,m=t.makeOutput(s.shape,s.dtype);if(_.sizeFromShape(s.shape)===0)return m;let A=t.dataIdMap.get(m.dataId).id;return av(u,h,d,p,f,a,A),m}var kZ={kernelName:Ns,backendName:"wasm",setupFunc:_Z,kernelFunc:vZ},sv;function IZ(e){sv=e.wasm.cwrap(oi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function SZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(a.shape,s.shape,l,u,c,d),A=Nc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,x=m.outChannels,v=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);v=Q.id}let w=m.filterHeight,b=m.filterWidth,k=m.padInfo.top,N=m.padInfo.right,C=m.padInfo.bottom,F=m.padInfo.left,O=m.dilationHeight,L=m.dilationWidth,V=m.strideHeight,j=m.strideWidth,U=m.inChannels,X=m.padInfo.type==="SAME"?1:0,G=m.batchSize,ee=m.inHeight,Y=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(m.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return sv(y,G,ee,Y,g,w,b,v,k,N,C,F,X,O,L,V,j,U,x,A,ie,f||0,te),ae}var NZ={kernelName:oi,backendName:"wasm",setupFunc:IZ,kernelFunc:SZ},iv;function TZ(e){iv=e.wasm.cwrap(li,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function EZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(a.shape,s.shape,l,u,c,d,!0),A=Nc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,x=m.outChannels,v=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);v=Q.id}let w=m.filterHeight,b=m.filterWidth,k=m.padInfo.top,N=m.padInfo.right,C=m.padInfo.bottom,F=m.padInfo.left,O=m.dilationHeight,L=m.dilationWidth,V=m.strideHeight,j=m.strideWidth,U=m.inChannels,X=m.padInfo.type==="SAME"?1:0,G=m.batchSize,ee=m.inHeight,Y=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(m.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return iv(y,G,ee,Y,g,w,b,v,k,N,C,F,X,O,L,V,j,U,x,A,ie,f||0,te),ae}var CZ={kernelName:li,backendName:"wasm",setupFunc:TZ,kernelFunc:EZ},ov;function RZ(e){ov=e.wasm.cwrap(Eo,null,["number","number","number","number","number","number","array","number"])}function MZ(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=em.prepareAndValidate(r,a),c=t.makeOutput(s,r.dtype);if(i===0)return c;let u=a.shape,h=u[u.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,f=new Uint8Array(new Int32Array(l).buffer),m=t.dataIdMap.get(c.dataId).id;return ov(d,Fn[r.dtype],p,i,h,o,f,m),c}var FZ={kernelName:Eo,backendName:"wasm",setupFunc:RZ,kernelFunc:MZ},lv;function $Z(e){lv=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function DZ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=_.parseAxisParam(i,a.shape)[0],c=E.segment_util.collectGatherOpShapeInfo(a,s,l,o),u=Nr({inputs:{x:a},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),h=_.sizeFromShape(s.shape),d=Nr({inputs:{x:s},attrs:{shape:[c.batchSize,h/c.batchSize]},backend:t}),p=[c.batchSize,c.outerSize,h/c.batchSize,c.sliceSize],f=t.makeOutput(p,a.dtype);if(_.sizeFromShape(a.shape)===0)return f;let m=u.shape.length-1,A=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,g=t.dataIdMap.get(f.dataId).id,x=new Uint8Array(new Int32Array(_.computeStrides(u.shape)).buffer),v=new Uint8Array(new Int32Array(_.computeStrides(p)).buffer);return lv(A,Fn[a.dtype],x,m,y,c.batchSize,v,g),t.disposeData(u.dataId),t.disposeData(d.dataId),f.shape=c.outputShape,f}var OZ={kernelName:To,backendName:"wasm",setupFunc:$Z,kernelFunc:DZ},zZ=!1,PZ=An(Co,zZ,"bool"),LZ=!1,WZ=An(Ts,LZ,"bool"),uv;function BZ(e){uv=e.wasm.cwrap(Cs,null,["number","number","number"])}function VZ(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(_.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;uv(a,n,i)}return s}var jZ={kernelName:Cs,backendName:"wasm",setupFunc:BZ,kernelFunc:VZ},UZ=!1,HZ=An($o,UZ,"bool"),GZ=!1,qZ=An(Do,GZ,"bool"),XZ=mn(Rs),KZ=!1,ZZ=An(zo,KZ,"bool"),cv;function YZ(e){cv=e.wasm.cwrap(Ms,null,["number, number, number"])}function JZ(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:h,inputWasTransposed:d}=Xa(i,a,t);if(d){let g=t.dataIdMap.get(c.dataId).id;l=c,o=g}let p=l.shape.length;E.assertAxesAreInnerMostDims("max",u,p);let[f,m]=E.computeOutAndReduceShapes(l.shape,u),A=_.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(_.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;cv(o,A,g)}if(d&&t.disposeData(c.dataId),s){let g=E.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var QZ={kernelName:Ms,backendName:"wasm",setupFunc:YZ,kernelFunc:JZ},eY=!1,tY=An(Fs,eY),hv;function nY(e){hv=e.wasm.cwrap($s,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function rY(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=E.computePool2DInfo(a.shape,i,o,1,l,c),h=u.filterHeight,d=u.filterWidth,p=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,A=u.padInfo.left,y=u.dilationHeight,g=u.dilationWidth,x=u.strideHeight,v=u.strideWidth,w=u.inChannels,b=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let k=r.makeOutput(u.outShape,"float32"),N=r.dataIdMap.get(k.dataId).id;return hv(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,f,m,A,y,g,x,v,w,b,N),k}var aY={kernelName:$s,backendName:"wasm",setupFunc:nY,kernelFunc:rY},dv;function sY(e){dv=e.wasm.cwrap(Ds,null,["number, number, number"])}function iY(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Xa(i,a,t),f=h;if(p){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("mean",f,c.shape.length);let[m,A]=E.computeOutAndReduceShapes(c.shape,f),y=_.sizeFromShape(A),g=c;c.dtype!=="float32"&&(g=$p({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let x=t.makeOutput(m,"float32");if(_.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;dv(l,y,v)}if(p&&t.disposeData(u.dataId),s){let v=E.expandShapeToKeepDim(x.shape,d);x.shape=v}return c.dtype!=="float32"&&t.disposeData(g.dataId),x}var oY={kernelName:Ds,backendName:"wasm",setupFunc:sY,kernelFunc:iY},pv;function lY(e){pv=e.wasm.cwrap(Os,null,["number, number, number"])}function uY(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Xa(i,a,t);if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x)}let f=c.shape.length;E.assertAxesAreInnerMostDims("min",h,f);let[m,A]=E.computeOutAndReduceShapes(c.shape,h),y=_.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;pv(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var cY={kernelName:Os,backendName:"wasm",setupFunc:lY,kernelFunc:uY},hY=!1,dY=An(zs,hY),zA;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(zA||(zA={}));var fv;function pY(e){fv=e.wasm.cwrap(Ps,null,["number","array","number","number","array","array","number","number"])}function fY(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,mode:a}}=e,s=r.map((f,m)=>f[0]+t.shape[m]+f[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(f=>f[0]),h=r.map(f=>f[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return fv(i,c,t.shape.length,Fn[t.dtype],d,p,zA[a],l),o}var mY={kernelName:Ps,backendName:"wasm",kernelFunc:fY,setupFunc:pY},AY=!0,yY=An(Ls,AY),gY=mn(Lo);function PA(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var mv;function xY(e){mv=e.wasm.cwrap(Bo,"number",["number","number","number","number","number"])}function wY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,h=mv(c,u,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:f,pValidOutputs:m}=PA(t,h);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([p],"int32",d)}var bY={kernelName:Bo,backendName:"wasm",setupFunc:xY,kernelFunc:wY},Av;function _Y(e){Av=e.wasm.cwrap(Vo,"number",["number","number","number","number","number","bool"])}function vY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=Av(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=PA(t,d);t.wasm._free(m);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([],"int32",A);return[y,g]}var kY={kernelName:Vo,backendName:"wasm",setupFunc:_Y,kernelFunc:vY},yv;function IY(e){yv=e.wasm.cwrap(jo,"number",["number","number","number","number","number","number"])}function SY(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=yv(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=PA(t,d);t.wasm._free(A);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([f],"float32",m);return[y,g]}var NY={kernelName:jo,backendName:"wasm",setupFunc:IY,kernelFunc:SY},TY=!1,EY=An(Wo,TY,"bool"),gv;function CY(e){gv=e.wasm.cwrap(Ws,null,["number","number","number","number","number"])}function RY(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(a.dataId).id;return gv(u,s,i,o,c),l}var MY={kernelName:Ws,backendName:"wasm",setupFunc:CY,kernelFunc:RY};function FY(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var $Y={kernelName:Uo,backendName:"wasm",kernelFunc:FY};function DY(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return OA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{_.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),_.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=OA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=Z7({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeData(u.dataId)),c}var OY={kernelName:Ho,backendName:"wasm",kernelFunc:DY},xv;function zY(e){xv=e.wasm.cwrap(Bs,null,["number","array","number","number","array","array","number","number"])}function PY(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((f,m)=>f[0]+t.shape[m]+f[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(f=>f[0]),h=r.map(f=>f[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return xv(i,c,t.shape.length,Fn[t.dtype],d,p,a,l),o}var LY={kernelName:Bs,backendName:"wasm",kernelFunc:PY,setupFunc:zY},WY=!1,BY=An(Vs,WY),wv;function VY(e){wv=e.wasm.cwrap(js,null,["number","number","number"])}function jY(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return wv(s,i,l),o}var UY={kernelName:js,backendName:"wasm",setupFunc:VY,kernelFunc:jY},bv;function HY(e){bv=e.wasm.cwrap(Go,null,["number","number","number","number"])}function GY(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Xa(i,a,t),f=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("prod",f,c.shape.length);let[m,A]=E.computeOutAndReduceShapes(c.shape,f),y=_.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;bv(l,y,Fn[g.dtype],x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var qY={kernelName:Go,backendName:"wasm",setupFunc:HY,kernelFunc:GY},XY=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=iA(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},KY={kernelName:$u,backendName:"wasm",kernelFunc:XY},ZY=!0,YY=An(vs,ZY),JY=mn(Us),QY=mn(Gs),_v;function eJ(e){_v=e.wasm.cwrap(Hs,null,["number","number","number","number","number","number","number","number","number","number"])}function tJ(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,[u,h,d,p]=a.shape,f=[u,l,c,p],m=t.dataIdMap.get(a.dataId),A;m.dtype!=="float32"&&(A=$p({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(A.dataId));let y=m.id,g=t.makeOutput(f,"float32");if(_.sizeFromShape(a.shape)===0)return g;let x=t.dataIdMap.get(g.dataId).id;return _v(y,u,h,d,p,l,c,s?1:0,i?1:0,x),A!=null&&t.disposeData(A.dataId),g}var nJ={kernelName:Hs,backendName:"wasm",setupFunc:eJ,kernelFunc:tJ},vv;function rJ(e){vv=e.wasm.cwrap(qs,null,["number","array","number","array","number","number"])}function aJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=_.parseAxisParam(s,a.shape);if(a.shape.length===0)return Mp({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);vv(l,u,i.length,h,a.shape.length,c);let d=Nr({inputs:{x:o},attrs:{shape:a.shape},backend:n});return n.disposeData(o.dataId),d}var sJ={kernelName:qs,backendName:"wasm",kernelFunc:aJ,setupFunc:rJ},kv;function iJ(e){kv=e.wasm.cwrap(ol,null,["number","number","number","number","number","number","number","number","array","number","number"])}function oJ(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(l.dataId).id,[h,d,p,f]=a.shape,[m,A]=E.getImageCenter(o,d,p),y=i===0,g=255,x=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],v=new Uint8Array(new Int32Array(x).buffer);return kv(c,h,d,p,f,s,m,A,v,x.length,u),l}var lJ={kernelName:ol,backendName:"wasm",kernelFunc:oJ,setupFunc:iJ},uJ=mn(Xs),cJ=mn(Ks),Iv;function hJ(e){Iv=e.wasm.cwrap(Ko,null,["number","number","number","number","number","number","array","number","number"])}function dJ(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(_.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=tm.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,f=t.dataIdMap.get(s.dataId).id,m=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return Iv(p,f,Fn[s.dtype],l,c,u,m,d,A),o}var pJ={kernelName:Ko,backendName:"wasm",setupFunc:hJ,kernelFunc:dJ},Sv;function fJ(e){Sv=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function mJ(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(c.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:_.sizeFromShape(a.shape.slice(1));return Sv(i,o,l,p,u),c}var AJ={kernelName:Zo,backendName:"wasm",kernelFunc:mJ,setupFunc:fJ},Nv;function yJ(e){Nv=e.wasm.cwrap(Ys,null,["number","number"])}function gJ(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return _.sizeFromShape(a.shape)===0||Nv(r,s),a}var xJ={kernelName:"Sigmoid",backendName:"wasm",setupFunc:yJ,kernelFunc:gJ},wJ=mn(Zs);function Dp(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=un.parseSliceParams(t,n,r),o=un.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),c=a.makeOutput(i,t.dtype),u=_.computeStrides(t.shape),h=a.dataIdMap.get(c.dataId);if(o){let f=un.computeFlatOffset(s,u);return t.dtype==="string"?h.stringBytes=l.slice(f,f+_.sizeFromShape(i)):a.typedArrayFromHeap(c).set(l.subarray(f,f+_.sizeFromShape(i))),c}if(t.dtype==="string"){let f=up(l,s,i,t.shape,t.dtype);return h.stringBytes=f,c}let d=a.typedArrayFromHeap(c),p=t.shape.length;if(p===2)bJ(l,u[0],d,s,i);else if(p===3)_J(l,u[0],u[1],d,s,i);else if(p===4)vJ(l,u[0],u[1],u[2],d,s,i);else{let f=up(l,s,i,t.shape,t.dtype);d.set(f)}return c}function bJ(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let c=i;c<l;c++){let u=c*t+o;n.set(e.subarray(u,u+a[1]),s),s+=a[1]}}function _J(e,t,n,r,a,s){let i=0,o=a[0],l=a[1],c=a[2],u=o+s[0],h=l+s[1];for(let d=o;d<u;d++)for(let p=l;p<h;p++){let f=d*t+p*n+c;r.set(e.subarray(f,f+s[2]),i),i+=s[2]}}function vJ(e,t,n,r,a,s,i){let o=0,l=s[0],c=s[1],u=s[2],h=l+i[0],d=c+i[1],p=u+i[2],f=s[3];for(let m=l;m<h;m++)for(let A=c;A<d;A++)for(let y=u;y<p;y++){let g=m*t+A*n+y*r+f;a.set(e.subarray(g,g+i[3]),o),o+=i[3]}}var kJ={kernelName:Jo,backendName:"wasm",kernelFunc:Dp},Tv;function IJ(e){Tv=e.wasm.cwrap(ei,null,["number","number","number","number"])}function SJ(e){let{backend:t,inputs:{logits:n},attrs:{dim:r}}=e,a=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[r],l=_.sizeFromShape(n.shape)/o;return _.sizeFromShape(s.shape)===0||Tv(a,i,o,l),s}var NJ={kernelName:ei,backendName:"wasm",setupFunc:IJ,kernelFunc:SJ};function TJ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=_.parseAxisParam(i,a.shape)[0],l=E.prepareSplitSize(a,s,o),c=new Array(a.shape.length).fill(0),u=a.shape.slice();return l.map(h=>{let d=[...u];d[o]=h;let p=Dp({inputs:{x:a},attrs:{begin:c,size:d},backend:r});return c[o]+=h,p})}var EJ={kernelName:nl,backendName:"wasm",kernelFunc:TJ},CJ=mn(Js),RJ=mn(zu),MJ=!0,FJ=An(ti,MJ),Ev;function $J(e){Ev=e.wasm.cwrap(Fa,null,["number","number","number"])}function DJ(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return Ev(i,a,l),o}var OJ={kernelName:Fa,backendName:"wasm",setupFunc:$J,kernelFunc:DJ},Cv;function zJ(e){Cv=e.wasm.cwrap(rl,null,["number","array","number","array","array","array","array","array","number","number"])}function PJ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,p=E.slice_util.maskToAxes(u);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=a.shape.length-s.length,m=E.slice_util.maskToAxes(h),A=a.shape.slice();m.forEach(F=>{s[F]=0,i[F]=1,A.splice(F,0,1)});let y=Nr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:x,strides:v}=E.slice_util.getNormalizedAxes(y.shape,p,f,s,i,o,l,c,u);s=g,i=x,o=v;let w=E.slice_util.maskToAxes(d);w.forEach(F=>{i[F]=s[F]+1,o[F]=1});let b=E.slice_util.computeOutShape(s,i,o),k=b.filter((F,O)=>w.indexOf(O)===-1);if(o.every(F=>F===1)){let F=Dp({inputs:{x:y},attrs:{begin:s,size:b},backend:t});t.disposeData(y.dataId);let O=Nr({inputs:{x:F},attrs:{shape:k},backend:t});return t.disposeData(F.dataId),O}let N=t.makeOutput(k,"float32");if(!k.some(F=>F===0)){let F=t.dataIdMap.get(y.dataId).id,O=new Uint8Array(new Int32Array(_.computeStrides(y.shape)).buffer),L=new Uint8Array(new Int32Array(s).buffer),V=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(o).buffer),U=new Uint8Array(new Int32Array(k).buffer),X=new Uint8Array(new Int32Array(_.computeStrides(k)).buffer),G=t.dataIdMap.get(N.dataId).id;Cv(F,O,y.shape.length,L,V,j,U,X,k.length,G)}t.disposeData(y.dataId);let C=Nr({inputs:{x:N},attrs:{shape:k},backend:t});return t.disposeData(N.dataId),C}var LJ={kernelName:rl,backendName:"wasm",setupFunc:zJ,kernelFunc:PJ},WJ=!0,BJ=An(ni,WJ),Rv;function VJ(e){Rv=e.wasm.cwrap(Qs,null,["number, number, number"])}function jJ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=Xa(i,a,t),f=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,f=E.getInnerMostAxes(f.length,c.shape.length))}E.assertAxesAreInnerMostDims("sum",f,c.shape.length);let[m,A]=E.computeOutAndReduceShapes(c.shape,f),y=_.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(_.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;Rv(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=E.expandShapeToKeepDim(g.shape,d);g.shape=x}return g}var UJ={kernelName:Qs,backendName:"wasm",setupFunc:VJ,kernelFunc:jJ},HJ=mn(ri),GJ=mn(ai),Mv;function qJ(e){Mv=e.wasm.cwrap(Ma,null,["number","array","number","array","number","number"])}function XJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d<o.length;d++)o[d]=a.shape[d]*i[d];let l=new Uint8Array(new Int32Array(a.shape).buffer),c=new Uint8Array(new Int32Array(o).buffer),u=n.makeOutput(o,a.dtype),h=n.dataIdMap.get(u.dataId).id;return Mv(s,l,a.shape.length,c,o.length,Fn[u.dtype],h),u}var KJ={kernelName:Ma,backendName:"wasm",setupFunc:qJ,kernelFunc:XJ},Fv;function ZJ(e){Fv=e.wasm.cwrap(al,null,["number","array","number","number","number","bool","number","number"])}var YJ=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let c=t.makeOutput(l,r.dtype),u=t.dataIdMap.get(c.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return Fv(i,o,r.shape.length,Fn[r.dtype],a,s,u,d),[c,h]},JJ={kernelName:al,backendName:"wasm",setupFunc:ZJ,kernelFunc:YJ};function QJ(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),c=0;for(let p=0;p<o;p++)p!==s&&(l[c++]=a.shape[p]);let u=new Array(i),h=new Array(o).fill(0),d=a.shape.slice();d[s]=1;for(let p=0;p<u.length;p++)h[s]=p,u[p]=Dp({inputs:{x:a},attrs:{begin:h,size:d},backend:n});return u.map(({dataId:p,dtype:f})=>({dataId:p,dtype:f,shape:l}))}var eQ={kernelName:sl,backendName:"wasm",kernelFunc:QJ};function tQ(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var nQ={kernelName:il,backendName:"wasm",kernelFunc:tQ},rQ=[dK,fK,yK,IK,TK,RK,$K,PK,LK,WK,jK,UK,qK,ZK,YK,eZ,rZ,iZ,uZ,hZ,dZ,pZ,mZ,gZ,xZ,bZ,hK,kZ,NZ,CZ,FZ,OZ,PZ,WZ,gK,jZ,HZ,qZ,XZ,ZZ,QZ,tY,aY,oY,cY,dY,mY,yY,gY,bY,kY,NY,EY,MY,$Y,OY,LY,BY,UY,qY,KY,YY,JY,QY,DK,nJ,sJ,lJ,cJ,uJ,pJ,AJ,xJ,wJ,kJ,NJ,EJ,CJ,RJ,FJ,OJ,LJ,BJ,UJ,HJ,GJ,KJ,JJ,_K,eQ,nQ];for(let e of rQ)ui(e);var LA=J();LA.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));LA.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(LA.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var $v=ao(M9()),aQ='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',sQ=ao(F9()),Dv=class extends wu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Rh(this,ua())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=_.now();return e(),{kernelMs:_.now()-t}}move(e,t,n,r,a){let s=this.dataIdNextNumber++;if(r==="string"){let c=t;this.dataIdMap.set(e,{id:s,stringBytes:c,shape:n,dtype:r,memoryOffset:null,refCount:a});return}let i=_.sizeFromShape(n),o=i*_.bytesPerElement(r),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:r,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+_.sizeFromShape(r)*_.bytesPerElement(n));return iQ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let a=this.dataIdNextNumber++;r={id:a},this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=_.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=_.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function oQ(e){return(t,n)=>(_.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance,s.module)})})}),{})}function Ov(e,t,n){if(Op!=null)return Op;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),Tc!=null&&Tc[r]!=null?Tc[r]:n+r}async function lQ(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let c=aQ,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return o.endsWith(".wasm")?Ov(e,t,Ec!=null?Ec:l):l+o},WA&&(a.instantiateWasm=oQ(Ov(e,t,Ec!=null?Ec:"")));let s=!1;a.onAbort=()=>{s||Cc||(Cc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Op==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+$v.default.toString()],{type:"text/javascript"}),i=(0,$v.default)(a)):i=(0,sQ.default)(a),i.then(o=>{s=!0,Cc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function iQ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var uQ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Op=null,Ec=null,Tc={},Cc=!1,WA=!1;function cQ(e,t=!1){if(om("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Cc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Op=e,WA=t}function hQ(e,t=!1){if(Cc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Ec=e;else{Tc=e;let n=uQ.filter(r=>Tc[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}WA=t}var zv="3.5.0",dQ=2;Al("wasm",async()=>{let{wasm:e}=await lQ();return new Dv(e)},dQ);Z().prototype.abs=function(){return this.throwIfDisposed(),zt(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),um(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),cm(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),se(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),kd(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),Zu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),mi(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),hm(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),M(this.size===1,()=>"The array must have only 1 element."),H(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),H(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),H(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),H(this,[e,t,n,r])};Z().prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),H(this,[e,t,n,r,a])};Z().prototype.asin=function(){return this.throwIfDisposed(),dm(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),pm(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),fm(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),mm(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),Am(this)};Z().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),Ju(this,e,t,n,r)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Qu(this,e,t)};Z().prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),gi(this,e,t,n,r,a)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),gl(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),wm(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),En(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Pe&&(e=[e]),rt([this,...e],t)};Z().prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Sd(this,e,t,n,r,a,s)};Z().prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),Nd(this,e,t,n,r,a)};Z().prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),ca(this,e,t,n,r,a,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),ec(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),Td(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Ed(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),vm(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),wl(this,e,t,n,r,a,s)};Z().prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),km(this,e,t,n,r,a)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),Im(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),Ae(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),ub(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),bl(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),Wa(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),Sm(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),tr(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),Qt(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),Nm(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),cc(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),_l(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),vd(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),xi(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Va(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),pr(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),Sl(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),Gd(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),hb(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),db(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),Em(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),nc(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),wi(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),Rd(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),Cm(this,e,t,n,r)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),mb(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),$d(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Fm(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),Pn(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),Md(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),fr(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),rc(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),Dd(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),xb(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ve(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),ac(this,e,t,n,r)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Rn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),jr(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),It(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),vl(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),kl(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Dm(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),Om(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),P(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),kt(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Zd(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),vi(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),fl(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),Wn(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),ha(this,e,t)};Z().prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),_b(this,e,t,n,r,a)};Z().prototype.pow=function(e){return this.throwIfDisposed(),da(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),ic(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),zd(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),Lm(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),Ur(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),Ld(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),H(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),H(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),Wb(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),Bb(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),Bn(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),hc(this)};Z().prototype.round=function(){return this.throwIfDisposed(),Wm(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),Wd(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),Bd(this)};Z().prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Bm(this,e,t,n,r,a,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),Tn(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),Vm(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),Vd(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),jd(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Re(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),uc(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),bi(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),sc(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),Lt(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),en(this)};Z().prototype.square=function(){return this.throwIfDisposed(),ot(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),qd(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),ja(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Pe?[this,e]:[this,...e];return cn(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),Nl(this,e)};Z().prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),Um(this,e,t,n,r,a,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),ye(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),Te(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),Hm(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),yi(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),Ba(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),ge(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),ge(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),ge(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),Gm(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),Je(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),Kd(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),qm(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),mr(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),Cn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),He(this)};var Pv={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,Nl(ge(n,"float32"),-1))}}},pQ={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=ot(ge(n,"float32")),a=en(ye(xe(1),r));return kt(Ae(e,a))}}}},fQ={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=en(ye(ot(ge(n,"float32")),1));return Ae(e,r)}}}},mQ={kernelName:Ca,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=e,i=Pt(n.shape,a);return i.length>0&&(s=Te(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Pt(r.shape,a);return i.length>0&&(s=Te(s,i)),H(s,r.shape)}}}},AQ={kernelName:ds,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},yQ={kernelName:ps,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},gQ={kernelName:vu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>He(n)}}},xQ={kernelName:po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,en(ye(xe(1),ot(ge(n,"float32")))))}}},wQ={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=en(se(xe(1),ot(ge(n,"float32"))));return Ae(e,r)}}}},bQ={kernelName:yo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=se(ot(n),ot(r)),i=P(e,Ae(r,s)),o=Pt(n.shape,a);return o.length>0&&(i=Te(i,o)),H(i,n.shape)},b:()=>{let s=se(ot(n),ot(r)),i=kt(P(e,Ae(n,s))),o=Pt(r.shape,a);return o.length>0&&(i=Te(i,o)),H(i,r.shape)}}}},_Q={kernelName:mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,se(ot(ge(n,"float32")),1))}}},vQ={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,ye(xe(1),ot(ge(n,"float32"))))}}};function kQ(e,t,n,r,a,s){let i=R(e,"dy","avgPool3dGrad"),o=R(t,"input","avgPool3dGrad"),l=i,c=o,u=!1;o.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),s!=null&&M(Ut(a),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${a}.`);let h={dy:l,input:c},d={filterSize:n,strides:r,pad:a,dimRoundingMode:s},p=$.runKernel(Oh,h,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var IQ=D({avgPool3dGrad_:kQ}),SQ={kernelName:ku,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>IQ(e,r,a,s,i,o)}}};function NQ(e,t,n,r,a){let s=R(e,"dy","avgPoolGrad"),i=R(t,"input","avgPoolGrad");M(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=$.runKernel(Dh,u,h);return c?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var TQ=D({avgPoolGrad_:NQ}),EQ={kernelName:fs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>TQ(e,r,a,s,i)}}},CQ={kernelName:ms,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Ve(e,a,!1,!0),b:()=>Ve(r,e,!0,!1)}:!s&&i?{a:()=>Ve(e,a,!1,!1),b:()=>Ve(e,r,!0,!1)}:s&&!i?{a:()=>Ve(a,e,!1,!0),b:()=>Ve(r,e,!1,!1)}:{a:()=>Ve(a,e,!0,!0),b:()=>Ve(e,r,!0,!0)}}},RQ={kernelName:Iu,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>sc(e,r,a)}}},MQ={kernelName:nw,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Te(e,o,!0)}}},FQ={kernelName:As,gradFunc:e=>({x:()=>e.clone()})},$Q={kernelName:ys,gradFunc:e=>({x:()=>He(e)})},DQ={kernelName:Ra,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>Cn(fr(Va(r,a),wi(r,s)),e,He(e))}}},OQ={kernelName:Su,inputsToSave:["x"],gradFunc:Pv.gradFunc},zQ={kernelName:go,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=hr(a,t[0].shape)[0],i=r.map(o=>o[s]);return Lt(e,i,s).map(o=>()=>o)}},PQ={kernelName:gs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return M(La(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>bm(r.shape,e,a,i,o,l),filter:()=>Ym(r,e,a.shape,i,o,l)}}},LQ={kernelName:xs,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>ca(e,a,s,i,o,1,l),filter:()=>Ym(e,r,a.shape,s,i,o,l)}}};function WQ(e,t,n,r,a){let s=e;e.rank===4&&(s=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),M(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),M(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return $.runKernel(Wh,o,l)}var BQ=D({conv3DBackpropFilter_:WQ}),VQ={kernelName:Nu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;M(La(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>ib(i.shape,e,o,a,s),filter:()=>BQ(i,e,o.shape,a,s)}}},jQ={kernelName:ws,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(kt(Vd(ge(n,"float32"))),e)}}},UQ={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(jd(ge(n,"float32")),e)}}},HQ={kernelName:bs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=gb([a],r.rank),l=Ed(e,a,s,!i);return o!=null&&(l=Je(l,o)),l}}}},GQ={kernelName:_s,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;M(La(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),M(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),M(Br(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&M(Ut(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>Fb(l.shape,e,c,a,s,r,i),filter:()=>Mb(l,e,c.shape,a,s,r,i)}}},qQ={kernelName:Tu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>$.runKernel(Gh,s,n),filter:()=>$.runKernel(qh,i,n)}}},XQ={kernelName:_o,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>$.runKernel(Kh,r)}}},KQ={kernelName:vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=P(tr(kt(ot(n))),2/Math.sqrt(Math.PI));return{x:()=>P(e,r)}}},ZQ={kernelName:ks,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,n)}}},YQ={kernelName:Io,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},JQ={kernelName:So,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,tr(n))}}},QQ={kernelName:Is,gradFunc:e=>({x:()=>He(e)})},eee={kernelName:Ss,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Ae(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=P(e,ge(n,"float32")),i=Pt(r.shape,a);i.length>0&&(s=H(Te(s,i),r.shape));let o=ot(r);return kt(Ae(s,ge(o,"float32")))}}}},tee={kernelName:Ns,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?xe(1):o,c=Pt(s.shape,a.shape),u=[];if(s.rank===1){for(let m=0;m<a.shape.length-1;++m)u.push(a.shape[m]);u.push(1)}let h=ye(a,s),d=P(e,l),p=Wd(se(i,xe(r))),f=P(P(P(p,p),p),xe(-.5));return{x:()=>s.rank===1?H(P(P(e,Ba(H(p,[1,1,1,s.shape[0]]),u)),l),a.shape):H(P(P(e,p),l),a.shape),mean:()=>{let m=P(P(p,xe(-1)),d);return s.rank===1&&(m=Te(m,c)),H(m,s.shape)},variance:()=>{let m=P(P(f,h),d);return s.rank===1&&(m=Te(m,c)),H(m,s.shape)},scale:()=>{let m=P(h,p),A=P(e,m);return s.rank===1&&(A=Te(A,c)),H(A,s.shape)},offset:()=>{let m=e;return s.rank===1&&(m=Te(m,c)),H(m,s.shape)}}}},nee={kernelName:To,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=hr(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,c=o.slice(0,i),u=c.length,h=o.slice(s,o.length).slice(1),d=h.length,p=Lv(0,u),f=Lv(u+1,u+1+d),m=Wv([c,[l],h]),A=H(e,m),y=H(a,[l]),g=Wv([[u],p,f]),x=Je(A,g),v=qm(x,y,r.shape[i]),w=Mm(g);return v=Je(v,w),v},indices:()=>a}}};function Lv(e,t){let n=[];for(let r=e;r<t;++r)n.push(r);return n}function Wv(e){let t=[];for(let n=0;n<e.length;++n)for(let r=0;r<e[n].length;++r)t.push(e[n][r]);return t}var ree={kernelName:Ts,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>He(n),b:()=>He(r)}}},aee={kernelName:Es,gradFunc:e=>({x:()=>ge(e,"float32")})},see={kernelName:Ro,gradFunc:e=>({x:()=>He(e)})},iee={kernelName:Mo,gradFunc:e=>({x:()=>He(e)})},oee={kernelName:Fo,gradFunc:e=>({x:()=>He(e)})},lee={kernelName:Cs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=pr(r,0);return{x:()=>Cn(s,e,P(e,a))}}},uee={kernelName:Oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,se(n,1))}}},cee={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,ge(n,"float32"))}}},hee={kernelName:rw,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=tr(r);return ye(e,P(Te(e,a,s),i))}}}};function dee(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return $.runKernel(ed,o,l)}var pee=D({localResponseNormalizationBackprop_:dee}),fee={kernelName:Mu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>pee(r,a,e,s,i,o,l)}}};function Bv(e,t,n,r){return t.rank<n.rank&&(t=H(t,_i(t.shape,r))),e.rank<n.rank&&(e=H(e,_i(e.shape,r))),{x:()=>P(e,ge(Wa(n,t),e.dtype))}}var Vv={kernelName:Ms,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=hr(a,s.shape),l=Bv(e,i,s,o);return{x:()=>l.x()}}},mee={kernelName:Fs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>P(e,ge(Va(n,r),"float32")),b:()=>P(e,ge(Rd(n,r),"float32"))}}};function Aee(e,t,n,r,a,s,i){let o=R(e,"dy","maxPool3dGrad"),l=R(t,"input","maxPool3dGrad"),c=R(n,"output","maxPool3dGrad"),u=o,h=l,d=c,p=!1;l.rank===4&&(p=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=H(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),M(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),M(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&M(Ut(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let f={dy:u,input:h,output:d},m={filterSize:r,strides:a,pad:s,dimRoundingMode:i},A=$.runKernel(nd,f,m);return p?H(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var yee=D({maxPool3dGrad_:Aee}),gee={kernelName:Fu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>yee(e,r,a,s,i,o,l)}}};function xee(e,t,n,r,a,s,i){let o=R(e,"dy","maxPoolGrad"),l=R(t,"input","maxPoolGrad"),c=R(n,"output","maxPoolGrad");M(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),M(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&M(Ut(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return $.runKernel(td,u,h)}var wee=D({maxPoolGrad_:xee}),bee={kernelName:$s,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>wee(e,r,a,s,i,o)}}},_ee={kernelName:Ds,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=hr(a,r.shape),i=yb(r.shape,s)[1],o=Et(i);return{x:()=>{let l=r.shape.slice();s.forEach(u=>{l[u]=1});let c=H(e,l);return Ae(P(c,Ln(r.shape,"float32")),o)}}}},vee={kernelName:Os,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=hr(a,s.shape),l=Bv(e,i,s,o);return{x:()=>l.x()}}},kee={kernelName:zs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>P(e,ge(wi(n,r),"float32")),b:()=>P(e,ge(pr(n,r),"float32"))}}},Iee={kernelName:Ps,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Re(e,s,r.shape)}}},See={kernelName:Po,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Pt(n.shape,a);return s.length>0?H(Te(e,s),n.shape):e},b:()=>{let s=P(e,kt(_l(Ae(n,r)))),i=Pt(r.shape,a);return i.length>0?H(Te(s,i),r.shape):s}}}},Nee={kernelName:Ls,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=P(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=P(e,ge(n,"float32")),i=Pt(r.shape,a);return i.length>0?H(Te(s,i),r.shape):s}}}},Tee={kernelName:Lo,gradFunc:e=>({x:()=>kt(e)})},Eee={kernelName:Ws,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Rt(n.shape,"float32")}}},Cee={kernelName:Uo,gradFunc:e=>({x:()=>He(e)})},Ree={kernelName:Ho,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return mr(e,r).map(a=>()=>a)}},jv={kernelName:Bs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Re(e,s,r.shape)}}},Mee={kernelName:Vs,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=ft(s.shape,i.shape);return{a:()=>{let l=ge(i,"float32"),c=P(e,P(l,da(s,ye(l,xe(1))))),u=Pt(s.shape,o);return u.length>0&&(c=Te(c,u)),H(c,s.shape)},b:()=>{let l=pr(s,0),c=Cn(l,Pn(s),He(s)),u=P(e,P(a,c)),h=Pt(i.shape,o);return h.length>0&&(u=Te(u,h)),H(u,i.shape)}}}},Fee={kernelName:js,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=pr(n,0);return{x:()=>Cn(a,e,P(e,r)),alpha:()=>{let s=Cn(a,He(e),P(e,n)),i=Pt(r.shape,e.shape);return i.length>0&&(s=Te(s,i)),H(s,r.shape)}}}},$ee={kernelName:vs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Ae(e,ge(r,"float32")),i=Pt(n.shape,a);return i.length>0?H(Te(s,i),n.shape):s},b:()=>{let s=P(e,ge(n,"float32")),i=Pt(r.shape,a);i.length>0&&(s=H(Te(s,i),r.shape));let o=ot(r);return kt(Ae(s,ge(o,"float32")))}}}},Dee={kernelName:qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,kt(ot(n)))}}},Oee={kernelName:Gs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=P(wi(n,6),Nl(n));return{x:()=>P(e,ge(r,"float32"))}}},zee={kernelName:Us,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,ge(Nl(n),"float32"))}}},Pee={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},Lee={kernelName:Hs,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(od,a,n)}}},Wee={kernelName:Du,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(id,a,n)}}},Bee={kernelName:qs,gradFunc:(e,t,n)=>{let{dims:r}=n,a=hr(r,e.shape);return{x:()=>Bn(e,a)}}},Vee={kernelName:Xs,gradFunc:e=>({x:()=>He(e)})},jee={kernelName:Ks,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>kt(Ae(e,P(da(n,1.5),2)))}}},Uee={kernelName:Zo,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ge(He(n),"float32"),t:()=>P(e,ge(n,e.dtype)),e:()=>P(e,ge(rc(n),e.dtype))}}},Hee={kernelName:Yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=pr(n,xe(0)),a=xe(Hb),s=xe(Gb),i=P(e,s),o=P(P(e,a),tr(ge(n,"float32")));return Cn(r,i,o)}}}},Gee={kernelName:Ys,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,P(n,ye(xe(1),n)))}}},qee={kernelName:el,gradFunc:e=>({x:()=>He(e)})},Xee={kernelName:Zs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(ec(ge(n,"float32")),e)}}},Kee={kernelName:Qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(Td(ge(n,"float32")),e)}}},Zee={kernelName:Jo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=Vw(r,a,s),c=[];for(let u=0;u<e.rank;u++)c.push([o[u],i[u]-o[u]-l[u]]);return{x:()=>ha(e,c)}}},Yee={kernelName:ei,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=P(e,r);return{logits:()=>ye(i,P(Te(i,[a],s),r))}}},Jee={kernelName:tl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,Tn(n))}}},Uv={kernelName:Ou,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>Qu(e,r,a)}}},Hv={kernelName:nl,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>rt(e,r)}}},Qee={kernelName:Js,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,P(en(ge(n,"float32")),2))}}},ete={kernelName:zu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,P(ge(n,"float32"),2))}}},tte={kernelName:ti,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xe(2);return{a:()=>P(e,P(a,ye(n,r))),b:()=>P(e,P(a,ye(r,n)))}}},nte={kernelName:Fa,gradFunc:e=>({x:()=>He(e)})},rte={kernelName:ni,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=e,i=Pt(n.shape,a);return i.length>0&&(s=Te(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Pt(r.shape,a);return i.length>0&&(s=Te(s,i)),H(kt(s),r.shape)}}}},ate={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;hr(s,r.shape).forEach(l=>{a[l]=1});let i=H(e,a),o=P(i,Ln(r.shape,"float32"));return{x:()=>o}}},ste={kernelName:ri,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ae(e,ot(ec(n)))}}},ite={kernelName:ai,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(ye(xe(1),ot(n)),e)}}},ote={kernelName:Ma,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=He(r);if(r.rank===1)for(let i=0;i<a[0];++i)s=se(s,Re(e,[i*r.shape[0]],[r.shape[0]]));else if(r.rank===2)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)s=se(s,Re(e,[i*r.shape[0],o*r.shape[1]],[r.shape[0],r.shape[1]]));else if(r.rank===3)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)s=se(s,Re(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2]],[r.shape[0],r.shape[1],r.shape[2]]));else if(r.rank===4)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)for(let c=0;c<a[3];++c)s=se(s,Re(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2],c*r.shape[3]],[r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${r.rank} tensors yet.`);return s}}}},lte={kernelName:si,gradFunc:(e,t,n)=>{let r=n,{perm:a}=r,s=Mm(a);return{x:()=>Je(e,s)}}},ute={kernelName:sl,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>cn(e,a)}}},hte={kernelName:Pu,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>cte(e,n)}}};function cte(e,t){let n=jr(t,He(t)),r=xi(e,n),a=Va(t,xe(0,"int32")),s=r.rank-a.rank;for(let o=0;o<s;++o)a=Qt(a,o+1);a=fr(a,Ln(r.shape,"bool"));let i=He(r);return Cn(a,r,i)}var dte={kernelName:il,gradFunc:e=>({x:()=>He(e)})},pte=[Pv,pQ,fQ,mQ,AQ,yQ,gQ,xQ,wQ,bQ,_Q,vQ,SQ,EQ,CQ,RQ,MQ,FQ,$Q,DQ,OQ,zQ,LQ,PQ,VQ,jQ,UQ,HQ,GQ,qQ,$ee,XQ,KQ,ZQ,YQ,JQ,eee,QQ,tee,nee,ree,aee,see,iee,oee,lee,uee,cee,hee,fee,Vv,Vv,mee,gee,bee,_ee,vee,kee,Iee,See,Nee,Tee,Eee,Cee,Ree,jv,jv,Mee,Fee,Dee,Oee,zee,Pee,Lee,Wee,Bee,Vee,jee,Uee,Hee,Gee,qee,Xee,Kee,Zee,Yee,Jee,Uv,Uv,Hv,Hv,Qee,tte,ete,nte,rte,ate,ste,ite,ote,lte,ute,hte,dte];for(let e of pte)aw(e);var Gv={};Me(Gv,{maxNorm:()=>fte,minMaxNorm:()=>yte,nonNeg:()=>Ate,unitNorm:()=>mte});var BA;function Wt(){return BA==null&&(BA=Kw().epsilon()),BA}function Tr(){return"channelsLast"}var Aa=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Aa.prototype)}},Er=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Er.prototype)}},B=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,B.prototype)}},De=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,De.prototype)}},qv=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,qv.prototype)}};function $i(e,t){if(Array.isArray(e)){let n=[];for(let r=0;r<t;r++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Xr(e,t){if(!e)throw new qv(t)}function Xv(e,t){let n=0;for(let r of e)r===t&&n++;return n}function $n(e){return e.length===1?e[0]:e}function At(e){return Array.isArray(e)?e:[e]}function ya(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Di(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Ar={};function VA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function jA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>jA(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:jA(r))}}}function Rc(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in Ar)i=Ar[s];else if(i=t[s],i==null)throw new B(`Unknown ${r}: ${e}. This may be due to one of the following reasons:
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new B(`${r}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in Ar?[o,l]=Ar.className:i in t&&([o,l]=t[i]),o==null)throw new B(`Unknown ${r}: ${i}. This may be due to one of the following reasons:
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let p of Object.keys(Ar))c[p]=Ar[p];for(let p of Object.keys(n))c[p]=n[p];let u=s.config;u.customObjects=c;let h=Object.assign({},Ar);for(let p of Object.keys(n))Ar[p]=n[p];jA(s.config);let d=l(o,s.config,n,a);return Ar=Object.assign({},h),d}else{let c=Object.assign({},Ar);for(let h of Object.keys(n))Ar[h]=n[h];let u=new o(s.config);return Ar=Object.assign({},c),u}}}function gte(e,t){return e<t?-1:e>t?1:0}function zp(e,t){return-1*gte(e,t)}function Ka(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function xte(e){if(e==null)throw new B(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Oi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new B(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function UA(e,t,n=0,r=Infinity){return Xr(n>=0),Xr(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function qt(e,t){Array.isArray(e)?(_.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>qt(n,`element ${r+1} of ${t}`))):_.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Kv(e)}.`)}function Kv(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Kv(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function wte(e,t){let n=_.now(),r;return(...a)=>{let s=_.now();return s-n<t||(n=s,r=e(...a)),r}}function Zv(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function HA(e,t){return z(()=>en(Te(P(e,e),t,!0)))}var Mc=class extends re.Serializable{getConfig(){return{}}},GA=class extends Mc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return z(()=>{let t=HA(e,this.axis),n=En(t,0,this.maxValue);return P(e,Ae(n,se(Wt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};GA.className="MaxNorm";re.registerClass(GA);var qA=class extends Mc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return z(()=>Ae(e,se(Wt(),HA(e,this.axis))))}getConfig(){return{axis:this.axis}}};qA.className="UnitNorm";re.registerClass(qA);var XA=class extends Mc{apply(e){return Ur(e)}};XA.className="NonNeg";re.registerClass(XA);var KA=class extends Mc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return z(()=>{let t=HA(e,this.axis),n=se(P(this.rate,En(t,this.minValue,this.maxValue)),P(1-this.rate,t));return P(e,Ae(n,se(Wt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};KA.className="MinMaxNorm";re.registerClass(KA);var Yv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Bt(e){return VA(e)}function Jv(e,t={}){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Vt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Yv?Yv[e]:e,config:{}};return Jv(t)}else return e instanceof Mc?e:Jv(e)}function fte(e){return new GA(e)}function mte(e){return new qA(e)}function Ate(){return new XA}function yte(e){return new KA(e)}var Qv={};Me(Qv,{constant:()=>vte,glorotNormal:()=>Cte,glorotUniform:()=>Ete,heNormal:()=>Rte,heUniform:()=>Mte,identity:()=>Nte,leCunNormal:()=>Fte,leCunUniform:()=>$te,ones:()=>_te,orthogonal:()=>Dte,randomNormal:()=>Ite,randomUniform:()=>kte,truncatedNormal:()=>Ste,varianceScaling:()=>Tte,zeros:()=>bte});var Ote=["channelsFirst","channelsLast"],zte=["nearest","bilinear"],Pte=["valid","same","causal"],Lte=["max","avg"],Wte=["sum","mul","concat","ave"],Ul=new Map;function Ct(e){Oi(Ote,"DataFormat",e)}function Bte(e){Oi(zte,"InterpolationFormat",e)}function sr(e){Oi(Pte,"PaddingMode",e)}function e6(e){Oi(Lte,"PoolMode",e)}var Fc=[],t6="/";function zi(e,t){Fc.push(e);try{let n=t();return Fc.pop(),n}catch(n){throw Fc.pop(),n}}function Vte(){return Fc.length===0?"":Fc.join(t6)+t6}function r6(e){if(!n6(e))throw new Error("Not a valid tensor name: '"+e+"'");return Vte()+e}function a6(e){if(!n6(e))throw new Error("Not a valid tensor name: '"+e+"'");Ul.has(e)||Ul.set(e,0);let t=Ul.get(e);if(Ul.set(e,Ul.get(e)+1),t>0){let n=`${e}_${t}`;return Ul.set(n,1),n}else return e}var jte=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function n6(e){return!!e.match(jte)}function Ute(e){return e===parseInt(e.toString(),10)}function Za(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a<n;++a)r*=e[a];return r}function s6(e){return e=Array.isArray(e)?new Float32Array(e):e,sn(e)}function Hl(e){return vl(s6(e)).dataSync()[0]}function Ya(e){return Rn(s6(e)).dataSync()[0]}function Cr(e,t){if(t<e)throw new B(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let r=e;r<t;++r)n.push(r);return n}function $c(e,t){return e.asType(t)}function Dc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function Hte(e,t){return z(()=>{if(e.shape.length!==2)throw new B(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Dc(e,1);return ZA(n,[1,t,1])})}function Gte(e){let t=[Za(e.shape)];return e.reshape(t)}function qte(e){if(e.rank<=1)throw new B(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Za(e.shape,1)];return e.reshape(t)}function Pi(e,t,n){return z(()=>{switch(e.rank){case 1:return Ud(e,t,n);case 2:return jm(e,[t,0],[n,e.shape[1]]);case 3:return Hd(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return lc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new B(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function YA(e,t,n){return z(()=>{switch(e.rank){case 1:return Ud(e,t,n);case 2:return jm(e,[0,t],[e.shape[0],n]);case 3:return Hd(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return lc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Pp(e,t,n,r){return z(()=>{switch(e.rank){case 1:return Ud(e,t,n);case 2:switch(r){case 1:return Pi(e,t,n);case 2:return YA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return Pi(e,t,n);case 2:return Hd(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return YA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return Pi(e,t,n);case 2:return lc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return lc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return YA(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function JA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),rt(e,t)}function i6(e,t){switch(e.rank){case 1:return rb([e,t]);case 2:return xl([e,t],0);case 3:return ab([e,t],0);case 4:return sb([e,t],0);default:throw new B(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function ZA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new B(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ba(e,t)}function Lp(e,t=0,n=1,r,a){return vb(e,t,n,r,a)}function Kr(e,t,n,r){if(e.rank<2||t.rank<2)throw new De(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new De(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return Ua.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?QA(e.rank,r,Tr()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=t.transpose(u).reshape([l,-1]);let h=[...a,...c],d=!1,p=!1;return Ua.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?QA(e.rank,r,Tr()):null,activation:n}).reshape(h)}}function o6(e,t,n){return z(()=>(Array.isArray(t)?t=sn(t,"int32"):t=t.toInt(),xi(e,t,n)))}function Oc(e){return P(e,e)}function QA(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new B(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new B(`Unsupported input rank by biasAdd: ${t.rank}`)}function Rr(e,t,n){return z(()=>(n==null&&(n=Tr()),Ct(n),e.add(QA(e.rank,t,n))))}function Xte(e,t=1){if(t!==1)throw new De(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return bl(e)}function Kte(e){return z(()=>Ae(e,zt(e).add(1)))}function l6(e,t,n,r){return z(()=>Cb(e,t,n,r))}function Zte(e){return z(()=>{let t=se(.5,P(.2,e));return En(t,0,1)})}function zc(e,t,n=!1){return n?e():t()}var Yte=["fanIn","fanOut","fanAvg"],Jte=["normal","uniform","truncatedNormal"];function Qte(e){Oi(Yte,"FanMode",e)}function ene(e){Oi(Jte,"Distribution",e)}var yr=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},ey=class extends yr{apply(e,t){return Rt(e,t)}};ey.className="Zeros";re.registerClass(ey);var Wp=class extends yr{apply(e,t){return Ln(e,t)}};Wp.className="Ones";re.registerClass(Wp);var ty=class extends yr{constructor(e){super();if(typeof e!="object")throw new B(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new B(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return z(()=>P(xe(this.value),Ln(e,t)))}getConfig(){return{value:this.value}}};ty.className="Constant";re.registerClass(ty);var ny=class extends yr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Il(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};ny.className="RandomUniform";re.registerClass(ny);var ry=class extends yr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`randomNormal does not support dType ${t}.`);return Lp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ry.className="RandomNormal";re.registerClass(ry);var ay=class extends yr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`truncatedNormal does not support dType ${t}.`);return Xd(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ay.className="TruncatedNormal";re.registerClass(ay);var sy=class extends yr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return z(()=>{if(e.length!==2||e[0]!==e[1])throw new B("Identity matrix initializer can only be used for 2D square matrices.");return P(this.gain,Tm(e[0]))})}getConfig(){return{gain:this.gain}}};sy.className="Identity";re.registerClass(sy);function tne(e,t="channelsLast"){let n,r;if(Ct(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Za(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Za(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Za(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var Dn=class extends yr{constructor(e){super();if(e.scale<0)throw new B(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,Qte(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,ene(this.distribution),this.seed=e.seed}apply(e,t){let n=tne(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`${this.getClassName()} does not support dType ${t}.`);return Xd(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Il(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Dn.className="VarianceScaling";re.registerClass(Dn);var Bp=class extends Dn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Dn.className}};Bp.className="GlorotUniform";re.registerClass(Bp);var Vp=class extends Dn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Dn.className}};Vp.className="GlorotNormal";re.registerClass(Vp);var jp=class extends Dn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Dn.className}};jp.className="HeNormal";re.registerClass(jp);var Up=class extends Dn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Dn.className}};Up.className="HeUniform";re.registerClass(Up);var Hp=class extends Dn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Dn.className}};Hp.className="LeCunNormal";re.registerClass(Hp);var Gp=class extends Dn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Dn.className}};Gp.className="LeCunNormal";re.registerClass(Gp);var iy=class extends yr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new De("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return z(()=>{if(e.length<2)throw new De("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=Lp(n,0,1,"float32"),a=jb.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),P(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};iy.className="Orthogonal";re.registerClass(iy);var u6={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function c6(e,t={}){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function St(e){return VA(e)}function gt(e){if(typeof e=="string"){let t=e in u6?u6[e]:e;if(t==="GlorotNormal")return new Vp;if(t==="GlorotUniform")return new Bp;if(t==="HeNormal")return new jp;if(t==="HeUniform")return new Up;if(t==="LeCunNormal")return new Hp;if(t==="LeCunUniform")return new Gp;{let n={};return n.className=t,n.config={},c6(n)}}else return e instanceof yr?e:c6(e)}function bte(){return new ey}function _te(){return new Wp}function vte(e){return new ty(e)}function kte(e){return new ny(e)}function Ite(e){return new ry(e)}function Ste(e){return new ay(e)}function Nte(e){return new sy(e)}function Tte(e){return new Dn(e)}function Ete(e){return new Bp(e)}function Cte(e){return new Vp(e)}function Rte(e){return new jp(e)}function Mte(e){return new Up(e)}function Fte(e){return new Hp(e)}function $te(e){return new Gp(e)}function Dte(e){return new iy(e)}var h6={};Me(h6,{Layer:()=>qe,RNN:()=>Zr,RNNCell:()=>Pc,activation:()=>gne,add:()=>Nne,alphaDropout:()=>cre,average:()=>Tne,averagePooling1d:()=>oy,averagePooling2d:()=>ly,averagePooling3d:()=>uy,avgPool1d:()=>zne,avgPool2d:()=>Lne,avgPool3d:()=>Bne,avgPooling1d:()=>Pne,avgPooling2d:()=>Wne,avgPooling3d:()=>Vne,batchNormalization:()=>$ne,bidirectional:()=>nre,concatenate:()=>Ene,conv1d:()=>une,conv2d:()=>cne,conv2dTranspose:()=>hne,conv3d:()=>dne,conv3dTranspose:()=>pne,convLstm2d:()=>Jne,convLstm2dCell:()=>Qne,cropping2D:()=>mne,dense:()=>xne,depthwiseConv2d:()=>yne,dot:()=>Fne,dropout:()=>wne,elu:()=>rne,embedding:()=>Sne,flatten:()=>_ne,gaussianDropout:()=>ure,gaussianNoise:()=>lre,globalAveragePooling1d:()=>jne,globalAveragePooling2d:()=>Une,globalMaxPool1d:()=>are,globalMaxPool2d:()=>sre,globalMaxPooling1d:()=>p6,globalMaxPooling2d:()=>f6,gru:()=>Gne,gruCell:()=>qne,input:()=>d6,inputLayer:()=>nne,layerNormalization:()=>Dne,leakyReLU:()=>sne,lstm:()=>Xne,lstmCell:()=>Kne,masking:()=>hre,maxPool1d:()=>ire,maxPool2d:()=>ore,maxPooling1d:()=>m6,maxPooling2d:()=>A6,maxPooling3d:()=>Hne,maximum:()=>Cne,minimum:()=>Rne,multiply:()=>Mne,permute:()=>Ine,prelu:()=>ine,reLU:()=>ane,repeatVector:()=>vne,reshape:()=>kne,rnn:()=>ere,separableConv2d:()=>fne,simpleRNN:()=>Zne,simpleRNNCell:()=>Yne,softmax:()=>one,spatialDropout1d:()=>bne,stackedRNNCells:()=>tre,thresholdedReLU:()=>lne,timeDistributed:()=>rre,upSampling2d:()=>Ane,zeroPadding2d:()=>One});var dre=0;function y6(){return dre++}var qp={};function Xp(e=""){return e in qp||(qp[e]=0),qp[e]+=1,e+qp[e].toString()}function cy(e){return Array.isArray(e)&&Array.isArray(e[0])}function Kp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new B(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function st(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new B(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Zp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var g6="Variable",x6=class{constructor(e,t="float32",n=g6,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=y6(),n=n==null?g6:n,this.originalName=r6(n),this.name=a6(this.originalName),this.trainable_=r,this.constraint=a,this.val=Ib(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),pre(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function pre(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function hy(e){return e.map(t=>t.read())}function dy(e){e.forEach(t=>{t[0].write(t[1])})}var Ft=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Mr=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=y6(),s!=null&&(this.originalName=r6(s),this.name=a6(this.originalName)),this.rank=t.length}},fre=0,Yp=class{constructor(e,t){this.callArgs=t,this.id=fre++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},mre=0,qe=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=mre++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ya(n)+"_"+Xp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Er(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new B(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return $n(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return $n(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Aa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Aa(`Layer ${this.name} is not connected, no input to return.`);return $n(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Aa(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Aa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return $n(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=At(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=At(this.inputSpec);if(e.length!==t.length)throw new B(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let r=e[n],a=t[n];if(a==null)continue;let s=r.rank;if(a.ndim!=null&&s!==a.ndim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${a.ndim}, found ndim=${s}`);if(a.maxNDim!=null&&s>a.maxNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s<a.minNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${a.minNDim}, found ndim=${s}.`);if(a.dtype!=null&&r.dtype!==a.dtype)throw new B(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${a.dtype}, found dtype=${r.dtype}.`);if(a.axes){let i=r.shape;for(let o in a.axes){let l=Number(o),c=a.axes[o],u=l>=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i<a.shape.length;++i){let o=a.shape[i],l=r.shape[i];if(o!=null&&l!=null&&o!==l)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected shape=${a.shape}, found shape=${r.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=At(e),r=!0;for(let s of n)if(!(s instanceof Mr)){r=!1;break}let a=!0;for(let s of n)if(s instanceof Mr){a=!1;break}if(r===a)throw new B("Arguments to apply() must be all SymbolicTensors or all Tensors");return zi(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of At(e))s.push(i.shape);this.build($n(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=At(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=$n(o),this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=Are(e),i=this.computeOutputShape(s),o,l=yre(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new Mr(l,c,this,At(e),t,this.name,u)):o=new Mr(l,i,this,At(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Aa(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Aa(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Er(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Zp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return hy(e?this.trainableWeights:this.weights)}setWeights(e){z(()=>{let t=this.weights;if(t.length!==e.length)throw new B(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=hy(t);for(let a=0;a<r.length;++a){let s=r[a],i=t[a],o=e[a];if(!_.arraysEqual(s.shape,o.shape))throw new B(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}dy(n)})}addWeight(e,t,n,r,a,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new B(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(r=gt("zeros"));let o=r.apply(t,n),l=new x6(o,n,e,s,i);return o.dispose(),a!=null&&this.addLoss(()=>a.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=At(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=At(e);t=At(t),n=At(n),r=At(r),a=Kp(a),s=Kp(s);let l=[],c=[],u=[];for(let h of o)l.push(h.sourceLayer),c.push(h.nodeIndex),u.push(h.tensorIndex);new Yp({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;h<t.length;h++)t[h].sourceLayer=this,t[h].nodeIndex=this.inboundNodes.length-1,t[h].tensorIndex=h}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function Are(e){e=At(e);let t=[];for(let n of e)t.push(n.shape);return $n(t)}function yre(e){return"float32"}function w6(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s<r.inboundLayers.length;s++){let i=r.inputTensors[s],o=r.inboundLayers[s],l=r.nodeIndices[s],c=w6(i,o,l);for(let u of c)a.indexOf(u)===-1&&a.push(u)}return a}}}var Gl=class extends qe{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Xp("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new B("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new B("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new B("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let r=new Mr(this.dtype,this.batchInputShape,this,[],{},this.name);r.nodeIndex=0,r.tensorIndex=0,new Yp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[r],outputTensors:[r],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new B(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Gl.className="InputLayer";re.registerClass(Gl);function b6(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new B("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Gl({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Ja(e){if(e==null)return;let t=[],n=[],r=[];for(let a in e){let s=e[a];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(a),r.push(i)}}if(t.length>0){let a=await Promise.all(t);for(let s=0;s<a.length;++s)e[n[s]]=a[s][0];_e(r)}}function _6(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var v6;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(v6||(v6={}));var gre=125,ql=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},k6=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},xre=class extends ql{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let r in t){let a=t[r];if(typeof a=="number")this.totals.hasOwnProperty(r)||(this.totals[r]=0),this.totals[r]=this.totals[r]+a*n;else{let s;r in this.totals?s=this.totals[r]:this.totals[r]=0;let i=z(()=>se(this.totals[r],P(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:z(()=>{let r=P(Ae(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Ht(t[n])}))}},I6=class extends ql{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(a),n.push(i)}}let r=await Promise.all(e);for(let a=0;a<r.length;++a)this.history[t[a]][n[a]].dispose(),this.history[t[a]][n[a]]=r[a][0]}},S6=class extends ql{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=gre),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");_.isNumber(this.yieldEvery)&&(this.maybeWait=wte(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let r=[];this.yield!=null&&(await Ja(n),r.push(this.yield(e,t,n))),r.push(op()),await Promise.all(r)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Ja(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Ja(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(op()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Ja(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Ja(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(op()):_.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Ja(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Ja(e),await this.trainEnd(e))}};function N6(e,t){return e==null&&(e={}),e instanceof ql?[e]:Array.isArray(e)&&e[0]instanceof ql?e:At(e).map(n=>new S6(n,t))}var gr=class{constructor(){}static registerCallbackConstructor(e,t){_.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),gr.checkForDuplicate(t),gr.constructors[e]==null&&(gr.constructors[e]=[]),gr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in gr.constructors)gr.constructors[+t].forEach(n=>{if(n===e)throw new B("Duplicate callback constructor.")})}static clear(){gr.constructors={}}static createCallbacks(e){let t=[];for(let n in gr.constructors){let r=+n;e>=r&&t.push(...gr.constructors[r])}return t.map(n=>new n)}};gr.constructors={};function T6(e,t,n,r,a,s,i,o,l){let c=new I6,u=[new xre,...gr.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let h=new k6(u);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:c}}function Fr(e,t={},n=!1){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Jp(e,t){return z(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Te(Oc(e),t,!0),r=tc(n.shape,Wt()),a=en(jr(n,r));return Ae(e,a)})}function Li(e,t){return z(()=>It(Oc(ye(t,e)),-1))}function Qp(e,t){return z(()=>It(zt(ye(t,e)),-1))}function Xl(e,t){return z(()=>{let n=ye(e,t),r=En(zt(e),Wt(),Number.MAX_VALUE),a=zt(Ae(n,r));return P(100,It(a,-1))})}function wre(e,t){return z(()=>{let n=En(t,Wt(),Number.MAX_VALUE),r=Pn(se(1,n)),a=En(e,Wt(),Number.MAX_VALUE),s=Pn(se(1,a));return It(Oc(ye(r,s)),-1)})}function bre(e,t){return z(()=>{let n=jr(0,ye(1,P(e,t)));return It(Oc(n),-1)})}function _re(e,t){return z(()=>{let n=jr(0,ye(1,P(e,t)));return It(n,-1)})}function vre(e,t){return z(()=>{let n=Te(P(e,t),-1),r=Rn(P(ye(1,e),t),-1);return jr(0,se(1,ye(r,n)))})}function kre(e,t){return z(()=>{let n=Math.log(2),r=ye(t,e),a=ye(se(r,bi(P(-2,r))),n);return It(a,-1)})}function Lc(e,t,n=!1){return z(()=>{if(n)t=uc(t);else{let r=Te(t,t.shape.length-1,!0);t=Ae(t,r)}return t=En(t,Wt(),1-Wt()),kt(Te(P(e.toFloat(),Pn(t)),t.shape.length-1))})}function e0(e,t,n=!1){return z(()=>{let r=_l(Gte(e)).toInt();t=En(t,Wt(),1-Wt());let a=t.shape,s=fl(r,a[a.length-1]).reshape(a);return Lc(s,t,n)})}function Ire(e,t){if(!_.arraysEqual(e.shape,t.shape))throw new B(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return z(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function t0(e,t){return z(()=>{let n;return n=En(t,Wt(),1-Wt()),n=Pn(Ae(n,ye(1,n))),It(Ire(e,n),-1)})}function Sre(e,t){return z(()=>{let n=En(e,Wt(),1),r=En(t,Wt(),1);return Te(P(e,Pn(Ae(n,r))),-1)})}function Nre(e,t){return z(()=>{let n=Pn(se(Wt(),t));return It(ye(t,P(e,n)),-1)})}function py(e,t){return z(()=>{let n=Jp(e,-1),r=Jp(t,-1),a=P(n,r);return kt(Te(a,-1))})}var n0={meanSquaredError:Li,meanAbsoluteError:Qp,meanAbsolutePercentageError:Xl,meanSquaredLogarithmicError:wre,squaredHinge:bre,hinge:_re,categoricalHinge:vre,logcosh:kre,categoricalCrossentropy:Lc,sparseCategoricalCrossentropy:e0,binaryCrossentropy:t0,kullbackLeiblerDivergence:Sre,poisson:Nre,cosineProximity:py};function fy(e){if(typeof e=="string"){if(e in n0)return n0[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new B(t)}else return e}function my(e,t){return z(()=>{let n=P(.5,Wn(t)),r=$c(pr(t,n),e.dtype);return It(Wa(e,r),-1)})}function Ay(e,t){return z(()=>$c(Wa(mi(e,-1),mi(t,-1)),"float32"))}function E6(e,t){return z(()=>fr(e.equal(1),t.equal(1)).sum().cast("float32"))}function Tre(e,t){return z(()=>fr(e.equal(1),t.equal(0)).sum().cast("float32"))}function Ere(e,t){return z(()=>fr(e.equal(0),t.equal(1)).sum().cast("float32"))}function C6(e,t){return z(()=>{let n=E6(e,t),r=Ere(e,t),a=n.add(r);return Cn(pr(a,0),n.div(a),0).cast("float32")})}function Cre(e,t){return z(()=>{let n=E6(e,t),r=Tre(e,t),a=n.add(r);return Cn(pr(a,0),n.div(a),0).cast("float32")})}function R6(e,t){return t0(e,t)}function M6(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Wa(e,t).asType("float32")}var Rre=Li,Mre=Li,Fre=Qp,$re=Qp,Dre=Xl,Ore=Xl,yy=Lc,zre=py,F6=e0,r0={binaryAccuracy:my,categoricalAccuracy:Ay,precision:C6,categoricalCrossentropy:yy,sparseCategoricalCrossentropy:F6,mse:Rre,MSE:Mre,mae:Fre,MAE:$re,mape:Dre,MAPE:Ore,cosine:zre};function Pre(e){if(typeof e=="string"&&e in r0)return r0[e];if(typeof e!="string"&&e!=null)return e;throw new B(`Unknown metric ${e}`)}function a0(e){if(Xr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(n0))if(n0[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(r0))if(r0[n]===e){t=n;break}return t!==void 0?t:e.name}}function Lre(e){let t={Adagrad:()=>Ii.adagrad(.01),Adadelta:()=>Ii.adadelta(1,.95,Wt()),Adam:()=>Ii.adam(.001,.9,.999,Wt()),Adamax:()=>Ii.adamax(.002,.9,.999,Wt(),0),RMSProp:()=>Ii.rmsprop(.001,.9,0,Wt()),SGD:()=>Ii.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new B(`Unknown Optimizer ${e}`)}var $6=1*1024*1024;function D6(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!gy(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>$6&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${$6}.`)}}function gy(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!gy(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!gy(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Ure(e,t,n,r=console.log){let a=Bre(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!a){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}r("_".repeat(t)),s0(s,n,r),r("=".repeat(t));let o=e.layers;for(let u=0;u<o.length;++u)a?Vre(o[u],n,r):jre(o[u],n,i,r),r((u===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=Wre(e),c=Zp(e.nonTrainableWeights);r(`Total params: ${l+c}`),r(`Trainable params: ${l}`),r(`Non-trainable params: ${c}`),r("_".repeat(t))}function Wre(e){let t;return e.collectedTrainableWeights!=null?t=Zp(e.collectedTrainableWeights):t=Zp(e.trainableWeights),t}function Bre(e){let t=!0,n=[],r=[];for(let a in e.nodesByDepth)n.push(e.nodesByDepth[a]);for(let a of n){if(a.length>1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function s0(e,t,n=console.log){let r="";for(let a=0;a<e.length;++a)a>0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function Vre(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];s0(i,t,n)}function jre(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(u){a="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let h=0;h<u.inboundLayers.length;++h){let d=u.inboundLayers[h].name,p=u.nodeIndices[h],f=u.tensorIndices[h];s.push(`${d}[${p}][${f}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],c=[`${i} (${o})`,a,e.countParams().toString(),l];s0(c,t,r);for(let u=1;u<s.length;++u)s0(["","","",s[u]],t,r)}function O6(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Wc(e,t){if(e===null)return null;if(typeof e=="string")return Di(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];O6(t,a,s)?n.push(s):n.push(Wc(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r];if(r==="name"&&typeof a=="string")n[r]=a;else{let s=Di(r);n[s]=Wc(a,s)}}return n}}function xy(e,t){if(e==null)return null;if(typeof e=="string")return ya(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];O6(t,a,s)?n.push(s):n.push(xy(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r],s=ya(r);(r==="name"||r==="className")&&typeof a=="string"?n[s]=a:n[s]=xy(a,r)}return n}}var wy="3.5.0";function Hre(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ge(t,e.dtype)}catch(n){throw new B(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Wi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Wi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Hre(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new B(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Mr){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Mr){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&_e(this.id2Mask)}},by={},z6={};function Bc(e,t,n,r){let a=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(f=>f.name),l=[],c=t.names();for(let f of o)c.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),h,d;if(by[u]==null){let f=Gre(i,t);h=f.sorted,d=f.recipientCounts,by[u]=h,z6[u]=d}h=by[u],d={},a||Object.assign(d,z6[u]);let p=new Wi(t);for(let f=0;f<h.length;++f){if(r!=null){let C=_d().numTensors;C>r.maxNumTensors&&(r.maxNumTensors=C),C<r.minNumTensors&&(r.minNumTensors=C)}let m=h[f],A=m.sourceLayer;if(A instanceof Gl)continue;let y=[],g=[],x=[],v=!1;for(let C of m.inputs){let F=p.getValue(C),O=p.getMask(C);y.push(F),g.push(O),O!=null&&(v=!0),a||(d[C.name]--,d[C.name]===0&&!t.hasKey(C)&&o.indexOf(C.name)===-1&&!F.isDisposed&&C.sourceLayer.stateful!==!0&&x.push(F))}v&&(n=n||{},n.mask=g[0]);let w=At(A.apply(y,n)),b=null;A.supportsMasking&&(b=A.computeMask(y,g));let k=qre(m),N=Array.isArray(k)?k:[k];for(let C=0;C<N.length;++C){p.hasKey(N[C])||p.add(N[C],w[C],Array.isArray(b)?b[0]:b);let F=o.indexOf(N[C].name);F!==-1&&(l[F]=w[C])}a||_e(x)}return p.disposeMasks(),s?l:l[0]}function Gre(e,t){_.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=P6(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=P6(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(c=>r[l].add(c))}}return{sorted:n,recipientCounts:Xre(r)}}function Xre(e){let t={};for(let n in e)t[n]=e[n].size;return t}function P6(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)a[c.name]==null&&(a[c.name]=new Set),a[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:r,recipientMap:a}}function qre(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;r<e.sourceLayer.inboundNodes.length;++r)for(let a of e.sourceLayer.inboundNodes[r].outputTensors)if(a.id===e.id){n=r;break}t=e.sourceLayer.getOutputAt(n)}return t}var Yr=class extends qe{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=Xp(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Ka(this.inputs).length!==this.inputs.length)throw new B(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Ka(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let g=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;Xr(x===0,"input layer has >1 nodes"),Xr(v===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let g=this.inputLayers[y];if(!(g instanceof Gl))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${g.getClassName()}.`);this.inputNames.push(g.name),this.feedInputShapes.push(g.batchInputShape),this.feedInputNames.push(g.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,x,v,w,b)=>{(v==null||w==null||b==null)&&(v=y.sourceLayer,w=y.nodeIndex,b=y.tensorIndex);let k=v.inboundNodes[w];if(x.indexOf(k)!==-1)throw new Er(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(g.indexOf(k)!==-1)return;this.containerNodes.add(Yr.nodeKey(v,w)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(k)===-1&&x.push(k);let N=k.inboundLayers.length;for(let C=0;C<N;C++){let F=k.inputTensors[C],O=k.inboundLayers[C],L=k.nodeIndices[C],V=k.tensorIndices[C];o(F,g,x,O,L,V)}for(g.push(k);x.indexOf(k)>=0;)x.splice(x.indexOf(k),1);i.push(k)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],x=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,x),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let v=0;v<y.inboundLayers.length;v++){let w=y.inboundLayers[v],b=y.nodeIndices[v],k=w.inboundNodes[b],N=t[k.id]==null?0:t[k.id];t[k.id]=Math.max(g+1,N),n[k.id]=k}}let h={};for(let y in t){let g=t[y];g in h||(h[g]=[]),h[g].push(n[y])}let d={};for(let y in r){let g=r[y];g in d||(d[g]=[]),d[g].push(a[y])}let p=Object.keys(d).map(y=>parseInt(y,10)).sort(zp);this.layers=[];for(let y of p){let g=d[y];g.sort((x,v)=>{let w=s[x.id],b=s[v.id];return w<b?-1:w>b?1:0});for(let x of g)x instanceof Yr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=d,p=Object.keys(h).map(y=>parseInt(y,10)).sort(zp);let f=this.inputs.slice(),m=[];for(let y of p)for(let g of h[y]){let x=g.outboundLayer;if(x!=null){for(let v of g.inputTensors)if(f.indexOf(v)===-1)throw new Er(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let v of g.outputTensors)f.push(v);m.push(x.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(x=>x===y).length;if(g!==1)throw new Er(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Yp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new B("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new B(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new B(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new B(`${s.length} of ${r} weights are not set: ${s}`)}dy(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${wy}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=xy(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return z(()=>{e=At(e);let n=new Wi;for(let r=0;r<this.inputs.length;++r)n.add(this.inputs[r],e[r]);return Bc(this.outputs,n,t)})}computeMask(e,t){return z(()=>{e=At(e);let n;return t==null?n=$i(null,e.length):n=At(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Kp(e);if(t.length!==this.inputLayers.length)throw new B(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],c=o.name+"_0_0";n[c]=l}let r=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(zp);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(c.id)!==-1)continue;let u=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],A=l.nodeIndices[f],y=l.tensorIndices[f],g=`${m.name}_${A}_${y}`,x=n[g];u.push(x)}let h=c.computeOutputShape($n(u)),d=Kp(h),p=c.inboundNodes.indexOf(l);for(let f=0;f<d.length;f++){let m=`${c.name}_${p}_${f}`;n[m]=d[f]}}}let a=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],c=this.outputLayersTensorIndices[i],u=`${o.name}_${l}_${c}`;s.push(u)}for(let i=0;i<s.length;i++){let o=s[i];Xr(o in n),a.push(n[o])}return $n(a)}runInternalGraph(e,t){t==null&&(t=$i(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],c=e[o],u=t[o];n[l.id]=[c,u]}let r=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(zp);for(let o of r){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,h=c.inputTensors,d=c.outputTensors,p=new Array;for(let f of h)f.id in n&&p.push(n[f.id]);if(p.length===h.length){let f={},m,A,y,g;if(c.callArgs!=null&&(f=c.callArgs),p.length===1){let[x,v]=p[0];f.mask==null&&(f.mask=v),y=At(u.call(x,f)),g=At(u.computeMask(x,v)),m=[x],A=[v]}else m=p.map(x=>x[0]),A=p.map(x=>x[1]),f.mask==null&&(f.mask=A),y=At(u.call(m,f)),g=At(u.computeMask(m,A));if(u.activityRegularizer)throw new De("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<d.length;++x){let v=d[x],w=y[x],b=g[x];n[v.id]=[w,b]}}}}let a=[],s=[],i=[];for(let o of this.outputs){Xr(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,c]=n[o.id];i.push(l.shape),a.push(l),s.push(c)}return[a,s,i]}buildNodeConversionMap(e){let t={},n;for(let r of this.layers){n=r instanceof Yr?1:0;for(let a=0;a<r.inboundNodes.length;a++){let s=Yr.nodeKey(r,a);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new B(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new B("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new B(`No such layer: ${e}`)}calculateLosses(){return z(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let r=Yr.nodeKey(t,n);this.containerNodes.has(r)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let u=0;u<s.inboundNodes.length;u++){let h=s.inboundNodes[u],d=Yr.nodeKey(s,u),p={};if(this.containerNodes.has(d)){if(h.callArgs)try{JSON.stringify(h.callArgs),p=h.callArgs}catch(f){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${h.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),p={}}if(h.inboundLayers.length>0){let f=[];for(let m=0;m<h.inboundLayers.length;m++){let A=h.inboundLayers[m],y=h.nodeIndices[m],g=h.tensorIndices[m],x=Yr.nodeKey(A,y),v=t[x];v==null&&(v=0),f.push([A.name,v,g,p])}l.push(f)}}}let c={};c.name=s.name,c.className=i,c.config=o,c.inboundNodes=l,n.push(c)}e.layers=n;let r=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Yr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.inputLayersTensorIndices[s];r.push([i.name,c,u])}e.inputLayers=r;let a=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Yr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.outputLayersTensorIndices[s];a.push([i.name,c,u])}return e.outputLayers=a,e}static fromConfig(e,t,n={},r=!1){let a={},s={};function i(m,A){m.name in s?s[m.name].push(A):s[m.name]=[A]}function o(m,A){let y=[],g;for(let x of A){let v=x[0],w=x[1],b=x[2];if(g=x[3]==null?{}:x[3],!(v in a)){i(m,A);return}let k=a[v];if(k.inboundNodes.length<=w){i(m,A);return}let N=k.inboundNodes[w];y.push(N.outputTensors[b])}y.length>0&&m.apply($n(y),g)}function l(m){let A=m.name,y=Fr(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,m.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new B(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let c=t.name,u=t.layers;for(let m of u)l(m);for(;!xte(s);)for(let m of u){let A=a[m.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],d=[],p=t.inputLayers;for(let m of p){let A=m[0],y=m[1],g=m[2];Xr(A in a);let x=a[A].inboundNodes[y].outputTensors;h.push(x[g])}let f=t.outputLayers;for(let m of f){let A=m[0],y=m[1],g=m[2];Xr(A in a);let x=a[A].inboundNodes[y].outputTensors;d.push(x[g])}return new e({inputs:h,outputs:d,name:c})}get stateful(){if(this._stateful)throw new B("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){z(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function Kre(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function L6(e,t){return Kre(e,t,"classWeight")}async function W6(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=z(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());_e(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),sn(i,"float32")}else return null}function Zre(e,t){return P(e,t)}var Yre=32;function V6(e,t){let n,r,a=t;n=a.xs,r=a.ys,_.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=B6("input",e.inputNames,n),i=B6("output",e.outputNames,r),o=s[0].shape[0];_.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),_.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)_.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)_.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function B6(e,t,n){if(n instanceof Pe)return[n];if(Array.isArray(n))return _.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new B(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function Jre(e){if(e.length===3)throw new De("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function eae(e,t,n){let r=n.batchesPerEpoch!=null;if(_.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),_.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),_.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),_.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),_.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(j6(n.validationData))_.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=Jre(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;a?c=l.slice().concat(l.map(A=>"val_"+A)):c=l.slice();let u=N6(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=T6(u,h,n.epochs,null,null,Qre(t,n),null,a,c);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let A={};await d.onEpochBegin(f);let y=0,g=0;for(r||(m=await t.iterator());r?y<n.batchesPerEpoch:!0;){let x=await m.next();if(r&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:v,ys:w}=V6(e,x.value),b={};b.batch=g,b.size=v[0].shape[0],await d.onBatchBegin(g,b);let k=[];if(n.classWeight!=null){let F=L6(n.classWeight,e.outputNames);for(let O=0;O<F.length;++O)k.push(await W6(w[O],null,F[O]))}let N=v.concat(w).concat(k),C=o(N);_e(N);for(let F=0;F<l.length;++F){let O=l[F],L=C[F];b[O]=L,Ht(L)}await d.onBatchEnd(g,b),_6(b),g++,y++}if(r?y>=n.batchesPerEpoch:x.done){if(a){let v;j6(n.validationData)?v=At(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=At(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?Yre:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)A[`val_${e.metricsNames[w]}`]=v[w]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(f,A),f++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function Qre(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function j6(e){return typeof e.iterator=="function"}function tae(e){return typeof e.next=="function"}async function nae(e,t,n){n=n||{};let r=n.batches!=null,a=e.testFunction,s=[];if(n.verbose>0)throw new De("Verbose mode is not implemented yet.");_.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=tae(t)?t:await t.iterator(),o=0,l=0;for(;r?l<n.batches:!0;){let c=await i.next();if(s=z(()=>{if(c.value){let{xs:u,ys:h}=V6(e,c.value),d=u.concat(h),p=z(()=>a(d));if(_e(d),l===0)for(let m=0;m<p.length;++m)s.push(xe(0));let f=d[0].shape[0];for(let m=0;m<p.length;++m){let A=p[m],y=s[m];s[m]=z(()=>se(s[m],P(f,A))),l>0&&_e(y)}_e(p),o+=f,++l}return s}),c.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<s.length;++c){let u=s[c];s[c]=Ae(s[c],o),_e(u)}return $n(s)}function _y(e){_.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Vc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>Pi(r,t,n-t)):Pi(e,t,n-t)}function vy(e,t){return z(()=>e==null?null:Array.isArray(e)?e.map(n=>vy(n,t)):o6(e,t.dtype==="int32"?t:t.toInt()))}function ky(e,t){let n=[],r=0,a=null;for(;r<e;)a=r+t,a>=e&&(a=e),n.push([r,a]),r=a;return n}async function rae(e,t,n,r,a,s,i,o,l,c,u,h,d,p,f){a==null&&(a=32),s==null&&(s=1),u==null&&(u=!0),d==null&&(d=0);let m=!1;if(l!=null&&c!=null&&(m=!0),f!=null&&(m=!0,p==null))throw new B("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),y;A!=null&&(y=Cr(0,A)),i==null&&(i=1);let{callbackList:g,history:x}=T6(o,i,s,d,A,p,a,m,h);g.setModel(e),e.history=x,await g.onTrainBegin(),e.stopTraining_=!1;for(let v=d;v<s;++v){await g.onEpochBegin(v);let w={};if(p!=null)throw new De("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new De("batch shuffling is not implemneted yet");u&&_.shuffle(y);let b=sn(y),k=ky(A,a);for(let N=0;N<k.length;++N){let C={};if(await g.onBatchBegin(N,C),z(()=>{let F=k[N][0],O=k[N][1],L=Pi(b,F,O-F);C.batch=N,C.size=O-F;let V=vy(n,L),j=t(V);for(let U=0;U<r.length;++U){let X=r[U],G=j[U];C[X]=G,Ht(G)}if(N===k.length-1&&m){let U=e.testLoop(l,c,a);for(let X=0;X<r.length;++X){let G=r[X],ee=U[X];Ht(ee),w["val_"+G]=ee}}}),await g.onBatchEnd(N,C),_6(C),e.stopTraining_)break}b.dispose()}if(await g.onEpochEnd(v,w),e.stopTraining_)break}return await g.onTrainEnd(),await e.history.syncData(),e.history}async function aae(e,t,n,r={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let a,s,i,o,l,c,u;try{let h=r.batchSize==null?32:r.batchSize;_y(h);let d=!1,p=await e.standardizeUserData(t,n,r.sampleWeight,r.classWeight,d,h);a=p[0],s=p[1],u=p[2];let f=!1,m;if(r.validationData!=null&&r.validationData.length>0){if(f=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new De("validationData including sample weights is not supported yet."):new B(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let b=!0,k=await e.standardizeUserData(i,o,null,null,b,h);l=k[0],c=k[1],m=l.concat(c)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){f=!0;let b=Math.floor(a[0].shape[0]*(1-r.validationSplit)),k=a[0].shape[0];l=Vc(a,b,k),a=Vc(a,0,b),c=Vc(s,b,k),s=Vc(s,0,b),m=l.concat(c)}else r.validationSteps!=null&&(f=!0);let A=a.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),x,v;f?(e.makeTestFunction(),x=e.testFunction,v=g.slice().concat(g.map(b=>"val_"+b))):(x=null,m=[],v=g.slice());let w=N6(r.callbacks,r.yieldEvery);return await rae(e,y,A,g,h,r.epochs,r.verbose,w,x,m,r.shuffle,v,r.initialEpoch,null,null)}finally{e.isTraining=!1,Bi(a,t),Bi(s,n),Bi(l,i),Bi(c,o),u!=null&&_e(u)}}function U6(e){let t=[];e instanceof Pe&&(e=[e]);for(let n=0;n<e.length;++n){let r=e[n];if(r.rank===1)t.push(Dc(r,1));else{if(r.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(r)}}return t}function Bi(e,t){if(e==null)return;let n=[];if(t instanceof Pe)n.push(t.id);else if(Array.isArray(t))t.forEach(a=>n.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof Pe)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function sae(e){return e instanceof Pe}function Iy(e){return Array.isArray(e)}function H6(e){return!sae(e)&&!Iy(e)}function G6(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Iy(e)&&e.length>0)i=!0;else if(H6(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new B(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(H6(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new B(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Iy(e)){if(e=e,e.length!==t.length)throw new B(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new B(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=U6(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let c=o.shape[l],u=n[i][l];if(u!=null&&u>=0&&c!==u)throw new B(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function iae(e,t,n){let r=Ka(e.map(s=>s.shape[0]));r.sort();let a=Ka(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new B(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new B(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!_.arraysEqual(r,a))throw new B(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function oae(e,t,n){let r=[Li,t0,Lc];for(let a=0;a<e.length;++a){let s=e[a],i=t[a],o=n[a];if(i!=null){if(i===Lc&&s.shape[s.shape.length-1]===1)throw new B(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(r.indexOf(i)!==-1){let l=s.shape.slice(1),c=o.slice(1);for(let u=0;u<l.length;++u){let h=l[u],d=c[u];if(d!=null&&h!==d)throw new B(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function q6(e,t,n,r=!0,a=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new B(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new B(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let c=o.shape[l],u=n[i][l];if(u!=null&&u!==c)throw new B(`Error when checking ${a}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function lae(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var uae="layers-model",ga=class extends Yr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new B("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Ure(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Lre(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof fa))throw new B("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new B(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(fy(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new B(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>fy(s))}else{let s=fy(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],zi("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=lae(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};zi("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=r[s];(o=>{let l="",c,u,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let f=this.internalOutputShapes[s];f[f.length-1]===1||this.lossFunctions[s]===t0?["accuracy","acc"].indexOf(d)!==-1?u=my:["crossentropy","ce"].indexOf(d)!==-1&&(u=R6):this.lossFunctions[s]===e0?["accuracy","acc"].indexOf(d)!==-1?u=M6:["crossentropy","ce"].indexOf(d)!==-1&&(u=F6):["accuracy","acc"].indexOf(d)!==-1?u=Ay:["crossentropy","ce"].indexOf(d)!==-1&&(u=yy);let m;["accuracy","acc"].indexOf(d)!==-1?m="acc":["crossentropy","ce"].indexOf(d)!==-1&&(m="ce"),h=u,c=l+m}else h=Pre(d),c=l+a0(d);let p;zi(c,()=>{p=h}),a(s,c,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;_y(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return $n(l)}finally{Bi(s[0],e),Bi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),nae(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new B(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new B(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new B("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new Wi;if(e instanceof Pe&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new B(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new B(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Bc(a,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=$i(null,e.length),n=e.length;for(let r of this.layers){let a=Array.isArray(r.output)?r.output:[r.output],s=a.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=a[o],n--),n===0)break}if(n===0)break}if(n>0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new B(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return z(()=>{let r=this.checkNumSamples(e);if(n)throw new De("Verbose predictLoop() is not implemented yet.");let a=ky(r,t),s=this.outputs.map(i=>[]);for(let i=0;i<a.length;++i)z(()=>{let o=a[i][0],l=a[i][1],c=Vc(e,o,l),u=[];if(Array.isArray(c))for(let d=0;d<c.length;++d)u.push({key:this.inputs[d],value:c[d]});else u.push({key:this.inputs[0],value:c});let h=new Wi(u);return Bc(this.outputs,h)}).forEach((o,l)=>s[l].push(o));return $n(s.map(i=>rt(i,0)))})}predict(e,t={}){let n=U6(e);q6(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return _y(r),this.predictLoop(n,r)}finally{Bi(n,e)}}predictOnBatch(e){q6(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new Er("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===e0?a.push(i.slice(0,i.length-1).concat([1])):a.push(i)}if(e=G6(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=G6(t,this.feedOutputNames,a,!1,"target"),iae(e,t,null),oae(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&r!=null&&r>0&&e[0].shape[0]%r!=0)throw new B(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let c=L6(r,this.outputNames);l=[];for(let u=0;u<c.length;++u)l.push(await W6(o[u],null,c[u]))}return[i,o,l]}testLoop(e,t,n,r=0,a){return z(()=>{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new De("Verbose mode is not implemented yet.");if(a!=null)throw new De("steps mode in testLoop() is not implemented yet");{let o=ky(s,n),l=sn(Cr(0,s));for(let c=0;c<o.length;++c){let u=o[c][0],h=o[c][1],d=Pi(l,u,h-u),p=vy(t,d),f=e(p);if(c===0)for(let m=0;m<f.length;++m)i.push(xe(0));for(let m=0;m<f.length;++m){let A=f[m];i[m]=se(i[m],P(h-u,A))}}for(let c=0;c<i.length;++c)i[c]=Ae(i[c],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let r=e[n],a=r;Xv(e,r)>1&&(a+=`_${Xv(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let p=0;p<this.inputs.length;++p)c.push({key:this.inputs[p],value:n[p]});let u=new Wi(c),h=Bc(this.outputs,u,{training:!0}),d;for(let p=0;p<this.lossFunctions.length;++p){let f=this.lossFunctions[p](r[p],h[p]);a[p]!=null&&(f=Zre(f,a[p]));let m=It(f);t.push(m),p===0?d=f:d=se(d,f)}for(let p=0;p<this.metricsTensors.length;++p){let f;if(this.outputs.length>1&&p<this.outputs.length)f=t[p];else{let m=this.metricsTensors[p][0],A=this.metricsTensors[p][1];f=It(m(r[A],h[A]))}Ht(f),s.push(f)}return d=It(d),this.calculateLosses().forEach(p=>{d=se(d,p)}),d},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>z(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:r[l]});let i=new Wi(s),o=Bc(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],u=It(c(a[l],o[l]));l===0?n=u:n=se(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],u=this.metricsTensors[l][1],h=It(c(a[u],o[u]));t.push(h)}return t})}async fit(e,t,n={}){return aae(this,e,t,n)}async fitDataset(e,t){return eae(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),r=n[0],a=n[1],s=this.makeTrainFunction()(r.concat(a)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return _e(s),$n(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,r=n?this.trainableWeights:this.weights,a=this.getWeights(n);for(let s=0;s<r.length;++s)n&&!r[s].trainable||t.push({name:r[s].originalName,tensor:a[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=_d().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-_d().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=ya(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>ya(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=ya(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ya(a0(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ya(a0(e)));{let e={};for(let t in this.metrics)e[t]=ya(a0(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Wc(e.optimizer_config),n=Fr(t),r;if(typeof e.loss=="string")r=Di(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>Di(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=Di(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>Di(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=Di(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Nn.getSaveHandlers(e);if(i.length===0)throw new B(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new B(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new B("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Nn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:uae,generatedBy:`TensorFlow.js tfjs-layers v${wy}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Nn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Nn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;D6(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){D6(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};ga.className="Model";re.registerClass(ga);var X6=class extends ga{};X6.className="Functional";re.registerClass(X6);async function cae(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=Wc(n),a=Fr(r,t);if(e.weightsManifest!=null){let s=await Nn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),_e(s)}return a}async function dae(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Nn.getLoadHandlers(e,t);if(n.length===0)n.push(Nn.browserHTTPRequest(e,t));else if(n.length>1)throw new B(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return hae(e,void 0,t)}async function hae(e,t,n){if(n==null&&(n={}),e.load==null)throw new B("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=Fr(Wc(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new B("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=pae(r.weightData,r.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),_e(c),_e(u.map(h=>h.tensor))}return o}function pae(e,t){let n=Nn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Kl=class extends ga{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Xp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new B(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Kl||e instanceof ga,n;if(t){if(n=e,n.outputs.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new B("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new B("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=b6({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new B(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=w6(this.outputs[0])}this.inboundNodes=[],new Yp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:$i(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(st(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new ga({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Er("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Er("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Er("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Er("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new B("Legacy serialization format not supported yet.");a=t}else _.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Kl))throw new De(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=Fr(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new B("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new B("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Kl.className="Sequential";re.registerClass(Kl);function fae(e){return new ga(e)}function mae(e){return new Kl(e)}function Aae(e,t){return t==null&&(t={}),dae(e,t)}function d6(e){return b6(e)}function yae(e,t){gr.registerCallbackConstructor(e,t)}var On=class extends re.Serializable{getConfig(){return{}}},K6=class extends On{apply(e,t=1){return Xte(e,t)}};K6.className="elu";re.registerClass(K6);var Z6=class extends On{apply(e){return Bd(e)}};Z6.className="selu";re.registerClass(Z6);var Y6=class extends On{apply(e){return Ur(e)}};Y6.className="relu";re.registerClass(Y6);var J6=class extends On{apply(e){return z(()=>kl(6,Ur(e)))}};J6.className="relu6";re.registerClass(J6);var Q6=class extends On{apply(e){return e}};Q6.className="linear";re.registerClass(Q6);var e4=class extends On{apply(e){return Tn(e)}};e4.className="sigmoid";re.registerClass(e4);var t4=class extends On{apply(e){return Zte(e)}};t4.className="hardSigmoid";re.registerClass(t4);var n4=class extends On{apply(e){return bi(e)}};n4.className="softplus";re.registerClass(n4);var r4=class extends On{apply(e){return Kte(e)}};r4.className="softsign";re.registerClass(r4);var a4=class extends On{apply(e){return yi(e)}};a4.className="tanh";re.registerClass(a4);var Sy=class extends On{apply(e,t=-1){return uc(e,t)}};Sy.className="softmax";re.registerClass(Sy);var s4=class extends On{apply(e,t=-1){return $d(e,t)}};s4.className="logSoftmax";re.registerClass(s4);var i4=class extends On{apply(e,t=1){return z(()=>Tn(e.mul(t)).mul(e))}};i4.className="swish";re.registerClass(i4);var o4=class extends On{apply(e){return z(()=>P(e,yi(bi(e))))}};o4.className="mish";re.registerClass(o4);function Qa(e){return e.getClassName()}function Ny(e,t={}){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function es(e){if(e==null){let t={};return t.className="linear",t.config={},Ny(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Ny(t)}else return e instanceof On?e:Ny(e)}function Ty(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var l4=class extends re.Serializable{},jc=class extends l4{constructor(e){super();Ty(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return z(()=>{let t=Rt([1]);return this.hasL1&&(t=se(t,Te(P(this.l1,zt(e))))),this.hasL2&&(t=se(t,Te(P(this.l2,Oc(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};jc.className="L1L2";re.registerClass(jc);function gae(e){return Ty(e),new jc({l1:e!=null?e.l1:null,l2:0})}function xae(e){return Ty(e),new jc({l2:e!=null?e.l2:null,l1:0})}var u4={l1l2:"L1L2"};function ut(e){return VA(e)}function c4(e,t={}){return Rc(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function xt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in u4?u4[e]:e,config:{}};return c4(t)}else return e instanceof l4?e:c4(e)}var Ey=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=Ur(e);return this.maxValue!=null&&(n=En(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Ey.className="ReLU";re.registerClass(Ey);var Cy=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return nc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Cy.className="LeakyReLU";re.registerClass(Cy);var Ry=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=gt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=xt(e.alphaRegularizer),this.alphaConstraint=Vt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new B(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=st(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r<e.length;++r)n[r]=e[r];this.inputSpec=[new Ft({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=ze(e),ic(e,this.alpha.read())}getConfig(){let e={alphaInitializer:St(this.alphaInitializer),alphaRegularizer:ut(this.alphaRegularizer),alphaConstraint:Bt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};Ry.className="PReLU";re.registerClass(Ry);var My=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new De(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return bl(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};My.className="ELU";re.registerClass(My);var Fy=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=ze(e);return n.mul($c(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};Fy.className="ThresholdedReLU";re.registerClass(Fy);var $y=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new Sy().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=ze(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};$y.className="Softmax";re.registerClass($y);function Zl(e,t,n){if(typeof e=="number")return $i(e,t);if(e.length!==t)throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let r=0;r<t;++r){let a=e[r];if(!Ute(a))throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${a}`)}return e}function $r(e,t,n,r,a=1){if(e==null)return e;let s=t+(t-1)*(a-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+r-1)/r)}function Jr(e,t,n,r){if(e==null)return null;if(r==="valid")e=e*t+Ya([n-t,0]);else if(r==="same")e=e*t;else throw new B(`Unsupport padding mode: ${r}.`);return e}function Dy(e,t){return z(()=>(Ct(t),t==="channelsFirst"?Je(e,[0,2,3,1]):e))}function h4(e,t){return z(()=>(Ct(t),t==="channelsFirst"?Je(e,[0,2,3,4,1]):e))}function wae(e,t,n,r=1,a="valid",s,i=1){return z(()=>{if(s==null&&(s=Tr()),Ct(s),e.shape.length!==3)throw new B(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new B(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new B(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Je(e,[0,2,1])),a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Sd(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Rr(o,n)),o})}function d4(e,t,n,r=[1,1],a="valid",s,i,o=null){return z(()=>{if(s==null&&(s=Tr()),Ct(s),e.rank!==3&&e.rank!==4)throw new B(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new B(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Dy(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Ua.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Je(l,[0,3,1,2])),l})}function bae(e,t,n,r=[1,1,1],a="valid",s,i){return z(()=>{if(s==null&&(s=Tr()),Ct(s),e.rank!==4&&e.rank!==5)throw new B(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new B(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=h4(e,s);if(a==="causal")throw new De("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=_m(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Rr(o,n)),s==="channelsFirst"&&(o=Je(o,[0,4,1,2,3])),o})}var Oy=class extends qe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Oy.verifyArgs(t),this.rank=e,qt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new De(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Zl(t.kernelSize,e,"kernelSize"),this.strides=Zl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,sr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ct(this.dataFormat),this.activation=es(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=gt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Vt(t.biasConstraint),this.biasRegularizer=xt(t.biasRegularizer),this.activityRegularizer=xt(t.activityRegularizer),this.dilationRate=Zl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new B(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new B(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new B(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Xr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!UA(e.kernelSize,"number",1,3))throw new B(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Qa(this.activation),useBias:this.useBias,biasInitializer:St(this.biasInitializer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Uc=class extends Oy{constructor(e,t){super(e,t);this.kernel=null,Uc.verifyArgs(t),this.filters=t.filters,qt(this.filters,"filters"),this.kernelInitializer=gt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Vt(t.kernelConstraint),this.kernelRegularizer=xt(t.kernelRegularizer)}build(e){e=st(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return z(()=>{e=ze(e);let n,r=this.bias==null?null:this.bias.read(),a=Zv(this.activation.getClassName());if(a!=null&&this.rank===2)n=d4(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=wae(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=d4(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=bae(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new De("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=st(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a<n.length;++a){let s=$r(n[a],this.kernelSize[a],this.padding,this.strides[a],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[a]);t.push(s)}let r=[e[0]];return this.dataFormat==="channelsLast"?(r=r.concat(t),r.push(this.filters)):(r.push(this.filters),r=r.concat(t)),r}getConfig(){let e={filters:this.filters,kernelInitializer:St(this.kernelInitializer),kernelRegularizer:ut(this.kernelRegularizer),kernelConstraint:Bt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new B(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Hc=class extends Uc{constructor(e){super(2,e);Hc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!UA(e.kernelSize,"number",1,2))throw new B(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Hc.className="Conv2D";re.registerClass(Hc);var Gc=class extends Uc{constructor(e){super(3,e);Gc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new B(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Gc.className="Conv3D";re.registerClass(Gc);var zy=class extends Hc{constructor(e){super(e);if(this.inputSpec=[new Ft({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==4)throw new B("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ft({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return z(()=>{let n=ze(e);if(n.shape.length!==4)throw new B(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],c=this.kernelSize[0],u=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=Jr(o,h,c,this.padding),f=Jr(l,d,u,this.padding),m=[a,p,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Je(n,[0,2,3,1]));let A=Nd(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=Je(A,[0,3,1,2])),this.bias!=null&&(A=Rr(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=st(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=Jr(t[r],o,s,this.padding),t[a]=Jr(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};zy.className="Conv2DTranspose";re.registerClass(zy);var Py=class extends Gc{constructor(e){super(e);if(this.inputSpec=[new Ft({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==5)throw new B("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ft({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return z(()=>{let n=ze(e);if(n.shape.length!==5)throw new B(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=r[o],c=r[s],u=r[i],h=this.kernelSize[0],d=this.kernelSize[1],p=this.kernelSize[2],f=this.strides[0],m=this.strides[1],A=this.strides[2],y=Jr(l,f,h,this.padding),g=Jr(c,m,d,this.padding),x=Jr(u,A,p,this.padding),v=[a,y,g,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Je(n,[0,2,3,4,1]));let w=ob(n,this.kernel.read(),v,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=Je(w,[0,4,1,2,3])),this.bias!==null&&(w=Rr(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=st(e);let t=e.slice(),n,r,a,s;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3,s=4):(n=4,r=1,a=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],h=this.strides[2];return t[n]=this.filters,t[r]=Jr(t[r],c,i,this.padding),t[a]=Jr(t[a],u,o,this.padding),t[s]=Jr(t[s],h,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Py.className="Conv3DTranspose";re.registerClass(Py);var p4=class extends Uc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new B("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new B("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new B(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=xt(t.depthwiseRegularizer),this.depthwiseConstraint=Vt(t.depthwiseConstraint),this.pointwiseInitializer=gt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=xt(t.pointwiseRegularizer),this.pointwiseConstraint=Vt(t.pointwiseConstraint)}build(e){if(e=st(e),e.length<this.rank+2)throw new B(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],r=this.kernelSize.concat([n,this.depthMultiplier]),a=[];for(let i=0;i<this.rank;++i)a.push(1);a.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",r,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",a,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Ft({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return z(()=>{e=ze(e);let n;if(this.rank===1)throw new De("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Je(e,[0,2,3,1])),n=Bm(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Rr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Je(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=St(this.depthwiseInitializer),e.pointwiseInitializer=St(this.pointwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.pointwiseRegularizer=ut(this.pointwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseConstraint),e.pointwiseConstraint=Bt(this.pointwiseConstraint),e}};p4.className="SeparableConv";var Ly=class extends p4{constructor(e){super(2,e)}};Ly.className="SeparableConv2D";re.registerClass(Ly);var i0=class extends Uc{constructor(e){super(1,e);i0.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!UA(e.kernelSize,"number",1,1))throw new B(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};i0.className="Conv1D";re.registerClass(i0);var Wy=class extends qe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return z(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=Pp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Pp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Pp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Pp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Wy.className="Cropping2D";re.registerClass(Wy);var By=class extends qe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,Bte(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return z(()=>{let n=ze(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=Je(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return Je(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};By.className="UpSampling2D";re.registerClass(By);function _ae(e,t,n=[1,1],r="valid",a,s){return z(()=>{a==null&&(a=Tr()),Ct(a);let i=Dy(e,a);if(e.rank!==4)throw new B(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new B(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=wl(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=Je(i,[0,3,1,2])),i})}var Vy=class extends Oy{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=gt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Vt(e.depthwiseConstraint),this.depthwiseRegularizer=xt(e.depthwiseRegularizer)}build(e){if(e=st(e),e.length<4)throw new B(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return z(()=>{e=ze(e);let n=_ae(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Rr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=$r(t,this.kernelSize[0],this.padding,this.strides[0]),s=$r(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=St(this.depthwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.depthwiseConstraint=Bt(this.depthwiseRegularizer),e}};Vy.className="DepthwiseConv2D";re.registerClass(Vy);function f4(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new B("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function m4(e,t,n,r=!1,a,s,i=!1,o=!1){return z(()=>{let l=t.shape.length;if(l<3)throw new B(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(Cr(2,l));if(t=Je(t,c),s!=null)throw new De("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=Qt(a,-1)),a=Je(a,c)),r&&(t=Bn(t,0),a!=null&&(a=Bn(a,0)));let u=[],h,d=n,p=t.shape[0],f=mr(t),m;a!=null&&(m=mr(a));for(let y=0;y<p;++y){let g=f[y],x=z(()=>e(g,d));if(a==null)h=x[0],d=x[1];else{let v=z(()=>{let w=m[y],b=Wn(w).sub(w),k=x[0].mul(w).add(d[0].mul(b)),N=d.map((C,F)=>x[1][F].mul(w).add(C.mul(b)));return{output:k,newStates:N}});h=v.output,d=v.newStates}o&&u.push(h)}let A;return o&&(A=cn(u,1)),[h,A,d]})}var Zr=class extends qe{constructor(e){super(e);let t;if(e.cell==null)throw new B("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new o0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new B("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ft({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Cr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){cy(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return z(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new De("Constants support is not implemented in RNN yet.");cy(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,r=e.slice(2);this.inputSpec[0]=new Ft({shape:[n,null,...r]});let a=[e[0]].concat(e.slice(2));if(t!=null)throw new De("Constants support is not implemented in RNN yet.");this.cell.build(a);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!_.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new B(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Ft({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){z(()=>{if(!this.stateful)throw new Aa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Rt([n,r])):this.states_=[Rt([n,this.cell.stateSize])];else if(e==null)_e(this.states_),this.keptStates!=null&&(_e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Rt([n,r])):this.states_[0]=Rt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):_e(this.states_);for(let r=0;r<this.states_.length;++r){let a=e[r],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[r]:this.cell.stateSize,i=[n,s];if(!_.arraysEqual(a.shape,i))throw new B(`State ${r} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${a.shape}`);this.states_[r]=a}}this.states_=this.states_.map(r=>Ht(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=f4(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Ft({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof Mr){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return z(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=ze(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new B(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=m4((d,p)=>{let f=this.cell.call([d].concat(p),i);return[f[0],f.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,r);let h=this.returnSequences?c:l;return this.returnState?[h].concat(u):h})}getInitialState(e){return z(()=>{let t=Rt(e.shape);return t=Te(t,[1,2]),t=Dc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?ZA(t,[1,n]):t):this.cell.stateSize>1?[ZA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Zr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=Fr(r,n);return new e(Object.assign(t,{cell:a}))}};Zr.className="RNN";re.registerClass(Zr);var Pc=class extends qe{},l0=class extends Pc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,qt(this.units,"units"),this.activation=es(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Hl([1,Ya([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hl([1,Ya([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return z(()=>{if(e=e,e.length!==2)throw new B(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ts({ones:()=>Wn(e),rate:this.dropout,training:r})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ts({ones:()=>Wn(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Kr(P(e,s),this.kernel.read()):a=Kr(e,this.kernel.read()),this.bias!=null&&(a=Rr(a,this.bias.read())),i!=null&&(n=P(n,i));let o=se(a,Kr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Qa(this.activation),useBias:this.useBias,kernelInitializer:St(this.kernelInitializer),recurrentInitializer:St(this.recurrentInitializer),biasInitializer:St(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),recurrentConstraint:Bt(this.recurrentConstraint),biasConstraint:Bt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};l0.className="SimpleRNNCell";re.registerClass(l0);var jy=class extends Zr{constructor(e){e.cell=new l0(e),super(e)}call(e,t){return z(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};jy.className="SimpleRNN";re.registerClass(jy);var u0=class extends Pc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new B("GRUCell does not support reset_after parameter set to true.");this.units=e.units,qt(this.units,"units"),this.activation=es(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=es(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Hl([1,Ya([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hl([1,Ya([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return z(()=>{if(e=e,e.length!==2)throw new B(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ts({ones:()=>Wn(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ts({ones:()=>Wn(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=P(e,a[0]));let c=Kr(e,this.kernel.read());this.useBias&&(c=Rr(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(r=P(r,s[0]));let u=this.recurrentKernel.read(),[h,d]=Lt(u,[2*this.units,this.units],u.rank-1),p=Kr(r,h),[f,m,A]=Lt(c,3,c.rank-1),[y,g]=Lt(p,2,p.rank-1);i=this.recurrentActivation.apply(se(f,y)),o=this.recurrentActivation.apply(se(m,g));let x=Kr(P(o,r),d);l=this.activation.apply(se(A,x));let v=se(P(i,r),P(se(1,kt(i)),l));return[v,v]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Qa(this.activation),recurrentActivation:Qa(this.recurrentActivation),useBias:this.useBias,kernelInitializer:St(this.kernelInitializer),recurrentInitializer:St(this.recurrentInitializer),biasInitializer:St(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),recurrentConstraint:Bt(this.recurrentConstraint),biasConstraint:Bt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};u0.className="GRUCell";re.registerClass(u0);var Uy=class extends Zr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new u0(e),super(e)}call(e,t){return z(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Uy.className="GRU";re.registerClass(Uy);var qc=class extends Pc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,qt(this.units,"units"),this.activation=es(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=es(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=gt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=xt(e.kernelRegularizer),this.recurrentRegularizer=xt(e.recurrentRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=Hl([1,Ya([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hl([1,Ya([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=st(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends yr{apply(i,o){let l=a.apply([s]),c=new Wp().apply([s]),u=a.apply([s*2]);return i6(i6(l,c),u)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return z(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new B(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ts({ones:()=>Wn(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ts({ones:()=>Wn(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0<this.dropout&&this.dropout<1&&(e=P(e,s[0]));let h=Kr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(r=P(r,i[0])),h=se(h,Kr(r,this.recurrentKernel.read())),this.useBias&&(h=Rr(h,this.bias.read()));let[d,p,f,m]=Lt(h,4,h.rank-1);o=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(p),c=se(P(l,a),P(o,this.activation.apply(f))),u=this.recurrentActivation.apply(m);let A=P(u,this.activation.apply(c));return[A,A,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Qa(this.activation),recurrentActivation:Qa(this.recurrentActivation),useBias:this.useBias,kernelInitializer:St(this.kernelInitializer),recurrentInitializer:St(this.recurrentInitializer),biasInitializer:St(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),recurrentConstraint:Bt(this.recurrentConstraint),biasConstraint:Bt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};qc.className="LSTMCell";re.registerClass(qc);var Hy=class extends Zr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new qc(e),super(e)}call(e,t){return z(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Hy.className="LSTM";re.registerClass(Hy);var o0=class extends Pc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return z(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=r[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),a.push(s.slice(1))}n=[];for(let i of a.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){cy(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,r)=>{zi(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push(Fr(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return hy(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],a[s]])}dy(t)}};o0.className="StackedRNNCells";re.registerClass(o0);function ts(e){let{ones:t,rate:n,training:r=!1,count:a=1}=e,s=()=>l6(t(),n),i=()=>zc(s,t,r);return!a||a<=1?Ht(i().clone()):Array(a).fill(void 0).map(i).map(o=>Ht(o.clone()))}var vae=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a<r.length;a++)t.indexOf(r[a])<0&&Object.prototype.propertyIsEnumerable.call(e,r[a])&&(n[r[a]]=e[r[a]]);return n},A4=class extends Zr{constructor(e){if(e.unroll)throw new De("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new De("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Ft({ndim:5})]}call(e,t){return z(()=>{if(this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new B("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return z(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Rt(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){z(()=>{if(!this.stateful)throw new Aa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Rt(a)):this.states_=[Rt(a)];else if(e==null)_e(this.states_),this.keptStates!=null&&(_e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Rt(a)):this.states_[0]=Rt(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):_e(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=a;if(!_.arraysEqual(i.shape,o))throw new B(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Ht(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=$r(l,r[0],a,s[0],i[0]),h=$r(c,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,h]:[u,h,n]]}};A4.className="ConvRNN2D";var c0=class extends qc{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,qt(this.filters,"filters"),this.kernelSize=Zl(n,2,"kernelSize"),this.kernelSize.forEach(o=>qt(o,"kernelSize")),this.strides=Zl(r||1,2,"strides"),this.strides.forEach(o=>qt(o,"strides")),this.padding=a||"valid",sr(this.padding),this.dataFormat=s||"channelsLast",Ct(this.dataFormat),this.dilationRate=Zl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>qt(o,"dilationRate"))}build(e){var t;e=st(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends yr{apply(u,h){let d=l.apply([c]),p=Ln([c]),f=l.apply([c*2]);return JA([d,p,f])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return z(()=>{if(e.length!==3)throw new B(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ts({ones:()=>Wn(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Y,ae,te)=>!ae||!ae[te]?Y:P(ae[te],Y),c=l(r,o,0),u=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ts({ones:()=>Wn(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,f=l(a,p,0),m=l(a,p,1),A=l(a,p,2),y=l(a,p,3),g=3,[x,v,w,b]=Lt(this.kernel.read(),i,g),[k,N,C,F]=this.useBias?Lt(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,x,k,this.padding),u=this.inputConv(u,v,N,this.padding),h=this.inputConv(h,w,C,this.padding),d=this.inputConv(d,b,F,this.padding);let[O,L,V,j]=Lt(this.recurrentKernel.read(),i,g);f=this.recurrentConv(f,O),m=this.recurrentConv(m,L),A=this.recurrentConv(A,V),y=this.recurrentConv(y,j);let U=this.recurrentActivation.apply(se(c,f)),X=this.recurrentActivation.apply(se(u,m)),G=se(P(X,s),P(U,this.activation.apply(se(h,A)))),ee=P(this.recurrentActivation.apply(se(d,y)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=vae(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=ca(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Rr(a,n,this.dataFormat):a}recurrentConv(e,t){return ca(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};c0.className="ConvLSTM2DCell";re.registerClass(c0);var Gy=class extends A4{constructor(e){let t=new c0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Gy.className="ConvLSTM2D";re.registerClass(Gy);var h0=class extends qe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r<this.noiseShape.length;++r)n.push(this.noiseShape[r]==null?t[r]:this.noiseShape[r]);return n}call(e,t){return z(()=>{this.invokeCallHook(e,t);let n=ze(e);if(0<this.rate&&this.rate<1){let r=t.training==null?!1:t.training,a=this.getNoiseShape(n);return zc(()=>l6(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};h0.className="Dropout";re.registerClass(h0);var qy=class extends h0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};qy.className="SpatialDropout1D";re.registerClass(qy);var Xy=class extends qe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,qt(this.units,"units"),this.activation=es(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=gt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=gt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Vt(e.kernelConstraint),this.biasConstraint=Vt(e.biasConstraint),this.kernelRegularizer=xt(e.kernelRegularizer),this.biasRegularizer=xt(e.biasRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=st(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=st(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return z(()=>{this.invokeCallHook(e,t);let n=ze(e),r=Zv(this.activation.getClassName()),a;return r!=null?a=Kr(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Kr(n,this.kernel.read()),this.bias!=null&&(a=Rr(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:Qa(this.activation),useBias:this.useBias,kernelInitializer:St(this.kernelInitializer),biasInitializer:St(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Bt(this.kernelConstraint),biasConstraint:Bt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Xy.className="Dense";re.registerClass(Xy);var Ky=class extends qe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=st(e);for(let t of e.slice(1))if(t==null)throw new B(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Za(e,1)]}call(e,t){return z(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a<n.rank;++a)r.push(a);r.push(1),n=n.transpose(r)}return qte(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Ky.className="Flatten";re.registerClass(Ky);var Zy=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.activation=es(e.activation)}call(e,t){return z(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:Qa(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Zy.className="Activation";re.registerClass(Zy);var Yy=class extends qe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return z(()=>(e=ze(e),Hte(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Yy.className="RepeatVector";re.registerClass(Yy);var Jy=class extends qe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",r=t.slice(),a=1,s=null;for(let o=0;o<r.length;++o){let l=r[o];if(this.isUnknown(l))if(s===null)s=o;else throw new B("Can only specifiy one unknown dimension.");else a*=l}let i=Za(e);if(s!==null){if(a===0||i%a!=0)throw new B(n);r[s]=i/a}else if(i!==a)throw new B(n);return r}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return z(()=>{this.invokeCallHook(e,t);let n=ze(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Jy.className="Reshape";re.registerClass(Jy);var Qy=class extends qe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Cr(1,e.dims.length+1);if(!_.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ft({ndim:this.dims.length+1})]}computeOutputShape(e){e=st(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return Je(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Qy.className="Permute";re.registerClass(Qy);var eg=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),r=-1;return Zu(vi(n,this.maskValue),r)}call(e,t){return z(()=>{this.invokeCallHook(e,t);let n=ze(e),r=-1,a=!0,s=Zu(vi(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};eg.className="Masking";re.registerClass(eg);var tg=class extends qe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(At(e.inputLength))}this.inputDim=e.inputDim,qt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,qt(this.outputDim,"outputDim"),this.embeddingsInitializer=gt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=xt(e.embeddingsRegularizer),this.activityRegularizer=xt(e.activityRegularizer),this.embeddingsConstraint=Vt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return z(()=>this.maskZero?(e=ze(e),vi(e,He(e))):null)}computeOutputShape(e){if(e=st(e),this.inputLength==null)return[...e,this.outputDim];let t=At(this.inputLength);if(t.length!==e.length-1)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r<t.length;++r){let a=t[r],s=e[r+1];if(a!=null&&s!=null&&a!==s)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);a==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return z(()=>{this.invokeCallHook(e,t);let n=ze(e);return n.dtype!=="int32"&&(n=$c(n,"int32")),o6(this.embeddings.read(),n.as1D()).reshape(st(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:St(this.embeddingsInitializer),embeddingsRegularizer:ut(this.embeddingsRegularizer),activityRegularizer:ut(this.activityRegularizer),embeddingsConstraint:Bt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};tg.className="Embedding";re.registerClass(tg);var Vi=class extends qe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new De}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let r=0;r<t.length;++r){let a=e[e.length-t.length+r],s=t[r];if(a==null||s==null||a<0||s<0)n.push(null);else if(a===1)n.push(s);else if(s===1)n.push(a);else{if(a!==s)throw new B("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(a)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[st(e)]),e=e,e.length<2)throw new B(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let a of e)a!=null&&a[0]!==null&&t.push(a[0]);if(t=Ka(t),t.length>1)throw new B(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;a<e.length;++a){let s=e[a]==null?null:e[a].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let r=e.map(a=>a.length);e.indexOf(null)===-1&&Ka(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return z(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=Ya(r);for(let s of e){let i=s.rank;for(let o=0;o<a-i;++o)s=Dc(s,1);n.push(s)}return this.mergeFunction(n)}else{let a=!1;for(let o of e){let l=o.rank;if(l==null){let c=o.shape,u=c[0],h=c.slice(1).concat([u]),d=o.reshape([u].concat(Za(c.slice(1))));d=Je(d,[1,0]),d=d.reshape(h),n.push(d),a=!0}else if(l>1){let c=Cr(1,l).concat([0]);n.push(Je(o,c)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=Je(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(Cr(0,i-1));s=Je(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);t=this.computeElementwiseOpOutputShape(t,a)}let n=[];for(let r of e)r!=null&&r[0]!==null&&n.push(r[0]);return n=Ka(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return z(()=>{if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an Array");if(!Array.isArray(e))throw new B("`inputs` should be an Array");if(t.length!==e.length)throw new B(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:Qt(r,0));let n=t[0];for(let r=1;r<t.length-1;++r)n=fr(n,t[r]);return n})}},ng=class extends Vi{constructor(e){super(e)}mergeFunction(e){return z(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return t})}};ng.className="Add";re.registerClass(ng);var rg=class extends Vi{constructor(e){super(e)}mergeFunction(e){return z(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=P(t,e[n]);return t})}};rg.className="Multiply";re.registerClass(rg);var ag=class extends Vi{constructor(e){super(e)}mergeFunction(e){return z(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return P(1/e.length,t)})}};ag.className="Average";re.registerClass(ag);var sg=class extends Vi{constructor(e){super(e)}mergeFunction(e){return z(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=jr(t,e[n]);return t})}};sg.className="Maximum";re.registerClass(sg);var ig=class extends Vi{constructor(e){super(e)}mergeFunction(e){return z(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=kl(t,e[n]);return t})}};ig.className="Minimum";re.registerClass(ig);var og=class extends Vi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new B("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let r of e)if(r!=null){t=!1;break}if(t)return;let n=[];for(let r=0;r<e.length;++r){let a=e[r].slice();a.splice(this.axis,1);let s=!1;for(let i of n)if(_.arraysEqual(i,a)){s=!0;break}s||n.push(a)}if(n.length>1)throw new B("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return z(()=>JA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new B("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new B("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new B(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return z(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s<e.length;++s)t[s]==null?r.push(Wn(e[s]).asType("bool")):t[s].rank<e[s].rank?r.push(Qt(t[s],-1)):r.push(t[s]);let a=rt(r,this.axis);return kd(a,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};og.className="Concatenate";re.registerClass(og);function Xc(e,t){for(;e<0;)e+=t;return e}function kae(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new De("batchDot is not implemented for tensors of 4D or higher rank yet");if(_.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),_.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new De("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return z(()=>{let i;if(r>a){i=r-a;let l=[];for(let c=0;c<i;++c)l.push(1);t=t.reshape(t.shape.concat(l))}else if(a>r){i=a-r;let l=[];for(let c=0;c<i;++c)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,c=s[1]===t.shape.length-1;o=e.matMul(t,l,c)}if(i>0){let l;r>a?l=r+a-3:l=r-1;let c=[];for(let u=l;u<l+i;++u)c.push(u);o=o.squeeze(c)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var lg=class extends Vi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){_.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new B(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new B(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>Xc(a,e[s].shape.length)):r=[Xc(this.axes,t.shape.length),Xc(this.axes,n.shape.length)],this.normalize&&(t=Jp(t,r[0]),n=Jp(n,r[1])),kae(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Xc(this.axes,e.length),Xc(this.axes,t.length)],n}computeOutputShape(e){_.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};lg.className="Dot";re.registerClass(lg);var ug=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return z(()=>{this.invokeCallHook(e,t);let n=ze(e);return zc(()=>Lp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};ug.className="GaussianNoise";re.registerClass(ug);var cg=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return z(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?zc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(Lp(n.shape,1,r))},()=>n,t.training||!1):n})}};cg.className="GaussianDropout";re.registerClass(cg);var hg=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return z(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return zc(()=>{let r=ze(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=Va(Il(n),this.rate);o=$c(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>ze(e),t.training||!1)}return e})}};hg.className="AlphaDropout";re.registerClass(hg);function Kc(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=Qw(e,t,n,r,a,s);else if(e.rank===3)i=eb(e,t,n,r,a,s);else if(e.rank===4)i=tb(e,t,n,r,a,s);else throw new De(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function Iae(e,t,n,r,a=.001){return z(()=>{let s=Od(e,r),i=s.mean,o=s.variance;return[Kc(e,i,o,n,t,a),i,o]})}function Sae(e,t,n,r,a=.001){return z(()=>{let s=Od(e,r),i=s.mean,o=s.variance,l=[];for(let p of Cr(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let c=i.reshape(l),u=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[Kc(e,c,u,d,h,a),i,o]})}function Nae(e,t,n,r,a=.001){return _.arraysEqual(r.slice().sort(),Cr(0,e.rank-1))?Iae(e,t,n,r,a):Sae(e,t,n,r,a)}var dg=class extends qe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.movingMeanInitializer=gt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=gt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Vt(e.betaConstraint),this.gammaConstraint=Vt(e.gammaConstraint),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer)}build(e){e=st(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new B(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ft({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return z(()=>{let n=t.training==null?!1:t.training,r=ze(e),a=r.shape,s=a.length,i=Cr(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=$i(1,s);l[o]=a[o];let c=i.slice();c.sort();let u=!_.arraysEqual(c,Cr(0,s).slice(0,s-1)),h=()=>{if(u){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return Kc(r,A,y,g,x,this.epsilon)}else return Kc(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,f]=Nae(r,this.gamma.read(),this.beta.read(),i,this.epsilon),m=(A,y,g)=>{z(()=>{let x=1-g,v=A.read(),w=v.sub(y).mul(x);A.write(v.sub(w))})};return(()=>{m(this.movingMean,p,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:St(this.betaInitializer),gammaInitializer:St(this.gammaInitializer),movingMeanInitializer:St(this.movingMeanInitializer),movingVarianceInitializer:St(this.movingVarianceInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer),betaConstraint:Bt(this.betaConstraint),gammaConstraint:Bt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};dg.className="BatchNormalization";re.registerClass(dg);var pg=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=gt(e.betaInitializer||"zeros"),this.gammaInitializer=gt(e.gammaInitializer||"ones"),this.betaRegularizer=xt(e.betaRegularizer),this.gammaRegularizer=xt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=st(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a<this.axis.length;++a)this.axis[a]<0&&(this.axis[a]+=t);for(let a of this.axis)if(a<0||a>=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Ka(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=ze(e),r=n.shape,a=r.length;return z(()=>{let s=!0,{mean:i,variance:o}=Od(n,this.axis,s),l=$i(1,a);for(let f of this.axis)l[f]=r[f];let c=f=>f!=null&&f.shape.length!==a&&this.axis!==[a-1]?f.reshape(l):f,u=c(this.gamma.read()),h=c(this.beta.read()),d=[],p=[];for(let f=0;f<a;++f)this.axis.indexOf(f)!==-1?(d.push(r[f]),p.push(1)):(d.push(1),p.push(r[f]));return i=i.tile(d),o=o.tile(d),u=u.tile(p),h=h.tile(p),Kc(n,i,o,h,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:St(this.betaInitializer),gammaInitializer:St(this.gammaInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};pg.className="LayerNormalization";re.registerClass(pg);function Tae(e,t,n){return z(()=>{if(e.rank!==4)throw new B(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new B("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Tr()),n!=="channelsLast"&&n!=="channelsFirst")throw new B(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],ha(e,r)})}var fg=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Tr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new B(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new B(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new B(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){e=st(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return z(()=>Tae(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};fg.className="ZeroPadding2D";re.registerClass(fg);function d0(e,t,n,r,a,s){return z(()=>{Ct(a),e6(s),sr(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=Tr()),s==null&&(s="max"),e=Dy(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=ac(e,t,n,o):i=Ju(e,t,n,o),a==="channelsFirst"&&(i=Je(i,[0,3,1,2])),i})}function y4(e,t,n,r,a,s){return z(()=>{Ct(a),e6(s),sr(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=Tr()),s==null&&(s="max"),e=h4(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=$m(e,t,n,o):i=xm(e,t,n,o),a==="channelsFirst"&&(i=Je(i,[0,4,1,2,3])),i})}var g4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new B(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(qt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new B(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,sr(this.padding),this.inputSpec=[new Ft({ndim:3})]}computeOutputShape(e){e=st(e);let t=$r(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return z(()=>{this.invokeCallHook(e,t),e=Dc(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ja(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},mg=class extends g4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),d0(e,t,n,r,a,"max")}};mg.className="MaxPooling1D";re.registerClass(mg);var Ag=class extends g4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),d0(e,t,n,r,a,"avg")}};Ag.className="AveragePooling1D";re.registerClass(Ag);var x4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new B(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];qt(this.poolSize,"poolSize"),qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),sr(this.padding),this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=$r(t,this.poolSize[0],this.padding,this.strides[0]),n=$r(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return z(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},yg=class extends x4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),d0(e,t,n,r,a,"max")}};yg.className="MaxPooling2D";re.registerClass(yg);var gg=class extends x4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),d0(e,t,n,r,a,"avg")}};gg.className="AveragePooling2D";re.registerClass(gg);var w4=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new B(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];qt(this.poolSize,"poolSize"),qt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),sr(this.padding),this.inputSpec=[new Ft({ndim:5})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=$r(t,this.poolSize[0],this.padding,this.strides[0]),n=$r(n,this.poolSize[1],this.padding,this.strides[1]),r=$r(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return z(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},xg=class extends w4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),y4(e,t,n,r,a,"max")}};xg.className="MaxPooling3D";re.registerClass(xg);var wg=class extends w4{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Ct(a),sr(r),y4(e,t,n,r,a,"avg")}};wg.className="AveragePooling3D";re.registerClass(wg);var b4=class extends qe{constructor(e){super(e);this.inputSpec=[new Ft({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new De}},bg=class extends b4{constructor(e){super(e||{})}call(e,t){return z(()=>{let n=ze(e);return It(n,1)})}};bg.className="GlobalAveragePooling1D";re.registerClass(bg);var _g=class extends b4{constructor(e){super(e||{})}call(e,t){return z(()=>{let n=ze(e);return Rn(n,1)})}};_g.className="GlobalMaxPooling1D";re.registerClass(_g);var _4=class extends qe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.inputSpec=[new Ft({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new De}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},vg=class extends _4{call(e,t){return z(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?It(n,[1,2]):It(n,[2,3])})}};vg.className="GlobalAveragePooling2D";re.registerClass(vg);var kg=class extends _4{call(e,t){return z(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?Rn(n,[1,2]):Rn(n,[2,3])})}};kg.className="GlobalMaxPooling2D";re.registerClass(kg);var v4=class extends qe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=Fr(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},Ig=class extends v4{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=st(e),e.length<3)throw new B(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=st(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return z(()=>(e=ze(e),m4((n,r)=>[ze(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Ig.className="TimeDistributed";re.registerClass(Ig);function Eae(e){Oi(Wte,"BidirectionalMergeMode",e)}var Cae="concat",Sg=class extends v4{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Fr(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=Fr(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?Cae:e.mergeMode,Eae(this.mergeMode),e.weights)throw new De("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):$n(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=f4(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new B("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Ft({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(r!=null)throw new De("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Mr;for(let l of s)if(l instanceof Mr!==o)throw new B("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let h=super.apply(l,t);return this.inputSpec=u,h}else return super.apply(e,t)}call(e,t){return z(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Bn(a,1));let i;return this.mergeMode==="concat"?i=JA([r,a]):this.mergeMode==="sum"?i=se(r,a):this.mergeMode==="ave"?i=P(.5,se(r,a)):this.mergeMode==="mul"?i=P(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){zi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),zi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Fr(t.layer);if(delete t.layer,t.numConstants!=null)throw new De("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};Sg.className="Bidirectional";re.registerClass(Sg);function nne(e){return new Gl(e)}function rne(e){return new My(e)}function ane(e){return new Ey(e)}function sne(e){return new Cy(e)}function ine(e){return new Ry(e)}function one(e){return new $y(e)}function lne(e){return new Fy(e)}function une(e){return new i0(e)}function cne(e){return new Hc(e)}function hne(e){return new zy(e)}function dne(e){return new Gc(e)}function pne(e){return new Py(e)}function fne(e){return new Ly(e)}function mne(e){return new Wy(e)}function Ane(e){return new By(e)}function yne(e){return new Vy(e)}function gne(e){return new Zy(e)}function xne(e){return new Xy(e)}function wne(e){return new h0(e)}function bne(e){return new qy(e)}function _ne(e){return new Ky(e)}function vne(e){return new Yy(e)}function kne(e){return new Jy(e)}function Ine(e){return new Qy(e)}function Sne(e){return new tg(e)}function Nne(e){return new ng(e)}function Tne(e){return new ag(e)}function Ene(e){return new og(e)}function Cne(e){return new sg(e)}function Rne(e){return new ig(e)}function Mne(e){return new rg(e)}function Fne(e){return new lg(e)}function $ne(e){return new dg(e)}function Dne(e){return new pg(e)}function One(e){return new fg(e)}function oy(e){return new Ag(e)}function zne(e){return oy(e)}function Pne(e){return oy(e)}function ly(e){return new gg(e)}function Lne(e){return ly(e)}function Wne(e){return ly(e)}function uy(e){return new wg(e)}function Bne(e){return uy(e)}function Vne(e){return uy(e)}function jne(e){return new bg(e)}function Une(e){return new vg(e)}function p6(e){return new _g(e)}function f6(e){return new kg(e)}function m6(e){return new mg(e)}function A6(e){return new yg(e)}function Hne(e){return new xg(e)}function Gne(e){return new Uy(e)}function qne(e){return new u0(e)}function Xne(e){return new Hy(e)}function Kne(e){return new qc(e)}function Zne(e){return new jy(e)}function Yne(e){return new l0(e)}function Jne(e){return new Gy(e)}function Qne(e){return new c0(e)}function ere(e){return new Zr(e)}function tre(e){return new o0(e)}function nre(e){return new Sg(e)}function rre(e){return new Ig(e)}var are=p6,sre=f6,ire=m6,ore=A6;function lre(e){return new ug(e)}function ure(e){return new cg(e)}function cre(e){return new hg(e)}function hre(e){return new eg(e)}var k4={};Me(k4,{MAPE:()=>Bae,MSE:()=>Uae,binaryAccuracy:()=>Rae,binaryCrossentropy:()=>Mae,categoricalAccuracy:()=>$ae,categoricalCrossentropy:()=>Dae,cosineProximity:()=>Pae,mape:()=>Vae,meanAbsoluteError:()=>Lae,meanAbsolutePercentageError:()=>Wae,meanSquaredError:()=>jae,mse:()=>Hae,precision:()=>Oae,recall:()=>zae,sparseCategoricalAccuracy:()=>Fae});function Rae(e,t){return my(e,t)}function Mae(e,t){return R6(e,t)}function Fae(e,t){return M6(e,t)}function $ae(e,t){return Ay(e,t)}function Dae(e,t){return yy(e,t)}function Oae(e,t){return C6(e,t)}function zae(e,t){return Cre(e,t)}function Pae(e,t){return py(e,t)}function Lae(e,t){return Qp(e,t)}function Wae(e,t){return Xl(e,t)}function Bae(e,t){return Xl(e,t)}function Vae(e,t){return Xl(e,t)}function jae(e,t){return Li(e,t)}function Uae(e,t){return Li(e,t)}function Hae(e,t){return Li(e,t)}var I4={};Me(I4,{modelFromJSON:()=>cae});var S4={};Me(S4,{l1:()=>qae,l1l2:()=>Gae,l2:()=>Xae});function Gae(e){return new jc(e)}function qae(e){return gae(e)}function Xae(e){return xae(e)}var N4=class extends ql{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof ga))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function p0(e,t){return e<t}function T4(e,t){return e>t}var E4=class extends N4{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new De("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=p0:this.mode==="max"?this.monitorFunc=T4:this.monitor.indexOf("acc")!==-1?this.monitorFunc=T4:this.monitorFunc=p0,this.monitorFunc===p0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===p0?Infinity:-Infinity}async onEpochEnd(e,t){await Ja(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Kae(e){return new E4(e)}var Zae={earlyStopping:Kae},Dr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Dr||(Dr={}));var C4;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(C4||(C4={}));var Ng={};function Yae(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Ng[e]=n}function R4(e){return Ng[e]}function Jae(e){delete Ng[e]}function I(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return yn(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>yn(h,n,r,a));let c=yn(t.inputNames.slice(o)[0],n,r,a),u=c.dataSync();return s.type==="number"?u[0]:_.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function yn(e,t,n,r){let[a,s]=Un(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[f0(a,o)]);return i!==void 0?t[f0(a,i)][s]:void 0}function Qae(e,t,n){return t[f0(e,n.currentContextId)]}function xa(e,t){let[n,r]=Un(e);return[f0(n,t&&t.currentContextId),r]}function f0(e,t){return t?`${e}-${t}`:e}function Un(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function m0(e,t,n){let r=I("pad",e,t,n);if(r==="explicit"){r=I("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function wa(e){return e.kept?e:Wr(e)}var M4={};Me(M4,{json:()=>ese});var ese=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],F4={};Me(F4,{json:()=>tse});var tse=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],$4={};Me($4,{json:()=>nse});var nse=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],D4={};Me(D4,{json:()=>rse});var rse=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],O4={};Me(O4,{json:()=>ase});var ase=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],z4={};Me(z4,{json:()=>sse});var sse=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],P4={};Me(P4,{json:()=>ise});var ise=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],L4={};Me(L4,{json:()=>ose});var ose=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],W4={};Me(W4,{json:()=>lse});var lse=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],B4={};Me(B4,{json:()=>use});var use=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],V4={};Me(V4,{json:()=>cse});var cse=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],j4={};Me(j4,{json:()=>hse});var hse=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],U4={};Me(U4,{json:()=>dse});var dse=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],H4={};Me(H4,{json:()=>pse});var pse=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],G4={};Me(G4,{json:()=>fse});var fse=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],q4={};Me(q4,{json:()=>mse});var mse=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],X4={};Me(X4,{json:()=>Ase});var Ase=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],Z4=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[M4,F4,$4,D4,O4,z4,P4,V4,B4,L4,j4,U4,H4,G4,q4,X4,W4],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?r.push(f[m.name]):m.op==="Const"?a.push(f[m.name]):(m.input==null||m.input.length===0)&&s.push(f[m.name]),f),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(f=>{let m=i[f];m.inputNames.forEach(A=>{let[y]=xa(A);m.inputs.push(i[y]),i[y].children.push(m)})}),Object.keys(u).length===0?h.forEach(f=>{let m=i[f];m.children.length===0&&l.push(m)}):Object.keys(u).forEach(f=>{let[m]=xa(f),A=i[m];A!=null&&(A.signatureKey=u[f],l.push(A))}),Object.keys(c).length>0?Object.keys(c).forEach(f=>{let[m]=xa(f),A=i[m];A&&(A.signatureKey=c[f],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=R4(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=Tg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Tg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=Og(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Og(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=Cg(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=Cg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=Dg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Dg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=Eg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Eg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=Pg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Pg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=$g(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=$g(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=zg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=zg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=Mg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Mg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=Fg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Fg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=K4(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=K4(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&r.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=xa(c.name),h={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Rg(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,s.push(h),a[u]=h}),Object.keys(a).forEach(c=>{let u=a[c];u.inputNames.forEach(h=>{let[d]=xa(h);u.inputs.push(a[d]),a[d].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,h]=xa(o[c.name]),d=a[u];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function yse(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function Y4(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):yse(e);return t?n:n.toLowerCase()}function Tg(e,t,n,r=!1){let a=e[t];return a!=null?Y4(a.s,r):n}function Eg(e,t,n){let r=e[t];return r?r.b:n}function Cg(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function Rg(e){switch(typeof e=="string"&&(e=Dr[e]),e){case Dr.DT_FLOAT:return"float32";case Dr.DT_INT32:case Dr.DT_INT64:case Dr.DT_INT8:case Dr.DT_UINT8:return"int32";case Dr.DT_BOOL:return"bool";case Dr.DT_DOUBLE:return"float32";case Dr.DT_STRING:return"string";default:return null}}function K4(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function Mg(e,t,n){let r=e[t];return r&&r.type?Rg(r.type):n}function Fg(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>Rg(a)):n}function J4(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function $g(e,t,n){let r=e[t];return r&&r.shape?J4(r.shape):n}function Dg(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function Og(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>Y4(s,r)):n}function zg(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>J4(a)):n}function Pg(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var gse=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return yn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return yn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Cg(this.node.rawAttrs,e,t);if(n.s!=null)return Tg(this.node.rawAttrs,e,t);if(n.b!=null)return Eg(this.node.rawAttrs,e,t);if(n.shape!=null)return $g(this.node.rawAttrs,e,t);if(n.type!=null)return Mg(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Dg(this.node.rawAttrs,e,t);if(n.list.s!=null)return Og(this.node.rawAttrs,e,t);if(n.list.shape!=null)return zg(this.node.rawAttrs,e,t);if(n.list.b!=null)return Pg(this.node.rawAttrs,e,t);if(n.list.type!=null)return Fg(this.node.rawAttrs,e,t)}return t}},xse=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[se(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[Pa(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[Om(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[P(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[Ae(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[Im(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[vd(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ye(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[kl(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[jr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[da(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[qd(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},wse=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[zt(I("x",e,t,n))];case"Acos":return[um(I("x",e,t,n))];case"Acosh":return[cm(I("x",e,t,n))];case"Asin":return[dm(I("x",e,t,n))];case"Asinh":return[pm(I("x",e,t,n))];case"Atan":return[fm(I("x",e,t,n))];case"Atan2":return[mm(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[Am(I("x",e,t,n))];case"Ceil":return[wm(I("x",e,t,n))];case"Complex":return[$a(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[ec(I("x",e,t,n))];case"Cosh":return[Td(I("x",e,t,n))];case"Elu":return[bl(I("x",e,t,n))];case"Erf":return[Sm(I("x",e,t,n))];case"Exp":return[tr(I("x",e,t,n))];case"Expm1":return[Nm(I("x",e,t,n))];case"Floor":return[_l(I("x",e,t,n))];case"Log":return[Pn(I("x",e,t,n))];case"Log1p":return[Md(I("x",e,t,n))];case"Imag":return[Cd(I("x",e,t,n))];case"Neg":return[kt(I("x",e,t,n))];case"Reciprocal":return[Lm(I("x",e,t,n))];case"Real":return[oc(I("x",e,t,n))];case"Relu":return[Ur(I("x",e,t,n))];case"Round":return[Wm(I("x",e,t,n))];case"Selu":return[Bd(I("x",e,t,n))];case"Sigmoid":return[Tn(I("x",e,t,n))];case"Sin":return[Vd(I("x",e,t,n))];case"Sign":return[Vm(I("x",e,t,n))];case"Sinh":return[jd(I("x",e,t,n))];case"Softplus":return[bi(I("x",e,t,n))];case"Sqrt":return[en(I("x",e,t,n))];case"Square":return[ot(I("x",e,t,n))];case"Tanh":return[yi(I("x",e,t,n))];case"Tan":return[Hm(I("x",e,t,n))];case"ClipByValue":return[En(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Ld(I("x",e,t,n))];case"Rsqrt":return[Wd(yn(e.inputNames[0],t,n))];case"Prod":return[zd(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[nc(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[ic(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[Em(yn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function xr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){_.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;r<e.length;r++){let a=e[r],s=t[r];_.assert(a<0||s<0||a===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function Q4(e){return!(typeof e=="number"||e.some(t=>t<0))}function Zc(e,t,n){let r=Lg(e,n),a=!Q4(r);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(a&&t.forEach(s=>{r=Lg(s.shape,r)}),!Q4(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function Lg(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r<e.length;++r){let a=e[r],s=t[r];if(a>=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=a>=0?a:s}return n}var bse=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=xe(0),Ht(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),xr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Ht(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r<this.size();r++)e.push(r)}if(e.length===0)return Ir([],[0].concat(this.elementShape));let n=this.readMany(e);return xr(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),cn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Ir([],[0].concat(this.elementShape));let t=[];for(let r=0;r<this.size();r++)t.push(r);let n=this.readMany(t);return xr(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),rt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,mr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];z(()=>{t=H(t,[1,n,a]);for(let o=0;o<e.length;++o){let l=o===0?0:r[o-1],c=[0,l,0],u=[1,e[o],a];s[o]=H(Re(t,c,u),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Yc=class{constructor(e,t,n,r=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(a=>{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);xr(t,a.shape,"TensorList shape mismatch: "),Ht(a)}),this.idTensor=xe(0),this.maxNumElements=r,Ht(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Yc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);xr(e,this.elementShape,"TensorList shape mismatch: ");let r=Zc(this.elementShape,this.tensors,e);return z(()=>{let a=this.tensors.map(s=>H(s,r));return cn(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Zc(this.elementShape,this.tensors,e),r=this.tensors.pop();return xr(r.shape,e,"TensorList shape mismatch: "),H(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(xr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Ht(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);xr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=Zc(this.elementShape,this.tensors,t);return H(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);xr(this.elementShape,t.shape,"TensorList shape mismatch: "),Ht(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);xr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=Zc(this.elementShape,this.tensors,n);return e.length===0?Ir([],[0].concat(r)):z(()=>{let a=e.map(s=>H(this.tensors[s],r));return cn(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);xr(this.elementShape,t,"TensorList shape mismatch: ");let n=Zc(this.elementShape,this.tensors,t);return this.size()===0?Ir([],[0].concat(n)):z(()=>{let r=this.tensors.map(a=>H(a,n));return rt(r,0)})}};function _se(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);xr(a,t,"TensorList shape mismatch: ");let s=mr(e);return new Yc(s,t,r)}function vse(e,t,n){return new Yc([],e,t,n)}function kse(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new Yc([],n,e.dtype,r),i=mr(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function Ise(e,t,n){let r=0,a=t.map(u=>(r+=u,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${r}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Lg(s,n),o=r===0?0:e.size/r,l=z(()=>{let u=[];e=H(e,[1,r,o]);for(let h=0;h<t.length;++h){let d=h===0?0:a[h-1],p=[0,d,0],f=[1,t[h],o];u[h]=H(Re(e,p,f),i)}return e.dispose(),u}),c=new Yc([],n,e.dtype,t.length);for(let u=0;u<l.length;u++)c.setItem(u,l[u]);return c}var Sse=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let r=I("thenBranch",e,t,n),a=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=I("body",e,t,n),a=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let h=c.map(p=>p.id);u.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return c}case"LoopCond":{let r=I("pred",e,t,n);return[wa(r)]}case"Switch":{let r=I("pred",e,t,n),a=I("data",e,t,n);return a.kept||(a=wa(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>yn(a,t,n)!==void 0);if(r){let a=yn(r,t,n);return[wa(a)]}return}case"Enter":{let r=I("frameName",e,t,n),a=I("tensor",e,t,n);return n.enterFrame(r),[wa(a)]}case"Exit":{let r=I("tensor",e,t,n);return n.exitFrame(),[wa(r)]}case"NextIteration":{let r=I("tensor",e,t,n);return n.nextIteration(),[wa(r)]}case"TensorArrayV3":{let r=I("size",e,t,n),a=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new bse(c,a,r,s,l,i,o);return n.addTensorArray(u),[u.idTensor,xe(1)]}case"TensorArrayWriteV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=I("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=I("tensorArrayId",e,t,n),a=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[xe(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=I("indices",e,t,n),a=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=kse(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=vse(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=I("tensorListId",e,t,n),a=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=_se(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=I("tensorListId",e,t,n),a=n.getTensorList(r.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=I("tensorListId",e,t,n),a=I("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=Ise(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function e8(e,t,n){let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),u=m0(e,t,n),h=I("dataFormat",e,t,n).toUpperCase(),d=I("dilations",e,t,n),[p,f]=I("args",e,t,n),m=I("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:h,dilations:d,biasArg:p,preluArg:f,activationFunc:a,leakyreluAlpha:m}}var Nse=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[Sd(I("x",e,t,n),I("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=I("strides",e,t,n),a=m0(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[ca(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=e8(e,t,n);return[Ua.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=e8(e,t,n);return[Ua.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),a=I("strides",e,t,n),s=m0(e,t,n);return[Nd(I("x",e,t,n),I("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),a=m0(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[wl(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[_m(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Ju(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[ac(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=wb(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[xm(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[$m(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dilations",e,t,n),i=r[1],o=r[2],l=s[1],c=s[2];return[km(I("x",e,t,n),I("filter",e,t,n),[i,o],a,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Tse=(e,t,n)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),a=I("dtype",e,t,n),s=I("value",e,t,n);return[tc(r,s,a)]}case"LinSpace":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("num",e,t,n);return[pb(r,a,s)]}case"Multinomial":{let r=I("logits",e,t,n),a=I("numSamples",e,t,n),s=I("seed",e,t,n);return[bb(r,a,s)]}case"OneHot":{let r=I("indices",e,t,n),a=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[fl(r,a,s,i)]}case"Ones":return[Ln(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Wn(I("x",e,t,n))];case"RandomUniform":return[Il(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("step",e,t,n);return[Pd(r,a,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),a=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[Xd(r,a,s,I("dtype",e,t,n),i)]}case"Zeros":return[Rt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[He(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Wg(e,t,n){let r=I("boxes",e,t,n),a=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Ese=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=Wg(e,t,n),c=await Le.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Wg(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await Le.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Wg(e,t,n);return[await Le.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=ge(I("condition",e,t,n),"bool"),a=[await Xm(r)];return r.dispose(),a}case"ListDiff":return kb(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Cse=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=I("x",e,t,n),a=I("k",e,t,n),s=I("sorted",e,t,n),i=Gm(r,a,s);return[i.values,i.indices]}case"Unique":{let r=I("x",e,t,n),a=Kd(r);return[a.values,a.indices]}case"UniqueV2":{let r=I("x",e,t,n),a=I("axis",e,t,n),s=Kd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Rse=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[yn(e.name,t,n)||r];case"Placeholder":return[yn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[wa(c)]}case"IdentityN":return I("x",e,t,n).map(c=>wa(c));case"Snapshot":let a=I("x",e,t,n);return[wa(a)];case"Shape":return[sn(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>sn(c.shape));case"Size":return[xe(I("x",e,t,n).size,"int32")];case"Rank":return[xe(I("x",e,t,n).rank,"int32")];case"NoOp":return[xe(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;c<i.length;c++)console.log(Array.prototype.slice.call(i[c].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Mse=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=xe(0),this.tensorMap=new Map,Ht(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return xe(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),z(()=>{let r=mr(t),a=n.length,s=r.length;_.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i<a;i++){let o=n[i],l=r[i];Ht(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return z(()=>{let r=[];for(let a=0;a<n.length;a++){let s=n[a],i=this.findWithDefault(s,t);r.push(i)}return cn(r)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},Fse=async(e,t,n,r)=>{switch(e.op){case"HashTable":case"HashTableV2":{let a=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new Mse(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let a=I("tableHandle",e,t,n,r);return[r.getHashTableById(a.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},$se=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Le.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Le.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=I("image",e,t,n),a=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Le.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Dse=(e,t,n)=>{switch(e.op){case"Equal":return[Wa(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[vi(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[pr(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[Va(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Rd(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[wi(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[fr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[rc(I("a",e,t,n))];case"LogicalOr":return[Dd(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Cn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ose=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ve(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[cb(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Je(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[Ua.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},zse=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[gi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[gi(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[Cm(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[uc(I("x",e,t,n))];case"LogSoftmax":return[$d(I("x",e,t,n))];case"SparseToDense":return[Km(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Pse=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Rn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[It(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[vl(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Te(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[kd(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Zu(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[mi(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[hm(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[zd(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Ed(I("x",e,t,n),i,o,l)]}case"Bincount":let r=I("x",e,t,n),a=I("weights",e,t,n),s=I("size",e,t,n);return[nb(r,a,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[lb(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Lse=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),a=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,r),[rt(s,a)]}case"Gather":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[xi(r,ge(a,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),a=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[xi(s,ge(i,"int32"),r,a)]}case"Reverse":{let r=I("dims",e,t,n),a=[];for(let i=0;i<r.length;i++)r[i]&&a.push(i);let s=I("x",e,t,n);return[Bn(s,a)]}case"ReverseV2":{let r=I("axis",e,t,n),a=I("x",e,t,n);return[Bn(a,r)]}case"Slice":{let r=I("begin",e,t,n),a=I("size",e,t,n);return[Re(I("x",e,t,n),r,a)]}case"StridedSlice":{let r=I("begin",e,t,n),a=I("end",e,t,n),s=I("strides",e,t,n),i=I("beginMask",e,t,n),o=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),c=I("newAxisMask",e,t,n),u=I("shrinkAxisMask",e,t,n),h=I("x",e,t,n);return[Um(h,r,a,s,i,o,l,c,u)]}case"Pack":return z(()=>{let r=I("axis",e,t,n),a=I("tensors",e,t,n),s=a[0].shape,i=ja(a[0]).shape,o=a.map(l=>{let c=_.arraysEqual(l.shape,s);if(!c&&!_.arraysEqual(ja(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:H(l,s)});return[cn(o,r)]});case"Unpack":{let r=I("axis",e,t,n),a=I("tensor",e,t,n);return mr(a,r)}case"Tile":{let r=I("reps",e,t,n);return[Ba(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),a=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return Lt(s,a,r)}case"ScatterNd":{let r=I("indices",e,t,n),a=I("values",e,t,n),s=I("shape",e,t,n);return[Tb(r,a,s)]}case"GatherNd":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[Eb(r,a)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),a=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[Km(r,s,a,s.dtype===i.dtype?i:ge(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Wse=(e,t,n)=>{switch(e.op){case"SparseReshape":{let{outputIndices:r,outputShape:a}=Ub.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[r,a]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Bse=(e,t,n)=>{switch(e.op){case"FFT":return[cc(I("x",e,t,n))];case"IFFT":return[Sl(I("x",e,t,n))];case"RFFT":return[hc(I("x",e,t,n))];case"IRFFT":return[Gd(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Vse=(e,t,n)=>{switch(e.op){case"Cast":return[ge(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[Qt(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[ja(I("x",e,t,n),r)]}case"Reshape":return[H(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[Dm(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[ha(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),a=I("paddings",e,t,n);return[sc(I("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),a=I("crops",e,t,n);return[Qu(I("x",e,t,n),r,a)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),a=I("dataFormat",e,t,n).toUpperCase();return[vm(I("x",e,t,n),r,a)]}case"BroadcastTo":return[gl(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function t8(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return z(()=>xse(s,i,o));case"basic_math":return z(()=>wse(s,i,o));case"control":return Sse(s,i,o);case"convolution":return z(()=>Nse(s,i,o));case"creation":return z(()=>Tse(s,i,o));case"dynamic":return Ese(s,i,o);case"evaluation":return z(()=>Cse(s,i,o));case"image":return z(()=>$se(s,i,o));case"graph":return z(()=>Rse(s,i,o));case"logical":return z(()=>Dse(s,i,o));case"matrices":return z(()=>Ose(s,i,o));case"normalization":return z(()=>zse(s,i,o));case"reduction":return z(()=>Pse(s,i,o));case"slice_join":return z(()=>Lse(s,i,o));case"sparse":return z(()=>Wse(s,i,o));case"spectral":return z(()=>Bse(s,i,o));case"transformation":return z(()=>Vse(s,i,o));case"hash_table":return Fse(s,i,o,r);case"custom":let l=R4(s.op);if(l&&l.customExecutor)return l.customExecutor(new gse(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return _.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var n8=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function a8(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(d=>Un(d)[0]),u=[];r!=null&&(u=r.map(d=>Un(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((r8(d)||jse(d)||Use(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&c.indexOf(d.name)===-1&&u.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Hse(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(u=>Un(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{r.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{r.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{r.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return c}var Gse=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],qse=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Xse=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function r8(e){return Gse.indexOf(e.op)>=0}function jse(e){return qse.indexOf(e.op)>=0}function Use(e){return Xse.indexOf(e.op)>=0}var Bg=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Bg(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=a8(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return Hse(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(u=>this.graph.nodes[Un(u)[0]]),a=t.map(u=>Un(u)[0]),s=a.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return z(()=>{let u=new n8(this.weightMap,l,c,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,A]=Un(f),y=[];y[A]=e[f],h[m]=y});let d=this.getFrozenTensorIds(h),p={};for(let f=0;f<o.length;f++){let m=o[f];if(!h[m.name]){let A=t8(m,h,u,this._resourceManager);if(_.isPromise(A))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);h[m.name]=A,this.checkTensorForDisposal(m.name,m,h,u,d,a,p)}}return this.parent==null&&u.dispose(d),t.map(f=>yn(f,h,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=Qae(o.name,n,r);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!a.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new n8(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>yn(h,i,s)),l=o.map(h=>h.id),c=Object.keys(e).map(h=>e[h].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.kept&&!d.isDisposed&&!u.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[Un(g)[0]]),i=n.map(g=>Un(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:h}=a8(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[x,v]=Un(g),w=[];w[v]=e[g],p[x]=w});let f={},m=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let g=this.processStack(s,d,t,p,A,m,i,f,l);await Promise.all(g)}u==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!r8(g)&&!yn(g.name,p,t)).map(g=>g.name);if(y.length>0){let g="";throw u!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${c}]. ${g}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let h="";if(u.node.op==="Enter"&&I("isConstant",u.node,r,n)&&([h]=xa(u.node.name,n)),r[u.node.name]==null){let d=t8(u.node,r,n,this._resourceManager);h||([h]=xa(u.node.name,n));let p=n.currentContext;_.isPromise(d)?c.push(d.then(f=>(r[h]=f,n.currentContext=p,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l),f))):(r[h]=d,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l))}else this.processChildNodes(u.node,t,n,r,a,l)}return c}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=xa(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!yn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!yn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=Un(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);_.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&_.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=Un(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Un(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Kse=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Zse="?tfjs-format=file",Yse="model.json",s8=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Kse}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Nn.browserHTTPRequest(e,this.loadOptions);else{let t=Nn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Nn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=Nn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Bg(Z4.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=Z4.Instance.transformGraph(e.modelInitializer);this.initializer=new Bg(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Nn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Pe)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function ct(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${Yse}${Zse}`);let n=new s8(e,t);return await n.load(),n}var Jse="3.5.0",i8={};Me(i8,{CSVDataset:()=>l8,Dataset:()=>Yl,FileDataSource:()=>u8,TextLineDataset:()=>o8,URLDataSource:()=>c8,array:()=>Qse,csv:()=>tie,func:()=>nie,generator:()=>rie,microphone:()=>sie,version_data:()=>iie,webcam:()=>aie,zip:()=>eie});var oie=ao(p5()),lie=ao(p5());function uie(e,t){return A0(e,t)}function A0(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Jl(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=A0(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function cie(e,t=d8){return h8(e,t)}function h8(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Jl(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(c=>c[i]),l=h8(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function d8(e){return e===null?null:Jl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function p8(e,t){let n=new Map;A0(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(_.isPromise(a)){let s=await a;n.set(r,s)}}return A0(e,t,n)}function Jl(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Pe))}function die(e){return e==null||hie(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Pe||_.isTypedArray(e)}function hie(e){return e===null||typeof e!="object"&&typeof e!="function"}function fie(e){return uie(e,pie)}function pie(e){return e instanceof Pe?{value:e.clone(),recurse:!1}:Jl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var f8=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},Vg=class extends f8{constructor(){super(Vg.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;r<n;r++)t[r]=this.get(this.wrap(this.begin+r));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};Vg.INITIAL_CAPACITY=32;function m8(e){return new mie(e)}function jg(e){return new Aie(e)}function yie(e,t){return new A8(e,t)}function xie(e,t=ns.FAIL){return new gie(e,t)}var Xt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new Sie(this,e)}filter(e){return new kie(this,e)}map(e){return new Iie(this,e)}mapAsync(e){return new y8(this,e)}serialMapAsync(e){return new y8(this,e).serial()}flatmap(e){return new Nie(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new vie(this,e,t)}columnMajorBatch(e,t=!0,n=d8){return this.rowMajorBatch(e,t).map(r=>cie(r,n))}concatenate(e,t){return new A8(m8([this,e]),t)}take(e){return e<0||e==null?this:new _ie(this,e)}skip(e){return e<0||e==null?this:new bie(this,e)}prefetch(e){return new g8(this,e)}shuffle(e,t){return new Tie(this,e,t)}serial(){return new wie(this)}},mie=class extends Xt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:fie(e),done:!1}}},Aie=class extends Xt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},wie=class extends Xt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},bie=class extends Xt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;_e(e.value)}return this.upstream.next()}},_ie=class extends Xt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},vie=class extends Xt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},kie=class extends Xt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;_e(e.value)}}},Iie=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=vr.getTensorsInContainer(e.value),n=this.transform(e.value),r=vr.getTensorsInContainer(n);for(let a of t)vr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},Sie=class extends Xt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},y8=class extends Xt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=vr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=vr.getTensorsInContainer(n);for(let a of t)vr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},Ug=class extends Xt{constructor(){super();this.outputQueue=new Vg,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Nie=class extends Ug{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=vr.getTensorsInContainer(e.value),n=this.transform(e.value),r=vr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)vr.isTensorInList(a,r)||a.dispose();return!0}},A8=class extends Xt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ns;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ns||(ns={}));var gie=class extends Xt{constructor(e,t=ns.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof Xt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await p8(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ns.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ns.SHORTEST:return{value:null,done:!0};case ns.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},g8=class extends Xt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new f8(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},Tie=class extends g8{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=lie.alea(n||_.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Yl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;_.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),Hn(async()=>(await n.iterator()).columnMajorBatch(e,t,Eie),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Hn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Hn(async()=>(await t.iterator()).filter(r=>z(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Hn(async()=>(await t.iterator()).map(n=>z(()=>e(n))),this.size)}mapAsync(e){let t=this;return Hn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Hn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Hn(async()=>{let r=jg(async()=>({value:await t.iterator(),done:!1}));return yie(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Hn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=oie.alea(t||_.now().toString());return Hn(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Hn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Yl.MAX_BUFFER_SIZE=1e4;function Hn(e,t=null){return new class extends Yl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function Qse(e){return Hn(async()=>m8(e),e.length)}function eie(e){if(!Jl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Hn(async()=>{let n=await p8(e,r=>{if(r instanceof Yl)return{value:r.iterator(),recurse:!1};if(Jl(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return xie(n,ns.SHORTEST)},t)}function Eie(e){if(e===null)return null;let t=e[0];return die(t)?{value:Cie(e),recurse:!1}:{value:null,recurse:!0}}function Cie(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Pe?cn(e):Ir(e)}var o8=class extends Yl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},y0='"',Jc=Symbol("out"),x8=Symbol("field"),g0=Symbol("quote"),Hg=Symbol("quoteafterquote"),w8=Symbol("quoteinquote"),l8=class extends Yl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new o8(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(_.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&_.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(_.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a<this.fullColumnNames.length;a++){let s=this.fullColumnNames[a],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[a],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let c=Number(o);if(isNaN(c))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=c;else switch(i.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(o);break;default:l=c}}i&&i.isLabel?r[s]=l:n[s]=l}}return Object.keys(r).length===0?n:{xs:n,ys:r}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],r=0,a=e.length,s=Jc;for(let i=0;i<a;i++)switch(s){case Jc:switch(e.charAt(i)){case y0:r=i+1,s=g0;break;case this.delimiter:if(r=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Jc;break;default:s=x8,r=i;break}break;case x8:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i)),s=Jc,r=i+1;break;default:}break;case g0:switch(e.charAt(i)){case y0:s=Hg;break;default:}break;case Hg:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i-1)),s=Jc,r=i+1;break;case y0:s=g0;break;default:s=w8;break}break;case w8:switch(e.charAt(i)){case y0:s=g0;break;default:}break;default:}if(s===Hg?n.push(e.substring(r,a-1)):n.push(e.substring(r)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},b8=class extends Xt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new b8(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(_.sizeFromShape(t));return n.set(e,n.length-e.length),Ir(n,t)}},_8=class extends Xt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=sn([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=Mn([s,a,o,i],[1,4])}else this.cropBox=Mn([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new _8(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&_.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=pi.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return z(()=>{let t=Qt(ge(e,"float32"),0),n;n=Le.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return H(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},v8=class{},k8=class extends Xt{split(e){return new Rie(this,e)}},Rie=class extends k8{constructor(e,t){super();this.upstream=e,this.impl=new Mie(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Mie=class extends Ug{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},$ie=class extends Xt{decodeUTF8(){return new Fie(this)}},Fie=class extends k8{constructor(e){super();this.upstream=e,this.impl=new Die(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Die=class extends Ug{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=B9();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},I8=class extends $ie{constructor(e,t={}){super();this.file=e,this.options=t,_.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function zie(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=Oie(e));let a=await _.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new I8(s,t)}else throw new Error(a.statusText)}var Oie=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function S8(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var u8=class extends v8{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(S8(this.input)&&J().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new I8(this.input,this.options)}},c8=class extends v8{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return S8(this.url)?new u8(this.url,this.fileOptions).iterator():zie(this.url,this.fileOptions)}};function tie(e,t={}){return new l8(new c8(e),t)}function nie(e){let t=jg(e);return Hn(async()=>t)}function rie(e){return Hn(async()=>{let t=await e();return jg(()=>t.next())})}async function aie(e,t){return _8.create(e,t)}async function sie(e){return b8.create(e)}var iie="3.5.0",Pie={tfjs:(_f==null?void 0:_f.version)||void 0,"tfjs-core":(vf==null?void 0:vf.version)||void 0,"tfjs-data":(kf==null?void 0:kf.version)||void 0,"tfjs-layers":(If==null?void 0:If.version)||void 0,"tfjs-converter":(Sf==null?void 0:Sf.version)||void 0,"tfjs-backend-cpu":v_||void 0,"tfjs-backend-webgl":G3||void 0,"tfjs-backend-wasm":zv||void 0};var Gn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function N8(){if(!lm(Gn.name)){le("backend registration:",Gn.name);try{Gn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Gn.width,Gn.height):document.createElement("canvas")}catch(e){le("error: cannot create canvas:",e);return}try{Gn.gl=Gn.canvas.getContext("webgl2",Gn.webGLattr)}catch(e){le("error: cannot get WebGL2 context:",e);return}try{yp(2,Gn.gl)}catch(e){le("error: cannot set WebGL2 context:",e);return}try{let e=new bp(Gn.gl);Al(Gn.name,()=>new Wl(e),Gn.priority)}catch(e){le("error: cannot register WebGL backend:",e);return}try{ul("webgl").forEach(t=>{let n={...t,backendName:Gn.name};ui(n)})}catch(e){le("error: cannot update WebGL backend registration:",e);return}try{_r.set("WEBGL_VERSION",2)}catch(e){le("error: cannot set WebGL backend flags:",e);return}le("backend registered:",Gn.name)}}var Gg={};Jn(Gg,{load:()=>qg,predict:()=>_0});var x0={};function gn(e,t){if(!t||!t.kernels)return;let n=5,r=t.kernels.filter(i=>i.kernelTimeMs>0).reduce((i,o)=>i+=o.kernelTimeMs,0),a=t.kernels.map((i,o)=>(i.id=o,i)).filter(i=>i.kernelTimeMs>0).sort((i,o)=>o.kernelTimeMs-i.kernelTimeMs),s=t.kernels.map((i,o)=>(i.id=o,i)).filter(i=>i.totalBytesSnapshot>0).sort((i,o)=>o.totalBytesSnapshot-i.totalBytesSnapshot);a.length>n&&(a.length=n),s.length>n&&(s.length=n),x0[e]={model:e,newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:r,slowestKernelOps:a,largestKernelOps:s},le("profiler",e,x0[e])}var wr,w0={age:0},b0=Number.MAX_SAFE_INTEGER;async function qg(e){return wr?e.debug&&le("cached model:",wr.modelUrl):(wr=await ct(pt(e.modelBasePath,e.face.age.modelPath)),!wr||!wr.modelUrl?le("load model failed:",e.face.age.modelPath):e.debug&&le("load model:",wr.modelUrl)),wr}async function _0(e,t){return wr?b0<t.face.age.skipFrames&&t.videoOptimized&&w0.age&&w0.age>0?(b0++,w0):(t.videoOptimized?b0=0:b0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Le.resizeBilinear(e,[wr.inputs[0].shape[2],wr.inputs[0].shape[1]],!1),a=P(r,[255]);_e(r);let s,i={age:0};if(!t.profile)t.face.age.enabled&&(s=await wr.predict(a));else{let o=t.face.age.enabled?await an(()=>wr.predict(a)):{};s=o.result.clone(),o.result.dispose(),gn("age",o)}if(a.dispose(),s){let o=s.dataSync();i.age=Math.trunc(10*o[0])/10}s.dispose(),w0=i,n(i)})):null}var Xg={};Jn(Xg,{load:()=>Jg,predict:()=>k0});var ir,Kg={gender:""},v0=Number.MAX_SAFE_INTEGER,Zg=!1,Yg=[.2989,.587,.114];async function Jg(e){return ir?e.debug&&le("cached model:",ir.modelUrl):(ir=await ct(pt(e.modelBasePath,e.face.gender.modelPath)),Zg=ir.inputs[0].shape[3]===1,!ir||!ir.modelUrl?le("load model failed:",e.face.gender.modelPath):e.debug&&le("load model:",ir.modelUrl)),ir}async function k0(e,t){return ir?v0<t.face.gender.skipFrames&&t.videoOptimized&&Kg.gender!==""?(v0++,Kg):(t.videoOptimized?v0=0:v0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Le.resizeBilinear(e,[ir.inputs[0].shape[2],ir.inputs[0].shape[1]],!1),a;Zg?a=z(()=>{let[o,l,c]=Lt(r,3,3),u=P(o,Yg[0]),h=P(l,Yg[1]),d=P(c,Yg[2]);return Pa([u,h,d]).sub(.5).mul(2)}):a=P(r,[255]),_e(r);let s,i={gender:"",confidence:0};if(!t.profile)t.face.gender.enabled&&(s=await ir.predict(a));else{let o=t.face.gender.enabled?await an(()=>ir.predict(a)):{};s=o.result.clone(),o.result.dispose(),gn("gender",o)}if(a.dispose(),s)if(Array.isArray(s)){let o=s[0].dataSync(),l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l)),s.forEach(c=>_e(c))}else{let o=s.dataSync();if(Zg)(o[0]>t.face.gender.minConfidence||o[1]>t.face.gender.minConfidence)&&(i.gender=o[0]>o[1]?"female":"male",i.confidence=o[0]>o[1]?Math.trunc(100*o[0])/100:Math.trunc(100*o[1])/100);else{let l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l))}s.dispose()}Kg=i,n(i)})):null}var Qg={};Jn(Qg,{load:()=>n2,predict:()=>S0});var Lie=["angry","disgust","fear","happy","sad","surprise","neutral"],br,e2=[],I0=Number.MAX_SAFE_INTEGER,t2=[.2989,.587,.114];async function n2(e){return br?e.debug&&le("cached model:",br.modelUrl):(br=await ct(pt(e.modelBasePath,e.face.emotion.modelPath)),!br||!br.modelUrl?le("load model failed:",e.face.emotion.modelPath):e.debug&&le("load model:",br.modelUrl)),br}async function S0(e,t){return br?I0<t.face.emotion.skipFrames&&t.videoOptimized&&e2.length>0?(I0++,e2):(t.videoOptimized?I0=0:I0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Le.resizeBilinear(e,[br.inputs[0].shape[2],br.inputs[0].shape[1]],!1),[a,s,i]=Lt(r,3,3);r.dispose();let o=P(a,t2[0]),l=P(s,t2[1]),c=P(i,t2[2]);a.dispose(),s.dispose(),i.dispose();let u=Pa([o,l,c]);o.dispose(),l.dispose(),c.dispose();let h=z(()=>u.sub(.5).mul(2));u.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let f=await an(()=>br.predict(h));p=f.result.dataSync(),f.result.dispose(),gn("emotion",f)}else{let f=await br.predict(h);p=f.dataSync(),_e(f)}for(let f=0;f<p.length;f++)p[f]>t.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*p[f])/100),emotion:Lie[f]});d.sort((f,m)=>m.score-f.score)}h.dispose(),e2=d,n(d)})):null}var qn;async function r2(e){return qn?e.debug&&le("cached model:",qn.modelUrl):(qn=await ct(pt(e.modelBasePath,e.face.embedding.modelPath)),!qn||!qn.modelUrl?le("load model failed:",e.face.embedding.modelPath):e.debug&&le("load model:",qn.modelUrl)),qn}function T8(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(Math.trunc(1e3*(1-r))/1e3,0)}function Wie(e){return z(()=>{let n=[[.05,.15,.85,.85]],r=e.image||e.tensor;if(!(r instanceof Pe))return null;let a=r.shape.length===3?Le.cropAndResize(Qt(r,0),n,[0],[qn.inputs[0].shape[2],qn.inputs[0].shape[1]]):Le.cropAndResize(r,n,[0],[qn.inputs[0].shape[2],qn.inputs[0].shape[1]]),s=[.2989,.587,.114],[i,o,l]=Lt(a,3,3),c=P(i,s[0]),u=P(o,s[1]),h=P(l,s[2]),d=Pa([c,u,h]),p=cn([d,d,d],3).squeeze(4),f=p.sub(p.min());return f.div(f.max())})}async function a2(e,t){return qn?new Promise(async n=>{let r=[];if(t.face.embedding.enabled){let a=Wie(e);if(!t.profile)r=z(()=>[...qn.predict(a).reshape([128,2]).logSumExp(1).dataSync()]);else{let s=await an(()=>qn.predict({img_inputs:a}));r=[...s.result.dataSync()],s.result.dispose(),gn("emotion",s)}_e(a)}n(r)}):[]}var s2={};Jn(s2,{enhance:()=>l2,load:()=>i2,match:()=>E8,predict:()=>E0,similarity:()=>o2});var Xn,N0={age:0},T0=Number.MAX_SAFE_INTEGER;async function i2(e){return Xn?e.debug&&le("cached model:",Xn.modelUrl):(Xn=await ct(pt(e.modelBasePath,e.face.description.modelPath)),!Xn||!Xn.modelUrl?le("load model failed:",e.face.description.modelPath):e.debug&&le("load model:",Xn.modelUrl)),Xn}function o2(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=5*e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(0,100-r)/100}function E8(e,t,n=0){let r={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return r;for(let a of t)if(a.embedding&&a.name){let s=o2(e,a.embedding);s>n&&s>r.similarity&&(r={...a,similarity:s})}return r}function l2(e){return z(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Pe))return null;let r=[[.05,.15,.85,.85]];return(n.shape.length===3?Le.cropAndResize(Qt(n,0),r,[0],[Xn.inputs[0].shape[2],Xn.inputs[0].shape[1]]):Le.cropAndResize(n,r,[0],[Xn.inputs[0].shape[2],Xn.inputs[0].shape[1]])).mul(255)})}async function E0(e,t){return Xn?T0<t.face.description.skipFrames&&t.videoOptimized&&N0.age&&N0.age>0?(T0++,N0):(t.videoOptimized?T0=0:T0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=l2(e),a,s={age:0,gender:"unknown",genderConfidence:0,descriptor:[]};if(!t.profile)t.face.description.enabled&&(a=await Xn.predict(r));else{let i=t.face.description.enabled?await an(()=>Xn.predict(r)):{};a=i.result,gn("faceres",i)}_e(r),a&&(z(()=>{let i=a.find(h=>h.shape[1]===1).dataSync(),o=Math.trunc(200*Math.abs(i[0]-.5))/100;o>t.face.gender.minConfidence&&(s.gender=i[0]<=.5?"female":"male",s.genderConfidence=Math.min(.99,o));let l=a.find(h=>h.shape[1]===100).argMax(1).dataSync()[0],c=a.find(h=>h.shape[1]===100).dataSync();s.age=Math.round(c[l-1]>c[l+1]?10*l-100*c[l-1]:10*l+100*c[l+1])/10;let u=a.find(h=>h.shape[1]===1024);s.descriptor=[...u.dataSync()]}),a.forEach(i=>_e(i))),N0=s,n(s)})):null}var Bie=(e,t)=>{let n=A=>A*180/Math.PI,r=A=>{let y=Math.sqrt(A[0]*A[0]+A[1]*A[1]+A[2]*A[2]);return A[0]/=y,A[1]/=y,A[2]/=y,A},a=(A,y)=>{let g=A[0]-y[0],x=A[1]-y[1],v=A[2]-y[2];return[g,x,v]},s=(A,y)=>{let g=A[1]*y[2]-A[2]*y[1],x=A[2]*y[0]-A[0]*y[2],v=A[0]*y[1]-A[1]*y[0];return[g,x,v]},i=A=>{let[y,g,x,v,w,b,k,N,C]=A,F,O,L;return v<1?v>-1?(L=Math.asin(v),O=Math.atan2(-k,y),F=Math.atan2(-b,w)):(L=-Math.PI/2,O=-Math.atan2(N,C),F=0):(L=Math.PI/2,O=Math.atan2(N,C),F=0),{pitch:2*-F,yaw:2*-O,roll:2*-L}},o=A=>{let y=(x,v,w,b)=>Math.atan2(b-v,w-x);return{pitch:y(A[10][1],A[10][2],A[152][1],A[152][2]),yaw:y(A[33][0],A[33][2],A[263][0],A[263][2]),roll:y(A[33][0],A[33][1],A[263][0],A[263][1])}},l=e.meshRaw;if(!l||l.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1]};let c=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[l[10],l[152],l[234],l[454]].map(A=>[A[0]*t[0]/c,A[1]*t[1]/c,A[2]]),h=r(a(u[1],u[0])),d=r(a(u[3],u[2])),p=r(s(d,h));d=s(h,p);let f=[d[0],d[1],d[2],h[0],h[1],h[2],p[0],p[1],p[2]];return{angle:i(f),matrix:f}},u2=async(e,t)=>{var u,h,d,p,f,m,A;let n,r,a,s,i,o,l=[];e.state="run:face",n=Ye();let c=await((u=e.models.face)==null?void 0:u.estimateFaces(t,e.config));if(e.perf.face=Math.trunc(Ye()-n),!c)return[];for(let y of c){if(e.analyze("Get Face"),!y.image||y.image.isDisposedInternal){le("Face object is disposed:",y.image);continue}let g=Bie(y,[t.shape[2],t.shape[1]]);e.analyze("Start Age:"),e.config.async?r=e.config.face.age.enabled?_0(y.image,e.config):{}:(e.state="run:age",n=Ye(),r=e.config.face.age.enabled?await _0(y.image,e.config):{},e.perf.age=Math.trunc(Ye()-n)),e.analyze("Start Gender:"),e.config.async?a=e.config.face.gender.enabled?k0(y.image,e.config):{}:(e.state="run:gender",n=Ye(),a=e.config.face.gender.enabled?await k0(y.image,e.config):{},e.perf.gender=Math.trunc(Ye()-n)),e.analyze("Start Emotion:"),e.config.async?s=e.config.face.emotion.enabled?S0(y.image,e.config):{}:(e.state="run:emotion",n=Ye(),s=e.config.face.emotion.enabled?await S0(y.image,e.config):{},e.perf.emotion=Math.trunc(Ye()-n)),e.analyze("End Emotion:"),e.analyze("Start Embedding:"),e.config.async?i=e.config.face.embedding.enabled?a2(y,e.config):[]:(e.state="run:embedding",n=Ye(),i=e.config.face.embedding.enabled?await a2(y,e.config):[],e.perf.embedding=Math.trunc(Ye()-n)),e.analyze("End Embedding:"),e.analyze("Start Description:"),e.config.async?o=e.config.face.description.enabled?E0(y,e.config):[]:(e.state="run:description",n=Ye(),o=e.config.face.description.enabled?await E0(y.image,e.config):[],e.perf.embedding=Math.trunc(Ye()-n)),e.analyze("End Description:"),e.config.async&&([r,a,s,i,o]=await Promise.all([r,a,s,i,o])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((h=y==null?void 0:y.annotations)==null?void 0:h.leftEyeIris)&&((d=y==null?void 0:y.annotations)==null?void 0:d.rightEyeIris)&&(delete y.annotations.leftEyeIris,delete y.annotations.rightEyeIris);let x=((p=y.annotations)==null?void 0:p.leftEyeIris)&&((f=y.annotations)==null?void 0:f.rightEyeIris)?11.7*Math.max(Math.abs(y.annotations.leftEyeIris[3][0]-y.annotations.leftEyeIris[1][0]),Math.abs(y.annotations.rightEyeIris[4][1]-y.annotations.rightEyeIris[2][1])):0;l.push({...y,age:o.age||r.age,gender:o.gender||a.gender,genderConfidence:o.genderConfidence||a.confidence,embedding:o.descriptor||i,emotion:s,iris:x!==0?Math.trunc(x)/100:0,rotation:g,tensor:e.config.face.detector.return?(m=y.image)==null?void 0:m.squeeze():null}),(A=y.image)==null||A.dispose(),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.perf.face&&delete e.perf.face,e.perf.age&&delete e.perf.age,e.perf.gender&&delete e.perf.gender,e.perf.emotion&&delete e.perf.emotion),l};var m2={};Jn(m2,{MediaPipeFaceMesh:()=>A2,load:()=>y2,triangulation:()=>L8,uvmap:()=>W8});var C8=6;function Vie(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let r=0;r<t.strides.length;r++){let a=t.strides[r],s=Math.floor((e+a-1)/a),i=Math.floor((e+a-1)/a),o=t.anchors[r];for(let l=0;l<s;l++){let c=a*(l+.5);for(let u=0;u<i;u++){let h=a*(u+.5);for(let d=0;d<o;d++)n.push([h,c])}}}return n}var jie=e=>({startEndTensor:e,startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});function Uie(e,t,n){let r=Re(e,[0,1],[-1,2]),a=se(r,t),s=Re(e,[0,3],[-1,2]),i=Ae(s,n),o=Ae(a,n),l=Ae(i,2),c=ye(o,l),u=se(o,l),h=P(c,n),d=P(u,n);return xl([h,d],1)}var R8=class{constructor(t,n){this.model=t,this.anchorsData=Vie(t.inputs[0].shape[1]),this.anchors=Mn(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,r,a]=z(()=>{let d=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),p=this.model.predict(d),f;if(Array.isArray(p)){let g=p.sort((b,k)=>b.size-k.size),x=rt([g[0],g[2]],2),v=rt([g[1],g[3]],2);f=rt([v,x],1).squeeze(0)}else f=p.squeeze();let m=Uie(f,this.anchors,[this.inputSize,this.inputSize]),A=Re(f,[0,0],[-1,1]),y=Tn(A).squeeze();return[f,m,y]}),s=await Le.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),i=s.arraySync();s.dispose();let l=i.map(h=>Re(r,[h,0],[1,-1])).map(h=>{let d=h.arraySync();return h.dispose(),d}),c=a.dataSync(),u=[];for(let h=0;h<l.length;h++){let d=i[h],p=c[d];if(p>this.config.face.detector.minConfidence){let f=jie(l[h]),m=this.anchorsData[d],A=z(()=>Re(n,[d,C8-1],[1,-1]).squeeze().reshape([C8,-1]));u.push({box:f,landmarks:A,anchor:m,confidence:p})}}return n.dispose(),r.dispose(),a.dispose(),{boxes:u,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function M8(e){let t=await ct(pt(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new R8(t,e);return!t||!t.modelUrl?le("load model failed:",e.face.detector.modelPath):e.debug&&le("load model:",t.modelUrl),n}function F8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}function Qc(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Ql(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function eu(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Le.cropAndResize(t,s,[0],n)}function C0(e,t=1.5){let n=Ql(e),r=Qc(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function R0(e){let t=Ql(e),n=Qc(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}var M0=[[1,0,0],[0,1,0],[0,0,1]];function Hie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function c2(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Hie(n)}function $8(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function rs(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}function Gie(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}function D8(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(rs(e[a],Gie(t,s)))}return n}function F0(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=$8(t[0],t[1]),i=D8(s,a),o=$8(-t[0],-t[1]);return D8(i,o)}function O8(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-rs(t[0],n),-rs(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}function z8(e,t){return[rs(e,t[0]),rs(e,t[1])]}var Qr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},h2=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],eh=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],ji=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var qie=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Xie=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Kie=[33,133,362,263,1,78,308],ile=qie.map(e=>eh[e]),ole=Xie.map(e=>eh[e]),lle=Kie.map(e=>eh[e]);var d2=Qr.leftEyeLower0,p2=Qr.rightEyeLower0,tu={leftBounds:[d2[0],d2[d2.length-1]],rightBounds:[p2[0],p2[p2.length-1]]},$0={count:468,mouth:13,symmetryLine:[13,Qr.midwayBetweenEyes[0]]},P8={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},nu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function D0(e,t,n,r){for(let a=0;a<h2.length;a++){let{key:s,indices:i}=h2[a],o=Qr[`${n}${s}`];if(!r||r.includes(s))for(let l=0;l<i.length;l++){let c=i[l];e[o[l]]=[t[c][0],t[c][1],(t[c][2]+e[o[l]][2])/2]}}}var f2=class{constructor(t,n,r){var a,s;this.storedBoxes=[],this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=r,this.boxSize=((a=t==null?void 0:t.model)==null?void 0:a.inputs[0].shape[2])||0,this.meshSize=(n==null?void 0:n.inputs[0].shape[2])||((s=t==null?void 0:t.model)==null?void 0:s.inputs[0].shape[2]),this.irisSize=(r==null?void 0:r.inputs[0].shape[1])||0,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,r,a){let s=Qc({startPoint:n.startPoint,endPoint:n.endPoint}),i=t.map(h=>[s[0]/this.meshSize*(h[0]-this.meshSize/2),s[1]/this.meshSize*(h[1]-this.meshSize/2),h[2]]),o=r!==0?F0(r,[0,0]):M0,l=r!==0?i.map(h=>[...z8(h,o),h[2]]):i,c=r!==0?O8(a):M0,u=[...Ql({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(h=>[h[0]+rs(u,c[0]),h[1]+rs(u,c[1]),h[2]])}getLeftToRightEyeDepthDifference(t){let n=t[tu.leftBounds[0]][2],r=t[tu.rightBounds[0]][2];return n-r}getEyeBox(t,n,r,a,s=!1){let i=R0(C0(this.calculateLandmarksBoundingBox([t[r],t[a]]),this.irisEnlarge)),o=Qc(i),l=Le.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return s&&_r.flags.IS_BROWSER&&(l=Le.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,r,a=!1){let s=[];for(let i=0;i<nu.numCoordinates;i++){let o=t[i*3],l=t[i*3+1],c=t[i*3+2];s.push([(a?1-o/this.irisSize:o/this.irisSize)*r[0]+n.startPoint[0],l/this.irisSize*r[1]+n.startPoint[1],c])}return{rawCoords:s,iris:s.slice(nu.index)}}getAdjustedIrisCoords(t,n,r){let a=t[Qr[`${r}EyeUpper0`][nu.upperCenter]][2],s=t[Qr[`${r}EyeLower0`][nu.lowerCenter]][2],i=(a+s)/2;return n.map((o,l)=>{let c=i;return l===2?c=a:l===4&&(c=s),[o[0],o[1],c]})}async predict(t,n){let r=!1,a;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.videoOptimized)&&(a=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.videoOptimized&&this.skipped++,!n.videoOptimized||a&&a.boxes&&(!n.face.mesh.enabled||a.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let i of a.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(r=!0)}if(n.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),r){if(!a||!a.boxes||a.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let o=F8({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},a.scaleFactor),l=C0(o),c=R0(l),u=this.storedBoxes[i].landmarks.arraySync(),h=this.storedBoxes[i].confidence;this.storedBoxes[i]={...c,confidence:h,landmarks:u}}}a&&a.boxes&&a.boxes.forEach(i=>{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=z(()=>this.storedBoxes.map((i,o)=>{let l=i.confidence,c,u=0,h;if(n.face.detector.rotation&&n.face.mesh.enabled&&_r.flags.IS_BROWSER){let[w,b]=i.landmarks.length>=$0.count?$0.symmetryLine:P8.symmetryLine;u=c2(i.landmarks[w],i.landmarks[b]);let k=Ql({startPoint:i.startPoint,endPoint:i.endPoint}),N=[k[0]/t.shape[2],k[1]/t.shape[1]],C=Le.rotateWithOffset(t,u,0,N);h=F0(-u,k),n.face.mesh.enabled?c=eu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.meshSize,this.meshSize]).div(255):c=eu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.boxSize,this.boxSize]).div(255)}else{h=M0;let w=t.clone();n.face.mesh.enabled?c=eu({startPoint:i.startPoint,endPoint:i.endPoint},w,[this.meshSize,this.meshSize]).div(255):c=eu({startPoint:i.startPoint,endPoint:i.endPoint},w,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{coords:null,box:i,faceConfidence:null,boxConfidence:l,confidence:i.confidence,image:c};let[,d,p]=this.meshDetector.predict(c),f=d.dataSync()[0];if(f<n.face.detector.minConfidence)return null;let A=H(p,[-1,3]).arraySync();if(n.face.iris.enabled){let{box:w,boxSize:b,crop:k}=this.getEyeBox(A,c,tu.leftBounds[0],tu.leftBounds[1],!0),{box:N,boxSize:C,crop:F}=this.getEyeBox(A,c,tu.rightBounds[0],tu.rightBounds[1]),L=this.irisModel.predict(rt([k,F])).dataSync(),V=L.slice(0,nu.numCoordinates*3),{rawCoords:j,iris:U}=this.getEyeCoords(V,w,b,!0),X=L.slice(nu.numCoordinates*3),{rawCoords:G,iris:ee}=this.getEyeCoords(X,N,C),Y=this.getLeftToRightEyeDepthDifference(A);Math.abs(Y)<30?(D0(A,j,"left",null),D0(A,G,"right",null)):Y<1?D0(A,j,"left",["EyeUpper0","EyeLower0"]):D0(A,G,"right",["EyeUpper0","EyeLower0"]);let ae=this.getAdjustedIrisCoords(A,U,"left"),te=this.getAdjustedIrisCoords(A,ee,"right");A=A.concat(ae).concat(te)}let y=this.transformRawCoords(A,i,u,h);i=C0(this.calculateLandmarksBoundingBox(y),1.5);let g=Mn(y);if(n.face.detector.rotation&&n.face.mesh.enabled&&(n.face.description.enabled||n.face.embedding.enabled)&&_r.flags.IS_BROWSER){let[w,b]=i.landmarks.length>=$0.count?$0.symmetryLine:P8.symmetryLine;u=c2(i.landmarks[w],i.landmarks[b]);let k=Ql({startPoint:i.startPoint,endPoint:i.endPoint}),N=[k[0]/t.shape[2],k[1]/t.shape[1]],C=Le.rotateWithOffset(t.toFloat(),u,0,N);h=F0(-u,k),c=eu({startPoint:i.startPoint,endPoint:i.endPoint},C,[this.meshSize,this.meshSize]).div(255)}let x={coords:g,box:i,faceConfidence:f,boxConfidence:l,image:c,rawCoords:A},v=R0(i);return this.storedBoxes[o]={...v,landmarks:y,confidence:i.confidence,faceConfidence:f},x}));return s=s.filter(i=>i!==null),n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(i=>i.faceConfidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s,landmarks:t}}};var A2=class{constructor(t,n,r,a){this.facePipeline=new f2(t,n,r),this.config=a}async estimateFaces(t,n){let r=await this.facePipeline.predict(t,n),a=[];for(let s of r||[]){if(s.isDisposedInternal)continue;let i=s.coords?s.coords.arraySync():[],o=i.map(h=>[h[0]/t.shape[2],h[1]/t.shape[1],h[2]/this.facePipeline.meshSize]),l={};if(i&&i.length>0)for(let h of Object.keys(Qr))l[h]=Qr[h].map(d=>i[d]);let c=s.box?[Math.max(0,s.box.startPoint[0]),Math.max(0,s.box.startPoint[1]),Math.min(t.shape[2],s.box.endPoint[0])-Math.max(0,s.box.startPoint[0]),Math.min(t.shape[1],s.box.endPoint[1])-Math.max(0,s.box.startPoint[1])]:0,u=s.box?[s.box.startPoint[0]/t.shape[2],s.box.startPoint[1]/t.shape[1],(s.box.endPoint[0]-s.box.startPoint[0])/t.shape[2],(s.box.endPoint[1]-s.box.startPoint[1])/t.shape[1]]:[];a.push({confidence:Math.round(100*s.faceConfidence||100*s.boxConfidence||0)/100,boxConfidence:Math.round(100*s.boxConfidence)/100,faceConfidence:Math.round(100*s.faceConfidence)/100,box:c,boxRaw:u,mesh:i,meshRaw:o,annotations:l,image:s.image?s.image.clone():null}),s.coords&&s.coords.dispose(),s.image&&s.image.dispose()}return a}},Kt=[null,null,null];async function y2(e){return!Kt[0]&&e.face.enabled||!Kt[1]&&e.face.mesh.enabled||!Kt[2]&&e.face.iris.enabled?(Kt=await Promise.all([!Kt[0]&&e.face.enabled?M8(e):null,!Kt[1]&&e.face.mesh.enabled?ct(pt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Kt[2]&&e.face.iris.enabled?ct(pt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Kt[1]||!Kt[1].modelUrl?le("load model failed:",e.face.mesh.modelPath):e.debug&&le("load model:",Kt[1].modelUrl)),e.face.iris.enabled&&(!Kt[2]||!Kt[1].modelUrl?le("load model failed:",e.face.iris.modelPath):e.debug&&le("load model:",Kt[2].modelUrl))):e.debug&&(le("cached model:",Kt[0].model.modelUrl),le("cached model:",Kt[1].modelUrl),le("cached model:",Kt[2].modelUrl)),new A2(Kt[0],Kt[1],Kt[2],e)}var L8=ji,W8=eh;var N2={};Jn(N2,{PoseNet:()=>T2,load:()=>E2});function Zie(e){let[t,n,r,a]=e;return{offsets:t,heatmap:n,displacementFwd:r,displacementBwd:a}}var g2=class{constructor(t){this.model=t}predict(t){return z(()=>{let r=t.toFloat().div(127.5).sub(1).expandDims(0),s=this.model.predict(r).map(o=>o.squeeze([0])),i=Zie(s);return{heatmapScores:i.heatmap.sigmoid(),offsets:i.offsets,displacementFwd:i.displacementFwd,displacementBwd:i.displacementBwd}})}dispose(){this.model.dispose()}};function x2(e){return Math.floor(e/2)}var w2=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(x2(t),t);)this.exchange(t,x2(t)),t=x2(t)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let r=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=r}};function Yie(e,t,n,r,a,s){let[i,o]=s.shape,l=!0,c=Math.max(n-a,0),u=Math.min(n+a+1,i);for(let h=c;h<u;++h){let d=Math.max(r-a,0),p=Math.min(r+a+1,o);for(let f=d;f<p;++f)if(s.get(h,f,e)>t){l=!1;break}if(!l)break}return l}function B8(e,t,n){let[r,a,s]=n.shape,i=new w2(r*a*s,({score:o})=>o);for(let o=0;o<r;++o)for(let l=0;l<a;++l)for(let c=0;c<s;++c){let u=n.get(o,l,c);u<e||Yie(c,u,o,l,t,n)&&i.enqueue({score:u,part:{heatmapY:o,heatmapX:l,id:c}})}return i}var ru=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],au=ru.length,th=ru.reduce((e,t,n)=>(e[t]=n,e),{}),Jie=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Ile=Jie.map(([e,t])=>[th[e],th[t]]),V8=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function b2(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+au)}}function O0(e,t,n){let{heatmapY:r,heatmapX:a,id:s}=e,{y:i,x:o}=b2(r,a,s,n);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function _2(e,t,n){return e<t?t:e>n?n:e}function j8(e,t,n,r){let a=n-e,s=r-t;return a*a+s*s}function v2(e,t){return{x:e.x+t.x,y:e.y+t.y}}function U8(e,t){let n=t.shape[0],r=new Float32Array(n);for(let a=0;a<n;a++){let s=t.get(a,0),i=t.get(a,1);r[a]=e.get(s,i,a)}return r}function Qie(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+au)}}function eoe(e,t){let n=[];for(let r=0;r<au;r++){let a=e.get(r,0).valueOf(),s=e.get(r,1).valueOf(),{x:i,y:o}=Qie(a,s,r,t);n.push(o),n.push(i)}return Mn(n,[au,2])}function H8(e,t,n){return z(()=>e.toTensor().mul(xe(t,"int32")).toFloat().add(eoe(e,n)))}function toe(e,t){return z(()=>{let n=e.div(xe(t,"int32"));return e.sub(n.mul(xe(t,"int32")))})}function G8(e){let[t,n,r]=e.shape;return z(()=>{let s=e.reshape([t*n,r]).argMax(0),i=s.div(xe(n,"int32")).expandDims(1),o=toe(s,n).expandDims(1);return rt([i,o],1)})}var q8=V8.map(([e,t])=>[th[e],th[t]]),k2=q8.map(([,e])=>e),X8=q8.map(([e])=>e),noe=16;function roe(e,t,n){let r=n.shape[2]/2;return{y:n.get(t.y,t.x,e),x:n.get(t.y,t.x,r+e)}}function I2(e,t,n,r){return{y:_2(Math.round(e.y/t),0,n-1),x:_2(Math.round(e.x/t),0,r-1)}}function K8(e,t,n,r,a,s,i,o=2){let[l,c]=r.shape,u=I2(t.position,s,l,c),h=roe(e,u,i),p=v2(t.position,h);for(let A=0;A<o;A++){let y=I2(p,s,l,c),g=b2(y.y,y.x,n,a);p=v2({x:y.x*s,y:y.y*s},{x:g.x,y:g.y})}let f=I2(p,s,l,c),m=r.get(f.y,f.x,n);return{position:p,part:ru[n],score:m}}function Z8(e,t,n,r,a,s){let i=t.shape[2],o=k2.length,l=new Array(i),{part:c,score:u}=e,h=O0(c,r,n);l[c.id]={score:u,part:ru[c.id],position:h};for(let d=o-1;d>=0;--d){let p=k2[d],f=X8[d];l[p]&&!l[f]&&(l[f]=K8(d,l[p],f,t,n,r,s))}for(let d=0;d<o;++d){let p=X8[d],f=k2[d];l[p]&&!l[f]&&(l[f]=K8(d,l[p],f,t,n,r,a))}return l}async function Y8(e,t,n){let r=0,a=G8(e),s=await Promise.all([e.buffer(),t.buffer(),a.buffer()]),i=s[0],o=s[1],l=s[2],c=H8(l,noe,o),u=await c.buffer(),d=Array.from(U8(i,l)).map((f,m)=>(r+=f,{position:{y:u.get(m,0),x:u.get(m,1)},part:ru[m],score:f})),p=d.filter(f=>f.score>n);return a.dispose(),c.dispose(),{keypoints:p,score:r/d.length}}var aoe=1,J8=16;function Q8(e,t,{x:n,y:r},a){return e.some(({keypoints:s})=>{let i=s[a].position;return j8(r,n,i.y,i.x)<=t})}function soe(e,t,n){return n.reduce((a,{position:s,score:i},o)=>(Q8(e,t,s,o)||(a+=i),a),0)/n.length}function ek(e,t,n,r,a,s,i){let o=[],l=B8(i,aoe,e),c=a^2;for(;o.length<s&&!l.empty();){let u=l.dequeue(),h=O0(u.part,J8,t);if(Q8(o,c,h,u.part.id))continue;let d=Z8(u,e,t,J8,n,r),p=soe(o,c,d);p>i&&o.push({keypoints:d,score:Math.round(100*p)/100})}return o}async function tk(e){return Promise.all(e.map(t=>t.buffer()))}function ioe(e,t,n){return{score:e.score,keypoints:e.keypoints.map(({score:r,part:a,position:s})=>({score:r,part:a,position:{x:Math.trunc(s.x*n),y:Math.trunc(s.y*t)}}))}}function nk(e,[t,n]){let r=e.squeeze(0),a=r.resizeBilinear([t,n]);return r.dispose(),a}function S2(e,[t,n],[r,a]){return e.map(i=>ioe(i,t/r,n/a))}var Ui;async function ooe(e,t,n,r){return new Promise(async a=>{let s=await tk([t.heatmapScores,t.offsets,t.displacementFwd,t.displacementBwd]),i=s[0],o=s[1],l=s[2],c=s[3],u=await ek(i,o,l,c,n.body.nmsRadius,n.body.maxDetections,n.body.scoreThreshold),h=S2(u,[e.shape[1],e.shape[2]],[r,r]);a(h)})}async function loe(e,t,n,r){return new Promise(async a=>{let s=await Y8(t.heatmapScores,t.offsets,n.body.scoreThreshold),i=S2([s],[e.shape[1],e.shape[2]],[r,r]);a(i)})}var T2=class{constructor(t){this.baseModel=t,this.inputSize=t.model.inputs[0].shape[1],this.inputSize<128&&(this.inputSize=257)}async estimatePoses(t,n){let r=nk(t,[this.inputSize,this.inputSize]),a=this.baseModel.predict(r,n),s=n.body.maxDetections<2?await loe(t,a,n,this.inputSize):await ooe(t,a,n,this.inputSize);return a.heatmapScores.dispose(),a.offsets.dispose(),a.displacementFwd.dispose(),a.displacementBwd.dispose(),r.dispose(),s}dispose(){this.baseModel.dispose()}};async function E2(e){Ui?e.debug&&le("cached model:",Ui.modelUrl):(Ui=await ct(pt(e.modelBasePath,e.body.modelPath)),!Ui||!Ui.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",Ui.modelUrl));let t=new g2(Ui);return new T2(t)}var $2={};Jn($2,{HandPose:()=>O2,load:()=>z2});function z0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function nh(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function rk(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Le.cropAndResize(t,s,[0],n)}function ak(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function P0(e,t=1.5){let n=nh(e),r=z0(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function L0(e){let t=nh(e),n=z0(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var C2=class{constructor(t,n,r){this.model=t,this.anchors=r.map(a=>[a.x_center,a.y_center]),this.anchorsTensor=Mn(this.anchors),this.inputSize=n,this.inputSizeTensor=sn([n,n]),this.doubleInputSizeTensor=sn([n*2,n*2])}normalizeBoxes(t){return z(()=>{let n=Re(t,[0,0],[-1,2]),r=Re(t,[0,2],[-1,2]),a=se(Ae(n,this.inputSizeTensor),this.anchorsTensor),s=Ae(r,this.doubleInputSizeTensor),i=P(ye(a,s),this.inputSizeTensor),o=P(se(a,s),this.inputSizeTensor);return xl([i,o],1)})}normalizeLandmarks(t,n){return z(()=>{let r=se(Ae(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return P(r,this.inputSizeTensor)})}async getBoxes(t,n){let r=this.model.predict(t),a=r.squeeze();r.dispose();let s=z(()=>Tn(Re(a,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Re(a,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let c=await Le.nonMaxSuppressionAsync(l,i,n.hand.maxHands,n.hand.iouThreshold,n.hand.scoreThreshold),u=c.arraySync();s.dispose(),c.dispose();let h=[];for(let d of u)if(i[d]>=n.hand.minConfidence){let p=Re(l,[d,0],[1,-1]),f=Re(a,[d,5],[1,14]),m=z(()=>this.normalizeLandmarks(f,d).reshape([-1,2]));f.dispose(),h.push({box:p,palmLandmarks:m,confidence:i[d]})}return a.dispose(),l.dispose(),h}async estimateHandBounds(t,n){let r=t.shape[1],a=t.shape[2],s=z(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let c=l.box.dataSync(),u=c.slice(0,2),h=c.slice(2,4),d=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(ak({startPoint:u,endPoint:h,palmLandmarks:d,confidence:l.confidence},[a/this.inputSize,r/this.inputSize]))}return o}};function uoe(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function sk(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return uoe(n)}var ik=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function as(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}function coe(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}function ok(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(as(e[a],coe(t,s)))}return n}function R2(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=ik(t[0],t[1]),i=ok(s,a),o=ik(-t[0],-t[1]);return ok(i,o)}function lk(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-as(t[0],n),-as(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}function M2(e,t){return[as(e,t[0]),as(e,t[1])]}var hoe=5,uk=1.65,ck=[0,5,9,13,17,1,2],doe=0,poe=2,F2=class{constructor(t,n,r){this.handDetector=t,this.landmarkDetector=n,this.inputSize=r,this.storedBoxes=[],this.skipped=0,this.detectedHands=0}getBoxForPalmLandmarks(t,n){let r=t.map(s=>M2([...s,1],n)),a=this.calculateLandmarksBoundingBox(r);return P0(L0(a),hoe)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),r=P0(L0(n),uk);r.palmLandmarks=[];for(let a=0;a<ck.length;a++)r.palmLandmarks.push(t[ck[a]].slice(0,2));return r}transformRawCoords(t,n,r,a){let s=z0(n),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(p=>[i[0]*(p[0]-this.inputSize/2),i[1]*(p[1]-this.inputSize/2),i[2]*p[2]]),l=R2(r,[0,0]),c=o.map(p=>[...M2(p,l),p[2]]),u=lk(a),h=[...nh(n),1],d=[as(h,u[0]),as(h,u[1])];return c.map(p=>[p[0]+d[0],p[1]+d[1],p[2]])}async estimateHands(t,n){let r=!1,a;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.videoOptimized)&&(a=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==n.hand.maxHands||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(r=!0));let s=[];n.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let i=0;i<this.storedBoxes.length;i++){let o=this.storedBoxes[i];if(!!o)if(n.hand.landmarks){let l=n.hand.rotation?sk(o.palmLandmarks[doe],o.palmLandmarks[poe]):0,c=nh(o),u=[c[0]/t.shape[2],c[1]/t.shape[1]],h=n.hand.rotation?Le.rotateWithOffset(t,l,0,u):t.clone(),d=R2(-l,c),p=r?this.getBoxForPalmLandmarks(o.palmLandmarks,d):o,f=rk(p,h,[this.inputSize,this.inputSize]),m=f.div(255);f.dispose(),h.dispose();let[A,y]=await this.landmarkDetector.predict(m);m.dispose();let g=A.dataSync()[0];if(A.dispose(),g>=n.hand.minConfidence){let x=H(y,[-1,3]),v=x.arraySync();y.dispose(),x.dispose();let w=this.transformRawCoords(v,p,l,d),b=this.getBoxForHandLandmarks(w);this.storedBoxes[i]=b;let k={landmarks:w,confidence:g,box:{topLeft:b.startPoint,bottomRight:b.endPoint}};s.push(k)}else this.storedBoxes[i]=null;y.dispose()}else{let l=P0(L0(o),uk),c={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(c)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s}}};var hk=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}];var D2={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},O2=class{constructor(t){this.handPipeline=t}static getAnnotations(){return D2}async estimateHands(t,n){let r=await this.handPipeline.estimateHands(t,n);if(!r)return[];let a=[];for(let s of r){let i={};if(s.landmarks)for(let c of Object.keys(D2))i[c]=D2[c].map(u=>s.landmarks[u]);let o=s.box?[Math.max(0,s.box.topLeft[0]),Math.max(0,s.box.topLeft[1]),Math.min(t.shape[2],s.box.bottomRight[0])-Math.max(0,s.box.topLeft[0]),Math.min(t.shape[1],s.box.bottomRight[1])-Math.max(0,s.box.topLeft[1])]:[],l=[s.box.topLeft[0]/t.shape[2],s.box.topLeft[1]/t.shape[1],(s.box.bottomRight[0]-s.box.topLeft[0])/t.shape[2],(s.box.bottomRight[1]-s.box.topLeft[1])/t.shape[1]];a.push({confidence:Math.round(100*s.confidence)/100,box:o,boxRaw:l,landmarks:s.landmarks,annotations:i})}return a}},ea,ta;async function z2(e){!ea||!ta?([ea,ta]=await Promise.all([e.hand.enabled?ct(pt(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?ct(pt(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!ea||!ea.modelUrl?le("load model failed:",e.hand.detector.modelPath):e.debug&&le("load model:",ea.modelUrl),!ta||!ta.modelUrl?le("load model failed:",e.hand.skeleton.modelPath):e.debug&&le("load model:",ta.modelUrl))):(e.debug&&le("cached model:",ea.modelUrl),e.debug&&le("cached model:",ta.modelUrl));let t=new C2(ea,ea==null?void 0:ea.inputs[0].shape[2],hk),n=new F2(t,ta,ta==null?void 0:ta.inputs[0].shape[2]);return new O2(n)}var P2={};Jn(P2,{load:()=>L2,predict:()=>W2});var dk=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],pk=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var xn;async function L2(e){return xn?e.debug&&le("cached model:",xn.modelUrl):(xn=await ct(pt(e.modelBasePath,e.body.modelPath)),xn.width=parseInt(xn.signature.inputs["input_1:0"].tensorShape.dim[2].size),xn.height=parseInt(xn.signature.inputs["input_1:0"].tensorShape.dim[1].size),!xn||!xn.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",xn.modelUrl)),xn}async function W2(e,t){if(!xn||!t.body.enabled)return null;let n={width:e.shape[2],height:e.shape[1]},r=Le.resizeBilinear(e,[xn.width,xn.height],!1),a=Ae(r,[255]);r.dispose();let s;if(t.profile){let u=await an(()=>xn.predict(a));s=u.result.find(h=>h.size===195||h.size===155).dataSync(),u.result.forEach(h=>h.dispose()),gn("blazepose",u)}else{let u=await xn.predict(a);s=u.find(h=>h.size===195||h.size===155).dataSync(),u.forEach(h=>h.dispose())}a.dispose();let i=[],o=s.length===195?dk:pk,l=5;for(let u=0;u<s.length/l;u++)i.push({id:u,part:o[u],position:{x:Math.trunc(n.width*s[l*u+0]/255),y:Math.trunc(n.height*s[l*u+1]/255),z:Math.trunc(s[l*u+2])+0},score:(100-Math.trunc(100/(1+Math.exp(s[l*u+3]))))/100,presence:(100-Math.trunc(100/(1+Math.exp(s[l*u+4]))))/100});return[{score:i.reduce((u,h)=>h.score>u?h.score:u,0),keypoints:i}]}var wn,rh=[],W0=Number.MAX_SAFE_INTEGER,foe=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function B2(e){return wn?e.debug&&le("cached model:",wn.modelUrl):(wn=await ct(pt(e.modelBasePath,e.body.modelPath)),!wn||!wn.modelUrl?le("load model failed:",e.body.modelPath):e.debug&&le("load model:",wn.modelUrl)),wn}function moe(e,t){let[n,r]=e.shape;return z(()=>{let a=(o,l)=>ye(o,P(Ae(o,xe(l,"int32")),xe(l,"int32"))),s=H(e,[r*n]),i=Rn(s,0).dataSync()[0];if(i>t){let o=mi(s,0),l=a(o,n).dataSync()[0],c=Ae(o,xe(n,"int32")).dataSync()[0];return[l,c,i]}return[0,0,i]})}async function V2(e,t){return wn?W0<t.body.skipFrames&&t.videoOptimized&&Object.keys(rh).length>0?(W0++,rh):(t.videoOptimized?W0=0:W0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=z(()=>{let i=Le.resizeBilinear(e,[wn.inputs[0].shape[2],wn.inputs[0].shape[1]],!1);return P(i,2).sub(1)}),a;if(!t.profile)t.body.enabled&&(a=await wn.predict(r));else{let i=t.body.enabled?await an(()=>wn.predict(r)):{};a=i.result.clone(),i.result.dispose(),gn("body",i)}if(r.dispose(),a){let i=[],o=a.squeeze();_e(a);let l=o.unstack(2);_e(o);for(let c=0;c<l.length;c++){let[u,h,d]=moe(l[c],t.body.scoreThreshold);d>t.body.scoreThreshold&&i.push({id:c,score:Math.round(100*d)/100,part:foe[c],positionRaw:{xRaw:u/wn.inputs[0].shape[2],yRaw:h/wn.inputs[0].shape[1]},position:{x:Math.round(e.shape[2]*u/wn.inputs[0].shape[2]),y:Math.round(e.shape[1]*h/wn.inputs[0].shape[1])}})}l.forEach(c=>_e(c)),rh=i}let s=rh.reduce((i,o)=>o.score>i?o.score:i,0);n([{score:s,keypoints:rh}])})):null}var j2={};Jn(j2,{load:()=>H2,predict:()=>G2});var B0=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var bn,U2=[],V0=Number.MAX_SAFE_INTEGER,j0=2.5;async function H2(e){if(bn)e.debug&&le("cached model:",bn.modelUrl);else{bn=await ct(pt(e.modelBasePath,e.object.modelPath));let t=Object.values(bn.modelSignature.inputs);if(bn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!bn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!bn||!bn.modelUrl?le("load model failed:",e.object.modelPath):e.debug&&le("load model:",bn.modelUrl)}return bn}async function Aoe(e,t,n,r){let a=0,s=[];for(let c of[1,2,4])z(()=>{var A,y;let u=c*13,h=(A=e.find(g=>g.shape[1]===u**2&&g.shape[2]===B0.length))==null?void 0:A.squeeze(),d=(y=e.find(g=>g.shape[1]===u**2&&g.shape[2]<B0.length))==null?void 0:y.squeeze(),f=d.reshape([-1,4,d.shape[1]/4]).argMax(2).arraySync(),m=h.arraySync();for(let g=0;g<h.shape[0];g++)for(let x=0;x<h.shape[1];x++){let v=m[g][x];if(v>r.object.minConfidence&&x!==61){let w=(.5+Math.trunc(g%u))/u,b=(.5+Math.trunc(g/u))/u,k=f[g].map(U=>U*(u/c/t)),[N,C]=[w-j0/c*k[0],b-j0/c*k[1]],[F,O]=[w+j0/c*k[2]-N,b+j0/c*k[3]-C],L=[N,C,F,O];L=L.map(U=>Math.max(0,Math.min(U,1)));let V=[L[0]*n[0],L[1]*n[1],L[2]*n[0],L[3]*n[1]],j={id:a++,strideSize:c,score:Math.round(100*v)/100,class:x+1,label:B0[x].label,center:[Math.trunc(n[0]*w),Math.trunc(n[1]*b)],centerRaw:[w,b],box:V.map(U=>Math.trunc(U)),boxRaw:L};s.push(j)}}});e.forEach(c=>_e(c));let i=s.map(c=>c.boxRaw),o=s.map(c=>c.score),l=[];if(i&&i.length>0){let c=await Le.nonMaxSuppressionAsync(i,o,r.object.maxResults,r.object.iouThreshold,r.object.minConfidence);l=c.dataSync(),_e(c)}return s=s.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),s}async function G2(e,t){return bn?V0<t.object.skipFrames&&t.videoOptimized&&U2.length>0?(V0++,U2):(t.videoOptimized?V0=0:V0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=[e.shape[2],e.shape[1]],a=Le.resizeBilinear(e,[bn.inputSize,bn.inputSize],!1),s=a.div(255),i=s.transpose([0,3,1,2]);s.dispose(),a.dispose();let o;if(!t.profile)t.object.enabled&&(o=await bn.predict(i));else{let c=t.object.enabled?await an(()=>bn.predict(i)):{};o=c.result,gn("object",c)}i.dispose();let l=await Aoe(o,bn.inputSize,r,t);U2=l,n(l)})):null}var fk=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=e[n].keypoints.find(l=>l.part==="leftWrist"),a=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&r&&a&&r.position.y<s.position.y&&a.position.y<s.position.y?t.push({body:n,gesture:"i give up"}):s&&r&&r.position.y<s.position.y?t.push({body:n,gesture:"raise left hand"}):s&&a&&a.position.y<s.position.y&&t.push({body:n,gesture:"raise right hand"});let i=e[n].keypoints.find(l=>l.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},mk=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let r=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${r<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},Ak=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let r=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],a=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],s=Math.abs(r*a),i=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],o=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(i*o),c=!1;Math.abs(s-l)/Math.max(s,l)<.25&&(c=!0,t.push({iris:n,gesture:"facing center"}));let h=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].annotations.rightEyeIris[0][0],d=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].annotations.leftEyeIris[0][0];(d>.033||h>.033)&&(c=!1),d>.033&&t.push({iris:n,gesture:"looking right"}),h>.033&&t.push({iris:n,gesture:"looking left"});let p=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].annotations.rightEyeIris[0][1],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].annotations.leftEyeIris[0][1];(f<.015||p<.015||f>.03||p>.03)&&(c=!1),(f<.015||p<.015)&&t.push({iris:n,gesture:"looking down"}),(f>.03||p>.03)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},yk=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=[];for(let[a,s]of Object.entries(e[n].annotations))a!=="palmBase"&&Array.isArray(s)&&r.push({name:a.toLowerCase(),position:s[0]});if(r&&r.length>0){let a=r.reduce((i,o)=>i.position[2]<o.position[2]?i:o),s=r.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:n,gesture:`${a.name} forward ${s.name} up`})}}return t};var q2={};Jn(q2,{process:()=>X2});function yoe(e,t,n){let r=function(o,l,c){let u=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(u,(h,d)=>(c[d]=0,h))},a=function(o,l){let c=e.createShader(l);if(e.shaderSource(c,o),e.compileShader(c),!e.getShaderParameter(c,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(c));return c};this.uniform={},this.attribute={};let s=a(t,e.VERTEX_SHADER),i=a(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function gk(e){e||(e={});let t=0,n=null,r=!1,a=-1,s=[null,null],i=[],o=-1,l=-1,c=null,u=null,h={},d=e.canvas||document.createElement("canvas"),p={},f={INTERMEDIATE:1},m=d.getContext("webgl");if(!m)throw new Error("Filter: getContext() failed");this.addFilter=function(w){let b=Array.prototype.slice.call(arguments,1),k=h[w];i.push({func:k,args:b})},this.reset=function(){i=[]};let A=function(w,b){if(!(w===o&&b===l)){if(d.width=w,o=w,d.height=b,l=b,!c){let k=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);c=m.createBuffer(),m.bindBuffer(m.ARRAY_BUFFER,c),m.bufferData(m.ARRAY_BUFFER,k,m.STATIC_DRAW),m.pixelStorei(m.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}m.viewport(0,0,o,l),s=[null,null]}},y=function(w,b){let k=m.createFramebuffer();m.bindFramebuffer(m.FRAMEBUFFER,k);let N=m.createRenderbuffer();m.bindRenderbuffer(m.RENDERBUFFER,N);let C=m.createTexture();return m.bindTexture(m.TEXTURE_2D,C),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,w,b,0,m.RGBA,m.UNSIGNED_BYTE,null),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.framebufferTexture2D(m.FRAMEBUFFER,m.COLOR_ATTACHMENT0,m.TEXTURE_2D,C,0),m.bindTexture(m.TEXTURE_2D,null),m.bindFramebuffer(m.FRAMEBUFFER,null),{fbo:k,texture:C}},g=function(w){return s[w]=s[w]||y(o,l),s[w]},x=function(w=null){var C,F;let b=null,k=null,N=!1;t===0?b=n:b=(C=g(a))==null?void 0:C.texture,t++,r&&!(w&f.INTERMEDIATE)?(k=null,N=t%2==0):(a=(a+1)%2,k=(F=g(a))==null?void 0:F.fbo),m.bindTexture(m.TEXTURE_2D,b),m.bindFramebuffer(m.FRAMEBUFFER,k),m.uniform1f(u.uniform.flipY,N?-1:1),m.drawArrays(m.TRIANGLES,0,6)};this.apply=function(w){if(A(w.width,w.height),t=0,n||(n=m.createTexture()),m.bindTexture(m.TEXTURE_2D,n),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.NEAREST),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.NEAREST),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,m.RGBA,m.UNSIGNED_BYTE,w),i.length===0)return x(),d;for(let b=0;b<i.length;b++){r=b===i.length-1;let k=i[b];k.func.apply(this,k.args||[])}return d};let v=function(w){if(p[w])return u=p[w],m.useProgram(u.id),u;let b={};b.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
`),b.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
`),u=new yoe(m,b.VERTEX_IDENTITY,w);let k=Float32Array.BYTES_PER_ELEMENT,N=4*k;return m.enableVertexAttribArray(u.attribute.pos),m.vertexAttribPointer(u.attribute.pos,2,m.FLOAT,!1,N,0*k),m.enableVertexAttribArray(u.attribute.uv),m.vertexAttribPointer(u.attribute.uv,2,m.FLOAT,!1,N,2*k),p[w]=u,u};h.colorMatrix=function(w){let b=new Float32Array(w);b[4]/=255,b[9]/=255,b[14]/=255,b[19]/=255;let k=b[18]===1&&b[3]===0&&b[8]===0&&b[13]===0&&b[15]===0&&b[16]===0&&b[17]===0&&b[19]===0?h.colorMatrix.SHADER.WITHOUT_ALPHA:h.colorMatrix.SHADER.WITH_ALPHA,N=v(k);m.uniform1fv(N.uniform.m,b),x()},h.colorMatrix.SHADER={},h.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
`),h.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
`),h.brightness=function(w){let b=(w||0)+1;h.colorMatrix([b,0,0,0,0,0,b,0,0,0,0,0,b,0,0,0,0,0,1,0])},h.saturation=function(w){let b=(w||0)*2/3+1,k=(b-1)*-.5;h.colorMatrix([b,k,k,0,0,k,b,k,0,0,k,k,b,0,0,0,0,0,1,0])},h.desaturate=function(){h.saturation(-1)},h.contrast=function(w){let b=(w||0)+1,k=-128*(b-1);h.colorMatrix([b,0,0,0,k,0,b,0,0,k,0,0,b,0,k,0,0,0,1,0])},h.negative=function(){h.contrast(-2)},h.hue=function(w){w=(w||0)/180*Math.PI;let b=Math.cos(w),k=Math.sin(w),N=.213,C=.715,F=.072;h.colorMatrix([N+b*(1-N)+k*-N,C+b*-C+k*-C,F+b*-F+k*(1-F),0,0,N+b*-N+k*.143,C+b*(1-C)+k*.14,F+b*-F+k*-.283,0,0,N+b*-N+k*-(1-N),C+b*-C+k*C,F+b*(1-F)+k*F,0,0,0,0,0,1,0])},h.desaturateLuminance=function(){h.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},h.sepia=function(){h.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},h.brownie=function(){h.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},h.vintagePinhole=function(){h.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},h.kodachrome=function(){h.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},h.technicolor=function(){h.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},h.polaroid=function(){h.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},h.shiftToBGR=function(){h.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},h.convolution=function(w){let b=new Float32Array(w),k=1/o,N=1/l,C=v(h.convolution.SHADER);m.uniform1fv(C.uniform.m,b),m.uniform2f(C.uniform.px,k,N),x()},h.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
`),h.detectEdges=function(){h.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},h.sobelX=function(){h.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},h.sobelY=function(){h.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},h.sharpen=function(w){let b=w||1;h.convolution.call(this,[0,-1*b,0,-1*b,1+4*b,-1*b,0,-1*b,0])},h.emboss=function(w){let b=w||1;h.convolution.call(this,[-2*b,-1*b,0,-1*b,1,1*b,0,1*b,2*b])},h.blur=function(w){let b=w/7/o,k=w/7/l,N=v(h.blur.SHADER);m.uniform2f(N.uniform.px,0,k),x(f.INTERMEDIATE),m.uniform2f(N.uniform.px,b,0),x()},h.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
`),h.pixelate=function(w){let b=w/o,k=w/l,N=v(h.pixelate.SHADER);m.uniform2f(N.uniform.size,b,k),x()},h.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
`)}var U0=2048,Ee,wt,$t;function X2(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof Pe)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof Pe)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Wr(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let a=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,i=a,o=s;if(i>U0&&(i=U0,o=i*s/a),o>U0&&(o=U0,i=o*a/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=a*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/a)),!i||!o)throw new Error("Human: Input cannot determine dimension");(!Ee||(Ee==null?void 0:Ee.width)!==i||(Ee==null?void 0:Ee.height)!==o)&&(Ee=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),(Ee==null?void 0:Ee.width)!==i&&(Ee.width=i),(Ee==null?void 0:Ee.height)!==o&&(Ee.height=o));let l=Ee.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(a,0),l.scale(-1,1),l.drawImage(e,0,0,a,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,a,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),t.filter.enabled){if((!$t||!wt||Ee.width!==wt.width||(Ee==null?void 0:Ee.height)!==(wt==null?void 0:wt.height))&&(wt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height):document.createElement("canvas"),(wt==null?void 0:wt.width)!==(Ee==null?void 0:Ee.width)&&(wt.width=Ee==null?void 0:Ee.width),(wt==null?void 0:wt.height)!==(Ee==null?void 0:Ee.height)&&(wt.height=Ee==null?void 0:Ee.height),$t=_r.flags.IS_BROWSER?new gk({canvas:wt}):null),!$t)return{tensor:null,canvas:Ee};$t.reset(),$t.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&$t.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&$t.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&$t.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&$t.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&$t.addFilter("hue",t.filter.hue),t.filter.negative&&$t.addFilter("negative"),t.filter.sepia&&$t.addFilter("sepia"),t.filter.vintage&&$t.addFilter("brownie"),t.filter.sepia&&$t.addFilter("sepia"),t.filter.kodachrome&&$t.addFilter("kodachrome"),t.filter.technicolor&&$t.addFilter("technicolor"),t.filter.polaroid&&$t.addFilter("polaroid"),t.filter.pixelate!==0&&$t.addFilter("pixelate",t.filter.pixelate),$t.apply(Ee)}else wt=Ee,$t&&($t=null);let c;if(wt.data){let h=[wt.height,wt.width,3];c=wd(wt.data,h,"int32")}else if(wt instanceof ImageData)c=pi.fromPixels(wt);else if(t.backend==="webgl"||t.backend==="humangl"){let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(wt,0,0),c=pi.fromPixels(h)}else{let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(wt,0,0);let p=d==null?void 0:d.getImageData(0,0,i,o);c=pi.fromPixels(p)}let u=c.toFloat();n=u.expandDims(0),c.dispose(),u.dispose()}let r=t.filter.return?wt:null;return{tensor:n,canvas:r}}var K2={};Jn(K2,{all:()=>xoe,body:()=>bk,canvas:()=>goe,face:()=>wk,gesture:()=>xk,hand:()=>_k,object:()=>vk,options:()=>Hi});var ht={backend:"webgl",modelBasePath:"../models/",wasmPath:"../assets/",debug:!0,async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface-back.json",rotation:!1,maxFaces:10,skipFrames:21,skipInitial:!1,minConfidence:.2,iouThreshold:.1,scoreThreshold:.2,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:31},emotion:{enabled:!0,minConfidence:.1,skipFrames:32,modelPath:"emotion.json"},age:{enabled:!1,modelPath:"age.json",skipFrames:33},gender:{enabled:!1,minConfidence:.1,modelPath:"gender.json",skipFrames:34},embedding:{enabled:!1,modelPath:"mobileface.json"}},body:{enabled:!0,modelPath:"posenet.json",maxDetections:10,scoreThreshold:.3,nmsRadius:20},hand:{enabled:!0,rotation:!1,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"nanodet.json",minConfidence:.2,iouThreshold:.4,maxResults:10,skipFrames:41}};var Hi={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!1,useRawBoxes:!1,calculateHandBox:!0};function H0(e,t,n,r=0,a){e.fillStyle=a.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:a.color,e.beginPath(),e.arc(t,n,a.pointSize,0,2*Math.PI),e.fill()}function su(e,t,n,r,a,s){if(e.beginPath(),s.useCurves){let i=(t+t+r)/2,o=(n+n+a)/2;e.ellipse(i,o,r/2,a/2,0,0,2*Math.PI)}else e.lineWidth=s.lineWidth,e.moveTo(t+s.roundRect,n),e.lineTo(t+r-s.roundRect,n),e.quadraticCurveTo(t+r,n,t+r,n+s.roundRect),e.lineTo(t+r,n+a-s.roundRect),e.quadraticCurveTo(t+r,n+a,t+r-s.roundRect,n+a),e.lineTo(t+s.roundRect,n+a),e.quadraticCurveTo(t,n+a,t,n+a-s.roundRect),e.lineTo(t,n+s.roundRect),e.quadraticCurveTo(t,n,t+s.roundRect,n),e.closePath();e.stroke()}function Z2(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let r of t)e.strokeStyle=n.useDepth&&r[2]?`rgba(${127.5+2*r[2]}, ${127.5-2*r[2]}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r[2]?`rgba(${127.5+2*r[2]}, ${127.5-2*r[2]}, 255, 0.3)`:n.color,e.lineTo(r[0],parseInt(r[1]));e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function ah(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){Z2(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let r=0;r<t.length-2;r++){let a=(t[r][0]+t[r+1][0])/2,s=(t[r][1]+t[r+1][1])/2;e.quadraticCurveTo(t[r][0],t[r][1],a,s)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}async function xk(e,t,n){let r=Qn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!a)return;a.font=r.font,a.fillStyle=r.color;let s=1;for(let i=0;i<t.length;i++){let o=[],l=[];if([o,l]=Object.entries(t[i]),l.length>1&&l[1].length>0){let c=o[1]>0?`#${o[1]}`:"",u=`${o[0]} ${c}: ${l[1]}`;r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(u,8,2+s*r.lineHeight)),a.fillStyle=r.labelColor,a.fillText(u,6,0+s*r.lineHeight),s+=1}}}async function wk(e,t,n){let r=Qn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a)for(let s of t){a.font=r.font,a.strokeStyle=r.color,a.fillStyle=r.color,r.drawBoxes&&(r.useRawBoxes?su(a,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],r):su(a,s.box[0],s.box[1],s.box[2],s.box[3],r));let i=[];if(i.push(`face confidence: ${Math.trunc(100*s.confidence)}%`),s.genderConfidence&&i.push(`${s.gender||""} ${Math.trunc(100*s.genderConfidence)}% confident`),s.age&&i.push(`age: ${s.age||""}`),s.iris&&i.push(`iris distance: ${s.iris}`),s.emotion&&s.emotion.length>0){let o=s.emotion.map(l=>`${Math.trunc(100*l.score)}% ${l.emotion}`);i.push(o.join(" "))}s.rotation&&s.rotation.angle&&s.rotation.angle.roll&&i.push(`roll: ${Math.trunc(100*s.rotation.angle.roll)/100} yaw:${Math.trunc(100*s.rotation.angle.yaw)/100} pitch:${Math.trunc(100*s.rotation.angle.pitch)/100}`),i.length===0&&i.push("face"),a.fillStyle=r.color;for(let o=i.length-1;o>=0;o--){let l=Math.max(s.box[0],0),c=o*r.lineHeight+s.box[1];r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(i[o],l+5,c+16)),a.fillStyle=r.labelColor,a.fillText(i[o],l+4,c+15)}if(a.lineWidth=1,s.mesh&&s.mesh.length>0){if(r.drawPoints)for(let o of s.mesh)H0(a,o[0],o[1],o[2],r);if(r.drawPolygons){a.lineWidth=1;for(let o=0;o<ji.length/3;o++){let l=[ji[o*3+0],ji[o*3+1],ji[o*3+2]].map(c=>s.mesh[c]);Z2(a,l,r)}if(s.annotations&&s.annotations.leftEyeIris){a.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,a.beginPath();let o=Math.abs(s.annotations.leftEyeIris[3][0]-s.annotations.leftEyeIris[1][0])/2,l=Math.abs(s.annotations.leftEyeIris[4][1]-s.annotations.leftEyeIris[2][1])/2;a.ellipse(s.annotations.leftEyeIris[0][0],s.annotations.leftEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),r.fillPolygons&&(a.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,a.fill())}if(s.annotations&&s.annotations.rightEyeIris){a.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,a.beginPath();let o=Math.abs(s.annotations.rightEyeIris[3][0]-s.annotations.rightEyeIris[1][0])/2,l=Math.abs(s.annotations.rightEyeIris[4][1]-s.annotations.rightEyeIris[2][1])/2;a.ellipse(s.annotations.rightEyeIris[0][0],s.annotations.rightEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),r.fillPolygons&&(a.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,a.fill())}}}}}var ss=[];async function bk(e,t,n){let r=Qn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round";for(let s=0;s<t.length;s++){if(!ss[s]&&r.bufferedOutput&&(ss[s]={...t[s]}),a.strokeStyle=r.color,a.lineWidth=r.lineWidth,r.drawPoints)for(let i=0;i<t[s].keypoints.length;i++)a.fillStyle=r.useDepth&&t[s].keypoints[i].position.z?`rgba(${127.5+2*t[s].keypoints[i].position.z}, ${127.5-2*t[s].keypoints[i].position.z}, 255, 0.5)`:r.color,r.bufferedOutput?(ss[s].keypoints[i][0]=(ss[s].keypoints[i][0]+t[s].keypoints[i].position.x)/2,ss[s].keypoints[i][1]=(ss[s].keypoints[i][1]+t[s].keypoints[i].position.y)/2,H0(a,ss[s].keypoints[i][0],ss[s].keypoints[i][1],0,r)):H0(a,t[s].keypoints[i].position.x,t[s].keypoints[i].position.y,0,r);if(r.drawLabels&&(a.font=r.font,t[s].keypoints))for(let i of t[s].keypoints)a.fillStyle=r.useDepth&&i.position.z?`rgba(${127.5+2*i.position.z}, ${127.5-2*i.position.z}, 255, 0.5)`:r.color,a.fillText(`${i.part}`,i.position.x+4,i.position.y+4);if(r.drawPolygons&&t[s].keypoints){let i,o=[];o.length=0,i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),ah(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),o.length===4&&Z2(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftKnee"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftAnkle"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHeel"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftFoot"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),ah(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightKnee"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightAnkle"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHeel"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightFoot"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),ah(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftElbow"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftWrist"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftPalm"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),ah(a,o,r),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightElbow"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightWrist"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightPalm"),i&&i.score>ht.body.scoreThreshold&&o.push([i.position.x,i.position.y]),ah(a,o,r)}}}}async function _k(e,t,n){let r=Qn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round",a.font=r.font;for(let s of t){if(r.drawBoxes){a.strokeStyle=r.color,a.fillStyle=r.color;let i;if(!r.calculateHandBox)i=r.useRawBoxes?s.boxRaw:s.box;else if(i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],s.landmarks&&s.landmarks.length>0){for(let o of s.landmarks)o[0]<i[0]&&(i[0]=o[0]),o[1]<i[1]&&(i[1]=o[1]),o[0]>i[2]&&(i[2]=o[0]),o[1]>i[3]&&(i[3]=o[1]);i[2]-=i[0],i[3]-=i[1]}r.useRawBoxes?su(a,e.width*i[0],e.height*i[1],e.width*i[2],e.height*i[3],r):su(a,i[0],i[1],i[2],i[3],r),r.drawLabels&&(r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText("hand",i[0]+3,1+i[1]+r.lineHeight,i[2])),a.fillStyle=r.labelColor,a.fillText("hand",i[0]+2,0+i[1]+r.lineHeight,i[2])),a.stroke()}if(r.drawPoints&&s.landmarks&&s.landmarks.length>0)for(let i of s.landmarks)a.fillStyle=r.useDepth?`rgba(${127.5+2*i[2]}, ${127.5-2*i[2]}, 255, 0.5)`:r.color,H0(a,i[0],i[1],0,r);if(r.drawPolygons){let i=o=>{if(!!o)for(let l=0;l<o.length;l++)a.lineWidth=r.lineWidth,a.beginPath(),a.strokeStyle=r.useDepth?`rgba(${127.5+2*o[l][2]}, ${127.5-2*o[l][2]}, 255, 0.5)`:r.color,a.moveTo(o[l>0?l-1:0][0],o[l>0?l-1:0][1]),a.lineTo(o[l][0],o[l][1]),a.stroke()};i(s.annotations.indexFinger),i(s.annotations.middleFinger),i(s.annotations.ringFinger),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function vk(e,t,n){let r=Qn(Hi,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let a=e.getContext("2d");if(!!a){a.lineJoin="round",a.font=r.font;for(let s of t)if(r.drawBoxes){if(a.strokeStyle=r.color,a.fillStyle=r.color,r.useRawBoxes?su(a,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],r):su(a,s.box[0],s.box[1],s.box[2],s.box[3],r),r.drawLabels){let i=`${Math.round(100*s.score)}% ${s.label}`;r.shadowColor&&r.shadowColor!==""&&(a.fillStyle=r.shadowColor,a.fillText(i,s.box[0]+3,1+s.box[1]+r.lineHeight,s.box[2])),a.fillStyle=r.labelColor,a.fillText(i,s.box[0]+2,0+s.box[1]+r.lineHeight,s.box[2])}a.stroke()}}}async function goe(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function xoe(e,t,n){let r=Qn(Hi,n);!t||!e||e instanceof HTMLCanvasElement&&(wk(e,t.face,r),bk(e,t.body,r),_k(e,t.hand,r),xk(e,t.gesture,r),vk(e,t.object,r))}var G0=`
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,q0=`
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
2Q==`;var kk="1.6.1";var iu,sh,ih,Gi,X0,oh,K0,Z0,Y0,Ik=class{constructor(t={}){iu.set(this,void 0);sh.set(this,void 0);ih.set(this,void 0);Gi.set(this,void 0);this.analyze=(...t)=>{if(!ur(this,sh))return;let n=this.tf.engine().state.numTensors,r=ur(this,iu);us(this,iu,n);let a=n-r;a!==0&&le(...t,a)};X0.set(this,t=>{if(!ur(this,ih))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Pe))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});oh.set(this,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let r=Ye();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&le("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&le("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let a=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&le(`wasm execution: ${a?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),this.config.debug&&!a&&le("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&N8();try{await this.tf.setBackend(this.config.backend)}catch(a){le("error: cannot set backend:",this.config.backend,a)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),this.config.deallocate&&(le("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1));let a=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&le(`gl version:${a.getParameter(a.VERSION)} renderer:${a.getParameter(a.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(Ye()-r)}});K0.set(this,async()=>{let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),n,r;switch(this.config.warmup){case"face":n=await t(G0);break;case"full":n=await t(q0);break;default:n=null}if(n){let a=await createImageBitmap(n);r=await this.detect(a,this.config),a.close()}return r});Z0.set(this,async()=>new Promise(t=>{let n,r=0;switch(this.config.warmup){case"face":r=256,n="data:image/jpeg;base64,"+G0;break;case"full":case"body":r=1200,n="data:image/jpeg;base64,"+q0;break;default:n=null}let a=new Image;a.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");s.width=a.naturalWidth,s.height=a.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(a,0,0);let o=await this.detect(s,this.config);t(o)},n?a.src=n:t(null)}));Y0.set(this,async()=>{let t=a=>Buffer.from(a,"base64"),n;if(this.config.warmup==="face"&&(n=t(G0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(q0)),!n)return null;let r;if(typeof void 0!="undefined"){let a=(void 0).decodeJpeg(n),s=a.expandDims(0);this.tf.dispose(a),r=await this.detect(s,this.config),this.tf.dispose(s)}else this.config.debug&&le("Warmup tfjs-node not loaded");return r});this.tf=gu,this.draw=K2,this.version=kk,this.config=Qn(ht,t),this.state="idle",us(this,iu,0),us(this,sh,!1),us(this,ih,!1),us(this,Gi,!0),this.perf={},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,faceres:null},this.image=n=>X2(n,this.config),this.classes={facemesh:m2,age:Gg,gender:Xg,emotion:Qg,faceres:s2,body:this.config.body.modelPath.includes("posenet")?N2:P2,hand:$2,nanodet:j2},this.faceTriangulation=L8,this.faceUVMap=W8,this.sysinfo=c5()}profileData(){return this.config.profile?x0:{}}similarity(t,n){return this.config.face.description.enabled?o2(t,n):this.config.face.embedding.enabled?T8(t,n):0}enhance(t){return l2(t)}match(t,n,r=0){return E8(t,n,r)}async load(t={}){this.state="load";let n=Ye();t&&(this.config=Qn(this.config,t)),ur(this,Gi)&&(this.config.debug&&le(`version: ${this.version}`),this.config.debug&&le(`tfjs version: ${this.tf.version_core}`),this.config.debug&&le("platform:",this.sysinfo.platform),this.config.debug&&le("agent:",this.sysinfo.agent),await ur(this,oh).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&le("configuration:",this.config),this.config.debug&&le("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.efficientpose,this.models.nanodet,this.models.faceres]=await Promise.all([this.models.face||(this.config.face.enabled?y2(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?qg(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?Jg(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?n2(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?r2(this.config):null),this.models.handpose||(this.config.hand.enabled?z2(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?E2(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?L2(this.config):null),this.models.efficientpose||(this.config.body.enabled&&this.config.body.modelPath.includes("efficientpose")?B2(this.config):null),this.models.nanodet||(this.config.object.enabled?H2(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?i2(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await y2(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await qg(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await Jg(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await n2(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await r2(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await z2(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await E2(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await L2(this.config)),this.config.body.enabled&&!this.models.efficientpose&&this.config.body.modelPath.includes("efficientpose")&&(this.models.efficientpose=await B2(this.config)),this.config.object.enabled&&!this.models.nanodet&&(this.models.nanodet=await H2(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await i2(this.config))),ur(this,Gi)&&(this.config.debug&&le("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),us(this,Gi,!1));let r=Math.trunc(Ye()-n);r>(this.perf.load||0)&&(this.perf.load=r)}async detect(t,n={}){return new Promise(async r=>{var A,y,g,x;this.state="config";let a;this.config=Qn(this.config,n),this.state="check";let s=ur(this,X0).call(this,t);s&&(le(s,t),r({error:s}));let i=Ye();await ur(this,oh).call(this),await this.load(),this.config.scoped&&this.tf.engine().startScope(),this.analyze("Start Scope:");let o;t&&this.config.videoOptimized&&(typeof HTMLImageElement!="undefined"&&t instanceof HTMLImageElement||typeof Image!="undefined"&&t instanceof Image||typeof ImageData!="undefined"&&t instanceof ImageData||typeof ImageBitmap!="undefined"&&q2 instanceof ImageBitmap)&&(le("disabling video optimization"),o=this.config.videoOptimized,this.config.videoOptimized=!1),a=Ye();let l=X2(t,this.config);if(!l||!l.tensor){le("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(Ye()-a),this.analyze("Get Image:");let c,u,h,d,p;this.config.async?(h=this.config.face.enabled?u2(this,l.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",a=Ye(),h=this.config.face.enabled?await u2(this,l.tensor):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.face=p)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?(A=this.models.posenet)==null?void 0:A.estimatePoses(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?W2(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(c=this.config.body.enabled?V2(l.tensor,this.config):[]),this.perf.body&&delete this.perf.body):(this.state="run:body",a=Ye(),this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?await((y=this.models.posenet)==null?void 0:y.estimatePoses(l.tensor,this.config)):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?await W2(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")&&(c=this.config.body.enabled?await V2(l.tensor,this.config):[]),p=Math.trunc(Ye()-a),p>0&&(this.perf.body=p)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(u=this.config.hand.enabled?(g=this.models.handpose)==null?void 0:g.estimateHands(l.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",a=Ye(),u=this.config.hand.enabled?await((x=this.models.handpose)==null?void 0:x.estimateHands(l.tensor,this.config)):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.hand=p)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(d=this.config.object.enabled?G2(l.tensor,this.config):[],this.perf.object&&delete this.perf.object):(this.state="run:object",a=Ye(),d=this.config.object.enabled?await G2(l.tensor,this.config):[],p=Math.trunc(Ye()-a),p>0&&(this.perf.object=p)),this.analyze("End Object:"),this.config.async&&([h,c,u,d]=await Promise.all([h,c,u,d])),_e(l.tensor),this.config.scoped&&this.tf.engine().endScope(),this.analyze("End Scope:");let f=[];this.config.gesture.enabled&&(a=Ye(),f=[...mk(h),...fk(c),...yk(u),...Ak(h)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(Ye()-a)),o&&(this.config.videoOptimized=o),this.perf.total=Math.trunc(Ye()-i),this.state="idle";let m={face:h,body:c,hand:u,gesture:f,object:d,performance:this.perf,canvas:l.canvas};r(m)})}async warmup(t={}){let n=Ye();if(t&&(this.config=Qn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let r=this.config.videoOptimized;this.config.videoOptimized=!1;let a;typeof createImageBitmap=="function"?a=await ur(this,K0).call(this):typeof Image!="undefined"?a=await ur(this,Z0).call(this):a=await ur(this,Y0).call(this),this.config.videoOptimized=r;let s=Ye();return this.config.debug&&le("Warmup",this.config.warmup,Math.round(s-n),"ms",a),a}};iu=new WeakMap,sh=new WeakMap,ih=new WeakMap,Gi=new WeakMap,X0=new WeakMap,oh=new WeakMap,K0=new WeakMap,Z0=new WeakMap,Y0=new WeakMap;return boe;})();
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */
//# sourceMappingURL=human.js.map