human/dist/human.js

8020 lines
1.6 MiB

/*
Human
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
var Human=(()=>{var Jc=Object.defineProperty;var aR=Object.getOwnPropertyDescriptor;var sR=Object.getOwnPropertyNames;var iR=Object.prototype.hasOwnProperty;var oR=(e,t,r)=>t in e?Jc(e,t,{enumerable:!0,configurable:!0,writable:!0,value:r}):e[t]=r;var vs=(e,t)=>{for(var r in t)Jc(e,r,{get:t[r],enumerable:!0})},lR=(e,t,r,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of sR(t))!iR.call(e,a)&&a!==r&&Jc(e,a,{get:()=>t[a],enumerable:!(n=aR(t,a))||n.enumerable});return e};var uR=e=>lR(Jc({},"__esModule",{value:!0}),e);var fe=(e,t,r)=>(oR(e,typeof t!="symbol"?t+"":t,r),r),Ub=(e,t,r)=>{if(!t.has(e))throw TypeError("Cannot "+r)};var vp=(e,t,r)=>(Ub(e,t,"read from private field"),r?r.call(e):t.get(e)),wp=(e,t,r)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,r)},kp=(e,t,r,n)=>(Ub(e,t,"write to private field"),n?n.call(e,r):t.set(e,r),r);var fAe={};vs(fAe,{Human:()=>vb,default:()=>vb,defaults:()=>ws,draw:()=>fb,env:()=>he,match:()=>bb,models:()=>C1});function se(...e){let t=new Date,r=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(r,"Human:",...e)}function Gb(e,t){let r=e.endsWith("/")?"":"/",a=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${r}${t}`;if(!a.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${a}`);return a}var oe=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function pg(e,t,r="config",n=[]){for(let a of Object.keys(t))if(typeof t[a]=="object")pg(e[a],t[a],a,n);else{let s=e&&typeof e[a]!="undefined";s||n.push({reason:"unknown property",where:`${r}.${a} = ${t[a]}`});let i=e&&typeof e[a]==typeof t[a];s&&!i&&n.push({reason:"property type mismatch",where:`${r}.${a} = ${t[a]}`,expected:typeof e[a]})}return t.debug&&r==="config"&&n.length>0&&se("invalid configuration",n),n}function Gt(...e){let t=r=>r&&typeof r=="object";return e.reduce((r,n)=>(Object.keys(n||{}).forEach(a=>{let s=r[a],i=n[a];Array.isArray(s)&&Array.isArray(i)?r[a]=s.concat(...i):t(s)&&t(i)?r[a]=Gt(s,i):r[a]=i}),r),{})}var ws={backend:"",modelBasePath:"",cacheModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!0,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Ue={};vs(Ue,{Abs:()=>Uo,Acos:()=>ju,Acosh:()=>Hu,AdadeltaOptimizer:()=>rm,AdagradOptimizer:()=>nm,AdamOptimizer:()=>am,AdamaxOptimizer:()=>sm,Add:()=>Ja,AddN:()=>Ks,All:()=>qu,Any:()=>Xu,ArgMax:()=>Zs,ArgMin:()=>Ku,Asin:()=>Zu,Asinh:()=>Yu,Atan:()=>Ju,Atan2:()=>ed,Atanh:()=>Qu,AvgPool:()=>Ys,AvgPool3D:()=>nh,AvgPool3DGrad:()=>uf,AvgPoolGrad:()=>lf,BackendWasm:()=>TC,BatchMatMul:()=>Js,BatchToSpaceND:()=>Go,Bincount:()=>df,BroadcastArgs:()=>pf,BroadcastTo:()=>q7,Callback:()=>T8,CallbackList:()=>Tw,Cast:()=>Qs,Ceil:()=>ei,ClipByValue:()=>Qa,Complex:()=>ah,ComplexAbs:()=>sh,Concat:()=>jo,Conv2D:()=>ti,Conv2DBackpropFilter:()=>hf,Conv2DBackpropInput:()=>ri,Conv3D:()=>ih,Conv3DBackpropFilterV2:()=>cf,Conv3DBackpropInputV2:()=>ff,Cos:()=>ni,Cosh:()=>ai,CropAndResize:()=>qo,Cumprod:()=>Ho,Cumsum:()=>si,CustomCallback:()=>Ew,DataStorage:()=>rh,DenseBincount:()=>mf,DepthToSpace:()=>Xo,DepthwiseConv2dNative:()=>ii,DepthwiseConv2dNativeBackpropFilter:()=>gf,DepthwiseConv2dNativeBackpropInput:()=>yf,Diag:()=>Af,Dilation2D:()=>oh,Dilation2DBackpropFilter:()=>T0,Dilation2DBackpropInput:()=>C0,ENV:()=>ba,EarlyStopping:()=>N8,Einsum:()=>lh,Elu:()=>li,EluGrad:()=>xf,Environment:()=>j7,Equal:()=>Ko,Erf:()=>td,Exp:()=>ui,ExpandDims:()=>Zo,Expm1:()=>Yo,FFT:()=>bf,Fill:()=>rd,FlipLeftRight:()=>Jo,Floor:()=>di,FloorDiv:()=>pi,FromPixels:()=>Gp,FusedBatchNorm:()=>hi,FusedConv2D:()=>Ps,FusedDepthwiseConv2D:()=>Os,GPGPUContext:()=>Cu,GatherNd:()=>el,GatherV2:()=>Qo,GraphModel:()=>Vh,Greater:()=>tl,GreaterEqual:()=>ci,History:()=>Nw,IFFT:()=>vf,Identity:()=>fi,Imag:()=>uh,InputSpec:()=>Zt,IsFinite:()=>nd,IsInf:()=>ad,IsNan:()=>sd,KernelBackend:()=>Uu,LRN:()=>dh,LRNGrad:()=>kf,LayerVariable:()=>Aw,LayersModel:()=>Ka,LeakyRelu:()=>mi,Less:()=>rl,LessEqual:()=>nl,LinSpace:()=>wf,Log:()=>gi,Log1p:()=>id,LogSoftmax:()=>K7,LogicalAnd:()=>al,LogicalNot:()=>sl,LogicalOr:()=>od,LogicalXor:()=>X7,LowerBound:()=>e$,MathBackendCPU:()=>dA,MathBackendWebGL:()=>Hh,Max:()=>yi,MaxPool:()=>xi,MaxPool3D:()=>ph,MaxPool3DGrad:()=>Sf,MaxPoolGrad:()=>If,MaxPoolWithArgmax:()=>Cf,Maximum:()=>Ai,Mean:()=>bi,Min:()=>vi,Minimum:()=>wi,MirrorPad:()=>ki,Mod:()=>ld,MomentumOptimizer:()=>im,Multinomial:()=>Tf,Multiply:()=>Ii,Neg:()=>il,NonMaxSuppressionV3:()=>ll,NonMaxSuppressionV4:()=>ud,NonMaxSuppressionV5:()=>ul,NotEqual:()=>ol,OP_SCOPE_SUFFIX:()=>d6,OneHot:()=>pl,OnesLike:()=>dl,Optimizer:()=>ns,OptimizerConstructors:()=>Is,Pack:()=>hl,PadV2:()=>Si,Pool:()=>t$,Pow:()=>Ci,Prelu:()=>Ti,Prod:()=>Ni,RMSPropOptimizer:()=>om,RNN:()=>as,Range:()=>dd,Rank:()=>e6,Real:()=>hh,RealDiv:()=>oi,Reciprocal:()=>pd,Reduction:()=>rw,Relu:()=>Ei,Relu6:()=>$i,Reshape:()=>cl,ResizeBilinear:()=>Ri,ResizeBilinearGrad:()=>Ef,ResizeNearestNeighbor:()=>hd,ResizeNearestNeighborGrad:()=>Nf,Reverse:()=>fl,RotateWithOffset:()=>Nl,Round:()=>ml,Rsqrt:()=>Mi,SGDOptimizer:()=>Mh,ScatterNd:()=>gl,SearchSorted:()=>Rf,Select:()=>yl,Selu:()=>cd,Sequential:()=>vm,Sigmoid:()=>_i,Sign:()=>fd,Sin:()=>Fi,Sinh:()=>xl,Slice:()=>Al,Softmax:()=>zi,Softplus:()=>md,SpaceToBatchND:()=>bl,SparseFillEmptyRows:()=>ch,SparseReshape:()=>gd,SparseSegmentMean:()=>fh,SparseSegmentSum:()=>mh,SparseToDense:()=>gh,SplitV:()=>vl,Sqrt:()=>Pi,Square:()=>yd,SquaredDifference:()=>Di,Step:()=>Wi,StridedSlice:()=>wl,StringNGrams:()=>yh,StringSplit:()=>$f,StringToHashBucketFast:()=>Mf,Sub:()=>Li,Sum:()=>Oi,SymbolicTensor:()=>pa,Tan:()=>kl,Tanh:()=>Bi,Tensor:()=>nt,TensorBuffer:()=>ir,Tile:()=>es,TopK:()=>Il,Transform:()=>Sl,Transpose:()=>$a,Unique:()=>Ff,Unpack:()=>Cl,UnsortedSegmentSum:()=>Ah,UpperBound:()=>r$,Variable:()=>qp,ZerosLike:()=>Tl,_FusedMatMul:()=>_s,abs:()=>ar,acos:()=>j6,acosh:()=>H6,add:()=>le,addN:()=>Pf,all:()=>Zy,any:()=>F0,argMax:()=>$n,argMin:()=>q6,asin:()=>X6,asinh:()=>K6,atan:()=>Z6,atan2:()=>Y6,atanh:()=>J6,avgPool:()=>Of,avgPool3d:()=>Jy,backend:()=>Dn,backend_util:()=>C,basicLSTMCell:()=>qF,batchNorm:()=>$u,batchNorm2d:()=>rv,batchNorm3d:()=>nv,batchNorm4d:()=>av,batchToSpaceND:()=>zf,bincount:()=>Qy,booleanMaskAsync:()=>iz,broadcastArgs:()=>sv,broadcastTo:()=>Lp,broadcast_util:()=>Rl,browser:()=>Ln,buffer:()=>De,callbacks:()=>zj,cast:()=>me,ceil:()=>iv,clipByValue:()=>fn,clone:()=>Vr,complex:()=>Za,concat:()=>St,concat1d:()=>ov,concat2d:()=>xd,concat3d:()=>lv,concat4d:()=>uv,constraints:()=>kw,conv1d:()=>e3,conv2d:()=>Ds,conv2dTranspose:()=>r3,conv3d:()=>n3,conv3dTranspose:()=>pv,copyRegisteredKernels:()=>i$,cos:()=>Df,cosh:()=>a3,cosineWindow:()=>N3,cumprod:()=>P0,cumsum:()=>s3,customGrad:()=>Pa,data:()=>Q8,denseBincount:()=>hv,deprecationWarn:()=>By,depthToSpace:()=>cv,depthwiseConv2d:()=>Th,deregisterOp:()=>Bj,device_util:()=>wh,diag:()=>I_,dilation2d:()=>fv,disableDeprecationWarnings:()=>_M,dispose:()=>te,disposeVariables:()=>PM,div:()=>pe,divNoNan:()=>mv,dot:()=>$_,dropout:()=>qv,einsum:()=>gv,elu:()=>Nh,enableDebugMode:()=>FM,enableProdMode:()=>Ly,enclosingPowerOfTwo:()=>Xv,engine:()=>Xt,env:()=>Z,equal:()=>Mn,erf:()=>yv,euclideanNorm:()=>wv,exp:()=>Fn,expandDims:()=>Kt,expm1:()=>kv,eye:()=>l3,fft:()=>Kf,fill:()=>bd,findBackend:()=>Vy,findBackendFactory:()=>LM,floor:()=>Eh,floorDiv:()=>Sh,forceHalfFloat:()=>bI,fused:()=>Ws,gather:()=>Mu,gatherND:()=>Hv,gather_util:()=>Uy,getBackend:()=>Hr,getGradient:()=>Tg,getKernel:()=>N0,getKernelsForBackend:()=>Fa,getThreadsCount:()=>u3e,gpgpu_util:()=>Y9,grad:()=>pP,grads:()=>hP,greater:()=>gn,greaterEqual:()=>$l,ifft:()=>Zp,imag:()=>Ih,image:()=>Ie,inTopKAsync:()=>gz,initializers:()=>Iw,input:()=>Uw,io:()=>Cr,irfft:()=>I3,isFinite:()=>tP,isInf:()=>nP,isNaN:()=>Iv,keep:()=>mr,kernel_impls:()=>Kn,layers:()=>Sw,leakyRelu:()=>Bf,less:()=>u3,lessEqual:()=>Ml,linalg:()=>nw,linspace:()=>Sv,loadGraphModel:()=>UH,loadGraphModelSync:()=>GH,loadLayersModel:()=>XU,localResponseNormalization:()=>Cv,log:()=>_n,log1p:()=>Wf,logSigmoid:()=>yP,logSoftmax:()=>d3,logSumExp:()=>Nv,logicalAnd:()=>ga,logicalNot:()=>Uf,logicalOr:()=>p3,logicalXor:()=>SP,losses:()=>eL,lowerBound:()=>Ev,matMul:()=>Ye,math:()=>C6,max:()=>yr,maxPool:()=>Gf,maxPool3d:()=>c3,maxPoolWithArgmax:()=>Rv,maximum:()=>ts,mean:()=>Vt,memory:()=>M0,meshgrid:()=>MP,metrics:()=>I8,min:()=>Ls,minimum:()=>Rh,mirrorPad:()=>$v,mod:()=>wd,model:()=>HU,models:()=>S8,moments:()=>jf,movingAverage:()=>lz,mul:()=>L,multiRNNCell:()=>DP,multinomial:()=>Mv,neg:()=>Mt,nextFrame:()=>$3,norm:()=>Lf,notEqual:()=>Fu,oneHot:()=>Kp,ones:()=>cn,onesLike:()=>Pn,op:()=>W,outerProduct:()=>UP,pad:()=>Xn,pad1d:()=>HP,pad2d:()=>XP,pad3d:()=>ZP,pad4d:()=>JP,pool:()=>nO,pow:()=>Bs,prelu:()=>qf,print:()=>b6,prod:()=>f3,profile:()=>OM,rand:()=>oO,randomGamma:()=>pO,randomNormal:()=>Fv,randomUniform:()=>kd,range:()=>_u,ready:()=>Ad,real:()=>Eu,reciprocal:()=>_v,registerBackend:()=>El,registerCallbackConstructor:()=>KU,registerGradient:()=>Z7,registerKernel:()=>qn,registerOp:()=>Lj,regularizers:()=>C8,relu:()=>Da,relu6:()=>y3,removeBackend:()=>DM,reshape:()=>U,reverse:()=>On,reverse1d:()=>xO,reverse2d:()=>vO,reverse3d:()=>kO,reverse4d:()=>SO,rfft:()=>Zf,round:()=>A3,rsqrt:()=>x3,scalar:()=>Se,scatterND:()=>jv,scatter_util:()=>Gy,searchSorted:()=>h3,selu:()=>b3,separableConv2d:()=>Pv,sequential:()=>qU,serialization:()=>ue,setBackend:()=>Wy,setPlatform:()=>BM,setThreadsCount:()=>l3e,setWasmPath:()=>o3e,setWasmPaths:()=>jA,setWebGLContext:()=>Mm,setdiff1dAsync:()=>Ov,shared:()=>Rm,sigmoid:()=>Tr,sign:()=>zv,signal:()=>QD,sin:()=>v3,sinh:()=>w3,slice:()=>_e,slice1d:()=>Xf,slice2d:()=>k3,slice3d:()=>Fl,slice4d:()=>_o,slice_util:()=>Dt,softmax:()=>Id,softplus:()=>vd,spaceToBatchND:()=>Hf,sparse:()=>Rp,sparseToDense:()=>T3,spectral:()=>JD,split:()=>Yt,sqrt:()=>Er,square:()=>bt,squaredDifference:()=>S3,squeeze:()=>et,stack:()=>ur,step:()=>$h,stridedSlice:()=>Dv,string:()=>c0,sub:()=>ce,sum:()=>ke,sumOutType:()=>vh,tan:()=>Lv,tanh:()=>Ru,tensor:()=>ft,tensor1d:()=>Nt,tensor2d:()=>ca,tensor3d:()=>N6,tensor4d:()=>ZO,tensor5d:()=>YO,tensor6d:()=>JO,tensor_util:()=>ha,test_util:()=>V6,tidy:()=>X,tile:()=>jn,time:()=>zM,topk:()=>Bv,train:()=>yo,transpose:()=>tt,truncatedNormal:()=>Yf,unique:()=>Bg,unregisterGradient:()=>s$,unregisterKernel:()=>a$,unsortedSegmentSum:()=>Wv,unstack:()=>an,upcastType:()=>Nr,upperBound:()=>Vv,util:()=>v,valueAndGrad:()=>cP,valueAndGrads:()=>fP,variable:()=>Uv,variableGrads:()=>Tv,version:()=>rc,version_converter:()=>HH,version_core:()=>Ky,version_cpu:()=>MX,version_layers:()=>e5,version_wasm:()=>d3e,version_webgl:()=>lre,webgl:()=>ure,webgl_util:()=>v9,webgpu:()=>wS,where:()=>Ur,whereAsync:()=>C3,zeros:()=>Ot,zerosLike:()=>at});var dR=Object.create,nf=Object.defineProperty,pR=Object.getOwnPropertyDescriptor,F7=Object.getOwnPropertyNames,hR=Object.getPrototypeOf,cR=Object.prototype.hasOwnProperty,fR=e=>nf(e,"__esModule",{value:!0}),dr=(e,t)=>function(){return t||(0,e[F7(e)[0]])((t={exports:{}}).exports,t),t.exports},Be=(e,t)=>{for(var r in t)nf(e,r,{get:t[r],enumerable:!0})},mR=(e,t,r,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of F7(t))!cR.call(e,a)&&(r||a!=="default")&&nf(e,a,{get:()=>t[a],enumerable:!(n=pR(t,a))||n.enumerable});return e},Wo=(e,t)=>mR(fR(nf(e!=null?dR(hR(e)):{},"default",!t&&e&&e.__esModule?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),gR=dr({"src/node_modules/long/src/long.js"(e,t){t.exports=n;var r=null;try{r=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(S){}function n(S,P,z){this.low=S|0,this.high=P|0,this.unsigned=!!z}n.prototype.__isLong__,Object.defineProperty(n.prototype,"__isLong__",{value:!0});function a(S){return(S&&S.__isLong__)===!0}n.isLong=a;var s={},i={};function o(S,P){var z,j,K;return P?(S>>>=0,(K=0<=S&&S<256)&&(j=i[S],j)?j:(z=u(S,(S|0)<0?-1:0,!0),K&&(i[S]=z),z)):(S|=0,(K=-128<=S&&S<128)&&(j=s[S],j)?j:(z=u(S,S<0?-1:0,!1),K&&(s[S]=z),z))}n.fromInt=o;function l(S,P){if(isNaN(S))return P?b:x;if(P){if(S<0)return b;if(S>=g)return R}else{if(S<=-y)return O;if(S+1>=y)return E}return S<0?l(-S,P).neg():u(S%f|0,S/f|0,P)}n.fromNumber=l;function u(S,P,z){return new n(S,P,z)}n.fromBits=u;var d=Math.pow;function h(S,P,z){if(S.length===0)throw Error("empty string");if(S==="NaN"||S==="Infinity"||S==="+Infinity"||S==="-Infinity")return x;if(typeof P=="number"?(z=P,P=!1):P=!!P,z=z||10,z<2||36<z)throw RangeError("radix");var j;if((j=S.indexOf("-"))>0)throw Error("interior hyphen");if(j===0)return h(S.substring(1),P,z).neg();for(var K=l(d(z,8)),D=x,Y=0;Y<S.length;Y+=8){var V=Math.min(8,S.length-Y),re=parseInt(S.substring(Y,Y+V),z);if(V<8){var Q=l(d(z,V));D=D.mul(Q).add(l(re))}else D=D.mul(K),D=D.add(l(re))}return D.unsigned=P,D}n.fromString=h;function p(S,P){return typeof S=="number"?l(S,P):typeof S=="string"?h(S,P):u(S.low,S.high,typeof P=="boolean"?P:S.unsigned)}n.fromValue=p;var c=1<<16,m=1<<24,f=c*c,g=f*f,y=g/2,A=o(m),x=o(0);n.ZERO=x;var b=o(0,!0);n.UZERO=b;var w=o(1);n.ONE=w;var I=o(1,!0);n.UONE=I;var T=o(-1);n.NEG_ONE=T;var E=u(-1,2147483647,!1);n.MAX_VALUE=E;var R=u(-1,-1,!0);n.MAX_UNSIGNED_VALUE=R;var O=u(0,-2147483648,!1);n.MIN_VALUE=O;var $=n.prototype;$.toInt=function(){return this.unsigned?this.low>>>0:this.low},$.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},$.toString=function(S){if(S=S||10,S<2||36<S)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(O)){var P=l(S),z=this.div(P),j=z.mul(P).sub(this);return z.toString(S)+j.toInt().toString(S)}else return"-"+this.neg().toString(S);for(var K=l(d(S,6),this.unsigned),D=this,Y="";;){var V=D.div(K),re=D.sub(V.mul(K)).toInt()>>>0,Q=re.toString(S);if(D=V,D.isZero())return Q+Y;for(;Q.length<6;)Q="0"+Q;Y=""+Q+Y}},$.getHighBits=function(){return this.high},$.getHighBitsUnsigned=function(){return this.high>>>0},$.getLowBits=function(){return this.low},$.getLowBitsUnsigned=function(){return this.low>>>0},$.getNumBitsAbs=function(){if(this.isNegative())return this.eq(O)?64:this.neg().getNumBitsAbs();for(var S=this.high!=0?this.high:this.low,P=31;P>0&&(S&1<<P)==0;P--);return this.high!=0?P+33:P+1},$.isZero=function(){return this.high===0&&this.low===0},$.eqz=$.isZero,$.isNegative=function(){return!this.unsigned&&this.high<0},$.isPositive=function(){return this.unsigned||this.high>=0},$.isOdd=function(){return(this.low&1)===1},$.isEven=function(){return(this.low&1)===0},$.equals=function(S){return a(S)||(S=p(S)),this.unsigned!==S.unsigned&&this.high>>>31===1&&S.high>>>31===1?!1:this.high===S.high&&this.low===S.low},$.eq=$.equals,$.notEquals=function(S){return!this.eq(S)},$.neq=$.notEquals,$.ne=$.notEquals,$.lessThan=function(S){return this.comp(S)<0},$.lt=$.lessThan,$.lessThanOrEqual=function(S){return this.comp(S)<=0},$.lte=$.lessThanOrEqual,$.le=$.lessThanOrEqual,$.greaterThan=function(S){return this.comp(S)>0},$.gt=$.greaterThan,$.greaterThanOrEqual=function(S){return this.comp(S)>=0},$.gte=$.greaterThanOrEqual,$.ge=$.greaterThanOrEqual,$.compare=function(S){if(a(S)||(S=p(S)),this.eq(S))return 0;var P=this.isNegative(),z=S.isNegative();return P&&!z?-1:!P&&z?1:this.unsigned?S.high>>>0>this.high>>>0||S.high===this.high&&S.low>>>0>this.low>>>0?-1:1:this.sub(S).isNegative()?-1:1},$.comp=$.compare,$.negate=function(){return!this.unsigned&&this.eq(O)?O:this.not().add(w)},$.neg=$.negate,$.add=function(S){a(S)||(S=p(S));var P=this.high>>>16,z=this.high&65535,j=this.low>>>16,K=this.low&65535,D=S.high>>>16,Y=S.high&65535,V=S.low>>>16,re=S.low&65535,Q=0,ie=0,J=0,ae=0;return ae+=K+re,J+=ae>>>16,ae&=65535,J+=j+V,ie+=J>>>16,J&=65535,ie+=z+Y,Q+=ie>>>16,ie&=65535,Q+=P+D,Q&=65535,u(J<<16|ae,Q<<16|ie,this.unsigned)},$.subtract=function(S){return a(S)||(S=p(S)),this.add(S.neg())},$.sub=$.subtract,$.multiply=function(S){if(this.isZero())return x;if(a(S)||(S=p(S)),r){var P=r.mul(this.low,this.high,S.low,S.high);return u(P,r.get_high(),this.unsigned)}if(S.isZero())return x;if(this.eq(O))return S.isOdd()?O:x;if(S.eq(O))return this.isOdd()?O:x;if(this.isNegative())return S.isNegative()?this.neg().mul(S.neg()):this.neg().mul(S).neg();if(S.isNegative())return this.mul(S.neg()).neg();if(this.lt(A)&&S.lt(A))return l(this.toNumber()*S.toNumber(),this.unsigned);var z=this.high>>>16,j=this.high&65535,K=this.low>>>16,D=this.low&65535,Y=S.high>>>16,V=S.high&65535,re=S.low>>>16,Q=S.low&65535,ie=0,J=0,ae=0,de=0;return de+=D*Q,ae+=de>>>16,de&=65535,ae+=K*Q,J+=ae>>>16,ae&=65535,ae+=D*re,J+=ae>>>16,ae&=65535,J+=j*Q,ie+=J>>>16,J&=65535,J+=K*re,ie+=J>>>16,J&=65535,J+=D*V,ie+=J>>>16,J&=65535,ie+=z*Q+j*re+K*V+D*Y,ie&=65535,u(ae<<16|de,ie<<16|J,this.unsigned)},$.mul=$.multiply,$.divide=function(S){if(a(S)||(S=p(S)),S.isZero())throw Error("division by zero");if(r){if(!this.unsigned&&this.high===-2147483648&&S.low===-1&&S.high===-1)return this;var P=(this.unsigned?r.div_u:r.div_s)(this.low,this.high,S.low,S.high);return u(P,r.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var z,j,K;if(this.unsigned){if(S.unsigned||(S=S.toUnsigned()),S.gt(this))return b;if(S.gt(this.shru(1)))return I;K=b}else{if(this.eq(O)){if(S.eq(w)||S.eq(T))return O;if(S.eq(O))return w;var D=this.shr(1);return z=D.div(S).shl(1),z.eq(x)?S.isNegative()?w:T:(j=this.sub(S.mul(z)),K=z.add(j.div(S)),K)}else if(S.eq(O))return this.unsigned?b:x;if(this.isNegative())return S.isNegative()?this.neg().div(S.neg()):this.neg().div(S).neg();if(S.isNegative())return this.div(S.neg()).neg();K=x}for(j=this;j.gte(S);){z=Math.max(1,Math.floor(j.toNumber()/S.toNumber()));for(var Y=Math.ceil(Math.log(z)/Math.LN2),V=Y<=48?1:d(2,Y-48),re=l(z),Q=re.mul(S);Q.isNegative()||Q.gt(j);)z-=V,re=l(z,this.unsigned),Q=re.mul(S);re.isZero()&&(re=w),K=K.add(re),j=j.sub(Q)}return K},$.div=$.divide,$.modulo=function(S){if(a(S)||(S=p(S)),r){var P=(this.unsigned?r.rem_u:r.rem_s)(this.low,this.high,S.low,S.high);return u(P,r.get_high(),this.unsigned)}return this.sub(this.div(S).mul(S))},$.mod=$.modulo,$.rem=$.modulo,$.not=function(){return u(~this.low,~this.high,this.unsigned)},$.and=function(S){return a(S)||(S=p(S)),u(this.low&S.low,this.high&S.high,this.unsigned)},$.or=function(S){return a(S)||(S=p(S)),u(this.low|S.low,this.high|S.high,this.unsigned)},$.xor=function(S){return a(S)||(S=p(S)),u(this.low^S.low,this.high^S.high,this.unsigned)},$.shiftLeft=function(S){return a(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low<<S,this.high<<S|this.low>>>32-S,this.unsigned):u(0,this.low<<S-32,this.unsigned)},$.shl=$.shiftLeft,$.shiftRight=function(S){return a(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low>>>S|this.high<<32-S,this.high>>S,this.unsigned):u(this.high>>S-32,this.high>=0?0:-1,this.unsigned)},$.shr=$.shiftRight,$.shiftRightUnsigned=function(S){if(a(S)&&(S=S.toInt()),S&=63,S===0)return this;var P=this.high;if(S<32){var z=this.low;return u(z>>>S|P<<32-S,P>>>S,this.unsigned)}else return S===32?u(P,0,this.unsigned):u(P>>>S-32,0,this.unsigned)},$.shru=$.shiftRightUnsigned,$.shr_u=$.shiftRightUnsigned,$.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},$.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},$.toBytes=function(S){return S?this.toBytesLE():this.toBytesBE()},$.toBytesLE=function(){var S=this.high,P=this.low;return[P&255,P>>>8&255,P>>>16&255,P>>>24,S&255,S>>>8&255,S>>>16&255,S>>>24]},$.toBytesBE=function(){var S=this.high,P=this.low;return[S>>>24,S>>>16&255,S>>>8&255,S&255,P>>>24,P>>>16&255,P>>>8&255,P&255]},n.fromBytes=function(S,P,z){return z?n.fromBytesLE(S,P):n.fromBytesBE(S,P)},n.fromBytesLE=function(S,P){return new n(S[0]|S[1]<<8|S[2]<<16|S[3]<<24,S[4]|S[5]<<8|S[6]<<16|S[7]<<24,P)},n.fromBytesBE=function(S,P){return new n(S[4]<<24|S[5]<<16|S[6]<<8|S[7],S[0]<<24|S[1]<<16|S[2]<<8|S[3],P)}}}),yR=dr({"(disabled):src/node_modules/node-fetch/browser.js"(){}}),AR=dr({"(disabled):util"(){}}),xR=dr({"src/node_modules/seedrandom/lib/alea.js"(e,t){(function(r,n,a){function s(u){var d=this,h=l();d.next=function(){var p=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=p-(d.c=p|0)},d.c=1,d.s0=h(" "),d.s1=h(" "),d.s2=h(" "),d.s0-=h(u),d.s0<0&&(d.s0+=1),d.s1-=h(u),d.s1<0&&(d.s1+=1),d.s2-=h(u),d.s2<0&&(d.s2+=1),h=null}function i(u,d){return d.c=u.c,d.s0=u.s0,d.s1=u.s1,d.s2=u.s2,d}function o(u,d){var h=new s(u),p=d&&d.state,c=h.next;return c.int32=function(){return h.next()*4294967296|0},c.double=function(){return c()+(c()*2097152|0)*11102230246251565e-32},c.quick=c,p&&(typeof p=="object"&&i(p,h),c.state=function(){return i(h,{})}),c}function l(){var u=4022871197,d=function(h){h=String(h);for(var p=0;p<h.length;p++){u+=h.charCodeAt(p);var c=.02519603282416938*u;u=c>>>0,c-=u,c*=u,u=c>>>0,c-=u,u+=c*4294967296}return(u>>>0)*23283064365386963e-26};return d}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),bR=dr({"src/node_modules/seedrandom/lib/xor128.js"(e,t){(function(r,n,a){function s(l){var u=this,d="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var p=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^p^p>>>8},l===(l|0)?u.x=l:d+=l;for(var h=0;h<d.length+64;h++)u.x^=d.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),vR=dr({"src/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(r,n,a){function s(l){var u=this,d="";u.next=function(){var p=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(p^p<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:d+=l;for(var h=0;h<d.length+64;h++)u.x^=d.charCodeAt(h)|0,h==d.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),wR=dr({"src/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(r,n,a){function s(l){var u=this;u.next=function(){var h=u.x,p=u.i,c,m,f;return c=h[p],c^=c>>>7,m=c^c<<24,c=h[p+1&7],m^=c^c>>>10,c=h[p+3&7],m^=c^c>>>3,c=h[p+4&7],m^=c^c<<7,c=h[p+7&7],c=c^c<<13,m^=c^c<<9,h[p]=m,u.i=p+1&7,m};function d(h,p){var c,m,f=[];if(p===(p|0))m=f[0]=p;else for(p=""+p,c=0;c<p.length;++c)f[c&7]=f[c&7]<<15^p.charCodeAt(c)+f[c+1&7]<<13;for(;f.length<8;)f.push(0);for(c=0;c<8&&f[c]===0;++c);for(c==8?m=f[7]=-1:m=f[c],h.x=f,h.i=0,c=256;c>0;--c)h.next()}d(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(h.x&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),kR=dr({"src/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(r,n,a){function s(l){var u=this;u.next=function(){var h=u.w,p=u.X,c=u.i,m,f;return u.w=h=h+1640531527|0,f=p[c+34&127],m=p[c=c+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=p[c]=f^m,u.i=c,f+(h^h>>>16)|0};function d(h,p){var c,m,f,g,y,A=[],x=128;for(p===(p|0)?(m=p,p=null):(p=p+"\0",m=0,x=Math.max(x,p.length)),f=0,g=-32;g<x;++g)p&&(m^=p.charCodeAt((g+32)%p.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,c=A[g&127]^=m+y,f=c==0?f+1:0);for(f>=128&&(A[(p&&p.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=A[f+34&127],c=A[f=f+1&127],m^=m<<13,c^=c<<17,m^=m>>>15,c^=c>>>12,A[f]=m^c;h.w=y,h.X=A,h.i=f}d(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(h.X&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),IR=dr({"src/node_modules/seedrandom/lib/tychei.js"(e,t){(function(r,n,a){function s(l){var u=this,d="";u.next=function(){var p=u.b,c=u.c,m=u.d,f=u.a;return p=p<<25^p>>>7^c,c=c-m|0,m=m<<24^m>>>8^f,f=f-p|0,u.b=p=p<<20^p>>>12^c,u.c=c=c-m|0,u.d=m<<16^c>>>16^f,u.a=f-p|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):d+=l;for(var h=0;h<d.length+20;h++)u.b^=d.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var d=new s(l),h=u&&u.state,p=function(){return(d.next()>>>0)/4294967296};return p.double=function(){do var c=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(c+m)/(1<<21);while(f===0);return f},p.int32=d.next,p.quick=p,h&&(typeof h=="object"&&i(h,d),p.state=function(){return i(d,{})}),p}n&&n.exports?n.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),SR=dr({"(disabled):crypto"(){}}),CR=dr({"src/node_modules/seedrandom/seedrandom.js"(e,t){(function(r,n,a){var s=256,i=6,o=52,l="random",u=a.pow(s,i),d=a.pow(2,o),h=d*2,p=s-1,c;function m(w,I,T){var E=[];I=I==!0?{entropy:!0}:I||{};var R=A(y(I.entropy?[w,b(n)]:w==null?x():w,3),E),O=new f(E),$=function(){for(var S=O.g(i),P=u,z=0;S<d;)S=(S+z)*s,P*=s,z=O.g(1);for(;S>=h;)S/=2,P/=2,z>>>=1;return(S+z)/P};return $.int32=function(){return O.g(4)|0},$.quick=function(){return O.g(4)/4294967296},$.double=$,A(b(O.S),n),(I.pass||T||function(S,P,z,j){return j&&(j.S&&g(j,O),S.state=function(){return g(O,{})}),z?(a[l]=S,P):S})($,R,"global"in I?I.global:this==a,I.state)}function f(w){var I,T=w.length,E=this,R=0,O=E.i=E.j=0,$=E.S=[];for(T||(w=[T++]);R<s;)$[R]=R++;for(R=0;R<s;R++)$[R]=$[O=p&O+w[R%T]+(I=$[R])],$[O]=I;(E.g=function(S){for(var P,z=0,j=E.i,K=E.j,D=E.S;S--;)P=D[j=p&j+1],z=z*s+D[p&(D[j]=D[K=p&K+P])+(D[K]=P)];return E.i=j,E.j=K,z})(s)}function g(w,I){return I.i=w.i,I.j=w.j,I.S=w.S.slice(),I}function y(w,I){var T=[],E=typeof w,R;if(I&&E=="object")for(R in w)try{T.push(y(w[R],I-1))}catch(O){}return T.length?T:E=="string"?w:w+"\0"}function A(w,I){for(var T=w+"",E,R=0;R<T.length;)I[p&R]=p&(E^=I[p&R]*19)+T.charCodeAt(R++);return b(I)}function x(){try{var w;return c&&(w=c.randomBytes)?w=w(s):(w=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(w)),b(w)}catch(E){var I=r.navigator,T=I&&I.plugins;return[+new Date,r,T,r.screen,b(n)]}}function b(w){return String.fromCharCode.apply(0,w)}if(A(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{c=SR()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return m}):a["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}}),af=dr({"src/node_modules/seedrandom/index.js"(e,t){var r=xR(),n=bR(),a=vR(),s=wR(),i=kR(),o=IR(),l=CR();l.alea=r,l.xor128=n,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}}),_7=dr({"(disabled):src/node_modules/string_decoder/index.js"(){}}),Cy=dr({"(disabled):fs"(){}}),k0=dr({"(disabled):path"(){}}),TR=dr({"(disabled):worker_threads"(){}}),NR=dr({"(disabled):perf_hooks"(){}}),ER=dr({"(disabled):os"(){}}),RR=dr({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var r=(()=>{var n=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(n=n||__filename),function(a){a=a||{};function s(){return Fe.buffer!=Or&&ra(Fe.buffer),yc}function i(){return Fe.buffer!=Or&&ra(Fe.buffer),Ac}function o(){return Fe.buffer!=Or&&ra(Fe.buffer),dp}function l(){return Fe.buffer!=Or&&ra(Fe.buffer),xc}function u(){return Fe.buffer!=Or&&ra(Fe.buffer),bc}function d(){return Fe.buffer!=Or&&ra(Fe.buffer),vc}function h(){return Fe.buffer!=Or&&ra(Fe.buffer),wc}var p=typeof a!="undefined"?a:{},c,m;p.ready=new Promise(function(N,F){c=N,m=F});var f;typeof process!="undefined"&&process.listeners&&(f={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},p),y=[],A="./this.program",x=(N,F)=>{throw F},b=typeof window=="object",w=typeof importScripts=="function",I=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",T=p.ENVIRONMENT_IS_PTHREAD||!1,E="";function R(N){return p.locateFile?p.locateFile(N,E):E+N}var O,$,S,P;function z(N){N instanceof xp||Q("exiting due to exception: "+N)}var j,K,D;if(I){w?E=k0().dirname(E)+"/":E=__dirname+"/",D=()=>{K||(j=Cy(),K=k0())},O=function(F,G){return D(),F=K.normalize(F),j.readFileSync(F,G?void 0:"utf8")},S=F=>{var G=O(F,!0);return G.buffer||(G=new Uint8Array(G)),G},$=(F,G,ee)=>{D(),F=K.normalize(F),j.readFile(F,function(ge,xe){ge?ee(ge):G(xe.buffer)})},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function(F){if(!(F instanceof xp))throw F}),process.on("unhandledRejection",function(F){throw F}),x=(F,G)=>{if(lo())throw process.exitCode=F,G;z(G),process.exit(F)},p.inspect=function(){return"[Emscripten Module object]"};let N;try{N=TR()}catch(F){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),F}global.Worker=N.Worker}else(b||w)&&(w?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof n!="undefined"&&n&&(E=n),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",I||(O=N=>{var F=new XMLHttpRequest;return F.open("GET",N,!1),F.send(null),F.responseText},w&&(S=N=>{var F=new XMLHttpRequest;return F.open("GET",N,!1),F.responseType="arraybuffer",F.send(null),new Uint8Array(F.response)}),$=(N,F,G)=>{var ee=new XMLHttpRequest;ee.open("GET",N,!0),ee.responseType="arraybuffer",ee.onload=()=>{if(ee.status==200||ee.status==0&&ee.response){F(ee.response);return}G()},ee.onerror=G,ee.send(null)}),P=N=>document.title=N);I&&typeof performance=="undefined"&&(global.performance=NR().performance);var Y=console.log.bind(console),V=console.warn.bind(console);I&&(D(),Y=N=>j.writeSync(1,N+`
`),V=N=>j.writeSync(2,N+`
`));var re=p.print||Y,Q=p.printErr||V;Object.assign(p,g),g=null,p.arguments&&(y=p.arguments),p.thisProgram&&(A=p.thisProgram),p.quit&&(x=p.quit);var ie=4;function J(N){J.shown||(J.shown={}),J.shown[N]||(J.shown[N]=1,Q(N))}function ae(N,F){if(typeof WebAssembly.Function=="function"){for(var G={i:"i32",j:"i64",f:"f32",d:"f64"},ee={parameters:[],results:F[0]=="v"?[]:[G[F[0]]]},ge=1;ge<F.length;++ge)ee.parameters.push(G[F[ge]]);return new WebAssembly.Function(ee,N)}var xe=[1,0,1,96],Te=F.slice(0,1),Pe=F.slice(1),Pt={i:127,j:126,f:125,d:124};xe.push(Pe.length);for(var ge=0;ge<Pe.length;++ge)xe.push(Pt[Pe[ge]]);Te=="v"?xe.push(0):xe=xe.concat([1,Pt[Te]]),xe[1]=xe.length-2;var ia=new Uint8Array([0,97,115,109,1,0,0,0].concat(xe,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),oa=new WebAssembly.Module(ia),Yc=new WebAssembly.Instance(oa,{e:{f:N}}),bp=Yc.exports.f;return bp}var de=[],be;function ve(){if(de.length)return de.pop();try{Sn.grow(1)}catch(N){throw N instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":N}return Sn.length-1}function Ee(N,F){for(var G=N;G<N+F;G++){var ee=au(G);ee&&be.set(ee,G)}}var $e=0,ze=N=>{$e=N},We=Atomics.load,Ke=Atomics.store,ot=Atomics.compareExchange,pt;p.wasmBinary&&(pt=p.wasmBinary);var ht=p.noExitRuntime||!0;typeof WebAssembly!="object"&&tu("no native wasm support detected");var Fe,wt,xt=!1,Pr;function hr(N,F){N||tu(F)}function Qr(N){var F=p["_"+N];return F}function rr(N,F,G,ee,ge){var xe={string:function(Cn){var pu=0;if(Cn!=null&&Cn!==0){var Vb=(Cn.length<<2)+1;pu=du(Vb),io(Cn,pu,Vb)}return pu},array:function(Cn){var pu=du(Cn.length);return Ua(Cn,pu),pu}};function Te(Cn){return F==="string"?In(Cn):F==="boolean"?Boolean(Cn):Cn}var Pe=Qr(N),Pt=[],ia=0;if(ee)for(var oa=0;oa<ee.length;oa++){var Yc=xe[G[oa]];Yc?(ia===0&&(ia=ug()),Pt[oa]=Yc(ee[oa])):Pt[oa]=ee[oa]}var bp=Pe.apply(null,Pt);function nR(Cn){return ia!==0&&qc(ia),Te(Cn)}return bp=nR(bp),bp}function cr(N,F,G,ee){G=G||[];var ge=G.every(function(Te){return Te==="number"}),xe=F!=="string";return xe&&ge&&!ee?Qr(N):function(){return rr(N,F,G,arguments,ee)}}var ta=1;function en(N){var F=new TextDecoder(N);this.decode=G=>(G.buffer instanceof SharedArrayBuffer&&(G=new Uint8Array(G)),F.decode.call(F,G))}var nr=typeof TextDecoder!="undefined"?new en("utf8"):void 0;function kn(N,F,G){for(var ee=F+G,ge=F;N[ge]&&!(ge>=ee);)++ge;if(ge-F>16&&N.subarray&&nr)return nr.decode(N.subarray(F,ge));for(var xe="";F<ge;){var Te=N[F++];if(!(Te&128)){xe+=String.fromCharCode(Te);continue}var Pe=N[F++]&63;if((Te&224)==192){xe+=String.fromCharCode((Te&31)<<6|Pe);continue}var Pt=N[F++]&63;if((Te&240)==224?Te=(Te&15)<<12|Pe<<6|Pt:Te=(Te&7)<<18|Pe<<12|Pt<<6|N[F++]&63,Te<65536)xe+=String.fromCharCode(Te);else{var ia=Te-65536;xe+=String.fromCharCode(55296|ia>>10,56320|ia&1023)}}return xe}function In(N,F){return N?kn(i(),N,F):""}function gs(N,F,G,ee){if(!(ee>0))return 0;for(var ge=G,xe=G+ee-1,Te=0;Te<N.length;++Te){var Pe=N.charCodeAt(Te);if(Pe>=55296&&Pe<=57343){var Pt=N.charCodeAt(++Te);Pe=65536+((Pe&1023)<<10)|Pt&1023}if(Pe<=127){if(G>=xe)break;F[G++]=Pe}else if(Pe<=2047){if(G+1>=xe)break;F[G++]=192|Pe>>6,F[G++]=128|Pe&63}else if(Pe<=65535){if(G+2>=xe)break;F[G++]=224|Pe>>12,F[G++]=128|Pe>>6&63,F[G++]=128|Pe&63}else{if(G+3>=xe)break;F[G++]=240|Pe>>18,F[G++]=128|Pe>>12&63,F[G++]=128|Pe>>6&63,F[G++]=128|Pe&63}}return F[G]=0,G-ge}function io(N,F,G){return gs(N,i(),F,G)}function gc(N){for(var F=0,G=0;G<N.length;++G){var ee=N.charCodeAt(G);ee>=55296&&ee<=57343&&(ee=65536+((ee&1023)<<10)|N.charCodeAt(++G)&1023),ee<=127?++F:ee<=2047?F+=2:ee<=65535?F+=3:F+=4}return F}var ys=typeof TextDecoder!="undefined"?new en("utf-16le"):void 0;function Ua(N,F){s().set(N,F)}function up(N,F,G){for(var ee=0;ee<N.length;++ee)s()[F++>>0]=N.charCodeAt(ee);G||(s()[F>>0]=0)}function Ql(N,F){return N%F>0&&(N+=F-N%F),N}var Or,yc,Ac,dp,xc,bc,wb,vc,wc;T&&(Or=p.buffer);function ra(N){Or=N,p.HEAP8=yc=new Int8Array(N),p.HEAP16=dp=new Int16Array(N),p.HEAP32=bc=new Int32Array(N),p.HEAPU8=Ac=new Uint8Array(N),p.HEAPU16=xc=new Uint16Array(N),p.HEAPU32=wb=new Uint32Array(N),p.HEAPF32=vc=new Float32Array(N),p.HEAPF64=wc=new Float64Array(N)}var kc=p.INITIAL_MEMORY||16777216;if(T)Fe=p.wasmMemory,Or=p.buffer;else if(p.wasmMemory)Fe=p.wasmMemory;else if(Fe=new WebAssembly.Memory({initial:kc/65536,maximum:32768,shared:!0}),!(Fe.buffer instanceof SharedArrayBuffer))throw Q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),I&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Fe&&(Or=Fe.buffer),kc=Or.byteLength,ra(Or);var Sn,eu=[],As=[],$1=[],Ic=[],oo=!1,M1=!1,Sc=0;function lo(){return ht||Sc>0}function zr(){if(p.preRun)for(typeof p.preRun=="function"&&(p.preRun=[p.preRun]);p.preRun.length;)kb(p.preRun.shift());Rc(eu)}function pp(){oo=!0,!T&&Rc(As)}function F1(){T||(Oe.terminateAllThreads(),M1=!0)}function _1(){if(!T){if(p.postRun)for(typeof p.postRun=="function"&&(p.postRun=[p.postRun]);p.postRun.length;)hp(p.postRun.shift());Rc(Ic)}}function kb(N){eu.unshift(N)}function Ib(N){As.unshift(N)}function hp(N){Ic.unshift(N)}var xs=0,Cc=null,na=null;function cp(N){xs++,p.monitorRunDependencies&&p.monitorRunDependencies(xs)}function Sb(N){if(xs--,p.monitorRunDependencies&&p.monitorRunDependencies(xs),xs==0&&(Cc!==null&&(clearInterval(Cc),Cc=null),na)){var F=na;na=null,F()}}p.preloadedImages={},p.preloadedAudios={};function tu(N){T?postMessage({cmd:"onAbort",arg:N}):p.onAbort&&p.onAbort(N),N="Aborted("+N+")",Q(N),xt=!0,Pr=1,N+=". Build with -s ASSERTIONS=1 for more info.";var F=new WebAssembly.RuntimeError(N);throw m(F),F}var P1="data:application/octet-stream;base64,";function Tc(N){return N.startsWith(P1)}function Nc(N){return N.startsWith("file://")}var Dr;Dr="tfjs-backend-wasm-threaded-simd.wasm",Tc(Dr)||(Dr=R(Dr));function Ec(N){try{if(N==Dr&&pt)return new Uint8Array(pt);if(S)return S(N);throw"both async and sync fetching of the wasm failed"}catch(F){tu(F)}}function ru(){if(!pt&&(b||w)){if(typeof fetch=="function"&&!Nc(Dr))return fetch(Dr,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+Dr+"'";return N.arrayBuffer()}).catch(function(){return Ec(Dr)});if($)return new Promise(function(N,F){$(Dr,function(G){N(new Uint8Array(G))},F)})}return Promise.resolve().then(function(){return Ec(Dr)})}function O1(){var N={env:Vc,wasi_snapshot_preview1:Vc};function F(Te,Pe){var Pt=Te.exports;if(p.asm=Pt,U1(p.asm.emscripten_tls_init),Sn=p.asm.__indirect_function_table,Ib(p.asm.__wasm_call_ctors),wt=Pe,!T){var ia=Oe.unusedWorkers.length;Oe.unusedWorkers.forEach(function(oa){Oe.loadWasmModuleToWorker(oa,function(){--ia||Sb("wasm-instantiate")})})}}T||cp("wasm-instantiate");function G(Te){F(Te.instance,Te.module)}function ee(Te){return ru().then(function(Pe){return WebAssembly.instantiate(Pe,N)}).then(function(Pe){return Pe}).then(Te,function(Pe){Q("failed to asynchronously prepare wasm: "+Pe),tu(Pe)})}function ge(){return!pt&&typeof WebAssembly.instantiateStreaming=="function"&&!Tc(Dr)&&!Nc(Dr)&&typeof fetch=="function"?fetch(Dr,{credentials:"same-origin"}).then(function(Te){var Pe=WebAssembly.instantiateStreaming(Te,N);return Pe.then(G,function(Pt){return Q("wasm streaming compile failed: "+Pt),Q("falling back to ArrayBuffer instantiation"),ee(G)})}):ee(G)}if(p.instantiateWasm)try{var xe=p.instantiateWasm(N,F);return xe}catch(Te){return Q("Module.instantiateWasm callback failed with error: "+Te),!1}return ge().catch(m),{}}var Cb,Tb,z1={};function Rc(N){for(;N.length>0;){var F=N.shift();if(typeof F=="function"){F(p);continue}var G=F.func;typeof G=="number"?F.arg===void 0?au(G)():au(G)(F.arg):G(F.arg===void 0?null:F.arg)}}function nu(N){var F=ug(),G=N();return qc(F),G}function pE(N){return N}function Nb(N){var F=/\b_Z[\w\d_]+/g;return N.replace(F,function(G){var ee=G;return G===ee?G:ee+" ["+G+"]"})}function D1(N){u()[N>>2]=0;var F=Oe.pthreads[N];delete Oe.pthreads[N],F.worker.terminate(),lg(N),Oe.runningWorkers.splice(Oe.runningWorkers.indexOf(F.worker),1),F.worker.pthread=void 0}function L1(N){var F=Oe.pthreads[N];F.worker.postMessage({cmd:"cancel"})}function $c(N){var F=Oe.pthreads[N];if(F){u()[N>>2]=0;var G=F.worker;Oe.returnWorkerToPool(G)}}function Mc(N){eR(N)}function B1(N){if(N instanceof xp||N=="unwind")return Pr;x(1,N)}var Oe={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){T?Oe.initWorker():Oe.initMainThread()},initMainThread:function(){for(var N=8,F=0;F<N;++F)Oe.allocateUnusedWorker()},initWorker:function(){ht=!1},pthreads:{},setExitStatus:function(N){Pr=N},terminateAllThreads:function(){for(var N in Oe.pthreads){var F=Oe.pthreads[N];F&&F.worker&&Oe.returnWorkerToPool(F.worker)}for(var G=0;G<Oe.unusedWorkers.length;++G){var ee=Oe.unusedWorkers[G];ee.terminate()}Oe.unusedWorkers=[]},returnWorkerToPool:function(N){Oe.runWithoutMainThreadQueuedCalls(function(){delete Oe.pthreads[N.pthread.threadInfoStruct],Oe.unusedWorkers.push(N),Oe.runningWorkers.splice(Oe.runningWorkers.indexOf(N),1),lg(N.pthread.threadInfoStruct),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){u()[Wb>>2]=0;try{N()}finally{u()[Wb>>2]=1}},receiveObjectTransfer:function(N){},threadInit:function(){for(var N in Oe.tlsInitFunctions)Oe.tlsInitFunctions[N]()},loadWasmModuleToWorker:function(N,F){N.onmessage=G=>{var ee=G.data,ge=ee.cmd;if(N.pthread&&(Oe.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),ee.targetThread&&ee.targetThread!=Hc()){var xe=Oe.pthreads[ee.targetThread];xe?xe.worker.postMessage(ee,ee.transferList):Q('Internal error! Worker sent a message "'+ge+'" to target pthread '+ee.targetThread+", but that thread no longer exists!"),Oe.currentProxiedOperationCallerThread=void 0;return}ge==="processQueuedMainThreadWork"?Ob():ge==="spawnThread"?_c(ee):ge==="cleanupThread"?$c(ee.thread):ge==="killThread"?D1(ee.thread):ge==="cancelThread"?L1(ee.thread):ge==="loaded"?(N.loaded=!0,F&&F(N),N.runPthread&&(N.runPthread(),delete N.runPthread)):ge==="print"?re("Thread "+ee.threadId+": "+ee.text):ge==="printErr"?Q("Thread "+ee.threadId+": "+ee.text):ge==="alert"?alert("Thread "+ee.threadId+": "+ee.text):ee.target==="setimmediate"?N.postMessage(ee):ge==="onAbort"?p.onAbort&&p.onAbort(ee.arg):Q("worker sent an unknown command "+ge),Oe.currentProxiedOperationCallerThread=void 0},N.onerror=G=>{var ee="worker sent an error!";throw Q(ee+" "+G.filename+":"+G.lineno+": "+G.message),G},I&&(N.on("message",function(G){N.onmessage({data:G})}),N.on("error",function(G){N.onerror(G)}),N.on("detachedExit",function(){})),N.postMessage({cmd:"load",urlOrBlob:p.mainScriptUrlOrBlob||n,wasmMemory:Fe,wasmModule:wt})},allocateUnusedWorker:function(){var N=R("tfjs-backend-wasm-threaded-simd.worker.js");Oe.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return Oe.unusedWorkers.length==0&&(Oe.allocateUnusedWorker(),Oe.loadWasmModuleToWorker(Oe.unusedWorkers[0])),Oe.unusedWorkers.pop()}};function W1(){var N=Hc(),F=u()[N+44>>2],G=u()[N+48>>2],ee=F-G;Bb(F,ee),qc(F)}p.establishStackSpace=W1;function Fc(N){if(T)return ho(1,0,N);try{Mc(N)}catch(F){B1(F)}}var uo=[];function au(N){var F=uo[N];return F||(N>=uo.length&&(uo.length=N+1),uo[N]=F=Sn.get(N)),F}function V1(N,F){return au(N)(F)}p.invokeEntryPoint=V1;function Eb(){var N=new Error;if(!N.stack){try{throw new Error}catch(F){N=F}if(!N.stack)return"(no stack trace available)"}return N.stack.toString()}function U1(N,F,G){Oe.tlsInitFunctions.push(N)}function Rb(N,F){Sn.set(N,F),uo[N]=F}var po;I?po=()=>{var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:T?po=()=>performance.now()-p.__performance_now_clock_drift:po=()=>performance.now();var G1=!0;function j1(N){return u()[Pb()>>2]=N,N}function H1(N,F){var G;if(N===0)G=Date.now();else if((N===1||N===4)&&G1)G=po();else return j1(28),-1;return u()[F>>2]=G/1e3|0,u()[F+4>>2]=G%1e3*1e3*1e3|0,0}function q1(N,F){return H1(N,F)}function X1(N){zb(N,!w,1,!b),Oe.threadInit()}function K1(N){T?postMessage({cmd:"cleanupThread",thread:N}):$c(N)}function _c(N){var F=Oe.getNewWorker();if(!F)return 6;Oe.runningWorkers.push(F);var G=Oe.pthreads[N.pthread_ptr]={worker:F,threadInfoStruct:N.pthread_ptr};F.pthread=G;var ee={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr};return F.runPthread=()=>{ee.time=performance.now(),F.postMessage(ee,N.transferList)},F.loaded&&(F.runPthread(),delete F.runPthread),0}function Z1(N,F,G,ee){if(typeof SharedArrayBuffer=="undefined")return Q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var ge=[],xe=0;if(T&&(ge.length===0||xe))return Db(687865856,N,F,G,ee);if(xe)return xe;var Te={startRoutine:G,pthread_ptr:N,arg:ee,transferList:ge};return T?(Te.cmd="spawnThread",postMessage(Te,ge),0):_c(Te)}function Y1(){return 2097152}function J1(N,F){if(N==F)postMessage({cmd:"processQueuedMainThreadWork"});else if(T)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var G=Oe.pthreads[N],ee=G&&G.worker;if(!ee)return;ee.postMessage({cmd:"processThreadQueue"})}return 1}function Q1(){tu("")}function e2(){I||w||J("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Pc(){return 2147483648}function t2(N,F,G){i().copyWithin(N,F,F+G)}function r2(){return I?ER().cpus().length:navigator.hardwareConcurrency}function ho(N,F){var G=arguments.length-2,ee=arguments;return nu(function(){for(var ge=G,xe=du(ge*8),Te=xe>>3,Pe=0;Pe<G;Pe++){var Pt=ee[2+Pe];h()[Te+Pe]=Pt}return Lb(N,ge,xe,F)})}var fp=[];function n2(N,F,G){fp.length=F;for(var ee=G>>3,ge=0;ge<F;ge++)fp[ge]=h()[ee+ge];var xe=N<0,Te=xe?z1[-N-1]:w2[N];return Te.apply(null,fp)}function a2(N){try{return Fe.grow(N-Or.byteLength+65535>>>16),ra(Fe.buffer),1}catch(F){}}function s2(N){var F=i().length;if(N=N>>>0,N<=F)return!1;var G=Pc();if(N>G)return!1;for(var ee=1;ee<=4;ee*=2){var ge=F*(1+.2/ee);ge=Math.min(ge,N+100663296);var xe=Math.min(G,Ql(Math.max(N,ge),65536)),Te=a2(xe);if(Te)return!0}return!1}var Xe={inEventHandler:0,removeAllEventListeners:function(){for(var N=Xe.eventHandlers.length-1;N>=0;--N)Xe._removeHandler(N);Xe.eventHandlers=[],Xe.deferredCalls=[]},registerRemoveEventListeners:function(){Xe.removeEventListenersRegistered||($1.push(Xe.removeAllEventListeners),Xe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,F,G){function ee(Te,Pe){if(Te.length!=Pe.length)return!1;for(var Pt in Te)if(Te[Pt]!=Pe[Pt])return!1;return!0}for(var ge in Xe.deferredCalls){var xe=Xe.deferredCalls[ge];if(xe.targetFunction==N&&ee(xe.argsList,G))return}Xe.deferredCalls.push({targetFunction:N,precedence:F,argsList:G}),Xe.deferredCalls.sort(function(Te,Pe){return Te.precedence<Pe.precedence})},removeDeferredCalls:function(N){for(var F=0;F<Xe.deferredCalls.length;++F)Xe.deferredCalls[F].targetFunction==N&&(Xe.deferredCalls.splice(F,1),--F)},canPerformEventHandlerRequests:function(){return Xe.inEventHandler&&Xe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Xe.canPerformEventHandlerRequests())for(var N=0;N<Xe.deferredCalls.length;++N){var F=Xe.deferredCalls[N];Xe.deferredCalls.splice(N,1),--N,F.targetFunction.apply(null,F.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,F){for(var G=0;G<Xe.eventHandlers.length;++G)Xe.eventHandlers[G].target==N&&(!F||F==Xe.eventHandlers[G].eventTypeString)&&Xe._removeHandler(G--)},_removeHandler:function(N){var F=Xe.eventHandlers[N];F.target.removeEventListener(F.eventTypeString,F.eventListenerFunc,F.useCapture),Xe.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var F=function(ee){++Xe.inEventHandler,Xe.currentEventHandler=N,Xe.runDeferredCalls(),N.handlerFunc(ee),Xe.runDeferredCalls(),--Xe.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=F,N.target.addEventListener(N.eventTypeString,F,N.useCapture),Xe.eventHandlers.push(N),Xe.registerRemoveEventListeners();else for(var G=0;G<Xe.eventHandlers.length;++G)Xe.eventHandlers[G].target==N.target&&Xe.eventHandlers[G].eventTypeString==N.eventTypeString&&Xe._removeHandler(G--)},queueEventHandlerOnThread_iiii:function(N,F,G,ee,ge){nu(function(){var xe=du(12);u()[xe>>2]=G,u()[xe+4>>2]=ee,u()[xe+8>>2]=ge,og(N,637534208,F,ee,xe)})},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return Oe.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function i2(N){var F=gc(N)+1,G=ig(F);return io(N,G,F),G}function o2(N,F,G,ee){nu(function(){var ge=du(12),xe=0;F&&(xe=i2(F)),u()[ge>>2]=xe,u()[ge+4>>2]=G,u()[ge+8>>2]=ee,og(N,657457152,0,xe,ge)})}function l2(N,F,G,ee){F=F?In(F):"",o2(N,F,G,ee)}function u2(N){return N>2?In(N):N}var d2=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function p2(N){N=u2(N);var F=d2[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return F}function mp(N){return p2(N)}function Oc(N,F,G){var ee=mp(N);if(!ee)return-4;if(ee.canvasSharedPtr&&(u()[ee.canvasSharedPtr>>2]=F,u()[ee.canvasSharedPtr+4>>2]=G),ee.offscreenCanvas||!ee.controlTransferredOffscreen){ee.offscreenCanvas&&(ee=ee.offscreenCanvas);var ge=!1;if(ee.GLctxObject&&ee.GLctxObject.GLctx){var xe=ee.GLctxObject.GLctx.getParameter(2978);ge=xe[0]===0&&xe[1]===0&&xe[2]===ee.width&&xe[3]===ee.height}ee.width=F,ee.height=G,ge&&ee.GLctxObject.GLctx.viewport(0,0,F,G)}else if(ee.canvasSharedPtr){var Te=u()[ee.canvasSharedPtr+8>>2];return l2(Te,N,F,G),1}else return-4;return 0}function zc(N,F,G){return T?ho(2,1,N,F,G):Oc(N,F,G)}function h2(N,F,G){var ee=mp(N);return ee?Oc(N,F,G):zc(N,F,G)}function c2(){throw"unwind"}function f2(N){var F=N.getExtension("ANGLE_instanced_arrays");if(F)return N.vertexAttribDivisor=function(G,ee){F.vertexAttribDivisorANGLE(G,ee)},N.drawArraysInstanced=function(G,ee,ge,xe){F.drawArraysInstancedANGLE(G,ee,ge,xe)},N.drawElementsInstanced=function(G,ee,ge,xe,Te){F.drawElementsInstancedANGLE(G,ee,ge,xe,Te)},1}function m2(N){var F=N.getExtension("OES_vertex_array_object");if(F)return N.createVertexArray=function(){return F.createVertexArrayOES()},N.deleteVertexArray=function(G){F.deleteVertexArrayOES(G)},N.bindVertexArray=function(G){F.bindVertexArrayOES(G)},N.isVertexArray=function(G){return F.isVertexArrayOES(G)},1}function g2(N){var F=N.getExtension("WEBGL_draw_buffers");if(F)return N.drawBuffers=function(G,ee){F.drawBuffersWEBGL(G,ee)},1}function y2(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var _t={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(N){_t.lastError||(_t.lastError=N)},getNewId:function(N){for(var F=_t.counter++,G=N.length;G<F;G++)N[G]=null;return F},getSource:function(N,F,G,ee){for(var ge="",xe=0;xe<F;++xe){var Te=ee?u()[ee+xe*4>>2]:-1;ge+=In(u()[G+xe*4>>2],Te<0?void 0:Te)}return ge},createContext:function(N,F){N.getContextSafariWebGL2Fixed||(N.getContextSafariWebGL2Fixed=N.getContext,N.getContext=function(ge,xe){var Te=N.getContextSafariWebGL2Fixed(ge,xe);return ge=="webgl"==Te instanceof WebGLRenderingContext?Te:null});var G=N.getContext("webgl",F);if(!G)return 0;var ee=_t.registerContext(G,F);return ee},registerContext:function(N,F){var G=ig(8);u()[G+4>>2]=Hc();var ee={handle:G,attributes:F,version:F.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=ee),_t.contexts[G]=ee,(typeof F.enableExtensionsByDefault=="undefined"||F.enableExtensionsByDefault)&&_t.initExtensions(ee),G},makeContextCurrent:function(N){return _t.currentContext=_t.contexts[N],p.ctx=Wc=_t.currentContext&&_t.currentContext.GLctx,!(N&&!Wc)},getContext:function(N){return _t.contexts[N]},deleteContext:function(N){_t.currentContext===_t.contexts[N]&&(_t.currentContext=null),typeof Xe=="object"&&Xe.removeAllHandlersOnTarget(_t.contexts[N].GLctx.canvas),_t.contexts[N]&&_t.contexts[N].GLctx.canvas&&(_t.contexts[N].GLctx.canvas.GLctxObject=void 0),_b(_t.contexts[N].handle),_t.contexts[N]=null},initExtensions:function(N){if(N||(N=_t.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var F=N.GLctx;f2(F),m2(F),g2(F),F.disjointTimerQueryExt=F.getExtension("EXT_disjoint_timer_query"),y2(F);var G=F.getSupportedExtensions()||[];G.forEach(function(ee){!ee.includes("lose_context")&&!ee.includes("debug")&&F.getExtension(ee)})}}},A2=["default","low-power","high-performance"];function x2(N,F){var G=F>>2,ee=u()[G+6],ge={alpha:!!u()[G+0],depth:!!u()[G+1],stencil:!!u()[G+2],antialias:!!u()[G+3],premultipliedAlpha:!!u()[G+4],preserveDrawingBuffer:!!u()[G+5],powerPreference:A2[ee],failIfMajorPerformanceCaveat:!!u()[G+7],majorVersion:u()[G+8],minorVersion:u()[G+9],enableExtensionsByDefault:u()[G+10],explicitSwapControl:u()[G+11],proxyContextToMainThread:u()[G+12],renderViaOffscreenBackBuffer:u()[G+13]},xe=mp(N);if(!xe||ge.explicitSwapControl)return 0;var Te=_t.createContext(xe,ge);return Te}function b2(N,F){return x2(N,F)}var su={mappings:{},buffers:[null,[],[]],printChar:function(N,F){var G=su.buffers[N];F===0||F===10?((N===1?re:Q)(kn(G,0)),G.length=0):G.push(F)},varargs:void 0,get:function(){su.varargs+=4;var N=u()[su.varargs-4>>2];return N},getStr:function(N){var F=In(N);return F},get64:function(N,F){return N}};function Dc(N){return T?ho(3,1,N):0}function Lc(N,F,G,ee,ge){if(T)return ho(4,1,N,F,G,ee,ge)}function Bc(N,F,G,ee){if(T)return ho(5,1,N,F,G,ee);for(var ge=0,xe=0;xe<G;xe++){var Te=u()[F>>2],Pe=u()[F+4>>2];F+=8;for(var Pt=0;Pt<Pe;Pt++)su.printChar(N,i()[Te+Pt]);ge+=Pe}return u()[ee>>2]=ge,0}function v2(N){ze(N)}Oe.init();var Wc,w2=[null,Fc,zc,Dc,Lc,Bc],$b=!1,Vc={__clock_gettime:q1,__emscripten_init_main_thread_js:X1,__emscripten_thread_cleanup:K1,__pthread_create_js:Z1,_emscripten_default_pthread_stack_size:Y1,_emscripten_notify_thread_queue:J1,abort:Q1,emscripten_check_blocking_allowed:e2,emscripten_get_heap_max:Pc,emscripten_get_now:po,emscripten_memcpy_big:t2,emscripten_num_logical_cores:r2,emscripten_receive_on_main_thread_js:n2,emscripten_resize_heap:s2,emscripten_set_canvas_element_size:h2,emscripten_unwind_to_js_event_loop:c2,emscripten_webgl_create_context:b2,exit:Mc,fd_close:Dc,fd_seek:Lc,fd_write:Bc,memory:Fe||p.wasmMemory,setTempRet0:v2},Mb=O1(),k2=p.___wasm_call_ctors=function(){return(k2=p.___wasm_call_ctors=p.asm.__wasm_call_ctors).apply(null,arguments)},I2=p._init=function(){return(I2=p._init=p.asm.init).apply(null,arguments)},S2=p._init_with_threads_count=function(){return(S2=p._init_with_threads_count=p.asm.init_with_threads_count).apply(null,arguments)},C2=p._get_threads_count=function(){return(C2=p._get_threads_count=p.asm.get_threads_count).apply(null,arguments)},T2=p._register_tensor=function(){return(T2=p._register_tensor=p.asm.register_tensor).apply(null,arguments)},N2=p._dispose_data=function(){return(N2=p._dispose_data=p.asm.dispose_data).apply(null,arguments)},E2=p._dispose=function(){return(E2=p._dispose=p.asm.dispose).apply(null,arguments)},R2=p._Abs=function(){return(R2=p._Abs=p.asm.Abs).apply(null,arguments)},$2=p._Add=function(){return($2=p._Add=p.asm.Add).apply(null,arguments)},M2=p._AddN=function(){return(M2=p._AddN=p.asm.AddN).apply(null,arguments)},F2=p._All=function(){return(F2=p._All=p.asm.All).apply(null,arguments)},_2=p._Any=function(){return(_2=p._Any=p.asm.Any).apply(null,arguments)},P2=p._ArgMax=function(){return(P2=p._ArgMax=p.asm.ArgMax).apply(null,arguments)},O2=p._AvgPool=function(){return(O2=p._AvgPool=p.asm.AvgPool).apply(null,arguments)},z2=p._BatchMatMul=function(){return(z2=p._BatchMatMul=p.asm.BatchMatMul).apply(null,arguments)},D2=p._Ceil=function(){return(D2=p._Ceil=p.asm.Ceil).apply(null,arguments)},L2=p._ClipByValue=function(){return(L2=p._ClipByValue=p.asm.ClipByValue).apply(null,arguments)},B2=p._Conv2D=function(){return(B2=p._Conv2D=p.asm.Conv2D).apply(null,arguments)},W2=p._Conv2DBackpropInput=function(){return(W2=p._Conv2DBackpropInput=p.asm.Conv2DBackpropInput).apply(null,arguments)},V2=p._Cos=function(){return(V2=p._Cos=p.asm.Cos).apply(null,arguments)},U2=p._Cosh=function(){return(U2=p._Cosh=p.asm.Cosh).apply(null,arguments)},G2=p._CropAndResize=function(){return(G2=p._CropAndResize=p.asm.CropAndResize).apply(null,arguments)},j2=p._Cumprod=function(){return(j2=p._Cumprod=p.asm.Cumprod).apply(null,arguments)},H2=p._Cumsum=function(){return(H2=p._Cumsum=p.asm.Cumsum).apply(null,arguments)},q2=p._DepthToSpace=function(){return(q2=p._DepthToSpace=p.asm.DepthToSpace).apply(null,arguments)},X2=p._DepthwiseConv2dNative=function(){return(X2=p._DepthwiseConv2dNative=p.asm.DepthwiseConv2dNative).apply(null,arguments)},K2=p._Elu=function(){return(K2=p._Elu=p.asm.Elu).apply(null,arguments)},Z2=p._Equal=function(){return(Z2=p._Equal=p.asm.Equal).apply(null,arguments)},Y2=p._Exp=function(){return(Y2=p._Exp=p.asm.Exp).apply(null,arguments)},J2=p._FlipLeftRight=function(){return(J2=p._FlipLeftRight=p.asm.FlipLeftRight).apply(null,arguments)},Q2=p._Floor=function(){return(Q2=p._Floor=p.asm.Floor).apply(null,arguments)},eg=p._FloorDiv=function(){return(eg=p._FloorDiv=p.asm.FloorDiv).apply(null,arguments)},tg=p._FusedBatchNorm=function(){return(tg=p._FusedBatchNorm=p.asm.FusedBatchNorm).apply(null,arguments)},Uc=p._FusedConv2D=function(){return(Uc=p._FusedConv2D=p.asm.FusedConv2D).apply(null,arguments)},Gc=p._FusedDepthwiseConv2D=function(){return(Gc=p._FusedDepthwiseConv2D=p.asm.FusedDepthwiseConv2D).apply(null,arguments)},gp=p._Gather=function(){return(gp=p._Gather=p.asm.Gather).apply(null,arguments)},rg=p._GatherNd=function(){return(rg=p._GatherNd=p.asm.GatherNd).apply(null,arguments)},ng=p._Greater=function(){return(ng=p._Greater=p.asm.Greater).apply(null,arguments)},iu=p._GreaterEqual=function(){return(iu=p._GreaterEqual=p.asm.GreaterEqual).apply(null,arguments)},yp=p._LeakyRelu=function(){return(yp=p._LeakyRelu=p.asm.LeakyRelu).apply(null,arguments)},Ap=p._Less=function(){return(Ap=p._Less=p.asm.Less).apply(null,arguments)},Fb=p._LessEqual=function(){return(Fb=p._LessEqual=p.asm.LessEqual).apply(null,arguments)},ou=p._Log=function(){return(ou=p._Log=p.asm.Log).apply(null,arguments)},lu=p._LogicalAnd=function(){return(lu=p._LogicalAnd=p.asm.LogicalAnd).apply(null,arguments)},ag=p._LogicalNot=function(){return(ag=p._LogicalNot=p.asm.LogicalNot).apply(null,arguments)},H=p._LogicalOr=function(){return(H=p._LogicalOr=p.asm.LogicalOr).apply(null,arguments)},ne=p._LogicalXor=function(){return(ne=p._LogicalXor=p.asm.LogicalXor).apply(null,arguments)},ye=p._Max=function(){return(ye=p._Max=p.asm.Max).apply(null,arguments)},Re=p._MaxPool=function(){return(Re=p._MaxPool=p.asm.MaxPool).apply(null,arguments)},lt=p._Maximum=function(){return(lt=p._Maximum=p.asm.Maximum).apply(null,arguments)},ct=p._Mean=function(){return(ct=p._Mean=p.asm.Mean).apply(null,arguments)},Ze=p._Min=function(){return(Ze=p._Min=p.asm.Min).apply(null,arguments)},He=p._Minimum=function(){return(He=p._Minimum=p.asm.Minimum).apply(null,arguments)},qt=p._MirrorPad=function(){return(qt=p._MirrorPad=p.asm.MirrorPad).apply(null,arguments)},aa=p._Multiply=function(){return(aa=p._Multiply=p.asm.Multiply).apply(null,arguments)},sa=p._Neg=function(){return(sa=p._Neg=p.asm.Neg).apply(null,arguments)},uu=p._NonMaxSuppressionV3=function(){return(uu=p._NonMaxSuppressionV3=p.asm.NonMaxSuppressionV3).apply(null,arguments)},co=p._NonMaxSuppressionV4=function(){return(co=p._NonMaxSuppressionV4=p.asm.NonMaxSuppressionV4).apply(null,arguments)},sg=p._NonMaxSuppressionV5=function(){return(sg=p._NonMaxSuppressionV5=p.asm.NonMaxSuppressionV5).apply(null,arguments)},tn=p._NotEqual=function(){return(tn=p._NotEqual=p.asm.NotEqual).apply(null,arguments)},bs=p._OneHot=function(){return(bs=p._OneHot=p.asm.OneHot).apply(null,arguments)},jc=p._PadV2=function(){return(jc=p._PadV2=p.asm.PadV2).apply(null,arguments)},hE=p._Pow=function(){return(hE=p._Pow=p.asm.Pow).apply(null,arguments)},cE=p._Prelu=function(){return(cE=p._Prelu=p.asm.Prelu).apply(null,arguments)},fE=p._Prod=function(){return(fE=p._Prod=p.asm.Prod).apply(null,arguments)},mE=p._RealDiv=function(){return(mE=p._RealDiv=p.asm.RealDiv).apply(null,arguments)},gE=p._Relu=function(){return(gE=p._Relu=p.asm.Relu).apply(null,arguments)},yE=p._Relu6=function(){return(yE=p._Relu6=p.asm.Relu6).apply(null,arguments)},AE=p._ResizeBilinear=function(){return(AE=p._ResizeBilinear=p.asm.ResizeBilinear).apply(null,arguments)},xE=p._Reverse=function(){return(xE=p._Reverse=p.asm.Reverse).apply(null,arguments)},bE=p._RotateWithOffset=function(){return(bE=p._RotateWithOffset=p.asm.RotateWithOffset).apply(null,arguments)},vE=p._Round=function(){return(vE=p._Round=p.asm.Round).apply(null,arguments)},wE=p._Rsqrt=function(){return(wE=p._Rsqrt=p.asm.Rsqrt).apply(null,arguments)},kE=p._ScatterNd=function(){return(kE=p._ScatterNd=p.asm.ScatterNd).apply(null,arguments)},IE=p._SelectV2=function(){return(IE=p._SelectV2=p.asm.SelectV2).apply(null,arguments)},SE=p._Sigmoid=function(){return(SE=p._Sigmoid=p.asm.Sigmoid).apply(null,arguments)},CE=p._Sin=function(){return(CE=p._Sin=p.asm.Sin).apply(null,arguments)},TE=p._Softmax=function(){return(TE=p._Softmax=p.asm.Softmax).apply(null,arguments)},NE=p._SparseFillEmptyRows=function(){return(NE=p._SparseFillEmptyRows=p.asm.SparseFillEmptyRows).apply(null,arguments)},EE=p._SparseReshape=function(){return(EE=p._SparseReshape=p.asm.SparseReshape).apply(null,arguments)},RE=p._SparseSegmentReduction=function(){return(RE=p._SparseSegmentReduction=p.asm.SparseSegmentReduction).apply(null,arguments)},$E=p._Sqrt=function(){return($E=p._Sqrt=p.asm.Sqrt).apply(null,arguments)},ME=p._Square=function(){return(ME=p._Square=p.asm.Square).apply(null,arguments)},FE=p._SquaredDifference=function(){return(FE=p._SquaredDifference=p.asm.SquaredDifference).apply(null,arguments)},_E=p._Step=function(){return(_E=p._Step=p.asm.Step).apply(null,arguments)},PE=p._StridedSlice=function(){return(PE=p._StridedSlice=p.asm.StridedSlice).apply(null,arguments)},OE=p._Sub=function(){return(OE=p._Sub=p.asm.Sub).apply(null,arguments)},zE=p._Sum=function(){return(zE=p._Sum=p.asm.Sum).apply(null,arguments)},DE=p._Tan=function(){return(DE=p._Tan=p.asm.Tan).apply(null,arguments)},LE=p._Tanh=function(){return(LE=p._Tanh=p.asm.Tanh).apply(null,arguments)},BE=p._Tile=function(){return(BE=p._Tile=p.asm.Tile).apply(null,arguments)},WE=p._TopK=function(){return(WE=p._TopK=p.asm.TopK).apply(null,arguments)},VE=p._Transform=function(){return(VE=p._Transform=p.asm.Transform).apply(null,arguments)},UE=p._Transpose=function(){return(UE=p._Transpose=p.asm.Transpose).apply(null,arguments)},GE=p.__FusedMatMul=function(){return(GE=p.__FusedMatMul=p.asm._FusedMatMul).apply(null,arguments)},ig=p._malloc=function(){return(ig=p._malloc=p.asm.malloc).apply(null,arguments)},_b=p._free=function(){return(_b=p._free=p.asm.free).apply(null,arguments)},jE=p._emscripten_tls_init=function(){return(jE=p._emscripten_tls_init=p.asm.emscripten_tls_init).apply(null,arguments)},Pb=p.___errno_location=function(){return(Pb=p.___errno_location=p.asm.__errno_location).apply(null,arguments)},Hc=p._pthread_self=function(){return(Hc=p._pthread_self=p.asm.pthread_self).apply(null,arguments)},Ob=p._emscripten_main_thread_process_queued_calls=function(){return(Ob=p._emscripten_main_thread_process_queued_calls=p.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},HE=p.__emscripten_thread_crashed=function(){return(HE=p.__emscripten_thread_crashed=p.asm._emscripten_thread_crashed).apply(null,arguments)},zb=p.__emscripten_thread_init=function(){return(zb=p.__emscripten_thread_init=p.asm._emscripten_thread_init).apply(null,arguments)},qE=p._emscripten_current_thread_process_queued_calls=function(){return(qE=p._emscripten_current_thread_process_queued_calls=p.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},XE=p._emscripten_main_browser_thread_id=function(){return(XE=p._emscripten_main_browser_thread_id=p.asm.emscripten_main_browser_thread_id).apply(null,arguments)},KE=p._emscripten_sync_run_in_main_thread_2=function(){return(KE=p._emscripten_sync_run_in_main_thread_2=p.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},Db=p._emscripten_sync_run_in_main_thread_4=function(){return(Db=p._emscripten_sync_run_in_main_thread_4=p.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},Lb=p._emscripten_run_in_main_runtime_thread_js=function(){return(Lb=p._emscripten_run_in_main_runtime_thread_js=p.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},og=p._emscripten_dispatch_to_thread_=function(){return(og=p._emscripten_dispatch_to_thread_=p.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},lg=p.__emscripten_thread_free_data=function(){return(lg=p.__emscripten_thread_free_data=p.asm._emscripten_thread_free_data).apply(null,arguments)},ZE=p.__emscripten_thread_exit=function(){return(ZE=p.__emscripten_thread_exit=p.asm._emscripten_thread_exit).apply(null,arguments)},YE=p._memalign=function(){return(YE=p._memalign=p.asm.memalign).apply(null,arguments)},Bb=p._emscripten_stack_set_limits=function(){return(Bb=p._emscripten_stack_set_limits=p.asm.emscripten_stack_set_limits).apply(null,arguments)},ug=p.stackSave=function(){return(ug=p.stackSave=p.asm.stackSave).apply(null,arguments)},qc=p.stackRestore=function(){return(qc=p.stackRestore=p.asm.stackRestore).apply(null,arguments)},du=p.stackAlloc=function(){return(du=p.stackAlloc=p.asm.stackAlloc).apply(null,arguments)},JE=p.dynCall_iijjiiii=function(){return(JE=p.dynCall_iijjiiii=p.asm.dynCall_iijjiiii).apply(null,arguments)},QE=p.dynCall_jiji=function(){return(QE=p.dynCall_jiji=p.asm.dynCall_jiji).apply(null,arguments)},Wb=p.__emscripten_allow_main_runtime_queued_calls=21664;p.cwrap=cr,p.keepRuntimeAlive=lo,p.PThread=Oe,p.PThread=Oe,p.wasmMemory=Fe,p.ExitStatus=xp;var Xc;function xp(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}na=function N(){Xc||dg(),Xc||(na=N)};function dg(N){if(N=N||y,xs>0)return;if(T){c(p),pp(),postMessage({cmd:"loaded"});return}if(zr(),xs>0)return;function F(){Xc||(Xc=!0,p.calledRun=!0,!xt&&(pp(),c(p),p.onRuntimeInitialized&&p.onRuntimeInitialized(),_1()))}p.setStatus?(p.setStatus("Running..."),setTimeout(function(){setTimeout(function(){p.setStatus("")},1),F()},1)):F()}p.run=dg;function eR(N,F){if(Pr=N,!F&&T)throw Fc(N),"unwind";lo()||F1(),tR(N)}function tR(N){Pr=N,lo()||(Oe.terminateAllThreads(),p.onExit&&p.onExit(N),xt=!0),x(N,new xp(N))}if(p.preInit)for(typeof p.preInit=="function"&&(p.preInit=[p.preInit]);p.preInit.length>0;)p.preInit.pop()();dg();var Kc;f&&(Kc={uncaughtException:process.listeners("uncaughtException").filter(function(N){return!f.uncaughtException.indexOf(N)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(N){return!f.unhandledRejection.indexOf(N)>-1})});var Zc;if(typeof WasmBackendModule!="undefined")Zc=WasmBackendModule;else if(typeof a!="undefined")Zc=a;else throw new Error("Could not find wasm module in post.js");if(Kc){var rR=Zc._dispose;Zc._dispose=function(){rR(),Kc.uncaughtException.forEach(function(N){process.removeListener("uncaughtException",N)}),Kc.unhandledRejection.forEach(function(N){process.removeListener("unhandledRejection",N)})}}return a.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=r:typeof define=="function"&&define.amd?define([],function(){return r}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=r)}}),$R=dr({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var r=(()=>{var n=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(n=n||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i,o;s.ready=new Promise(function(H,ne){i=H,o=ne});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),d=[],h="./this.program",p=(H,ne)=>{throw ne},c=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(H){return s.locateFile?s.locateFile(H,g):g+H}var A,x,b,w;function I(H){H instanceof yp||$("exiting due to exception: "+H)}var T,E,R;f?(m?g=k0().dirname(g)+"/":g=__dirname+"/",R=()=>{E||(T=Cy(),E=k0())},A=function(H,ne){return R(),H=E.normalize(H),T.readFileSync(H,ne?void 0:"utf8")},b=H=>{var ne=A(H,!0);return ne.buffer||(ne=new Uint8Array(ne)),ne},x=(H,ne,ye)=>{R(),H=E.normalize(H),T.readFile(H,function(Re,lt){Re?ye(Re):ne(lt.buffer)})},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(H){if(!(H instanceof yp))throw H}),process.on("unhandledRejection",function(H){throw H}),p=(H,ne)=>{if(dp())throw process.exitCode=H,ne;I(ne),process.exit(H)},s.inspect=function(){return"[Emscripten Module object]"}):(c||m)&&(m?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),n&&(g=n),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",A=H=>{var ne=new XMLHttpRequest;return ne.open("GET",H,!1),ne.send(null),ne.responseText},m&&(b=H=>{var ne=new XMLHttpRequest;return ne.open("GET",H,!1),ne.responseType="arraybuffer",ne.send(null),new Uint8Array(ne.response)}),x=(H,ne,ye)=>{var Re=new XMLHttpRequest;Re.open("GET",H,!0),Re.responseType="arraybuffer",Re.onload=()=>{if(Re.status==200||Re.status==0&&Re.response){ne(Re.response);return}ye()},Re.onerror=ye,Re.send(null)},w=H=>document.title=H);var O=s.print||console.log.bind(console),$=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(d=s.arguments),s.thisProgram&&(h=s.thisProgram),s.quit&&(p=s.quit);var S=4;function P(H){P.shown||(P.shown={}),P.shown[H]||(P.shown[H]=1,$(H))}function z(H,ne){if(typeof WebAssembly.Function=="function"){for(var ye={i:"i32",j:"i64",f:"f32",d:"f64"},Re={parameters:[],results:ne[0]=="v"?[]:[ye[ne[0]]]},lt=1;lt<ne.length;++lt)Re.parameters.push(ye[ne[lt]]);return new WebAssembly.Function(Re,H)}var ct=[1,0,1,96],Ze=ne.slice(0,1),He=ne.slice(1),qt={i:127,j:126,f:125,d:124};ct.push(He.length);for(var lt=0;lt<He.length;++lt)ct.push(qt[He[lt]]);Ze=="v"?ct.push(0):ct=ct.concat([1,qt[Ze]]),ct[1]=ct.length-2;var aa=new Uint8Array([0,97,115,109,1,0,0,0].concat(ct,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),sa=new WebAssembly.Module(aa),uu=new WebAssembly.Instance(sa,{e:{f:H}}),co=uu.exports.f;return co}var j=[],K;function D(){if(j.length)return j.pop();try{ys.grow(1)}catch(H){throw H instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":H}return ys.length-1}function Y(H,ne){for(var ye=H;ye<H+ne;ye++){var Re=cp(ye);Re&&K.set(Re,ye)}}var V=0,re=H=>{V=H},Q;s.wasmBinary&&(Q=s.wasmBinary);var ie=s.noExitRuntime||!0;typeof WebAssembly!="object"&&oo("no native wasm support detected");var J,ae=!1,de;function be(H,ne){H||oo(ne)}function ve(H){var ne=s["_"+H];return ne}function Ee(H,ne,ye,Re,lt){var ct={string:function(tn){var bs=0;if(tn!=null&&tn!==0){var jc=(tn.length<<2)+1;bs=gp(jc),ht(tn,bs,jc)}return bs},array:function(tn){var bs=gp(tn.length);return xt(tn,bs),bs}};function Ze(tn){return ne==="string"?ot(tn):ne==="boolean"?Boolean(tn):tn}var He=ve(H),qt=[],aa=0;if(Re)for(var sa=0;sa<Re.length;sa++){var uu=ct[ye[sa]];uu?(aa===0&&(aa=Uc()),qt[sa]=uu(Re[sa])):qt[sa]=Re[sa]}var co=He.apply(null,qt);function sg(tn){return aa!==0&&Gc(aa),Ze(tn)}return co=sg(co),co}function $e(H,ne,ye,Re){ye=ye||[];var lt=ye.every(function(Ze){return Ze==="number"}),ct=ne!=="string";return ct&&lt&&!Re?ve(H):function(){return Ee(H,ne,ye,arguments,Re)}}var ze=1,We=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Ke(H,ne,ye){for(var Re=ne+ye,lt=ne;H[lt]&&!(lt>=Re);)++lt;if(lt-ne>16&&H.subarray&&We)return We.decode(H.subarray(ne,lt));for(var ct="";ne<lt;){var Ze=H[ne++];if(!(Ze&128)){ct+=String.fromCharCode(Ze);continue}var He=H[ne++]&63;if((Ze&224)==192){ct+=String.fromCharCode((Ze&31)<<6|He);continue}var qt=H[ne++]&63;if((Ze&240)==224?Ze=(Ze&15)<<12|He<<6|qt:Ze=(Ze&7)<<18|He<<12|qt<<6|H[ne++]&63,Ze<65536)ct+=String.fromCharCode(Ze);else{var aa=Ze-65536;ct+=String.fromCharCode(55296|aa>>10,56320|aa&1023)}}return ct}function ot(H,ne){return H?Ke(cr,H,ne):""}function pt(H,ne,ye,Re){if(!(Re>0))return 0;for(var lt=ye,ct=ye+Re-1,Ze=0;Ze<H.length;++Ze){var He=H.charCodeAt(Ze);if(He>=55296&&He<=57343){var qt=H.charCodeAt(++Ze);He=65536+((He&1023)<<10)|qt&1023}if(He<=127){if(ye>=ct)break;ne[ye++]=He}else if(He<=2047){if(ye+1>=ct)break;ne[ye++]=192|He>>6,ne[ye++]=128|He&63}else if(He<=65535){if(ye+2>=ct)break;ne[ye++]=224|He>>12,ne[ye++]=128|He>>6&63,ne[ye++]=128|He&63}else{if(ye+3>=ct)break;ne[ye++]=240|He>>18,ne[ye++]=128|He>>12&63,ne[ye++]=128|He>>6&63,ne[ye++]=128|He&63}}return ne[ye]=0,ye-lt}function ht(H,ne,ye){return pt(H,cr,ne,ye)}function Fe(H){for(var ne=0,ye=0;ye<H.length;++ye){var Re=H.charCodeAt(ye);Re>=55296&&Re<=57343&&(Re=65536+((Re&1023)<<10)|H.charCodeAt(++ye)&1023),Re<=127?++ne:Re<=2047?ne+=2:Re<=65535?ne+=3:ne+=4}return ne}var wt=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function xt(H,ne){rr.set(H,ne)}function Pr(H,ne,ye){for(var Re=0;Re<H.length;++Re)rr[ne++>>0]=H.charCodeAt(Re);ye||(rr[ne>>0]=0)}function hr(H,ne){return H%ne>0&&(H+=ne-H%ne),H}var Qr,rr,cr,ta,en,nr,kn,In,gs;function io(H){Qr=H,s.HEAP8=rr=new Int8Array(H),s.HEAP16=ta=new Int16Array(H),s.HEAP32=nr=new Int32Array(H),s.HEAPU8=cr=new Uint8Array(H),s.HEAPU16=en=new Uint16Array(H),s.HEAPU32=kn=new Uint32Array(H),s.HEAPF32=In=new Float32Array(H),s.HEAPF64=gs=new Float64Array(H)}var gc=s.INITIAL_MEMORY||16777216,ys,Ua=[],up=[],Ql=[],Or=!1,yc=!1,Ac=0;function dp(){return ie||Ac>0}function xc(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)wc(s.preRun.shift());hp(Ua)}function bc(){Or=!0,hp(up)}function wb(){yc=!0}function vc(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)kc(s.postRun.shift());hp(Ql)}function wc(H){Ua.unshift(H)}function ra(H){up.unshift(H)}function kc(H){Ql.unshift(H)}var Sn=0,eu=null,As=null;function $1(H){Sn++,s.monitorRunDependencies&&s.monitorRunDependencies(Sn)}function Ic(H){if(Sn--,s.monitorRunDependencies&&s.monitorRunDependencies(Sn),Sn==0&&(eu!==null&&(clearInterval(eu),eu=null),As)){var ne=As;As=null,ne()}}s.preloadedImages={},s.preloadedAudios={};function oo(H){s.onAbort&&s.onAbort(H),H="Aborted("+H+")",$(H),ae=!0,de=1,H+=". Build with -s ASSERTIONS=1 for more info.";var ne=new WebAssembly.RuntimeError(H);throw o(ne),ne}var M1="data:application/octet-stream;base64,";function Sc(H){return H.startsWith(M1)}function lo(H){return H.startsWith("file://")}var zr;zr="tfjs-backend-wasm.wasm",Sc(zr)||(zr=y(zr));function pp(H){try{if(H==zr&&Q)return new Uint8Array(Q);if(b)return b(H);throw"both async and sync fetching of the wasm failed"}catch(ne){oo(ne)}}function F1(){if(!Q&&(c||m)){if(typeof fetch=="function"&&!lo(zr))return fetch(zr,{credentials:"same-origin"}).then(function(H){if(!H.ok)throw"failed to load wasm binary file at '"+zr+"'";return H.arrayBuffer()}).catch(function(){return pp(zr)});if(x)return new Promise(function(H,ne){x(zr,function(ye){H(new Uint8Array(ye))},ne)})}return Promise.resolve().then(function(){return pp(zr)})}function _1(){var H={env:nu,wasi_snapshot_preview1:nu};function ne(Ze,He){var qt=Ze.exports;s.asm=qt,J=s.asm.memory,io(J.buffer),ys=s.asm.__indirect_function_table,ra(s.asm.__wasm_call_ctors),Ic("wasm-instantiate")}$1("wasm-instantiate");function ye(Ze){ne(Ze.instance)}function Re(Ze){return F1().then(function(He){return WebAssembly.instantiate(He,H)}).then(function(He){return He}).then(Ze,function(He){$("failed to asynchronously prepare wasm: "+He),oo(He)})}function lt(){return!Q&&typeof WebAssembly.instantiateStreaming=="function"&&!Sc(zr)&&!lo(zr)&&typeof fetch=="function"?fetch(zr,{credentials:"same-origin"}).then(function(Ze){var He=WebAssembly.instantiateStreaming(Ze,H);return He.then(ye,function(qt){return $("wasm streaming compile failed: "+qt),$("falling back to ArrayBuffer instantiation"),Re(ye)})}):Re(ye)}if(s.instantiateWasm)try{var ct=s.instantiateWasm(H,ne);return ct}catch(Ze){return $("Module.instantiateWasm callback failed with error: "+Ze),!1}return lt().catch(o),{}}var kb,Ib;function hp(H){for(;H.length>0;){var ne=H.shift();if(typeof ne=="function"){ne(s);continue}var ye=ne.func;typeof ye=="number"?ne.arg===void 0?cp(ye)():cp(ye)(ne.arg):ye(ne.arg===void 0?null:ne.arg)}}function xs(H){return H}function Cc(H){var ne=/\b_Z[\w\d_]+/g;return H.replace(ne,function(ye){var Re=ye;return ye===Re?ye:Re+" ["+ye+"]"})}var na=[];function cp(H){var ne=na[H];return ne||(H>=na.length&&(na.length=H+1),na[H]=ne=ys.get(H)),ne}function Sb(){var H=new Error;if(!H.stack){try{throw new Error}catch(ne){H=ne}if(!H.stack)return"(no stack trace available)"}return H.stack.toString()}function tu(H,ne){ys.set(H,ne),na[H]=ne}function P1(){oo("")}function Tc(H,ne,ye){cr.copyWithin(H,ne,ne+ye)}function Nc(){return 2147483648}function Dr(H){try{return J.grow(H-Qr.byteLength+65535>>>16),io(J.buffer),1}catch(ne){}}function Ec(H){var ne=cr.length;H=H>>>0;var ye=Nc();if(H>ye)return!1;for(var Re=1;Re<=4;Re*=2){var lt=ne*(1+.2/Re);lt=Math.min(lt,H+100663296);var ct=Math.min(ye,hr(Math.max(H,lt),65536)),Ze=Dr(ct);if(Ze)return!0}return!1}var ru={mappings:{},buffers:[null,[],[]],printChar:function(H,ne){var ye=ru.buffers[H];ne===0||ne===10?((H===1?O:$)(Ke(ye,0)),ye.length=0):ye.push(ne)},varargs:void 0,get:function(){ru.varargs+=4;var H=nr[ru.varargs-4>>2];return H},getStr:function(H){var ne=ot(H);return ne},get64:function(H,ne){return H}};function O1(H){return 0}function Cb(H,ne,ye,Re,lt){}function Tb(H,ne,ye,Re){for(var lt=0,ct=0;ct<ye;ct++){var Ze=nr[ne>>2],He=nr[ne+4>>2];ne+=8;for(var qt=0;qt<He;qt++)ru.printChar(H,cr[Ze+qt]);lt+=He}return nr[Re>>2]=lt,0}function z1(H){re(H)}var Rc=!1,nu={abort:P1,emscripten_memcpy_big:Tc,emscripten_resize_heap:Ec,fd_close:O1,fd_seek:Cb,fd_write:Tb,setTempRet0:z1},pE=_1(),Nb=s.___wasm_call_ctors=function(){return(Nb=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},D1=s._init=function(){return(D1=s._init=s.asm.init).apply(null,arguments)},L1=s._init_with_threads_count=function(){return(L1=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},$c=s._get_threads_count=function(){return($c=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},Mc=s._register_tensor=function(){return(Mc=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},B1=s._dispose_data=function(){return(B1=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},Oe=s._dispose=function(){return(Oe=s._dispose=s.asm.dispose).apply(null,arguments)},W1=s._Abs=function(){return(W1=s._Abs=s.asm.Abs).apply(null,arguments)},Fc=s._Add=function(){return(Fc=s._Add=s.asm.Add).apply(null,arguments)},uo=s._AddN=function(){return(uo=s._AddN=s.asm.AddN).apply(null,arguments)},au=s._All=function(){return(au=s._All=s.asm.All).apply(null,arguments)},V1=s._Any=function(){return(V1=s._Any=s.asm.Any).apply(null,arguments)},Eb=s._ArgMax=function(){return(Eb=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},U1=s._AvgPool=function(){return(U1=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},Rb=s._BatchMatMul=function(){return(Rb=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},po=s._Ceil=function(){return(po=s._Ceil=s.asm.Ceil).apply(null,arguments)},G1=s._ClipByValue=function(){return(G1=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},j1=s._Conv2D=function(){return(j1=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},H1=s._Conv2DBackpropInput=function(){return(H1=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},q1=s._Cos=function(){return(q1=s._Cos=s.asm.Cos).apply(null,arguments)},X1=s._Cosh=function(){return(X1=s._Cosh=s.asm.Cosh).apply(null,arguments)},K1=s._CropAndResize=function(){return(K1=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},_c=s._Cumprod=function(){return(_c=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},Z1=s._Cumsum=function(){return(Z1=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},Y1=s._DepthToSpace=function(){return(Y1=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},J1=s._DepthwiseConv2dNative=function(){return(J1=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},Q1=s._Elu=function(){return(Q1=s._Elu=s.asm.Elu).apply(null,arguments)},e2=s._Equal=function(){return(e2=s._Equal=s.asm.Equal).apply(null,arguments)},Pc=s._Exp=function(){return(Pc=s._Exp=s.asm.Exp).apply(null,arguments)},t2=s._FlipLeftRight=function(){return(t2=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},r2=s._Floor=function(){return(r2=s._Floor=s.asm.Floor).apply(null,arguments)},ho=s._FloorDiv=function(){return(ho=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},fp=s._FusedBatchNorm=function(){return(fp=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},n2=s._FusedConv2D=function(){return(n2=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},a2=s._FusedDepthwiseConv2D=function(){return(a2=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},s2=s._Gather=function(){return(s2=s._Gather=s.asm.Gather).apply(null,arguments)},Xe=s._GatherNd=function(){return(Xe=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},i2=s._Greater=function(){return(i2=s._Greater=s.asm.Greater).apply(null,arguments)},o2=s._GreaterEqual=function(){return(o2=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},l2=s._LeakyRelu=function(){return(l2=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},u2=s._Less=function(){return(u2=s._Less=s.asm.Less).apply(null,arguments)},d2=s._LessEqual=function(){return(d2=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},p2=s._Log=function(){return(p2=s._Log=s.asm.Log).apply(null,arguments)},mp=s._LogicalAnd=function(){return(mp=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},Oc=s._LogicalNot=function(){return(Oc=s._LogicalNot=s.asm.LogicalNot).apply(null,arguments)},zc=s._LogicalOr=function(){return(zc=s._LogicalOr=s.asm.LogicalOr).apply(null,arguments)},h2=s._LogicalXor=function(){return(h2=s._LogicalXor=s.asm.LogicalXor).apply(null,arguments)},c2=s._Max=function(){return(c2=s._Max=s.asm.Max).apply(null,arguments)},f2=s._MaxPool=function(){return(f2=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},m2=s._Maximum=function(){return(m2=s._Maximum=s.asm.Maximum).apply(null,arguments)},g2=s._Mean=function(){return(g2=s._Mean=s.asm.Mean).apply(null,arguments)},y2=s._Min=function(){return(y2=s._Min=s.asm.Min).apply(null,arguments)},_t=s._Minimum=function(){return(_t=s._Minimum=s.asm.Minimum).apply(null,arguments)},A2=s._MirrorPad=function(){return(A2=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},x2=s._Multiply=function(){return(x2=s._Multiply=s.asm.Multiply).apply(null,arguments)},b2=s._Neg=function(){return(b2=s._Neg=s.asm.Neg).apply(null,arguments)},su=s._NonMaxSuppressionV3=function(){return(su=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},Dc=s._NonMaxSuppressionV4=function(){return(Dc=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},Lc=s._NonMaxSuppressionV5=function(){return(Lc=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},Bc=s._NotEqual=function(){return(Bc=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},v2=s._OneHot=function(){return(v2=s._OneHot=s.asm.OneHot).apply(null,arguments)},Wc=s._PadV2=function(){return(Wc=s._PadV2=s.asm.PadV2).apply(null,arguments)},w2=s._Pow=function(){return(w2=s._Pow=s.asm.Pow).apply(null,arguments)},$b=s._Prelu=function(){return($b=s._Prelu=s.asm.Prelu).apply(null,arguments)},Vc=s._Prod=function(){return(Vc=s._Prod=s.asm.Prod).apply(null,arguments)},Mb=s._RealDiv=function(){return(Mb=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},k2=s._Relu=function(){return(k2=s._Relu=s.asm.Relu).apply(null,arguments)},I2=s._Relu6=function(){return(I2=s._Relu6=s.asm.Relu6).apply(null,arguments)},S2=s._ResizeBilinear=function(){return(S2=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},C2=s._Reverse=function(){return(C2=s._Reverse=s.asm.Reverse).apply(null,arguments)},T2=s._RotateWithOffset=function(){return(T2=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},N2=s._Round=function(){return(N2=s._Round=s.asm.Round).apply(null,arguments)},E2=s._Rsqrt=function(){return(E2=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},R2=s._ScatterNd=function(){return(R2=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},$2=s._SelectV2=function(){return($2=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},M2=s._Sigmoid=function(){return(M2=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},F2=s._Sin=function(){return(F2=s._Sin=s.asm.Sin).apply(null,arguments)},_2=s._Softmax=function(){return(_2=s._Softmax=s.asm.Softmax).apply(null,arguments)},P2=s._SparseFillEmptyRows=function(){return(P2=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},O2=s._SparseReshape=function(){return(O2=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},z2=s._SparseSegmentReduction=function(){return(z2=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},D2=s._Sqrt=function(){return(D2=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},L2=s._Square=function(){return(L2=s._Square=s.asm.Square).apply(null,arguments)},B2=s._SquaredDifference=function(){return(B2=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},W2=s._Step=function(){return(W2=s._Step=s.asm.Step).apply(null,arguments)},V2=s._StridedSlice=function(){return(V2=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},U2=s._Sub=function(){return(U2=s._Sub=s.asm.Sub).apply(null,arguments)},G2=s._Sum=function(){return(G2=s._Sum=s.asm.Sum).apply(null,arguments)},j2=s._Tan=function(){return(j2=s._Tan=s.asm.Tan).apply(null,arguments)},H2=s._Tanh=function(){return(H2=s._Tanh=s.asm.Tanh).apply(null,arguments)},q2=s._Tile=function(){return(q2=s._Tile=s.asm.Tile).apply(null,arguments)},X2=s._TopK=function(){return(X2=s._TopK=s.asm.TopK).apply(null,arguments)},K2=s._Transform=function(){return(K2=s._Transform=s.asm.Transform).apply(null,arguments)},Z2=s._Transpose=function(){return(Z2=s._Transpose=s.asm.Transpose).apply(null,arguments)},Y2=s.__FusedMatMul=function(){return(Y2=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},J2=s._malloc=function(){return(J2=s._malloc=s.asm.malloc).apply(null,arguments)},Q2=s._free=function(){return(Q2=s._free=s.asm.free).apply(null,arguments)},eg=s.___errno_location=function(){return(eg=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},tg=s._emscripten_main_thread_process_queued_calls=function(){return(tg=s._emscripten_main_thread_process_queued_calls=s.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},Uc=s.stackSave=function(){return(Uc=s.stackSave=s.asm.stackSave).apply(null,arguments)},Gc=s.stackRestore=function(){return(Gc=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},gp=s.stackAlloc=function(){return(gp=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},rg=s.dynCall_iijjiiii=function(){return(rg=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},ng=s.dynCall_jiji=function(){return(ng=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=$e;var iu;function yp(H){this.name="ExitStatus",this.message="Program terminated with exit("+H+")",this.status=H}As=function H(){iu||Ap(),iu||(As=H)};function Ap(H){if(H=H||d,Sn>0||(xc(),Sn>0))return;function ne(){iu||(iu=!0,s.calledRun=!0,!ae&&(bc(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),vc()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ne()},1)):ne()}s.run=Ap;function Fb(H){de=H,dp()||(s.onExit&&s.onExit(H),ae=!0),p(H,new yp(H))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();Ap();var ou;l&&(ou={uncaughtException:process.listeners("uncaughtException").filter(function(H){return!l.uncaughtException.indexOf(H)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(H){return!l.unhandledRejection.indexOf(H)>-1})});var lu;if(typeof a!="undefined")lu=a;else if(typeof WasmBackendModuleThreadedSimd!="undefined")lu=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(ou){var ag=lu._dispose;lu._dispose=function(){ag(),ou.uncaughtException.forEach(function(H){process.removeListener("uncaughtException",H)}),ou.unhandledRejection.forEach(function(H){process.removeListener("unhandledRejection",H)})}}return a.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=r:typeof define=="function"&&define.amd?define([],function(){return r}):typeof e=="object"&&(e.WasmBackendModule=r)}}),MR=1e-7,FR=1e-4,rh=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Uu=class{refCount(e){return Tn("refCount")}incRef(e){return Tn("incRef")}timerAvailable(){return!0}time(e){return Tn("time")}read(e){return Tn("read")}readSync(e){return Tn("readSync")}readToGPU(e,t){return Tn("readToGPU")}numDataIds(){return Tn("numDataIds")}disposeData(e,t){return Tn("disposeData")}write(e,t,r){return Tn("write")}move(e,t,r,n,a){return Tn("move")}memory(){return Tn("memory")}floatPrecision(){return Tn("floatPrecision")}epsilon(){return this.floatPrecision()===32?MR:FR}dispose(){return Tn("dispose")}};function Tn(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function P7(e){let t=e.length,r=0;for(;t>0;)r=Math.random()*t|0,t--,I0(e,t,r)}function _R(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let r=e.length,n=0;for(;r>0;)n=Math.random()*r|0,r--,I0(e,r,n),I0(t,r,n)}function Up(e,t,r){return Math.max(e,Math.min(t,r))}function PR(e){return e%2===0?e:e+1}function I0(e,t,r){let n=e[t];e[t]=e[r],e[r]=n}function OR(e){let t=0;for(let r=0;r<e.length;r++)t+=e[r];return t}function zR(e,t){let r=Math.random();return t*r+(1-r)*e}function DR(e,t){let r=0;for(let n=0;n<e.length;n++){let a=Number(e[n])-Number(t[n]);r+=a*a}return r}function _(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function jr(e,t,r=""){_(Xs(e,t),()=>r+` Shapes ${e} and ${t} must match`)}function Vo(e){_(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Ro(e,t=[],r=!1){if(t==null&&(t=[]),Array.isArray(e)||Sr(e)&&!r)for(let n=0;n<e.length;++n)Ro(e[n],t,r);else t.push(e);return t}function It(e){if(e.length===0)return 1;let t=e[0];for(let r=1;r<e.length;r++)t*=e[r];return t}function LR(e){return e.length===0}function Xs(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let r=0;r<e.length;r++)if(e[r]!==t[r])return!1;return!0}function Tu(e){return e%1===0}function BR(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function WR(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function VR(e){let t=new Uint32Array(e);for(let r=0;r<e;++r)t[r]=r;return P7(t),t}function Dp(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function UR(e,t=n=>0,r){return new Promise((n,a)=>{let s=0,i=()=>{if(e()){n();return}s++;let o=t(s);if(r!=null&&s>=r){a();return}setTimeout(i,o)};i()})}function GR(e,t){let r=1,n=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)r*=e[s];else if(e[s]===-1){if(n!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${n} and dim ${s}`);n=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(n===-1){if(t>0&&t!==r)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(r===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%r!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${r}`);let a=e.slice();return a[n]=t/r,a}function Hn(e,t){let r=t.length;return e=e==null?t.map((n,a)=>a):[].concat(e),_(e.every(n=>n>=-r&&n<r),()=>`All values in axis param must be in range [-${r}, ${r}) but got axis ${e}`),_(e.every(n=>Tu(n)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(n=>n<0?r+n:n)}function O7(e,t){let r=[],n=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:Hn(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(r.push(e[o]),n.push(o)),s[i]<=o&&i++}e[o]!==1&&(r.push(e[o]),n.push(o))}return{newShape:r,keptDims:n}}function z7(e,t){let r=null;if(e==null||e==="float32")r=new Float32Array(t);else if(e==="int32")r=new Int32Array(t);else if(e==="bool")r=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return r}function D7(e,t){let r=null;if(e==null||e==="float32")r=new Float32Array(t);else if(e==="int32")r=new Int32Array(t);else if(e==="bool")r=new Uint8Array(t);else if(e==="string")r=new Array(t);else throw new Error(`Unknown data type ${e}`);return r}function L7(e,t){for(let r=0;r<e.length;r++){let n=e[r];if(isNaN(n)||!isFinite(n))throw Error(`A tensor of type ${t} being uploaded contains ${n}.`)}}function B7(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function jR(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Sr(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function Cg(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function W7(e){if(e==null)return 0;let t=0;return e.forEach(r=>t+=r.length),t}function Ts(e){return typeof e=="string"||e instanceof String}function V7(e){return typeof e=="boolean"}function U7(e){return typeof e=="number"}function sf(e){return Array.isArray(e)?sf(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":U7(e)?"float32":Ts(e)?"string":V7(e)?"bool":"float32"}function Fs(e){return!!(e&&e.constructor&&e.call&&e.apply)}function S0(e,t){for(let r=t;r<e;++r)if(e%r===0)return r;return e}function Gu(e){let t=e.length;if(t<2)return[];let r=new Array(t-1);r[t-2]=e[t-1];for(let n=t-3;n>=0;--n)r[n]=r[n+1]*e[n+1];return r}function G7(e,t,r,n=!1){let a=new Array;if(t.length===1){let s=t[0]*(n?2:1);for(let i=0;i<s;i++)a[i]=r[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(n?2:1);for(let l=0;l<s;l++)a[l]=G7(e+l*o,i,r,n)}return a}function wu(e,t,r=!1){if(e.length===0)return t[0];let n=e.reduce((a,s)=>a*s)*(r?2:1);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${r?" for a complex tensor":""}.`);return G7(0,e,t,r)}function Ty(e,t){let r=of(e,t);for(let n=0;n<r.length;n++)r[n]=1;return r}function of(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function HR(e,t){let r=e.reduce((n,a)=>n*a,1);if(t==null||t==="float32")return wu(e,new Float32Array(r));if(t==="int32")return wu(e,new Int32Array(r));if(t==="bool")return wu(e,new Uint8Array(r));throw new Error(`Unknown data type ${t}`)}function Ny(e){e.forEach(t=>{_(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function qR(e,t,r){if(t===0)return 0;if(t===1)return e[0];let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=r[a]*e[a];return n}function XR(e,t,r){if(t===0)return[];if(t===1)return[e];let n=new Array(t);for(let a=0;a<n.length-1;++a)n[a]=Math.floor(e/r[a]),e-=n[a]*r[a];return n[n.length-1]=e,n}function Ey(e){return e&&e.then&&typeof e.then=="function"}var jb="tfjsflags",j7=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=KR,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(Z().getBool("IS_TEST")||Z().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,r){if(this.flagRegistry[e]={evaluationFn:t,setHook:r},this.urlFlags[e]!=null){let n=this.urlFlags[e];Z().getBool("IS_TEST")||Z().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${n}.`),this.set(e,n)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Ey(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);jb in e&&e[jb].split(",").forEach(t=>{let[r,n]=t.split(":");this.urlFlags[r]=YR(r,n)})}};function KR(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(r,...n)=>(ZR(t,n[0],n[1]),n.join("="))),t}function ZR(e,t,r){e[decodeURIComponent(t)]=decodeURIComponent(r||"")}function YR(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Z(){return ba}var ba=null;function JR(e){ba=e}var hg;function H7(){if(hg==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");hg=e}return hg}function QR(){let e=H7();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Ry(e,t){let r=QR();if(r.has(e))return r.get(e);{let n=t();return r.set(e,n),r.get(e)}}var Uo="Abs",ju="Acos",Hu="Acosh",Ja="Add",Ks="AddN",qu="All",Xu="Any",Zs="ArgMax",Ku="ArgMin",Zu="Asin",Yu="Asinh",Ju="Atan",Qu="Atanh",ed="Atan2",Ys="AvgPool",lf="AvgPoolGrad",nh="AvgPool3D",uf="AvgPool3DGrad",Js="BatchMatMul",Go="BatchToSpaceND",df="Bincount",q7="BroadcastTo",pf="BroadcastArgs",Qs="Cast",ei="Ceil",Qa="ClipByValue",ah="Complex",sh="ComplexAbs",jo="Concat",ti="Conv2D",hf="Conv2DBackpropFilter",ri="Conv2DBackpropInput",ih="Conv3D",cf="Conv3DBackpropFilterV2",ff="Conv3DBackpropInputV2",ni="Cos",ai="Cosh",Ho="Cumprod",si="Cumsum",qo="CropAndResize",mf="DenseBincount",Xo="DepthToSpace",ii="DepthwiseConv2dNative",gf="DepthwiseConv2dNativeBackpropFilter",yf="DepthwiseConv2dNativeBackpropInput",Af="Diag",oh="Dilation2D",C0="Dilation2DBackpropInput",T0="Dilation2DBackpropFilter",oi="RealDiv",lh="Einsum",li="Elu",xf="EluGrad",td="Erf",Ko="Equal",ui="Exp",Zo="ExpandDims",Yo="Expm1",bf="FFT",rd="Fill",Jo="FlipLeftRight",di="Floor",pi="FloorDiv",hi="FusedBatchNorm",Qo="GatherV2",el="GatherNd",tl="Greater",ci="GreaterEqual",fi="Identity",vf="IFFT",uh="Imag",nd="IsFinite",ad="IsInf",sd="IsNan",mi="LeakyRelu",rl="Less",nl="LessEqual",wf="LinSpace",gi="Log",id="Log1p",al="LogicalAnd",sl="LogicalNot",od="LogicalOr",X7="LogicalXor",K7="LogSoftmax",e$="LowerBound",dh="LRN",kf="LRNGrad",yi="Max",Ai="Maximum",xi="MaxPool",If="MaxPoolGrad",ph="MaxPool3D",Sf="MaxPool3DGrad",Cf="MaxPoolWithArgmax",bi="Mean",vi="Min",wi="Minimum",ki="MirrorPad",ld="Mod",Tf="Multinomial",Ii="Multiply",il="Neg",ol="NotEqual",ll="NonMaxSuppressionV3",ud="NonMaxSuppressionV4",ul="NonMaxSuppressionV5",dl="OnesLike",pl="OneHot",hl="Pack",Si="PadV2",t$="Pool",Ci="Pow",Ti="Prelu",Ni="Prod",dd="Range",hh="Real",pd="Reciprocal",Ei="Relu",cl="Reshape",hd="ResizeNearestNeighbor",Nf="ResizeNearestNeighborGrad",Ri="ResizeBilinear",Ef="ResizeBilinearGrad",$i="Relu6",fl="Reverse",ml="Round",Mi="Rsqrt",gl="ScatterNd",Rf="SearchSorted",yl="Select",cd="Selu",Al="Slice",Fi="Sin",xl="Sinh",fd="Sign",_i="Sigmoid",md="Softplus",Pi="Sqrt",Oi="Sum",bl="SpaceToBatchND",vl="SplitV",zi="Softmax",ch="SparseFillEmptyRows",gd="SparseReshape",fh="SparseSegmentMean",mh="SparseSegmentSum",gh="SparseToDense",Di="SquaredDifference",yd="Square",wl="StridedSlice",yh="StringNGrams",$f="StringSplit",Mf="StringToHashBucketFast",Li="Sub",kl="Tan",Bi="Tanh",es="Tile",Il="TopK",Sl="Transform",$a="Transpose",Ff="Unique",Cl="Unpack",Ah="UnsortedSegmentSum",r$="UpperBound",Tl="ZerosLike",Wi="Step",Gp="FromPixels",Nl="RotateWithOffset",_s="_FusedMatMul",Ps="FusedConv2D",Os="FusedDepthwiseConv2D";function Cs(...e){Z().getBool("IS_TEST")||Z().getBool("PROD")||console.warn(...e)}function n$(...e){Z().getBool("IS_TEST")||Z().getBool("PROD")||console.log(...e)}var Nu=Ry("kernelRegistry",()=>new Map),jp=Ry("gradRegistry",()=>new Map);function N0(e,t){let r=$y(e,t);return Nu.get(r)}function Tg(e){return jp.get(e)}function Fa(e){let t=Nu.entries(),r=[];for(;;){let{done:n,value:a}=t.next();if(n)break;let[s,i]=a,[o]=s.split("_");o===e&&r.push(i)}return r}function qn(e){let{kernelName:t,backendName:r}=e,n=$y(t,r);Nu.has(n)&&Cs(`The kernel '${t}' for backend '${r}' is already registered`),Nu.set(n,e)}function Z7(e){let{kernelName:t}=e;jp.has(t)&&Z().getBool("DEBUG")&&Cs(`Overriding the gradient for '${t}'`),jp.set(t,e)}function a$(e,t){let r=$y(e,t);if(!Nu.has(r))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Nu.delete(r)}function s$(e){if(!jp.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);jp.delete(e)}function i$(e,t){Fa(e).forEach(r=>{let n=Object.assign({},r,{backendName:t});qn(n)})}function $y(e,t){return`${t}_${e}`}var v={};Be(v,{arraysEqual:()=>Xs,assert:()=>_,assertNonNegativeIntegerDimensions:()=>Ny,assertNonNull:()=>Vo,assertShapesMatch:()=>jr,bytesFromStringArray:()=>W7,bytesPerElement:()=>Cg,checkConversionForErrors:()=>L7,clamp:()=>Up,computeStrides:()=>Gu,createScalarValue:()=>h$,createShuffledIndices:()=>VR,decodeString:()=>E0,distSquared:()=>DR,encodeString:()=>bh,fetch:()=>f$,fingerPrint64:()=>p$,flatten:()=>Ro,getArrayFromDType:()=>D7,getTypedArrayFromDType:()=>z7,hasEncodingLoss:()=>jR,hexToLong:()=>xh,indexToLoc:()=>XR,inferDtype:()=>sf,inferFromImplicitShape:()=>GR,isBoolean:()=>V7,isFunction:()=>Fs,isInt:()=>Tu,isNumber:()=>U7,isPromise:()=>Ey,isScalarShape:()=>LR,isString:()=>Ts,isTypedArray:()=>Sr,isValidDtype:()=>B7,locToIndex:()=>qR,makeOnesTypedArray:()=>Ty,makeZerosNestedTypedArray:()=>HR,makeZerosTypedArray:()=>of,nearestDivisor:()=>S0,nearestLargerEven:()=>PR,now:()=>Hp,parseAxisParam:()=>Hn,randUniform:()=>zR,repeatedTry:()=>UR,rightPad:()=>Dp,shuffle:()=>P7,shuffleCombo:()=>_R,sizeFromShape:()=>It,sizeToSquarishShape:()=>WR,squeezeShape:()=>O7,sum:()=>OR,swap:()=>I0,tanh:()=>BR,toNestedArray:()=>wu,toTypedArray:()=>_f});var Hb=Wo(gR()),xo=Hb.default||Hb;function xh(e){return xo.fromString(e,!0,16)}var Y7=xh("c3a5c85c97cb3127"),go=xh("b492b66fbe98f273"),Lr=xh("9ae16a3b2f90404f");function Ng(e){return e.xor(e.shru(47))}function J7(e,t,r){let n=e.slice(t,t+r);return xo.fromBytes(Array.from(n),!0,!0)}function kt(e,t){return J7(e,t,8)}function qb(e,t){return J7(e,t,4)}function fr(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Es(e,t,r=xh("9ddfea08eb382d69")){let n=e.xor(t).mul(r);n=n.xor(n.shru(47));let a=t.xor(n).mul(r);return a=a.xor(a.shru(47)),a=a.mul(r),a}function o$(e,t,r,n,a,s){a=a.add(e),s=fr(s.add(a).add(n),21);let i=a;return a=a.add(t),a=a.add(r),s=s.add(fr(a,44)),[a.add(n),s.add(i)]}function Qc(e,t,r,n){return o$(kt(e,t),kt(e,t+8),kt(e,t+16),kt(e,t+24),r,n)}function l$(e,t=e.length){if(t>=8){let r=Lr.add(t*2),n=kt(e,0).add(Lr),a=kt(e,t-8),s=fr(a,37).mul(r).add(n),i=fr(n,25).add(a).mul(r);return Es(s,i,r)}if(t>=4){let r=Lr.add(t*2),n=qb(e,0);return Es(n.shl(3).add(t),qb(e,t-4),r)}if(t>0){let r=e[0],n=e[t>>1],a=e[t-1],s=r+(n<<8),i=t+(a<<2);return Ng(Lr.mul(s).xor(Y7.mul(i))).mul(Lr)}return Lr}function u$(e,t=e.length){let r=Lr.add(t*2),n=kt(e,0).mul(go),a=kt(e,8),s=kt(e,t-8).mul(r),i=kt(e,t-16).mul(Lr);return Es(fr(n.add(a),43).add(fr(s,30)).add(i),n.add(fr(a.add(Lr),18)).add(s),r)}function d$(e,t=e.length){let r=Lr.add(t*2),n=kt(e,0).mul(Lr),a=kt(e,8),s=kt(e,t-8).mul(r),i=kt(e,t-16).mul(Lr),o=fr(n.add(a),43).add(fr(s,30)).add(i),l=Es(o,n.add(fr(a.add(Lr),18)).add(s),r),u=kt(e,16).mul(r),d=kt(e,24),h=o.add(kt(e,t-32)).mul(r),p=l.add(kt(e,t-24)).mul(r);return Es(fr(u.add(d),43).add(fr(h,30)).add(p),u.add(fr(d.add(n),18)).add(h),r)}function p$(e,t=e.length){let r=xo.fromNumber(81,!0);if(t<=32)return t<=16?l$(e,t):u$(e,t);if(t<=64)return d$(e,t);let n=r,a=r.mul(go).add(113),s=Ng(a.mul(Lr).add(113)).mul(Lr),i=[xo.UZERO,xo.UZERO],o=[xo.UZERO,xo.UZERO];n=n.mul(Lr).add(kt(e,0));let l=0,u=(t-1>>6)*64,d=u+(t-1&63)-63;do n=fr(n.add(a).add(i[0]).add(kt(e,l+8)),37).mul(go),a=fr(a.add(i[1]).add(kt(e,l+48)),42).mul(go),n=n.xor(o[1]),a=a.add(i[0]).add(kt(e,l+40)),s=fr(s.add(o[0]),33).mul(go),i=Qc(e,l,i[1].mul(go),n.add(o[0])),o=Qc(e,l+32,s.add(o[1]),a.add(kt(e,l+16))),[s,n]=[n,s],l+=64;while(l!==u);let h=go.add(s.and(255).shl(1));return l=d,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),n=fr(n.add(a).add(i[0]).add(kt(e,l+8)),37).mul(h),a=fr(a.add(i[1]).add(kt(e,l+48)),42).mul(h),n=n.xor(o[1].mul(9)),a=a.add(i[0].mul(9).add(kt(e,l+40))),s=fr(s.add(o[0]),33).mul(h),i=Qc(e,l,i[1].mul(h),n.add(o[0])),o=Qc(e,l+32,s.add(o[1]),a.add(kt(e,l+16))),[s,n]=[n,s],Es(Es(i[0],o[0],h).add(Ng(a).mul(Y7)).add(s),Es(i[1],o[1],h).add(n),h)}function h$(e,t){return t==="string"?bh(e):_f([e],t)}function c$(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function _f(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Ro(e)),Z().getBool("DEBUG")&&L7(e,t),c$(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let r=new Uint8Array(e.length);for(let n=0;n<r.length;++n)Math.round(e[n])!==0&&(r[n]=1);return r}else throw new Error(`Unknown data type ${t}`)}function Hp(){return Z().platform.now()}function f$(e,t){return Z().platform.fetch(e,t)}function bh(e,t="utf-8"){return t=t||"utf-8",Z().platform.encode(e,t)}function E0(e,t="utf-8"){return t=t||"utf-8",Z().platform.decode(e,t)}var m$=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new y$)}profileKernel(e,t,r){let n,a=()=>{n=r()},s,i=Hp();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(a);else{a();for(let o of n)o.dataSync();s=Promise.resolve({kernelMs:Hp()-i})}if(Z().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<n.length;o++){let l=n[o];l.data().then(u=>{g$(u,l.dtype,e)})}return{kernelName:e,outputs:n,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:r,timeMs:n,inputs:a,extraInfo:s}=e;r.forEach(i=>{Promise.all([i.data(),n,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function g$(e,t,r){if(t!=="float32")return!1;for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))return console.warn(`Found ${a} in the result of '${r}'`),!0}return!1}var y$=class{logKernelProfile(e,t,r,n,a,s){let i=typeof n=="number"?Dp(`${n}ms`,9):n.error,o=Dp(e,25),l=t.rank,u=t.size,d=Dp(t.shape.toString(),14),h="";for(let p in a){let c=a[p];if(c!=null){let m=c.shape||t.shape,f=m.length;h+=`${p}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${d} %c${u} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function A$(e,t,r){let n={},a={};for(let l=0;l<t.length;l++)n[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],d=u.inputs;for(let h in d){let p=d[h],c=!1;for(let m=0;m<t.length;m++)if(n[p.id]){u.outputs.forEach(f=>n[f.id]=!0),c=!0,a[u.id]=!0;break}if(c)break}}let s={};s[r.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],d=u.inputs;for(let h=0;h<u.outputs.length;h++)if(s[u.outputs[h].id]){for(let p in d)s[d[p].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(a[u.id]&&i[u.id]){let d={};for(let p in u.inputs){let c=u.inputs[p];n[c.id]&&(d[p]=c)}let h=Object.assign({},u);h.inputs=d,h.outputs=u.outputs,o.push(h)}}return o}function x$(e,t,r,n){for(let a=t.length-1;a>=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=r(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let d=s.inputs[l];if(!Xs(u.shape,d.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${d.shape}'`);if(e[d.id]==null)e[d.id]=u;else{let h=e[d.id];e[d.id]=n(h,u),h.dispose()}}}}var Xb=20,Ip=3,cg=7;function b$(e,t,r,n){let a=Gu(t),s=v$(e,t,r,a),i=t.length,o=p0(e,t,r,a,s),l=["Tensor"];return n&&(l.push(` dtype: ${r}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
`)),l.join(`
`)}function v$(e,t,r,n){let a=It(t),s=n[n.length-1],i=new Array(s).fill(0),o=t.length,l=r==="complex64"?Ep(e):e;if(o>1)for(let u=0;u<a/s;u++){let d=u*s;for(let h=0;h<s;h++)i[h]=Math.max(i[h],Np(l[d+h],0,r).length)}return i}function Np(e,t,r){let n;return Array.isArray(e)?n=`${parseFloat(e[0].toFixed(cg))} + ${parseFloat(e[1].toFixed(cg))}j`:Ts(e)?n=`'${e}'`:r==="bool"?n=Q7(e):n=parseFloat(e.toFixed(cg)).toString(),Dp(n,t)}function Q7(e){return e===0?"false":"true"}function p0(e,t,r,n,a,s=!0){let i=r==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(r==="complex64"){let f=Ep(e);return[Np(f[0],0,r)]}return r==="bool"?[Q7(e[0])]:[e[0].toString()]}if(l===1){if(o>Xb){let g=Ip*i,y=Array.from(e.slice(0,g)),A=Array.from(e.slice((o-Ip)*i,o*i));return r==="complex64"&&(y=Ep(y),A=Ep(A)),["["+y.map((x,b)=>Np(x,a[b],r)).join(", ")+", ..., "+A.map((x,b)=>Np(x,a[o-Ip+b],r)).join(", ")+"]"]}let f=r==="complex64"?Ep(e):Array.from(e);return["["+f.map((g,y)=>Np(g,a[y],r)).join(", ")+"]"]}let u=t.slice(1),d=n.slice(1),h=n[0]*i,p=[];if(o>Xb){for(let f=0;f<Ip;f++){let g=f*h,y=g+h;p.push(...p0(e.slice(g,y),u,r,d,a,!1))}p.push("...");for(let f=o-Ip;f<o;f++){let g=f*h,y=g+h;p.push(...p0(e.slice(g,y),u,r,d,a,f===o-1))}}else for(let f=0;f<o;f++){let g=f*h,y=g+h;p.push(...p0(e.slice(g,y),u,r,d,a,f===o-1))}let c=l===2?",":"";p[0]="["+p[0]+c;for(let f=1;f<p.length-1;f++)p[f]=" "+p[f]+c;let m=`,
`;for(let f=2;f<l;f++)m+=`
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(s?"":m),p}function Ep(e){let t=[];for(let r=0;r<e.length;r+=2)t.push([e[r],e[r+1]]);return t}var ir=class{constructor(e,t,r){if(this.dtype=t,this.shape=e.slice(),this.size=It(e),r!=null){let n=r.length;_(n===this.size,()=>`Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=r||D7(t,this.size),this.strides=Gu(e)}set(e,...t){t.length===0&&(t=[0]),_(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let r=this.locToIndex(t);this.values[r]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let n of e){if(n<0||n>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let r=e[e.length-1];for(let n=0;n<e.length-1;++n)r+=this.strides[n]*e[n];return this.values[r]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let r=0;r<e.length-1;++r)t+=this.strides[r]*e[r];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let r=0;r<t.length-1;++r)t[r]=Math.floor(e/this.strides[r]),e-=t[r]*this.strides[r];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return la().makeTensor(this.values,this.shape,this.dtype)}},la=null,Au=null,w$=null;function k$(e){la=e}function I$(e){Au=e}function S$(e){w$=e}var nt=class{constructor(e,t,r,n){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=It(e),this.strides=Gu(e),this.dataId=r,this.id=n,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Au.buffer(this.shape,this.dtype,e)}bufferSync(){return Au.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return wu(this.shape,e,this.dtype==="complex64")}arraySync(){return wu(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=la().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(r=>E0(r))}catch(r){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),la().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=la().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>E0(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await la().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(la().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Au.print(this,e)}clone(){return this.throwIfDisposed(),Au.clone(this)}toString(e=!1){let t=this.dataSync();return b$(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Au.cast(this,e)}variable(e=!0,t,r){return this.throwIfDisposed(),la().makeVariable(this,e,t,r)}};Object.defineProperty(nt,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function C$(){return Ry("Tensor",()=>nt)}C$();var qp=class extends nt{constructor(e,t,r,n){super(e.shape,e.dtype,e.dataId,n),this.trainable=t,this.name=r}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Xs(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);la().disposeTensor(this),this.dataId=e.dataId,la().incRef(this,null)}dispose(){la().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(qp,Symbol.hasInstance,{value:e=>e instanceof nt&&e.assign!=null&&e.assign instanceof Function});var ha={};Be(ha,{assertTypesMatch:()=>s6,getTensorsInContainer:()=>My,isTensorInList:()=>N$,makeTypesMatch:()=>Lt});var e6=(e=>(e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6",e))(e6||{}),t6=(e=>(e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64",e))(t6||{}),r6=(e=>(e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64",e))(r6||{}),n6=(e=>(e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64",e))(n6||{}),a6=(e=>(e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64",e))(a6||{}),T$={float32:n6,int32:t6,bool:r6,complex64:a6};function Nr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return T$[e][t]}function vh(e){return Nr(e,"int32")}function Lt(e,t){if(e.dtype===t.dtype)return[e,t];let r=Nr(e.dtype,t.dtype);return[e.cast(r),t.cast(r)]}function s6(e,t){_(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function N$(e,t){return t.some(r=>r.id===e.id)}function My(e){let t=[];return i6(e,t,new Set),t}function i6(e,t,r){if(e==null)return;if(e instanceof nt){t.push(e);return}if(!E$(e))return;let n=e;for(let a in n){let s=n[a];r.has(s)||(r.add(s),i6(s,t,r))}}function E$(e){return Array.isArray(e)||typeof e=="object"}function fg(e){return e.kernelName!=null}var Kb=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Eg=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Kb}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let r=e[t];if(await this.initializeBackend(r).success){await this.setBackend(r);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,r=1){return e in this.registryFactory?(Cs(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:r},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:r}=this.initializeBackend(e);if(!(r?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new m$(this.backendInstance),!0}setupRegisteredKernels(){Fa(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Fa(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let r=t.factory();if(r&&!(r instanceof Uu)&&typeof r.then=="function"){let n=++this.pendingBackendInitId,a=r.then(s=>n<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(n<this.pendingBackendInitId||(this.pendingBackendInit=null,Cs(`Initialization of backend ${e} failed`),Cs(s.stack||s.message)),!1));return this.pendingBackendInit=a,{success:a,asyncInit:!0}}else return this.registry[e]=r,{success:!0,asyncInit:!1}}catch(r){return Cs(`Initialization of backend ${e} failed`),Cs(r.stack||r.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let r=e[t],{success:n,asyncInit:a}=this.initializeBackend(r);if(a||n)return{name:r,asyncInit:a}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let r=this.state.tensorInfo.get(t),n=r.backend,a=this.readSync(t),s=n.refCount(t);n.disposeData(t,!0),r.backend=e,e.move(t,a,r.shape,r.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let r=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");r=e}let n;return this.scopedRun(()=>this.startScope(r),()=>this.endScope(n),()=>(n=t(),n instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),n))}scopedRun(e,t,r){e();try{let n=r();return t(),n}catch(n){throw t(),n}}nextTensorId(){return Eg.nextTensorId++}nextVariableId(){return Eg.nextVariableId++}clone(e){let t=B.runKernel(fi,{x:e}),r={x:e},n=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return B.runKernel(Qs,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,r,[t],n,a,{}),t}runKernel(e,t,r){if(this.backendName==null&&this.backend,N0(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:r})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,r){let n=this.backend.numDataIds(),a=0;r.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=n-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,r=[],n=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=fg(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(fg(e)){let{kernelName:c,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=N0(c,this.backendName);_(g!=null,()=>`Cannot find registered kernel '${c}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let A=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(c,y,A);let x=A.map(b=>b.rank!=null?b:this.makeTensorFromTensorInfo(b));if(n){let b=this.getTensorsForGradient(c,m,x);r=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:c}=e,m=f=>{!n||(r=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>c(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:d}=e,h=fg(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(p=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),n&&this.addTapeNode(l,u,t,h,r,d),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(c=>u[c]!=null?u[c].shape:null),outputShapes:t.map(c=>c.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,r){let n=Tg(e);if(n!=null){let a=n.inputsToSave||[],s=n.outputsToSave||[],i;n.saveAllInputs?(_(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=r.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,r,n){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");r=r||"float32",n=n||this.backend;let a=e;r==="string"&&Ts(e[0])&&(a=e.map(o=>bh(o)));let s=n.write(a,t,r),i=new nt(t,r,s,this.nextTensorId());if(this.trackTensor(i,n),r==="string"){let o=this.state.tensorInfo.get(s),l=W7(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,r,n){r=r||"float32";let a={dataId:e,shape:t,dtype:r};return this.makeTensorFromTensorInfo(a,n)}makeTensorFromTensorInfo(e,t){let{dataId:r,shape:n,dtype:a}=e,s=new nt(n,a,r,this.nextTensorId());return this.trackTensor(s,t),s}makeVariable(e,t=!0,r,n){r=r||this.nextVariableId().toString(),n!=null&&n!==e.dtype&&(e=e.cast(n));let a=new qp(e,t,r,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let r=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(r=e.size*Cg(e.dtype)),this.state.numBytes+=r,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:r})),e instanceof qp||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let r=e.size*Cg(e.dtype);this.state.numBytes-=r}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,r=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(n=>n.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-r;for(let n of this.state.activeProfile.kernels)n.kernelTimeMs=await n.kernelTimeMs,n.extraInfo=await n.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,r,n,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:r,saved:a},o=Tg(e);o!=null&&(n=o.gradFunc),n!=null&&(i.gradient=l=>(l=l.map((u,d)=>{if(u==null){let h=r[d],p=of(h.size,h.dtype);return this.makeTensor(p,h.shape,h.dtype)}return u}),n(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=My(e),r=new Set(t.map(a=>a.id));for(let a=0;a<this.state.activeScope.track.length;a++){let s=this.state.activeScope.track[a];!s.kept&&!r.has(s.id)&&s.dispose()}let n=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(a=>{!a.kept&&a.scopeId===n.id&&this.track(a)})}gradients(e,t,r,n=!1){if(_(t.length>0,()=>"gradients() received an empty list of xs."),r!=null&&r.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${r.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));_(a instanceof nt,()=>"The result y returned by f() must be a tensor.");let s=A$(this.state.activeTape,t,a);if(!n&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=r==null?R$(a.shape):r,x$(i,s,l=>this.tidy(l),$$);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return _(Fs(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{_(t.every(i=>i instanceof nt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let r,n={};t.forEach((i,o)=>{n[o]=i});let a=(i,o)=>(r=e(...t,o),_(r.value instanceof nt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),_(Fs(r.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),r.value),s=(i,o)=>{let l=r.gradFunc(i,o),u=Array.isArray(l)?l:[l];_(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),_(u.every(h=>h instanceof nt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let d={};return u.forEach((h,p)=>{d[p]=()=>h}),d};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:n})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Hp(),r=await this.backend.time(e);return r.wallMs=Hp()-t,r}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Kb;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}},Fy=Eg;Fy.nextTensorId=0;Fy.nextVariableId=0;function R$(e){let t=Ty(It(e),"float32");return B.makeTensor(t,e,"float32")}function o6(){let e=H7();if(e._tfengine==null){let t=new j7(e);e._tfengine=new Fy(t)}return JR(e._tfengine.ENV),k$(()=>e._tfengine),e._tfengine}var B=o6();function $$(e,t){let r={a:e,b:t};return B.runKernel(Ja,r)}var wh={};Be(wh,{isBrowser:()=>l6,isMobile:()=>_$,mockIsMobile:()=>F$});function M$(){return typeof navigator!="undefined"&&navigator!=null}var Rg;function F$(e){Rg=e}function _$(e){if(Rg!==void 0)return Rg;if(e||M$()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let r=e;return r.userAgentData&&r.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function l6(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Rn=Z();Rn.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Rn.registerFlag("IS_BROWSER",()=>l6());Rn.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Rn.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Rn.registerFlag("PROD",()=>!1);Rn.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Rn.getBool("DEBUG"));Rn.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Rn.registerFlag("IS_TEST",()=>!1);Rn.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Rn.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Rn.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);Rn.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY",()=>!1);function _a(e,t){let r=e;if(Sr(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let n=[];for(;Array.isArray(r)||Sr(r)&&t!=="string";)n.push(r.length),r=r[0];return Array.isArray(e)&&Z().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&u6(e,n,[]),n}function u6(e,t,r){if(r=r||[],!Array.isArray(e)&&!Sr(e)){_(t.length===0,()=>`Element arr[${r.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}_(t.length>0,()=>`Element arr[${r.join("][")}] should be a primitive, but is an array of ${e.length} elements`),_(e.length===t[0],()=>`Element arr[${r.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let n=t.slice(1);for(let a=0;a<e.length;++a)u6(e[a],n,r.concat(a))}function Zb(e,t,r,n){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${r}' passed to '${n}' must be ${e} tensor, but got ${t} tensor`)}}function M(e,t,r,n="numeric"){if(e instanceof nt)return Zb(n,e.dtype,t,r),e;let a=sf(e);if(a!=="string"&&["bool","int32","float32"].indexOf(n)>=0&&(a=n),Zb(n,a,t,r),e==null||!Sr(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${r}' must be a Tensor or TensorLike, but got '${o}'`)}let s=_a(e,a);!Sr(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?_f(e,a):Ro(e,[],!0);return B.makeTensor(i,s,a)}function Xp(e,t,r,n="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${r} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>M(a,`${t}[${s}]`,r,n))}var d6="__op";function W(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let r=t[0],n=e[r];r.endsWith("_")&&(r=r.substring(0,r.length-1)),r=r+d6;let a=(...s)=>{B.startScope(r);try{let i=n(...s);return Ey(i)&&console.error("Cannot return a Promise inside of tidy."),B.endScope(i),i}catch(i){throw B.endScope(null),i}};return Object.defineProperty(a,"name",{value:r,configurable:!0}),a}function P$(e,t){let r=M(e,"real","complex"),n=M(t,"imag","complex");jr(r.shape,n.shape,`real and imag shapes, ${r.shape} and ${n.shape}, must match in call to tf.complex().`);let a={real:r,imag:n};return B.runKernel(ah,a)}var Za=W({complex_:P$});function Vi(e,t,r,n){if(n==null&&(n=sf(e)),n==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Sr(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Ny(t);let a=It(t),s=It(r);_(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i<r.length;++i){let o=r[i],l=i===r.length-1?o!==It(t.slice(i)):!0;_(r[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${r}) does not match the provided shape (${t}). `)}}return!Sr(e)&&!Array.isArray(e)&&(e=[e]),t=t||r,e=n!=="string"?_f(e,n):Ro(e,[],!0),B.makeTensor(e,t,n)}function ft(e,t,r){let n=_a(e,r);return Vi(e,t,n,r)}var $g={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},R0=4;async function O$(e,t){let r=[],n=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<a.length;++i){let o=a[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let d=new Promise(async h=>{let p=await l.bytes(),c=p.reduce((g,y)=>g+y.length,0)+R0*p.length,m=new Uint8Array(c),f=0;for(let g=0;g<p.length;g++){let y=p[g],A=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(A,f),f+=R0,m.set(y,f),f+=y.length}h(m)});n.push(d)}else n.push(l.data());t!=null&&(u.group=t),r.push(u)}let s=await Promise.all(n);return{data:z$(s),specs:r}}function p6(e,t){let r={},n,a=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=It(l),d;if("quantization"in s){let h=s.quantization;if(h.dtype==="uint8"||h.dtype==="uint16"){if(!("min"in h&&"scale"in h))throw new Error(`Weight ${s.name} with quantization ${h.dtype} doesn't have corresponding metadata min and scale.`)}else if(h.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${h.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${h.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=$g[h.dtype],c=e.slice(a,a+u*p),m=h.dtype==="uint8"?new Uint8Array(c):new Uint16Array(c);if(o==="float32")if(h.dtype==="uint8"||h.dtype==="uint16"){d=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];d[f]=g*h.scale+h.min}}else if(h.dtype==="float16")n===void 0&&(n=U$()),d=n(m);else throw new Error(`Unsupported quantization type ${h.dtype} for weight type float32.`);else if(o==="int32"){if(h.dtype!=="uint8"&&h.dtype!=="uint16")throw new Error(`Unsupported quantization type ${h.dtype} for weight type int32.`);d=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];d[f]=Math.round(g*h.scale+h.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*p}else if(o==="string"){let h=It(s.shape);d=[];for(let p=0;p<h;p++){let c=new Uint32Array(e.slice(a,a+R0))[0];a+=R0;let m=new Uint8Array(e.slice(a,a+c));d.push(m),a+=c}}else{let h=$g[o],p=e.slice(a,a+u*h);if(o==="float32")d=new Float32Array(p);else if(o==="int32")d=new Int32Array(p);else if(o==="bool")d=new Uint8Array(p);else if(o==="complex64"){d=new Float32Array(p);let c=new Float32Array(d.length/2),m=new Float32Array(d.length/2);for(let y=0;y<c.length;y++)c[y]=d[y*2],m[y]=d[y*2+1];let f=ft(c,l,"float32"),g=ft(m,l,"float32");r[i]=Za(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*h}o!=="complex64"&&(r[i]=ft(d,l,o))}return r}function z$(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,r=[];e.forEach(s=>{if(t+=s.byteLength,r.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let n=new Uint8Array(t),a=0;return r.forEach(s=>{n.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),n.buffer}var _y=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Yb(e){return _y?Buffer.byteLength(e):new Blob([e]).size}function D$(e){if(_y)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),r="";for(let n=0,a=t.length;n<a;n++)r+=String.fromCharCode(t[n]);return btoa(r)}function L$(e){if(_y){let n=Buffer.from(e,"base64");return n.buffer.slice(n.byteOffset,n.byteOffset+n.byteLength)}let t=atob(e),r=new Uint8Array(t.length);for(let n=0;n<t.length;++n)r.set([t.charCodeAt(n)],n);return r.buffer}function Py(e){if(e.length===1)return e[0];let t=0;e.forEach(a=>{t+=a.byteLength});let r=new Uint8Array(t),n=0;return e.forEach(a=>{r.set(new Uint8Array(a),n),n+=a.byteLength}),r.buffer}function Jb(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let r=e.split(t);return r[r.length-1]}function h6(e,t){let r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(r.trainingConfig=e.trainingConfig),r}async function Oy(e,t){let r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(r.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[n,a]=await t(e.weightsManifest);r.weightSpecs=n,r.weightData=a}return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),r}function kh(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Yb(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Yb(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function B$(){let e=r=>{let n=r<<13,a=0;for(;(n&8388608)===0;)a-=8388608,n<<=1;return n&=-8388609,a+=947912704,n|a},t=new Uint32Array(2048);t[0]=0;for(let r=1;r<1024;r++)t[r]=e(r);for(let r=1024;r<2048;r++)t[r]=939524096+(r-1024<<13);return t}function W$(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function V$(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function U$(){let e=B$(),t=W$(),r=V$();return n=>{let a=new ArrayBuffer(4*n.length),s=new Uint32Array(a);for(let i=0;i<n.length;i++){let o=n[i],l=e[r[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Wt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Wt.instance==null&&(Wt.instance=new Wt),Wt.instance}static registerSaveRouter(e){Wt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Wt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Wt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Wt.getHandlers(e,"load",t)}static getHandlers(e,t,r){let n=[];return(t==="load"?Wt.getInstance().loadRouters:Wt.getInstance().saveRouters).forEach(a=>{let s=a(e,r);s!==null&&n.push(s)}),n}},G$=e=>Wt.registerSaveRouter(e),j$=e=>Wt.registerLoadRouter(e),H$=e=>Wt.getSaveHandlers(e),q$=(e,t)=>Wt.getLoadHandlers(e,t),Mg="tensorflowjs",Fg=1,ko="models_store",Ns="model_info_store";function c6(){if(!Z().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function _g(e){let t=e.result;t.createObjectStore(ko,{keyPath:"modelPath"}),t.createObjectStore(Ns,{keyPath:"modelPath"})}var $o=class{constructor(e){if(this.indexedDB=c6(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((r,n)=>{let a=this.indexedDB.open(Mg,Fg);a.onupgradeneeded=()=>_g(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(ko,"readonly"),o=i.objectStore(ko).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),n(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));r(o.result.modelArtifacts)},o.onerror=l=>(s.close(),n(o.error)),i.oncomplete=()=>s.close()}else{let i=kh(t),o=s.transaction(Ns,"readwrite"),l=o.objectStore(Ns),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),d;u.onsuccess=()=>{d=s.transaction(ko,"readwrite");let h=d.objectStore(ko).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>r({modelArtifactsInfo:i}),h.onerror=p=>{l=o.objectStore(Ns);let c=l.delete(this.modelPath);c.onsuccess=()=>(s.close(),n(h.error)),c.onerror=m=>(s.close(),n(h.error))}},u.onerror=h=>(s.close(),n(u.error)),o.oncomplete=()=>{d==null?s.close():d.oncomplete=()=>s.close()}}},a.onerror=s=>n(a.error)})}};$o.URL_SCHEME="indexeddb://";var f6=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith($o.URL_SCHEME)?X$(e.slice($o.URL_SCHEME.length)):null;Wt.registerSaveRouter(f6);Wt.registerLoadRouter(f6);function X$(e){return new $o(e)}function K$(e){return e.startsWith($o.URL_SCHEME)?e.slice($o.URL_SCHEME.length):e}var Z$=class{constructor(){this.indexedDB=c6()}async listModels(){return new Promise((e,t)=>{let r=this.indexedDB.open(Mg,Fg);r.onupgradeneeded=()=>_g(r),r.onsuccess=()=>{let n=r.result,a=n.transaction(Ns,"readonly"),s=a.objectStore(Ns).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(n.close(),t(s.error)),a.oncomplete=()=>n.close()},r.onerror=n=>t(r.error)})}async removeModel(e){return e=K$(e),new Promise((t,r)=>{let n=this.indexedDB.open(Mg,Fg);n.onupgradeneeded=()=>_g(n),n.onsuccess=()=>{let a=n.result,s=a.transaction(Ns,"readwrite"),i=s.objectStore(Ns),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),r(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),d=()=>{l=a.transaction(ko,"readwrite");let h=l.objectStore(ko).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=p=>r(o.error)};u.onsuccess=d,u.onerror=h=>(d(),a.close(),r(o.error))}},o.onerror=u=>(a.close(),r(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},n.onerror=a=>r(n.error)})}},qa="/",xu="tensorflowjs_models",m6="info",Y$="model_topology",J$="weight_specs",Q$="weight_data",eM="model_metadata";function g6(e){return{info:[xu,e,m6].join(qa),topology:[xu,e,Y$].join(qa),weightSpecs:[xu,e,J$].join(qa),weightData:[xu,e,Q$].join(qa),modelMetadata:[xu,e,eM].join(qa)}}function y6(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function tM(e){let t=e.split(qa);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(qa)}function rM(e){return e.startsWith(Mo.URL_SCHEME)?e.slice(Mo.URL_SCHEME.length):e}var Mo=class{constructor(e){if(!Z().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=g6(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),r=JSON.stringify(e.weightSpecs),n=kh(e);try{this.LS.setItem(this.keys.info,JSON.stringify(n)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,r),this.LS.setItem(this.keys.weightData,D$(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:n}}catch(a){throw y6(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${n.modelTopologyBytes}, weightSpecsBytes=${n.weightSpecsBytes}, weightDataBytes=${n.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},r=JSON.parse(this.LS.getItem(this.keys.topology));if(r==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=r;let n=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(n==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=n;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=L$(s),t}};Mo.URL_SCHEME="localstorage://";var A6=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Mo.URL_SCHEME)?nM(e.slice(Mo.URL_SCHEME.length)):null;Wt.registerSaveRouter(A6);Wt.registerLoadRouter(A6);function nM(e){return new Mo(e)}var aM=class{constructor(){_(Z().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),_(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=xu+qa,r=qa+m6;for(let n=0;n<this.LS.length;++n){let a=this.LS.key(n);if(a.startsWith(t)&&a.endsWith(r)){let s=tM(a);e[s]=JSON.parse(this.LS.getItem(a))}}return e}async removeModel(e){e=rM(e);let t=g6(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let r=JSON.parse(this.LS.getItem(t.info));return y6(t),r}},ku="://",Nn=class{constructor(){this.managers={}}static getInstance(){return Nn.instance==null&&(Nn.instance=new Nn),Nn.instance}static registerManager(e,t){_(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(ku)&&(e=e.slice(0,e.indexOf(ku))),_(e.length>0,()=>"scheme must not be an empty string.");let r=Nn.getInstance();_(r.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),r.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function h0(e){if(e.indexOf(ku)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Nn.getSchemes().join(",")}`);return{scheme:e.split(ku)[0],path:e.split(ku)[1]}}async function x6(e,t,r=!1){_(e!==t,()=>`Old path and new path are the same: '${e}'`);let n=Wt.getLoadHandlers(e);_(n.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),_(n.length<2,()=>`Copying failed because more than one (${n.length}) load handlers for source URL ${e}.`);let a=n[0],s=Wt.getSaveHandlers(t);_(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),_(s.length<2,()=>`Copying failed because more than one (${n.length}) save handlers for destination URL ${t}.`);let i=s[0],o=h0(e).scheme,l=h0(e).path,u=o===h0(e).scheme,d=await a.load();r&&u&&await Nn.getManager(o).removeModel(l);let h=await i.save(d);return r&&!u&&await Nn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function sM(){let e=Nn.getSchemes(),t={};for(let r of e){let n=await Nn.getManager(r).listModels();for(let a in n){let s=r+ku+a;t[s]=n[a]}}return t}async function iM(e){let t=h0(e);return Nn.getManager(t.scheme).removeModel(t.path)}async function oM(e,t){return x6(e,t,!1)}async function lM(e,t){return x6(e,t,!0)}var uM=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Z().get("IS_BROWSER")){Z().setPlatform("browser",new uM);try{Nn.registerManager(Mo.URL_SCHEME,new aM)}catch(e){}try{Nn.registerManager($o.URL_SCHEME,new Z$)}catch(e){}}var dM={importFetch:()=>yR()},mg,pM=class{constructor(){this.util=AR(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Z().global.fetch!=null?Z().global.fetch(e,t):(mg==null&&(mg=dM.importFetch()),mg(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Z().get("IS_NODE")&&!Z().get("IS_BROWSER")&&Z().setPlatform("node",new pM);function De(e,t="float32",r){return t=t||"float32",Ny(e),new ir(e,t,r)}function hM(e,t){let r=M(e,"x","cast");if(!B7(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&r.dtype!=="string"||t!=="string"&&r.dtype==="string")throw new Error("Only strings can be casted to strings");let n={x:r},a={dtype:t};return B.runKernel(Qs,n,a)}var me=W({cast_:hM});function cM(e){let t={x:M(e,"x","clone","string_or_numeric")};return B.runKernel(fi,t)}var Vr=W({clone_:cM});function b6(e,t=!1){console.log(e.toString(t))}o6();var fM={buffer:De,cast:me,clone:Vr,print:b6};I$(fM);var Cr={};Be(Cr,{browserFiles:()=>vM,browserHTTPRequest:()=>CM,concatenateArrayBuffers:()=>Py,copyModel:()=>oM,decodeWeights:()=>p6,encodeWeights:()=>O$,fromMemory:()=>NM,fromMemorySync:()=>S6,getLoadHandlers:()=>q$,getModelArtifactsForJSON:()=>Oy,getModelArtifactsInfoForJSON:()=>kh,getSaveHandlers:()=>H$,http:()=>Dy,isHTTPScheme:()=>Og,listModels:()=>sM,loadWeights:()=>wM,moveModel:()=>lM,registerLoadRouter:()=>j$,registerSaveRouter:()=>G$,removeModel:()=>iM,weightsLoaderFactory:()=>w6,withSaveHandler:()=>EM,withSaveHandlerSync:()=>RM});var mM="model",gM=".json",yM=".weights.bin";function Qb(e){return new Promise(t=>setTimeout(t)).then(e)}var Pg=class{constructor(e){if(!Z().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Pg.URL_SCHEME)&&(e=e.slice(Pg.URL_SCHEME.length)),(e==null||e.length===0)&&(e=mM),this.modelJsonFileName=e+gM,this.weightDataFileName=e+yM}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let r=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],n=h6(e,r),a=window.URL.createObjectURL(new Blob([JSON.stringify(n)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=a,await Qb(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Qb(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:kh(e)}}}},$0=Pg;$0.URL_SCHEME="downloads://";var AM=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let r=new FileReader;r.onload=n=>{let a=JSON.parse(n.target.result),s=a.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(a.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=Oy(a,o=>this.loadWeights(o));e(i)},r.onerror=n=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(this.jsonFile)})}loadWeights(e){let t=[],r=[];for(let s of e)t.push(...s.weights),r.push(...s.paths);let n=this.checkManifestAndWeightFiles(e),a=r.map(s=>this.loadWeightsFile(s,n[s]));return Promise.all(a).then(s=>[t,Py(s)])}loadWeightsFile(e,t){return new Promise((r,n)=>{let a=new FileReader;a.onload=s=>{let i=s.target.result;r(i)},a.onerror=s=>n(`Failed to weights data from file of path '${e}'.`),a.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],r=this.weightsFiles.map(a=>Jb(a.name)),n={};for(let a of e)a.paths.forEach(s=>{let i=Jb(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),r.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);n[s]=this.weightsFiles[r.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return n}},xM=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith($0.URL_SCHEME)?bM(e.slice($0.URL_SCHEME.length)):null;Wt.registerSaveRouter(xM);function bM(e="model"){return new $0(e)}function vM(e){return new AM(e)}function e4(e,t,r,n){i(e),r=r==null?0:r,n=n==null?1:n,o(r,n);let a=0,s=l=>(l.then(u=>{let d=r+ ++a/e.length*(n-r);return t(d),u}),l);function i(l){_(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){_(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),_(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),_(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function v6(e,t){t==null&&(t={});let r=t.fetchFunc==null?Z().platform.fetch:t.fetchFunc,n=e.map(u=>r(u,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(n):await e4(n,t.onProgress,a,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await e4(i,t.onProgress,o,l)}async function wM(e,t="",r,n){return w6(a=>v6(a,{requestInit:n}))(e,t,r)}function w6(e){return async(t,r="",n)=>{let a=t.map(()=>!1),s={},i=n!=null?n.map(()=>!1):[],o=[];if(t.forEach((c,m)=>{let f=0;c.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,A=$g[y]*It(g.shape),x=()=>{a[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:A})};n!=null?n.forEach((b,w)=>{b===g.name&&(x(),i[w]=!0)}):x(),o.push(g.name),f+=A})}),!i.every(c=>c)){let c=n.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${c.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((c,m,f)=>(m&&c.push(f),c),[]),u=[];l.forEach(c=>{t[c].paths.forEach(m=>{let f=r+(r.endsWith("/")?"":"/")+m;u.push(f)})});let d=await e(u),h={},p=0;return l.forEach(c=>{let m=t[c].paths.length,f=0;for(let x=0;x<m;x++)f+=d[p+x].byteLength;let g=new ArrayBuffer(f),y=new Uint8Array(g),A=0;for(let x=0;x<m;x++){let b=new Uint8Array(d[p+x]);y.set(b,A),A+=b.byteLength}s[c].forEach(x=>{let b=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),w=p6(b,[x.manifestEntry]);for(let I in w)h[I]=w[I]}),p+=m}),h}}var kM="application/octet-stream",IM="application/json",zy=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(_(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Z().platform.fetch,_(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&_(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let r=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],n=h6(e,r);t.body.append("model.json",new Blob([JSON.stringify(n)],{type:IM}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:kM}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:kh(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(a){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let r=t.modelTopology,n=t.weightsManifest;if(r==null&&n==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Oy(t,a=>this.loadWeights(a))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[r,n]=SM(t),a=this.weightPathPrefix||r,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let d of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(d)):i.push(a+d+n);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await v6(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Py(l)]}};zy.URL_SCHEME_REGEX=/^https?:\/\//;function SM(e){let t=e.lastIndexOf("/"),r=e.lastIndexOf("?"),n=e.substring(0,t),a=r>t?e.substring(r):"";return[n+"/",a]}function Og(e){return e.match(zy.URL_SCHEME_REGEX)!=null}var k6=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let r=!0;if(Array.isArray(e)?r=e.every(n=>Og(n)):r=Og(e),r)return Dy(e,t)}return null};Wt.registerSaveRouter(k6);Wt.registerLoadRouter(k6);function Dy(e,t){return new zy(e,t)}function CM(e,t){return Dy(e,t)}var gg=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},I6=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},TM=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function NM(e,t,r,n){let a=arguments;return new TM(S6(...a))}function S6(e,t,r,n){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new gg(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new gg({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new gg({modelTopology:e,weightSpecs:t,weightData:r,trainingConfig:n}))}function EM(e){return new I6(e)}function RM(e){return new I6(e)}var C6={};Be(C6,{confusionMatrix:()=>HM});function $M(e,t,r=!1,n=!1){let a=M(e,"a","matMul"),s=M(t,"b","matMul");[a,s]=Lt(a,s);let i={a,b:s},o={transposeA:r,transposeB:n};return B.runKernel(Js,i,o)}var Ye=W({matMul_:$M});function MM(e,t,r=1,n=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:M(e,"indices","oneHot","int32")},s={depth:t,onValue:r,offValue:n};return B.runKernel(pl,a,s)}var Kp=W({oneHot_:MM});function Ly(){Z().set("PROD",!0)}function FM(){Z().set("DEBUG",!0)}function _M(){Z().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function By(e){Z().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}S$(By);function PM(){B.disposeVariables()}function Xt(){return B}function M0(){return B.memory()}function OM(e){return B.profile(e)}function X(e,t){return B.tidy(e,t)}function te(e){My(e).forEach(t=>t.dispose())}function mr(e){return B.keep(e)}function zM(e){return B.time(e)}function Wy(e){return B.setBackend(e)}function Ad(){return B.ready()}function Hr(){return B.backendName}function DM(e){B.removeBackend(e)}function Vy(e){return B.findBackend(e)}function LM(e){return B.findBackendFactory(e)}function El(e,t,r=1){return B.registerBackend(e,t,r)}function Dn(){return B.backend}function BM(e,t){Z().setPlatform(e,t)}function WM(e){let t={input:M(e,"input","imag")};return B.runKernel(uh,t)}var Ih=W({imag_:WM});function VM(e){let t={x:M(e,"x","neg")};return B.runKernel(il,t)}var Mt=W({neg_:VM});function UM(e){let t={input:M(e,"input","real")};return B.runKernel(hh,t)}var Eu=W({real_:UM});function GM(e,t,r){let n=M(e,"x","transpose");if(t==null&&(t=n.shape.map((i,o)=>o).reverse()),_(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(i=>{_(i>=0&&i<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},s={perm:t};return n.dtype==="complex64"?X(()=>{let i=Eu(n),o=Ih(n);return i=B.runKernel($a,{x:i},s),o=B.runKernel($a,{x:o},s),r&&(o=Mt(o)),Za(i,o)}):B.runKernel($a,a,s)}var tt=W({transpose_:GM});function jM(e,t,r){let n=M(e,"labels","confusionMatrix"),a=M(t,"predictions","confusionMatrix");_(r==null||r>0&&Number.isInteger(r),()=>`If provided, numClasses must be a positive integer, but got ${r}`),_(n.rank===1,()=>`Expected the rank of labels to be 1, but got ${n.rank}`),_(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),_(n.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${n.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),_(r>0&&Number.isInteger(r),()=>`numClasses is required to be a positive integer, but got ${r}`);let s=Kp(me(n,"int32"),r),i=Kp(me(a,"int32"),r),o=tt(s),l=Ye(o,i);return me(l,"int32")}var HM=W({confusionMatrix_:jM}),Rl={};Be(Rl,{assertAndGetBroadcastShape:()=>At,getBroadcastDims:()=>T6,getReductionAxes:()=>Jt});function T6(e,t){let r=e.length,n=[];for(let a=0;a<r;a++){let s=r-1-a,i=e[s]||1;(t[t.length-1-a]||1)>1&&i===1&&n.unshift(s)}return n}function Jt(e,t){let r=[];for(let n=0;n<t.length;n++){let a=e[e.length-n-1],s=t.length-n-1,i=t[s];(a==null||a===1&&i>1)&&r.unshift(s)}return r}function At(e,t){let r=[],n=Math.max(e.length,t.length);for(let a=0;a<n;a++){let s=e[e.length-a-1];s==null&&(s=1);let i=t[t.length-a-1];if(i==null&&(i=1),s===1)r.unshift(i);else if(i===1)r.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else r.unshift(s)}return r}var Ln={};Be(Ln,{fromPixels:()=>QM,fromPixelsAsync:()=>YM,toPixels:()=>JM});function N6(e,t,r){if(Vo(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let n=_a(e,r);if(n.length!==3&&n.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Vi(e,t,n,r)}var fo;function E6(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let r=!1,n=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)r=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)n=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a&&a&&e.readyState<2)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.");if(N0(Gp,B.backendName)!=null){let p={pixels:e},c={numChannels:t};return B.runKernel(Gp,p,c)}let[l,u]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;if(i)d=e.getContext("2d").getImageData(0,0,l,u).data;else if(n||r)d=e.data;else if(s||a||o){if(fo==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")fo=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else{let p=Z().getBool("CANVAS2D_WILL_READ_FREQUENTLY");fo=document.createElement("canvas").getContext("2d",{willReadFrequently:p})}fo.canvas.width=l,fo.canvas.height=u,fo.drawImage(e,0,0,l,u),d=fo.getImageData(0,0,l,u).data}let h;if(t===4)h=new Int32Array(d);else{let p=l*u;h=new Int32Array(p*t);for(let c=0;c<p;c++)for(let m=0;m<t;++m)h[c*t+m]=d[c*4+m]}return N6(h,[u,l,t],"int32")}function qM(e){return e!=null&&e.data instanceof Uint8Array}function XM(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function KM(e){return e!=null&&e.width!==0&&e.height!==0}function ZM(e){return XM()&&!(e instanceof ImageBitmap)&&KM(e)&&!qM(e)}async function YM(e,t=3){let r=null;if(Z().getBool("WRAP_TO_IMAGEBITMAP")&&ZM(e)){let n;try{n=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(a){n=null}n!=null&&n.width===e.width&&n.height===e.height?r=n:r=e}else r=e;return E6(r,t)}async function JM(e,t){let r=M(e,"img","toPixels");if(!(e instanceof nt)){let u=r;r=me(u,"int32"),u.dispose()}if(r.rank!==2&&r.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${r.rank}.`);let[n,a]=r.shape.slice(0,2),s=r.rank===2?1:r.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(r.dtype!=="float32"&&r.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${r.dtype}. Please use float32 or int32 tensors.`);let i=await r.data(),o=r.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*n*4);for(let u=0;u<n*a;++u){let d=[0,0,0,255];for(let p=0;p<s;p++){let c=i[u*s+p];if(r.dtype==="float32"){if(c<0||c>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${c}.`)}else if(r.dtype==="int32"&&(c<0||c>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${c}.`);s===1?(d[0]=c*o,d[1]=c*o,d[2]=c*o):d[p]=c*o}let h=u*4;l[h+0]=Math.round(d[0]),l[h+1]=Math.round(d[1]),l[h+2]=Math.round(d[2]),l[h+3]=Math.round(d[3])}if(t!=null){t.width=a,t.height=n;let u=t.getContext("2d"),d=new ImageData(l,a,n);u.putImageData(d,0,0)}return r!==e&&r.dispose(),l}var QM=W({fromPixels_:E6}),Uy={};Be(Uy,{prepareAndValidate:()=>R6});function R6(e,t){let r=e.shape.length,n=t.shape.length;if(r<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${r}.`);if(n<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${n}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[n-1]>r)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[n-1]} vs. ${r}`);if(It(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;h<a.length-1;++h)i*=a[h];let o=e.shape,l=a.slice();l.pop();let u=1;for(let h=s;h<r;++h)u*=o[h],l.push(o[h]);let d=[...Gu(e.shape).map(h=>h/u),1].slice(0,s);return[l,i,u,d]}var Gy={};Be(Gy,{calculateShapes:()=>$6,validateInput:()=>Hy,validateUpdateShape:()=>jy});function jy(e,t,r){let n=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${r.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${n}, and batchDim: ${a}.`;if(r.rank<a)throw new Error(s+` update.rank < ${a}. `);if(e.length<n+(r.rank-a))throw new Error(s+` Output shape length < ${n+(r.rank-a)}`);if(r.rank!==a+e.length-n)throw new Error(s+` update.rank != ${a+e.length-n}`);for(let i=0;i<a;++i)if(r.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${r.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<r.rank-a;++i)if(r.shape[i+a]!==e[i+n])throw new Error(s+` updates.shape[${i+a}] (${r.shape[i+a]}) != shape[${i+a}] (${e[i+a]})`)}function Hy(e,t,r){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(r.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${r}`);if(r.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}jy(r,t,e)}function $6(e,t,r){let n=t.shape.length,a=n>1?t.shape[n-1]:1,s=r.length,i=1;for(let h=a;h<s;++h)i*=r[h];let o=a<1?1:a,l=It(t.shape)/o,u=[...Gu(r.slice(0,a)),1],d=It(r);return{sliceRank:a,numUpdates:l,sliceSize:i,strides:u,outputSize:d}}var Dt={};Be(Dt,{assertParamsValid:()=>tF,computeFlatOffset:()=>iF,computeOutShape:()=>nF,getNormalizedAxes:()=>aF,isSliceContinous:()=>sF,maskToAxes:()=>rF,parseSliceParams:()=>B6,sliceInfo:()=>oF,startForAxis:()=>D6,startIndicesWithElidedDims:()=>P6,stopForAxis:()=>L6,stopIndicesWithElidedDims:()=>O6,stridesForAxis:()=>z6,stridesWithElidedDims:()=>M6});var zg=-2,eF=-1;function tF(e,t,r){let n=e.shape.length;_(n===t.length,()=>`Error in slice${n}D: Length of begin ${t} must match the rank of the array (${n}).`),_(n===r.length,()=>`Error in slice${n}D: Length of size ${r} must match the rank of the array (${n}).`);for(let a=0;a<n;++a)_(t[a]+r[a]<=e.shape[a],()=>`Error in slice${n}D: begin[${a}] + size[${a}] (${t[a]+r[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function rF(e){let t=[],r=0;for(;e>0;)e&1&&t.push(r),e/=2,r++;return t}function nF(e,t,r){let n=[];for(let a=0;a<e.length;a++)n[a]=Math.ceil((t[a]-e[a])/r[a]);return n}function M6(e,t,r,n){let a=[...e];for(let s=a.length;s<n.length;s++)a.push(1);for(let s=0;s<r;s++)s===0?a[t]=1:(a.splice(t,0,1),a.pop());return a}function F6(e,t,r){return r<=e?r:r-(t-1)}function _6(e,t){let r=[];for(let n=0;n<e;n++)r.push(t+n);return r}function aF(e,t,r,n,a,s,i,o,l){let u=e.length,d=new Array(u),h=new Array(u),p=new Array(u);if(t.length&&r>0){let c=t[0],m=r+1;d=P6(i,c,m,n,e),h=O6(o,c,m,a,e),p=M6(s,c,m,e)}else for(let c=0;c<u;c++)d[c]=D6(i,n,s,e,c,l),h[c]=L6(o,a,s,e,c,l),p[c]=z6(s,c,l);return{begin:d,end:h,strides:p}}function P6(e,t,r,n,a){let s=[...a],i=_6(r,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=F6(t,r,o),u=n[l];e&1<<l&&(u=0),s[o]=u}return s}function O6(e,t,r,n,a){let s=[...a],i=_6(r,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=F6(t,r,o),u=n[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=a[o];s[o]<0&&(s[o]+=l),s[o]=Up(0,s[o],a[o])}return s}function z6(e,t,r){let n=e[t];return(r&1<<t||n==null)&&(n=1),n}function D6(e,t,r,n,a,s){let i=t[a],o=r[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=n[a];return i<0&&(i+=l),i=Up(0,i,l-1),i}function L6(e,t,r,n,a,s){let i=t[a],o=r[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=n[a];return i<0&&(i+=l),o>0?i=Up(0,i,l):i=Up(-1,i,l-1),i}function sF(e,t,r){let n=r.length;for(let a=0;a<r.length;a++)if(r[a]>1){n=a;break}for(let a=n+1;a<r.length;a++)if(t[a]>0||r[a]!==e[a])return!1;return!0}function iF(e,t){let r=e.length>0?e[e.length-1]:1;for(let n=0;n<e.length-1;n++)r+=e[n]*t[n];return r}function B6(e,t,r){let n,a=e.shape.length;typeof t=="number"?n=[t,...new Array(a-1).fill(0)]:t.length<a?n=t.concat(new Array(a-t.length).fill(0)):n=t.slice(),n.forEach(i=>{_(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return r==null?s=new Array(a).fill(-1):typeof r=="number"?s=[r,...new Array(a-1).fill(-1)]:r.length<a?s=r.concat(new Array(a-r.length).fill(-1)):s=r,s=s.map((i,o)=>i>=0?i:(_(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-n[o])),[n,s]}function oF(e,t,r,n,a,s,i,o,l){let u;if(n==null?(u=new Array(t.length),u.fill(1)):u=n,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let d=!1,h={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:r.slice(),strides:u.slice(),beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let A=0;A<h.dims;A++)d&&(1<<A&o)!==0&&h.numAddAxisAfterEllipsis++,1<<A&i&&(d=!0);d||(h.ellipsisMask|=1<<h.dims,h.dims++);let p={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};lF(h,p);let c=!0,m=!0,f=!0,g=[],y=[];for(let A=0;A<e.length;++A){if(p.strides[A]===0)throw Error(`strides[${A}] must be non-zero`);let x=!!(p.shrinkAxisMask&1<<A),b=e[A];if(b===-1){g.push(x?1:-1);continue}let w=[p.beginMask&1<<A,p.endMask&1<<A],I=[p.strides[A]>0?0:-1,p.strides[A]>0?b:b-1];if(x&&p.strides[A]<=0)throw Error("only stride 1 allowed on non-range indexing.");f=f&&p.strides[A]===1;let T=!!(p.beginMask&1<<A&&p.endMask&1<<A);if(p.beginValid&&p.endValid){if(x){let $=p.begin[A]<0?b+p.begin[A]:p.begin[A];if(p.begin[A]=$,p.end[A]=p.begin[A]+1,$<0||$>=b)throw Error(`slice index ${p.begin[A]} of dimension ${A} out of bounds.`)}else p.begin[A]=t4(p.begin[A],0,p.strides[A],b,w,I),p.end[A]=t4(p.end[A],1,p.strides[A],b,w,I);let O=p.strides[A]===1&&p.begin[A]===0&&p.end[A]===b;c=c&&O,m=m&&(A===0&&p.strides[A]===1||O)}else c=c&&p.strides[A]===1&&T,m=m&&(A===0&&p.strides[A]===1||T);let E,R=!1;if(p.beginValid&&p.endValid?(E=p.end[A]-p.begin[A],R=!0):x?(E=1,R=!0):T&&b>=0&&(p.strides[A]<0?E=-b:E=b,R=!0),R){let O;E===0||E<0!=p.strides[A]<0?O=0:O=Math.trunc(E/p.strides[A])+(E%p.strides[A]!==0?1:0),g.push(O)}else g.push(-1)}for(let A=0;A<p.finalShapeGatherIndices.length;++A){let x=p.finalShapeGatherIndices[A];x>=0?y.push(g[x]):x===zg&&y.push(1)}return{finalShapeSparse:y.filter((A,x)=>p.finalShapeGatherIndices[x]!==zg),finalShape:y,isIdentity:c,sliceDim0:m,isSimpleSlice:f,begin:p.begin,end:p.end,strides:p.strides}}function lF(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let r=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let n=0;n<e.dims;n++)if(1<<n&e.ellipsisMask){let a=Math.min(t.dims-(e.dims-n)+1+e.numAddAxisAfterEllipsis,t.dims);for(;r<a;r++)t.begin[r]=0,t.end[r]=0,t.strides[r]=1,t.beginMask|=1<<r,t.endMask|=1<<r,t.finalShapeGatherIndices.push(r),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[r]=n}else if(1<<n&e.newAxisMask)t.finalShapeGatherIndices.push(zg),t.finalShapeGatherIndicesSparse.push(-1);else{if(r===t.begin.length)throw Error(`Index out of range using input dim ${r}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[r]=e.begin[n]),e.end!=null&&(t.end[r]=e.end[n]),t.strides[r]=e.strides[n],e.beginMask&1<<n&&(t.beginMask|=1<<r),e.endMask&1<<n&&(t.endMask|=1<<r),e.shrinkAxisMask&1<<n?(t.finalShapeGatherIndices.push(eF),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<r):(t.finalShapeGatherIndices.push(r),t.finalShapeGatherIndicesSparse.push(n)),t.inputShapeGatherIndicesSparse[r]=n,r++}}function t4(e,t,r,n,a,s){if(a[t])return r>0?s[t]:s[t+1&1];{let i=e<0?n+e:e;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var ue={};Be(ue,{Serializable:()=>W6,SerializationMap:()=>bo,registerClass:()=>Ui});var W6=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},bo=class{constructor(){this.classNameMap={}}static getMap(){return bo.instance==null&&(bo.instance=new bo),bo.instance}static register(e){bo.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Ui(e){_(e.className!=null,()=>"Class being registered does not have the static className property defined."),_(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),_(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),bo.register(e)}var V6={};Be(V6,{TEST_EPSILON_FLOAT16:()=>U6,encodeStrings:()=>G6,expectArrayBuffersEqual:()=>mF,expectArraysClose:()=>dF,expectArraysEqual:()=>hF,expectNumbersClose:()=>cF,expectPromiseToFail:()=>pF,expectValuesInRange:()=>fF,testEpsilon:()=>qy});var uF=.001,U6=.1;function dF(e,t,r){return r==null&&(r=qy()),Dg(e,t,(n,a)=>Xy(n,a,r))}function qy(){return B.backend.floatPrecision()===32?uF:U6}function Dg(e,t,r){let n=!0;if((Sr(e)||Sr(t))&&(n=!1),Sr(e)&&Sr(t)&&(n=!0),n){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=_a(e),o=_a(t);if(!Xs(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=Sr(e)?e:Ro(e),s=Sr(t)?t:Ro(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}.
Actual: ${a}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=a[i],l=s[i];if(!r(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${a}.
Expected: ${s}.`)}}function pF(e,t){e().then(()=>t.fail(),()=>t())}function hF(e,t){let r=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ts(e)||Ts(e[0])||Ts(t)||Ts(t[0])?Dg(e,r,(n,a)=>n==a):Dg(e,t,(n,a)=>Xy(n,a,0))}function cF(e,t,r){if(r==null&&(r=qy()),!Xy(e,t,r))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Xy(e,t,r){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>r)}function fF(e,t,r){for(let n=0;n<e.length;n++)if(e[n]<t||e[n]>r)throw new Error(`Value out of range:${e[n]} low: ${t}, high: ${r}`)}function mF(e,t){let r=new Float32Array(e),n=new Float32Array(t);if(r.length!==n.length)throw new Error(`Expected ArrayBuffer to be of length ${n.length}, but it was ${r.length}`);for(let a=0;a<n.length;a++)if(r[a]!==n[a])throw new Error(`Expected ArrayBuffer value at ${a} to be ${n[a]} but got ${r[a]} instead`)}function G6(e){for(let t=0;t<e.length;t++){let r=e[t];Array.isArray(r)?G6(r):e[t]=bh(r)}return e}var Ky="0.0.0";function gF(e,t){let r=M(e,"a","add"),n=M(t,"b","add");[r,n]=Lt(r,n);let a={a:r,b:n};return B.runKernel(Ja,a)}var le=W({add_:gF});function yF(e,t){let r=M(e,"a","floorDiv"),n=M(t,"b","floorDiv");[r,n]=Lt(r,n);let a={a:r,b:n};return B.runKernel(pi,a)}var Sh=W({floorDiv_:yF});function AF(e,t){let r=M(e,"a","div"),n=M(t,"b","div");if([r,n]=Lt(r,n),r.dtype==="int32"&&n.dtype==="int32")return Sh(r,n);let a={a:r,b:n},s={};return B.runKernel(oi,a,s)}var pe=W({div_:AF});function xF(e,t){let r=M(e,"a","mul"),n=M(t,"b","mul");[r,n]=Lt(r,n);let a={a:r,b:n};return B.runKernel(Ii,a)}var L=W({mul_:xF});function bF(e){let t=M(e,"x","abs");if(t.dtype==="complex64"){let r={x:t};return B.runKernel(sh,r)}else{let r={x:t};return B.runKernel(Uo,r)}}var ar=W({abs_:bF});function vF(e){let t={x:M(e,"x","acos")};return B.runKernel(ju,t)}var j6=W({acos_:vF});function wF(e){let t={x:M(e,"x","acosh")};return B.runKernel(Hu,t)}var H6=W({acosh_:wF});function kF(e){_(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),_(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>M(a,`tensors${s}`,"addN")),r=t[0];t.forEach(a=>{if(a.dtype!==r.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!Xs(a.shape,r.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let n=t;return B.runKernel(Ks,n)}var Pf=W({addN_:kF});function IF(e,t=null,r=!1){let n={x:M(e,"x","all","bool")},a={axis:t,keepDims:r};return B.runKernel(qu,n,a)}var Zy=W({all_:IF});function SF(e,t=null,r=!1){let n={x:M(e,"x","any","bool")},a={axis:t,keepDims:r};return B.runKernel(Xu,n,a)}var F0=W({any_:SF});function CF(e,t=0){let r={x:M(e,"x","argMax")},n={axis:t};return B.runKernel(Zs,r,n)}var $n=W({argMax_:CF});function TF(e,t=0){let r={x:M(e,"x","argMin")},n={axis:t};return B.runKernel(Ku,r,n)}var q6=W({argMin_:TF});function NF(e){let t={x:M(e,"x","asin")};return B.runKernel(Zu,t)}var X6=W({asin_:NF});function EF(e){let t={x:M(e,"x","asinh")};return B.runKernel(Yu,t)}var K6=W({asinh_:EF});function RF(e){let t={x:M(e,"x","atan")};return B.runKernel(Ju,t)}var Z6=W({atan_:RF});function $F(e,t){let r=M(e,"a","atan2"),n=M(t,"b","atan2");[r,n]=Lt(r,n);let a={a:r,b:n};return B.runKernel(ed,a)}var Y6=W({atan2_:$F});function MF(e){let t={x:M(e,"x","atanh")};return B.runKernel(Qu,t)}var J6=W({atanh_:MF});function FF(e,t,r,n,a="NHWC",s){let i=e[3],o=[...t,i],l=tv(a);return Ch(e,o,r,s,n,null,null,l)}function Q6(e,t,r,n,a,s,i="channelsLast"){let[o,l]=_0(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Ch(e,u,r,n,a,s,!1,i)}function _F(e,t,r,n,a,s,i="NDHWC"){let[o,l,u]=Lg(t),d,h;if(i==="NDHWC")h="channelsLast",d=[o,l,u,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",d=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return ev(e,d,r,n,a,!1,h,s)}function Ch(e,t,r,n,a,s,i=!1,o="channelsLast"){let[l,u,d,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,d,h]=e;else if(o==="channelsFirst")[l,h,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[p,c,,m]=t,[f,g]=_0(r),[y,A]=_0(n),x=Iu(p,y),b=Iu(c,A),{padInfo:w,outHeight:I,outWidth:T}=zF(a,u,d,f,g,x,b,s,o),E=i?m*h:m,R;return o==="channelsFirst"?R=[l,E,I,T]:o==="channelsLast"&&(R=[l,I,T,E]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:d,inChannels:h,outHeight:I,outWidth:T,outChannels:E,padInfo:w,strideHeight:f,strideWidth:g,filterHeight:p,filterWidth:c,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:A,inShape:e,outShape:R,filterShape:t}}function ev(e,t,r,n,a,s=!1,i="channelsLast",o){let[l,u,d,h,p]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,d,h,p]=e;else if(i==="channelsFirst")[l,p,u,d,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[c,m,f,,g]=t,[y,A,x]=Lg(r),[b,w,I]=Lg(n),T=Iu(c,b),E=Iu(m,w),R=Iu(f,I),{padInfo:O,outDepth:$,outHeight:S,outWidth:P}=DF(a,u,d,h,y,A,x,T,E,R,o),z=s?g*p:g,j;return i==="channelsFirst"?j=[l,z,$,S,P]:i==="channelsLast"&&(j=[l,$,S,P,z]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:d,inWidth:h,inChannels:p,outDepth:$,outHeight:S,outWidth:P,outChannels:z,padInfo:O,strideDepth:y,strideHeight:A,strideWidth:x,filterDepth:c,filterHeight:m,filterWidth:f,effectiveFilterDepth:T,effectiveFilterHeight:E,effectiveFilterWidth:R,dilationDepth:b,dilationHeight:w,dilationWidth:I,inShape:e,outShape:j,filterShape:t}}function PF(e,t,r,n,a){n==null&&(n=Yy(e,t,r));let s=e[0],i=e[1],o=Co((s-t+2*n)/r+1,a),l=Co((i-t+2*n)/r+1,a);return[o,l]}function OF(e,t,r,n,a,s){a==null&&(a=Yy(e,t,n));let i=e[0],o=e[1],l=e[2],u=Co((i-t+2*a)/n+1,s),d=Co((o-t+2*a)/n+1,s),h=Co((l-t+2*a)/n+1,s);return[u,d,h,r]}function Yy(e,t,r,n=1){let a=Iu(t,n);return Math.floor((e[0]*(r-1)-r+a)/2)}function _0(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Lg(e){return typeof e=="number"?[e,e,e]:e}function Iu(e,t){return t<=1?e:e+(e-1)*(t-1)}function zF(e,t,r,n,a,s,i,o,l){let u,d,h;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let p=PF([t,r],s,n,e,o);d=p[0],h=p[1]}else if(e==="same"){d=Math.ceil(t/n),h=Math.ceil(r/a);let p=Math.max(0,(d-1)*n+s-t),c=Math.max(0,(h-1)*a+i-r),m=Math.floor(p/2),f=p-m,g=Math.floor(c/2),y=c-g;u={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},d=Math.ceil((t-s+1)/n),h=Math.ceil((r-i+1)/a);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],c=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:p,bottom:c,left:m,right:f,type:p===0&&c===0&&m===0&&f===0?"VALID":"EXPLICIT"},d=Co((t-s+p+c)/n+1,o),h=Co((r-i+m+f)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:d,outWidth:h}}function DF(e,t,r,n,a,s,i,o,l,u,d){let h,p,c,m;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=OF([t,r,n,1],o,1,a,e,d);p=f[0],c=f[1],m=f[2]}else if(e==="same"){p=Math.ceil(t/a),c=Math.ceil(r/s),m=Math.ceil(n/i);let f=(p-1)*a+o-t,g=(c-1)*s+l-r,y=(m-1)*i+u-n,A=Math.floor(f/2),x=f-A,b=Math.floor(g/2),w=g-b,I=Math.floor(y/2),T=y-I;h={top:b,bottom:w,left:I,right:T,front:A,back:x,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-o+1)/a),c=Math.ceil((r-l+1)/s),m=Math.ceil((n-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:p,outHeight:c,outWidth:m}}function Co(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function zs(e){let[t,r,n]=_0(e);return t===1&&r===1&&n===1}function za(e,t){return zs(e)||zs(t)}function tv(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function qr(e,t,r){if(r!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${r} but got pad ${t}.`);if(typeof t=="number")_(Tu(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${r} but got pad ${t}.`);else if(typeof t=="object")t.forEach(n=>{n.forEach(a=>{_(Tu(a),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${r} but got pad ${a}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function LF(e,t){let r={x:M(e,"x","reshape","string_or_numeric")},n={shape:t};return B.runKernel(cl,r,n)}var U=W({reshape_:LF});function BF(e,t,r,n,a){let s=M(e,"x","avgPool","float32"),i=1;_(za(r,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=U(s,[1,s.shape[0],s.shape[1],s.shape[2]])),_(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),qr("avgPool",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a},h=B.runKernel(Ys,u,d);return h=me(h,s.dtype),l?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Of=W({avgPool_:BF});function WF(e,t,r,n,a,s="NDHWC"){let i=M(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),_(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),_(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),qr("avgPool3d",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a,dataFormat:s},h=B.runKernel(nh,u,d);return h=me(h,o.dtype),l?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Jy=W({avgPool3d_:WF});function VF(e,t=0){_(e.length>=1,()=>"Pass at least one tensor to concat");let r=Xp(e,"tensors","concat","string_or_numeric");if(r[0].dtype==="complex64"&&r.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),r.length===1)return Vr(r[0]);let n=r,a={axis:t};return B.runKernel(jo,n,a)}var St=W({concat_:VF});function UF(e){let t={x:M(e,"x","sigmoid","float32")};return B.runKernel(_i,t)}var Tr=W({sigmoid_:UF});function GF(e,t,r){let n=M(e,"x","slice","string_or_numeric");if(n.rank===0)throw new Error("Slicing scalar is not possible");let a={x:n},s={begin:t,size:r};return B.runKernel(Al,a,s)}var _e=W({slice_:GF});function jF(e){let t={x:M(e,"x","tanh","float32")};return B.runKernel(Bi,t)}var Ru=W({tanh_:jF});function HF(e,t,r,n,a,s){let i=M(e,"forgetBias","basicLSTMCell"),o=M(t,"lstmKernel","basicLSTMCell"),l=M(r,"lstmBias","basicLSTMCell"),u=M(n,"data","basicLSTMCell"),d=M(a,"c","basicLSTMCell"),h=M(s,"h","basicLSTMCell"),p=St([u,h],1),c=Ye(p,o),m=le(c,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],A=_e(m,[0,0],y),x=_e(m,[0,g],y),b=_e(m,[0,g*2],y),w=_e(m,[0,g*3],y),I=le(L(Tr(A),Ru(x)),L(d,Tr(le(i,b)))),T=L(Ru(I),Tr(w));return[I,T]}var qF=W({basicLSTMCell_:HF});function XF(e,t,r){let n=M(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);_(n.rank>=1+t.length,()=>`input rank is ${n.rank} but should be > than blockShape.length ${t.length}`),_(r.length===t.length,()=>`crops.length is ${r.length} but should be equal to blockShape.length ${t.length}`),_(n.shape[0]%a===0,()=>`input tensor batch is ${n.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:n},i={blockShape:t,crops:r};return B.runKernel(Go,s,i)}var zf=W({batchToSpaceND_:XF});function KF(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function ZF(e,t,r,n,a,s){s==null&&(s=.001);let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(r,"variance","batchNorm"),u;a!=null&&(u=M(a,"scale","batchNorm"));let d;n!=null&&(d=M(n,"offset","batchNorm")),_(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_(d==null||o.rank===d.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:KF(i),scale:u,offset:d,mean:o,variance:l},p={varianceEpsilon:s},c=B.runKernel(hi,h,p);return U(c,i.shape)}var $u=W({batchNorm_:ZF});function YF(e,t,r,n,a,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(r,"variance","batchNorm"),u;a!=null&&(u=M(a,"scale","batchNorm"));let d;return n!=null&&(d=M(n,"offset","batchNorm")),_(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),_(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),_(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&_(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),d!=null&&_(d.rank===2||d.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${d.rank}.`),$u(i,o,l,d,u,s)}var rv=W({batchNorm2d_:YF});function JF(e,t,r,n,a,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(r,"variance","batchNorm"),u;a!=null&&(u=M(a,"scale","batchNorm"));let d;return n!=null&&(d=M(n,"offset","batchNorm")),_(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),_(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),_(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&_(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),d!=null&&_(d.rank===3||d.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${d.rank}.`),$u(i,o,l,d,u,s)}var nv=W({batchNorm3d_:JF});function QF(e,t,r,n,a,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(r,"variance","batchNorm"),u;a!=null&&(u=M(a,"scale","batchNorm"));let d;return n!=null&&(d=M(n,"offset","batchNorm")),_(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),_(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),_(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&_(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),d!=null&&_(d.rank===4||d.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${d.rank}.`),$u(i,o,l,d,u,s)}var av=W({batchNorm4d_:QF});function e_(e,t,r){let n=M(e,"x","bincount"),a=M(t,"weights","bincount");_(n.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${n.dtype}`),_(r>=0,()=>`size must be non-negative, but got ${r}.`),_(a.size===n.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${n.shape}, weights shape: ${a.shape}.`);let s={x:n,weights:a},i={size:r};return B.runKernel(df,s,i)}var Qy=W({bincount_:e_});function t_(e,t){let r=M(e,"s0","broadcastArgs","int32"),n=M(t,"s1","broadcastArgs","int32");if(r.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${r.rank}`);if(n.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${n.rank}`);let a={s0:r,s1:n};return B.runKernel(pf,a)}var sv=W({broadcastArgs_:t_});function r_(e,t){let r=M(e,"broadcastTo","x"),n=r.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<r.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${r.rank}.`);if(t.length>r.rank){let l=r.shape.slice();for(;l.length<t.length;)l.unshift(1);r=U(r,l)}let a=r.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(a[l]===t[l])s[l]=1;else if(r.shape[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Vr(r);let i={x:r},o={reps:s};return B.runKernel(es,i,o)}var Lp=W({broadcastTo_:r_});function n_(e){let t={x:M(e,"x","ceil","float32")};return B.runKernel(ei,t)}var iv=W({ceil_:n_});function a_(e,t,r){let n=M(e,"x","clipByValue");_(t<=r,()=>`Error in clip: min (${t}) must be less than or equal to max (${r}).`);let a={x:n},s={clipValueMin:t,clipValueMax:r};return B.runKernel(Qa,a,s)}var fn=W({clipByValue_:a_});function s_(e){return St(e,0)}var ov=W({concat1d_:s_});function i_(e,t){return St(e,t)}var xd=W({concat2d_:i_});function o_(e,t){return St(e,t)}var lv=W({concat3d_:o_});function l_(e,t){return St(e,t)}var uv=W({concat4d_:l_});function u_(e,t,r,n,a="NHWC",s=[1,1],i){let o=M(e,"x","conv2d","float32"),l=M(t,"filter","conv2d","float32"),u=o,d=!1;o.rank===3&&(d=!0,u=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),_(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),_(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),qr("conv2d",n,i);let h=a==="NHWC"?u.shape[3]:u.shape[1];_(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),_(za(r,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`);let p={x:u,filter:l},c={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i},m=B.runKernel(ti,p,c);return d?U(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Ds=W({conv2d_:u_});function d_(e,t,r,n,a="NWC",s=1,i){let o=M(e,"x","conv1d"),l=M(t,"filter","conv1d"),u=o,d=!1;o.rank===2&&(d=!0,u=U(o,[1,o.shape[0],o.shape[1]])),_(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),_(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),qr("conv1d",n,i),_(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),_(za(r,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${r} and dilation '${s}'`),_(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=U(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=U(u,[u.shape[0],1,u.shape[1],u.shape[2]]),c=Ds(p,h,[1,r],n,"NHWC",[1,s],i);return d?U(c,[c.shape[2],c.shape[3]]):U(c,[c.shape[0],c.shape[2],c.shape[3]])}var e3=W({conv1d_:d_});function p_(e,t,r,n,a,s="NHWC",i){_(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),_(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),_(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),_(r.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${r.rank}`);let d=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];_(d===r.shape[2],()=>`Error in conv2dDerInput: depth of input (${d}) must match input depth for filter ${r.shape[2]}.`),_(h===r.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${r.shape[3]}.`),qr("conv2dDerInput",a,i);let p={dy:l,filter:r},c={strides:n,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},m=B.runKernel(ri,p,c);return u?U(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var t3=W({conv2DBackpropInput_:p_});function h_(e,t,r,n,a,s){let i=M(e,"x","conv2dTranspose"),o=M(t,"filter","conv2dTranspose");return t3(r,i,o,n,a,"NHWC",s)}var r3=W({conv2dTranspose_:h_});function c_(e,t,r,n,a="NDHWC",s=[1,1,1]){let i=M(e,"x","conv3d"),o=M(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),_(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),_(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),_(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),_(za(r,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`),_(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let d={x:l,filter:o},h={strides:r,pad:n,dataFormat:a,dilations:s},p=B.runKernel(ih,d,h);return u?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var n3=W({conv3d_:c_});function f_(e,t,r,n,a){_(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];_(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),_(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),_(r.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${r.rank}`),_(l===r.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${r.shape[3]}.`),_(u===r.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${r.shape[4]}.`);let d={dy:i,filter:r},h={pad:a,strides:n,inputShape:s},p=B.runKernel(ff,d,h);return o?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var dv=W({conv3DBackpropInput_:f_});function m_(e,t,r,n,a){let s=M(e,"x","conv3dTranspose"),i=M(t,"filter","conv3dTranspose");return dv(r,s,i,n,a)}var pv=W({conv3dTranspose_:m_});function g_(e){let t={x:M(e,"x","cos","float32")};return B.runKernel(ni,t)}var Df=W({cos_:g_});function y_(e){let t={x:M(e,"x","cosh","float32")};return B.runKernel(ai,t)}var a3=W({cosh_:y_});function A_(e,t=0,r=!1,n=!1){let a={x:M(e,"x","cumprod")},s={axis:t,exclusive:r,reverse:n};return B.runKernel(Ho,a,s)}var P0=W({cumprod_:A_});function x_(e,t=0,r=!1,n=!1){let a={x:M(e,"x","cumsum")},s={axis:t,exclusive:r,reverse:n};return B.runKernel(si,a,s)}var s3=W({cumsum_:x_});function b_(e,t,r,n=!1){let a=M(e,"x","denseBincount"),s=M(t,"weights","denseBincount");_(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),_(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),_(r>=0,()=>`size must be non-negative, but got ${r}.`),_(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:r,binaryOutput:n};return B.runKernel(mf,i,o)}var hv=W({denseBincount_:b_});function v_(e,t,r="NHWC"){let n=M(e,"x","depthToSpace","float32"),a=r==="NHWC"?n.shape[1]:n.shape[2],s=r==="NHWC"?n.shape[2]:n.shape[3],i=r==="NHWC"?n.shape[3]:n.shape[1];_(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),_(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${a} and ${t} for depthToSpace with input shape
${n.shape}`),_(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${n.shape}`),_(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${n.shape}`);let o={x:n},l={blockSize:t,dataFormat:r};return B.runKernel(Xo,o,l)}var cv=W({depthToSpace_:v_});function w_(e,t,r,n,a="NHWC",s=[1,1],i){let o=M(e,"x","depthwiseConv2d","float32"),l=M(t,"filter","depthwiseConv2d","float32"),u=o,d=!1;o.rank===3&&(d=!0,u=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),_(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),_(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),_(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),qr("depthwiseConv2d",n,i);let h={x:u,filter:l},p={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i},c=B.runKernel(ii,h,p);return d?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Th=W({depthwiseConv2d_:w_});function k_(e){let t={x:M(e,"x","diag")};return B.runKernel(Af,t)}var I_=W({diag_:k_});function S_(e,t,r,n,a=[1,1],s="NHWC"){let i=M(e,"x","dilation2d"),o=M(t,"filter","dilation2d");_(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),_(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),_(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=U(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let d={x:l,filter:o},h={strides:r,pad:n,dilations:a},p=B.runKernel(oh,d,h);return u?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var fv=W({dilation2d_:S_});function C_(e,t){let r=M(e,"a","equal","string_or_numeric"),n=M(t,"b","equal","string_or_numeric");[r,n]=Lt(r,n),At(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(Ko,a)}var Mn=W({equal_:C_});function T_(e,t,r){let n=M(t,"a","where"),a=M(r,"b","where"),s=M(e,"condition","where","bool"),i=At(At(s.shape,n.shape),a.shape),o=Lp(s,i),l=Lp(n,i),u=Lp(a,i),d={condition:o,t:l,e:u};return B.runKernel(yl,d)}var Ur=W({where_:T_});function N_(e){let t={x:M(e,"x","zerosLike")};return B.runKernel(Tl,t)}var at=W({zerosLike_:N_});function E_(e,t){let r=M(e,"a","div"),n=M(t,"b","div");[r,n]=Lt(r,n);let a=pe(r,n),s=at(a),i=Mn(n,s);return Ur(i,s,a)}var mv=W({divNoNan_:E_});function R_(e,t){let r=M(e,"t1","dot"),n=M(t,"t2","dot");_((r.rank===1||r.rank===2)&&(n.rank===1||n.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${r.rank} and ${n.rank}.`);let a=r.rank===1?r.size:r.shape[1],s=n.rank===1?n.size:n.shape[0];if(_(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),r.rank===1&&n.rank===1){let i=U(r,[1,-1]),o=U(n,[-1,1]),l=Ye(i,o);return U(l,[])}else if(r.rank===1&&n.rank===2){let i=U(r,[1,-1]),o=U(n,[n.shape[0],n.shape[1]]),l=Ye(i,o);return U(l,[l.size])}else if(r.rank===2&&n.rank===1){let i=U(n,[-1,1]),o=Ye(r,i);return U(o,[o.size])}else{let i=U(n,[n.shape[0],n.shape[1]]);return Ye(r,i)}}var $_=W({dot_:R_});function M_(e,...t){let r=t.map((a,s)=>M(a,`tensors${s}`,"einsum")),n={equation:e};return B.runKernel(lh,r,n)}var gv=W({einsum_:M_});function F_(e){let t={x:M(e,"x","elu","float32")};return B.runKernel(li,t)}var Nh=W({elu_:F_});function __(e){let t=M(e,"x","erf");_(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=me(t,"float32"));let r={x:t};return B.runKernel(td,r)}var yv=W({erf_:__});function i3(e,t){for(let r=0;r<e.length;++r)if(e[e.length-r-1]!==t-1-r)return!1;return!0}function Av(e,t,r){let n=e.length+t.length,a=[],s=0,i=0;for(let o=0;o<n;o++)r.indexOf(o)===-1?a.push(e[s++]):a.push(t[i++]);return a}function xv(e,t){let r=[],n=e.length;for(let s=0;s<n;s++)t.indexOf(s)===-1&&r.push(e[s]);let a=t.map(s=>e[s]);return[r,a]}function Fo(e,t){let r=t.map(n=>1);return Av(e,r,t)}function P_(e,t,r){_(i3(t,r),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${r} input.`)}function bv(e,t){if(i3(e,t))return null;let r=[];for(let n=0;n<t;++n)e.indexOf(n)===-1&&r.push(n);return e.forEach(n=>r.push(n)),r}function o3(e){return e.map((t,r)=>[r,t]).sort((t,r)=>t[1]-r[1]).map(t=>t[0])}function O_(e,t){let r=[];for(let n=t-e;n<t;++n)r.push(n);return r}function z_(e,t=null,r=!1){let n={x:M(e,"x","max")},a={reductionIndices:t,keepDims:r};return B.runKernel(yi,n,a)}var yr=W({max_:z_});function D_(e,t=null,r=!1){let n={x:M(e,"x","min")},a={axis:t,keepDims:r};return B.runKernel(vi,n,a)}var Ls=W({min_:D_});function L_(e,t){let r=M(e,"base","pow"),n=M(t,"exp","pow");[r,n]=Lt(r,n);let a={a:r,b:n};return B.runKernel(Ci,a)}var Bs=W({pow_:L_});function Se(e,t){if((Sr(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Sr(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Vi(e,[],[],t)}function B_(e){let t={x:M(e,"x","sqrt","float32")};return B.runKernel(Pi,t)}var Er=W({sqrt_:B_});function W_(e){let t=M(e,"x","square"),r={};return B.runKernel("Square",{x:t},r)}var bt=W({square_:W_});function V_(e,t=null,r=!1){let n=M(e,"x","sum");n.dtype==="bool"&&(n=me(n,"int32"));let a={x:n},s={axis:t,keepDims:r};return B.runKernel(Oi,a,s)}var ke=W({sum_:V_});function U_(e,t="euclidean",r=null,n=!1){e=M(e,"x","norm");let a=vv(e,t,r),s=a.shape;if(n){let i=Hn(r,e.shape);s=Fo(a.shape,i)}return U(a,s)}function vv(e,t,r=null){if(e.rank===0)return ar(e);if(e.rank!==1&&r===null)return vv(U(e,[-1]),t,r);if(e.rank===1||typeof r=="number"||Array.isArray(r)&&r.length===1){if(t===1)return ke(ar(e),r);if(t===1/0)return yr(ar(e),r);if(t===-1/0)return Ls(ar(e),r);if(t==="euclidean"||t===2)return Er(ke(Bs(ar(e),Se(2,"int32")),r));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(r)&&r.length===2){if(t===1)return yr(ke(ar(e),r[0]),r[1]-1);if(t===1/0)return yr(ke(ar(e),r[1]),r[0]);if(t===-1/0)return Ls(ke(ar(e),r[1]),r[0]);if(t==="fro"||t==="euclidean")return Er(ke(bt(e),r));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${r}`)}var Lf=W({norm_:U_});function G_(e,t=null,r=!1){return Lf(e,"euclidean",t,r)}var wv=W({euclideanNorm_:G_});function j_(e){let t={x:M(e,"x","exp")};return B.runKernel(ui,t)}var Fn=W({exp_:j_});function H_(e,t=0){let r=M(e,"x","expandDims","string_or_numeric");_(t<=r.rank,()=>"Axis must be <= rank of the tensor");let n={input:r},a={dim:t};return B.runKernel(Zo,n,a)}var Kt=W({expandDims_:H_});function q_(e){let t={x:M(e,"x","expm1")};return B.runKernel(Yo,t)}var kv=W({expm1_:q_});function X_(e,t){let r=M(e,"x","tile","string_or_numeric");_(r.rank===t.length,()=>`Error in transpose: rank of input ${r.rank} must match length of reps ${t}.`);let n={x:r},a={reps:t};return B.runKernel(es,n,a)}var jn=W({tile_:X_});function K_(e,t,r,n="float32"){t==null&&(t=e);let a=De([e,t],n),s=e<=t?e:t;for(let o=0;o<s;++o)a.set(1,o,o);let i=U(a.toTensor(),[e,t]);if(r==null)return i;if(r.length===1)return jn(Kt(i,0),[r[0],1,1]);if(r.length===2)return jn(Kt(Kt(i,0),0),[r[0],r[1],1,1]);if(r.length===3)return jn(Kt(Kt(Kt(i,0),0),0),[r[0],r[1],r[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${r.length}D.`)}var l3=W({eye_:K_});function bd(e,t,r){let n={shape:e,value:t,dtype:r};return B.runKernel(rd,{},n)}function Z_(e){let t={x:M(e,"x","floor","float32")};return B.runKernel(di,t)}var Eh=W({floor_:Z_});function Y_(e,t,r=0,n=0){let a=M(e,"x","gather"),s=M(t,"indices","gather","int32"),i={x:a,indices:s},o={axis:r,batchDims:n};return B.runKernel(Qo,i,o)}var Mu=W({gather_:Y_});function J_(e,t){let r=M(e,"a","greater","string_or_numeric"),n=M(t,"b","greater","string_or_numeric");[r,n]=Lt(r,n),At(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(tl,a)}var gn=W({greater_:J_});function Q_(e,t){let r=M(e,"a","greaterEqual","string_or_numeric"),n=M(t,"b","greaterEqual","string_or_numeric");[r,n]=Lt(r,n),At(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(ci,a)}var $l=W({greaterEqual_:Q_});function eP(e){let t={x:M(e,"x","isFinite")};return B.runKernel(nd,t)}var tP=W({isFinite_:eP});function rP(e){let t={x:M(e,"x","isInf")};return B.runKernel(ad,t)}var nP=W({isInf_:rP});function aP(e){let t={x:M(e,"x","isNaN")};return B.runKernel(sd,t)}var Iv=W({isNaN_:aP});function sP(e,t=.2){let r={x:M(e,"x","leakyRelu")},n={alpha:t};return B.runKernel(mi,r,n)}var Bf=W({leakyRelu_:sP});function iP(e,t){let r=M(e,"a","less","string_or_numeric"),n=M(t,"b","less","string_or_numeric");[r,n]=Lt(r,n),At(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(rl,a)}var u3=W({less_:iP});function oP(e,t){let r=M(e,"a","lessEqual","string_or_numeric"),n=M(t,"b","lessEqual","string_or_numeric");[r,n]=Lt(r,n),At(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(nl,a)}var Ml=W({lessEqual_:oP});function Sv(e,t,r){if(r<=0)throw new Error("The number of values should be positive.");let n={start:e,stop:t,num:r};return B.runKernel(wf,{},n)}function lP(e,t=5,r=1,n=1,a=.5){let s=M(e,"x","localResponseNormalization");_(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),_(Tu(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=U(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:r,alpha:n,beta:a},d=B.runKernel(dh,l,u);return o?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Cv=W({localResponseNormalization_:lP});function uP(e){let t={x:M(e,"x","log","float32")};return B.runKernel(gi,t)}var _n=W({log_:uP});function dP(e){let t={x:M(e,"x","log1p")};return B.runKernel(id,t)}var Wf=W({log1p_:dP});function pP(e){return _(Fs(e),()=>"The f passed in grad(f) must be a function"),(t,r)=>{let n=M(t,"x","tf.grad","string_or_numeric"),a=r!=null?M(r,"dy","tf.grad"):null;return B.tidy(()=>{let{value:s,grads:i}=B.gradients(()=>e(n),[n],a);return a!=null&&jr(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Vf(i),i[0]})}}function hP(e){return _(Fs(e),()=>"The f passed in grads(f) must be a function"),(t,r)=>{_(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let n=Xp(t,"args","tf.grads","string_or_numeric"),a=r!=null?M(r,"dy","tf.grads"):null;return B.tidy(()=>{let{value:s,grads:i}=B.gradients(()=>e(...n),n,a);return a!=null&&jr(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Vf(i),i})}}function cP(e){return _(Fs(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,r)=>{_(t instanceof nt,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),_(r==null||r instanceof nt,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:n,value:a}=B.gradients(()=>e(t),[t],r);return Vf(n),{grad:n[0],value:a}}}function fP(e){return _(Fs(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,r)=>{_(Array.isArray(t)&&t.every(a=>a instanceof nt),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),_(r==null||r instanceof nt,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let n=B.gradients(()=>e(...t),t,r);return r!=null&&jr(n.value.shape,r.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Vf(n.grads),n}}function Tv(e,t){_(Fs(e),()=>"The f passed in variableGrads(f) must be a function"),_(t==null||Array.isArray(t)&&t.every(u=>u instanceof qp),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let r=t!=null;if(!r){t=[];for(let u in B.registeredVariables)t.push(B.registeredVariables[u])}let n=r?t.filter(u=>!u.trainable):null,a=t.length;t=t.filter(u=>u.trainable),_(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=B.gradients(e,t,null,s);_(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),_(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,d)=>{o[d]!=null&&(l[u.name]=o[d])}),n!=null&&n.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Pa(e){return B.customGrad(e)}function Vf(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function mP(e){let t={x:M(e,"x","softplus")};return B.runKernel(md,t)}var vd=W({softplus_:mP});function gP(e){let t=M(e,"x","logSigmoid");return Pa(r=>({value:Mt(vd(Mt(r))),gradFunc:n=>L(n,Tr(Mt(r)))}))(t)}var yP=W({logSigmoid_:gP});function AP(e,t){let r=M(e,"a","sub"),n=M(t,"b","sub");[r,n]=Lt(r,n);let a={a:r,b:n};return B.runKernel(Li,a)}var ce=W({sub_:AP});function xP(e,t=-1){let r=M(e,"logits","logSoftmax");if(t===-1&&(t=r.rank-1),t!==r.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${r.rank} and axis was ${t}`);return Pa((n,a)=>{let s=yr(n,t,!0),i=ce(n,s),o=ce(me(i,"float32"),_n(ke(Fn(i),t,!0)));return a([o]),{value:o,gradFunc:(l,u)=>{let[d]=u,h=!0,p=Fn(d);return ce(l,L(ke(l,t,h),p))}}})(r)}var d3=W({logSoftmax_:xP});function bP(e,t=null,r=!1){let n=M(e,"x","logSumExp"),a=Hn(t,n.shape),s=yr(n,a,!0),i=ce(n,s),o=Fn(i),l=ke(o,a),u=_n(l),d=le(U(s,u.shape),u);if(r){let h=Fo(d.shape,a);return U(d,h)}return d}var Nv=W({logSumExp_:bP});function vP(e,t){let r=M(e,"a","logicalAnd","bool"),n=M(t,"b","logicalAnd","bool");At(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(al,a)}var ga=W({logicalAnd_:vP});function wP(e){let t={x:M(e,"x","logicalNot","bool")};return B.runKernel(sl,t)}var Uf=W({logicalNot_:wP});function kP(e,t){let r=M(e,"a","logicalOr","bool"),n=M(t,"b","logicalOr","bool");At(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(od,a)}var p3=W({logicalOr_:kP});function IP(e,t){let r=M(e,"a","logicalXor","bool"),n=M(t,"b","logicalXor","bool");return At(r.shape,n.shape),ga(p3(e,t),Uf(ga(e,t)))}var SP=W({logicalXor_:IP}),e0=2147483648;function CP(e,t,r="left"){let n=M(e,"sortedSequence","searchSorted"),a=M(t,"values","searchSorted"),s=n.shape[n.shape.length-1],i=a.shape[a.shape.length-1],o=U(n,[-1,s]),l=U(a,[-1,i]);if(o.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(o.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(It(l.shape)>=e0)throw new Error(`values tensor size must less than ${e0}`);if(o.shape[1]>=e0)throw new Error(`trailing dim_size must less than ${e0} for int32 output type, was ${o.shape[1]}`);let u={sortedSequence:o,values:l},d={side:r};return B.runKernel(Rf,u,d)}var h3=W({searchSorted_:CP});function Ev(e,t){return h3(e,t,"left")}function TP(e,t,r,n,a){let s=M(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=U(s,[1,s.shape[0],s.shape[1],s.shape[2]])),_(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),_(za(r,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'`),qr("maxPool",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a},h=B.runKernel(xi,u,d);return l?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Gf=W({maxPool_:TP});function NP(e,t=[1,1,1],r,n,a,s="NDHWC"){let i=M(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),_(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),_(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),qr("maxPool3d",n,a);let u={x:o},d={filterSize:t,strides:r,pad:n,dimRoundingMode:a,dataFormat:s},h=B.runKernel(ph,u,d);return l?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var c3=W({maxPool3d_:NP});function EP(e,t,r,n,a=!1){let s={x:M(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:r,pad:n,includeBatchInIndex:a},o=B.runKernel(Cf,s,i);return{result:o[0],indexes:o[1]}}var Rv=W({maxPoolWithArgmax_:EP});function RP(e,t){let r=M(e,"a","maximum"),n=M(t,"b","maximum");[r,n]=Lt(r,n),r.dtype==="bool"&&(r=me(r,"int32"),n=me(n,"int32")),At(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(Ai,a)}var ts=W({maximum_:RP});function $P(e,t=null,r=!1){let n={x:M(e,"x","mean")},a={axis:t,keepDims:r};return B.runKernel(bi,n,a)}var Vt=W({mean_:$P});function Ot(e,t="float32"){if(t==="complex64"){let n=Ot(e,"float32"),a=Ot(e,"float32");return Za(n,a)}let r=of(It(e),t);return B.makeTensor(r,e,t)}function cn(e,t="float32"){if(t==="complex64"){let n=cn(e,"float32"),a=Ot(e,"float32");return Za(n,a)}let r=Ty(It(e),t);return B.makeTensor(r,e,t)}function MP(e,t,{indexing:r="xy"}={}){if(r!=="xy"&&r!=="ij")throw new TypeError(`${r} is not a valid third argument to meshgrid`);if(e===void 0)return[];let n=M(e,"x","meshgrid",e instanceof nt?e.dtype:"float32");if(t===void 0)return[n];let a=M(t,"y","meshgrid",t instanceof nt?t.dtype:"float32"),s=It(n.shape),i=It(a.shape);return r==="xy"?(n=U(n,[1,-1]),a=U(a,[-1,1]),[Ye(cn([i,1],n.dtype),n),Ye(a,cn([1,s],a.dtype))]):(n=U(n,[-1,1]),a=U(a,[1,-1]),[Ye(n,cn([1,i],n.dtype)),Ye(cn([s,1],a.dtype),a)])}function FP(e,t){let r=M(e,"a","minimum"),n=M(t,"b","minimum");[r,n]=Lt(r,n),r.dtype==="bool"&&(r=me(r,"int32"),n=me(n,"int32")),At(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(wi,a)}var Rh=W({minimum_:FP});function _P(e,t,r){_(r==="reflect"||r==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${r}.`);let n=M(e,"x","mirrorPad");if(n.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");_(t.length===n.rank,()=>`Padding doesn't match input. Must be ${n.rank}. Got ${t.length}.`);let a=r==="reflect"?1:0;for(let o=0;o<n.rank;o++)_(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),_(t[o][0]>=0&&t[o][0]<=n.shape[o]-a&&t[o][1]>=0&&t[o][1]<=n.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${n.shape[o]-a} or less than 0 for input of shape ${n.shape}`);let s={paddings:t,mode:r},i={x:n};return B.runKernel(ki,i,s)}var $v=W({mirrorPad_:_P});function PP(e,t){let r=M(e,"a","mod"),n=M(t,"b","mod");[r,n]=Lt(r,n);let a={a:r,b:n};return B.runKernel(ld,a)}var wd=W({mod_:PP});function OP(e,t=null,r=!1){e=M(e,"x","moments");let n=Hn(t,e.shape),a=Vt(e,n,r),s=a.shape;r||(s=Fo(a.shape,n));let i=bt(ce(me(e,"float32"),U(a,s))),o=Vt(i,n,r);return{mean:a,variance:o}}var jf=W({moments_:OP});function zP(e,t,r,n){let a=M(t,"data","multiRNNCell"),s=Xp(r,"c","multiRNNCell"),i=Xp(n,"h","multiRNNCell"),o=a,l=[];for(let h=0;h<e.length;h++){let p=e[h](o,s[h],i[h]);l.push(p[0]),l.push(p[1]),o=p[1]}let u=[],d=[];for(let h=0;h<l.length;h+=2)u.push(l[h]),d.push(l[h+1]);return[u,d]}var DP=W({multiRNNCell_:zP});function LP(e,t,r,n=!1){let a=M(e,"logits","multinomial"),s=a.size,i=a.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);r=r||Math.random();let o={logits:i===1?U(a,[1,-1]):a},l={numSamples:t,seed:r,normalized:n},u=B.runKernel(Tf,o,l);return i===1?U(u,[u.size]):u}var Mv=W({multinomial_:LP});function BP(e,t){let r=M(e,"a","notEqual","string_or_numeric"),n=M(t,"b","notEqual","string_or_numeric");[r,n]=Lt(r,n),At(r.shape,n.shape);let a={a:r,b:n};return B.runKernel(ol,a)}var Fu=W({notEqual_:BP});function WP(e){let t={x:M(e,"x","onesLike")};return B.runKernel(dl,t)}var Pn=W({onesLike_:WP});function VP(e,t){let r=M(e,"v1","outerProduct"),n=M(t,"v2","outerProduct");_(r.rank===1&&n.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${r.rank} and ${n.rank}.`);let a=U(r,[-1,1]),s=U(n,[1,-1]);return Ye(a,s)}var UP=W({outerProduct_:VP});function GP(e,t,r=0){let n=M(e,"x","pad");if(n.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:r},s={x:n};return B.runKernel(Si,s,a)}var Xn=W({pad_:GP});function jP(e,t,r=0){return _(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Xn(e,[t],r)}var HP=W({pad1d_:jP});function qP(e,t,r=0){return _(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Xn(e,t,r)}var XP=W({pad2d_:qP});function KP(e,t,r=0){return _(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Xn(e,t,r)}var ZP=W({pad3d_:KP});function YP(e,t,r=0){return _(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Xn(e,t,r)}var JP=W({pad4d_:YP});function QP(e,t,r){let n=M(e,"x","spaceToBatchND");_(n.rank>=1+t.length,()=>`input rank ${n.rank} should be > than [blockShape] ${t.length}`),_(r.length===t.length,()=>`paddings.shape[0] ${r.length} must be equal to [blockShape] ${t.length}`),_(n.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+r[l-1][0]+r[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${n.shape.slice(1)} with paddings ${r.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:n},s={blockShape:t,paddings:r};return B.runKernel(bl,a,s)}var Hf=W({spaceToBatchND_:QP});function eO(e,t,r,n,a,s,i){a==null&&(a=[1,1]),s==null&&(s=1),n===0&&(n="valid");let o=M(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),_(za(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let d=Q6(l.shape,t,s,a,n),h=[d.dilationHeight,d.dilationWidth],p;n==="same"?p=rO([d.filterHeight,d.filterWidth],h):p=[[0,0],[0,0]];let c=h[0]===1&&h[1]===1,[m,f]=tO([d.inHeight,d.inWidth],h,p),g=c?n:"valid",y=c?l:Hf(l,h,m),A=(r==="avg"?()=>Of(y,t,s,g,i):()=>Gf(y,t,s,g,i))(),x=c?A:zf(A,h,f);return u?U(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function tO(e,t,r){let n=r.map(d=>d[0]),a=r.map(d=>d[1]),s=e.concat(n,a),i=t.map((d,h)=>(d-s[h]%d)%d),o=a.map((d,h)=>d+i[h]),l=t.map((d,h)=>[n[h],o[h]]),u=t.map((d,h)=>[0,i[h]]);return[l,u]}function rO(e,t){let r=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),n=r.map(s=>Math.floor(s/2)),a=r.map((s,i)=>s-n[i]);return r.map((s,i)=>[n[i],a[i]])}var nO=W({pool_:eO});function aO(e,t){let r=M(e,"x","prelu"),n=M(t,"alpha","prelu"),a={x:r,alpha:n};return B.runKernel(Ti,a)}var qf=W({prelu_:aO});function sO(e,t=null,r=!1){let n=M(e,"x","prod");n.dtype==="bool"&&(n=me(n,"int32"));let a={x:n},s={axis:t,keepDims:r};return B.runKernel(Ni,a,s)}var f3=W({prod_:sO});function iO(e,t,r){let n=It(e),a=null;if(r==null||r==="float32")a=new Float32Array(n);else if(r==="int32")a=new Int32Array(n);else if(r==="bool")a=new Uint8Array(n);else throw new Error(`Unknown data type ${r}`);for(let s=0;s<n;s++)a[s]=t();return B.makeTensor(a,e,r)}var oO=W({rand_:iO}),m3=Wo(af()),g3=class{constructor(e,t,r,n,a){this.mean=e,this.stdDev=t,this.dtype=r,this.nextVal=NaN,this.truncated=n,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=a||Math.random();this.random=m3.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let n=this.nextVal;return this.nextVal=NaN,n}let e,t,r=!1;for(;!r;){let n,a,s;do n=2*this.random()-1,a=2*this.random()-1,s=n*n+a*a;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*n*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(r=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},lO=class{constructor(e,t,r,n){this.alpha=e,this.beta=1/t,this.dtype=r;let a=n||Math.random();this.randu=m3.alea(a.toString()),this.randn=new g3(0,1,r,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,r,n,a,s;for(;;){do n=this.randn.nextValue(),s=1+this.c*n;while(s<=0);if(s*=s*s,e=n*n,t=1-.331*e*e,r=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),a<t||Math.log(a)<r)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},uO=class{constructor(e=0,t=1,r,n){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=r,n==null&&(n=Math.random()),typeof n=="number"&&(n=n.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=m3.alea(n)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function dO(e,t,r=1,n="float32",a){if(r==null&&(r=1),n==null&&(n="float32"),n!=="float32"&&n!=="int32")throw new Error(`Unsupported data type ${n}`);let s=new lO(t,r,n,a),i=De(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var pO=W({randomGamma_:dO});function hO(e,t=0,r=1,n,a){if(n!=null&&n==="bool")throw new Error(`Unsupported data type ${n}`);let s=new g3(t,r,n,!1,a),i=De(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Fv=W({randomNormal_:hO});function cO(e,t=0,r=1,n="float32",a){let s=De(e,n),i=new uO(t,r,null,a);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var kd=W({randomUniform_:cO});function _u(e,t,r=1,n="float32"){if(r===0)throw new Error("Cannot have a step of zero");let a={start:e,stop:t,step:r,dtype:n};return B.runKernel(dd,{},a)}function fO(e){let t={x:M(e,"x","reciprocal")};return B.runKernel(pd,t)}var _v=W({reciprocal_:fO});function mO(e){let t={x:M(e,"x","relu")};return B.runKernel(Ei,t)}var Da=W({relu_:mO});function gO(e){let t={x:M(e,"x","relu6")};return B.runKernel($i,t)}var y3=W({relu6_:gO});function yO(e,t){let r={x:M(e,"x","reverse")},n={dims:t};return B.runKernel(fl,r,n)}var On=W({reverse_:yO});function AO(e){let t=M(e,"x","reverse");return _(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),On(t,0)}var xO=W({reverse1d_:AO});function bO(e,t){let r=M(e,"x","reverse");return _(r.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${r.rank}.`),On(r,t)}var vO=W({reverse2d_:bO});function wO(e,t){let r=M(e,"x","reverse");return _(r.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${r.rank}.`),On(r,t)}var kO=W({reverse3d_:wO});function IO(e,t){let r=M(e,"x","reverse");return _(r.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${r.rank}.`),On(r,t)}var SO=W({reverse4d_:IO});function CO(e){let t={x:M(e,"x","round")};return B.runKernel(ml,t)}var A3=W({round_:CO});function TO(e){let t={x:M(e,"x","rsqrt","float32")};return B.runKernel(Mi,t)}var x3=W({rsqrt_:TO});function NO(e){let t={x:M(e,"x","selu")};return B.runKernel(cd,t)}var b3=W({selu_:NO});function EO(e,t,r,n,a,s=[1,1],i="NHWC"){let o=M(e,"x","separableConv2d"),l=M(t,"depthwiseFilter","separableConv2d"),u=M(r,"pointwiseFilter","separableConv2d"),d=o,h=!1;if(o.rank===3&&(h=!0,d=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");_(d.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${d.rank}.`),_(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),_(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),_(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),_(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let p=l.shape[2],c=l.shape[3];_(u.shape[2]===p*c,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*c}, but got ${u.shape[2]}.`);let m=Th(d,l,n,a,i,s),f=Ds(m,u,1,"valid",i);return h?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Pv=W({separableConv2d_:EO});async function RO(e,t){let r=M(e,"x","setdiff1d"),n=M(t,"y","setdiff1d");_(r.dtype===n.dtype,()=>`x and y should have the same dtype, but got x (${r.dtype}) and y (${n.dtype}).`),_(r.rank===1,()=>`x should be 1D tensor, but got x (${r.shape}).`),_(n.rank===1,()=>`y should be 1D tensor, but got y (${n.shape}).`);let a=await r.data(),s=await n.data(),i=new Set(s),o=0;for(let d=0;d<a.length;d++)i.has(a[d])||o++;let l=new ir([o],r.dtype),u=new ir([o],"int32");for(let d=0,h=0;d<a.length;d++)i.has(a[d])||(l.values[h]=a[d],u.values[h]=d,h++);return[l.toTensor(),u.toTensor()]}var Ov=RO;function $O(e){let t={x:M(e,"x","sign")};return B.runKernel(fd,t)}var zv=W({sign_:$O});function MO(e){let t={x:M(e,"x","sin","float32")};return B.runKernel(Fi,t)}var v3=W({sin_:MO});function FO(e){let t={x:M(e,"x","sinh")};return B.runKernel(xl,t)}var w3=W({sinh_:FO});function _O(e,t,r){let n=M(e,"x","slice1d");return _(n.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${n.rank} tensor`),_e(n,[t],[r])}var Xf=W({slice1d_:_O});function PO(e,t,r){let n=M(e,"x","slice2d");return _(n.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${n.rank} tensor`),_e(n,t,r)}var k3=W({slice2d_:PO});function OO(e,t,r){let n=M(e,"x","slice3d");return _(n.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${n.rank} tensor`),_e(n,t,r)}var Fl=W({slice3d_:OO});function zO(e,t,r){let n=M(e,"x","slice4d");return _(n.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${n.rank} tensor`),_e(n,t,r)}var _o=W({slice4d_:zO});function DO(e,t=-1){let r=M(e,"logits","softmax","float32");if(t===-1&&(t=r.rank-1),t!==r.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${r.rank} and dim was ${t}`);let n={logits:r},a={dim:t};return B.runKernel(zi,n,a)}var Id=W({softmax_:DO});function LO(e){_(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(bf,t)}var Kf=W({fft_:LO});function BO(e){_(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(vf,t)}var Zp=W({ifft_:BO});function WO(e){let t=e.shape[e.shape.length-1],r=e.size/t,n;if(t<=2){let a=U(e,[r,t]);n=Zp(a)}else{let a=[r,2*(t-1)],s=U(Eu(e),[r,t]),i=U(Ih(e),[r,t]),o=On(_e(s,[0,1],[r,t-2]),1),l=L(On(_e(i,[0,1],[r,t-2]),1),Se(-1)),u=St([s,o],1),d=St([i,l],1),h=U(Za(u,d),[a[0],a[1]]);n=Zp(h)}if(n=Eu(n),e.rank===3&&e.shape[0]!==0){let a=n,s=e.shape[0];n=U(n,[s,n.shape[0]/s,n.shape[1]]),a.dispose()}return n}var I3=W({irfft_:WO});function VO(e,t,r=0){let n={x:M(e,"x","split")},a={numOrSizeSplits:t,axis:r};return B.runKernel(vl,n,a)}var Yt=W({split_:VO});function UO(e,t){_(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let r=e.shape[e.shape.length-1],n=e.size/r,a;if(t!=null&&t<r){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,a=_e(e,m,f),r=t}else if(t!=null&&t>r){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-r,a=St([e,Ot(m)],e.shape.length-1),r=t}else a=e;let s=at(a),i=U(Za(a,s),[n,r]),o=Kf(i),l=Math.floor(r/2)+1,u=Eu(o),d=Ih(o),h=Yt(u,[l,r-l],u.shape.length-1),p=Yt(d,[l,r-l],d.shape.length-1),c=a.shape.slice();return c[a.shape.length-1]=l,U(Za(h[0],p[0]),c)}var Zf=W({rfft_:UO});function GO(e,t){let r=M(e,"a","squaredDifference"),n=M(t,"b","squaredDifference");[r,n]=Lt(r,n),At(r.shape,n.shape);let a={a:r,b:n},s={};return B.runKernel(Di,a,s)}var S3=W({squaredDifference_:GO});function jO(e,t){let r=M(e,"x","squeeze");return U(r,O7(r.shape,t).newShape)}var et=W({squeeze_:jO});function HO(e,t=0){let r=Xp(e,"tensors","stack","string_or_numeric");_(r.length>=1,()=>"Pass at least one tensor to tf.stack"),r.length>0&&_(t<=r[0].rank,()=>"Axis must be <= rank of the tensor");let n=r,a={axis:t};return B.runKernel(hl,n,a)}var ur=W({stack_:HO});function qO(e,t=0){let r={x:M(e,"x","step")},n={alpha:t};return B.runKernel(Wi,r,n)}var $h=W({step_:qO});function XO(e,t,r,n,a=0,s=0,i=0,o=0,l=0){let u={x:M(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:r,strides:n,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return B.runKernel(wl,u,d)}var Dv=W({stridedSlice_:XO});function KO(e){let t={x:M(e,"x","tan","float32")};return B.runKernel(kl,t)}var Lv=W({tan_:KO});function Nt(e,t){Vo(e);let r=_a(e,t);if(r.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Vi(e,null,r,t)}function ca(e,t,r){if(Vo(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let n=_a(e,r);if(n.length!==2&&n.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Vi(e,t,n,r)}function ZO(e,t,r){if(Vo(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let n=_a(e,r);if(n.length!==4&&n.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Vi(e,t,n,r)}function YO(e,t,r){if(Vo(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let n=_a(e,r);if(n.length!==5&&n.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Vi(e,t,n,r)}function JO(e,t,r){if(Vo(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let n=_a(e,r);if(n.length!==6&&n.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||n,Vi(e,t,n,r)}function QO(e,t=1,r=!0){let n=M(e,"x","topk");if(n.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=n.shape[n.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:n},i={k:t,sorted:r},[o,l]=B.runKernel(Il,s,i);return{values:o,indices:l}}var Bv=W({topk_:QO});function ez(e,t=0,r=1,n,a){if(n!=null&&n==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new g3(t,r,n,!0,a),i=De(e,n);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Yf=W({truncatedNormal_:ez});function tz(e,t=0){let r=M(e,"x","unique","string_or_numeric");_(r.rank>0,()=>"The input tensor must be at least 1D");let n={x:r},a={axis:t},[s,i]=B.runKernel(Ff,n,a);return{values:s,indices:i}}var Bg=W({unique_:tz});function rz(e,t,r){let n=M(e,"x","unsortedSegmentSum"),a=M(t,"segmentIds","unsortedSegmentSum","int32");_(Tu(r),()=>"numSegments must be of dtype int");let s={x:n,segmentIds:a},i={numSegments:r};return B.runKernel(Ah,s,i)}var Wv=W({unsortedSegmentSum_:rz});function nz(e,t=0){let r=M(e,"x","unstack","string_or_numeric");_(t>=-r.shape.length&&t<r.shape.length,()=>`Axis = ${t} is not in [-${r.shape.length}, ${r.shape.length})`);let n={value:r},a={axis:t};return B.runKernel(Cl,n,a)}var an=W({unstack_:nz});function Vv(e,t){return h3(e,t,"right")}function Uv(e,t=!0,r,n){return B.makeVariable(e,t,r,n)}function Gv(e,t){let r=[];for(let s=0;s<t.length;s++)t[s]&&r.push(s);let n=De(e,"int32"),a=De([r.length,e.length],"int32");for(let s=0;s<r.length;s++){let i=n.indexToLoc(r[s]),o=s*e.length;a.values.set(i,o)}return a.toTensor()}async function az(e){let t=M(e,"condition","whereAsync","bool"),r=await t.data(),n=Gv(t.shape,r);return e!==t&&t.dispose(),n}var C3=az;async function sz(e,t,r){let n=M(e,"tensor","boolMask"),a=M(t,"mask","boolMask","bool"),s=r==null?0:r,i=a.rank,o=n.shape;_(i>0,()=>"mask cannot be scalar"),jr(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),d=U(n,u),h=U(a,[-1]),p=await C3(h),c=et(p,[1]),m=Mu(d,c,s);return e!==n&&n.dispose(),t!==a&&a.dispose(),c.dispose(),d.dispose(),h.dispose(),p.dispose(),m}var iz=sz;function oz(e,t,r,n,a=!0){let s=M(e,"v","movingAverage"),i=M(t,"x","movingAverage"),o=M(r,"decay","movingAverage");s6(s,i),_(Xs(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=Se(1),u=ce(l,o),d=L(ce(i,s),u);if(a){_(n!=null,()=>"When using zeroDebias: true, step is required.");let h=M(n,"step","movingAverage");d=pe(d,ce(l,Bs(o,h)))}return le(s,d)}var lz=W({movingAverage_:oz});function uz(e,t,r){let n=M(e,"indices","scatterND","int32"),a=M(t,"updates","scatterND");Hy(a,n,r);let s={indices:n,updates:a},i={shape:r};return B.runKernel(gl,s,i)}var jv=W({scatterND_:uz});function dz(e,t,r,n){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(r.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${r.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==n.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function pz(e,t,r,n=0){let a=M(e,"sparseIndices","sparseToDense","int32"),s=M(t,"sparseValues","sparseToDense","string_or_numeric"),i=M(n,"defaultValue","sparseToDense",s.dtype);dz(a,s,r,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:r};return B.runKernel(gh,o,l)}var T3=W({sparseToDense_:pz});function hz(e,t){let r=M(t,"indices","gatherND","int32"),n={params:M(e,"x","gatherND","string_or_numeric"),indices:r};return B.runKernel(el,n)}var Hv=W({gatherND_:hz});function cz(e,t){if(t==null)return e.shape.slice();if(Xs(e.shape,t))return t;if(e.shape.length===t.length){let r=[];for(let n=0;n<e.shape.length;n++)t[n]==null&&e.shape[n]!=null?r.push(e.shape[n]):r.push(t[n]);return r}return t}function fz(e,t,r,n){let a=M(e,"x","dropout");if(_(a.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),_(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof nt?a.clone():a;let s=cz(a,r),i=1-t,o=pe(Eh(le(kd(s,0,1,"float32",n),i)),i);return L(a,o)}var qv=W({dropout_:fz});function Xv(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function N3(e,t,r){let n=1-e%2,a=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+n-1);a[s]=t-r*Math.cos(i)}return Nt(a,"float32")}async function mz(e,t,r=1){let n=M(e,"predictions","inTopK"),a=M(t,"targets","inTopK");_(n.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${n.rank}`),_(n.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${n.rank} and targets rank ${a.rank}`),jr(n.shape.slice(0,n.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=n.shape[n.shape.length-1];_(r>0&&r<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${r}`);let i=await n.data(),o=await a.data(),[l,u]=[i.length/s,s],d=z7("bool",l);for(let h=0;h<l;h++){let p=h*u,c=i.subarray(p,p+u),m=[];for(let f=0;f<c.length;f++)m.push({value:c[f],index:f});m.sort((f,g)=>g.value-f.value),d[h]=0;for(let f=0;f<r;f++)if(m[f].index===o[h]){d[h]=1;break}}return e!==n&&n.dispose(),t!==a&&a.dispose(),ft(d,a.shape,"bool")}var gz=mz,Ws={};Be(Ws,{conv2d:()=>xz,depthwiseConv2d:()=>kz,matMul:()=>Sz});function yz(e,t,r,n,a,s="NHWC",i){let o=e;e.rank===3&&(o=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),_(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),_(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),_(r.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${r}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],d=s==="NHWC"?l.shape[3]:l.shape[1];_(u===r[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${r[2]}.`),_(d===r[3],()=>`Error in conv2dDerFilter: depth of dy (${d}) must match output depth for filter (${r[3]}).`),qr("conv2dDerFilter",a,i);let h={x:o,dy:l},p={strides:n,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:r};return B.runKernel(hf,h,p)}var E3=W({conv2DBackpropFilter_:yz});function Jf(e,t,r){if(r==null||r==="linear")return e;if(r==="relu")return L(e,$h(t));throw new Error(`Cannot compute gradient for fused activation ${r}.`)}function Qf(e,t){let r=t,n=Jt(e.shape,t.shape);return n.length>0&&(r=ke(r,n)),U(r,e.shape)}function em(e,t,r,n){if(t==="linear")return e;if(t==="relu")return Da(e);if(t==="elu")return Nh(e);if(t==="relu6")return y3(e);if(t==="prelu")return qf(e,r);if(t==="leakyrelu")return Bf(e,n);if(t==="sigmoid")return Tr(e);throw new Error(`Unknown fused activation ${t}.`)}var tm=(e,t)=>!(e>0)||t==="linear";function Az({x:e,filter:t,strides:r,pad:n,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(l=l||"linear",tm(B.state.gradientDepth,l)===!1){_(a==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${a} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let I=Ds(e,t,r,n,a,s,i);return o!=null&&(I=le(I,o)),em(I,l,u,d)}let h=M(e,"x","conv2d","float32"),p=M(t,"filter","conv2d","float32"),c=h,m=!1;h.rank===3&&(m=!0,c=U(h,[1,h.shape[0],h.shape[1],h.shape[2]])),_(c.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${c.rank}.`),_(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),qr("fused conv2d",n,i);let f=a==="NHWC"?c.shape[3]:c.shape[1];_(p.shape[2]===f,()=>`Error in conv2d: depth of input (${f}) must match input depth for filter ${p.shape[2]}.`),_(za(r,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`);let g=Ch(c.shape,p.shape,r,s,n,i),y;o!=null&&(y=M(o,"bias","fused conv2d"),[y]=Lt(y,h),a==="NHWC"?At(g.outShape,y.shape):(_(y.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${y.shape.length}.`),_(y.shape.length===0||y.shape[0]===g.outChannels||y.shape[0]===1,()=>`Error in fused conv2d: bias shape (${y.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let A;if(u!=null){let I=u.shape;if(_(I.length<=1||I.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${I.length}.`),I.length===1)_(I[0]===1||I[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${I}) is not compatible with the number of output channels (${g.outChannels}).`);else if(I.length===3)try{At(I,g.outShape)}catch(T){let E=`Error in fused conv2d: PReLU activation weights (${I}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(E)}A=M(u,"prelu weights","fused conv2d")}let x=(I,T)=>{_(a==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${a} but only NHWC is currently supported.`);let[E,R,O,$]=T,S=Jf(I,O,l);_(zs(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let P=t3(R.shape,S,E,r,n),z=E3(R,S,E.shape,r,n),j=[P,z];if($!=null){let K=Qf($,S);j.push(K)}return j},b={x:c,filter:p,bias:y,preluActivationWeights:A},w={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?Pa((I,T,E)=>{let R=B.runKernel(Ps,b,w);return E([T,I,R]),m&&(R=U(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:x}})(c,p):Pa((I,T,E,R)=>{let O=B.runKernel(Ps,b,w);return R([T,I,O,E]),m&&(O=U(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:x}})(c,p,y)}var xz=W({fusedConv2d_:Az});function bz(e,t,r,n,a,s=[1,1],i){let o=e;e.rank===3&&(o=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},d={strides:n,pad:a,dimRoundingMode:i,dilations:s,filterShape:r};return B.runKernel(gf,u,d)}var Kv=W({depthwiseConv2dNativeBackpropFilter_:bz});function vz(e,t,r,n,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:r},d={strides:n,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=B.runKernel(yf,u,d);return l?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Zv=W({depthwiseConv2dNativeBackpropInput_:vz});function wz({x:e,filter:t,strides:r,pad:n,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(tm(B.state.gradientDepth,l)===!1){let w=Th(e,t,r,n,a,s,i);return o!=null&&(w=le(w,o)),em(w,l,u,d)}let h=M(e,"x","depthwiseConv2d","float32"),p=M(t,"filter","depthwiseConv2d","float32"),c=h,m=!1;h.rank===3&&(m=!0,c=U(h,[1,h.shape[0],h.shape[1],h.shape[2]])),_(c.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),_(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),_(c.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),s==null&&(s=[1,1]),_(za(r,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${s}'`),qr("fused depthwiseConv2d",n,i);let f=Ch(c.shape,p.shape,r,s,n,i,!0),g;o!=null&&(g=M(o,"bias","fused conv2d"),[g]=Lt(g,h),At(f.outShape,g.shape));let y;u!=null&&(y=M(u,"prelu weights","fused depthwiseConv2d"));let A=(w,I)=>{_(zs(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[T,E,R,O]=I,$=Jf(w,R,l),S=Zv(E.shape,$,T,r,n,s,i),P=Kv(E,$,T.shape,r,n,s,i);if(O!=null){let z=Qf(g,$);return[S,P,z]}return[S,P]},x={x:c,filter:p,bias:g,preluActivationWeights:y},b={strides:r,pad:n,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?Pa((w,I,T)=>{let E=B.runKernel(Os,x,b);return T([I,w,E]),m&&(E=U(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:A}})(c,p):Pa((w,I,T,E)=>{let R=B.runKernel(Os,x,b);return E([I,w,R,T]),m&&(R=U(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:A}})(c,p,g)}var kz=W({fusedDepthwiseConv2d_:wz});function Iz({a:e,b:t,transposeA:r=!1,transposeB:n=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o=.2}){if(tm(B.state.gradientDepth,s)===!1){let O=Ye(e,t,r,n);return a!=null&&(O=le(O,a)),em(O,s,i,o)}let l=M(e,"a","fused matMul"),u=M(t,"b","fused matMul");[l,u]=Lt(l,u);let d=r?l.shape[l.rank-2]:l.shape[l.rank-1],h=n?u.shape[u.rank-1]:u.shape[u.rank-2],p=r?l.shape[l.rank-1]:l.shape[l.rank-2],c=n?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=It(m),y=It(f);_(d===h,()=>`Error in fused matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${r} and transposeB=${n} must match.`);let A=At(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([p,c]),x=r?U(l,[g,d,p]):U(l,[g,p,d]),b=n?U(u,[y,c,h]):U(u,[y,h,c]),w;a!=null&&(w=M(a,"bias","fused matMul"),[w]=Lt(w,l),At(A,w.shape));let I;i!=null&&(I=M(i,"prelu weights","fused matMul"));let T=(O,$)=>{let[S,P,z,j]=$,K=Jf(U(O,z.shape),z,s),D,Y;if(!r&&!n?(D=Ye(K,P,!1,!0),Y=Ye(S,K,!0,!1)):!r&&n?(D=Ye(K,P,!1,!1),Y=Ye(K,S,!0,!1)):r&&!n?(D=Ye(P,K,!1,!0),Y=Ye(S,K,!1,!1)):(D=Ye(P,K,!0,!0),Y=Ye(K,S,!0,!0)),a!=null){let V=Qf(j,K);return[D,Y,V]}else return[D,Y]},E={a:x,b,bias:w,preluActivationWeights:I},R={transposeA:r,transposeB:n,activation:s,leakyreluAlpha:o};return a==null?Pa((O,$,S)=>{let P=B.runKernel(_s,E,R);return S([O,$,P]),{value:U(P,A),gradFunc:T}})(x,b):Pa((O,$,S,P)=>{let z=B.runKernel(_s,E,R);return P([O,$,z,S]),{value:U(z,A),gradFunc:T}})(x,b,w)}var Sz=W({fusedMatMul_:Iz});function Cz(e){return N3(e,.54,.46)}var Tz=W({hammingWindow_:Cz});function Nz(e){return N3(e,.5,.5)}var Yv=W({hannWindow_:Nz});function Ez(e,t,r,n=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(_e(e,s,t)),s+=r;if(n)for(;s<e.size;){let o=s+t-e.size,l=St([_e(e,s,t-o),bd([o],a)]);i.push(l),s+=r}return i.length===0?ca([],[0,t]):U(St(i),[i.length,t])}var Jv=W({frame_:Ez});function Rz(e,t,r,n,a=Yv){n==null&&(n=Xv(t));let s=Jv(e,t,r),i=L(s,a(t));return Zf(i,n)}var $z=W({stft_:Rz});function Mz(e,t,r,n,a="bilinear",s=0){let i=M(e,"image","cropAndResize"),o=M(t,"boxes","cropAndResize","float32"),l=M(r,"boxInd","cropAndResize","int32"),u=o.shape[0];_(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),_(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),_(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),_(n.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${n.length}.`),_(n[0]>=1&&n[1]>=1,()=>`cropSize must be atleast [1,1], but was ${n}`),_(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let d={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:n};return B.runKernel(qo,d,h)}var Fz=W({cropAndResize_:Mz});function _z(e){let t=M(e,"image","flipLeftRight","float32");_(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let r={image:t};return B.runKernel(Jo,r,{})}var Pz=W({flipLeftRight_:_z});function Oz(e){let t=M(e,"image","grayscaleToRGB"),r=t.rank-1,n=t.shape[r];_(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),_(n===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${n}.`);let a=new Array(t.rank);return a.fill(1,0,r),a[r]=3,jn(t,a)}var zz=W({grayscaleToRGB_:Oz});function Dz(e,t,r=0,n=.5){let a=M(e,"image","rotateWithOffset","float32");_(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:r,center:n};return B.runKernel(Nl,s,i)}var Lz=W({rotateWithOffset_:Dz});function Sd(e,t,r,n,a,s){n==null&&(n=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return r=Math.min(r,i),_(0<=n&&n<=1,()=>`iouThreshold must be in [0, 1], but was '${n}'`),_(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),_(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),_(t.rank===1,()=>"scores must be a 1D tensor"),_(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),_(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:r,iouThreshold:n,scoreThreshold:a,softNmsSigma:s}}function Bz(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY){let s=M(e,"boxes","nonMaxSuppression","float32"),i=M(t,"scores","nonMaxSuppression","float32"),o=Sd(s,i,r,n,a);r=o.maxOutputSize,n=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:r,iouThreshold:n,scoreThreshold:a};return B.runKernel(ll,{boxes:s,scores:i},l)}var Wz=W({nonMaxSuppression_:Bz});function Vz(e,t,r){let n=Uz(e,t,r),a=n<0?-(n+1):n;e.splice(a,0,t)}function Uz(e,t,r){return jz(e,t,r||Gz)}function Gz(e,t){return e>t?1:e<t?-1:0}function jz(e,t,r){let n=0,a=e.length,s=0,i=!1;for(;n<a;){s=n+(a-n>>>1);let o=r(t,e[s]);o>0?n=s+1:(a=s,i=!o)}return i?n:-n-1}function Qv(e,t,r,n,a){return R3(e,t,r,n,a,0)}function ew(e,t,r,n,a,s){return R3(e,t,r,n,a,0,!1,s,!0)}function tw(e,t,r,n,a,s){return R3(e,t,r,n,a,s,!0)}function R3(e,t,r,n,a,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>a&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(r4);let d=s>0?-.5/s:0,h=[],p=[];for(;h.length<r&&u.length>0;){let g=u.pop(),{score:y,boxIndex:A,suppressBeginIndex:x}=g;if(y<a)break;let b=!1;for(let w=h.length-1;w>=x;--w){let I=Hz(e,A,h[w]);if(I>=n){b=!0;break}if(g.score=g.score*qz(n,d,I),g.score<=a)break}g.suppressBeginIndex=h.length,b||(g.score===y?(h.push(A),p.push(g.score)):g.score>a&&Vz(u,g,r4))}let c=h.length,m=r-c;o&&m>0&&(h.push(...new Array(m).fill(0)),p.push(...new Array(m).fill(0)));let f={selectedIndices:h};return i&&(f.selectedScores=p),l&&(f.validOutputs=c),f}function Hz(e,t,r){let n=e.subarray(t*4,t*4+4),a=e.subarray(r*4,r*4+4),s=Math.min(n[0],n[2]),i=Math.min(n[1],n[3]),o=Math.max(n[0],n[2]),l=Math.max(n[1],n[3]),u=Math.min(a[0],a[2]),d=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),p=Math.max(a[1],a[3]),c=(o-s)*(l-i),m=(h-u)*(p-d);if(c<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,d),y=Math.min(o,h),A=Math.min(l,p),x=Math.max(y-f,0)*Math.max(A-g,0);return x/(c+m-x)}function qz(e,t,r){let n=Math.exp(t*r*r);return r<=e?n:0}function r4(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function Xz(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY){let s=M(e,"boxes","nonMaxSuppressionAsync"),i=M(t,"scores","nonMaxSuppressionAsync"),o=Sd(s,i,r,n,a);r=o.maxOutputSize,n=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],d=l[1],{selectedIndices:h}=Qv(u,d,r,n,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),Nt(h,"int32")}var Kz=Xz;function Zz(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=M(e,"boxes","nonMaxSuppression"),o=M(t,"scores","nonMaxSuppression"),l=Sd(i,o,r,n,a,s);r=l.maxOutputSize,n=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},d={maxOutputSize:r,iouThreshold:n,scoreThreshold:a,softNmsSigma:s},h=B.runKernel(ul,u,d);return{selectedIndices:h[0],selectedScores:h[1]}}var Yz=W({nonMaxSuppressionWithScore_:Zz});async function Jz(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=M(e,"boxes","nonMaxSuppressionAsync"),o=M(t,"scores","nonMaxSuppressionAsync"),l=Sd(i,o,r,n,a,s);r=l.maxOutputSize,n=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),d=u[0],h=u[1],{selectedIndices:p,selectedScores:c}=tw(d,h,r,n,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Nt(p,"int32"),selectedScores:Nt(c)}}var Qz=Jz;function eD(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=M(e,"boxes","nonMaxSuppression"),o=M(t,"scores","nonMaxSuppression"),l=Sd(i,o,r,n,a,null),u=l.maxOutputSize,d=l.iouThreshold,h=l.scoreThreshold,p={boxes:i,scores:o},c={maxOutputSize:u,iouThreshold:d,scoreThreshold:h,padToMaxOutputSize:s},m=B.runKernel(ud,p,c);return{selectedIndices:m[0],validOutputs:m[1]}}var tD=W({nonMaxSuppressionPadded_:eD});async function rD(e,t,r,n=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=M(e,"boxes","nonMaxSuppressionAsync"),o=M(t,"scores","nonMaxSuppressionAsync"),l=Sd(i,o,r,n,a,null),u=l.maxOutputSize,d=l.iouThreshold,h=l.scoreThreshold,[p,c]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=ew(p,c,u,d,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Nt(m,"int32"),validOutputs:Se(f,"int32")}}var nD=rD;function aD(e,t,r=!1,n=!1){let a=M(e,"images","resizeBilinear");_(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),_(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),_(n===!1||r===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:r,halfPixelCenters:n,size:t},u=B.runKernel(Ri,o,l);return i?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var sD=W({resizeBilinear_:aD});function iD(e,t,r=!1,n=!1){let a=M(e,"images","resizeNearestNeighbor");_(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),_(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),_(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),_(n===!1||r===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:r,halfPixelCenters:n,size:t},u=B.runKernel(hd,o,l);return i?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var oD=W({resizeNearestNeighbor_:iD});function lD(e,t="binary",r=!1,n=.5){let a=M(e,"image","threshold"),s=.2989,i=.587,o=.114,l=a.shape[0]*a.shape[1],u=L(Nt([n]),255),d,h,p,c;if(_(a.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${a.rank}.`),_(a.shape[2]===3||a.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${a.shape[2]}.`),_(a.dtype==="int32"||a.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${a.dtype}.`),_(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),a.shape[2]===3){[d,h,p]=Yt(a,[1,1,1],-1);let f=L(d,s),g=L(h,i),y=L(p,o);c=le(le(f,g),y)}else c=e;if(t==="otsu"){let f=Qy(me(A3(c),"int32"),ft([]),256);u=uD(f,l)}let m=r?Ml(c,u):gn(c,u);return me(L(m,255),"int32")}function uD(e,t){let r=Nt([-1]),n=Nt([0]),a=Nt([0]),s,i,o,l,u,d;for(let h=0;h<e.size-1;h++){s=_e(e,0,h+1),i=_e(e,h+1),u=pe(ke(s),t),d=pe(ke(i),t);let p=ke(L(s,_u(0,s.size)));o=pe(p,ke(s));let c=bd(i.shape,s.size),m=le(_u(0,i.size),c),f=L(i,m);l=pe(ke(f),ke(i));let g=ce(o,l),y=ce(o,l),A=L(u,d);a=L(L(A,g),y);let x=gn(a,n);n=Ur(x,a,n),r=Ur(x,Nt([h]),r)}return r}var dD=W({threshold_:lD});function pD(e,t,r="nearest",n="constant",a=0,s){let i=M(e,"image","transform","float32"),o=M(t,"transforms","transform","float32");_(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),_(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),_(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:r,fillMode:n,fillValue:a,outputShape:s};return B.runKernel(Sl,l,u)}var hD=W({transform_:pD});function cD(e,t,r){_(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),_(r%1===0,()=>`bandPart(): numUpper must be an integer, got ${r}.`);let n=M(e,"a","bandPart");_(n.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${n.rank}.`);let a=n.shape,[s,i]=n.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(r<=i))throw new Error(`bandPart(): numUpper (${r}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),r<0&&(r=i);let o=U(_u(0,s,1,"int32"),[-1,1]),l=_u(0,i,1,"int32"),u=ce(o,l),d=ga(Ml(u,Se(+t,"int32")),$l(u,Se(-r,"int32"))),h=Ot([s,i],n.dtype);return U(ur(an(U(n,[-1,s,i])).map(p=>Ur(d,p,h))),a)}var fD=W({bandPart_:cD});function mD(e){let t;if(Array.isArray(e)){t=!1,_(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s<e.length;++s)_(e[s].shape[0]===a,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Yt(e,e.shape[0],0).map(a=>et(a,[0]));_(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let r=[],n=e;for(let a=0;a<e.length;++a)r.push(B.tidy(()=>{let s=n[a];if(a>0)for(let i=0;i<a;++i){let o=L(ke(L(r[i],s)),r[i]);s=ce(s,o)}return pe(s,Lf(s,"euclidean"))}));return t?ur(r,0):r}var gD=W({gramSchmidt_:mD});function yD(e,t=!1){if(_(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return n4(e,t);{let r=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),n=an(U(e,[r,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];n.forEach(l=>{let[u,d]=n4(l,t);a.push(u),s.push(d)});let i=U(ur(a,0),e.shape),o=U(ur(s,0),e.shape);return[i,o]}}function n4(e,t=!1){return B.tidy(()=>{_(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let r=e.shape[0],n=e.shape[1],a=l3(r),s=Vr(e),i=ca([[1]],[1,1]),o=Vr(i),l=r>=n?n:r;for(let u=0;u<l;++u){let d=s,h=o,p=a;[o,s,a]=B.tidy(()=>{let c=_e(s,[u,u],[r-u,1]),m=Lf(c),f=_e(s,[u,u],[1,1]),g=Ur(gn(f,0),ca([[-1]]),ca([[1]])),y=ce(f,L(g,m)),A=pe(c,y);A.shape[0]===1?o=Vr(i):o=St([i,_e(A,[1,0],[A.shape[0]-1,A.shape[1]])],0);let x=Mt(pe(Ye(g,y),m)),b=_e(s,[u,0],[r-u,n]),w=L(x,o),I=tt(o);if(u===0)s=ce(b,Ye(w,Ye(I,b)));else{let R=ce(b,Ye(w,Ye(I,b)));s=St([_e(s,[0,0],[u,n]),R],0)}let T=tt(w),E=_e(a,[0,u],[r,a.shape[1]-u]);if(u===0)a=ce(E,Ye(Ye(E,o),T));else{let R=ce(E,Ye(Ye(E,o),T));a=St([_e(a,[0,0],[r,u]),R],1)}return[o,s,a]}),te([d,h,p])}return!t&&r>n&&(a=_e(a,[0,0],[r,n]),s=_e(s,[0,0],[n,n])),[a,s]})}var AD=W({qr_:yD}),rw=(e=>(e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS",e))(rw||{});function xD(e,t,r=3){let n=M(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=M(t,"weights","computeWeightedLoss"));let s=a==null?n:L(n,a);if(r===0)return s;if(r===2)return ke(s);if(r===1){if(a==null)return Vt(s);{let i=n.size/a.size,o=pe(ke(s),ke(a));return i>1?pe(o,Se(i)):o}}if(r===3){if(a==null)return pe(ke(s),Se(n.size));{let i=L(a,cn(n.shape)),o=me(ke(Fu(i,Se(0))),"float32");return pe(ke(s),o)}}throw Error(`Unknown reduction: ${r}`)}var rs=W({computeWeightedLoss_:xD});function bD(e,t,r,n=3){let a=M(e,"labels","absoluteDifference"),s=M(t,"predictions","absoluteDifference"),i=null;r!=null&&(i=M(r,"weights","absoluteDifference")),jr(a.shape,s.shape,"Error in absoluteDifference: ");let o=ar(ce(a,s));return rs(o,i,n)}var vD=W({absoluteDifference_:bD});function wD(e,t,r,n,a=3){let s=M(e,"labels","cosineDistance"),i=M(t,"predictions","cosineDistance"),o=null;n!=null&&(o=M(n,"weights","cosineDistance")),jr(s.shape,i.shape,"Error in cosineDistance: ");let l=Se(1),u=ce(l,ke(L(s,i),r,!0));return rs(u,o,a)}var kD=W({cosineDistance_:wD});function ID(e,t,r,n=3){let a=M(e,"labels","hingeLoss"),s=M(t,"predictions","hingeLoss"),i=null;r!=null&&(i=M(r,"weights","hingeLoss")),jr(a.shape,s.shape,"Error in hingeLoss: ");let o=Se(1);a=ce(L(Se(2),a),o);let l=Da(ce(o,L(a,s)));return rs(l,i,n)}var SD=W({hingeLoss_:ID});function CD(e,t,r,n=1,a=3){let s=M(e,"labels","huberLoss"),i=M(t,"predictions","huberLoss"),o=null;r!=null&&(o=M(r,"weights","huberLoss")),jr(s.shape,i.shape,"Error in huberLoss: ");let l=Se(n),u=ar(ce(i,s)),d=Rh(u,l),h=ce(u,d),p=le(L(Se(.5),bt(d)),L(l,h));return rs(p,o,a)}var TD=W({huberLoss_:CD});function ND(e,t,r,n=1e-7,a=3){let s=M(e,"labels","logLoss"),i=M(t,"predictions","logLoss"),o=null;r!=null&&(o=M(r,"weights","logLoss")),jr(s.shape,i.shape,"Error in logLoss: ");let l=Se(1),u=Se(n),d=Mt(L(s,_n(le(i,u)))),h=L(ce(l,s),_n(le(ce(l,i),u))),p=ce(d,h);return rs(p,o,a)}var ED=W({logLoss_:ND});function RD(e,t,r,n=3){let a=M(e,"labels","meanSquaredError"),s=M(t,"predictions","meanSquaredError"),i=null;r!=null&&(i=M(r,"weights","meanSquaredError")),jr(a.shape,s.shape,"Error in meanSquaredError: ");let o=S3(a,s);return rs(o,i,n)}var $D=W({meanSquaredError_:RD});function MD(e,t){let r=M(e,"labels","sigmoidCrossEntropyWithLogits"),n=M(t,"logits","sigmoidCrossEntropyWithLogits");jr(r.shape,n.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Da(n),s=L(n,r),i=Wf(Fn(Mt(ar(n))));return le(ce(a,s),i)}function FD(e,t,r,n=0,a=3){let s=M(e,"multiClassLabels","sigmoidCrossEntropy"),i=M(t,"logits","sigmoidCrossEntropy"),o=null;if(r!=null&&(o=M(r,"weights","sigmoidCrossEntropy")),jr(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),n>0){let u=Se(n),d=Se(1),h=Se(.5);s=le(L(s,ce(d,u)),L(h,u))}let l=MD(s,i);return rs(l,o,a)}var _D=W({sigmoidCrossEntropy_:FD});function PD(e,t,r=-1){if(r===-1&&(r=t.rank-1),r!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${r}`);return Pa((n,a,s)=>{let i=Nv(a,[r],!0),o=ce(me(a,"float32"),i);s([n,o]);let l=Mt(L(o,n));return{value:ke(l,[r]),gradFunc:(u,d)=>{let[h,p]=d,c=Fo(u.shape,[r]);return[L(U(u,c),ce(me(h,"float32"),Fn(p))),L(U(u,c),ce(Fn(p),me(h,"float32")))]}}})(e,t)}function OD(e,t,r,n=0,a=3){let s=M(e,"onehotLabels","softmaxCrossEntropy"),i=M(t,"logits","softmaxCrossEntropy"),o=null;if(r!=null&&(o=M(r,"weights","softmaxCrossEntropy")),jr(s.shape,i.shape,"Error in softmaxCrossEntropy: "),n>0){let u=Se(n),d=Se(1),h=Se(s.shape[1]);s=le(L(s,ce(d,u)),pe(u,h))}let l=PD(s,i);return rs(l,o,a)}var zD=W({softmaxCrossEntropy_:OD});function DD(e,t,r,n){let a=M(e,"indices","sparseFillEmptyRows","int32"),s=M(t,"values","sparseFillEmptyRows"),i=M(r,"denseShape","sparseFillEmptyRows","int32"),o=M(n,"defaultValue","sparseFillEmptyRows",s.dtype);if(a.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${a.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:a,values:s,denseShape:i,defaultValue:o},u=B.runKernel(ch,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var LD=W({sparseFillEmptyRows_:DD});function BD(e,t,r){let n=M(e,"inputIndices","sparseReshape","int32"),a=M(t,"inputShape","sparseReshape","int32"),s=M(r,"newShape","sparseReshape","int32");if(n.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${n.shape}`);if(a.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${a.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:n,inputShape:a,newShape:s},o=B.runKernel(gd,i);return{outputIndices:o[0],outputShape:o[1]}}var WD=W({sparseReshape_:BD});function VD(e,t,r){let n=M(e,"data","sparseSegmentMean"),a=M(t,"indices","sparseSegmentMean","int32"),s=M(r,"segmentIds","sparseSegmentMean","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${a.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:n,indices:a,segmentIds:s};return B.runKernel(fh,i)}var UD=W({sparseSegmentMean_:VD});function GD(e,t,r){let n=M(e,"data","sparseSegmentSum"),a=M(t,"indices","sparseSegmentSum","int32"),s=M(r,"segmentIds","sparseSegmentSum","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${a.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:n,indices:a,segmentIds:s};return B.runKernel(mh,i)}var jD=W({sparseSegmentSum_:GD});function HD(e,t,r,n,a,s,i,o){let l=M(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=M(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let d={separator:r,nGramWidths:n,leftPad:a,rightPad:s,padWidth:i,preserveShortSequences:o},h={data:l,dataSplits:u},p=B.runKernel(yh,h,d);return{nGrams:p[0],nGramsSplits:p[1]}}var qD=W({stringNGrams_:HD});function XD(e,t,r=!0){let n=M(e,"input","stringSplit","string"),a=M(t,"delimiter","stringSplit","string");if(n.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${n.shape}`);if(a.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${a.shape}`);let s={skipEmpty:r},i={input:n,delimiter:a},o=B.runKernel($f,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var KD=W({stringSplit_:XD});function ZD(e,t){let r=M(e,"input","stringToHashBucketFast","string"),n={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let a={input:r};return B.runKernel(Mf,a,n)}var YD=W({stringToHashBucketFast_:ZD}),JD={fft:Kf,ifft:Zp,rfft:Zf,irfft:I3},QD={hammingWindow:Tz,hannWindow:Yv,frame:Jv,stft:$z},Ie={flipLeftRight:Pz,grayscaleToRGB:zz,resizeNearestNeighbor:oD,resizeBilinear:sD,rotateWithOffset:Lz,cropAndResize:Fz,nonMaxSuppression:Wz,nonMaxSuppressionAsync:Kz,nonMaxSuppressionWithScore:Yz,nonMaxSuppressionWithScoreAsync:Qz,nonMaxSuppressionPadded:tD,nonMaxSuppressionPaddedAsync:nD,threshold:dD,transform:hD},nw={bandPart:fD,gramSchmidt:gD,qr:AD},eL={absoluteDifference:vD,computeWeightedLoss:rs,cosineDistance:kD,hingeLoss:SD,huberLoss:TD,logLoss:ED,meanSquaredError:$D,sigmoidCrossEntropy:_D,softmaxCrossEntropy:zD},Rp={sparseFillEmptyRows:LD,sparseReshape:WD,sparseSegmentMean:UD,sparseSegmentSum:jD},c0={stringNGrams:qD,stringSplit:KD,stringToHashBucketFast:YD},ns=class extends W6{minimize(e,t=!1,r){let{value:n,grads:a}=this.computeGradients(e,r);if(r!=null){let s=r.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return te(a),t?n:(n.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Tv(e,t)}dispose(){this.iterations_!=null&&te(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Se(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(ns,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var rm=class extends ns{constructor(e,t,r=null){super(),this.learningRate=e,this.rho=t,this.epsilon=r,this.accumulatedGrads=[],this.accumulatedUpdates=[],r==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t],a=!1;this.accumulatedGrads[r]==null&&(this.accumulatedGrads[r]={originalName:`${t}/accum_grad`,variable:X(()=>at(n).variable(a))}),this.accumulatedUpdates[r]==null&&(this.accumulatedUpdates[r]={originalName:`${t}/accum_var`,variable:X(()=>at(n).variable(a))});let s=Array.isArray(e)?e[r].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[r].variable,o=this.accumulatedUpdates[r].variable;X(()=>{let l=le(L(i,this.rho),L(bt(s),1-this.rho)),u=L(pe(Er(le(o,this.epsilon)),Er(le(i,this.epsilon))),s),d=le(L(o,this.rho),L(bt(u),1-this.rho));i.assign(l),o.assign(d);let h=le(L(u,-this.learningRate),n);n.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(te(this.accumulatedGrads.map(e=>e.variable)),te(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,r=!1;this.accumulatedGrads=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.accumulatedUpdates=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(r)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};rm.className="Adadelta";Ui(rm);var nm=class extends ns{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t];this.accumulatedGrads[r]==null&&(this.accumulatedGrads[r]={originalName:`${t}/accumulator`,variable:X(()=>bd(n.shape,this.initialAccumulatorValue).variable(!1))});let a=Array.isArray(e)?e[r].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[r].variable;X(()=>{let i=le(s,bt(a));s.assign(i);let o=le(L(pe(a,Er(le(i,B.backend.epsilon()))),-this.learningRate),n);n.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&te(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(r=>({originalName:r.name,variable:r.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};nm.className="Adagrad";Ui(nm);var am=class extends ns{constructor(e,t,r,n=null){super(),this.learningRate=e,this.beta1=t,this.beta2=r,this.epsilon=n,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],X(()=>{this.accBeta1=Se(t).variable(),this.accBeta2=Se(r).variable()}),n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(r=>r.name):Object.keys(e);X(()=>{let r=ce(1,this.accBeta1),n=ce(1,this.accBeta2);t.forEach((a,s)=>{let i=B.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:X(()=>at(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:X(()=>at(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedSecondMoment[s].variable,h=le(L(u,this.beta1),L(l,1-this.beta1)),p=le(L(d,this.beta2),L(bt(l),1-this.beta2)),c=pe(h,r),m=pe(p,n);u.assign(h),d.assign(p);let f=le(L(pe(c,le(Er(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&te(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&te(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),X(()=>{this.accBeta1.assign(Bs(this.beta1,this.iterations_+1)),this.accBeta2.assign(Bs(this.beta2,this.iterations_+1))});let t=e.length/2,r=!1;this.accumulatedFirstMoment=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(r)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};am.className="Adam";Ui(am);var sm=class extends ns{constructor(e,t,r,n=null,a=0){super(),this.learningRate=e,this.beta1=t,this.beta2=r,this.epsilon=n,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],X(()=>{this.iteration=Se(0).variable(),this.accBeta1=Se(t).variable()}),n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(r=>r.name):Object.keys(e);X(()=>{let r=ce(1,this.accBeta1),n=pe(-this.learningRate,le(L(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=B.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:at(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:at(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedWeightedInfNorm[s].variable,h=le(L(u,this.beta1),L(l,1-this.beta1)),p=L(d,this.beta2),c=ar(l),m=ts(p,c);u.assign(h),d.assign(m);let f=le(L(pe(n,r),pe(h,le(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(le(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&te(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&te(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};sm.className="Adamax";Ui(sm);var Mh=class extends ns{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=Array.isArray(e)?e[r].tensor:e[t];if(n==null)return;let a=B.registeredVariables[t];X(()=>{let s=le(L(this.c,n),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=mr(Se(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Mh.className="SGD";Ui(Mh);var im=class extends Mh{constructor(e,t,r=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=r,this.accumulations=[],this.m=Se(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t];this.accumulations[r]==null&&(this.accumulations[r]={originalName:`${t}/momentum`,variable:X(()=>at(n).variable(!1))});let a=this.accumulations[r].variable,s=Array.isArray(e)?e[r].tensor:e[t];s!=null&&X(()=>{let i,o=le(L(this.m,a),s);this.useNesterov?i=le(L(this.c,le(s,L(o,this.m))),n):i=le(L(this.c,o),n),a.assign(o),n.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&te(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(r=>({originalName:r.name,variable:r.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};im.className="Momentum";Ui(im);var om=class extends ns{constructor(e,t=.9,r=0,n=null,a=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=r,this.epsilon=n,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,n==null&&(this.epsilon=B.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,r)=>{let n=B.registeredVariables[t],a=!1;this.accumulatedMeanSquares[r]==null&&(this.accumulatedMeanSquares[r]={originalName:`${t}/rms`,variable:X(()=>at(n).variable(a))}),this.accumulatedMoments[r]==null&&(this.accumulatedMoments[r]={originalName:`${t}/momentum`,variable:X(()=>at(n).variable(a))}),this.accumulatedMeanGrads[r]==null&&this.centered&&(this.accumulatedMeanGrads[r]={originalName:`${t}/mg`,variable:X(()=>at(n).variable(a))});let s=Array.isArray(e)?e[r].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[r].variable,o=this.accumulatedMoments[r].variable;X(()=>{let l=le(L(i,this.decay),L(bt(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[r].variable,d=le(L(u,this.decay),L(s,1-this.decay)),h=pe(L(s,this.learningRate),Er(ce(l,le(bt(d),this.epsilon)))),p=le(L(o,this.momentum),h);i.assign(l),u.assign(d),o.assign(p);let c=ce(n,p);n.assign(c)}else{let u=le(L(i,this.decay),L(bt(s),1-this.decay)),d=le(L(o,this.momentum),pe(L(s,this.learningRate),Er(le(u,this.epsilon))));i.assign(u),o.assign(d);let h=ce(n,d);n.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&te(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&te(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&te(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,r=!1;this.accumulatedMeanSquares=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.accumulatedMoments=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(n=>({originalName:n.name,variable:n.tensor.variable(r)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};om.className="RMSProp";Ui(om);var Is=class{static sgd(e){return new Mh(e)}static momentum(e,t,r=!1){return new im(e,t,r)}static rmsprop(e,t=.9,r=0,n=null,a=!1){return new om(e,t,r,n,a)}static adam(e=.001,t=.9,r=.999,n=null){return new am(e,t,r,n)}static adadelta(e=.001,t=.95,r=null){return new rm(e,t,r)}static adamax(e=.002,t=.9,r=.999,n=null,a=0){return new sm(e,t,r,n,a)}static adagrad(e,t=.1){return new nm(e,t)}},yo={sgd:Is.sgd,momentum:Is.momentum,adadelta:Is.adadelta,adagrad:Is.adagrad,rmsprop:Is.rmsprop,adamax:Is.adamax,adam:Is.adam},tL=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function $3(){return new Promise(e=>tL(()=>e()))}var C={};Be(C,{ERF_A1:()=>hL,ERF_A2:()=>cL,ERF_A3:()=>fL,ERF_A4:()=>mL,ERF_A5:()=>gL,ERF_P:()=>pL,PARALLELIZE_THRESHOLD:()=>M3,SELU_SCALE:()=>sw,SELU_SCALEALPHA:()=>aw,applyActivation:()=>em,assertAndGetBroadcastShape:()=>At,assertAxesAreInnerMostDims:()=>P_,assertParamsConsistent:()=>rL,assignToTypedArray:()=>wL,axesAreInnerMostDims:()=>i3,calculateShapes:()=>$6,checkEinsumDimSizes:()=>NL,checkPadOnDimRoundingMode:()=>qr,combineLocations:()=>Av,complexWithEvenIndex:()=>xL,complexWithOddIndex:()=>bL,computeConv2DInfo:()=>Ch,computeConv3DInfo:()=>ev,computeDefaultPad:()=>Yy,computeDilation2DInfo:()=>FF,computeOptimalWindowSize:()=>aL,computeOutAndReduceShapes:()=>xv,computeOutShape:()=>nL,computePool2DInfo:()=>Q6,computePool3DInfo:()=>_F,convertConv2DDataFormat:()=>tv,decodeEinsumEquation:()=>CL,eitherStridesOrDilationsAreOne:()=>za,expandShapeToKeepDim:()=>Fo,exponent:()=>IL,exponents:()=>kL,fromStringArrayToUint8:()=>KL,fromUint8ToStringArray:()=>XL,getAxesPermutation:()=>bv,getBroadcastDims:()=>T6,getComplexWithIndex:()=>vL,getEinsumComputePath:()=>EL,getEinsumPermutation:()=>TL,getFusedBiasGradient:()=>Qf,getFusedDyActivation:()=>Jf,getImageCenter:()=>sL,getInnerMostAxes:()=>O_,getPermuted:()=>oL,getReductionAxes:()=>Jt,getReshaped:()=>iL,getReshapedPermuted:()=>lL,getSliceBeginCoords:()=>uL,getSliceSize:()=>dL,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>FL,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>_L,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>PL,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>DL,getSparseReshapeInputOutputMismatchErrorMessage:()=>BL,getSparseReshapeInputOutputMultipleErrorMessage:()=>LL,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>OL,getSparseReshapeNegativeOutputDimErrorMessage:()=>zL,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>GL,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>WL,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>VL,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>UL,getUndoAxesPermutation:()=>o3,isIdentityPermutation:()=>RL,log:()=>n$,mergeRealAndImagArrays:()=>yL,prepareAndValidate:()=>R6,prepareSplitSize:()=>ML,segment_util:()=>iw,shouldFuse:()=>tm,slice_util:()=>Dt,splitRealAndImagArrays:()=>AL,tupleValuesAreOne:()=>zs,upcastType:()=>Nr,validateInput:()=>Hy,validateUpdateShape:()=>jy,warn:()=>Cs});function rL(e,t){let r=e[0].length;e.forEach((a,s)=>{_(a.length===r,()=>`Error in concat${r}D: rank of tensors[${s}] must be the same as the rank of the rest (${r})`)}),_(t>=0&&t<r,()=>`Error in concat${r}D: axis must be between 0 and ${r-1}.`);let n=e[0];e.forEach((a,s)=>{for(let i=0;i<r;i++)_(i===t||a[i]===n[i],()=>`Error in concat${r}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${n}) along the non-concatenated axis ${s}.`)})}function nL(e,t){let r=e[0].slice();for(let n=1;n<e.length;n++)r[t]+=e[n][t];return r}var M3=30;function aL(e){return e<=M3?e:S0(e,Math.floor(Math.sqrt(e)))}function sL(e,t,r){let n=r*(typeof e=="number"?e:e[0]),a=t*(typeof e=="number"?e:e[1]);return[n,a]}function iL(e,t,r,n=!0){let a=[];if(n)a=a.concat(t.slice(0)),a.push(e[0]/r),a=a.concat(e.slice(1));else{a=a.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)a=a.concat([e[i+1]/t[i],t[i]]);a=a.concat(e.slice(s+1))}return a}function oL(e,t,r=!0){let n=[];if(r){n.push(t);for(let a=t+1;a<e;++a)a<=2*t?(n.push(a),n.push(a-(t+1))):n.push(a)}else{let a=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?s.push(i):a.push(i);n.push(...a),n.push(0),n.push(...s)}return n}function lL(e,t,r,n=!0){let a=[];n?a.push(e[0]/r):a.push(e[0]*r);for(let s=1;s<e.length;++s)s<=t.length?n?a.push(t[s-1]*e[s]):a.push(e[s]/t[s-1]):a.push(e[s]);return a}function uL(e,t){let r=[0];for(let n=0;n<t;++n)r.push(e[n][0]);return r}function dL(e,t,r){let n=e.slice(0,1);for(let a=0;a<r;++a)n.push(e[a+1]-t[a][0]-t[a][1]);return n}var aw=1.7580993408473768,sw=1.0507009873554805,pL=.3275911,hL=.254829592,cL=-.284496736,fL=1.421413741,mL=-1.453152027,gL=1.061405429;function yL(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let r=new Float32Array(e.length*2);for(let n=0;n<r.length;n+=2)r[n]=e[n/2],r[n+1]=t[n/2];return r}function AL(e){let t=new Float32Array(e.length/2),r=new Float32Array(e.length/2);for(let n=0;n<e.length;n+=2)t[n/2]=e[n],r[n/2]=e[n+1];return{real:t,imag:r}}function xL(e){let t=Math.ceil(e.length/4),r=new Float32Array(t),n=new Float32Array(t);for(let a=0;a<e.length;a+=4)r[Math.floor(a/4)]=e[a],n[Math.floor(a/4)]=e[a+1];return{real:r,imag:n}}function bL(e){let t=Math.floor(e.length/4),r=new Float32Array(t),n=new Float32Array(t);for(let a=2;a<e.length;a+=4)r[Math.floor(a/4)]=e[a],n[Math.floor(a/4)]=e[a+1];return{real:r,imag:n}}function vL(e,t){let r=e[t*2],n=e[t*2+1];return{real:r,imag:n}}function wL(e,t,r,n){e[n*2]=t,e[n*2+1]=r}function kL(e,t){let r=new Float32Array(e/2),n=new Float32Array(e/2);for(let a=0;a<Math.ceil(e/2);a++){let s=(t?2:-2)*Math.PI*(a/e);r[a]=Math.cos(s),n[a]=Math.sin(s)}return{real:r,imag:n}}function IL(e,t,r){let n=(r?2:-2)*Math.PI*(e/t),a=Math.cos(n),s=Math.sin(n);return{real:a,imag:s}}var yg="->",SL=/->/g,a4=",",s4="...";function CL(e,t){e=e.replace(/\s/g,"");let r=(e.length-e.replace(SL,"").length)/yg.length;if(r<1)throw new Error("Equations without an arrow are not supported.");if(r>1)throw new Error(`Equation must contain exactly one arrow ("${yg}").`);let[n,a]=e.split(yg);_(n.indexOf(s4)===-1,()=>`The ellipsis notation ("${s4}") is not supported yet.`);let s=n.split(a4),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let p=0;p<a.length;++p){let c=a[p];if(!s.some(m=>m.indexOf(c)!==-1))throw new Error(`Output subscripts contain the label ${c} not present in the input subscripts.`);o.indexOf(c)===-1&&o.push(c)}for(let p=0;p<n.length;++p){let c=n[p];o.indexOf(c)===-1&&c!==a4&&o.push(c)}let l=new Array(s.length);for(let p=0;p<i;++p){if(new Set(s[p].split("")).size!==s[p].length)throw new Error(`Found duplicate axes in input component ${s[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let c=0;c<s[p].length;++c)l[p].push(o.indexOf(s[p][c]))}let u=o.length,d=a.length,h=[];for(let p=d;p<u;++p)h.push(p);return{allDims:o,summedDims:h,idDims:l}}function TL(e,t){let r=new Array(e);r.fill(-1);for(let a=0;a<t.length;++a)r[t[a]]=a;let n=[];for(let a=0;a<e;++a)r[a]===-1&&n.push(a);return r=r.filter(a=>a!==-1),{permutationIndices:r,expandDims:n}}function NL(e,t,r){let n=new Array(e);for(let a=0;a<r.length;++a){let s=r[a].shape;for(let i=0;i<t[a].length;++i)n[t[a][i]]===void 0?n[t[a][i]]=s[i]:_(n[t[a][i]]===s[i],()=>`Expected dimension ${n[t[a][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function EL(e,t){let r=e,n=[],a=0;e.length===0&&r.push(-1),a=e.length+1;for(let i=0;i<a;++i)n.push([]);let s=[];for(let i=0;i<r.length;++i){let o=r[i],l=$L(t,o);for(let u of l)s.indexOf(u)===-1&&(n[i].push(u),s.push(u))}return{path:r,steps:n}}function RL(e){return e.every((t,r)=>t===r)}function $L(e,t){let r=[];for(let n=0;n<e.length;++n)(e[n].length===0||e[n].indexOf(t)!==-1||t===-1)&&r.push(n);return r}function ML(e,t,r=0){let n=[];if(typeof t=="number")_(e.shape[r]%t===0,()=>"Number of splits must evenly divide the axis."),n=new Array(t).fill(e.shape[r]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);_(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[r]-i}_(e.shape[r]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),n=t}return n}function FL(e){return`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${e}`}function _L(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function PL(e,t,r){return`indices(${e}, 0) is invalid: ${t} >= ${r}`}function OL(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function zL(e,t){return`size ${e} must be non-negative, not ${t}`}function DL(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function LL(e,t){let r=It(e),n=It(t);return`Input to reshape is a SparseTensor with ${r}
dense values, but the requested shape requires a multiple of ${n}. inputShape=${e} outputShape= ${t}`}function BL(e,t){let r=It(e),n=It(t);return`Input to reshape is a tensor with ${r} dense values, but the requested shape has ${n}. inputShape=${e} outputShape=${t}`}function WL(){return"segment ids must be >= 0"}function VL(){return"segment ids are not increasing"}function UL(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function GL(e,t,r){return`Bad: indices[${e}] == ${t} out of range [0, ${r})`}var iw={};Be(iw,{collectGatherOpShapeInfo:()=>qL,computeOutShape:()=>HL,segOpComputeOptimalWindowSize:()=>jL});function jL(e,t){let r=!1,n;for(e<=M3?(n=e,r=!0):n=S0(e,Math.floor(Math.sqrt(e)));!r;)n>t||n===e?r=!0:n=S0(e,n+1);return n}function HL(e,t,r){let n=[],a=e.length;for(let s=0;s<a;s++)s!==t?n.push(e[s]):n.push(r);return n}function qL(e,t,r,n){let a=t.shape.length,s=e.shape.length;if(n!==0&&(n<-a||n>a))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${n}`);if(n<0&&(n+=a),n>s)throw new Error(`batchDims (${n}) must be less than rank(x) (
${s}).`);if(r<n)throw new Error(`batchDims (${n}) must be less than or equal to axis (${r}).`);for(let h=0;h<n;++h)if(e.shape[h]!==t.shape[h])throw new Error(`x.shape[${h}]: ${e.shape[h]} should be equal to indices.shape[${h}]: ${t.shape[h]}.`);let i=e.shape[r],o=[],l=1,u=1,d=1;for(let h=0;h<n;++h)o.push(e.shape[h]),l*=e.shape[h];for(let h=n;h<r;h++)o.push(e.shape[h]),u*=e.shape[h];for(let h=n;h<a;h++)o.push(t.shape[h]);for(let h=r+1;h<s;h++)o.push(e.shape[h]),d*=e.shape[h];return{batchSize:l,sliceSize:d,outerSize:u,dimSize:i,outputShape:o}}function XL(e){try{return e.map(t=>E0(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function KL(e){return e.map(t=>bh(t))}var Kn={};Be(Kn,{nonMaxSuppressionV3Impl:()=>Qv,nonMaxSuppressionV4Impl:()=>ew,nonMaxSuppressionV5Impl:()=>tw,whereImpl:()=>Gv});var Ga=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ga.prototype)}},da=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,da.prototype)}},q=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,q.prototype)}},Ve=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ve.prototype)}},ow=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,ow.prototype)}},lw=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let r=this.cache.keys().next().value;this.cache.delete(r)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let r=this.cache.keys().next().value;this.cache.delete(r)}this.maxEntries=e}};function Po(e,t){if(Array.isArray(e)){let r=[];for(let n=0;n<t;n++)r=r.concat(e);return r}else{let r=new Array(t);return r.fill(e),r}}function Na(e,t){if(!e)throw new ow(t)}function i4(e,t){let r=0;for(let n of e)n===t&&r++;return r}function rn(e){return e.length===1?e[0]:e}function Tt(e){return Array.isArray(e)?e:[e]}function ja(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function vo(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,r)=>r.toUpperCase())}var Un={};function F3(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Wg(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Wg(t));else{let t=Object.keys(e);for(let r of t){let n=e[r];n!=null&&typeof n=="object"&&(!Array.isArray(n)&&n.type==="ndarray"&&typeof n.value=="number"?e[r]=n.value:Wg(n))}}}function Fh(e,t={},r={},n="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in r)i=r[s];else if(s in Un)i=Un[s];else if(i=t[s],i==null)throw new q(`Unknown ${n}: ${e}. This may be due to one of the following reasons:
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new q(`${n}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,o,l;if(i in r?[o,l]=r[i]:i in Un?[o,l]=Un.className:i in t&&([o,l]=t[i]),o==null)throw new q(`Unknown ${n}: ${i}. This may be due to one of the following reasons:
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let c of Object.keys(Un))u[c]=Un[c];for(let c of Object.keys(r))u[c]=r[c];let d=s.config;d.customObjects=u;let h={...Un};for(let c of Object.keys(r))Un[c]=r[c];Wg(s.config);let p=l(o,s.config,r,a);return Un={...h},p}else{let u={...Un};for(let h of Object.keys(r))Un[h]=r[h];let d=new o(s.config);return Un={...u},d}}}function ZL(e,t){return e<t?-1:e>t?1:0}function t0(e,t){return-1*ZL(e,t)}function Rs(e){if(e==null)return e;let t=[];for(let r of e)t.indexOf(r)===-1&&t.push(r);return t}function YL(e){if(e==null)throw new q(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function _l(e,t,r){if(r!=null&&e.indexOf(r)<0)throw new q(`${r} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function _3(e,t,r=0,n=1/0){return Na(r>=0),Na(n>=r),Array.isArray(e)&&e.length>=r&&e.length<=n&&e.every(a=>typeof a===t)}function gr(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((r,n)=>gr(r,`element ${n+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${uw(e)}.`)}function uw(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>uw(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function JL(e,t,r){let n=r!=null?r():v.now(),a;return(...s)=>{let i=r!=null?r():v.now();return i-n<t||(n=i,a=e(...s)),a}}function dw(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var QL=0;function pw(){return QL++}var r0={};function lm(e=""){return e in r0||(r0[e]=0),r0[e]+=1,e+r0[e].toString()}var eB=["channelsFirst","channelsLast"],tB=["nearest","bilinear"],rB=["valid","same","causal"],nB=["max","avg"],aB=["sum","mul","concat","ave"],hu=new Map;function jt(e){_l(eB,"DataFormat",e)}function sB(e){_l(tB,"InterpolationFormat",e)}function Bn(e){_l(rB,"PaddingMode",e)}function hw(e){_l(nB,"PoolMode",e)}var Bp=[],o4="/";function To(e,t){Bp.push(e);try{let r=t();return Bp.pop(),r}catch(r){throw Bp.pop(),r}}function iB(){return Bp.length===0?"":Bp.join(o4)+o4}function cw(e){if(!mw(e))throw new Error("Not a valid tensor name: '"+e+"'");return iB()+e}function fw(e){if(!mw(e))throw new Error("Not a valid tensor name: '"+e+"'");hu.has(e)||hu.set(e,0);let t=hu.get(e);if(hu.set(e,hu.get(e)+1),t>0){let r=`${e}_${t}`;return hu.set(r,1),r}else return e}var oB=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function mw(e){return!!e.match(oB)}function lB(e){return e===parseInt(e.toString(),10)}function $s(e,t,r){t==null&&(t=0),r==null&&(r=e.length);let n=1;for(let a=t;a<r;++a)n*=e[a];return n}function Pu(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let r=0;r<e.length;r++){let n=e[r];n<t&&(t=n)}return t}function Vs(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let r=0;r<e.length;r++){let n=e[r];n>t&&(t=n)}return t}function ya(e,t){if(t<e)throw new q(`end (${t}) < begin (${e}) is forbidden.`);let r=[];for(let n=e;n<t;++n)r.push(n);return r}var Ag;function sr(){return Ag==null&&(Ag=Dn().epsilon()),Ag}function Aa(){return"channelsLast"}function um(e,t){return me(e,t)}function _h(e,t=-1){let r=e.shape.slice();return t<0&&(t=r.length+t+1),r.splice(t,0,1),U(e,r)}function uB(e,t){return X(()=>{if(e.shape.length!==2)throw new q(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let r=_h(e,1);return Vg(r,[1,t,1])})}function dB(e){let t=[$s(e.shape)];return U(e,t)}function pB(e){if(e.rank<=1)throw new q(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],$s(e.shape,1)];return U(e,t)}function No(e,t,r){return X(()=>{switch(e.rank){case 1:return Xf(e,t,r);case 2:return k3(e,[t,0],[r,e.shape[1]]);case 3:return Fl(e,[t,0,0],[r,e.shape[1],e.shape[2]]);case 4:return _o(e,[t,0,0,0],[r,e.shape[1],e.shape[2],e.shape[3]]);case 5:return _e(e,[t,0,0,0,0],[r,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return _e(e,[t,0,0,0,0,0],[r,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new q(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function xg(e,t,r){return X(()=>{switch(e.rank){case 1:return Xf(e,t,r);case 2:return k3(e,[0,t],[e.shape[0],r]);case 3:return Fl(e,[0,0,t],[e.shape[0],e.shape[1],r]);case 4:return _o(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],r]);default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function n0(e,t,r,n){return X(()=>{switch(e.rank){case 1:return Xf(e,t,r);case 2:switch(n){case 1:return No(e,t,r);case 2:return xg(e,t,r);default:throw new q(`The axis is not within the rank of the tensor ${n}`)}case 3:switch(n){case 1:return No(e,t,r);case 2:return Fl(e,[0,t,0],[e.shape[0],r,e.shape[2]]);case 3:return xg(e,t,r);default:throw new q(`The axis is not within the rank of the tensor ${n}`)}case 4:switch(n){case 1:return No(e,t,r);case 2:return _o(e,[0,t,0,0],[e.shape[0],r,e.shape[2],e.shape[3]]);case 3:return _o(e,[0,0,t,0],[e.shape[0],e.shape[1],r,e.shape[3]]);case 4:return xg(e,t,r);default:throw new q(`The axis is not within the rank of the tensor ${n}`)}default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function P3(e,t=-1){let r;return t<0&&(r=e[0].rank,r!==0?t=r:t=0),t===e[0].rank&&(t=-1),St(e,t)}function l4(e,t){switch(e.rank){case 1:return ov([e,t]);case 2:return xd([e,t],0);case 3:return lv([e,t],0);case 4:return uv([e,t],0);default:throw new q(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Vg(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new q(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return jn(e,t)}function dm(e,t=0,r=1,n,a){return Fv(e,t,r,n,a)}function Ma(e,t,r,n){if(e.rank<2||t.rank<2)throw new Ve(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new Ve(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return Ws.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:n?Ug(e.rank,n,Aa()):null,activation:r});{let a=e.shape.slice(),s=a.pop();e=U(e,[-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],d=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=U(tt(t,d),[l,-1]);let h=[...a,...u],p=!1,c=!1;return U(Ws.matMul({a:e,b:t,transposeA:p,transposeB:c,bias:n?Ug(e.rank,n,Aa()):null,activation:r}),h)}}function gw(e,t,r){return X(()=>(Array.isArray(t)?t=Nt(t,"int32"):t=me(t,"int32"),Mu(e,t,r)))}function Ph(e){return L(e,e)}function Ug(e,t,r){let n=t.shape;if(t.rank!==1&&t.rank!==e)throw new q(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(r==="channelsFirst")return n.length===1?U(t,[1,n[0],1,1,1]):U(t,[1,n[3],n[0],n[1],n[2]]);if(r==="channelsLast")return n.length===1?U(t,[1,1,1,1,n[0]]):U(t,[1].concat(n))}else if(e===4){if(r==="channelsFirst")return n.length===1?U(t,[1,n[0],1,1]):U(t,[1,n[2],n[0],n[1]]);if(r==="channelsLast")return n.length===1?U(t,[1,1,1,n[0]]):U(t,[1].concat(n))}else if(e===3){if(r==="channelsFirst")return n.length===1?U(t,[1,n[0],1]):U(t,[1,n[1],n[0]]);if(r==="channelsLast")return n.length===1?U(t,[1,1,n[0]]):U(t,[1].concat(n))}else if(e<3)return t;throw new q(`Unsupported input rank by biasAdd: ${t.rank}`)}function va(e,t,r){return X(()=>(r==null&&(r=Aa()),jt(r),le(e,Ug(e.rank,t,r))))}function hB(e,t=1){if(t!==1)throw new Ve(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Nh(e)}function cB(e){return X(()=>pe(e,le(ar(e),1)))}function yw(e,t,r,n){return X(()=>qv(e,t,r,n))}function fB(e){return X(()=>{let t=le(.5,L(.2,e));return fn(t,0,1)})}function Oh(e,t,r=!1){return r?e():t()}var mB=["fanIn","fanOut","fanAvg"],gB=["normal","uniform","truncatedNormal"];function yB(e){_l(mB,"FanMode",e)}function AB(e){_l(gB,"Distribution",e)}var Zn=class extends ue.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},O3=class extends Zn{apply(e,t){return Ot(e,t)}};O3.className="Zeros";ue.registerClass(O3);var pm=class extends Zn{apply(e,t){return cn(e,t)}};pm.className="Ones";ue.registerClass(pm);var z3=class extends Zn{constructor(e){if(super(),typeof e!="object")throw new q(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new q(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return X(()=>L(Se(this.value),cn(e,t)))}getConfig(){return{value:this.value}}};z3.className="Constant";ue.registerClass(z3);var D3=class extends Zn{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return kd(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};D3.className="RandomUniform";ue.registerClass(D3);var L3=class extends Zn{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`randomNormal does not support dType ${t}.`);return dm(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};L3.className="RandomNormal";ue.registerClass(L3);var B3=class extends Zn{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`truncatedNormal does not support dType ${t}.`);return Yf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};B3.className="TruncatedNormal";ue.registerClass(B3);var W3=class extends Zn{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return X(()=>{if(e.length!==2||e[0]!==e[1])throw new q("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,l3(e[0]))})}getConfig(){return{gain:this.gain}}};W3.className="Identity";ue.registerClass(W3);function xB(e,t="channelsLast"){let r,n;if(jt(t),e.length===2)r=e[0],n=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=$s(e,2);r=e[1]*a,n=e[0]*a}else if(t==="channelsLast"){let a=$s(e,0,e.length-2);r=e[e.length-2]*a,n=e[e.length-1]*a}}else{let a=$s(e);r=Math.sqrt(a),n=Math.sqrt(a)}return[r,n]}var sn=class extends Zn{constructor(e){if(super(),e.scale<0)throw new q(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,yB(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,AB(this.distribution),this.seed=e.seed}apply(e,t){let r=xB(e),n=r[0],a=r[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,n):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(n+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ve(`${this.getClassName()} does not support dType ${t}.`);return Yf(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return kd(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};sn.className="VarianceScaling";ue.registerClass(sn);var hm=class extends sn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return sn.className}};hm.className="GlorotUniform";ue.registerClass(hm);var cm=class extends sn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return sn.className}};cm.className="GlorotNormal";ue.registerClass(cm);var fm=class extends sn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return sn.className}};fm.className="HeNormal";ue.registerClass(fm);var mm=class extends sn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return sn.className}};mm.className="HeUniform";ue.registerClass(mm);var gm=class extends sn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return sn.className}};gm.className="LeCunNormal";ue.registerClass(gm);var ym=class extends sn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return sn.className}};ym.className="LeCunNormal";ue.registerClass(ym);var V3=class extends Zn{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Ve("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return X(()=>{if(e.length<2)throw new Ve("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let r=e[0]>e[1]?[e[1],e[0]]:e,n=dm(r,0,1,"float32"),a=nw.gramSchmidt(n);return e[0]>e[1]&&(a=tt(a)),L(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};V3.className="Orthogonal";ue.registerClass(V3);var u4={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function d4(e,t={}){return Fh(e,ue.SerializationMap.getMap().classNameMap,t,"initializer")}function zt(e){return F3(e)}function $t(e){if(typeof e=="string"){let t=e in u4?u4[e]:e;if(t==="GlorotNormal")return new cm;if(t==="GlorotUniform")return new hm;if(t==="HeNormal")return new fm;if(t==="HeUniform")return new mm;if(t==="LeCunNormal")return new gm;if(t==="LeCunUniform")return new ym;{let r={};return r.className=t,r.config={},d4(r)}}else return e instanceof Zn?e:d4(e)}function Gg(e){return Array.isArray(e)&&Array.isArray(e[0])}function O0(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function je(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new q(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function mt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new q(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function z0(e){let t=0;for(let r of e)r.shape.length===0?t+=1:t+=r.shape.reduce((n,a)=>n*a);return t}var p4="Variable",Aw=class{constructor(e,t="float32",r=p4,n=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=pw(),r=r==null?p4:r,this.originalName=cw(r),this.name=fw(this.originalName),this.trainable_=n,this.constraint=a,this.val=Uv(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),bB(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function bB(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function jg(e){return e.map(t=>t.read())}function U3(e){e.forEach(t=>{t[0].write(t[1])})}var Zt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},pa=class{constructor(e,t,r,n,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=r,this.inputs=n,this.callArgs=a,this.outputTensorIndex=i,this.id=pw(),s!=null&&(this.originalName=cw(s),this.name=fw(this.originalName)),this.rank=t.length}},vB=0,Am=class{constructor(e,t){this.callArgs=t,this.id=vB++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let r of e.inboundLayers)r!=null&&r.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},wB=0,st=class extends ue.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=wB++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let r=this.getClassName();t=ja(r)+"_"+lm(r)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let r;if(e.batchInputShape!=null)r=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),r=[a].concat(e.inputShape)}this.batchInputShape=r;let n=e.dtype;n==null&&(n=e.inputDType),n==null&&(n="float32"),this.dtype=n}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new da(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new q(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return rn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return rn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Ga(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Ga(`Layer ${this.name} is not connected, no input to return.`);return rn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Ga(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Ga(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return rn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=Tt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=Tt(this.inputSpec);if(e.length!==t.length)throw new q(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let r=0;r<e.length;r++){let n=e[r],a=t[r];if(a==null)continue;let s=n.rank;if(a.ndim!=null&&s!==a.ndim)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected ndim=${a.ndim}, found ndim=${s}`);if(a.maxNDim!=null&&s>a.maxNDim)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s<a.minNDim)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected min_ndim=${a.minNDim}, found ndim=${s}.`);if(a.dtype!=null&&n.dtype!==a.dtype)throw new q(`Input ${r} is incompatible with layer ${this.name} : expected dtype=${a.dtype}, found dtype=${n.dtype}.`);if(a.axes){let i=n.shape;for(let o in a.axes){let l=Number(o),u=a.axes[o],d=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(d)===-1)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i<a.shape.length;++i){let o=a.shape[i],l=n.shape[i];if(o!=null&&l!=null&&o!==l)throw new q(`Input ${r} is incompatible with layer ${this.name}: expected shape=${a.shape}, found shape=${n.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let r=Tt(e),n=!0;for(let s of r)if(!(s instanceof pa)){n=!1;break}let a=!0;for(let s of r)if(s instanceof pa){a=!1;break}if(n===a)throw new q("Arguments to apply() must be all SymbolicTensors or all Tensors");return To(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of Tt(e))s.push(i.shape);this.build(rn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=Tt(s),o=[];for(let l of i)r.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=rn(o),this.activityRegularizer!=null)throw new Ve("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=kB(e),i=this.computeOutputShape(s),o,l=IB(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,d)=>new pa(l,u,this,Tt(e),t,this.name,d)):o=new pa(l,i,this,Tt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Ve("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((r,n)=>{r!=null&&e[n]!=null&&e[n]!==r&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Ga(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let r=JSON.stringify(t.outputShapes);e.indexOf(r)===-1&&e.push(r)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Ga(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new da(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return z0(this.weights)}build(e){this.built=!0}getWeights(e=!1){return jg(e?this.trainableWeights:this.weights)}setWeights(e){X(()=>{let t=this.weights;if(t.length!==e.length)throw new q(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let r=[],n=jg(t);for(let a=0;a<n.length;++a){let s=n[a],i=t[a],o=e[a];if(!v.arraysEqual(s.shape,o.shape))throw new q(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);r.push([i,o])}U3(r)})}addWeight(e,t,r,n,a,s,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new q(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),r==null&&(r="float32"),this.fastWeightInitDuringBuild&&(n=o!=null?o():$t("zeros"));let l=n.apply(t,r),u=new Aw(l,r,e,s,i);return l.dispose(),a!=null&&this.addLoss(()=>a.apply(u.read())),s==null&&(s=!0),s?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=Tt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(r=>{if(r!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,r,n,a,s,i=null){let o=Tt(e);t=Tt(t),r=Tt(r),n=Tt(n),a=O0(a),s=O0(s);let l=[],u=[],d=[];for(let h of o)l.push(h.sourceLayer),u.push(h.nodeIndex),d.push(h.tensorIndex);new Am({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:d,inputTensors:o,outputTensors:t,inputMasks:r,outputMasks:n,inputShapes:a,outputShapes:s},i);for(let h=0;h<t.length;h++)t[h].sourceLayer=this,t[h].nodeIndex=this.inboundNodes.length-1,t[h].tensorIndex=h}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function kB(e){e=Tt(e);let t=[];for(let r of e)t.push(r.shape);return rn(t)}function IB(e){return"float32"}function xw(e,t,r){if((t==null||r!=null&&r>0)&&(t=e.sourceLayer,r=e.nodeIndex),t.inboundNodes.length===0)return[e];{let n=t.inboundNodes[r];if(n.inboundLayers.length===0)return n.inputTensors;{let a=[];for(let s=0;s<n.inboundLayers.length;s++){let i=n.inputTensors[s],o=n.inboundLayers[s],l=n.nodeIndices[s],u=xw(i,o,l);for(let d of u)a.indexOf(d)===-1&&a.push(d)}return a}}}var Cd=class extends st{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:lm("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new q("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new q("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new q("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let r=e.dtype||"float32";this.batchInputShape=t,this.dtype=r,this.inputSpec=[{shape:t}];let n=new pa(this.dtype,this.batchInputShape,this,[],{},this.name);n.nodeIndex=0,n.tensorIndex=0,new Am({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[n],outputTensors:[n],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new q(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Cd.className="InputLayer";ue.registerClass(Cd);function bw(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new q("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let r=e.dtype;return r==null&&(r="float32"),new Cd({batchInputShape:t,name:e.name,dtype:r,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function SB(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return me(t,e.dtype)}catch(r){throw new q(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Io=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Io)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,r){if(this.id2Value[e.id]==null)this.id2Value[e.id]=SB(e,t),this.name2Id[e.name]=e.id,r!=null&&(this.id2Mask[e.id]=r);else throw new q(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof pa){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof pa){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&te(this.id2Mask)}},D0=new lw,L0=new lw;function CB(e){D0!=null&&D0.setMaxEntries(e),L0!=null&&L0.setMaxEntries(e)}function $p(e,t,r,n){let a=r==null?!1:r.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);n!=null&&(n.maxNumTensors=-1/0,n.minNumTensors=1/0);let d=o.join(",")+"|"+t.names().sort().join(","),h=D0.get(d),p;if(h==null){let m=TB(i,t);h=m.sorted,p=m.recipientCounts,D0.put(d,h),L0.put(d,p)}p={},a||Object.assign(p,L0.get(d));let c=new Io(t);for(let m=0;m<h.length;++m){if(n!=null){let R=M0().numTensors;R>n.maxNumTensors&&(n.maxNumTensors=R),R<n.minNumTensors&&(n.minNumTensors=R)}let f=h[m],g=f.sourceLayer;if(g instanceof Cd)continue;let y=[],A=[],x=[],b=!1;for(let R of f.inputs){let O=c.getValue(R),$=c.getMask(R);y.push(O),A.push($),$!=null&&(b=!0),a||(p[R.name]--,p[R.name]===0&&!t.hasKey(R)&&o.indexOf(R.name)===-1&&!O.isDisposed&&R.sourceLayer.stateful!==!0&&x.push(O))}b&&(r=r||{},r.mask=A[0]);let w=Tt(g.apply(y,r)),I=null;g.supportsMasking&&(I=g.computeMask(y,A));let T=EB(f),E=Array.isArray(T)?T:[T];for(let R=0;R<E.length;++R){c.hasKey(E[R])||c.add(E[R],w[R],Array.isArray(I)?I[0]:I);let O=o.indexOf(E[R].name);O!==-1&&(l[O]=w[R])}a||te(x)}return c.disposeMasks(),s?l:l[0]}function TB(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let r=[],n={};if(e.length===1){let a=h4(e[0],t);r=a.sorted,n=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=h4(s,t);for(let l of i)a.has(l.name)||(r.push(l),a.add(l.name));for(let l in o)n[l]==null&&(n[l]=new Set),o[l].forEach(u=>n[l].add(u))}}return{sorted:r,recipientCounts:NB(n)}}function NB(e){let t={};for(let r in e)t[r]=e[r].size;return t}function h4(e,t){let r=new Set,n=[],a={};for(let o of t.names())r.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(r.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),n.push(o),r.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)a[u.name]==null&&(a[u.name]=new Set),a[u.name].add(o.name),!r.has(u.name)&&s.push(u)}}return{sorted:n,recipientMap:a}}function EB(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let r=null;for(let n=0;n<e.sourceLayer.inboundNodes.length;++n)for(let a of e.sourceLayer.inboundNodes[n].outputTensors)if(a.id===e.id){r=n;break}t=e.sourceLayer.getOutputAt(r)}return t}var RB=Z();RB.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,CB);var vw={kernelName:Uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,$h(me(r,"float32"),-1))}}},$B={kernelName:ju,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=bt(me(r,"float32")),a=Er(ce(Se(1),n));return Mt(pe(e,a))}}}},MB={kernelName:Hu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=Er(ce(bt(me(r,"float32")),1));return pe(e,n)}}}},FB={kernelName:Ja,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=At(r.shape,n.shape);return{a:()=>{let s=e,i=Jt(r.shape,a);return i.length>0&&(s=ke(s,i)),U(s,r.shape)},b:()=>{let s=e,i=Jt(n.shape,a);return i.length>0&&(s=ke(s,i)),U(s,n.shape)}}}},_B={kernelName:Ks,saveAllInputs:!0,gradFunc:(e,t)=>{let r={};return t.forEach((n,a)=>{r[a]=()=>e.clone()}),r}},PB={kernelName:Zs,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>at(r)}}},OB={kernelName:Ku,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>at(r)}}},zB={kernelName:Zu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,Er(ce(Se(1),bt(me(r,"float32")))))}}},DB={kernelName:Yu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=Er(le(Se(1),bt(me(r,"float32"))));return pe(e,n)}}}},LB={kernelName:ed,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=At(r.shape,n.shape);return{a:()=>{let s=le(bt(r),bt(n)),i=L(e,pe(n,s)),o=Jt(r.shape,a);return o.length>0&&(i=ke(i,o)),U(i,r.shape)},b:()=>{let s=le(bt(r),bt(n)),i=Mt(L(e,pe(r,s))),o=Jt(n.shape,a);return o.length>0&&(i=ke(i,o)),U(i,n.shape)}}}},BB={kernelName:Ju,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,le(bt(me(r,"float32")),1))}}},WB={kernelName:Qu,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,ce(Se(1),bt(me(r,"float32"))))}}};function VB(e,t,r,n,a,s){let i=M(e,"dy","avgPool3dGrad"),o=M(t,"input","avgPool3dGrad"),l=i,u=o,d=!1;o.rank===4&&(d=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),_(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),_(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),qr("avgPool3dGrad",a,s);let h={dy:l,input:u},p={filterSize:r,strides:n,pad:a,dimRoundingMode:s},c=B.runKernel(uf,h,p);return d?U(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var UB=W({avgPool3dGrad_:VB}),GB={kernelName:nh,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=r;return{x:()=>UB(e,n,a,s,i,o)}}};function jB(e,t,r,n,a){let s=M(e,"dy","avgPoolGrad"),i=M(t,"input","avgPoolGrad");_(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=U(s,[1,s.shape[0],s.shape[1],s.shape[2]])),_(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),_(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let d={dy:l,input:o},h={filterSize:r,strides:n,pad:a},p=B.runKernel(lf,d,h);return u?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var HB=W({avgPoolGrad_:jB}),qB={kernelName:Ys,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{filterSize:a,strides:s,pad:i}=r;return{x:()=>HB(e,n,a,s,i)}}},XB={kernelName:Js,inputsToSave:["a","b"],gradFunc:(e,t,r)=>{let[n,a]=t,{transposeA:s,transposeB:i}=r;return!s&&!i?{a:()=>Ye(e,a,!1,!0),b:()=>Ye(n,e,!0,!1)}:!s&&i?{a:()=>Ye(e,a,!1,!1),b:()=>Ye(e,n,!0,!1)}:s&&!i?{a:()=>Ye(a,e,!1,!0),b:()=>Ye(n,e,!1,!1)}:{a:()=>Ye(a,e,!0,!0),b:()=>Ye(e,n,!0,!0)}}},KB={kernelName:Go,gradFunc:(e,t,r)=>{let{blockShape:n,crops:a}=r;return{x:()=>Hf(e,n,a)}}},ZB={kernelName:q7,gradFunc:(e,t,r)=>{let n=r,a=n.inputShape,s=n.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>ke(e,o,!0)}}},YB={kernelName:Qs,gradFunc:e=>({x:()=>e.clone()})},JB={kernelName:ei,gradFunc:e=>({x:()=>at(e)})},QB={kernelName:Qa,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{clipValueMin:a,clipValueMax:s}=r;return{x:()=>Ur(ga($l(n,a),Ml(n,s)),e,at(e))}}},eW={kernelName:sh,inputsToSave:["x"],gradFunc:vw.gradFunc},tW={kernelName:jo,saveAllInputs:!0,gradFunc:(e,t,r)=>{let n=t.map(o=>o.shape),{axis:a}=r,s=Hn(a,t[0].shape)[0],i=n.map(o=>o[s]);return Yt(e,i,s).map(o=>()=>o)}},rW={kernelName:ti,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let[n,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=r;return _(zs(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>t3(n.shape,e,a,i,o,l),filter:()=>E3(n,e,a.shape,i,o,l)}}},nW={kernelName:ri,inputsToSave:["dy","filter"],gradFunc:(e,t,r)=>{let[n,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=r;return{dy:()=>Ds(e,a,s,i,o,1,l),filter:()=>E3(e,n,a.shape,s,i,o,l)}}};function aW(e,t,r,n,a){let s=e;e.rank===4&&(s=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),_(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),_(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),_(r.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${r}.`),_(s.shape[4]===r[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${r[3]}.`),_(i.shape[4]===r[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${r[4]}).`);let o={x:s,dy:i},l={strides:n,pad:a,filterShape:r};return B.runKernel(cf,o,l)}var sW=W({conv3DBackpropFilter_:aW}),iW={kernelName:ih,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let{dilations:n,strides:a,pad:s}=r;_(zs(n),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${n}'`);let[i,o]=t;return{x:()=>dv(i.shape,e,o,a,s),filter:()=>sW(i,e,o.shape,a,s)}}},oW={kernelName:ni,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(Mt(v3(me(r,"float32"))),e)}}},lW={kernelName:ai,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(w3(me(r,"float32")),e)}}},uW={kernelName:si,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{axis:a,exclusive:s,reverse:i}=r;return{x:()=>{let o=bv([a],n.rank),l=s3(e,a,s,!i);return o!=null&&(l=tt(l,o)),l}}}},dW={kernelName:ii,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let{dilations:n,strides:a,pad:s,dimRoundingMode:i}=r,o=n==null?[1,1]:n;_(zs(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return _(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),_(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),_(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),_(za(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),qr("depthwiseConv2d",s,i),{x:()=>Zv(l.shape,e,u,a,s,o,i),filter:()=>Kv(l,e,u.shape,a,s,o,i)}}},pW={kernelName:oh,inputsToSave:["x","filter"],gradFunc:(e,t,r)=>{let[n,a]=t,s={x:n,filter:a,dy:e},i={x:n,filter:a,dy:e};return{x:()=>B.runKernel(C0,s,r),filter:()=>B.runKernel(T0,i,r)}}},hW={kernelName:li,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t,n={dy:e,y:r};return{x:()=>B.runKernel(xf,n)}}},cW={kernelName:td,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t,n=L(Fn(Mt(bt(r))),2/Math.sqrt(Math.PI));return{x:()=>L(e,n)}}},fW={kernelName:ui,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,r)}}},mW={kernelName:Zo,inputsToSave:["input"],gradFunc:(e,t)=>{let[r]=t;return{input:()=>U(e,r.shape)}}},gW={kernelName:Yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,Fn(r))}}},yW={kernelName:di,gradFunc:e=>({x:()=>at(e)})},AW={kernelName:pi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=At(r.shape,n.shape);return{a:()=>{let s=pe(e,me(n,"float32")),i=Jt(r.shape,a);return i.length>0?U(ke(s,i),r.shape):s},b:()=>{let s=L(e,me(r,"float32")),i=Jt(n.shape,a);i.length>0&&(s=U(ke(s,i),n.shape));let o=bt(n);return Mt(pe(s,me(o,"float32")))}}}},xW={kernelName:hi,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,r)=>{let{varianceEpsilon:n}=r,[a,s,i,o]=t,l=o==null?Se(1):o,u=Jt(s.shape,a.shape),d=[];if(s.rank===1){for(let f=0;f<a.shape.length-1;++f)d.push(a.shape[f]);d.push(1)}let h=ce(a,s),p=L(e,l),c=x3(le(i,Se(n))),m=L(L(L(c,c),c),Se(-.5));return{x:()=>s.rank===1?U(L(L(e,jn(U(c,[1,1,1,s.shape[0]]),d)),l),a.shape):U(L(L(e,c),l),a.shape),mean:()=>{let f=L(L(c,Se(-1)),p);return s.rank===1&&(f=ke(f,u)),U(f,s.shape)},variance:()=>{let f=L(L(m,h),p);return s.rank===1&&(f=ke(f,u)),U(f,s.shape)},scale:()=>{let f=L(h,c),g=L(e,f);return s.rank===1&&(g=ke(g,u)),U(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=ke(f,u)),U(f,s.shape)}}}},bW={kernelName:Qo,inputsToSave:["x","indices"],gradFunc:(e,t,r)=>{let[n,a]=t,{axis:s}=r,i=Hn(s,n.shape)[0];return{x:()=>{let o=n.shape,l=a.size,u=o.slice(0,i),d=u.length,h=o.slice(s,o.length).slice(1),p=h.length,c=c4(0,d),m=c4(d+1,d+1+p),f=f4([u,[l],h]),g=U(e,f),y=U(a,[l]),A=f4([[d],c,m]),x=tt(g,A),b=Wv(x,y,n.shape[i]),w=o3(A);return b=tt(b,w),b},indices:()=>a}}};function c4(e,t){let r=[];for(let n=e;n<t;++n)r.push(n);return r}function f4(e){let t=[];for(let r=0;r<e.length;++r)for(let n=0;n<e[r].length;++n)t.push(e[r][n]);return t}var vW={kernelName:ci,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t;return{a:()=>at(r),b:()=>at(n)}}},wW={kernelName:fi,gradFunc:e=>({x:()=>me(e,"float32")})},kW={kernelName:nd,gradFunc:e=>({x:()=>at(e)})},IW={kernelName:ad,gradFunc:e=>({x:()=>at(e)})},SW={kernelName:sd,gradFunc:e=>({x:()=>at(e)})},CW={kernelName:mi,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{alpha:a}=r,s=gn(n,0);return{x:()=>Ur(s,e,L(e,a))}}},TW={kernelName:id,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,le(r,1))}}},NW={kernelName:gi,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,me(r,"float32"))}}},EW={kernelName:K7,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n]=t,{axis:a}=r;return{logits:()=>{let s=Fn(n);return ce(e,L(ke(e,a,!0),s))}}}};function RW(e,t,r,n=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:r},l={depthRadius:n,bias:a,alpha:s,beta:i};return B.runKernel(kf,o,l)}var $W=W({localResponseNormalizationBackprop_:RW}),MW={kernelName:dh,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;return{x:()=>$W(n,a,e,s,i,o,l)}}};function ww(e,t,r,n){return t.rank<r.rank&&(t=U(t,Fo(t.shape,n))),e.rank<r.rank&&(e=U(e,Fo(e.shape,n))),{x:()=>L(e,me(Mn(r,t),e.dtype))}}var m4={kernelName:yi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let n=r,{reductionIndices:a}=n,s=t[0],i=t[1],o=Hn(a,s.shape),l=ww(e,i,s,o);return{x:()=>l.x()}}},FW={kernelName:Ai,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t;return{a:()=>L(e,me($l(r,n),"float32")),b:()=>L(e,me(u3(r,n),"float32"))}}};function _W(e,t,r,n,a,s,i){let o=M(e,"dy","maxPool3dGrad"),l=M(t,"input","maxPool3dGrad"),u=M(r,"output","maxPool3dGrad"),d=o,h=l,p=u,c=!1;l.rank===4&&(c=!0,d=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=U(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),_(d.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${d.rank}.`),_(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),_(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),qr("maxPool3dGrad",s,i);let m={dy:d,input:h,output:p},f={filterSize:n,strides:a,pad:s,dimRoundingMode:i},g=B.runKernel(Sf,m,f);return c?U(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var PW=W({maxPool3dGrad_:_W}),OW={kernelName:ph,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r;return{x:()=>PW(e,n,a,s,i,o,l)}}};function zW(e,t,r,n,a,s,i){let o=M(e,"dy","maxPoolGrad"),l=M(t,"input","maxPoolGrad"),u=M(r,"output","maxPoolGrad");_(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),_(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),_(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),qr("maxPoolGrad",s,i);let d={dy:o,input:l,output:u},h={filterSize:n,strides:a,pad:s,dimRoundingMode:i};return B.runKernel(If,d,h)}var DW=W({maxPoolGrad_:zW}),LW={kernelName:xi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n,a]=t,{filterSize:s,strides:i,pad:o}=r;return{x:()=>DW(e,n,a,s,i,o)}}},BW={kernelName:bi,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{axis:a}=r,s=Hn(a,n.shape),i=xv(n.shape,s)[1],o=It(i);return{x:()=>{let l=n.shape.slice();s.forEach(d=>{l[d]=1});let u=U(e,l);return pe(L(u,cn(n.shape,"float32")),o)}}}},WW={kernelName:vi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,r)=>{let n=r,{axis:a}=n,[s,i]=t,o=Hn(a,s.shape),l=ww(e,i,s,o);return{x:()=>l.x()}}},VW={kernelName:wi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t;return{a:()=>L(e,me(Ml(r,n),"float32")),b:()=>L(e,me(gn(r,n),"float32"))}}},UW={kernelName:ki,inputsToSave:["x"],gradFunc:(e,t,r)=>{let n=t[0],{paddings:a}=r,s=a.map(i=>i[0]);return{x:()=>_e(e,s,n.shape)}}},GW={kernelName:ld,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=At(r.shape,n.shape);return{a:()=>{let s=Jt(r.shape,a);return s.length>0?U(ke(e,s),r.shape):e},b:()=>{let s=L(e,Mt(Eh(pe(r,n)))),i=Jt(n.shape,a);return i.length>0?U(ke(s,i),n.shape):s}}}},jW={kernelName:Ii,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=At(r.shape,n.shape);return{a:()=>{let s=L(e,me(n,"float32")),i=Jt(r.shape,a);return i.length>0?U(ke(s,i),r.shape):s},b:()=>{let s=L(e,me(r,"float32")),i=Jt(n.shape,a);return i.length>0?U(ke(s,i),n.shape):s}}}},HW={kernelName:il,gradFunc:e=>({x:()=>Mt(e)})},qW={kernelName:pl,inputsToSave:["indices"],gradFunc:(e,t)=>{let r=t[0];return{indices:()=>Ot(r.shape,"float32")}}},XW={kernelName:dl,gradFunc:e=>({x:()=>at(e)})},KW={kernelName:hl,saveAllInputs:!0,gradFunc:(e,t,r)=>{let{axis:n}=r;return an(e,n).map(a=>()=>a)}},g4={kernelName:Si,inputsToSave:["x"],gradFunc:(e,t,r)=>{let n=t[0],{paddings:a}=r,s=a.map(i=>i[0]);return{x:()=>_e(e,s,n.shape)}}},ZW={kernelName:Ci,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[r,n,a]=t,s=r,i=n,o=At(s.shape,i.shape);return{a:()=>{let l=me(i,"float32"),u=L(e,L(l,Bs(s,ce(l,Se(1))))),d=Jt(s.shape,o);return d.length>0&&(u=ke(u,d)),U(u,s.shape)},b:()=>{let l=gn(s,0),u=Ur(l,_n(s),at(s)),d=L(e,L(a,u)),h=Jt(i.shape,o);return h.length>0&&(d=ke(d,h)),U(d,i.shape)}}}},YW={kernelName:Ti,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[r,n]=t,a=gn(r,0);return{x:()=>Ur(a,e,L(e,n)),alpha:()=>{let s=Ur(a,at(e),L(e,r)),i=Jt(n.shape,e.shape);return i.length>0&&(s=ke(s,i)),U(s,n.shape)}}}};function JW(e,t,r){let n=e.shape.slice();n[r]=1;let a=U(t,n),s=P0(e,r,!0,!1),i=P0(e,r,!0,!0),o=L(s,i);return L(a,o)}function QW(e,t,r){let n=e.shape.length,a=n-r.length,s=C.getAxesPermutation(r,n),i=e;s!=null&&(i=tt(e,s));let o=i.shape.slice(),l=o.splice(n-r.length,r.length).reduce((h,p)=>h*p,1);o.push(l);let u=i.reshape(o),d=JW(u,t,a);if(d=d.reshape(i.shape),s!=null){let h=C.getUndoAxesPermutation(s);d=tt(d,h)}return d}var eV={kernelName:Ni,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{axis:a}=r,s=[];return a==null?s=n.shape.map((i,o)=>o):typeof a=="number"?s=[a]:s=a,{x:()=>QW(n,e,s)}}},tV={kernelName:oi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=At(r.shape,n.shape);return{a:()=>{let s=pe(e,me(n,"float32")),i=Jt(r.shape,a);return i.length>0?U(ke(s,i),r.shape):s},b:()=>{let s=L(e,me(r,"float32")),i=Jt(n.shape,a);i.length>0&&(s=U(ke(s,i),n.shape));let o=bt(n);return Mt(pe(s,me(o,"float32")))}}}},rV={kernelName:pd,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,Mt(bt(r)))}}},nV={kernelName:$i,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t,n=L(Ml(r,6),$h(r));return{x:()=>L(e,me(n,"float32"))}}},aV={kernelName:Ei,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,me($h(r),"float32"))}}},sV={kernelName:cl,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>U(e,r.shape)}}},iV={kernelName:Ri,inputsToSave:["images"],gradFunc:(e,t,r)=>{let[n]=t,a={dy:e,images:n};return{images:()=>B.runKernel(Ef,a,r)}}},oV={kernelName:hd,inputsToSave:["images"],gradFunc:(e,t,r)=>{let[n]=t,a={dy:e,images:n};return{images:()=>B.runKernel(Nf,a,r)}}},lV={kernelName:fl,gradFunc:(e,t,r)=>{let{dims:n}=r,a=Hn(n,e.shape);return{x:()=>On(e,a)}}},uV={kernelName:ml,gradFunc:e=>({x:()=>at(e)})},dV={kernelName:Mi,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>Mt(pe(e,L(Bs(r,1.5),2)))}}},pV={kernelName:yl,inputsToSave:["condition"],gradFunc:(e,t)=>{let[r]=t;return{condition:()=>me(at(r),"float32"),t:()=>L(e,me(r,e.dtype)),e:()=>L(e,me(Uf(r),e.dtype))}}},hV={kernelName:cd,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>{let n=gn(r,Se(0)),a=Se(aw),s=Se(sw),i=L(e,s),o=L(L(e,a),Fn(me(r,"float32")));return Ur(n,i,o)}}}},cV={kernelName:_i,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,L(r,ce(Se(1),r)))}}},fV={kernelName:fd,gradFunc:e=>({x:()=>at(e)})},mV={kernelName:Fi,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(Df(me(r,"float32")),e)}}},gV={kernelName:xl,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(a3(me(r,"float32")),e)}}},yV={kernelName:Al,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{begin:a,size:s}=r,i=n.shape,[o,l]=B6(n,a,s),u=[];for(let d=0;d<e.rank;d++)u.push([o[d],i[d]-o[d]-l[d]]);return{x:()=>Xn(e,u)}}},AV={kernelName:zi,outputsToSave:[!0],gradFunc:(e,t,r)=>{let[n]=t,{dim:a}=r,s=!0,i=L(e,n);return{logits:()=>ce(i,L(ke(i,[a],s),n))}}},xV={kernelName:md,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,Tr(r))}}},y4={kernelName:bl,gradFunc:(e,t,r)=>{let{blockShape:n,paddings:a}=r;return{x:()=>zf(e,n,a)}}},A4={kernelName:vl,gradFunc:(e,t,r)=>{let{axis:n}=r;return{x:()=>St(e,n)}}},bV={kernelName:Pi,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,L(Er(me(r,"float32")),2))}}},vV={kernelName:yd,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(e,L(me(r,"float32"),2))}}},wV={kernelName:Di,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=Se(2);return{a:()=>L(e,L(a,ce(r,n))),b:()=>L(e,L(a,ce(n,r)))}}},kV={kernelName:Wi,gradFunc:e=>({x:()=>at(e)})},IV={kernelName:Li,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[r,n]=t,a=At(r.shape,n.shape);return{a:()=>{let s=e,i=Jt(r.shape,a);return i.length>0&&(s=ke(s,i)),U(s,r.shape)},b:()=>{let s=e,i=Jt(n.shape,a);return i.length>0&&(s=ke(s,i)),U(Mt(s),n.shape)}}}},SV={kernelName:Oi,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,a=n.shape.slice(),{axis:s}=r;Hn(s,n.shape).forEach(l=>{a[l]=1});let i=U(e,a),o=L(i,cn(n.shape,"float32"));return{x:()=>o}}},CV={kernelName:kl,inputsToSave:["x"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>pe(e,bt(Df(r)))}}},TV={kernelName:Bi,outputsToSave:[!0],gradFunc:(e,t)=>{let[r]=t;return{x:()=>L(ce(Se(1),bt(r)),e)}}},NV={kernelName:es,inputsToSave:["x"],gradFunc:(e,t,r)=>{let[n]=t,{reps:a}=r;return{x:()=>{let s=at(n);if(n.rank===1)for(let i=0;i<a[0];++i)s=le(s,_e(e,[i*n.shape[0]],[n.shape[0]]));else if(n.rank===2)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)s=le(s,_e(e,[i*n.shape[0],o*n.shape[1]],[n.shape[0],n.shape[1]]));else if(n.rank===3)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)s=le(s,_e(e,[i*n.shape[0],o*n.shape[1],l*n.shape[2]],[n.shape[0],n.shape[1],n.shape[2]]));else if(n.rank===4)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)for(let u=0;u<a[3];++u)s=le(s,_e(e,[i*n.shape[0],o*n.shape[1],l*n.shape[2],u*n.shape[3]],[n.shape[0],n.shape[1],n.shape[2],n.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${n.rank} tensors yet.`);return s}}}},EV={kernelName:$a,gradFunc:(e,t,r)=>{let n=r,{perm:a}=n,s=o3(a);return{x:()=>tt(e,s)}}},RV={kernelName:Cl,gradFunc:(e,t,r)=>{let n=r,{axis:a}=n;return{value:()=>ur(e,a)}}},$V={kernelName:Ah,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[r]=t;return{x:()=>MV(e,r)}}};function MV(e,t){let r=ts(t,at(t)),n=Mu(e,r),a=$l(t,Se(0,"int32")),s=n.rank-a.rank;for(let o=0;o<s;++o)a=Kt(a,o+1);a=ga(a,cn(n.shape,"bool"));let i=at(n);return Ur(a,n,i)}var FV={kernelName:Tl,gradFunc:e=>({x:()=>at(e)})},_V=[vw,$B,MB,FB,_B,PB,OB,zB,DB,LB,BB,WB,GB,qB,XB,KB,ZB,YB,JB,QB,eW,tW,nW,rW,iW,oW,lW,uW,dW,pW,tV,hW,cW,fW,mW,gW,AW,yW,xW,bW,vW,wW,kW,IW,SW,CW,TW,NW,EW,MW,m4,m4,FW,OW,LW,BW,WW,VW,UW,GW,jW,HW,qW,XW,KW,g4,g4,ZW,YW,eV,rV,nV,aV,sV,iV,oV,lV,uV,dV,pV,hV,cV,fV,mV,gV,yV,AV,xV,y4,y4,A4,A4,bV,wV,vV,kV,IV,SV,CV,TV,NV,EV,RV,$V,FV];for(let e of _V)Z7(e);var kw={};Be(kw,{maxNorm:()=>PV,minMaxNorm:()=>DV,nonNeg:()=>zV,unitNorm:()=>OV});function G3(e,t){return X(()=>Er(ke(L(e,e),t,!0)))}var zh=class extends ue.Serializable{getConfig(){return{}}},j3=class extends zh{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return X(()=>{let t=G3(e,this.axis),r=fn(t,0,this.maxValue);return L(e,pe(r,le(sr(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};j3.className="MaxNorm";ue.registerClass(j3);var H3=class extends zh{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return X(()=>pe(e,le(sr(),G3(e,this.axis))))}getConfig(){return{axis:this.axis}}};H3.className="UnitNorm";ue.registerClass(H3);var q3=class extends zh{apply(e){return Da(e)}};q3.className="NonNeg";ue.registerClass(q3);var X3=class extends zh{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return X(()=>{let t=G3(e,this.axis),r=le(L(this.rate,fn(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,pe(r,le(sr(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};X3.className="MinMaxNorm";ue.registerClass(X3);var x4={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function or(e){return F3(e)}function b4(e,t={}){return Fh(e,ue.SerializationMap.getMap().classNameMap,t,"constraint")}function lr(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in x4?x4[e]:e,config:{}};return b4(t)}else return e instanceof zh?e:b4(e)}function PV(e){return new j3(e)}function OV(e){return new H3(e)}function zV(){return new q3}function DV(e){return new X3(e)}var Iw={};Be(Iw,{constant:()=>WV,glorotNormal:()=>XV,glorotUniform:()=>qV,heNormal:()=>KV,heUniform:()=>ZV,identity:()=>jV,leCunNormal:()=>YV,leCunUniform:()=>JV,ones:()=>BV,orthogonal:()=>QV,randomNormal:()=>UV,randomUniform:()=>VV,truncatedNormal:()=>GV,varianceScaling:()=>HV,zeros:()=>LV});function LV(){return new O3}function BV(){return new pm}function WV(e){return new z3(e)}function VV(e){return new D3(e)}function UV(e){return new L3(e)}function GV(e){return new B3(e)}function jV(e){return new W3(e)}function HV(e){return new sn(e)}function qV(e){return new hm(e)}function XV(e){return new cm(e)}function KV(e){return new fm(e)}function ZV(e){return new mm(e)}function YV(e){return new gm(e)}function JV(e){return new ym(e)}function QV(e){return new V3(e)}var Sw={};Be(Sw,{Layer:()=>st,RNN:()=>as,RNNCell:()=>Bh,activation:()=>IG,add:()=>FG,alphaDropout:()=>gj,average:()=>_G,averagePooling1d:()=>nA,averagePooling2d:()=>aA,averagePooling3d:()=>sA,avgPool1d:()=>UG,avgPool2d:()=>jG,avgPool3d:()=>qG,avgPooling1d:()=>GG,avgPooling2d:()=>HG,avgPooling3d:()=>XG,batchNormalization:()=>BG,bidirectional:()=>lj,concatenate:()=>PG,conv1d:()=>mG,conv2d:()=>gG,conv2dTranspose:()=>yG,conv3d:()=>AG,conv3dTranspose:()=>xG,convLstm2d:()=>aj,convLstm2dCell:()=>sj,cropping2D:()=>vG,dense:()=>SG,depthwiseConv2d:()=>kG,dot:()=>LG,dropout:()=>CG,elu:()=>uG,embedding:()=>MG,flatten:()=>NG,gaussianDropout:()=>mj,gaussianNoise:()=>fj,globalAveragePooling1d:()=>KG,globalAveragePooling2d:()=>ZG,globalMaxPool1d:()=>dj,globalMaxPool2d:()=>pj,globalMaxPooling1d:()=>b8,globalMaxPooling2d:()=>v8,gru:()=>JG,gruCell:()=>QG,input:()=>Uw,inputLayer:()=>lG,layerNormalization:()=>WG,leakyReLU:()=>pG,lstm:()=>ej,lstmCell:()=>tj,masking:()=>yj,maxPool1d:()=>hj,maxPool2d:()=>cj,maxPooling1d:()=>w8,maxPooling2d:()=>k8,maxPooling3d:()=>YG,maximum:()=>OG,minimum:()=>zG,multiply:()=>DG,permute:()=>$G,prelu:()=>hG,reLU:()=>dG,repeatVector:()=>EG,reshape:()=>RG,rnn:()=>ij,separableConv2d:()=>bG,simpleRNN:()=>rj,simpleRNNCell:()=>nj,softmax:()=>cG,spatialDropout1d:()=>TG,stackedRNNCells:()=>oj,thresholdedReLU:()=>fG,timeDistributed:()=>uj,upSampling2d:()=>wG,zeroPadding2d:()=>VG});async function Ss(e){if(e==null)return;let t=[],r=[],n=[];for(let a in e){let s=e[a];if(typeof s!="number"){let i=s;t.push(i.data()),r.push(a),n.push(i)}}if(t.length>0){let a=await Promise.all(t);for(let s=0;s<a.length;++s)e[r[s]]=a[s][0];te(n)}}function Cw(e){if(e!=null)for(let t in e){let r=e[t];typeof r!="number"&&r.dispose()}}var eU=125,Ou=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},Tw=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let r of this.callbacks)await r.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},tU=class extends Ou{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let r=t.size==null?0:t.size;this.seen+=r;for(let n in t){let a=t[n];if(typeof a=="number")this.totals.hasOwnProperty(n)||(this.totals[n]=0),this.totals[n]=this.totals[n]+a*r;else{let s;n in this.totals?s=this.totals[n]:this.totals[n]=0;let i=X(()=>le(this.totals[n],L(a,r)));this.totals[n]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let r of this.params.metrics)this.totals[r]!=null&&(typeof this.totals[r]=="number"?t[r]=this.totals[r]/this.seen:X(()=>{let n=L(pe(1,this.seen),this.totals[r]);t[r]=n,this.totals[r].dispose(),mr(t[r])}))}},Nw=class extends Ou{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let r in t)this.history[r]==null&&(this.history[r]=[]),this.history[r].push(t[r])}async syncData(){let e=[],t=[],r=[];for(let a in this.history){let s=this.history[a];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(a),r.push(i)}}let n=await Promise.all(e);for(let a=0;a<n.length;++a)this.history[t[a]][r[a]].dispose(),this.history[t[a]][r[a]]=n[a][0]}},Ew=class extends Ou{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||$3,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=eU),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=JL(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,r){let n=[];this.yield!=null&&(await Ss(r),n.push(this.yield(e,t,r))),n.push(this.nextFrameFunc()),await Promise.all(n)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Ss(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let r=[];this.epochEnd!=null&&(await Ss(t),r.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&r.push(this.nextFrameFunc()),await Promise.all(r)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Ss(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let r=[];this.batchEnd!=null&&(await Ss(t),r.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?r.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&r.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(r)}async onTrainBegin(e){this.trainBegin!=null&&(await Ss(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Ss(e),await this.trainEnd(e))}};function Rw(e,t){return e==null&&(e={}),e instanceof Ou?[e]:Array.isArray(e)&&e[0]instanceof Ou?e:Tt(e).map(r=>new Ew(r,t))}var Ca=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ca.checkForDuplicate(t),Ca.constructors[e]==null&&(Ca.constructors[e]=[]),Ca.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Ca.constructors)Ca.constructors[+t].forEach(r=>{if(r===e)throw new q("Duplicate callback constructor.")})}static clear(){Ca.constructors={}}static createCallbacks(e){let t=[];for(let r in Ca.constructors){let n=+r;e>=n&&t.push(...Ca.constructors[n])}return t.map(r=>new r)}},K3=Ca;K3.constructors={};function $w(e,t,r,n,a,s,i,o,l){let u=new Nw,d=[new tU,...K3.createCallbacks(t)];e!=null&&d.push(...e),d.push(u);let h=new Tw(d);return h.setParams({epochs:r,initialEpoch:n,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:u}}function fa(e,t={},r=!1){return Fh(e,ue.SerializationMap.getMap().classNameMap,t,"layer",r)}function B0(e,t){return X(()=>{e.dtype!=="float32"&&(e=me(e,"float32"));let r=ke(Ph(e),t,!0),n=bd(r.shape,sr()),a=Er(ts(r,n));return pe(e,a)})}function Pl(e,t){return X(()=>Vt(Ph(ce(t,e)),-1))}function xm(e,t){return X(()=>Vt(ar(ce(t,e)),-1))}function Td(e,t){return X(()=>{let r=ce(e,t),n=fn(ar(e),sr(),Number.MAX_VALUE),a=ar(pe(r,n));return L(100,Vt(a,-1))})}function rU(e,t){return X(()=>{let r=fn(t,sr(),Number.MAX_VALUE),n=_n(le(1,r)),a=fn(e,sr(),Number.MAX_VALUE),s=_n(le(1,a));return Vt(Ph(ce(n,s)),-1)})}function nU(e,t){return X(()=>{let r=ts(0,ce(1,L(e,t)));return Vt(Ph(r),-1)})}function aU(e,t){return X(()=>{let r=ts(0,ce(1,L(e,t)));return Vt(r,-1)})}function sU(e,t){return X(()=>{let r=ke(L(e,t),-1),n=yr(L(ce(1,e),t),-1);return ts(0,le(1,ce(n,r)))})}function iU(e,t){return X(()=>{let r=Math.log(2),n=ce(t,e),a=ce(le(n,vd(L(-2,n))),r);return Vt(a,-1)})}function Yp(e,t,r=!1){return X(()=>{if(r)t=Id(t);else{let n=ke(t,t.shape.length-1,!0);t=pe(t,n)}return t=fn(t,sr(),1-sr()),Mt(ke(L(me(e,"float32"),_n(t)),t.shape.length-1))})}function W0(e,t,r=!1){return X(()=>{let n=me(Eh(dB(e)),"int32");t=fn(t,sr(),1-sr());let a=t.shape,s=U(Kp(n,a[a.length-1]),a);return Yp(s,t,r)})}function oU(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new q(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return X(()=>{let r=Da(t),n=Mt(ar(t));return le(ce(r,L(t,e)),Wf(Fn(n)))})}function bm(e,t){return X(()=>{let r;return r=fn(t,sr(),1-sr()),r=_n(pe(r,ce(1,r))),Vt(oU(e,r),-1)})}function lU(e,t){return X(()=>{let r=fn(e,sr(),1),n=fn(t,sr(),1);return ke(L(e,_n(pe(r,n))),-1)})}function uU(e,t){return X(()=>{let r=_n(le(sr(),t));return Vt(ce(t,L(e,r)),-1)})}function Z3(e,t){return X(()=>{let r=B0(e,-1),n=B0(t,-1),a=L(r,n);return Mt(ke(a,-1))})}var V0={meanSquaredError:Pl,meanAbsoluteError:xm,meanAbsolutePercentageError:Td,meanSquaredLogarithmicError:rU,squaredHinge:nU,hinge:aU,categoricalHinge:sU,logcosh:iU,categoricalCrossentropy:Yp,sparseCategoricalCrossentropy:W0,binaryCrossentropy:bm,kullbackLeiblerDivergence:lU,poisson:uU,cosineProximity:Z3};function bg(e){if(typeof e=="string"){if(e in V0)return V0[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new q(t)}else return e}function Y3(e,t){return X(()=>{let r=L(.5,Pn(t)),n=um(gn(t,r),e.dtype);return Vt(Mn(e,n),-1)})}function J3(e,t){return X(()=>um(Mn($n(e,-1),$n(t,-1)),"float32"))}function Mw(e,t){return X(()=>me(ke(ga(Mn(e,1),Mn(t,1))),"float32"))}function dU(e,t){return X(()=>me(ke(ga(Mn(e,1),Mn(t,0))),"float32"))}function pU(e,t){return X(()=>me(ke(ga(Mn(e,0),Mn(t,1))),"float32"))}function Fw(e,t){return X(()=>{let r=Mw(e,t),n=pU(e,t),a=le(r,n);return me(Ur(gn(a,0),pe(r,a),0),"float32")})}function hU(e,t){return X(()=>{let r=Mw(e,t),n=dU(e,t),a=le(r,n);return me(Ur(gn(a,0),pe(r,a),0),"float32")})}function _w(e,t){return bm(e,t)}function Pw(e,t){return e.rank===t.rank&&(e=et(e,[e.rank-1])),t=$n(t,-1),t.dtype!==e.dtype&&(t=me(t,e.dtype)),me(Mn(e,t),"float32")}var cU=Pl,fU=Pl,mU=xm,gU=xm,yU=Td,AU=Td,Q3=Yp,xU=Z3,Ow=W0,U0={binaryAccuracy:Y3,categoricalAccuracy:J3,precision:Fw,categoricalCrossentropy:Q3,sparseCategoricalCrossentropy:Ow,mse:cU,MSE:fU,mae:mU,MAE:gU,mape:yU,MAPE:AU,cosine:xU};function bU(e){if(typeof e=="string"&&e in U0)return U0[e];if(typeof e!="string"&&e!=null)return e;throw new q(`Unknown metric ${e}`)}function a0(e){if(Na(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let r of Object.keys(V0))if(V0[r]===e){t=r;break}if(t!==void 0)return t;for(let r of Object.keys(U0))if(U0[r]===e){t=r;break}return t!==void 0?t:e.name}}function vU(e){let t={Adagrad:()=>yo.adagrad(.01),Adadelta:()=>yo.adadelta(1,.95,sr()),Adam:()=>yo.adam(.001,.9,.999,sr()),Adamax:()=>yo.adamax(.002,.9,.999,sr(),0),RMSProp:()=>yo.rmsprop(.001,.9,0,sr()),SGD:()=>yo.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new q(`Unknown Optimizer ${e}`)}var v4=1*1024*1024;function w4(e,t,r=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Hg(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(r){let n=JSON.stringify(e);n.length>v4&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${n.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${v4}.`)}}function Hg(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let r of t)if(typeof r!="string"||!Hg(e[r]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Hg(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function wU(e,t,r,n=console.log){let a=IU(e),s=["Layer (type)","Input Shape","Output shape","Param #"];a?(t=t||90,r=r||[.32,.61,.89,1]):(t=t||115,r=r||[.24,.48,.7,.8,1]),r[r.length-1]<=1&&(r=r.map(d=>Math.floor(t*d)));let i;if(!a){s.push("Receives inputs"),i=[];for(let d in e.nodesByDepth)i.push(...e.nodesByDepth[d])}n("_".repeat(t)),G0(s,r,n),n("=".repeat(t));let o=e.layers;for(let d=0;d<o.length;++d)a?SU(o[d],r,n):CU(o[d],r,i,n),n((d===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=kU(e),u=z0(e.nonTrainableWeights);n(`Total params: ${l+u}`),n(`Trainable params: ${l}`),n(`Non-trainable params: ${u}`),n("_".repeat(t))}function kU(e){let t;return e.collectedTrainableWeights!=null?t=z0(e.collectedTrainableWeights):t=z0(e.trainableWeights),t}function IU(e){let t=!0,r=[],n=[];for(let a in e.nodesByDepth)r.push(e.nodesByDepth[a]);for(let a of r){if(a.length>1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}n.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(n.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function G0(e,t,r=console.log){let n="";for(let a=0;a<e.length;++a)a>0&&(n=n.slice(0,n.length-1)+" "),n+=e[a],n=n.slice(0,t[a]),n+=" ".repeat(t[a]-n.length);r(n)}function SU(e,t,r){let n,a;try{a=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){a="multiple"}try{n=JSON.stringify(e.outputShape)}catch(l){n="multiple"}let s=e.name,i=e.getClassName(),o=[`${s} (${i})`,a,n,e.countParams().toString()];G0(o,t,r)}function CU(e,t,r,n){let a,s;try{s=e.inboundNodes.map(h=>JSON.stringify(h.inputShapes)).join(",")}catch(h){s="multiple"}try{a=JSON.stringify(e.outputShape)}catch(h){a="multiple"}let i=[];for(let h of e.inboundNodes)if(!(r!=null&&r.length>0&&r.indexOf(h)===-1))for(let p=0;p<h.inboundLayers.length;++p){let c=h.inboundLayers[p].name,m=h.nodeIndices[p],f=h.tensorIndices[p];i.push(`${c}[${m}][${f}]`)}let o=e.name,l=e.getClassName(),u=i.length===0?"":i[0],d=[`${o} (${l})`,s,a,e.countParams().toString(),u];G0(d,t,n);for(let h=1;h<i.length;++h)G0(["","","","",i[h]],t,n)}function zw(e,t,r){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof r=="string"}function Jp(e,t){if(e===null)return null;if(typeof e=="string")return vo(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let r=[],n=e.length;for(let a=0;a<n;++a){let s=e[a];zw(t,a,s)?r.push(s):r.push(Jp(s,t))}return r}else{let r={};for(let n of Object.keys(e)){let a=e[n];if(n==="name"&&typeof a=="string")r[n]=a;else{let s=vo(n);r[s]=Jp(a,s)}}return r}}function qg(e,t){if(e==null)return null;if(typeof e=="string")return ja(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let r=[],n=e.length;for(let a=0;a<n;++a){let s=e[a];zw(t,a,s)?r.push(s):r.push(qg(s,t))}return r}else{let r={};for(let n of Object.keys(e)){let a=e[n],s=ja(n);(n==="name"||n==="className")&&typeof a=="string"?r[s]=a:r[s]=qg(a,n)}return r}}var e5="0.0.0",Ta=class extends st{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=lm(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Rs(this.inputs).length!==this.inputs.length)throw new q(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Rs(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let A=y.sourceLayer,x=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(A),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let A=y.sourceLayer,x=y.nodeIndex,b=y.tensorIndex;Na(x===0,"input layer has >1 nodes"),Na(b===0,"input layer has >1 tensors"),this.inputLayers.push(A),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let A=this.inputLayers[y];if(!(A instanceof Cd))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${A.getClassName()}.`);this.inputNames.push(A.name),this.feedInputShapes.push(A.batchInputShape),this.feedInputNames.push(A.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},r={},n={},a={},s={},i=[],o=(y,A,x,b,w,I)=>{(b==null||w==null||I==null)&&(b=y.sourceLayer,w=y.nodeIndex,I=y.tensorIndex);let T=b.inboundNodes[w];if(x.indexOf(T)!==-1)throw new da(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(A.indexOf(T)!==-1)return;this.containerNodes.add(Ta.nodeKey(b,w)),b.id in s||(s[b.id]=Object.keys(s).length),x.indexOf(T)===-1&&x.push(T);let E=T.inboundLayers.length;for(let R=0;R<E;R++){let O=T.inputTensors[R],$=T.inboundLayers[R],S=T.nodeIndices[R],P=T.tensorIndices[R];o(O,A,x,$,S,P)}for(A.push(T);x.indexOf(T)>=0;)x.splice(x.indexOf(T),1);i.push(T)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let d=i.slice().reverse();for(let y of d){r[y.id]=y,y.id in t||(t[y.id]=0);let A=t[y.id],x=n[y.outboundLayer.id]==null?0:n[y.outboundLayer.id];A=Math.max(A,x),n[y.outboundLayer.id]=A,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=A;for(let b=0;b<y.inboundLayers.length;b++){let w=y.inboundLayers[b],I=y.nodeIndices[b],T=w.inboundNodes[I],E=t[T.id]==null?0:t[T.id];t[T.id]=Math.max(A+1,E),r[T.id]=T}}let h={};for(let y in t){let A=t[y];A in h||(h[A]=[]),h[A].push(r[y])}let p={};for(let y in n){let A=n[y];A in p||(p[A]=[]),p[A].push(a[y])}let c=Object.keys(p).map(y=>parseInt(y,10)).sort(t0);this.layers=[];for(let y of c){let A=p[y];A.sort((x,b)=>{let w=s[x.id],I=s[b.id];return w<I?-1:w>I?1:0});for(let x of A)x instanceof Ta&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=p,c=Object.keys(h).map(y=>parseInt(y,10)).sort(t0);let m=this.inputs.slice(),f=[];for(let y of c)for(let A of h[y]){let x=A.outboundLayer;if(x!=null){for(let b of A.inputTensors)if(m.indexOf(b)===-1)throw new da(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let b of A.outputTensors)m.push(b);f.push(x.name)}}this.nodesByDepth=h;let g=this.layers.map(y=>y.name);for(let y of g){let A=g.filter(x=>x===y).length;if(A!==1)throw new da(`The name "${y}" is used ${A} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Am({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(r=>r.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new q("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let r of this.layers)t.push(...r.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let r={},n=0;for(let s of this.layers)for(let i of s.weights){if(r[i.originalName]!=null)throw new q(`Duplicate weight name: ${i.originalName}`);r[i.originalName]=i,n++}let a=[];for(let s in e){let i=s;if(r[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(r[i]!=null)a.push([r[i],e[s]]);else if(t)throw new q(`Provided weight data has no target variable: ${s}`);delete r[i]}if(t){let s=[];for(let i in r)s.push(i);if(s.length>0)throw new q(`${s.length} of ${n} weights are not set: ${s}`)}U3(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${e5}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let r=qg(this.updatedConfig());return t?JSON.stringify(r):r}call(e,t){return X(()=>{e=Tt(e);let r=new Io;for(let n=0;n<this.inputs.length;++n)r.add(this.inputs[n],e[n]);return $p(this.outputs,r,t)})}computeMask(e,t){return X(()=>{e=Tt(e);let r;return t==null?r=Po(null,e.length):r=Tt(t),this.runInternalGraph(e,r)[1]})}computeOutputShape(e){let t=O0(e);if(t.length!==this.inputLayers.length)throw new q(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let r={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";r[u]=l}let n=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(t0);if(n.length>1)for(let i of n){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let d=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],y=l.tensorIndices[m],A=`${f.name}_${g}_${y}`,x=r[A];d.push(x)}let h=u.computeOutputShape(rn(d)),p=O0(h),c=u.inboundNodes.indexOf(l);for(let m=0;m<p.length;m++){let f=`${u.name}_${c}_${m}`;r[f]=p[m]}}}let a=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],d=`${o.name}_${l}_${u}`;s.push(d)}for(let i=0;i<s.length;i++){let o=s[i];Na(o in r),a.push(r[o])}return rn(a)}runInternalGraph(e,t){t==null&&(t=Po(null,e.length));let r={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],d=t[o];r[l.id]=[u,d]}let n=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(t0);for(let o of n){let l=this.nodesByDepth[o];for(let u of l){let d=u.outboundLayer,h=u.inputTensors,p=u.outputTensors,c=new Array;for(let m of h)m.id in r&&c.push(r[m.id]);if(c.length===h.length){let m={},f,g,y,A;if(u.callArgs!=null&&(m=u.callArgs),c.length===1){let[x,b]=c[0];m.mask==null&&(m.mask=b),y=Tt(d.call(x,m)),A=Tt(d.computeMask(x,b)),f=[x],g=[b]}else f=c.map(x=>x[0]),g=c.map(x=>x[1]),m.mask==null&&(m.mask=g),y=Tt(d.call(f,m)),A=Tt(d.computeMask(f,g));if(d.activityRegularizer)throw new Ve("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<p.length;++x){let b=p[x],w=y[x],I=A[x];r[b.id]=[w,I]}}}}let a=[],s=[],i=[];for(let o of this.outputs){Na(o.id in r,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=r[o.id];i.push(l.shape),a.push(l),s.push(u)}return[a,s,i]}buildNodeConversionMap(e){let t={},r;for(let n of this.layers){r=n instanceof Ta?1:0;for(let a=0;a<n.inboundNodes.length;a++){let s=Ta.nodeKey(n,a);this.containerNodes.has(s)&&(t[s]=r,r+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new q(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new q("Provide either a layer name or layer index");for(let r of this.layers)if(r.name===e)return r;throw new q(`No such layer: ${e}`)}calculateLosses(){return X(()=>{let e=[];for(let t of this.layers)for(let r=0;r<t.inboundNodes.length;++r){let n=Ta.nodeKey(t,r);this.containerNodes.has(n)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),r=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let d=0;d<s.inboundNodes.length;d++){let h=s.inboundNodes[d],p=Ta.nodeKey(s,d),c={};if(this.containerNodes.has(p)){if(h.callArgs)try{JSON.stringify(h.callArgs),c=h.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${h.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),c={}}if(h.inboundLayers.length>0){let m=[];for(let f=0;f<h.inboundLayers.length;f++){let g=h.inboundLayers[f],y=h.nodeIndices[f],A=h.tensorIndices[f],x=Ta.nodeKey(g,y),b=t[x];b==null&&(b=0),m.push([g.name,b,A,c])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,r.push(u)}e.layers=r;let n=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Ta.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.inputLayersTensorIndices[s];n.push([i.name,u,d])}e.inputLayers=n;let a=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Ta.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.outputLayersTensorIndices[s];a.push([i.name,u,d])}return e.outputLayers=a,e}static fromConfig(e,t,r={},n=!1){let a={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let y=[],A;for(let x of g){let b=x[0],w=x[1],I=x[2];if(A=x[3]==null?{}:x[3],!(b in a)){i(f,g);return}let T=a[b];if(T.inboundNodes.length<=w){i(f,g);return}let E=T.inboundNodes[w];y.push(E.outputTensors[I])}y.length>0&&f.apply(rn(y),A)}function l(f){let g=f.name,y=fa(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(n),a[g]=y,f.inboundNodes.forEach(A=>{if(!(A instanceof Array))throw new q(`Corrupted configuration, expected array for nodeData: ${A}`);i(y,A)})}let u=t.name,d=t.layers;for(let f of d)l(f);for(;!YL(s);)for(let f of d){let g=a[f.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let A of y)o(g,A)}}let h=[],p=[],c=t.inputLayers;for(let f of c){let g=f[0],y=f[1],A=f[2];Na(g in a);let x=a[g].inboundNodes[y].outputTensors;h.push(x[A])}let m=t.outputLayers;for(let f of m){let g=f[0],y=f[1],A=f[2];Na(g in a);let x=a[g].inboundNodes[y].outputTensors;p.push(x[A])}return new e({inputs:h,outputs:p,name:u})}get stateful(){if(this._stateful)throw new q("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){X(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function TU(e,t,r){let n=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(n===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==n)throw new Error(`Provided ${r} is an array of ${e.length} element(s), but the model has ${n} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${n}) outputs, so ${r} must be either an array with ${n} elements or an object with ${t} keys. Provided ${r} not understood: ${JSON.stringify(e)}`)}function Dw(e,t){return TU(e,t,"classWeight")}async function Lw(e,t,r,n){if(t!=null||n!=null)throw new Error("Support sampleWeight is not implemented yet");if(r!=null){let a=X(()=>{if(e.shape.length===1)return Vr(e);if(e.shape.length===2){if(e.shape[1]>1)return $n(e,1);if(e.shape[1]===1)return U(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());te(a);let i=[];return s.forEach(o=>{if(r[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(r[o])}),Nt(i,"float32")}else return null}function NU(e,t){return L(e,t)}var EU=32;function Bw(e,t){let r,n,a=t;r=a.xs,n=a.ys,v.assert(r!=null&&n!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=k4("input",e.inputNames,r),i=k4("output",e.outputNames,n),o=s[0].shape[0];v.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)v.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)v.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function k4(e,t,r){if(r instanceof nt)return[r];if(Array.isArray(r))return v.assert(r.length===t.length,()=>`Received an array of ${r.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),r;{let n=[];for(let a of t){if(r[a]==null)throw new q(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);n.push(r[a])}return n}}function RU(e){if(e.length===3)throw new Ve("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function $U(e,t,r){let n=r.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(r!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(r.epochs!=null&&r.epochs>0&&Number.isInteger(r.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${r.epochs}`),v.assert(!n||r.batchesPerEpoch>0&&Number.isInteger(r.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${r.batchesPerEpoch}`),v.assert(r.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=r.validationData!=null,s,i;if(a)if(I4(r.validationData))v.assert(r.validationBatches==null||r.validationBatches>0&&Number.isInteger(r.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${r.validationBatches}`);else{let g=RU(r.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;a?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let d=Rw(r.callbacks,r.yieldEvery),h=r.verbose==null?1:r.verbose,{callbackList:p,history:c}=$w(d,h,r.epochs,null,null,MU(t,r),null,a,u);p.setModel(e),e.history=c,await p.onTrainBegin(),e.stopTraining_=!1;let m=r.initialEpoch==null?0:r.initialEpoch,f=await t.iterator();for(;m<r.epochs;){let g={};await p.onEpochBegin(m);let y=0,A=0;for(n||(f=await t.iterator());!n||y<r.batchesPerEpoch;){let x=await f.next();if(n&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${r.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${r.batchesPerEpoch*r.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:b,ys:w}=Bw(e,x.value),I={};I.batch=A,I.size=b[0].shape[0],await p.onBatchBegin(A,I);let T=[];if(r.classWeight!=null){let O=Dw(r.classWeight,e.outputNames);for(let $=0;$<O.length;++$)T.push(await Lw(w[$],null,O[$]))}let E=b.concat(w).concat(T),R=o(E);te(E);for(let O=0;O<l.length;++O){let $=l[O],S=R[O];I[$]=S,mr(S)}await p.onBatchEnd(A,I),Cw(I),A++,y++}if(n?y>=r.batchesPerEpoch:x.done){if(a){let b;I4(r.validationData)?b=Tt(await e.evaluateDataset(r.validationData,{batches:r.validationBatches})):b=Tt(e.evaluate(s,i,{batchSize:r.validationBatchSize==null?EU:r.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)g[`val_${e.metricsNames[w]}`]=b[w]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(m,g),m++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function MU(e,t){let r=null;return t.batchesPerEpoch!=null?r=t.batchesPerEpoch:Number.isFinite(e.size)&&(r=e.size),r}function I4(e){return typeof e.iterator=="function"}function FU(e){return typeof e.next=="function"}async function _U(e,t,r){r=r||{};let n=r.batches!=null,a=e.testFunction,s=[];if(r.verbose>0)throw new Ve("Verbose mode is not implemented yet.");v.assert(!n||r.batches>0&&Number.isInteger(r.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(r.batches)}`);let i=FU(t)?t:await t.iterator(),o=0,l=0;for(;!n||l<r.batches;){let u=await i.next();if(s=X(()=>{if(u.value){let{xs:d,ys:h}=Bw(e,u.value),p=d.concat(h),c=X(()=>a(p));if(te(p),l===0)for(let f=0;f<c.length;++f)s.push(Se(0));let m=p[0].shape[0];for(let f=0;f<c.length;++f){let g=c[f],y=s[f];s[f]=X(()=>le(s[f],L(m,g))),l>0&&te(y)}te(c),o+=m,++l}return s}),u.done){n&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${r.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let d=s[u];s[u]=pe(s[u],o),te(d)}return rn(s)}function Xg(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Mp(e,t,r){return e==null?[null]:Array.isArray(e)?e.map(n=>No(n,t,r-t)):No(e,t,r-t)}function t5(e,t){return X(()=>e==null?null:Array.isArray(e)?e.map(r=>t5(r,t)):gw(e,t.dtype==="int32"?t:me(t,"int32")))}function Kg(e,t){let r=[],n=0,a=null;for(;n<e;)a=n+t,a>=e&&(a=e),r.push([n,a]),n=a;return r}async function PU(e,t,r,n,a,s,i,o,l,u,d,h,p,c,m){a==null&&(a=32),s==null&&(s=1),d==null&&(d=!0),p==null&&(p=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,c==null))throw new q("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(r,a,c,"steps_per_epoch"),y;g!=null&&(y=ya(0,g)),i==null&&(i=1);let{callbackList:A,history:x}=$w(o,i,s,p,g,c,a,f,h);A.setModel(e),e.history=x,await A.onTrainBegin(),e.stopTraining_=!1;for(let b=p;b<s;++b){await A.onEpochBegin(b);let w={};if(c!=null)throw new Ve("stepsPerEpoch mode is not implemented yet.");{if(d==="batch")throw new Ve("batch shuffling is not implemneted yet");d&&v.shuffle(y);let I=Nt(y),T=Kg(g,a);for(let E=0;E<T.length;++E){let R={};if(await A.onBatchBegin(E,R),X(()=>{let O=T[E][0],$=T[E][1],S=No(I,O,$-O);R.batch=E,R.size=$-O;let P=t5(r,S),z=t(P);for(let j=0;j<n.length;++j){let K=n[j],D=z[j];R[K]=D,mr(D)}if(E===T.length-1&&f){let j=e.testLoop(l,u,a);for(let K=0;K<n.length;++K){let D=n[K],Y=j[K];mr(Y),w["val_"+D]=Y}}}),await A.onBatchEnd(E,R),Cw(R),e.stopTraining_)break}I.dispose()}if(await A.onEpochEnd(b,w),e.stopTraining_)break}return await A.onTrainEnd(),await e.history.syncData(),e.history}async function OU(e,t,r,n={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let a,s,i,o,l,u,d,h,p;try{let c=n.batchSize==null?32:n.batchSize;Xg(c);let m=!1,f=await e.standardizeUserData(t,r,n.sampleWeight,n.classWeight,m,c);a=f[0],s=f[1],p=f[2];let g=!1,y;if(n.validationData!=null&&n.validationData.length>0){if(g=!0,n.validationData.length===2)l=n.validationData[0],u=n.validationData[1];else throw n.validationData.length===3?new Ve("validationData including sample weights is not supported yet."):new q(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let E=!0,R=await e.standardizeUserData(l,u,null,null,E,c);d=R[0],h=R[1],y=d.concat(h)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){g=!0;let E=Math.floor(a[0].shape[0]*(1-n.validationSplit)),R=a[0].shape[0];d=Mp(a,E,R),i=a,a=Mp(a,0,E),h=Mp(s,E,R),o=s,s=Mp(s,0,E),y=d.concat(h)}else n.validationSteps!=null&&(g=!0);let A=a.concat(s).concat(p);e.checkTrainableWeightsConsistency();let x=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),w,I;g?(e.makeTestFunction(),w=e.testFunction,I=b.slice().concat(b.map(E=>"val_"+E))):(w=null,y=[],I=b.slice());let T=Rw(n.callbacks,n.yieldEvery);return await PU(e,x,A,b,c,n.epochs,n.verbose,T,w,y,n.shuffle,I,n.initialEpoch,null,null)}finally{e.isTraining=!1,ua(a,t),ua(s,r),ua(i,t),ua(o,r),ua(d,l),ua(h,u),p!=null&&te(p)}}function Ww(e){let t=[];e instanceof nt&&(e=[e]);for(let r=0;r<e.length;++r){let n=e[r];if(n.rank===1)t.push(_h(n,1));else{if(n.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(n)}}return t}function ua(e,t){if(e==null)return;let r=[];if(t instanceof nt)r.push(t.id);else if(Array.isArray(t))t.forEach(a=>r.push(a.id));else if(t!=null)for(let a in t){let s=t[a];r.push(s.id)}let n=[];if(e instanceof nt)r.indexOf(e.id)===-1&&n.push(e);else if(Array.isArray(e))e.forEach(a=>{r.indexOf(a.id)===-1&&n.push(a)});else if(e!=null)for(let a in e){let s=e[a];r.indexOf(s.id)===-1&&n.push(s)}n.forEach(a=>{a.isDisposed||a.dispose()})}function zU(e){return e instanceof nt}function Zg(e){return Array.isArray(e)}function S4(e){return!zU(e)&&!Zg(e)}function C4(e,t,r,n=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Zg(e)&&e.length>0)i=!0;else if(S4(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new q(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(S4(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new q(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Zg(e)){if(e=e,e.length!==t.length)throw new q(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new q(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=Ww(s),r!=null)for(let i=0;i<t.length;++i){if(r[i]==null)continue;let o=s[i];if(o.shape.length!==r[i].length)throw new q(`Error when checking ${a}: expected ${t[i]} to have ${r[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<r[i].length;++l){if(l===0&&!n)continue;let u=o.shape[l],d=r[i][l];if(d!=null&&d>=0&&u!==d)throw new q(`${a} expected a batch of elements where each example has shape [${r[i].slice(1,r[i].length)}] (i.e.,tensor shape [*,${r[i].slice(1,r[i].length)}]) but the ${a} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return s}function DU(e,t,r){let n=Rs(e.map(s=>s.shape[0]));n.sort();let a=Rs(t.map(s=>s.shape[0]));if(a.sort(),n.length>1)throw new q(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new q(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(n.length>0&&a.length>0&&!v.arraysEqual(n,a))throw new q(`Input Tensors should have the same number of samples as target Tensors. Found ${n[0]} input sample(s) and ${a[0]} target sample(s).`)}function LU(e,t,r){let n=[Pl,bm,Yp];for(let a=0;a<e.length;++a){let s=e[a],i=t[a],o=r[a];if(i!=null){if(i===Yp&&s.shape[s.shape.length-1]===1)throw new q(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(n.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let d=0;d<l.length;++d){let h=l[d],p=u[d];if(p!=null&&h!==p)throw new q(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function T4(e,t,r,n=!0,a=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new q(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new q(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(r!=null)for(let i=0;i<t.length;++i){if(r[i]==null)continue;let o=s[i];if(o.shape.length!==r[i].length)throw new q(`Error when checking ${a}: expected ${t[i]} to have ${r[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<r[i].length;++l){if(l===0&&!n)continue;let u=o.shape[l],d=r[i][l];if(d!=null&&d!==u)throw new q(`Error when checking ${a}: expected ${t[i]} to have shape ${JSON.stringify(r[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function BU(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(n=>[]);let r;if(typeof e=="string"||typeof e=="function")r=[e];else if(Array.isArray(e)||typeof e=="object")r=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(r))return t.map(n=>r);{let n=[];for(let a of t){let s=r.hasOwnProperty(a)?r[a]:[];Array.isArray(s)||(s=[s]),n.push(s)}return n}}var WU="layers-model",Ka=class extends Ta{constructor(e){super(e),this.isTraining=!1}summary(e,t,r=console.log){if(!this.built)throw new q("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");wU(this,e,t,r)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=vU(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof ns))throw new q("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new q(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(bg(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new q(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>bg(s))}else{let s=bg(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let r=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],To("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(r.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let n=BU(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};To("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(r.indexOf(s)!==-1)continue;let i=n[s];(o=>{let l="",u,d,h;for(let p of o){if(typeof p=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(p)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===bm?["accuracy","acc"].indexOf(p)!==-1?d=Y3:["crossentropy","ce"].indexOf(p)!==-1&&(d=_w):this.lossFunctions[s]===W0?["accuracy","acc"].indexOf(p)!==-1?d=Pw:["crossentropy","ce"].indexOf(p)!==-1&&(d=Ow):["accuracy","acc"].indexOf(p)!==-1?d=J3:["crossentropy","ce"].indexOf(p)!==-1&&(d=Q3);let f;["accuracy","acc"].indexOf(p)!==-1?f="acc":["crossentropy","ce"].indexOf(p)!==-1&&(f="ce"),h=d,u=l+f}else h=bU(p),u=l+a0(p);let c;To(u,()=>{c=h}),a(s,u,c)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,r={}){let n=r.batchSize==null?32:r.batchSize;Xg(n);let a=!0,s=this.standardizeUserDataXY(e,t,a,n);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,n,r.verbose,r.steps);return rn(l)}finally{ua(s[0],e),ua(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),_U(this,e,t)}checkNumSamples(e,t,r,n="steps"){let a;if(r!=null){if(a=null,t!=null)throw new q(`If ${n} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new q(`Either the input data should have a defined shape, or ${n} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new q("`outputs` is an empty Array, which is not allowed.");let r=Array.isArray(t),n=r?t:[t],a=this.retrieveSymbolicTensors(n),s=new Io;if(e instanceof nt&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new q(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new q(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=$p(a,s);return r?i:i[0]}retrieveSymbolicTensors(e){let t=Po(null,e.length),r=e.length;for(let n of this.layers){let a=Array.isArray(n.output)?n.output:[n.output],s=a.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=a[o],r--),r===0)break}if(r===0)break}if(r>0){let n=[];throw t.forEach((a,s)=>{a==null&&n.push(e[s])}),new q(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(n)}`)}return t}predictLoop(e,t=32,r=!1){return X(()=>{let n=this.checkNumSamples(e);if(r)throw new Ve("Verbose predictLoop() is not implemented yet.");let a=Kg(n,t),s=this.outputs.map(i=>[]);for(let i=0;i<a.length;++i)X(()=>{let o=a[i][0],l=a[i][1],u=Mp(e,o,l),d=[];if(Array.isArray(u))for(let p=0;p<u.length;++p)d.push({key:this.inputs[p],value:u[p]});else d.push({key:this.inputs[0],value:u});let h=new Io(d);return $p(this.outputs,h)}).forEach((o,l)=>s[l].push(o));return rn(s.map(i=>St(i,0)))})}predict(e,t={}){let r=Ww(e);T4(r,this.inputNames,this.feedInputShapes,!1);try{let n=t.batchSize==null?32:t.batchSize;return Xg(n),this.predictLoop(r,n)}finally{ua(r,e)}}predictOnBatch(e){T4(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,r=!0,n){if(this.optimizer_==null)throw new da("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===W0?a.push(i.slice(0,i.length-1).concat([1])):a.push(i)}if(e=C4(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=C4(t,this.feedOutputNames,a,!1,"target"),DU(e,t,null),LU(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&n!=null&&n>0&&e[0].shape[0]%n!==0)throw new q(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${n}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,r,n,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(r!=null)throw new Error("sample weight is not supported yet.");let l=null;if(n!=null){let u=Dw(n,this.outputNames);l=[];for(let d=0;d<u.length;++d)l.push(await Lw(o[d],null,u[d]))}return[i,o,l]}testLoop(e,t,r,n=0,a){return X(()=>{let s=this.checkNumSamples(t,r,a,"steps"),i=[];if(n>0)throw new Ve("Verbose mode is not implemented yet.");if(a!=null)throw new Ve("steps mode in testLoop() is not implemented yet");{let o=Kg(s,r),l=Nt(ya(0,s));for(let u=0;u<o.length;++u){let d=o[u][0],h=o[u][1],p=No(l,d,h-d),c=t5(t,p),m=e(c);if(u===0)for(let f=0;f<m.length;++f)i.push(Se(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=le(i[f],L(h-d,g))}}for(let u=0;u<i.length;++u)i[u]=pe(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let r=0;r<e.length;++r){let n=e[r],a=n;i4(e,n)>1&&(a+=`_${i4(e.slice(0,r),n)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],r=e.slice(0,this.inputs.length),n=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let c=0;c<this.inputs.length;++c)u.push({key:this.inputs[c],value:r[c]});let d=new Io(u),h=$p(this.outputs,d,{training:!0}),p;for(let c=0;c<this.lossFunctions.length;++c){let m=this.lossFunctions[c](n[c],h[c]);a[c]!=null&&(m=NU(m,a[c]));let f=Vt(m);t.push(f),c===0?p=m:p=le(p,m)}for(let c=0;c<this.metricsTensors.length;++c){let m;if(this.outputs.length>1&&c<this.outputs.length)m=t[c];else{let f=this.metricsTensors[c][0],g=this.metricsTensors[c][1];m=Vt(f(n[g],h[g]))}mr(m),s.push(m)}return p=Vt(p),this.calculateLosses().forEach(c=>{p=le(p,c)}),p},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>X(()=>{let t=[],r,n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:n[l]});let i=new Io(s),o=$p(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],d=Vt(u(a[l],o[l]));l===0?r=d:r=le(r,d),t.push(r)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],d=this.metricsTensors[l][1],h=Vt(u(a[d],o[d]));t.push(h)}return t})}async fit(e,t,r={}){return OU(this,e,t,r)}async fitDataset(e,t){return $U(this,e,t)}async trainOnBatch(e,t){let r=await this.standardizeUserData(e,t),n=r[0],a=r[1],s=this.makeTrainFunction()(n.concat(a)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return te(s),ua(r[0],e),ua(r[1],t),rn(i)}getNamedWeights(e){let t=[],r=e!=null&&e.trainableOnly,n=r?this.trainableWeights:this.weights,a=this.getWeights(r);for(let s=0;s<n.length;++s)r&&!n[s].trainable||t.push({name:n[s].originalName,tensor:a[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=M0().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-M0().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=ja(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>ja(t))}else{let t=Object.keys(this.loss);e={};let r=this.loss;for(let n of t)if(typeof r[n]=="string")e[n]=ja(r[n]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ja(a0(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ja(a0(e)));{let e={};for(let t in this.metrics)e[t]=ja(a0(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Jp(e.optimizer_config),r=fa(t),n;if(typeof e.loss=="string")n=vo(e.loss);else if(Array.isArray(e.loss))n=e.loss.map(s=>vo(s));else if(e.loss!=null){n={};for(let s in e.loss)n[s]=vo(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>vo(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=vo(e.metrics[s])}this.compile({loss:n,metrics:a,optimizer:r})}async save(e,t){if(typeof e=="string"){let i=Cr.getSaveHandlers(e);if(i.length===0)throw new q(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new q(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new q("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let r=await Cr.encodeWeights(this.getNamedWeights(t)),n=!1,a=null,s={modelTopology:this.toJSON(a,n),format:WU,generatedBy:`TensorFlow.js tfjs-layers v${e5}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Cr.encodeWeights(await this.optimizer.getWeights(),i);r.specs.push(...l),r.data=Cr.concatenateArrayBuffers([r.data,o])}return this.userDefinedMetadata!=null&&(w4(this.userDefinedMetadata,this.name,!0),s.userDefinedMetadata=this.userDefinedMetadata),s.weightData=r.data,s.weightSpecs=r.specs,e.save(s)}setUserDefinedMetadata(e){w4(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Ka.className="Model";ue.registerClass(Ka);var Vw=class extends Ka{};Vw.className="Functional";ue.registerClass(Vw);async function VU(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let r=e.modelTopology;r.model_config!=null&&(r=r.model_config);let n=Jp(r),a=fa(n,t);if(e.weightsManifest!=null){let s=await Cr.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),te(s)}return a}async function UU(e,t){if(t==null&&(t={}),typeof e=="string"){let r=Cr.getLoadHandlers(e,t);if(r.length===0)r.push(Cr.browserHTTPRequest(e,t));else if(r.length>1)throw new q(`Found more than one (${r.length}) load handlers for URL '${e}'`);e=r[0]}return GU(e,void 0,t)}async function GU(e,t,r){if(r==null&&(r={}),e.load==null)throw new q("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let n=await e.load(),a=n.modelTopology;a.model_config!=null&&(a=a.model_config);let s=r.strict==null?!0:r.strict,i=n.weightData!=null&&n.weightSpecs!=null&&s,o=fa(Jp(a),t,i),l=n.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),n.userDefinedMetadata!=null&&o.setUserDefinedMetadata(n.userDefinedMetadata),n.weightData!=null){if(n.weightSpecs==null)throw new q("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:d}=jU(n.weightData,n.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&d.length>0&&await o.optimizer.setWeights(d),te(u),te(d.map(h=>h.tensor))}return o}function jU(e,t){let r=Cr.decodeWeights(e,t),n={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:r[s.name]}):n[s.name]=r[s.name]}),{modelWeights:n,optimizerWeights:a}}var Yg=class extends Ka{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:lm("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new q(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Yg||e instanceof Ka,r;if(t){if(r=e,r.outputs.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(r.inputs.length!==1)throw new q("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new q("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let n=bw({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(n)}if(t)this.outputs=r.outputs,this.inputs=r.inputs;else{if(e.inboundNodes.length!==1)throw new q(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=xw(this.outputs[0])}this.inboundNodes=[],new Am({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Po(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(n=>n.shape),outputShapes:this.outputs[0].shape})}else{let n=e.apply(this.outputs[0]);if(Array.isArray(n))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[n],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(mt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Ka({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,r=console.log){this.built||this.build(),super.summary(e,t,r)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,r={}){if(!this.built)throw new da("The model needs to be compiled before being used.");return this.model.evaluate(e,t,r)}async evaluateDataset(e,t){if(!this.built)throw new da("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,r={}){if(!this.built)throw new da("The model needs to be compiled before being used.");return this.model.fit(e,t,r)}async fitDataset(e,t){if(!this.built)throw new da("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,r={},n=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new q("Legacy serialization format not supported yet.");a=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Yg))throw new Ve(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=fa(o,void 0,n);n&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new q("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new q("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let r={};r.className=t.getClassName(),r.config=t.getConfig(),e.push(r)}return{name:this.name,layers:e}}},vm=Yg;vm.className="Sequential";ue.registerClass(vm);function HU(e){return new Ka(e)}function qU(e){return new vm(e)}function XU(e,t){return t==null&&(t={}),UU(e,t)}function Uw(e){return bw(e)}function KU(e,t){K3.registerCallbackConstructor(e,t)}var ln=class extends ue.Serializable{getConfig(){return{}}},Gw=class extends ln{apply(e,t=1){return hB(e,t)}};Gw.className="elu";ue.registerClass(Gw);var jw=class extends ln{apply(e){return b3(e)}};jw.className="selu";ue.registerClass(jw);var Hw=class extends ln{apply(e){return Da(e)}};Hw.className="relu";ue.registerClass(Hw);var qw=class extends ln{apply(e){return X(()=>Rh(6,Da(e)))}};qw.className="relu6";ue.registerClass(qw);var Xw=class extends ln{apply(e){return e}};Xw.className="linear";ue.registerClass(Xw);var Kw=class extends ln{apply(e){return Tr(e)}};Kw.className="sigmoid";ue.registerClass(Kw);var Zw=class extends ln{apply(e){return fB(e)}};Zw.className="hardSigmoid";ue.registerClass(Zw);var Yw=class extends ln{apply(e){return vd(e)}};Yw.className="softplus";ue.registerClass(Yw);var Jw=class extends ln{apply(e){return cB(e)}};Jw.className="softsign";ue.registerClass(Jw);var Qw=class extends ln{apply(e){return Ru(e)}};Qw.className="tanh";ue.registerClass(Qw);var r5=class extends ln{apply(e,t=-1){return Id(e,t)}};r5.className="softmax";ue.registerClass(r5);var e8=class extends ln{apply(e,t=-1){return d3(e,t)}};e8.className="logSoftmax";ue.registerClass(e8);var t8=class extends ln{apply(e,t=1){return X(()=>L(Tr(L(e,t)),e))}};t8.className="swish";ue.registerClass(t8);var r8=class extends ln{apply(e){return X(()=>L(e,Ru(vd(e))))}};r8.className="mish";ue.registerClass(r8);function Us(e){return e.getClassName()}function vg(e,t={}){return Fh(e,ue.SerializationMap.getMap().classNameMap,t,"activation")}function Gs(e){if(e==null){let t={};return t.className="linear",t.config={},vg(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},vg(t)}else return e instanceof ln?e:vg(e)}function n5(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var n8=class extends ue.Serializable{},Dh=class extends n8{constructor(e){super(),n5(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return X(()=>{let t=Ot([1]);return this.hasL1&&(t=le(t,ke(L(this.l1,ar(e))))),this.hasL2&&(t=le(t,ke(L(this.l2,Ph(e))))),U(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Dh.className="L1L2";ue.registerClass(Dh);function ZU(e){return n5(e),new Dh({l1:e!=null?e.l1:null,l2:0})}function YU(e){return n5(e),new Dh({l2:e!=null?e.l2:null,l1:0})}var N4={l1l2:"L1L2"};function vt(e){return F3(e)}function E4(e,t={}){return Fh(e,ue.SerializationMap.getMap().classNameMap,t,"regularizer")}function Ft(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in N4?N4[e]:e,config:{}};return E4(t)}else return e instanceof n8?e:E4(e)}var a5=class extends st{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=je(e);let r=Da(e);return this.maxValue!=null&&(r=fn(r,0,this.maxValue)),r}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};a5.className="ReLU";ue.registerClass(a5);var s5=class extends st{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let r=je(e);return Bf(r,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};s5.className="LeakyReLU";ue.registerClass(s5);var i5=class extends st{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=$t(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Ft(e.alphaRegularizer),this.alphaConstraint=lr(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new q(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=mt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let n of this.sharedAxes)t[n-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let r={};if(this.sharedAxes!=null)for(let n=1;n<e.length;++n)r[n]=e[n];this.inputSpec=[new Zt({ndim:e.length,axes:r})],this.built=!0}call(e,t){return e=je(e),qf(e,this.alpha.read())}getConfig(){let e={alphaInitializer:zt(this.alphaInitializer),alphaRegularizer:vt(this.alphaRegularizer),alphaConstraint:or(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};i5.className="PReLU";ue.registerClass(i5);var o5=class extends st{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Ve(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let r=je(e);return Nh(r)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};o5.className="ELU";ue.registerClass(o5);var l5=class extends st{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let r=je(e);return L(r,me(gn(r,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};l5.className="ThresholdedReLU";ue.registerClass(l5);var u5=class extends st{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new r5().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let r=je(e);return this.softmax(r,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};u5.className="Softmax";ue.registerClass(u5);function Su(e,t,r){if(typeof e=="number")return Po(e,t);if(e.length!==t)throw new q(`The ${r} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let n=0;n<t;++n){let a=e[n];if(!lB(a))throw new q(`The ${r} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${a}`)}return e}function ma(e,t,r,n,a=1){if(e==null)return e;let s=t+(t-1)*(a-1),i;return r==="same"?i=e:i=e-s+1,Math.floor((i+n-1)/n)}function Ea(e,t,r,n){if(e==null)return null;if(n==="valid")e=e*t+Vs([r-t,0]);else if(n==="same")e=e*t;else throw new q(`Unsupport padding mode: ${n}.`);return e}function d5(e,t){return X(()=>(jt(t),t==="channelsFirst"?tt(e,[0,2,3,1]):e))}function a8(e,t){return X(()=>(jt(t),t==="channelsFirst"?tt(e,[0,2,3,4,1]):e))}function JU(e,t,r,n=1,a="valid",s,i=1){return X(()=>{if(s==null&&(s=Aa()),jt(s),e.shape.length!==3)throw new q(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new q(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(r!=null&&r.shape.length!==1)throw new q(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=tt(e,[0,2,1])),a==="causal")throw new Ve("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=e3(e,t,n,a==="same"?"same":"valid","NWC",i);return r!=null&&(o=va(o,r)),o})}function R4(e,t,r,n=[1,1],a="valid",s,i,o=null){return X(()=>{if(s==null&&(s=Aa()),jt(s),e.rank!==3&&e.rank!==4)throw new q(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new q(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=d5(e,s);if(a==="causal")throw new Ve("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Ws.conv2d({x:l,filter:t,strides:n,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:r,activation:o}),s==="channelsFirst"&&(l=tt(l,[0,3,1,2])),l})}function QU(e,t,r,n=[1,1,1],a="valid",s,i){return X(()=>{if(s==null&&(s=Aa()),jt(s),e.rank!==4&&e.rank!==5)throw new q(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new q(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=a8(e,s);if(a==="causal")throw new Ve("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=n3(o,t,n,a==="same"?"same":"valid","NDHWC",i),r!=null&&(o=va(o,r)),s==="channelsFirst"&&(o=tt(o,[0,4,1,2,3])),o})}var p5=class extends st{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",p5.verifyArgs(t),this.rank=e,gr(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Ve(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Su(t.kernelSize,e,"kernelSize"),this.strides=Su(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Bn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,jt(this.dataFormat),this.activation=Gs(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=$t(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=lr(t.biasConstraint),this.biasRegularizer=Ft(t.biasRegularizer),this.activityRegularizer=Ft(t.activityRegularizer),this.dilationRate=Su(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new q(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new q(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new q(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Na("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!_3(e.kernelSize,"number",1,3))throw new q(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Us(this.activation),useBias:this.useBias,biasInitializer:zt(this.biasInitializer),biasRegularizer:vt(this.biasRegularizer),activityRegularizer:vt(this.activityRegularizer),biasConstraint:or(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Lh=class extends p5{constructor(e,t){super(e,t),this.kernel=null,Lh.verifyArgs(t),this.filters=t.filters,gr(this.filters,"filters"),this.kernelInitializer=$t(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=lr(t.kernelConstraint),this.kernelRegularizer=Ft(t.kernelRegularizer)}build(e){e=mt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[t]}`);let r=e[t],n=this.kernelSize.concat([r,this.filters]);this.kernel=this.addWeight("kernel",n,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:r}}],this.built=!0}call(e,t){return X(()=>{e=je(e);let r,n=this.bias==null?null:this.bias.read(),a=dw(this.activation.getClassName());if(a!=null&&this.rank===2)r=R4(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)r=JU(e,this.kernel.read(),n,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)r=R4(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)r=QU(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Ve("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(r=this.activation.apply(r))}return r})}computeOutputShape(e){e=mt(e);let t=[],r=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a<r.length;++a){let s=ma(r[a],this.kernelSize[a],this.padding,this.strides[a],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[a]);t.push(s)}let n=[e[0]];return this.dataFormat==="channelsLast"?(n=n.concat(t),n.push(this.filters)):(n.push(this.filters),n=n.concat(t)),n}getConfig(){let e={filters:this.filters,kernelInitializer:zt(this.kernelInitializer),kernelRegularizer:vt(this.kernelRegularizer),kernelConstraint:or(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new q(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},s8=class extends Lh{constructor(e){super(2,e),s8.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!_3(e.kernelSize,"number",1,2))throw new q(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}},wm=s8;wm.className="Conv2D";ue.registerClass(wm);var i8=class extends Lh{constructor(e){super(3,e),i8.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new q(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}},km=i8;km.className="Conv3D";ue.registerClass(km);var h5=class extends wm{constructor(e){if(super(e),this.inputSpec=[new Zt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=mt(e),e.length!==4)throw new q("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let r=e[t],n=this.kernelSize.concat([this.filters,r]);this.kernel=this.addWeight("kernel",n,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Zt({ndim:4,axes:{[t]:r}})],this.built=!0}call(e,t){return X(()=>{let r=je(e);if(r.shape.length!==4)throw new q(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${r.shape.length}`);let n=r.shape,a=n[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=n[s],l=n[i],u=this.kernelSize[0],d=this.kernelSize[1],h=this.strides[0],p=this.strides[1],c=Ea(o,h,u,this.padding),m=Ea(l,p,d,this.padding),f=[a,c,m,this.filters];this.dataFormat!=="channelsLast"&&(r=tt(r,[0,2,3,1]));let g=r3(r,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=tt(g,[0,3,1,2])),this.bias!=null&&(g=va(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=mt(e);let t=e.slice(),r,n,a;this.dataFormat==="channelsFirst"?(r=1,n=2,a=3):(r=3,n=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[r]=this.filters,t[n]=Ea(t[n],o,s,this.padding),t[a]=Ea(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};h5.className="Conv2DTranspose";ue.registerClass(h5);var c5=class extends km{constructor(e){if(super(e),this.inputSpec=[new Zt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=mt(e),e.length!==5)throw new q("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let r=e[t],n=this.kernelSize.concat([this.filters,r]);this.kernel=this.addWeight("kernel",n,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Zt({ndim:5,axes:{[t]:r}})],this.built=!0}call(e,t){return X(()=>{let r=je(e);if(r.shape.length!==5)throw new q(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${r.shape.length}`);let n=r.shape,a=n[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=n[o],u=n[s],d=n[i],h=this.kernelSize[0],p=this.kernelSize[1],c=this.kernelSize[2],m=this.strides[0],f=this.strides[1],g=this.strides[2],y=Ea(l,m,h,this.padding),A=Ea(u,f,p,this.padding),x=Ea(d,g,c,this.padding),b=[a,y,A,x,this.filters];this.dataFormat!=="channelsLast"&&(r=tt(r,[0,2,3,4,1]));let w=pv(r,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=tt(w,[0,4,1,2,3])),this.bias!==null&&(w=va(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=mt(e);let t=e.slice(),r,n,a,s;this.dataFormat==="channelsFirst"?(r=1,n=2,a=3,s=4):(r=4,n=1,a=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],d=this.strides[1],h=this.strides[2];return t[r]=this.filters,t[n]=Ea(t[n],u,i,this.padding),t[a]=Ea(t[a],d,o,this.padding),t[s]=Ea(t[s],h,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};c5.className="Conv3DTranspose";ue.registerClass(c5);var o8=class extends Lh{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new q("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new q("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new q(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=$t(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Ft(t.depthwiseRegularizer),this.depthwiseConstraint=lr(t.depthwiseConstraint),this.pointwiseInitializer=$t(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Ft(t.pointwiseRegularizer),this.pointwiseConstraint=lr(t.pointwiseConstraint)}build(e){if(e=mt(e),e.length<this.rank+2)throw new q(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let r=e[t],n=this.kernelSize.concat([r,this.depthMultiplier]),a=[];for(let i=0;i<this.rank;++i)a.push(1);a.push(r*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",n,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",a,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Zt({ndim:this.rank+2,axes:{[t]:r}})],this.built=!0}call(e,t){return X(()=>{e=je(e);let r;if(this.rank===1)throw new Ve("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=tt(e,[0,2,3,1])),r=Pv(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(r=va(r,this.bias.read(),this.dataFormat)),this.activation!=null&&(r=this.activation.apply(r)),this.dataFormat==="channelsFirst"&&(r=tt(r,[0,3,1,2])),r})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=zt(this.depthwiseInitializer),e.pointwiseInitializer=zt(this.pointwiseInitializer),e.depthwiseRegularizer=vt(this.depthwiseRegularizer),e.pointwiseRegularizer=vt(this.pointwiseRegularizer),e.depthwiseConstraint=or(this.depthwiseConstraint),e.pointwiseConstraint=or(this.pointwiseConstraint),e}};o8.className="SeparableConv";var f5=class extends o8{constructor(e){super(2,e)}};f5.className="SeparableConv2D";ue.registerClass(f5);var l8=class extends Lh{constructor(e){super(1,e),l8.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!_3(e.kernelSize,"number",1,1))throw new q(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}},m5=l8;m5.className="Conv1D";ue.registerClass(m5);var g5=class extends st{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return X(()=>{if(e=je(e),this.dataFormat==="channelsLast"){let r=n0(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return n0(r,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let r=n0(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return n0(r,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};g5.className="Cropping2D";ue.registerClass(g5);var y5=class extends st{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,sB(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],r=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,r]}else{let t=e[1]==null?null:this.size[0]*e[1],r=e[2]==null?null:this.size[1]*e[2];return[e[0],t,r,e[3]]}}call(e,t){return X(()=>{let r=je(e),n=r.shape;if(this.dataFormat==="channelsFirst"){r=tt(r,[0,2,3,1]);let a=this.size[0]*n[2],s=this.size[1]*n[3],i=this.interpolation==="nearest"?Ie.resizeNearestNeighbor(r,[a,s]):Ie.resizeBilinear(r,[a,s]);return tt(i,[0,3,1,2])}else{let a=this.size[0]*n[1],s=this.size[1]*n[2];return this.interpolation==="nearest"?Ie.resizeNearestNeighbor(r,[a,s]):Ie.resizeBilinear(r,[a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};y5.className="UpSampling2D";ue.registerClass(y5);function eG(e,t,r=[1,1],n="valid",a,s){return X(()=>{a==null&&(a=Aa()),jt(a);let i=d5(e,a);if(e.rank!==4)throw new q(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new q(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Th(i,t,r,n==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=tt(i,[0,3,1,2])),i})}var A5=class extends p5{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=$t(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=lr(e.depthwiseConstraint),this.depthwiseRegularizer=Ft(e.depthwiseRegularizer)}build(e){if(e=mt(e),e.length<4)throw new q(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let r=e[t],n=[this.kernelSize[0],this.kernelSize[1],r,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",n,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[r*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return X(()=>{e=je(e);let r=eG(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(r=va(r,this.bias.read(),this.dataFormat)),this.activation!=null&&(r=this.activation.apply(r)),r})}computeOutputShape(e){e=mt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],r=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=ma(t,this.kernelSize[0],this.padding,this.strides[0]),s=ma(r,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],n,a,s]:[e[0],a,s,n]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=zt(this.depthwiseInitializer),e.depthwiseRegularizer=vt(this.depthwiseRegularizer),e.depthwiseConstraint=or(this.depthwiseRegularizer),e}};A5.className="DepthwiseConv2D";ue.registerClass(A5);function u8(e,t,r,n){if(Array.isArray(e)){if(t!=null||r!=null)throw new q("When inputs is an array, neither initialState or constants should be provided");n!=null&&(r=e.slice(e.length-n,e.length),e=e.slice(0,e.length-n)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),r=a(r),{inputs:e,initialState:t,constants:r}}function d8(e,t,r,n=!1,a,s,i=!1,o=!1){return X(()=>{let l=t.shape.length;if(l<3)throw new q(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(ya(2,l));if(t=tt(t,u),s!=null)throw new Ve("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=me(me(a,"bool"),"float32"),a.rank===l-1&&(a=Kt(a,-1)),a=tt(a,u)),n&&(t=On(t,0),a!=null&&(a=On(a,0)));let d=[],h,p=r,c=t.shape[0],m=an(t),f;a!=null&&(f=an(a));for(let y=0;y<c;++y){let A=m[y],x=X(()=>e(A,p));if(a==null)h=x[0],p=x[1];else{let b=X(()=>{let w=f[y],I=ce(Pn(w),w),T=le(L(x[0],w),L(p[0],I)),E=p.map((R,O)=>le(L(x[1][O],w),L(R,I)));return{output:T,newStates:E}});h=b.output,p=b.newStates}o&&d.push(h)}let g;return o&&(g=ur(d,1)),[h,g,p]})}var p8=class extends st{constructor(e){super(e);let t;if(e.cell==null)throw new q("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Cm({cells:e.cell}):t=e.cell,t.stateSize==null)throw new q("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Zt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return ya(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Gg(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let r=t[0],n;if(this.returnSequences?n=[e[0],e[1],r]:n=[e[0],r],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[n].concat(a)}else return n}computeMask(e,t){return X(()=>{Array.isArray(t)&&(t=t[0]);let r=this.returnSequences?t:null;if(this.returnState){let n=this.states.map(a=>null);return[r].concat(n)}else return r})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let r=0;r<e;++r)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Ve("Constants support is not implemented in RNN yet.");Gg(e)&&(e=e[0]),e=e;let t=this.stateful?e[0]:null,r=e.slice(2);this.inputSpec[0]=new Zt({shape:[t,null,...r]});let n=[e[0]].concat(e.slice(2));this.cell.build(n);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(s=>s.shape[s.shape.length-1]),a))throw new q(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(s=>new Zt({shape:[null,s]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){X(()=>{if(!this.stateful)throw new Ga("Cannot call resetStates() on an RNN Layer that is not stateful.");let r=this.inputSpec[0].shape[0];if(r==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>Ot([r,n])):this.states_=[Ot([r,this.cell.stateSize])];else if(e==null)te(this.states_),this.keptStates!=null&&(te(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>Ot([r,n])):this.states_[0]=Ot([r,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):te(this.states_);for(let n=0;n<this.states_.length;++n){let a=e[n],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[n]:this.cell.stateSize,i=[r,s];if(!v.arraysEqual(a.shape,i))throw new q(`State ${n} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${a.shape}`);this.states_[n]=a}}this.states_=this.states_.map(n=>mr(n.clone()))})}apply(e,t){let r=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let a=u8(e,r,n,this.numConstants);e=a.inputs,r=a.initialState,n=a.constants;let s=[],i=[];if(r!=null){t.initialState=r,s=s.concat(r),this.stateSpec=[];for(let o of r)this.stateSpec.push(new Zt({shape:o.shape}));i=i.concat(this.stateSpec)}if(n!=null&&(t.constants=n,s=s.concat(n),this.numConstants=n.length),s[0]instanceof pa){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let d=super.apply(o,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return X(()=>{let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;e=je(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new q(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:n},o=d8((p,c)=>{let m=this.cell.call([p].concat(c),i);return[m[0],m.slice(1)]},e,a,this.goBackwards,r,null,this.unroll,this.returnSequences),l=o[0],u=o[1],d=o[2];this.stateful&&this.resetStates(d,n);let h=this.returnSequences?u:l;return this.returnState?[h].concat(d):h})}getInitialState(e){return X(()=>{let t=Ot(e.shape);return t=ke(t,[1,2]),t=_h(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(r=>r>1?Vg(t,[1,r]):t):this.cell.stateSize>1?[Vg(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let r=this.cell.getConfig();return this.getClassName()===p8.className&&(t.cell={className:this.cell.getClassName(),config:r}),{...r,...e,...t}}static fromConfig(e,t,r={}){let n=t.cell,a=fa(n,r);return new e(Object.assign(t,{cell:a}))}},as=p8;as.className="RNN";ue.registerClass(as);var Bh=class extends st{},Im=class extends Bh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,gr(this.units,"units"),this.activation=Gs(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=$t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=$t(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=$t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ft(e.kernelRegularizer),this.recurrentRegularizer=Ft(e.recurrentRegularizer),this.biasRegularizer=Ft(e.biasRegularizer),this.kernelConstraint=lr(e.kernelConstraint),this.recurrentConstraint=lr(e.recurrentConstraint),this.biasConstraint=lr(e.biasConstraint),this.dropout=Pu([1,Vs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Pu([1,Vs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=mt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return X(()=>{if(e=e,e.length!==2)throw new q(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let r=e[1];e=e[0];let n=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=js({ones:()=>Pn(e),rate:this.dropout,training:n,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=js({ones:()=>Pn(r),rate:this.recurrentDropout,training:n,dropoutFunc:this.dropoutFunc}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Ma(L(e,s),this.kernel.read()):a=Ma(e,this.kernel.read()),this.bias!=null&&(a=va(a,this.bias.read())),i!=null&&(r=L(r,i));let o=le(a,Ma(r,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Us(this.activation),useBias:this.useBias,kernelInitializer:zt(this.kernelInitializer),recurrentInitializer:zt(this.recurrentInitializer),biasInitializer:zt(this.biasInitializer),kernelRegularizer:vt(this.kernelRegularizer),recurrentRegularizer:vt(this.recurrentRegularizer),biasRegularizer:vt(this.biasRegularizer),activityRegularizer:vt(this.activityRegularizer),kernelConstraint:or(this.kernelConstraint),recurrentConstraint:or(this.recurrentConstraint),biasConstraint:or(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return{...e,...t}}};Im.className="SimpleRNNCell";ue.registerClass(Im);var x5=class extends as{constructor(e){e.cell=new Im(e),super(e)}call(e,t){return X(()=>{this.cell.dropoutMask!=null&&(te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}static fromConfig(e,t){return new e(t)}};x5.className="SimpleRNN";ue.registerClass(x5);var Sm=class extends Bh{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new q("GRUCell does not support reset_after parameter set to true.");this.units=e.units,gr(this.units,"units"),this.activation=Gs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Gs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=$t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=$t(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=$t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ft(e.kernelRegularizer),this.recurrentRegularizer=Ft(e.recurrentRegularizer),this.biasRegularizer=Ft(e.biasRegularizer),this.kernelConstraint=lr(e.kernelConstraint),this.recurrentConstraint=lr(e.recurrentConstraint),this.biasConstraint=lr(e.biasConstraint),this.dropout=Pu([1,Vs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Pu([1,Vs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=mt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return X(()=>{if(e=e,e.length!==2)throw new q(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let r=t.training==null?!1:t.training,n=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=js({ones:()=>Pn(e),rate:this.dropout,training:r,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=js({ones:()=>Pn(n),rate:this.recurrentDropout,training:r,count:3,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=L(e,a[0]));let u=Ma(e,this.kernel.read());this.useBias&&(u=va(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(n=L(n,s[0]));let d=this.recurrentKernel.read(),[h,p]=Yt(d,[2*this.units,this.units],d.rank-1),c=Ma(n,h),[m,f,g]=Yt(u,3,u.rank-1),[y,A]=Yt(c,2,c.rank-1);i=this.recurrentActivation.apply(le(m,y)),o=this.recurrentActivation.apply(le(f,A));let x=Ma(L(o,n),p);l=this.activation.apply(le(g,x));let b=le(L(i,n),L(le(1,Mt(i)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Us(this.activation),recurrentActivation:Us(this.recurrentActivation),useBias:this.useBias,kernelInitializer:zt(this.kernelInitializer),recurrentInitializer:zt(this.recurrentInitializer),biasInitializer:zt(this.biasInitializer),kernelRegularizer:vt(this.kernelRegularizer),recurrentRegularizer:vt(this.recurrentRegularizer),biasRegularizer:vt(this.biasRegularizer),activityRegularizer:vt(this.activityRegularizer),kernelConstraint:or(this.kernelConstraint),recurrentConstraint:or(this.recurrentConstraint),biasConstraint:or(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return{...e,...t}}};Sm.className="GRUCell";ue.registerClass(Sm);var b5=class extends as{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Sm(e),super(e)}call(e,t){return X(()=>{this.cell.dropoutMask!=null&&(te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};b5.className="GRU";ue.registerClass(b5);var Wh=class extends Bh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,gr(this.units,"units"),this.activation=Gs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Gs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=$t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=$t(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=$t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Ft(e.kernelRegularizer),this.recurrentRegularizer=Ft(e.recurrentRegularizer),this.biasRegularizer=Ft(e.biasRegularizer),this.kernelConstraint=lr(e.kernelConstraint),this.recurrentConstraint=lr(e.recurrentConstraint),this.biasConstraint=lr(e.biasConstraint),this.dropout=Pu([1,Vs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Pu([1,Vs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=mt(e);let r=e[e.length-1];this.kernel=this.addWeight("kernel",[r,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let n;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;n=new(t=class extends Zn{apply(i,o){let l=a.apply([s]),u=new pm().apply([s]),d=a.apply([s*2]);return l4(l4(l,u),d)}},t.className="CustomInit",t)}else n=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,n,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return X(()=>{let r=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new q(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=e[1],a=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=js({ones:()=>Pn(e),rate:this.dropout,training:r,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=js({ones:()=>Pn(n),rate:this.recurrentDropout,training:r,count:4,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,d;0<this.dropout&&this.dropout<1&&(e=L(e,s[0]));let h=Ma(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(n=L(n,i[0])),h=le(h,Ma(n,this.recurrentKernel.read())),this.useBias&&(h=va(h,this.bias.read()));let[p,c,m,f]=Yt(h,4,h.rank-1);o=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(c),u=le(L(l,a),L(o,this.activation.apply(m))),d=this.recurrentActivation.apply(f);let g=L(d,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Us(this.activation),recurrentActivation:Us(this.recurrentActivation),useBias:this.useBias,kernelInitializer:zt(this.kernelInitializer),recurrentInitializer:zt(this.recurrentInitializer),biasInitializer:zt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:vt(this.kernelRegularizer),recurrentRegularizer:vt(this.recurrentRegularizer),biasRegularizer:vt(this.biasRegularizer),activityRegularizer:vt(this.activityRegularizer),kernelConstraint:or(this.kernelConstraint),recurrentConstraint:or(this.recurrentConstraint),biasConstraint:or(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return{...e,...t}}};Wh.className="LSTMCell";ue.registerClass(Wh);var v5=class extends as{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Wh(e),super(e)}call(e,t){return X(()=>{this.cell.dropoutMask!=null&&(te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};v5.className="LSTM";ue.registerClass(v5);var Cm=class extends Bh{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return X(()=>{e=e;let r=e.slice(1),n=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?n.push(r.splice(0,i.stateSize.length)):n.push(r.splice(0,1));n.reverse();let a=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];r=n[i],i===0?s=[e[0]].concat(r):s=[s[0]].concat(r),s=o.call(s,t),a.push(s.slice(1))}r=[];for(let i of a.slice().reverse())r.push(...i);return[s[0]].concat(r)})}build(e){Gg(e)&&(e=e[0]),e=e;let t;this.cells.forEach((r,n)=>{To(`RNNCell_${n}`,()=>{r.build(e),Array.isArray(r.stateSize)?t=r.stateSize[0]:t=r.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=n=>({className:n.getClassName(),config:n.getConfig()}),r={cells:this.cells.map(t)};return{...e,...r}}static fromConfig(e,t,r={}){let n=[];for(let a of t.cells)n.push(fa(a,r));return new e({cells:n})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let r of this.cells)t.push(...r.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return jg(e)}setWeights(e){let t=[];for(let r of this.cells){let n=r.weights.length,a=e.splice(n);for(let s=0;s<r.weights.length;++s)t.push([r.weights[s],a[s]])}U3(t)}};Cm.className="StackedRNNCells";ue.registerClass(Cm);function js(e){let{ones:t,rate:r,training:n=!1,count:a=1,dropoutFunc:s}=e,i=()=>s!=null?s(t(),r):yw(t(),r),o=()=>Oh(i,t,n);return!a||a<=1?mr(o().clone()):Array(a).fill(void 0).map(o).map(l=>mr(l.clone()))}var h8=class extends as{constructor(e){if(e.unroll)throw new Ve("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Ve("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new Zt({ndim:5})]}call(e,t){return X(()=>{if(this.cell.dropoutMask!=null&&(te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new q("ConvRNN2D cell does not support constants");let r=t==null?null:t.mask,n=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:r,training:n,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return X(()=>{let{stateSize:t}=this.cell,r=e.shape,n=this.computeSingleOutputShape(r),a=[n[0],...n.slice(2)],s=Ot(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){X(()=>{if(!this.stateful)throw new Ga("Cannot call resetStates() on an RNN Layer that is not stateful.");let r=this.inputSpec[0].shape,n=this.computeSingleOutputShape(r),a=[n[0],...n.slice(2)];if(r[0]==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ot(a)):this.states_=[Ot(a)];else if(e==null)te(this.states_),this.keptStates!=null&&(te(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ot(a)):this.states_[0]=Ot(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):te(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=a;if(!v.arraysEqual(i.shape,o))throw new q(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>mr(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:r,kernelSize:n,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],d=ma(l,n[0],a,s[0],i[0]),h=ma(u,n[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[r,d,h]:[d,h,r]]}};h8.className="ConvRNN2D";var Tm=class extends Wh{constructor(e){let{filters:t,kernelSize:r,strides:n,padding:a,dataFormat:s,dilationRate:i}=e;super({...e,units:t}),this.filters=t,gr(this.filters,"filters"),this.kernelSize=Su(r,2,"kernelSize"),this.kernelSize.forEach(o=>gr(o,"kernelSize")),this.strides=Su(n||1,2,"strides"),this.strides.forEach(o=>gr(o,"strides")),this.padding=a||"valid",Bn(this.padding),this.dataFormat=s||"channelsLast",jt(this.dataFormat),this.dilationRate=Su(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>gr(o,"dilationRate"))}build(e){var t;e=mt(e);let r=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[r]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[r]}`);let n=e[r],a=4,s=this.kernelSize.concat([n,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Zn{apply(d,h){let p=l.apply([u]),c=cn([u]),m=l.apply([u*2]);return P3([p,c,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return X(()=>{if(e.length!==3)throw new q(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=t.training||!1,n=e[0],a=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=js({ones:()=>Pn(n),rate:this.dropout,training:r,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,l=(V,re,Q)=>!re||!re[Q]?V:L(re[Q],V),u=l(n,o,0),d=l(n,o,1),h=l(n,o,2),p=l(n,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=js({ones:()=>Pn(a),rate:this.recurrentDropout,training:r,count:i,dropoutFunc:this.dropoutFunc}));let c=this.recurrentDropoutMask,m=l(a,c,0),f=l(a,c,1),g=l(a,c,2),y=l(a,c,3),A=3,[x,b,w,I]=Yt(this.kernel.read(),i,A),[T,E,R,O]=this.useBias?Yt(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,T,this.padding),d=this.inputConv(d,b,E,this.padding),h=this.inputConv(h,w,R,this.padding),p=this.inputConv(p,I,O,this.padding);let[$,S,P,z]=Yt(this.recurrentKernel.read(),i,A);m=this.recurrentConv(m,$),f=this.recurrentConv(f,S),g=this.recurrentConv(g,P),y=this.recurrentConv(y,z);let j=this.recurrentActivation.apply(le(u,m)),K=this.recurrentActivation.apply(le(d,f)),D=le(L(K,s),L(j,this.activation.apply(le(h,g)))),Y=L(this.recurrentActivation.apply(le(p,y)),this.activation.apply(D));return[Y,Y,D]})}getConfig(){let{units:e,...t}=super.getConfig(),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return{...t,...r}}inputConv(e,t,r,n){let a=Ds(e,t,this.strides,n||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return r?va(a,r,this.dataFormat):a}recurrentConv(e,t){return Ds(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Tm.className="ConvLSTM2DCell";ue.registerClass(Tm);var w5=class extends h8{constructor(e){let t=new Tm(e);super({...e,cell:t})}static fromConfig(e,t){return new e(t)}};w5.className="ConvLSTM2D";ue.registerClass(w5);var Nm=class extends st{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,r=[];for(let n=0;n<this.noiseShape.length;++n)r.push(this.noiseShape[n]==null?t[n]:this.noiseShape[n]);return r}call(e,t){return X(()=>{this.invokeCallHook(e,t);let r=je(e);if(0<this.rate&&this.rate<1){let n=t.training==null?!1:t.training,a=this.getNoiseShape(r);return Oh(()=>yw(r,this.rate,a,this.seed),()=>r,n)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Nm.className="Dropout";ue.registerClass(Nm);var k5=class extends Nm{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};k5.className="SpatialDropout1D";ue.registerClass(k5);var I5=class extends st{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,gr(this.units,"units"),this.activation=Gs(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=$t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=$t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=lr(e.kernelConstraint),this.biasConstraint=lr(e.biasConstraint),this.kernelRegularizer=Ft(e.kernelRegularizer),this.biasRegularizer=Ft(e.biasRegularizer),this.activityRegularizer=Ft(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=mt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=mt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return X(()=>{this.invokeCallHook(e,t);let r=je(e),n=dw(this.activation.getClassName()),a;return n!=null?a=Ma(r,this.kernel.read(),n,this.bias?this.bias.read():null):(a=Ma(r,this.kernel.read()),this.bias!=null&&(a=va(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:Us(this.activation),useBias:this.useBias,kernelInitializer:zt(this.kernelInitializer),biasInitializer:zt(this.biasInitializer),kernelRegularizer:vt(this.kernelRegularizer),biasRegularizer:vt(this.biasRegularizer),activityRegularizer:vt(this.activityRegularizer),kernelConstraint:or(this.kernelConstraint),biasConstraint:or(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};I5.className="Dense";ue.registerClass(I5);var S5=class extends st{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=mt(e);for(let t of e.slice(1))if(t==null)throw new q(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],$s(e,1)]}call(e,t){return X(()=>{this.invokeCallHook(e,t);let r=je(e);if(this.dataFormat==="channelsFirst"&&r.rank>1){let n=[0];for(let a=2;a<r.rank;++a)n.push(a);n.push(1),r=tt(r,n)}return pB(r)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};S5.className="Flatten";ue.registerClass(S5);var C5=class extends st{constructor(e){super(e),this.supportsMasking=!0,this.activation=Gs(e.activation)}call(e,t){return X(()=>{this.invokeCallHook(e,t);let r=je(e);return this.activation.apply(r)})}getConfig(){let e={activation:Us(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};C5.className="Activation";ue.registerClass(C5);var T5=class extends st{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return X(()=>(e=je(e),uB(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};T5.className="RepeatVector";ue.registerClass(T5);var N5=class extends st{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let r="Total size of new array must be unchanged.",n=t.slice(),a=1,s=null;for(let o=0;o<n.length;++o){let l=n[o];if(this.isUnknown(l))if(s===null)s=o;else throw new q("Can only specifiy one unknown dimension.");else a*=l}let i=$s(e);if(s!==null){if(a===0||i%a!==0)throw new q(r);n[s]=i/a}else if(i!==a)throw new q(r);return n}computeOutputShape(e){let t=!1;for(let r=0;r<e.length;++r)if(this.isUnknown(e[r])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return X(()=>{this.invokeCallHook(e,t);let r=je(e),n=r.shape,a=n.slice(0,1).concat(this.fixUnknownDimension(n.slice(1),this.targetShape));return U(r,a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};N5.className="Reshape";ue.registerClass(N5);var E5=class extends st{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=ya(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Zt({ndim:this.dims.length+1})]}computeOutputShape(e){e=mt(e);let t=e.slice();return this.dims.forEach((r,n)=>{t[n+1]=e[r]}),t}call(e,t){return tt(je(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};E5.className="Permute";ue.registerClass(E5);var R5=class extends st{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let r=je(e),n=-1;return F0(Fu(r,this.maskValue),n)}call(e,t){return X(()=>{this.invokeCallHook(e,t);let r=je(e),n=-1,a=!0,s=F0(Fu(r,this.maskValue),n,a);return L(r,me(s,r.dtype))})}};R5.className="Masking";ue.registerClass(R5);var $5=class extends st{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(Tt(e.inputLength))}this.inputDim=e.inputDim,gr(this.inputDim,"inputDim"),this.outputDim=e.outputDim,gr(this.outputDim,"outputDim"),this.embeddingsInitializer=$t(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Ft(e.embeddingsRegularizer),this.activityRegularizer=Ft(e.activityRegularizer),this.embeddingsConstraint=lr(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return X(()=>this.maskZero?(e=je(e),Fu(e,at(e))):null)}computeOutputShape(e){if(e=mt(e),this.inputLength==null)return[...e,this.outputDim];let t=Tt(this.inputLength);if(t.length!==e.length-1)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let r=0;for(let n=0;n<t.length;++n){let a=t[n],s=e[n+1];if(a!=null&&s!=null&&a!==s)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);a==null&&(t[r]=s),r++}}return[e[0],...t,this.outputDim]}call(e,t){return X(()=>{this.invokeCallHook(e,t);let r=je(e);r.dtype!=="int32"&&(r=um(r,"int32"));let n=gw(this.embeddings.read(),U(r,[r.size]));return U(n,mt(this.computeOutputShape(r.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:zt(this.embeddingsInitializer),embeddingsRegularizer:vt(this.embeddingsRegularizer),activityRegularizer:vt(this.activityRegularizer),embeddingsConstraint:or(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};$5.className="Embedding";ue.registerClass($5);var Ol=class extends st{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Ve}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let r=e.slice(0,e.length-t.length);for(let n=0;n<t.length;++n){let a=e[e.length-t.length+n],s=t[n];if(a==null||s==null||a<0||s<0)r.push(null);else if(a===1)r.push(s);else if(s===1)r.push(a);else{if(a!==s)throw new q("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));r.push(a)}}return r}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[mt(e)]),e=e,e.length<2)throw new q(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let a of e)a!=null&&a[0]!==null&&t.push(a[0]);if(t=Rs(t),t.length>1)throw new q(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let r=e[0]==null?null:e[0].slice(1);for(let a=1;a<e.length;++a){let s=e[a]==null?null:e[a].slice(1);r=this.computeElementwiseOpOutputShape(r,s)}let n=e.map(a=>a.length);e.indexOf(null)===-1&&Rs(n).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return X(()=>{if(e=e,this.reshapeRequired){let r=[],n=e.map(a=>a.rank);if(n.indexOf(null)===-1){let a=Vs(n);for(let s of e){let i=s.rank;for(let o=0;o<a-i;++o)s=_h(s,1);r.push(s)}return this.mergeFunction(r)}else{let a=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,d=u[0],h=u.slice(1).concat([d]),p=U(o,[d].concat($s(u.slice(1))));p=tt(p,[1,0]),p=U(p,h),r.push(p),a=!0}else if(l>1){let u=ya(1,l).concat([0]);r.push(tt(o,u)),a=!0}else r.push(o)}let s=this.mergeFunction(r),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,u=o[l-1],d=[u].concat(o.slice(0,o.length-1));s=U(tt(U(s,[-1,u]),[1,0]),d)}else if(i>1){let o=[i-1].concat(ya(0,i-1));s=tt(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let n=1;n<e.length;++n){let a=e[n]==null?null:e[n].slice(1);t=this.computeElementwiseOpOutputShape(t,a)}let r=[];for(let n of e)n!=null&&n[0]!==null&&r.push(n[0]);return r=Rs(r),r.length===1?t=r.concat(t):t=[null].concat(t),t}computeMask(e,t){return X(()=>{if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an Array");if(!Array.isArray(e))throw new q("`inputs` should be an Array");if(t.length!==e.length)throw new q(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(n=>n==null))return null;t=t.map(n=>n==null?n:Kt(n,0));let r=t[0];for(let n=1;n<t.length-1;++n)r=ga(r,t[n]);return r})}},M5=class extends Ol{constructor(e){super(e)}mergeFunction(e){return X(()=>{let t=e[0].clone();for(let r=1;r<e.length;++r)t=le(t,e[r]);return t})}};M5.className="Add";ue.registerClass(M5);var F5=class extends Ol{constructor(e){super(e)}mergeFunction(e){return X(()=>{let t=e[0].clone();for(let r=1;r<e.length;++r)t=L(t,e[r]);return t})}};F5.className="Multiply";ue.registerClass(F5);var _5=class extends Ol{constructor(e){super(e)}mergeFunction(e){return X(()=>{let t=e[0].clone();for(let r=1;r<e.length;++r)t=le(t,e[r]);return L(1/e.length,t)})}};_5.className="Average";ue.registerClass(_5);var P5=class extends Ol{constructor(e){super(e)}mergeFunction(e){return X(()=>{let t=e[0];for(let r=1;r<e.length;++r)t=ts(t,e[r]);return t})}};P5.className="Maximum";ue.registerClass(P5);var O5=class extends Ol{constructor(e){super(e)}mergeFunction(e){return X(()=>{let t=e[0];for(let r=1;r<e.length;++r)t=Rh(t,e[r]);return t})}};O5.className="Minimum";ue.registerClass(O5);var z5=class extends Ol{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new q("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let n of e)if(n!=null){t=!1;break}if(t)return;let r=[];for(let n=0;n<e.length;++n){let a=e[n].slice();a.splice(this.axis,1);let s=!1;for(let i of r)if(v.arraysEqual(i,a)){s=!0;break}s||r.push(a)}if(r.length>1)throw new q("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return X(()=>P3(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new q("A `Concatenate` layer should be called on a list of inputs.");let t=e,r=t[0].slice(),n=this.axis<0?r.length+this.axis:this.axis;for(let a of t.slice(1)){if(r[n]==null||a[n]==null){r[n]=null;break}r[n]+=a[n]}return r}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new q("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new q(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return X(()=>{let r=!0;if(t.forEach(s=>{if(s!=null){r=!1;return}}),r)return null;let n=[];for(let s=0;s<e.length;++s)t[s]==null?n.push(me(Pn(e[s]),"bool")):t[s].rank<e[s].rank?n.push(Kt(t[s],-1)):n.push(t[s]);let a=St(n,this.axis);return Zy(a,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};z5.className="Concatenate";ue.registerClass(z5);function Sp(e,t){for(;e<0;)e+=t;return e}function tG(e,t,r){if(e.shape.length>3||t.shape.length>3)throw new Ve("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof r=="number"&&(r=[r,r]),e.dtype==="complex64"||t.dtype==="complex64")throw new Ve("batchDot is not implemented for complex64-type Tensors yet.");let n=e.shape.length,a=t.shape.length;r==null&&(r=[n-1,a-2]);let s=r;return X(()=>{let i;if(n>a){i=n-a;let l=[];for(let u=0;u<i;++u)l.push(1);t=U(t,t.shape.concat(l))}else if(a>n){i=a-n;let l=[];for(let u=0;u<i;++u)l.push(1);e=U(e,e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=ke(L(e,t),s[0]):o=ke(L(tt(e,[1,0]),t),s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=Ye(e,t,l,u)}if(i>0){let l;n>a?l=n+a-3:l=n-1;let u=[];for(let d=l;d<l+i;++d)u.push(d);o=et(o,u)}return o.shape.length===1&&(o=Kt(o,1)),o})}var D5=class extends Ol{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],r=e[1];if(t.length>3||r.length>3)throw new Ve("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,r);if(t[n[0]]!==r[n[1]])throw new q(`Dimension incompatibility: ${t[n[0]]} !== ${r[n[1]]}`)}mergeFunction(e){if(e.length!==2)throw new q(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],r=e[1],n;return Array.isArray(this.axes)?n=this.axes.map((a,s)=>Sp(a,e[s].shape.length)):n=[Sp(this.axes,t.shape.length),Sp(this.axes,r.shape.length)],this.normalize&&(t=B0(t,n[0]),r=B0(r,n[1])),tG(t,r,n)}interpretAxes(e,t){let r;return Array.isArray(this.axes)?r=this.axes:r=[Sp(this.axes,e.length),Sp(this.axes,t.length)],r}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),r=e[1].slice();if(t.length>3||r.length>3)throw new Ve("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,r);t.splice(n[0],1),r.splice(n[1],1),r.splice(0,1);let a=t.concat(r);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};D5.className="Dot";ue.registerClass(D5);var L5=class extends st{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return X(()=>{this.invokeCallHook(e,t);let r=je(e);return Oh(()=>le(dm(r.shape,0,this.stddev),r),()=>r,t.training||!1)})}};L5.className="GaussianNoise";ue.registerClass(L5);var B5=class extends st{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return X(()=>{this.invokeCallHook(e,t);let r=je(e);return this.rate>0&&this.rate<1?Oh(()=>{let n=Math.sqrt(this.rate/(1-this.rate));return L(r,dm(r.shape,1,n))},()=>r,t.training||!1):r})}};B5.className="GaussianDropout";ue.registerClass(B5);var W5=class extends st{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||je(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return X(()=>{if(this.rate<1&&this.rate>0){let r=this._getNoiseShape(e);return Oh(()=>{let n=je(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=$l(kd(r),this.rate);o=um(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,d=le(L(n,o),L(le(o,-1),i));return le(L(d,l),u)},()=>je(e),t.training||!1)}return e})}};W5.className="AlphaDropout";ue.registerClass(W5);function Qp(e,t,r,n,a,s=.001){let i;if(e.rank===2)i=rv(e,t,r,n,a,s);else if(e.rank===3)i=nv(e,t,r,n,a,s);else if(e.rank===4)i=av(e,t,r,n,a,s);else throw new Ve(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function rG(e,t,r,n,a=.001){return X(()=>{let s=jf(e,n),i=s.mean,o=s.variance;return[Qp(e,i,o,r,t,a),i,o]})}function nG(e,t,r,n,a=.001){return X(()=>{let s=jf(e,n),i=s.mean,o=s.variance,l=[];for(let c of ya(0,e.rank))n.indexOf(c)!==-1?l.push(1):l.push(e.shape[c]);let u=U(i,l),d=U(o,l),h=t==null?null:U(t,l),p=r==null?null:U(r,l);return[Qp(e,u,d,p,h,a),i,o]})}function aG(e,t,r,n,a=.001){return v.arraysEqual(n.slice().sort(),ya(0,e.rank-1))?rG(e,t,r,n,a):nG(e,t,r,n,a)}var V5=class extends st{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=$t(e.betaInitializer||"zeros"),this.gammaInitializer=$t(e.gammaInitializer||"ones"),this.movingMeanInitializer=$t(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=$t(e.movingVarianceInitializer||"ones"),this.betaConstraint=lr(e.betaConstraint),this.gammaConstraint=lr(e.gammaConstraint),this.betaRegularizer=Ft(e.betaRegularizer),this.gammaRegularizer=Ft(e.gammaRegularizer)}build(e){e=mt(e);let t=this.axis>=0?this.axis:this.axis+e.length,r=e[t];if(r==null)throw new q(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Zt({ndim:e.length,axes:{[t]:r}})];let n=[r];this.scale&&(this.gamma=this.addWeight("gamma",n,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",n,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",n,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",n,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return X(()=>{let r=t.training==null?!1:t.training,n=je(e),a=n.shape,s=a.length,i=ya(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Po(1,s);l[o]=a[o];let u=i.slice();u.sort();let d=!v.arraysEqual(u,ya(0,s).slice(0,s-1)),h=()=>{if(d){let g=U(this.movingMean.read(),l),y=U(this.movingVariance.read(),l),A=this.center?U(this.beta.read(),l):null,x=this.scale?U(this.gamma.read(),l):null;return Qp(n,g,y,A,x,this.epsilon)}else return Qp(n,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!r)return h();let[p,c,m]=aG(n,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,y,A)=>{X(()=>{let x=1-A,b=g.read(),w=L(ce(b,y),x);g.write(ce(b,w))})};return f(this.movingMean,c,this.momentum),f(this.movingVariance,m,this.momentum),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:zt(this.betaInitializer),gammaInitializer:zt(this.gammaInitializer),movingMeanInitializer:zt(this.movingMeanInitializer),movingVarianceInitializer:zt(this.movingVarianceInitializer),betaRegularizer:vt(this.betaRegularizer),gammaRegularizer:vt(this.gammaRegularizer),betaConstraint:or(this.betaConstraint),gammaConstraint:or(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};V5.className="BatchNormalization";ue.registerClass(V5);var U5=class extends st{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=$t(e.betaInitializer||"zeros"),this.gammaInitializer=$t(e.gammaInitializer||"ones"),this.betaRegularizer=Ft(e.betaRegularizer),this.gammaRegularizer=Ft(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=mt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a<this.axis.length;++a)this.axis[a]<0&&(this.axis[a]+=t);for(let a of this.axis)if(a<0||a>=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Rs(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let r=this.axis.map(a=>e[a]),n=!0;this.scale?this.gamma=this.addWeight("gamma",r,"float32",this.gammaInitializer,this.gammaRegularizer,n):this.gamma=null,this.center?this.beta=this.addWeight("beta",r,"float32",this.betaInitializer,this.betaRegularizer,n):this.beta=null,this.built=!0}call(e,t){let r=je(e),n=r.shape,a=n.length;return X(()=>{let{mean:s,variance:i}=jf(r,this.axis,!0),o=Po(1,a);for(let c of this.axis)o[c]=n[c];let l=c=>c!=null&&c.shape.length!==a?U(c,o):c,u=this.scale?l(this.gamma.read()):null,d=this.center?l(this.beta.read()):null,h=[],p=[];for(let c=0;c<a;++c)this.axis.indexOf(c)!==-1?(h.push(n[c]),p.push(1)):(h.push(1),p.push(n[c]));return s=jn(s,h),i=jn(i,h),u!=null&&(u=jn(u,p)),d!=null&&(d=jn(d,p)),Qp(r,s,i,d,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:zt(this.betaInitializer),gammaInitializer:zt(this.gammaInitializer),betaRegularizer:vt(this.betaRegularizer),gammaRegularizer:vt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};U5.className="LayerNormalization";ue.registerClass(U5);function sG(e,t,r){return X(()=>{if(e.rank!==4)throw new q(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new q("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(r==null&&(r=Aa()),r!=="channelsLast"&&r!=="channelsFirst")throw new q(`Unknown data format: ${r}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let n;return r==="channelsFirst"?n=[[0,0],[0,0],t[0],t[1]]:n=[[0,0],t[0],t[1],[0,0]],Xn(e,n)})}var G5=class extends st{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Aa():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new q(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,r;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],r=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new q(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new q(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);r=e.padding[1]}this.padding=[t,r]}this.inputSpec=[new Zt({ndim:4})]}computeOutputShape(e){e=mt(e);let t,r;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?r=e[3]+this.padding[1][0]+this.padding[1][1]:r=null,[e[0],e[1],t,r]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?r=e[2]+this.padding[1][0]+this.padding[1][1]:r=null,[e[0],t,r,e[3]])}call(e,t){return X(()=>sG(je(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};G5.className="ZeroPadding2D";ue.registerClass(G5);function Em(e,t,r,n,a,s){return X(()=>{jt(a),hw(s),Bn(n),r==null&&(r=[1,1]),n==null&&(n="valid"),a==null&&(a=Aa()),s==null&&(s="max"),e=d5(e,a);let i,o=n==="same"?"same":"valid";return s==="max"?i=Gf(e,t,r,o):i=Of(e,t,r,o),a==="channelsFirst"&&(i=tt(i,[0,3,1,2])),i})}function c8(e,t,r,n,a,s){return X(()=>{jt(a),hw(s),Bn(n),r==null&&(r=[1,1,1]),n==null&&(n="valid"),a==null&&(a=Aa()),s==null&&(s="max"),e=a8(e,a);let i,o=n==="same"?"same":"valid";return s==="max"?i=c3(e,t,r,o):i=Jy(e,t,r,o),a==="channelsFirst"&&(i=tt(i,[0,4,1,2,3])),i})}var f8=class extends st{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new q(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(gr(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new q(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);gr(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Bn(this.padding),this.inputSpec=[new Zt({ndim:3})]}computeOutputShape(e){e=mt(e);let t=ma(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return X(()=>{this.invokeCallHook(e,t),e=_h(je(e),2);let r=this.poolingFunction(je(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return et(r,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},j5=class extends f8{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return jt(a),Bn(n),Em(e,t,r,n,a,"max")}};j5.className="MaxPooling1D";ue.registerClass(j5);var H5=class extends f8{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return jt(a),Bn(n),Em(e,t,r,n,a,"avg")}};H5.className="AveragePooling1D";ue.registerClass(H5);var m8=class extends st{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new q(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];gr(this.poolSize,"poolSize"),gr(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),Bn(this.padding),this.inputSpec=[new Zt({ndim:4})]}computeOutputShape(e){e=mt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],r=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=ma(t,this.poolSize[0],this.padding,this.strides[0]),r=ma(r,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,r]:[e[0],t,r,e[3]]}call(e,t){return X(()=>(this.invokeCallHook(e,t),this.poolingFunction(je(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},q5=class extends m8{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return jt(a),Bn(n),Em(e,t,r,n,a,"max")}};q5.className="MaxPooling2D";ue.registerClass(q5);var X5=class extends m8{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return jt(a),Bn(n),Em(e,t,r,n,a,"avg")}};X5.className="AveragePooling2D";ue.registerClass(X5);var g8=class extends st{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new q(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];gr(this.poolSize,"poolSize"),gr(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),Bn(this.padding),this.inputSpec=[new Zt({ndim:5})]}computeOutputShape(e){e=mt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],r=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=ma(t,this.poolSize[0],this.padding,this.strides[0]),r=ma(r,this.poolSize[1],this.padding,this.strides[1]),n=ma(n,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,r,n]:[e[0],t,r,n,e[4]]}call(e,t){return X(()=>(this.invokeCallHook(e,t),this.poolingFunction(je(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},K5=class extends g8{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return jt(a),Bn(n),c8(e,t,r,n,a,"max")}};K5.className="MaxPooling3D";ue.registerClass(K5);var Z5=class extends g8{constructor(e){super(e)}poolingFunction(e,t,r,n,a){return jt(a),Bn(n),c8(e,t,r,n,a,"avg")}};Z5.className="AveragePooling3D";ue.registerClass(Z5);var y8=class extends st{constructor(e){super(e),this.inputSpec=[new Zt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Ve}},Y5=class extends y8{constructor(e){super(e||{})}call(e,t){return X(()=>{let r=je(e);return Vt(r,1)})}};Y5.className="GlobalAveragePooling1D";ue.registerClass(Y5);var J5=class extends y8{constructor(e){super(e||{})}call(e,t){return X(()=>{let r=je(e);return yr(r,1)})}};J5.className="GlobalMaxPooling1D";ue.registerClass(J5);var A8=class extends st{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),this.inputSpec=[new Zt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Ve}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Q5=class extends A8{call(e,t){return X(()=>{let r=je(e);return this.dataFormat==="channelsLast"?Vt(r,[1,2]):Vt(r,[2,3])})}};Q5.className="GlobalAveragePooling2D";ue.registerClass(Q5);var eA=class extends A8{call(e,t){return X(()=>{let r=je(e);return this.dataFormat==="channelsLast"?yr(r,[1,2]):yr(r,[2,3])})}};eA.className="GlobalMaxPooling2D";ue.registerClass(eA);var x8=class extends st{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,r={}){let n=t.layer,a=fa(n,r);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},tA=class extends x8{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=mt(e),e.length<3)throw new q(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=mt(e);let t=[e[0]].concat(e.slice(2)),r=this.layer.computeOutputShape(t),n=e[1];return[r[0],n].concat(r.slice(1))}call(e,t){return X(()=>(e=je(e),d8((r,n)=>[je(this.layer.call(r,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};tA.className="TimeDistributed";ue.registerClass(tA);function iG(e){_l(aB,"BidirectionalMergeMode",e)}var oG="concat",rA=class extends x8{constructor(e){super(e);let t=e.layer.getConfig(),r={};r.className=e.layer.getClassName(),r.config=t,this.forwardLayer=fa(r),t.goBackwards=t.goBackwards!==!0;let n={};if(n.className=e.layer.getClassName(),n.config=t,this.backwardLayer=fa(n),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?oG:e.mergeMode,iG(this.mergeMode),e.weights)throw new Ve("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,r=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,r)),this.backwardLayer.setWeights(e.slice(r))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let r,n,a;return this.returnState&&(a=t.slice(1)),r=t[0],r=r,this.mergeMode==="concat"?(r[r.length-1]*=2,n=[r]):this.mergeMode==null?n=[r,r.slice()]:n=[r],this.returnState?this.mergeMode==null?n.concat(a).concat(a.slice()):[r].concat(a).concat(a.slice()):rn(n)}apply(e,t){let r=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let a=u8(e,r,n,this.numConstants);if(e=a.inputs,r=a.initialState,n=a.constants,Array.isArray(e)&&(r=e.slice(1),e=e[0]),(r==null||r.length===0)&&n==null)return super.apply(e,t);let s=[],i=[];if(r!=null){let l=r.length;if(l%2>0)throw new q("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=r,s.push(...r);let u=r.map(d=>new Zt({shape:d.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(n!=null)throw new Ve("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof pa;for(let l of s)if(l instanceof pa!==o)throw new q("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),d=this.inputSpec;this.inputSpec=u;let h=super.apply(l,t);return this.inputSpec=d,h}else return super.apply(e,t)}call(e,t){return X(()=>{let r=t.initialState,n,a;if(r==null)n=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=r.slice(0,r.length/2),l=r.slice(r.length/2);n=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(n)&&(s=n.slice(1).concat(a.slice(1))),n=n[0],a=a[0]),this.returnSequences&&(a=On(a,1));let i;return this.mergeMode==="concat"?i=P3([n,a]):this.mergeMode==="sum"?i=le(n,a):this.mergeMode==="ave"?i=L(.5,le(n,a)):this.mergeMode==="mul"?i=L(n,a):this.mergeMode==null&&(i=[n,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){To(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),To(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let r;if(this.returnSequences?this.mergeMode==null?r=[t,t]:r=t:this.mergeMode==null?r=[null,null]:r=null,this.returnState){let n=this.forwardLayer.states.map(a=>null);return Array.isArray(r)?r.concat(n).concat(n):[r].concat(n).concat(n)}else return r}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let r=fa(t.layer);if(delete t.layer,t.numConstants!=null)throw new Ve("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let n=t;return n.layer=r,new e(n)}};rA.className="Bidirectional";ue.registerClass(rA);function lG(e){return new Cd(e)}function uG(e){return new o5(e)}function dG(e){return new a5(e)}function pG(e){return new s5(e)}function hG(e){return new i5(e)}function cG(e){return new u5(e)}function fG(e){return new l5(e)}function mG(e){return new m5(e)}function gG(e){return new wm(e)}function yG(e){return new h5(e)}function AG(e){return new km(e)}function xG(e){return new c5(e)}function bG(e){return new f5(e)}function vG(e){return new g5(e)}function wG(e){return new y5(e)}function kG(e){return new A5(e)}function IG(e){return new C5(e)}function SG(e){return new I5(e)}function CG(e){return new Nm(e)}function TG(e){return new k5(e)}function NG(e){return new S5(e)}function EG(e){return new T5(e)}function RG(e){return new N5(e)}function $G(e){return new E5(e)}function MG(e){return new $5(e)}function FG(e){return new M5(e)}function _G(e){return new _5(e)}function PG(e){return new z5(e)}function OG(e){return new P5(e)}function zG(e){return new O5(e)}function DG(e){return new F5(e)}function LG(e){return new D5(e)}function BG(e){return new V5(e)}function WG(e){return new U5(e)}function VG(e){return new G5(e)}function nA(e){return new H5(e)}function UG(e){return nA(e)}function GG(e){return nA(e)}function aA(e){return new X5(e)}function jG(e){return aA(e)}function HG(e){return aA(e)}function sA(e){return new Z5(e)}function qG(e){return sA(e)}function XG(e){return sA(e)}function KG(e){return new Y5(e)}function ZG(e){return new Q5(e)}function b8(e){return new J5(e)}function v8(e){return new eA(e)}function w8(e){return new j5(e)}function k8(e){return new q5(e)}function YG(e){return new K5(e)}function JG(e){return new b5(e)}function QG(e){return new Sm(e)}function ej(e){return new v5(e)}function tj(e){return new Wh(e)}function rj(e){return new x5(e)}function nj(e){return new Im(e)}function aj(e){return new w5(e)}function sj(e){return new Tm(e)}function ij(e){return new as(e)}function oj(e){return new Cm(e)}function lj(e){return new rA(e)}function uj(e){return new tA(e)}var dj=b8,pj=v8,hj=w8,cj=k8;function fj(e){return new L5(e)}function mj(e){return new B5(e)}function gj(e){return new W5(e)}function yj(e){return new R5(e)}var I8={};Be(I8,{MAPE:()=>Nj,MSE:()=>$j,binaryAccuracy:()=>Aj,binaryCrossentropy:()=>xj,categoricalAccuracy:()=>vj,categoricalCrossentropy:()=>wj,cosineProximity:()=>Sj,mape:()=>Ej,meanAbsoluteError:()=>Cj,meanAbsolutePercentageError:()=>Tj,meanSquaredError:()=>Rj,mse:()=>Mj,precision:()=>kj,recall:()=>Ij,sparseCategoricalAccuracy:()=>bj});function Aj(e,t){return Y3(e,t)}function xj(e,t){return _w(e,t)}function bj(e,t){return Pw(e,t)}function vj(e,t){return J3(e,t)}function wj(e,t){return Q3(e,t)}function kj(e,t){return Fw(e,t)}function Ij(e,t){return hU(e,t)}function Sj(e,t){return Z3(e,t)}function Cj(e,t){return xm(e,t)}function Tj(e,t){return Td(e,t)}function Nj(e,t){return Td(e,t)}function Ej(e,t){return Td(e,t)}function Rj(e,t){return Pl(e,t)}function $j(e,t){return Pl(e,t)}function Mj(e,t){return Pl(e,t)}var S8={};Be(S8,{modelFromJSON:()=>VU});var C8={};Be(C8,{l1:()=>_j,l1l2:()=>Fj,l2:()=>Pj});function Fj(e){return new Dh(e)}function _j(e){return ZU(e)}function Pj(e){return YU(e)}var T8=class extends Ou{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof Ka))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function s0(e,t){return e<t}function $4(e,t){return e>t}var N8=class extends T8{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Ve("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=s0:this.mode==="max"?this.monitorFunc=$4:this.monitor.indexOf("acc")!==-1?this.monitorFunc=$4:this.monitorFunc=s0,this.monitorFunc===s0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===s0?1/0:-1/0}async onEpochEnd(e,t){await Ss(t);let r=this.getMonitorValue(t);r!=null&&(this.monitorFunc(r-this.minDelta,this.best)?(this.best=r,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Oj(e){return new N8(e)}var zj={earlyStopping:Oj},Dj=Z();Dj.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var E8=(e=>(e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF",e))(E8||{}),M4;(e=>{let t;(r=>{r[r.LEGACY=0]="LEGACY",r[r.V1=1]="V1",r[r.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(M4||(M4={}));var iA={};function Lj(e,t){let r={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};iA[e]=r}function R8(e){return iA[e]}function Bj(e){delete iA[e]}function k(e,t,r,n,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return Br(t.inputNames[s.inputIndexStart],r,n,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>Br(h,r,n,a));let u=Br(t.inputNames.slice(o)[0],r,n,a),d=u.dataSync();return s.type==="number"?d[0]:v.toNestedArray(u.shape,d)}let i=t.attrParams[e];return i&&i.value}function Br(e,t,r,n){let[a,s]=pn(e);if(n!=null){let o=n.getHashTableHandleByName(a);if(o!=null)return o}let i=r.currentContextIds.find(o=>!!t[j0(a,o)]);return i!==void 0?t[j0(a,i)][s]:void 0}function Wj(e,t,r){return t[j0(e,r.currentContextId)]}function Ra(e,t){let[r,n,a]=pn(e);return[j0(r,t&&t.currentContextId),n,a]}function j0(e,t){return t?`${e}-${t}`:e}function pn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let r=t[0],n=t.length===3?t[1]:void 0,a=Number(t[t.length-1]);return[r,a,n]}function f0(e,t,r){let n=k("pad",e,t,r);if(n==="explicit"){n=k("explicitPaddings",e,t,r);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=n[s*2],a[s][1]=n[s*2+1];return a}return n}function Ha(e){return e.kept?e:Vr(e)}var $8={};Be($8,{json:()=>Vj});var Vj=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],M8={};Be(M8,{json:()=>Uj});var Uj=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],F8={};Be(F8,{json:()=>Gj});var Gj=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],_8={};Be(_8,{json:()=>jj});var jj=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],P8={};Be(P8,{json:()=>Hj});var Hj=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],O8={};Be(O8,{json:()=>qj});var qj=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],z8={};Be(z8,{json:()=>Xj});var Xj=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],D8={};Be(D8,{json:()=>Kj});var Kj=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],L8={};Be(L8,{json:()=>Zj});var Zj=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],B8={};Be(B8,{json:()=>Yj});var Yj=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],W8={};Be(W8,{json:()=>Jj});var Jj=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],V8={};Be(V8,{json:()=>Qj});var Qj=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],U8={};Be(U8,{json:()=>eH});var eH=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],G8={};Be(G8,{json:()=>tH});var tH=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],j8={};Be(j8,{json:()=>rH});var rH=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],H8={};Be(H8,{json:()=>nH});var nH=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],q8={};Be(q8,{json:()=>aH});var aH=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],X8={};Be(X8,{json:()=>sH});var sH=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],K8={};Be(K8,{json:()=>iH});var iH=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],F4=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[$8,M8,F8,_8,P8,O8,z8,D8,L8,B8,W8,V8,U8,G8,j8,H8,q8,X8,K8],t=[].concat(...e.map(r=>r.json));this.opMappers=t.reduce((r,n)=>(r[n.tfOpName]=n,r),{})}transformGraph(e,t={}){let r=e.node,n=[],a=[],s=[],i=r.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?n.push(m[f.name]):f.op==="Const"?a.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},d={};t!=null&&(u=this.mapSignatureEntries(t.inputs),d=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(m=>{let f=i[m];f.inputNames.forEach((g,y)=>{let[A,,x]=Ra(g),b=i[A];if(b.outputs!=null){let w=b.outputs.indexOf(x);if(w!==-1){let I=`${A}:${w}`;f.inputNames[y]=I}}f.inputs.push(b),b.children.push(f)})}),Object.keys(d).length===0?h.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(d).forEach(m=>{let[f]=Ra(m),g=i[f];g!=null&&(g.signatureKey=d[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=Ra(m),g=i[f];g&&(g.signatureKey=u[m],o.push(g))}):o=n;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let c={nodes:i,inputs:o,outputs:l,weights:a,placeholders:n,signature:t,functions:p};return s.length>0&&(c.initNodes=s),c}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,r)=>(t[e[r].name]=r,t),{})}mapNode(e){let t=R8(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let r={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(n=>n.startsWith("^")?n.slice(1):n),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(r.inputParams=t.inputs.reduce((n,a)=>(n[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},n),{})),t.attrs!=null&&(r.attrParams=t.attrs.reduce((n,a)=>{let s=a.type,i;switch(a.type){case"string":i=Jg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Jg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=sy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=sy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=ey(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=ey(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=ay(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=ay(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=Qg(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Qg(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=oy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=oy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=ny(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=ny(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=iy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=iy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=ty(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=ty(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=ry(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=ry(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=_4(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=_4(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return n[a.name]={value:i,type:s},n},{})),r}mapFunction(e){let t=e.nodeDef,r=[],n=[],a={};t!=null&&(a=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&n.push(u[d.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[d]=Ra(u.name),h={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:oA(u.type),type:"dtype"}},children:[]};h.signatureKey=u.name,s.push(h),a[d]=h}),Object.keys(a).forEach(u=>{let d=a[u];d.inputNames.forEach((h,p)=>{let[c,,m]=Ra(h),f=a[c];if(f.outputs!=null){let g=f.outputs.indexOf(m);if(g!==-1){let y=`${c}:${g}`;d.inputNames[p]=y}}d.inputs.push(f),f.children.push(d)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[d,h]=Ra(o[u.name]),p=a[d];p!=null&&(p.defaultOutput=h,i.push(p))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:n,placeholders:r,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,r)=>(t[r.name]=this.mapArgToTensorInfo(r),t),{}),outputs:e.signature.outputArg.reduce((t,r)=>(t[r.name]=this.mapArgToTensorInfo(r,e.ret),t),{})}}mapArgToTensorInfo(e,t){let r=e.name;return t!=null&&(r=t[r]),{name:r,dtype:e.type}}};function oH(e){let t=Z().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function Z8(e,t){let r=Array.isArray(e)?String.fromCharCode.apply(null,e):oH(e);return t?r:r.toLowerCase()}function Jg(e,t,r,n=!1){let a=e[t];return a!=null?Z8(a.s,n):r}function Qg(e,t,r){let n=e[t];return n?n.b:r}function ey(e,t,r){let n=e[t]||{},a=n.i!=null?n.i:n.f!=null?n.f:r;return typeof a=="number"?a:parseInt(a,10)}function oA(e){switch(typeof e=="string"&&(e=E8[e]),e){case 1:case 19:return"float32";case 3:case 9:case 6:case 4:return"int32";case 10:return"bool";case 2:return"float32";case 7:return"string";default:return null}}function _4(e,t,r){let n=e[t];return n&&n.func?n.func.name:r}function ty(e,t,r){let n=e[t];return n&&n.type?oA(n.type):r}function ry(e,t,r){let n=e[t];return n&&n.list&&n.list.type?n.list.type.map(a=>oA(a)):r}function Y8(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function ny(e,t,r){let n=e[t];return n&&n.shape?Y8(n.shape):r}function ay(e,t,r){let n=e[t];return n?((n.list.f&&n.list.f.length?n.list.f:n.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):r}function sy(e,t,r,n=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>Z8(s,n)):r}function iy(e,t,r){let n=e[t];return n&&n.list&&n.list.shape?n.list.shape.map(a=>Y8(a)):r}function oy(e,t,r){let n=e[t];return n&&n.list&&n.list.b?n.list.b:r}var lH=class{constructor(e,t,r){this.node=e,this.tensorMap=t,this.context=r,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(n=>this.getInput(n)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((n,a)=>(n[a]=this.getAttr(a),n),{}))}getInput(e){return Br(e,this.tensorMap,this.context)}getAttr(e,t){let r=this.node.rawAttrs[e];if(r.tensor!=null)return Br(e,this.tensorMap,this.context);if(r.i!=null||r.f!=null)return ey(this.node.rawAttrs,e,t);if(r.s!=null)return Jg(this.node.rawAttrs,e,t);if(r.b!=null)return Qg(this.node.rawAttrs,e,t);if(r.shape!=null)return ny(this.node.rawAttrs,e,t);if(r.type!=null)return ty(this.node.rawAttrs,e,t);if(r.list!=null){if(r.list.i!=null||r.list.f!=null)return ay(this.node.rawAttrs,e,t);if(r.list.s!=null)return sy(this.node.rawAttrs,e,t);if(r.list.shape!=null)return iy(this.node.rawAttrs,e,t);if(r.list.b!=null)return oy(this.node.rawAttrs,e,t);if(r.list.type!=null)return ry(this.node.rawAttrs,e,t)}return t}},uH=(e,t,r)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[le(k("a",e,t,r),k("b",e,t,r))];case"AddN":return[Pf(k("tensors",e,t,r))];case"FloorMod":case"Mod":return[wd(k("a",e,t,r),k("b",e,t,r))];case"Mul":return[L(k("a",e,t,r),k("b",e,t,r))];case"RealDiv":case"Div":return[pe(k("a",e,t,r),k("b",e,t,r))];case"DivNoNan":return[mv(k("a",e,t,r),k("b",e,t,r))];case"FloorDiv":return[Sh(k("a",e,t,r),k("b",e,t,r))];case"Sub":return[ce(k("a",e,t,r),k("b",e,t,r))];case"Minimum":return[Rh(k("a",e,t,r),k("b",e,t,r))];case"Maximum":return[ts(k("a",e,t,r),k("b",e,t,r))];case"Pow":return[Bs(k("a",e,t,r),k("b",e,t,r))];case"SquaredDifference":return[S3(k("a",e,t,r),k("b",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},dH=(e,t,r)=>{switch(e.op){case"Abs":case"ComplexAbs":return[ar(k("x",e,t,r))];case"Acos":return[j6(k("x",e,t,r))];case"Acosh":return[H6(k("x",e,t,r))];case"Asin":return[X6(k("x",e,t,r))];case"Asinh":return[K6(k("x",e,t,r))];case"Atan":return[Z6(k("x",e,t,r))];case"Atan2":return[Y6(k("x",e,t,r),k("y",e,t,r))];case"Atanh":return[J6(k("x",e,t,r))];case"Ceil":return[iv(k("x",e,t,r))];case"Complex":return[Za(k("real",e,t,r),k("imag",e,t,r))];case"Cos":return[Df(k("x",e,t,r))];case"Cosh":return[a3(k("x",e,t,r))];case"Elu":return[Nh(k("x",e,t,r))];case"Erf":return[yv(k("x",e,t,r))];case"Exp":return[Fn(k("x",e,t,r))];case"Expm1":return[kv(k("x",e,t,r))];case"Floor":return[Eh(k("x",e,t,r))];case"Log":return[_n(k("x",e,t,r))];case"Log1p":return[Wf(k("x",e,t,r))];case"Imag":return[Ih(k("x",e,t,r))];case"Neg":return[Mt(k("x",e,t,r))];case"Reciprocal":return[_v(k("x",e,t,r))];case"Real":return[Eu(k("x",e,t,r))];case"Relu":return[Da(k("x",e,t,r))];case"Round":return[A3(k("x",e,t,r))];case"Selu":return[b3(k("x",e,t,r))];case"Sigmoid":return[Tr(k("x",e,t,r))];case"Sin":return[v3(k("x",e,t,r))];case"Sign":return[zv(k("x",e,t,r))];case"Sinh":return[w3(k("x",e,t,r))];case"Softplus":return[vd(k("x",e,t,r))];case"Sqrt":return[Er(k("x",e,t,r))];case"Square":return[bt(k("x",e,t,r))];case"Tanh":return[Ru(k("x",e,t,r))];case"Tan":return[Lv(k("x",e,t,r))];case"ClipByValue":return[fn(k("x",e,t,r),k("clipValueMin",e,t,r),k("clipValueMax",e,t,r))];case"Relu6":return[y3(k("x",e,t,r))];case"Rsqrt":return[x3(Br(e.inputNames[0],t,r))];case"Prod":return[f3(k("x",e,t,r),k("axes",e,t,r))];case"LeakyRelu":return[Bf(k("x",e,t,r),k("alpha",e,t,r))];case"Prelu":return[qf(k("x",e,t,r),k("alpha",e,t,r))];case"IsNan":return[Iv(Br(e.inputNames[0],t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Gn(e,t,r=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>r+` Shapes ${e} and ${t} must match`);for(let n=0;n<e.length;n++){let a=e[n],s=t[n];v.assert(a<0||s<0||a===s,()=>r+` Shapes ${e} and ${t} must match`)}}}function P4(e){return!(typeof e=="number"||e.some(t=>t<0))}function Cp(e,t,r){let n=ly(e,r),a=!P4(n);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${n}`);if(a&&t.forEach(s=>{n=ly(s.shape,n)}),!P4(n))throw new Error(`Non-fully-defined elementShape: ${n}`);return n}function ly(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let r=[];for(let n=0;n<e.length;++n){let a=e[n],s=t[n];if(a>=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);r[n]=a>=0?a:s}return r}var pH=class{constructor(e,t,r,n,a,s,i){this.name=e,this.dtype=t,this.maxSize=r,this.elementShape=n,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=Se(0),mr(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let r=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Gn(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),r.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(r.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);r.tensor=t,mr(t),r.written=!0,this.tensors[e]=r}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((r,n)=>this.write(r,t[n]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let n=0;n<this.size();n++)e.push(n)}if(e.length===0)return ft([],[0].concat(this.elementShape));let r=this.readMany(e);return Gn(this.elementShape,r[0].shape,"TensorArray shape mismatch: "),ur(r,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ft([],[0].concat(this.elementShape));let t=[];for(let n=0;n<this.size();n++)t.push(n);let r=this.readMany(t);return Gn(this.elementShape,r[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${r[0].shape})`),St(r,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let r=Math.max(...e);if(!this.dynamicSize&&r>=this.maxSize)throw new Error(`Max index must be < array size (${r} vs. ${this.maxSize})`);this.writeMany(e,an(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let r=0,n=e.map(o=>(r+=o,r));if(r!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${r}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=r===0?0:t.size/r,s=[];X(()=>{t=U(t,[1,r,a]);for(let o=0;o<e.length;++o){let l=o===0?0:n[o-1],u=[0,l,0],d=[1,e[o],a];s[o]=U(_e(t,u,d),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},zu=class{constructor(e,t,r,n=-1){this.tensors=e,this.elementShape=t,this.elementDtype=r,e!=null&&e.forEach(a=>{if(r!==a.dtype)throw new Error(`Invalid data types; op elements ${r}, but list elements ${a.dtype}`);Gn(t,a.shape,"TensorList shape mismatch: "),mr(a)}),this.idTensor=Se(0),this.maxNumElements=n,mr(this.idTensor)}get id(){return this.idTensor.id}copy(){return new zu([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,r=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(r!==-1&&this.tensors.length!==r)throw new Error(`Operation expected a list with ${r} elements but got a list with ${this.tensors.length} elements.`);Gn(e,this.elementShape,"TensorList shape mismatch: ");let n=Cp(this.elementShape,this.tensors,e);return X(()=>{let a=this.tensors.map(s=>U(s,n));return ur(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let r=Cp(this.elementShape,this.tensors,e),n=this.tensors.pop();return Gn(n.shape,e,"TensorList shape mismatch: "),U(n,r)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Gn(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");mr(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new zu([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let r=0;r<Math.min(this.tensors.length,e);++r)t.tensors[r]=this.tensors[r];return t}getItem(e,t,r){if(r!==this.elementDtype)throw new Error(`Invalid data types; op elements ${r}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Gn(this.tensors[e].shape,t,"TensorList shape mismatch: ");let n=Cp(this.elementShape,this.tensors,t);return U(this.tensors[e],n)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Gn(this.elementShape,t.shape,"TensorList shape mismatch: "),mr(t),this.tensors[e]=t}gather(e,t,r){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Gn(this.elementShape,r,"TensorList shape mismatch: "),e=e.slice(0,this.size());let n=Cp(this.elementShape,this.tensors,r);return e.length===0?ft([],[0].concat(n)):X(()=>{let a=e.map(s=>U(this.tensors[s],n));return ur(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Gn(this.elementShape,t,"TensorList shape mismatch: ");let r=Cp(this.elementShape,this.tensors,t);return this.size()===0?ft([],[0].concat(r)):X(()=>{let n=this.tensors.map(a=>U(a,r));return St(n,0)})}};function hH(e,t,r){let n=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==r)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${r}`);let a=e.shape.slice(1);Gn(a,t,"TensorList shape mismatch: ");let s=an(e);return new zu(s,t,n)}function cH(e,t,r){return new zu([],e,t,r)}function fH(e,t,r,n){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(n!=null&&n!==-1&&a>=n)throw new Error(`Max index must be < array size (${a} vs. ${n})`);let s=new zu([],r,e.dtype,n),i=an(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function mH(e,t,r){let n=0,a=t.map(d=>(n+=d,n));if(n!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=ly(s,r),o=n===0?0:e.size/n,l=X(()=>{let d=[];e=U(e,[1,n,o]);for(let h=0;h<t.length;++h){let p=h===0?0:a[h-1],c=[0,p,0],m=[1,t[h],o];d[h]=U(_e(e,c,m),i)}return e.dispose(),d}),u=new zu([],r,e.dtype,t.length);for(let d=0;d<l.length;d++)u.setItem(d,l[d]);return u}var gH=async(e,t,r)=>{switch(e.op){case"If":case"StatelessIf":{let n=k("thenBranch",e,t,r),a=k("elseBranch",e,t,r),s=k("cond",e,t,r),i=k("args",e,t,r);return(await s.data())[0]?r.functionMap[n].executeFunctionAsync(i,r.tensorArrayMap,r.tensorListMap):r.functionMap[a].executeFunctionAsync(i,r.tensorArrayMap,r.tensorListMap)}case"While":case"StatelessWhile":{let n=k("body",e,t,r),a=k("cond",e,t,r),s=k("args",e,t,r),i=await r.functionMap[a].executeFunctionAsync(s,r.tensorArrayMap,r.tensorListMap),o=s.map(d=>d.id),l=await i[0].data();i.forEach(d=>{!d.kept&&o.indexOf(d.id)===-1&&d.dispose()});let u=s;for(;l[0];){let d=u;u=await r.functionMap[n].executeFunctionAsync(u,r.tensorArrayMap,r.tensorListMap);let h=u.map(c=>c.id);d.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&h.indexOf(c.id)===-1&&c.dispose()});let p=await r.functionMap[a].executeFunctionAsync(u,r.tensorArrayMap,r.tensorListMap);l=await p[0].data(),p.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&h.indexOf(c.id)===-1&&c.dispose()})}return u}case"LoopCond":{let n=k("pred",e,t,r);return[Ha(n)]}case"Switch":{let n=k("pred",e,t,r),a=k("data",e,t,r);return a.kept||(a=Ha(a)),(await n.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let n=e.inputNames.find(a=>Br(a,t,r)!==void 0);if(n){let a=Br(n,t,r);return[Ha(a)]}return}case"Enter":{let n=k("frameName",e,t,r),a=k("tensor",e,t,r);return r.enterFrame(n),[Ha(a)]}case"Exit":{let n=k("tensor",e,t,r);return r.exitFrame(),[Ha(n)]}case"NextIteration":{let n=k("tensor",e,t,r);return r.nextIteration(),[Ha(n)]}case"TensorArrayV3":{let n=k("size",e,t,r),a=k("dtype",e,t,r),s=k("elementShape",e,t,r),i=k("dynamicSize",e,t,r),o=k("clearAfterRead",e,t,r),l=k("identicalElementShapes",e,t,r),u=k("name",e,t,r),d=new pH(u,a,n,s,l,i,o);return r.addTensorArray(d),[d.idTensor,Se(1)]}case"TensorArrayWriteV3":{let n=k("tensorArrayId",e,t,r),a=k("index",e,t,r),s=k("tensor",e,t,r),i=r.getTensorArray(n.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let n=k("tensorArrayId",e,t,r),a=k("index",e,t,r);return[r.getTensorArray(n.id).read(a)]}case"TensorArrayGatherV3":{let n=k("tensorArrayId",e,t,r),a=k("indices",e,t,r),s=k("dtype",e,t,r);return[r.getTensorArray(n.id).gather(a,s)]}case"TensorArrayScatterV3":{let n=k("tensorArrayId",e,t,r),a=k("indices",e,t,r),s=k("tensor",e,t,r),i=r.getTensorArray(n.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let n=k("tensorArrayId",e,t,r),a=r.getTensorArray(n.id),s=k("dtype",e,t,r);return[a.concat(s)]}case"TensorArraySplitV3":{let n=k("tensorArrayId",e,t,r),a=k("tensor",e,t,r),s=k("lengths",e,t,r),i=r.getTensorArray(n.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let n=k("tensorArrayId",e,t,r),a=r.getTensorArray(n.id);return[Se(a.size(),"int32")]}case"TensorArrayCloseV3":{let n=k("tensorArrayId",e,t,r),a=r.getTensorArray(n.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let n=k("tensorListId",e,t,r),a=k("index",e,t,r),s=k("tensor",e,t,r),i=r.getTensorList(n.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let n=k("tensorListId",e,t,r),a=k("index",e,t,r),s=k("elementShape",e,t,r),i=k("elementDType",e,t,r);return[r.getTensorList(n.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let n=k("indices",e,t,r),a=k("tensor",e,t,r),s=k("elementShape",e,t,r),i=k("numElements",e,t,r),o=fH(a,n,s,i);return r.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let n=k("elementShape",e,t,r),a=k("elementDType",e,t,r),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,r),o=cH(n,a,i);return r.addTensorList(o),[o.idTensor]}case"TensorListGather":{let n=k("tensorListId",e,t,r),a=k("indices",e,t,r),s=k("elementShape",e,t,r),i=k("elementDType",e,t,r);return[r.getTensorList(n.id).gather(a,i,s)]}case"TensorListStack":{let n=k("tensorListId",e,t,r),a=k("elementShape",e,t,r),s=k("elementDType",e,t,r),i=k("numElements",e,t,r);return[r.getTensorList(n.id).stack(a,s,i)]}case"TensorListFromTensor":{let n=k("tensor",e,t,r),a=k("elementShape",e,t,r),s=k("elementDType",e,t,r),i=hH(n,a,s);return r.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let n=k("tensorListId",e,t,r),a=r.getTensorList(n.id),s=k("dtype",e,t,r),i=k("elementShape",e,t,r);return[a.concat(s,i)]}case"TensorListPushBack":{let n=k("tensorListId",e,t,r),a=k("tensor",e,t,r),s=r.getTensorList(n.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let n=k("tensorListId",e,t,r),a=k("elementShape",e,t,r),s=k("elementDType",e,t,r);return[r.getTensorList(n.id).popBack(a,s)]}case"TensorListSplit":{let n=k("tensor",e,t,r),a=k("elementShape",e,t,r),s=k("lengths",e,t,r),i=mH(n,s,a);return r.addTensorList(i),[i.idTensor]}case"TensorListLength":{let n=k("tensorListId",e,t,r),a=r.getTensorList(n.id);return[Se(a.size(),"int32")]}case"TensorListResize":{let n=k("tensorListId",e,t,r),a=k("size",e,t,r),s=r.getTensorList(n.id).resize(a);return r.addTensorList(s),[s.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function O4(e,t,r){let[n,a]=k("fusedOps",e,t,r),s=n==="biasadd",i=!s,o=a==="prelu",l=n==="fusedbatchnorm",u=k("numArgs",e,t,r);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let d=k("strides",e,t,r),h=f0(e,t,r),p=k("dataFormat",e,t,r).toUpperCase(),c=k("dilations",e,t,r),[m,f]=k("args",e,t,r);i&&(f=m,m=void 0);let g=k("leakyreluAlpha",e,t,r);return{stride:d,pad:h,dataFormat:p,dilations:c,biasArg:m,preluArg:f,activationFunc:a,leakyreluAlpha:g}}var yH=(e,t,r)=>{switch(e.op){case"Conv1D":{let n=k("stride",e,t,r),a=k("pad",e,t,r),s=k("dataFormat",e,t,r).toUpperCase(),i=k("dilation",e,t,r);return[e3(k("x",e,t,r),k("filter",e,t,r),n,a,s,i)]}case"Conv2D":{let n=k("strides",e,t,r),a=f0(e,t,r),s=k("dataFormat",e,t,r).toUpperCase(),i=k("dilations",e,t,r);return[Ds(k("x",e,t,r),k("filter",e,t,r),[n[1],n[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:n,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=O4(e,t,r);return[Ws.conv2d({x:k("x",e,t,r),filter:k("filter",e,t,r),strides:[n[1],n[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:n,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=O4(e,t,r);return[Ws.depthwiseConv2d({x:k("x",e,t,r),filter:k("filter",e,t,r),strides:[n[1],n[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let n=k("outputShape",e,t,r),a=k("strides",e,t,r),s=f0(e,t,r);return[r3(k("x",e,t,r),k("filter",e,t,r),n,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let n=k("strides",e,t,r),a=f0(e,t,r),s=k("dilations",e,t,r),i=k("dataFormat",e,t,r).toUpperCase();return[Th(k("input",e,t,r),k("filter",e,t,r),[n[1],n[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("dataFormat",e,t,r).toUpperCase(),i=k("dilations",e,t,r);return[n3(k("x",e,t,r),k("filter",e,t,r),[n[1],n[2],n[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[Of(k("x",e,t,r),[s[1],s[2]],[n[1],n[2]],a)]}case"MaxPool":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[Gf(k("x",e,t,r),[s[1],s[2]],[n[1],n[2]],a)]}case"MaxPoolWithArgmax":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r),i=k("includeBatchInIndex",e,t,r),{result:o,indexes:l}=Rv(k("x",e,t,r),[s[1],s[2]],[n[1],n[2]],a,i);return[o,l]}case"AvgPool3D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[Jy(k("x",e,t,r),[s[1],s[2],s[3]],[n[1],n[2],n[3]],a)]}case"MaxPool3D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("kernelSize",e,t,r);return[c3(k("x",e,t,r),[s[1],s[2],s[3]],[n[1],n[2],n[3]],a)]}case"Dilation2D":{let n=k("strides",e,t,r),a=k("pad",e,t,r),s=k("dilations",e,t,r),i=n[1],o=n[2],l=s[1],u=s[2];return[fv(k("x",e,t,r),k("filter",e,t,r),[i,o],a,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},AH=(e,t,r)=>{switch(e.op){case"Fill":{let n=k("shape",e,t,r),a=k("dtype",e,t,r),s=k("value",e,t,r);return[bd(n,s,a)]}case"LinSpace":{let n=k("start",e,t,r),a=k("stop",e,t,r),s=k("num",e,t,r);return[Sv(n,a,s)]}case"Multinomial":{let n=k("logits",e,t,r),a=k("numSamples",e,t,r),s=k("seed",e,t,r);return[Mv(n,a,s)]}case"OneHot":{let n=k("indices",e,t,r),a=k("depth",e,t,r),s=k("onValue",e,t,r),i=k("offValue",e,t,r);return[Kp(n,a,s,i)]}case"Ones":return[cn(k("shape",e,t,r),k("dtype",e,t,r))];case"OnesLike":return[Pn(k("x",e,t,r))];case"RandomUniform":return[kd(k("shape",e,t,r),k("minval",e,t,r),k("maxval",e,t,r),k("dtype",e,t,r))];case"Range":{let n=k("start",e,t,r),a=k("stop",e,t,r),s=k("step",e,t,r);return[_u(n,a,s,k("dtype",e,t,r))]}case"TruncatedNormal":{let n=k("shape",e,t,r),a=k("mean",e,t,r),s=k("stdDev",e,t,r),i=k("seed",e,t,r);return[Yf(n,a,s,k("dtype",e,t,r),i)]}case"Zeros":return[Ot(k("shape",e,t,r),k("dtype",e,t,r))];case"ZerosLike":return[at(k("x",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function wg(e,t,r){let n=k("boxes",e,t,r),a=k("scores",e,t,r),s=k("maxOutputSize",e,t,r),i=k("iouThreshold",e,t,r),o=k("scoreThreshold",e,t,r),l=k("softNmsSigma",e,t,r);return{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var xH=async(e,t,r)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=wg(e,t,r),u=await Ie.nonMaxSuppressionWithScoreAsync(n,a,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=wg(e,t,r),l=k("padToMaxOutputSize",e,t,r),u=await Ie.nonMaxSuppressionPaddedAsync(n,a,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:n,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=wg(e,t,r);return[await Ie.nonMaxSuppressionAsync(n,a,s,i,o)]}case"Where":{let n=me(k("condition",e,t,r),"bool"),a=[await C3(n)];return n.dispose(),a}case"ListDiff":return Ov(k("x",e,t,r),k("y",e,t,r));default:throw TypeError(`Node type ${e.op} is not implemented`)}},bH=(e,t,r)=>{switch(e.op){case"LowerBound":{let n=k("sortedSequence",e,t,r),a=k("values",e,t,r);return[Ev(n,a)]}case"TopKV2":{let n=k("x",e,t,r),a=k("k",e,t,r),s=k("sorted",e,t,r),i=Bv(n,a,s);return[i.values,i.indices]}case"UpperBound":{let n=k("sortedSequence",e,t,r),a=k("values",e,t,r);return[Vv(n,a)]}case"Unique":{let n=k("x",e,t,r),a=Bg(n);return[a.values,a.indices]}case"UniqueV2":{let n=k("x",e,t,r),a=k("axis",e,t,r),s=Bg(n,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},vH=(e,t,r)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let n=k("default",e,t,r);return[Br(e.name,t,r)||n];case"Placeholder":return[Br(e.name,t,r)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=k("x",e,t,r);return[Ha(u)]}case"IdentityN":return k("x",e,t,r).map(u=>Ha(u));case"Snapshot":let a=k("x",e,t,r);return[Ha(a)];case"Shape":return[Nt(k("x",e,t,r).shape,"int32")];case"ShapeN":return k("x",e,t,r).map(u=>Nt(u.shape));case"Size":return[Se(k("x",e,t,r).size,"int32")];case"Rank":return[Se(k("x",e,t,r).rank,"int32")];case"NoOp":return[Se(1)];case"Print":let s=k("x",e,t,r),i=k("data",e,t,r),o=k("message",e,t,r),l=k("summarize",e,t,r);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},wH=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Se(0),this.tensorMap=new Map,mr(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Se(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let r=await e.data();return this.tensorMap.forEach(n=>n.dispose()),this.tensorMap.clear(),X(()=>{let n=an(t),a=r.length,s=n.length;v.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i<a;i++){let o=r[i],l=n[i];mr(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let r=await e.data();return X(()=>{let n=[];for(let a=0;a<r.length;a++){let s=r[a],i=this.findWithDefault(s,t);n.push(i)}return ur(n)})}findWithDefault(e,t){let r=this.tensorMap.get(e);return r!=null?r:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},kH=async(e,t,r,n)=>{switch(e.op){case"HashTable":case"HashTableV2":{let a=k("keyDType",e,t,r),s=k("valueDType",e,t,r),i=new wH(a,s);return n.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=k("tableHandle",e,t,r,n),s=k("keys",e,t,r),i=k("values",e,t,r);return[await n.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=k("tableHandle",e,t,r,n),s=k("keys",e,t,r),i=k("defaultValue",e,t,r);return[await n.getHashTableById(a.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let a=k("tableHandle",e,t,r,n);return[n.getHashTableById(a.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},IH=(e,t,r)=>{switch(e.op){case"ResizeBilinear":{let n=k("images",e,t,r),a=k("size",e,t,r),s=k("alignCorners",e,t,r),i=k("halfPixelCenters",e,t,r);return[Ie.resizeBilinear(n,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let n=k("images",e,t,r),a=k("size",e,t,r),s=k("alignCorners",e,t,r),i=k("halfPixelCenters",e,t,r);return[Ie.resizeNearestNeighbor(n,[a[0],a[1]],s,i)]}case"CropAndResize":{let n=k("image",e,t,r),a=k("boxes",e,t,r),s=k("boxInd",e,t,r),i=k("cropSize",e,t,r),o=k("method",e,t,r),l=k("extrapolationValue",e,t,r);return[Ie.cropAndResize(n,a,s,i,o,l)]}case"ImageProjectiveTransformV3":{let n=k("images",e,t,r),a=k("transforms",e,t,r),s=k("outputShape",e,t,r),i=k("fillValue",e,t,r),o=k("interpolation",e,t,r),l=k("fillMode",e,t,r);return[Ie.transform(n,a,o.toLowerCase(),l.toLowerCase(),i,s)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},SH=(e,t,r)=>{switch(e.op){case"Equal":return[Mn(k("a",e,t,r),k("b",e,t,r))];case"NotEqual":return[Fu(k("a",e,t,r),k("b",e,t,r))];case"Greater":return[gn(k("a",e,t,r),k("b",e,t,r))];case"GreaterEqual":return[$l(k("a",e,t,r),k("b",e,t,r))];case"Less":return[u3(k("a",e,t,r),k("b",e,t,r))];case"LessEqual":return[Ml(k("a",e,t,r),k("b",e,t,r))];case"LogicalAnd":return[ga(k("a",e,t,r),k("b",e,t,r))];case"LogicalNot":return[Uf(k("a",e,t,r))];case"LogicalOr":return[p3(k("a",e,t,r),k("b",e,t,r))];case"Select":case"SelectV2":return[Ur(k("condition",e,t,r),k("a",e,t,r),k("b",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},CH=(e,t,r)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ye(k("a",e,t,r),k("b",e,t,r),k("transposeA",e,t,r),k("transposeB",e,t,r))];case"Einsum":return[gv(k("equation",e,t,r),...k("tensors",e,t,r))];case"Transpose":return[tt(k("x",e,t,r),k("perm",e,t,r))];case"_FusedMatMul":let[n,a]=k("fusedOps",e,t,r),s=n==="biasadd",i=a==="prelu",o=k("numArgs",e,t,r),l=k("leakyreluAlpha",e,t,r);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,d]=k("args",e,t,r);return[Ws.matMul({a:k("a",e,t,r),b:k("b",e,t,r),transposeA:k("transposeA",e,t,r),transposeB:k("transposeB",e,t,r),bias:u,activation:a,preluActivationWeights:d,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},TH=(e,t,r)=>{switch(e.op){case"EuclideanNorm":return[wv(k("x",e,t,r),k("axis",e,t,r),k("keepDims",e,t,r))];case"FusedBatchNorm":case"FusedBatchNormV2":return[$u(k("x",e,t,r),k("mean",e,t,r),k("variance",e,t,r),k("offset",e,t,r),k("scale",e,t,r),k("epsilon",e,t,r))];case"FusedBatchNormV3":return[$u(k("x",e,t,r),k("mean",e,t,r),k("variance",e,t,r),k("offset",e,t,r),k("scale",e,t,r),k("epsilon",e,t,r))];case"LRN":return[Cv(k("x",e,t,r),k("radius",e,t,r),k("bias",e,t,r),k("alpha",e,t,r),k("beta",e,t,r))];case"Softmax":return[Id(k("x",e,t,r))];case"LogSoftmax":return[d3(k("x",e,t,r))];case"SparseToDense":return[T3(k("sparseIndices",e,t,r),k("outputShape",e,t,r),k("sparseValues",e,t,r),k("defaultValue",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},NH=(e,t,r)=>{switch(e.op){case"Max":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[yr(k("x",e,t,r),i,o)]}case"Mean":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[Vt(k("x",e,t,r),i,o)]}case"Min":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[Ls(k("x",e,t,r),i,o)]}case"Sum":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[ke(k("x",e,t,r),i,o)]}case"All":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[Zy(k("x",e,t,r),i,o)]}case"Any":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[F0(k("x",e,t,r),i,o)]}case"ArgMax":{let i=k("axis",e,t,r);return[$n(k("x",e,t,r),i)]}case"ArgMin":{let i=k("axis",e,t,r);return[q6(k("x",e,t,r),i)]}case"Prod":{let i=k("axis",e,t,r),o=k("keepDims",e,t,r);return[f3(k("x",e,t,r),i,o)]}case"Cumprod":{let i=k("axis",e,t,r),o=k("exclusive",e,t,r),l=k("reverse",e,t,r);return[P0(k("x",e,t,r),i,o,l)]}case"Cumsum":{let i=k("axis",e,t,r),o=k("exclusive",e,t,r),l=k("reverse",e,t,r);return[s3(k("x",e,t,r),i,o,l)]}case"Bincount":let n=k("x",e,t,r),a=k("weights",e,t,r),s=k("size",e,t,r);return[Qy(n,a,s)];case"DenseBincount":{let i=k("x",e,t,r),o=k("weights",e,t,r),l=k("size",e,t,r),u=k("binaryOutput",e,t,r);return[hv(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},EH=(e,t,r)=>{switch(e.op){case"ConcatV2":case"Concat":{let n=k("n",e,t,r),a=k("axis",e,t,r),s=k("tensors",e,t,r);return s=s.slice(0,n),[St(s,a)]}case"Gather":{let n=k("x",e,t,r),a=k("indices",e,t,r);return[Mu(n,me(a,"int32"),0)]}case"GatherV2":{let n=k("axis",e,t,r),a=k("batchDims",e,t,r),s=k("x",e,t,r),i=k("indices",e,t,r);return[Mu(s,me(i,"int32"),n,a)]}case"Reverse":{let n=k("dims",e,t,r),a=[];for(let i=0;i<n.length;i++)n[i]&&a.push(i);let s=k("x",e,t,r);return[On(s,a)]}case"ReverseV2":{let n=k("axis",e,t,r),a=k("x",e,t,r);return[On(a,n)]}case"Slice":{let n=k("begin",e,t,r),a=k("size",e,t,r);return[_e(k("x",e,t,r),n,a)]}case"StridedSlice":{let n=k("begin",e,t,r),a=k("end",e,t,r),s=k("strides",e,t,r),i=k("beginMask",e,t,r),o=k("endMask",e,t,r),l=k("ellipsisMask",e,t,r),u=k("newAxisMask",e,t,r),d=k("shrinkAxisMask",e,t,r),h=k("x",e,t,r);return[Dv(h,n,a,s,i,o,l,u,d)]}case"Pack":return X(()=>{let n=k("axis",e,t,r),a=k("tensors",e,t,r),s=a[0].shape,i=et(a[0]).shape,o=a.map(l=>{let u=v.arraysEqual(l.shape,s);if(!u&&!v.arraysEqual(et(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:U(l,s)});return[ur(o,n)]});case"Unpack":{let n=k("axis",e,t,r),a=k("tensor",e,t,r);return an(a,n)}case"Tile":{let n=k("reps",e,t,r);return[jn(k("x",e,t,r),n)]}case"Split":case"SplitV":{let n=k("axis",e,t,r),a=k("numOrSizeSplits",e,t,r),s=k("x",e,t,r);return Yt(s,a,n)}case"ScatterNd":{let n=k("indices",e,t,r),a=k("values",e,t,r),s=k("shape",e,t,r);return[jv(n,a,s)]}case"GatherNd":{let n=k("x",e,t,r),a=k("indices",e,t,r);return[Hv(n,a)]}case"SparseToDense":{let n=k("sparseIndices",e,t,r),a=k("outputShape",e,t,r),s=k("sparseValues",e,t,r),i=k("defaultValue",e,t,r);return[T3(n,s,a,s.dtype===i.dtype?i:me(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},RH=(e,t,r)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:n,outputValues:a,emptyRowIndicator:s,reverseIndexMap:i}=Rp.sparseFillEmptyRows(k("indices",e,t,r),k("values",e,t,r),k("denseShape",e,t,r),k("defaultValue",e,t,r));return[n,a,s,i]}case"SparseReshape":{let{outputIndices:n,outputShape:a}=Rp.sparseReshape(k("inputIndices",e,t,r),k("inputShape",e,t,r),k("newShape",e,t,r));return[n,a]}case"SparseSegmentMean":return[Rp.sparseSegmentMean(k("data",e,t,r),k("indices",e,t,r),k("segmentIds",e,t,r))];case"SparseSegmentSum":return[Rp.sparseSegmentSum(k("data",e,t,r),k("indices",e,t,r),k("segmentIds",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},$H=(e,t,r)=>{switch(e.op){case"FFT":return[Kf(k("x",e,t,r))];case"IFFT":return[Zp(k("x",e,t,r))];case"RFFT":return[Zf(k("x",e,t,r))];case"IRFFT":return[I3(k("x",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},MH=(e,t,r)=>{switch(e.op){case"StringNGrams":{let{nGrams:n,nGramsSplits:a}=c0.stringNGrams(k("data",e,t,r),k("dataSplits",e,t,r),k("separator",e,t,r),k("nGramWidths",e,t,r),k("leftPad",e,t,r),k("rightPad",e,t,r),k("padWidth",e,t,r),k("preserveShortSequences",e,t,r));return[n,a]}case"StringSplit":{let{indices:n,values:a,shape:s}=c0.stringSplit(k("input",e,t,r),k("delimiter",e,t,r),k("skipEmpty",e,t,r));return[n,a,s]}case"StringToHashBucketFast":return[c0.stringToHashBucketFast(k("input",e,t,r),k("numBuckets",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},FH=(e,t,r)=>{switch(e.op){case"Cast":return[me(k("x",e,t,r),k("dtype",e,t,r))];case"ExpandDims":{let n=k("axis",e,t,r);return[Kt(k("x",e,t,r),n)]}case"Squeeze":{let n=k("axis",e,t,r);return[et(k("x",e,t,r),n)]}case"Reshape":return[U(k("x",e,t,r),k("shape",e,t,r))];case"MirrorPad":return[$v(k("x",e,t,r),k("padding",e,t,r),k("mode",e,t,r))];case"PadV2":case"Pad":return[Xn(k("x",e,t,r),k("padding",e,t,r),k("constantValue",e,t,r))];case"SpaceToBatchND":{let n=k("blockShape",e,t,r),a=k("paddings",e,t,r);return[Hf(k("x",e,t,r),n,a)]}case"BatchToSpaceND":{let n=k("blockShape",e,t,r),a=k("crops",e,t,r);return[zf(k("x",e,t,r),n,a)]}case"DepthToSpace":{let n=k("blockSize",e,t,r),a=k("dataFormat",e,t,r).toUpperCase();return[cv(k("x",e,t,r),n,a)]}case"BroadcastTo":return[Lp(k("x",e,t,r),k("shape",e,t,r))];case"BroadcastArgs":return[sv(k("s0",e,t,r),k("s1",e,t,r))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function z4(e,t,r,n){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return X(()=>uH(s,i,o));case"basic_math":return X(()=>dH(s,i,o));case"control":return gH(s,i,o);case"convolution":return X(()=>yH(s,i,o));case"creation":return X(()=>AH(s,i,o));case"dynamic":return xH(s,i,o);case"evaluation":return X(()=>bH(s,i,o));case"image":return X(()=>IH(s,i,o));case"graph":return X(()=>vH(s,i,o));case"logical":return X(()=>SH(s,i,o));case"matrices":return X(()=>CH(s,i,o));case"normalization":return X(()=>TH(s,i,o));case"reduction":return X(()=>NH(s,i,o));case"slice_join":return X(()=>EH(s,i,o));case"sparse":return X(()=>RH(s,i,o));case"spectral":return X(()=>$H(s,i,o));case"string":return X(()=>MH(s,i,o));case"transformation":return X(()=>FH(s,i,o));case"hash_table":return kH(s,i,o,n);case"custom":let l=R8(s.op);if(l&&l.customExecutor)return l.customExecutor(new lH(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,r);return v.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var D4=class{constructor(e={},t={},r={},n={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=r,this.functionMap=n,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let r=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(r))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function L4(e,t,r,n){let a=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(p=>pn(p)[0]),d=[];n!=null&&(d=n.map(p=>pn(p.name)[0]));let h=[...t];for(;h.length>0;){let p=h.pop();if((J8(p)||DH(p)||LH(p))&&i==null&&(i=p,o=i.children.map(c=>c.name).filter(c=>a.has(c))),a.add(p.name),r[p.name]==null&&u.indexOf(p.name)===-1&&d.indexOf(p.name)===-1){if(p.inputs.length===0){s.push(p.name);continue}p.inputs.forEach(c=>{l.has(c.name)||(l.add(c.name),h.push(c))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function _H(e,t,r){let{usedNodes:n,inputs:a}=r,s=[],i=Object.keys(a).map(d=>pn(d)[0]).map(d=>e.nodes[d]),o=e.initNodes;i.forEach(d=>{n.has(d.name)&&s.push(d)}),e.weights.forEach(d=>{n.has(d.name)&&s.push(d)}),o!=null&&o.forEach(d=>{n.has(d.name)&&s.push(d)});let l=new Set,u=[];for(;s.length>0;){let d=s.pop();l.add(d.name),t[d.name]||u.push(d),d.children.forEach(h=>{!l.has(h.name)&&n.has(h.name)&&h.inputs.every(p=>l.has(p.name))&&s.push(h)})}return u}var PH=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],OH=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],zH=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function J8(e){return PH.indexOf(e.op)>=0}function DH(e){return OH.indexOf(e.op)>=0}function LH(e){return zH.indexOf(e.op)>=0}var uy=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(r=>{this._functionExecutorMap[r]=new uy(e.functions[r],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(r=>e[r].map(n=>n.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let r=e.map(a=>a.name).sort(),n=t.map(a=>a.name).sort();return r.join(this.SEPERATOR)+"--"+n.join(this.SEPERATOR)}compile(e,t){let r=L4(e,t,this.weightMap,this._initNodes),{missingInputs:n,dynamicNode:a,syncInputs:s}=r;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(n.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${n}]`)}return _H(this.graph,this.weightMap,r)}execute(e,t){e=this.mapInputs(e);let r=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let n=r.map(d=>this.graph.nodes[pn(d)[0]]),a=t.map(d=>pn(d)[0]),s=a.map(d=>this.graph.nodes[d]);this.resetIntermediateTensors(),s.length===0&&(s=this._outputs);let i=this.getCompilationKey(n,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return X(()=>{let d=new D4(this.weightMap,l,u,this.functionExecutorMap),h={...this.weightMap};Object.keys(e).forEach(m=>{let[f,g]=pn(m),y=[];y[g]=e[m],h[f]=y});let p=this.getFrozenTensorIds(h),c={};for(let m=0;m<o.length;m++){let f=o[m];if(!h[f.name]){let g=z4(f,h,d,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);h[f.name]=g,this.checkTensorForDisposal(f.name,f,h,d,p,a,c)}}return this.parent==null&&d.dispose(p),t.map(m=>Br(m,h,d))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(r=>e[r]).map(r=>r.map(n=>n.id)));return new Set(t)}checkTensorForDisposal(e,t,r,n,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(r[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=Wj(o.name,r,n);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!a.has(u.id)){let d=i[u.id];if(d===1){if(!this.keepTensorForDebug)u.dispose();else{let[h,p]=Ra(t.name,n);this.intermediateTensors[h]?this.intermediateTensors[h][p]=u:(this.intermediateTensors[h]=[],this.intermediateTensors[h][p]=u)}delete i[u.id]}else d!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(t=>{t&&!t.kept&&!t.isDisposed&&!this.keepIds.has(t.id)&&t.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,r=!1,n={},a={}){r||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=Z().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let s=new D4(this.weightMap,n,a,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,s,t,r);let i=t.map(u=>Br(u,this.tensorsMap,s)),o=i.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...o,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&s.dispose(this.keepIds),i}async executeFunctionAsync(e,t,r){let n=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(n,this.outputNodes,!0,t,r)}async executeWithControlFlow(e,t,r,n){let a=Object.keys(e),s=a.map(A=>this.graph.nodes[pn(A)[0]]),i=r.map(A=>pn(A)[0]),o=i.map(A=>this.graph.nodes[A]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:d,syncInputs:h}=L4(e,o,this.weightMap,this._initNodes),p=[...s,...this.graph.weights,...this._initNodes||[]].map(A=>({node:A,contexts:t.currentContext})),c={...this.weightMap};Object.keys(e).forEach(A=>{let[x,b]=pn(A),w=[];w[b]=e[A],c[x]=w});let m={},f=this.getFrozenTensorIds(c),g={};for(;p.length>0;){let A=this.processStack(s,p,t,c,g,f,i,m,l);await Promise.all(A)}d==null&&!n&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(A=>!J8(A)&&!Br(A.name,c,t)).map(A=>A.name);if(y.length>0){let A="";throw d!=null&&(A=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${u}]. ${A}`)}return c}processStack(e,t,r,n,a,s,i,o,l){let u=[];for(;t.length>0;){let d=t.pop();r.currentContext=d.contexts;let h="";if(d.node.op==="Enter"&&k("isConstant",d.node,n,r)&&([h]=Ra(d.node.name,r)),n[d.node.name]==null){let p=z4(d.node,n,r,this._resourceManager);h||([h]=Ra(d.node.name,r));let c=r.currentContext;v.isPromise(p)?u.push(p.then(m=>(n[h]=m,r.currentContext=c,this.checkTensorForDisposal(h,d.node,n,r,s,i,o),this.processChildNodes(d.node,t,r,n,a,l),m))):(n[h]=p,this.checkTensorForDisposal(h,d.node,n,r,s,i,o),this.processChildNodes(d.node,t,r,n,a,l))}else this.processChildNodes(d.node,t,r,n,a,l)}return u}processChildNodes(e,t,r,n,a,s){e.children.forEach(i=>{let[o]=Ra(i.name,r);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!Br(l,n,r))&&(a[o]=!0,t.push({contexts:r.currentContext,node:i})):i.inputNames.every(l=>!!Br(l,n,r))&&(a[o]=!0,t.push({contexts:r.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let r=e[t],[n]=pn(t),a=this.graph.nodes[n];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===r.shape.length&&r.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${r.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&v.assert(r.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${r.dtype}`)})}mapInputs(e){let t={};for(let r in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[r]!=null){let n=this._signature.inputs[r];t[n.name]=e[r]}else t[r]=e[r];return t}checkInputs(e){let t=Object.keys(e).filter(r=>{let[n]=pn(r);return this.graph.nodes[n]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[r]=pn(t);if(!this.graph.nodes[r])throw new Error(`The output '${t}' is not found in the graph`)})}},BH=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},WH="?tfjs-format=file",VH="model.json",Vh=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new BH}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Cr.browserHTTPRequest(e,this.loadOptions);else{let t=Cr.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Cr.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return v.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,r;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?r=this.artifacts.userDefinedMetadata.signature:r=this.artifacts.signature,this.signature=r,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let n=Cr.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new uy(F4.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(n),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=F4.Instance.transformGraph(e.modelInitializer);this.initializer=new uy(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let r=Cr.getSaveHandlers(e);if(r.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(r.length>1)throw new Error(`Found more than one (${r.length}) save handlers for URL '${e}'`);e=r[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof nt)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,r,n)=>(t[r]=e[n],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let r=this.executor.execute(e,t);return r.length>1?r:r[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let r=await this.executor.executeAsync(e,t);return r.length>1?r:r[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,r)=>(t[r]=[e[r]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function UH(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=jH(e));let r=new Vh(e,t);return await r.load(),r}function GH(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide a url or an IOHandler that loads the model");if(!e.load)throw new Error(`modelUrl IO Handler ${e} has no load function`);let t=new Vh(e);return t.load(),t}function jH(e){return e.endsWith("/")||(e=e+"/"),`${e}${VH}${WH}`}var HH="0.0.0",Q8={};Be(Q8,{CSVDataset:()=>pk,Dataset:()=>Nd,FileDataSource:()=>Ak,TextLineDataset:()=>dk,URLDataSource:()=>xk,array:()=>mq,csv:()=>Cq,func:()=>Tq,generator:()=>Nq,microphone:()=>Rq,version_data:()=>$q,webcam:()=>Eq,zip:()=>gq});var qH=Wo(af()),XH=Wo(af());function KH(e,t){return H0(e,t)}function H0(e,t,r=new Map,n=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(n.has(e))throw new Error("Circular references are not supported.");if(r.has(e))return r.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Du(e)){let s=Array.isArray(e)?[]:{};n.add(e);for(let i in e){let o=e[i],l=H0(o,t,r,n);s[i]=l}return n.delete(e),e.__proto__&&(s.__proto__=e.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return r.set(e,a.value),a.value}function ZH(e,t=tk){return ek(e,t)}function ek(e,t,r=new Set){let n=e[0];if(r.has(n))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Du(n)){let s=Array.isArray(n)?[]:{};r.add(n);for(let i in n){let o=e.map(u=>u[i]),l=ek(o,t,r);s[i]=l}return r.delete(n),s}else throw new Error(`Can't recurse into non-iterable type: ${n}`);else return a.value}function tk(e){return e===null?null:Du(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function rk(e,t){let r=new Map;H0(e,t,r);for(let n of Array.from(r.keys())){let a=r.get(n);if(v.isPromise(a)){let s=await a;r.set(n,s)}}return H0(e,t,r)}function Du(e){let t=!1;if(Z().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:r}=_7();t=e instanceof r}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof nt)&&!(e instanceof Promise)&&!t)}function YH(e){return e==null||JH(e)||Array.isArray(e)||typeof e=="object"&&e instanceof nt||v.isTypedArray(e)}function JH(e){return e===null||typeof e!="object"&&typeof e!="function"}function QH(e){return KH(e,eq)}function eq(e){return e instanceof nt?{value:e.clone(),recurse:!1}:Du(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var nk=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),r=this.get(t);return this.set(t,this.pop()),r}},ak=class extends nk{constructor(){super(ak.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),r=this.length();for(let n=0;n<r;n++)t[n]=this.get(this.wrap(this.begin+n));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=r}},sk=ak;sk.INITIAL_CAPACITY=32;function ik(e){return new nq(e)}function lA(e){return new aq(e)}function tq(e,t){return new ok(e,t)}function rq(e,t=lk.FAIL){return new cq(e,t)}var xr=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],r=await e.next();for(;!r.done;)t.push(r.value),r=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),r=e(t.value);for(;!t.done&&r;)t=await this.next(),r=e(t.value)}handleErrors(e){return new pq(this,e)}filter(e){return new uq(this,e)}map(e){return new dq(this,e)}mapAsync(e){return new B4(this,e)}serialMapAsync(e){return new B4(this,e).serial()}flatmap(e){return new hq(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new lq(this,e,t)}columnMajorBatch(e,t=!0,r=tk){return this.rowMajorBatch(e,t).map(n=>ZH(n,r))}concatenate(e,t){return new ok(ik([this,e]),t)}take(e){return e<0||e==null?this:new oq(this,e)}skip(e){return e<0||e==null?this:new iq(this,e)}prefetch(e){return new uk(this,e)}shuffle(e,t){return new fq(this,e,t)}serial(){return new sq(this)}},nq=class extends xr{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:QH(e),done:!1}}},aq=class extends xr{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},sq=class extends xr{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},iq=class extends xr{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;te(e.value)}return this.upstream.next()}},oq=class extends xr{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},lq=class extends xr{constructor(e,t,r=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=r,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},uq=class extends xr{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;te(e.value)}}},dq=class extends xr{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=ha.getTensorsInContainer(e.value),r=this.transform(e.value),n=ha.getTensorsInContainer(r);for(let a of t)ha.isTensorInList(a,n)||a.dispose();return{value:r,done:!1}}},pq=class extends xr{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},B4=class extends xr{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=ha.getTensorsInContainer(e.value),r=await this.transform(e.value),n=ha.getTensorsInContainer(r);for(let a of t)ha.isTensorInList(a,n)||a.dispose();return{value:r,done:!1}}},uA=class extends xr{constructor(){super(),this.outputQueue=new sk,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},hq=class extends uA{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=ha.getTensorsInContainer(e.value),r=this.transform(e.value),n=ha.getTensorsInContainer(r);this.outputQueue.pushAll(r);for(let a of t)ha.isTensorInList(a,n)||a.dispose();return!0}},ok=class extends xr{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let r=await this.moreIterators.next();if(r.done)return{value:null,done:!0};this.iterator=r.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},lk=(e=>(e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST",e))(lk||{}),cq=class extends xr{constructor(e,t=0){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,r=0;function n(s){return s instanceof xr?{value:s.next().then(i=>(t++,i.done&&r++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await rk(this.iterators,n);if(t===r)return{value:null,done:!0};if(r>0)switch(this.mismatchMode){case 0:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case 1:return{value:null,done:!0};case 2:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},uk=class extends xr{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new nk(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},fq=class extends uk{constructor(e,t,r){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=XH.alea(r||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Nd=class{constructor(){this.size=null}batch(e,t=!0){let r=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let n;return this.size===1/0||this.size==null?n=this.size:t?n=Math.ceil(this.size/e):n=Math.floor(this.size/e),dn(async()=>(await r.iterator()).columnMajorBatch(e,t,yq),n)}concatenate(e){let t=this,r;return this.size===1/0||e.size===1/0?r=1/0:this.size!=null&&e.size!=null?r=this.size+e.size:r=null,dn(async()=>(await t.iterator()).concatenate(await e.iterator()),r)}filter(e){let t=this,r;return this.size===1/0?r=1/0:r=null,dn(async()=>(await t.iterator()).filter(n=>X(()=>e(n))),r)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return dn(async()=>(await t.iterator()).map(r=>X(()=>e(r))),this.size)}mapAsync(e){let t=this;return dn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return dn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,r;return this.size!=null&&e>0?r=this.size*e:e===0?r=0:this.size!=null&&(e===void 0||e<0)?r=1/0:r=null,dn(async()=>{let n=lA(async()=>({value:await t.iterator(),done:!1}));return tq(n.take(e))},r)}skip(e){let t=this,r;return this.size!=null&&e>=0&&this.size>=e?r=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?r=0:r=null,dn(async()=>(await t.iterator()).skip(e),r)}shuffle(e,t,r=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let n=this,a=qH.alea(t||v.now().toString());return dn(async()=>{let s=a.int32();return r&&(s+=a.int32()),(await n.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,r;return this.size!=null&&this.size>e?r=e:this.size!=null&&this.size<=e?r=this.size:r=null,dn(async()=>(await t.iterator()).take(e),r)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Nd.MAX_BUFFER_SIZE=1e4;function dn(e,t=null){return new class extends Nd{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function mq(e){return dn(async()=>ik(e),e.length)}function gq(e){if(!Du(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let r=0;r<e.length;r++)t=t==null?e[r].size:Math.min(t,e[r].size);else if(e instanceof Object)for(let r in e)t=t==null?e[r].size:Math.min(t,e[r].size);return dn(async()=>{let r=await rk(e,n=>{if(n instanceof Nd)return{value:n.iterator(),recurse:!1};if(Du(n))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return rq(r,1)},t)}function yq(e){if(e===null)return null;let t=e[0];return YH(t)?{value:Aq(e),recurse:!1}:{value:null,recurse:!0}}function Aq(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof nt?ur(e):ft(e)}var dk=class extends Nd{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},i0='"',Tp=Symbol("out"),W4=Symbol("field"),o0=Symbol("quote"),kg=Symbol("quoteafterquote"),V4=Symbol("quoteinquote"),pk=class extends Nd{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new dk(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((n,a)=>(n[a]=n[a]+1||1,n),{}),r=Object.keys(t).filter(n=>t[n]>1);if(v.assert(r.length===0,()=>"Duplicate column names found: "+r.toString()),this.columnConfigs){for(let n of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(n)===-1)throw new Error('The key "'+n+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),r={},n={};for(let a=0;a<this.fullColumnNames.length;a++){let s=this.fullColumnNames[a],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[a],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?n[s]=l:r[s]=l}}return Object.keys(n).length===0?r:{xs:r,ys:n}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let r=[],n=0,a=e.length,s=Tp;for(let i=0;i<a;i++)switch(s){case Tp:switch(e.charAt(i)){case i0:n=i+1,s=o0;break;case this.delimiter:if(n=i+1,this.delimiter===" "&&this.delimWhitespace)break;r.push(""),s=Tp;break;default:s=W4,n=i;break}break;case W4:switch(e.charAt(i)){case this.delimiter:r.push(e.substring(n,i)),s=Tp,n=i+1;break;default:}break;case o0:switch(e.charAt(i)){case i0:s=kg;break;default:}break;case kg:switch(e.charAt(i)){case this.delimiter:r.push(e.substring(n,i-1)),s=Tp,n=i+1;break;case i0:s=o0;break;default:s=V4;break}break;case V4:switch(e.charAt(i)){case i0:s=o0;break;default:}break;default:}if(s===kg?r.push(e.substring(n,a-1)):r.push(e.substring(n)),t&&r.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${r}`);return r}},hk=class extends xr{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!Z().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new hk(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(r){throw new Error(`Error thrown while initializing video stream: ${r.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,r=await this.getAudioData();if(this.includeSpectrogram){let n=this.flattenQueue(r.freqDataQueue);e=this.getTensorFromAudioDataArray(n,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let n=this.flattenQueue(r.timeDataQueue);t=this.getTensorFromAudioDataArray(n,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],r=0;return new Promise(n=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&n({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++r===this.numFrames&&(clearInterval(a),n({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,r=new Float32Array(e.length*t);return e.forEach((n,a)=>r.set(n,a*t)),r}getTensorFromAudioDataArray(e,t){let r=new Float32Array(v.sizeFromShape(t));return r.set(e,r.length-e.length),ft(r,t)}},ck=class extends xr{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Nt([0],"int32"),this.webcamConfig.centerCrop){let r=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,n=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-r)/2,s=(1-n)/2,i=a+r,o=n+s;this.cropBox=ca([s,a,o,i],[1,4])}else this.cropBox=ca([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!Z().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let r=new ck(e,t);return await r.start(),r}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Ln.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return X(()=>{let t=Kt(me(e,"float32"),0),r;r=Ie.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let n=r.shape;return U(r,n.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},fk=class{},mk=class extends xr{split(e){return new xq(this,e)}},xq=class extends mk{constructor(e,t){super(),this.upstream=e,this.impl=new bq(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},bq=class extends uA{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let r of t.slice(0,-1))this.outputQueue.push(r);return this.carryover=t[t.length-1],!0}},vq=class extends xr{decodeUTF8(){return new wq(this)}},wq=class extends mk{constructor(e){super(),this.upstream=e,this.impl=new kq(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},kq=class extends uA{constructor(e){if(super(),this.upstream=e,Z().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=_7();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let r;return Z().get("IS_BROWSER")?r=this.decoder.decode(t,{stream:!0}):r=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(r),!0}},gk=class extends vq{constructor(e,t={}){super(),this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(Z().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let r=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,r)));else{let n=new FileReader;n.onload=s=>{let i=n.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},n.onabort=s=>t(new Error("Aborted")),n.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,r);n.readAsArrayBuffer(a)}this.offset=r}),done:!1}}};async function Iq(e,t={},r){let n,a;typeof e=="string"?n=e:(n=e.url,a=Sq(e));let s=await(r||v.fetch)(n,a);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new gk(i,t)}else throw new Error(s.statusText)}var Sq=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function yk(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var Ak=class extends fk{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(yk(this.input)&&Z().get("IS_NODE")){let e=Cy();this.input=e.readFileSync(this.input.slice(7))}return new gk(this.input,this.options)}},xk=class extends fk{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return yk(this.url)?new Ak(this.url,this.fileOptions).iterator():Iq(this.url,this.fileOptions)}};function Cq(e,t={}){return new pk(new xk(e),t)}function Tq(e){let t=lA(e);return dn(async()=>t)}function Nq(e){return dn(async()=>{let t=await e();return lA(()=>t.next())})}async function Eq(e,t){return ck.create(e,t)}async function Rq(e){return hk.create(e)}var $q="0.0.0";function Ce(e,t){Array.isArray(e)||(e=[e]),e.forEach(r=>{r!=null&&v.assert(r.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var Mq=Kn.whereImpl,bk=class extends Uu{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new rh(this,Xt())}nextDataId(){return bk.nextDataId++}write(e,t,r){this.firstUse&&(this.firstUse=!1,Z().get("IS_NODE")&&C.warn(`
============================
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let n={id:this.nextDataId()};return this.data.set(n,{values:e,dtype:r,refCount:1}),n}makeTensorInfo(e,t,r){let n;if(t==="string"&&r!=null&&r.length>0&&v.isString(r[0])){let a=r.map(s=>v.encodeString(s));n=this.write(a,e,t)}else n=this.write(r,e,t);return{dataId:n,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,r,n,a){this.data.set(e,{values:t,dtype:n,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:r}=this.data.get(e);if(t==="complex64"){let n=this.readSync(r.real.dataId),a=this.readSync(r.imag.dataId);return C.mergeRealAndImagArrays(n,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let r=t.map(n=>v.decodeString(n));return De(e.shape,e.dtype,r)}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return De(e.shape,e.dtype,t)}makeOutput(e,t,r){return Xt().makeTensorFromTensorInfo(this.makeTensorInfo(t,r,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:r}=this.data.get(e);r!=null&&(this.disposeData(r.real.dataId,!0),this.disposeData(r.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ce([e],"where");let t=this.readSync(e.dataId);return Mq(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},dA=bk;dA.nextDataId=0;var Rm={};Be(Rm,{addImpl:()=>wk,bincountImpl:()=>hA,bincountReduceImpl:()=>kk,ceilImpl:()=>Ik,concatImpl:()=>cA,equalImpl:()=>Sk,expImpl:()=>Tk,expm1Impl:()=>Ek,floorImpl:()=>Rk,gatherNdImpl:()=>$k,gatherV2Impl:()=>Mk,greaterEqualImpl:()=>_k,greaterImpl:()=>Fk,lessEqualImpl:()=>Ok,lessImpl:()=>Pk,linSpaceImpl:()=>zk,logImpl:()=>Dk,maxImpl:()=>Lk,maximumImpl:()=>Bk,minimumImpl:()=>Wk,multiplyImpl:()=>fA,negImpl:()=>Vk,notEqualImpl:()=>Uk,prodImpl:()=>Gk,rangeImpl:()=>gA,rsqrtImpl:()=>jk,scatterImpl:()=>vu,sigmoidImpl:()=>bX,simpleAbsImpl:()=>vk,sliceImpl:()=>X0,sparseFillEmptyRowsImpl:()=>qk,sparseReshapeImpl:()=>Xk,sparseSegmentReductionImpl:()=>yA,sqrtImpl:()=>kX,squaredDifferenceImpl:()=>Kk,stridedSliceImpl:()=>Zk,stringNGramsImpl:()=>Yk,stringSplitImpl:()=>Jk,stringToHashBucketFastImpl:()=>Qk,subImpl:()=>e9,tileImpl:()=>t9,topKImpl:()=>n9,transposeImpl:()=>mA,uniqueImpl:()=>a9});function vk(e){let t=new Float32Array(e.length);for(let r=0;r<e.length;++r)t[r]=Math.abs(e[r]);return t}var Fq=e=>{let{x:t}=e.inputs,r=e.backend;Ce(t,"abs");let n=new Float32Array(v.sizeFromShape(t.shape)),a=r.data.get(t.dataId).values;return n=vk(a),r.makeOutput(n,t.shape,t.dtype)},_q={kernelName:Uo,backendName:"cpu",kernelFunc:Fq};function Qt(e){return(t,r,n,a,s)=>{let i=C.assertAndGetBroadcastShape(t,r),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),d=v.getTypedArrayFromDType(s,u),h=t.length,p=r.length,c=v.computeStrides(t),m=v.computeStrides(r),f=C.getBroadcastDims(t,i),g=C.getBroadcastDims(r,i);if(f.length+g.length===0)for(let y=0;y<d.length;++y)d[y]=e(n[y%n.length],a[y%a.length]);else for(let y=0;y<d.length;++y){let A=v.indexToLoc(y,o,l),x=A.slice(-h);f.forEach(T=>x[T]=0);let b=v.locToIndex(x,h,c),w=A.slice(-p);g.forEach(T=>w[T]=0);let I=v.locToIndex(w,p,m);d[y]=e(n[b],a[I])}return[d,i]}}function hn(e){let{inputs:t,backend:r}=e,{real:n,imag:a}=t,s=r.data.get(n.dataId).values,i=r.data.get(a.dataId).values,o=r.makeTensorInfo(n.shape,"complex64"),l=r.data.get(o.dataId);return l.complexTensorInfos={real:r.makeTensorInfo(n.shape,"float32",s),imag:r.makeTensorInfo(a.shape,"float32",i)},o}var Pq={kernelName:ah,backendName:"cpu",kernelFunc:hn};function q0(e,t,r="float32"){if(r==="complex64"){let a=q0(e,t,"float32"),s=q0(e,t,"float32");return hn({inputs:{real:a,imag:s},backend:e})}let n=v.makeZerosTypedArray(v.sizeFromShape(t),r);return e.makeTensorInfo(t,r,n)}function Oa(e){let{inputs:t,backend:r}=e,{x:n}=t;return r.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var Oq={kernelName:fi,backendName:"cpu",kernelFunc:Oa};function Oo(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.data.get(n.dataId).complexTensorInfos.real,s=r.data.get(a.dataId).values;return r.makeTensorInfo(a.shape,a.dtype,s)}var zq={kernelName:hh,backendName:"cpu",kernelFunc:Oo};function Hs(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dtype:s}=n;if(s==="complex64"){if(a.dtype==="complex64")return Oa({inputs:{x:a},backend:r});let i=q0(r,a.shape,a.dtype),o=Hs({inputs:{x:a},backend:r,attrs:{dtype:"float32"}}),l=hn({inputs:{real:o,imag:i},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Oo({inputs:{input:a},backend:r}),o=Hs({inputs:{x:i},backend:r,attrs:{dtype:s}});return r.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=Oa({inputs:{x:a},backend:r});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=r.data.get(a.dataId).values,o=Int32Array.from(i);return r.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=r.data.get(a.dataId).values,o=v.toTypedArray([0],a.dtype),[l,u]=Qt((d,h)=>d!==h?1:0)(a.shape,[],i,o,"bool");return r.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var Dq={kernelName:Qs,backendName:"cpu",kernelFunc:Hs};function br(e,t,r,n){return r==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;Ce([i,o],e);let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,h=i.dtype==="string"?C.fromUint8ToStringArray(u):u,p=i.dtype==="string"?C.fromUint8ToStringArray(d):d,c=n||i.dtype,[m,f]=t(i.shape,o.shape,h,p,c);return l.makeTensorInfo(f,c,m)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=Hs({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),d=l.data.get(u.dataId),h=d.complexTensorInfos.real,p=d.complexTensorInfos.imag,c=l.data.get(h.dataId).values,m=l.data.get(p.dataId).values,f=Hs({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,A=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,b=l.data.get(A.dataId).values,[w,I,T]=r(i.shape,o.shape,c,m,x,b),E=l.makeTensorInfo(T,"float32",w),R=l.makeTensorInfo(T,"float32",I),O=hn({inputs:{real:E,imag:R},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(R),O}else{let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,h=n||i.dtype,[p,c]=t(i.shape,o.shape,u,d,h);return l.makeTensorInfo(c,h,p)}}}function pA(e){return(t,r,n,a,s,i)=>{let o=C.assertAndGetBroadcastShape(t,r),l=v.sizeFromShape(o),u=o.length,d=v.computeStrides(o),h=v.getTypedArrayFromDType("float32",l),p=v.getTypedArrayFromDType("float32",l),c=C.getBroadcastDims(t,o),m=C.getBroadcastDims(r,o),f=C.mergeRealAndImagArrays(n,a),g=C.mergeRealAndImagArrays(s,i),y=t.length,A=v.computeStrides(t),x=r.length,b=v.computeStrides(r);if(c.length+m.length===0)for(let w=0;w<h.length;w++){let I=w%f.length,T=w%g.length,E=e(f[I*2],f[I*2+1],g[T*2],g[T*2+1]);h[w]=E.real,p[w]=E.imag}else for(let w=0;w<h.length;w++){let I=v.indexToLoc(w,u,d),T=I.slice(-y);c.forEach(S=>T[S]=0);let E=v.locToIndex(T,y,A),R=I.slice(-x);m.forEach(S=>R[S]=0);let O=v.locToIndex(R,x,b),$=e(f[E*2],f[E*2+1],g[O*2],g[O*2+1]);h[w]=$.real,p[w]=$.imag}return[h,p,o]}}var wk=Qt((e,t)=>e+t),Lq=pA((e,t,r,n)=>({real:e+r,imag:t+n})),Lu=br(Ja,wk,Lq),Bq={kernelName:Ja,backendName:"cpu",kernelFunc:Lu};function hA(e,t,r,n,a){let s=v.sizeFromShape(n),i=v.makeZerosTypedArray(a,r);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function kk(e,t,r,n=!1){let a=e.shape[0],s=e.shape[1],i=De([a,r],t.dtype);for(let o=0;o<a;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=r||(n?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function Gi(e){return(t,r,n)=>{let a=v.getTypedArrayFromDType(r,t.length);for(let s=0;s<t.length;++s)a[s]=e(t[s],n);return a}}function gt(e,t,r){return({inputs:n,attrs:a,backend:s})=>{let{x:i}=n;if(Ce(i,e),i.dtype==="string"||r==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),d=r||i.dtype,h=v.getArrayFromDType(d,u);for(let p=0;p<u;++p)h[p]=t(l[p],a);return o.makeTensorInfo(i.shape,d,h)}}function Ed(e,t,r){return({inputs:n,attrs:a,backend:s})=>{let{x:i}=n;if(Ce(i,e),i.dtype==="string"||r==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=r||i.dtype,d=t(l,u,a);return o.makeTensorInfo(i.shape,u,d)}}var Ik=Gi(e=>Math.ceil(e)),Wq=Ed(ei,Ik),Vq={kernelName:ei,backendName:"cpu",kernelFunc:Wq};function cA(e,t,r,n){let a=v.getArrayFromDType(r,v.sizeFromShape(t));if(n&&r!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=r==="string"?C.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let d=u*t[1]+s;for(let h=0;h<i.shape[1];++h)a[d+h]=o[l++]}s+=i.shape[1]})}return a}var Sk=Qt((e,t)=>e===t?1:0),Ck=br(Ko,Sk,null,"bool"),Uq={kernelName:Ko,backendName:"cpu",kernelFunc:Ck},Tk=Gi(e=>Math.exp(e)),Nk=Ed(ui,Tk,"float32"),Gq={kernelName:ui,backendName:"cpu",kernelFunc:Nk},Ek=Gi(e=>Math.expm1(e)),jq=Ed(Yo,Ek),Hq={kernelName:Yo,backendName:"cpu",kernelFunc:jq},Rk=Gi(e=>Math.floor(e)),qq=Ed(di,Rk),Xq={kernelName:di,backendName:"cpu",kernelFunc:qq};function $k(e,t,r,n,a,s,i,o,l){let u=De([n,s],r);for(let d=0;d<n;d++){let h=[],p=0;for(let c=0;c<a;c++){let m=e[d*a+c];p+=m*i[c],h.push(m)}if(p<0||p>=l/s)throw new Error(`Invalid indices: ${h} does not index into ${o}`);for(let c=0;c<s;c++)u.values[d*s+c]=t.get(...t.indexToLoc(p*s+c))}return u}function Mk(e,t,r){let n=De(r,e.dtype);for(let a=0;a<n.size;++a){let s=n.indexToLoc(a).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);0<=u&&u<e.values.length&&(n.values[a]=e.values[u])}return n}var Fk=Qt((e,t)=>e>t?1:0),Kq=br(tl,Fk,null,"bool"),Zq={kernelName:tl,backendName:"cpu",kernelFunc:Kq},_k=Qt((e,t)=>e>=t?1:0),Yq=br(ci,_k,null,"bool"),Jq={kernelName:ci,backendName:"cpu",kernelFunc:Yq},Pk=Qt((e,t)=>e<t?1:0),Qq=br(rl,Pk,null,"bool"),eX={kernelName:rl,backendName:"cpu",kernelFunc:Qq},Ok=Qt((e,t)=>e<=t?1:0),tX=br(nl,Ok,null,"bool"),rX={kernelName:nl,backendName:"cpu",kernelFunc:tX};function zk(e,t,r){let n=(t-e)/(r-1),a=v.makeZerosTypedArray(r,"float32");a[0]=e;for(let s=1;s<a.length;s++)a[s]=a[s-1]+n;return a}var Dk=Gi(e=>Math.log(e)),nX=Ed(gi,Dk),aX={kernelName:gi,backendName:"cpu",kernelFunc:nX};function Lk(e,t,r,n){let a=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let s=0;s<a.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}a[s]=o}return a}var Bk=Qt((e,t)=>Math.max(e,t)),sX=br(Ai,Bk),iX={kernelName:Ai,backendName:"cpu",kernelFunc:sX},Wk=Qt((e,t)=>Math.min(e,t)),oX=br(wi,Wk),lX={kernelName:wi,backendName:"cpu",kernelFunc:oX},fA=Qt((e,t)=>e*t),uX=pA((e,t,r,n)=>({real:e*r-t*n,imag:e*n+t*r})),$m=br(Ii,fA,uX),dX={kernelName:Ii,backendName:"cpu",kernelFunc:$m};function Vk(e,t,r){let n=v.createScalarValue(-1,r);return fA([],t,n,e,r)}function pX(e){let{inputs:t,backend:r}=e,{x:n}=t;Ce(n,"neg");let a=r.data.get(n.dataId).values,[s,i]=Vk(a,n.shape,n.dtype);return r.makeTensorInfo(i,n.dtype,s)}var hX={kernelName:il,backendName:"cpu",kernelFunc:pX},Uk=Qt((e,t)=>e!==t?1:0),cX=br(ol,Uk,null,"bool"),fX={kernelName:ol,backendName:"cpu",kernelFunc:cX};function mA(e,t,r,n,a){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(a),u=v.getTypedArrayFromDType(r,v.sizeFromShape(a));for(let d=0;d<i;++d){let h=v.indexToLoc(d,s,o),p=new Array(h.length);for(let m=0;m<p.length;m++)p[m]=h[n[m]];let c=v.locToIndex(p,s,l);u[c]=e[d]}return u}function on(e){let{inputs:t,attrs:r,backend:n}=e,{x:a}=t,{perm:s}=r;Ce(a,"transpose");let i=a.shape.length,o=new Array(i);for(let d=0;d<o.length;d++)o[d]=a.shape[s[d]];let l=n.data.get(a.dataId).values,u=mA(l,a.shape,a.dtype,s,o);return{dataId:n.write(u,o,a.dtype),shape:o,dtype:a.dtype}}var mX={kernelName:$a,backendName:"cpu",kernelFunc:on};function Gk(e,t,r,n){let[a,s]=C.computeOutAndReduceShapes(e,n),i=Nr(t,"int32"),o=v.makeZerosTypedArray(v.sizeFromShape(a),i),l=v.sizeFromShape(s);for(let u=0;u<o.length;++u){let d=u*l,h=1;for(let p=0;p<l;++p)h*=r[d+p];o[u]=h}return{outVals:o,outShape:a,outDtype:i}}function gX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Ce(a,"prod");let o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=C.getAxesPermutation(l,o),d=l,h=a,p=[];u!=null&&(h=on({inputs:{x:a},backend:r,attrs:{perm:u}}),p.push(h),d=C.getInnerMostAxes(d.length,o));let c=r.data.get(h.dataId).values,{outVals:m,outShape:f,outDtype:g}=Gk(h.shape,h.dtype,c,d),y=f;return i&&(y=C.expandShapeToKeepDim(f,l)),p.forEach(A=>r.disposeIntermediateTensorInfo(A)),r.makeTensorInfo(y,g,m)}var yX={kernelName:Ni,backendName:"cpu",kernelFunc:gX};function gA(e,t,r,n){let a=e===t,s=e<t&&r<0,i=t<e&&r>1;if(a||s||i)return v.makeZerosTypedArray(0,n);let o=Math.abs(Math.ceil((t-e)/r)),l=v.makeZerosTypedArray(o,n);t<e&&r===1&&(r=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+r;return l}var jk=Gi(e=>1/Math.sqrt(e)),AX=Ed(Mi,jk),xX={kernelName:Mi,backendName:"cpu",kernelFunc:AX};function vu(e,t,r,n,a,s,i,o,l,u){let d=[n/a,a],h=e.values,p=t.values;if(n===0)return De(r,t.dtype);let c=De(d,t.dtype);typeof l=="string"||typeof l=="number"?c.values.fill(l):typeof l=="boolean"&&c.values.fill(+l);for(let m=0;m<s;m++){let f=[],g=0;for(let y=0;y<i;y++){let A=h[m*i+y];f.push(A),g+=A*o[y]}if(g<0||g>=n/a)throw new Error(`Invalid indices: ${f} does not index into ${r}`);for(let y=0;y<a;y++)u?c.values[g*a+y]+=p[m*a+y]:c.values[g*a+y]=t.rank===0?p[0]:p[m*a+y]}return c}var bX=Gi(e=>1/(1+Math.exp(-e))),Hk=gt(_i,e=>1/(1+Math.exp(-e))),vX={kernelName:_i,backendName:"cpu",kernelFunc:Hk};function X0(e,t,r,n,a){let s=Dt.isSliceContinous(n,t,r),i=v.sizeFromShape(r),o=v.computeStrides(n);if(s){let h=Dt.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?C.fromUint8ToStringArray(e):e,u=De(n,a,l),d=De(r,a);for(let h=0;h<d.size;++h){let p=d.indexToLoc(h),c=p.map((m,f)=>m+t[f]);d.set(u.get(...c),...p)}return a==="string"?C.fromStringArrayToUint8(d.values):d.values}function zo(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,size:i}=n;Ce(a,"slice");let[o,l]=Dt.parseSliceParams(a,s,i);Dt.assertParamsValid(a,o,l);let u=r.data.get(a.dataId).values,d=X0(u,o,l,a.shape,a.dtype);return r.makeTensorInfo(l,a.dtype,d)}var wX={kernelName:Al,backendName:"cpu",kernelFunc:zo};function qk(e,t,r,n,a,s,i){let o=t[0],l=s[0],u=new Array(l),d=new Array(o),h=t[1];if(l===0){if(o!==0)throw new Error(C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=v.getArrayFromDType(r,0),y=v.getArrayFromDType(a,0);return[g,[0,h],y,u,d]}let p=!0,c=0,m=new Array(l).fill(0);for(let g=0;g<o;++g){let y=e[g*h];if(y<0)throw new Error(C.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=l)throw new Error(C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++m[y],p=p&&y>=c,c=y}let f=!0;for(let g=0;g<l;++g){let y=m[g]===0;u[g]=y,f=f&&!y,m[g]=Math.max(m[g],1),g>0&&(m[g]+=m[g-1])}if(f&&p){let g=e,y=n;for(let A=0;A<o;++A)d[A]=A;return[g,[o,h],y,u,d]}else{let g=m[l-1],y=v.getArrayFromDType(r,g*h),A=v.getArrayFromDType(a,g),x=new Array(l).fill(0);for(let b=0;b<o;++b){let w=e[b*h],I=x[w],T=(w===0?0:m[w-1])+I;x[w]++;for(let E=0;E<h;++E)y[T*h+E]=e[b*h+E];A[T]=n[b],d[b]=T}for(let b=0;b<l;++b)if(x[b]===0){let w=b===0?0:m[b-1];y[w*h+0]=b;for(let I=1;I<h;++I)y[w*h+I]=0;A[w]=i}return[y,[g,h],A,u,d]}}function Xk(e,t,r,n,a){let s=v.sizeFromShape(n),i=t[0],o=a.length,l=[],u=1,d=-1;for(let f=0;f<o;++f){let g=a[f];if(g===-1){if(d!==-1)throw new Error(C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(d,f));d=f,l.push(1)}else{if(g<0)throw new Error(C.getSparseReshapeNegativeOutputDimErrorMessage(f,g));u*=g,l.push(g)}}if(d!==-1){if(u<=0)throw new Error(C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let f=Math.trunc(s/u);if(u*f!==s)throw new Error(C.getSparseReshapeInputOutputMultipleErrorMessage(n,l));l[d]=f}if(v.sizeFromShape(l)!==s)throw new Error(C.getSparseReshapeInputOutputMismatchErrorMessage(n,l));let h=n.length,p=[];if(h>0){p[h-1]=1;for(let f=h-2;f>=0;--f)p[f]=p[f+1]*n[f+1]}let c=[];if(o>0){c[o-1]=1;for(let f=o-2;f>=0;--f)c[f]=c[f+1]*l[f+1]}let m=v.getArrayFromDType(r,i*o);for(let f=0;f<i;++f){let g=0;for(let y=0;y<h;++y)g+=e[f*h+y]*p[y];for(let y=0;y<o;++y)m[f*o+y]=Math.trunc(g/c[y]),g%=c[y]}return[m,[i,o],l]}function yA(e,t,r,n,a,s=!1,i=0){let o=n.length,l=[t[0],e.length/t[0]],u=l[1],d=o>0?a[o-1]+1:0;if(d<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let h=t.slice();h[0]=d;let p=h.reduce((A,x)=>A*x,1),c=v.getArrayFromDType(r,p);if(o===0)return d>0&&c.fill(i),[c,h];if(d<=0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,f=1,g=0,y=a[m];for(;;){let A=0;if(f<o){if(A=a[f],y===A){++f;continue}if(y>=A)throw new Error(C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(y<0||y>=d)throw new Error(C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y,d));y>g&&c.fill(i,g*u,y*u);for(let x=m;x<f;++x){let b=n[x];if(b<0||b>=l[0])throw new Error(C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,n[x],l[0]));for(let w=0;w<u;w++)c[y*u+w]+=e[b*u+w]}if(s)for(let x=0;x<u;x++)c[y*u+x]/=f-m;if(m=f,++f,g=y+1,y=A,f>o)break}return g<d&&c.fill(i,g*u,d*u),[c,h]}var kX=Gi(e=>Math.sqrt(e)),IX=gt(Pi,e=>Math.sqrt(e)),SX={kernelName:Pi,backendName:"cpu",kernelFunc:IX},Kk=Qt((e,t)=>{let r=e-t;return r*r}),CX=br(Di,Kk),TX={kernelName:Di,backendName:"cpu",kernelFunc:CX};function Zk(e,t,r,n){let a=De(e,t.dtype);for(let s=0;s<a.size;s++){let i=a.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*r[l]+n[l];a.set(t.get(...o),...i)}return a}var NX=class{constructor(e,t,r,n,a,s){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(r),this.rightPad=v.encodeString(n),this.padWidth=a,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let r=this.getPadWidth(t);return Math.max(0,e+2*r-t+1)}createNGrams(e,t,r,n,a,s){for(let i=0;i<a;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(a-(i+1))),d=s-(l+u),h=t+(l>0?0:i-o),p=0;p+=l*this.leftPad.length;for(let g=0;g<d;++g)p+=e[h+g].length;p+=u*this.rightPad.length,p+=(l+u+d-1)*this.separator.length,r[n+i]=new Uint8Array(p);let c=r[n+i],m=0,f=g=>g.forEach(y=>c[m++]=y);for(let g=0;g<l;++g)f(this.leftPad),f(this.separator);for(let g=0;g<d-1;++g)f(e[h+g]),f(this.separator);if(d>0){f(e[h+d-1]);for(let g=0;g<u;++g)f(this.separator),f(this.rightPad)}else{for(let g=0;g<u-1;++g)f(this.rightPad),f(this.separator);f(this.rightPad)}}}compute(e,t){let r=e.length,n=t.length;if(n>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<n;++l){let u=t[l]>=o;if(u=u&&t[l]<=r,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${r}]`);o=t[l]}if(o!==r)throw new Error(`Last split value must be data size. Expected ${r}, got ${o}`)}let a=n-1,s=v.getArrayFromDType("int32",n);if(r===0||n===0){let o=new Array(r);for(let l=0;l<=a;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=a;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(d=>{u+=this.getNumNGrams(l,d)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[a]);for(let o=0;o<a;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(d=>{let h=t[o+1]-t[o],p=this.getNumNGrams(h,d);this.createNGrams(e,l,i,u,p,d),u+=p}),this.preserveShort&&u===s[o]){let d=t[o+1]-t[o];if(d===0)continue;let h=d+2*this.padWidth,p=1;this.createNGrams(e,l,i,u,p,h)}}return[i,s]}};function Yk(e,t,r,n,a,s,i,o){return new NX(r,n,a,s,i,o).compute(e,t)}function EX(e,t,r,n){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)n.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!r||o.length!==0)&&n.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!r||e.length!==0)&&n.push(e);return}let a=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(a,s);(!r||i.length!==0)&&n.push(i),a=s+1}}function Jk(e,t,r){let n=e.length,a=[],s=0,i=0,o=new Array(n);for(let p=0;p<n;++p){let c=a.length;EX(e[p],t,r,a);let m=a.length-c;o[p]=m,s+=m,i=Math.max(i,m)}let l=v.getArrayFromDType("int32",s*2),u=new Array(s),d=[n,i],h=0;for(let p=0;p<n;++p)for(let c=0;c<o[p];++c)l[h*2]=p,l[h*2+1]=c,u[h]=a[h],++h;return[l,u,d]}function Qk(e,t){let r=v.getArrayFromDType("int32",e.length);for(let n=0;n<e.length;++n)r[n]=v.fingerPrint64(e[n]).modulo(t).getLowBitsUnsigned();return r}var e9=Qt((e,t)=>e-t),RX=pA((e,t,r,n)=>({real:e-r,imag:t-n})),AA=br(Li,e9,RX),$X={kernelName:Li,backendName:"cpu",kernelFunc:AA};function t9(e,t){let r=new Array(e.rank);for(let a=0;a<r.length;a++)r[a]=e.shape[a]*t[a];let n=De(r,e.dtype);for(let a=0;a<n.values.length;++a){let s=n.indexToLoc(a),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);n.values[a]=e.values[o]}return n}var Fp=(e,t)=>{let r=t.value-e.value;return r===0?e.index-t.index:r};function r9(e,t,r=0,n=e.length-1){for(;n>r;){if(n-r>600){let o=n-r+1,l=t-r+1,u=Math.log(o),d=.5*Math.exp(2*u/3),h=.5*Math.sqrt(u*d*(o-d)/o)*Math.sign(l-o/2),p=Math.max(r,Math.floor(t-l*d/o+h)),c=Math.min(n,Math.floor(t+(o-l)*d/o+h));r9(e,t,p,c)}let a=e[t],s=r,i=n;for(v.swap(e,r,t),Fp(e[n],a)>0&&v.swap(e,r,n);s<i;){for(v.swap(e,s,i),s++,i--;Fp(e[s],a)<0;)s=s+1;for(;Fp(e[i],a)>0;)i=i-1}Fp(e[r],a)===0?v.swap(e,r,i):(i=i+1,v.swap(e,i,n)),i<=t&&(r=i+1),t<=i&&(n=i-1)}}function n9(e,t,r,n,a){let s=t[t.length-1],[i,o]=[e.length/s,s],l=v.getTypedArrayFromDType(r,i*n),u=v.getTypedArrayFromDType("int32",i*n);for(let h=0;h<i;h++){let p=h*o,c=e.subarray(p,p+o),m=new Array(c.length);c.forEach((A,x)=>m[x]={value:A,index:x}),n<m.length&&(r9(m,n),m=m.slice(0,n)),a&&m.sort(Fp);let f=h*n,g=l.subarray(f,f+n),y=u.subarray(f,f+n);for(let A=0;A<n;A++)g[A]=m[A].value,y[A]=m[A].index}let d=t.slice();return d[d.length-1]=n,[De(d,r,l),De(d,"int32",u)]}function a9(e,t,r,n){let a=v.parseAxisParam(t,r)[0],s=[1,r[0],1];for(let m=0;m<a;m++)s[0]*=r[m];s[1]=r[a];for(let m=a+1;m<r.length;m++)s[2]*=r[m];let i={},o=new Int32Array(r[a]),l=new ir(s,n,e),u=[],d=s[0]===1&&s[2]===1;for(let m=0;m<r[a];m++){let f;if(d)f=e[m].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let A=0;A<s[2];A++)g.push(l.get(y,m,A));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,u.push(m)}}let h=s.slice();h[1]=Object.keys(i).length;let p=new ir(h,n);u.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)p.set(l.get(g,m,y),g,f,y)});let c=r.slice();return c[a]=h[1],{outputValues:p.values,outputShape:c,indices:o}}var MX="0.0.0";El("cpu",()=>new dA,1);var s9=gt(li,e=>e>=0?e:Math.exp(e)-1),FX={kernelName:li,backendName:"cpu",kernelFunc:s9};function i9(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{alpha:s}=n;Ce([a],"leakyRelu");let i=v.sizeFromShape(a.shape),o=r.data.get(a.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return r.makeTensorInfo(a.shape,"float32",l)}var _X={kernelName:mi,backendName:"cpu",kernelFunc:i9},PX=Qt((e,t)=>e<0?t*e:e);function o9(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t;Ce([n,a],"prelu");let s=r.data.get(n.dataId).values,i=r.data.get(a.dataId).values,[o,l]=PX(n.shape,a.shape,s,i,"float32");return r.makeTensorInfo(l,"float32",o)}var OX={kernelName:Ti,backendName:"cpu",kernelFunc:o9},l9=gt(Ei,e=>Math.max(0,e)),zX={kernelName:Ei,backendName:"cpu",kernelFunc:l9},u9=gt($i,e=>Math.min(Math.max(0,e),6)),DX={kernelName:$i,backendName:"cpu",kernelFunc:u9};function K0(e,t,r,n,a){if(r==="linear")return Oa({inputs:{x:t},backend:e});if(r==="relu")return l9({inputs:{x:t},backend:e});if(r==="elu")return s9({inputs:{x:t},backend:e});if(r==="relu6")return u9({inputs:{x:t},backend:e});if(r==="prelu")return o9({inputs:{x:t,alpha:n},backend:e});if(r==="leakyrelu")return i9({inputs:{x:t},backend:e,attrs:{alpha:a}});if(r==="sigmoid")return Hk({inputs:{x:t},backend:e});throw new Error(`Activation ${r} has not been implemented for the CPU backend.`)}function Ct(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{shape:s}=n,i=v.sizeFromShape(a.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),r.incRef(a.dataId);let u=r.data.get(a.dataId);if(u.complexTensorInfos!=null){let d=u.complexTensorInfos.real,h=u.complexTensorInfos.imag;d.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var LX={kernelName:cl,backendName:"cpu",kernelFunc:Ct};function d9(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;Ce([a,s],"matMul");let l=a.shape.length,u=s.shape.length,d=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],p=i?a.shape[l-1]:a.shape[l-2],c=o?s.shape[u-2]:s.shape[u-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),y=v.sizeFromShape(f),A=Rl.assertAndGetBroadcastShape(a.shape.slice(0,-2),s.shape.slice(0,-2)).concat([p,c]);v.assert(d===h,()=>`Error in matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,d,p]:[g,p,d],b=o?[y,c,h]:[y,h,c],w=Ct({inputs:{x:a},backend:r,attrs:{shape:x}}),I=Ct({inputs:{x:s},backend:r,attrs:{shape:b}}),T=i?w.shape[1]:w.shape[2],E=i?w.shape[2]:w.shape[1],R=o?I.shape[1]:I.shape[2],O=Math.max(g,y),$=r.data.get(w.dataId).values,S=r.data.get(I.dataId).values,P=v.computeStrides(w.shape),z=v.computeStrides(I.shape),[j,K,D]=i?[P[0],1,P[1]]:[P[0],P[1],1],[Y,V,re]=o?[1,z[1],z[0]]:[z[1],1,z[0]],Q=E*R,ie=De([O,E,R],w.dtype),J=ie.values,ae=r.blockSize;for(let de=0;de<O;de++)for(let be=0;be<E;be+=ae)for(let ve=0;ve<R;ve+=ae)for(let Ee=0;Ee<T;Ee+=ae){let $e=Math.min(be+ae,E),ze=Math.min(ve+ae,R),We=Math.min(Ee+ae,T);for(let Ke=be;Ke<$e;Ke++)for(let ot=ve;ot<ze;ot++){let pt=0;for(let ht=Ee;ht<We;ht++){let Fe=Math.min(de,g-1)*j,wt=Math.min(de,y-1)*re,xt=$[Fe+Ke*K+ht*D],Pr=S[ht*Y+ot*V+wt];pt+=xt*Pr}J[de*Q+(Ke*R+ot)]+=pt}}return r.disposeIntermediateTensorInfo(w),r.disposeIntermediateTensorInfo(I),r.makeTensorInfo(A,ie.dtype,ie.values)}var BX={kernelName:Js,backendName:"cpu",kernelFunc:d9};function WX(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n,p,c,m,f=[];p=d9({inputs:{a,b:s},attrs:{transposeA:l,transposeB:u},backend:r}),i&&(c=Lu({inputs:{a:p,b:i},backend:r}),f.push(p),p=c),d&&(m=K0(r,p,d,o,h),f.push(p),p=m);for(let g of f)r.disposeIntermediateTensorInfo(g);return p}var VX={kernelName:_s,backendName:"cpu",kernelFunc:WX},UX=gt(ju,e=>Math.acos(e)),GX={kernelName:ju,backendName:"cpu",kernelFunc:UX},jX=gt(Hu,e=>Math.acosh(e)),HX={kernelName:Hu,backendName:"cpu",kernelFunc:jX};function qX(e){let{inputs:t,backend:r}=e,n=t;Ce(t,"addN");let a=n.map(o=>r.data.get(o.dataId).values),s=De(n[0].shape,n[0].dtype),i=s.values;for(let o=0;o<n.length;o++){let l=a[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return r.makeTensorInfo(s.shape,s.dtype,s.values)}var XX={kernelName:Ks,backendName:"cpu",kernelFunc:qX};function KX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Ce(a,"all");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),d=a;u!=null&&(d=on({inputs:{x:a},backend:r,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("all",l,d.shape.length);let[h,p]=C.computeOutAndReduceShapes(d.shape,l),c=v.sizeFromShape(p),m=v.makeZerosTypedArray(v.sizeFromShape(h),d.dtype),f=r.data.get(d.dataId).values;for(let y=0;y<m.length;++y){let A=y*c,x=f[A];for(let b=0;b<c;++b){let w=f[A+b];x=x&&w}m[y]=x}u!=null&&r.disposeIntermediateTensorInfo(d);let g=r.makeTensorInfo(h,d.dtype,m);if(i){let y=C.expandShapeToKeepDim(h,o),A=Ct({inputs:{x:g},backend:r,attrs:{shape:y}});return r.disposeIntermediateTensorInfo(g),A}return g}var ZX={kernelName:qu,backendName:"cpu",kernelFunc:KX};function YX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Ce(a,"any");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),d=a;u!=null&&(d=on({inputs:{x:a},backend:r,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("any",l,d.shape.length);let[h,p]=C.computeOutAndReduceShapes(d.shape,l),c=v.sizeFromShape(p),m=v.makeZerosTypedArray(v.sizeFromShape(h),d.dtype),f=r.data.get(d.dataId).values;for(let y=0;y<m.length;++y){let A=y*c,x=f[A];for(let b=0;b<c;++b){let w=f[A+b];x=x||w}m[y]=x}u!=null&&r.disposeIntermediateTensorInfo(d);let g=r.makeTensorInfo(h,d.dtype,m);if(i){let y=C.expandShapeToKeepDim(h,o),A=Ct({inputs:{x:g},backend:r,attrs:{shape:y}});return r.disposeIntermediateTensorInfo(g),A}return g}var JX={kernelName:Xu,backendName:"cpu",kernelFunc:YX};function QX(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n;Ce(a,"argMax");let i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=on({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[d,h]=C.computeOutAndReduceShapes(l.shape,i),p=v.sizeFromShape(d),c=v.makeZerosTypedArray(p,"int32"),m=v.sizeFromShape(h),f=r.data.get(l.dataId).values;for(let g=0;g<c.length;++g){let y=g*m,A=f[y],x=0;for(let b=0;b<m;++b){let w=f[y+b];w>A&&(A=w,x=b)}c[g]=x}return u.forEach(g=>r.disposeIntermediateTensorInfo(g)),r.makeTensorInfo(d,"int32",c)}var eK={kernelName:Zs,backendName:"cpu",kernelFunc:QX};function tK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n;Ce(a,"argMin");let i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=on({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[d,h]=C.computeOutAndReduceShapes(l.shape,i),p=v.sizeFromShape(d),c=v.makeZerosTypedArray(p,"int32"),m=v.sizeFromShape(h),f=r.data.get(l.dataId).values;for(let g=0;g<c.length;++g){let y=g*m,A=f[y],x=0;for(let b=0;b<m;++b){let w=f[y+b];w<A&&(A=w,x=b)}c[g]=x}return u.forEach(g=>r.disposeIntermediateTensorInfo(g)),r.makeTensorInfo(d,"int32",c)}var rK={kernelName:Ku,backendName:"cpu",kernelFunc:tK},nK=gt(Zu,e=>Math.asin(e)),aK={kernelName:Zu,backendName:"cpu",kernelFunc:nK},sK=gt(Yu,e=>Math.asinh(e)),iK={kernelName:Yu,backendName:"cpu",kernelFunc:sK},oK=gt(Ju,e=>Math.atan(e)),lK={kernelName:Ju,backendName:"cpu",kernelFunc:oK},uK=Qt((e,t)=>Math.atan2(e,t)),dK=br(ed,uK),pK={kernelName:ed,backendName:"cpu",kernelFunc:dK},hK=gt(Qu,e=>Math.atanh(e)),cK={kernelName:Qu,backendName:"cpu",kernelFunc:hK};function xA(e,t,r,n,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,u=a.dilationWidth,d=a.effectiveFilterHeight,h=a.effectiveFilterWidth,p=a.padInfo.top,c=a.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=De(a.outShape,r),g=f.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],A=a.outShape[2]*a.outShape[3],x=a.outShape[3];for(let b=0;b<a.batchSize;++b){let w=b*y,I=b*n[0];for(let T=0;T<a.inChannels;++T)for(let E=0;E<a.outHeight;++E){let R=E*i-p,O=Math.max(0,R),$=Math.min(a.inHeight,d+R),S=w+E*A;for(let P=0;P<a.outWidth;++P){let z=P*o-c,j=Math.max(0,z),K=Math.min(a.inWidth,h+z),D=m,Y=0,V=0;for(let Q=O;Q<$;Q+=l){let ie=I+Q*n[1];for(let J=j;J<K;J+=u){let ae=ie+J*n[2],de=e[ae+T];s==="max"&&de>D?D=de:s==="avg"&&(Y+=de,V++)}if(isNaN(D))break}let re=S+P*x+T;g[re]=s==="avg"?Y/V:D}}}return f}function p9(e,t,r,n,a=!1,s=!1){let i=De(n.outShape,"int32"),o=n.strideHeight,l=n.strideWidth,u=n.dilationHeight,d=n.dilationWidth,h=n.effectiveFilterHeight,p=n.effectiveFilterWidth,c=n.padInfo.top,m=n.padInfo.left,f=De(t,r,e);for(let g=0;g<n.batchSize;++g)for(let y=0;y<n.inChannels;++y)for(let A=0;A<n.outHeight;++A){let x=A*o-c,b=x;for(;b<0;)b+=u;let w=Math.min(n.inHeight,h+x);for(let I=0;I<n.outWidth;++I){let T=I*l-m,E=T;for(;E<0;)E+=d;let R=Math.min(n.inWidth,p+T),O=Number.NEGATIVE_INFINITY,$=-1;for(let S=b;S<w;S+=u){let P=S-x;for(let z=E;z<R;z+=d){let j=z-T,K=f.get(g,S,z,y);K>O&&(O=K,a?$=s?((g*n.inHeight+S)*n.inWidth+z)*n.inChannels+y:(S*n.inWidth+z)*n.inChannels+y:$=P*p+j)}}i.set($,g,A,I,y)}}return i}function h9(e,t,r,n,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,u=a.dilationDepth,d=a.dilationHeight,h=a.dilationWidth,p=a.effectiveFilterDepth,c=a.effectiveFilterHeight,m=a.effectiveFilterWidth,f=a.padInfo.front,g=a.padInfo.top,y=a.padInfo.left,A=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=De(a.outShape,r),b=x.values,w=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],I=a.outShape[2]*a.outShape[3]*a.outShape[4],T=a.outShape[3]*a.outShape[4],E=a.outShape[4];for(let R=0;R<a.batchSize;++R){let O=R*w,$=R*n[0];for(let S=0;S<a.inChannels;++S)for(let P=0;P<a.outDepth;++P){let z=P*i-f,j=z;for(;j<0;)j+=u;let K=Math.min(a.inDepth,p+z),D=O+P*I;for(let Y=0;Y<a.outHeight;++Y){let V=Y*o-g,re=V;for(;re<0;)re+=d;let Q=Math.min(a.inHeight,c+V),ie=D+Y*T;for(let J=0;J<a.outWidth;++J){let ae=J*l-y,de=ae;for(;de<0;)de+=h;let be=Math.min(a.inWidth,m+ae),ve=ie+J*E,Ee=A,$e=0,ze=0;for(let Ke=j;Ke<K;Ke+=u){let ot=$+Ke*n[1];for(let pt=re;pt<Q;pt+=d){let ht=ot+pt*n[2];for(let Fe=de;Fe<be;Fe+=h){let wt=ht+Fe*n[3],xt=e[wt+S];if(s==="max"&&xt>Ee?Ee=xt:s==="avg"&&($e+=xt,ze++),isNaN(Ee))break}if(isNaN(Ee))break}if(isNaN(Ee))break}let We=ve+S;b[We]=s==="avg"?$e/ze:Ee}}}}return x}function fK(e,t){let r=De(t.outShape,"int32"),n=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,d=t.effectiveFilterHeight,h=t.effectiveFilterWidth,p=t.padInfo.front,c=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let A=y*n-p,x=A;for(;x<0;)x+=i;let b=Math.min(t.inDepth,u+A);for(let w=0;w<t.outHeight;++w){let I=w*a-c,T=I;for(;T<0;)T+=o;let E=Math.min(t.inHeight,d+I);for(let R=0;R<t.outWidth;++R){let O=R*s-m,$=O;for(;$<0;)$+=l;let S=Math.min(t.inWidth,h+O),P=Number.NEGATIVE_INFINITY,z=-1;for(let j=x;j<b;j+=i){let K=j-A;for(let D=T;D<E;D+=o){let Y=D-I;for(let V=$;V<S;V+=l){let re=V-O,Q=e.get(f,j,D,V,g);Q>=P&&(P=Q,z=K*d*h+Y*d+re)}}}r.set(z,f,y,w,R,g)}}}return r}function mK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;Ce(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=C.computePool2DInfo(a.shape,s,i,u,o,l),h;if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))h=Oa({inputs:{x:a},backend:r});else{let p=r.data.get(a.dataId).values,c=v.computeStrides(a.shape),m=xA(p,a.shape,a.dtype,c,d,"avg");h=r.makeTensorInfo(d.outShape,a.dtype,m.values)}return h}var gK={kernelName:Ys,backendName:"cpu",kernelFunc:mK};function yK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n;Ce(a,"avgPool3d");let d=C.computePool3DInfo(a.shape,s,i,1,o,l,u),h=r.data.get(a.dataId).values,p=h9(h,a.shape,a.dtype,v.computeStrides(a.shape),d,"avg");return r.makeTensorInfo(p.shape,"float32",p.values)}var AK={kernelName:nh,backendName:"cpu",kernelFunc:yK};function xK(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n;Ce([a,s],"avgPool3DGrad");let d=C.computePool3DInfo(s.shape,i,o,1,l,u),h=d.strideDepth,p=d.strideHeight,c=d.strideWidth,m=d.filterDepth,f=d.filterHeight,g=d.filterWidth,y=d.dilationDepth,A=d.dilationHeight,x=d.dilationWidth,b=d.effectiveFilterDepth,w=d.effectiveFilterHeight,I=d.effectiveFilterWidth,T=b-1-d.padInfo.front,E=I-1-d.padInfo.left,R=w-1-d.padInfo.top,O=De(s.shape,"float32"),$=1/(m*f*g),S=r.bufferSync(a);for(let P=0;P<d.batchSize;++P)for(let z=0;z<d.inChannels;++z)for(let j=0;j<d.inDepth;++j)for(let K=0;K<d.inHeight;++K)for(let D=0;D<d.inWidth;++D){let Y=j-T,V=K-R,re=D-E,Q=0;for(let ie=0;ie<b;ie+=y){let J=(Y+ie)/h;if(!(J<0||J>=d.outDepth||Math.floor(J)!==J))for(let ae=0;ae<w;ae+=A){let de=(V+ae)/p;if(!(de<0||de>=d.outHeight||Math.floor(de)!==de))for(let be=0;be<I;be+=x){let ve=(re+be)/c;ve<0||ve>=d.outWidth||Math.floor(ve)!==ve||(Q+=S.get(P,J,de,ve,z))}}}O.set(Q*$,P,j,K,D,z)}return r.makeTensorInfo(O.shape,O.dtype,O.values)}var bK={kernelName:uf,backendName:"cpu",kernelFunc:xK};function vK(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s;Ce([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=n,d=C.computePool2DInfo(i.shape,o,l,1,u),h=d.strideHeight,p=d.strideWidth,c=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,g=d.dilationWidth,y=d.effectiveFilterHeight,A=d.effectiveFilterWidth,x=A-1-d.padInfo.left,b=y-1-d.padInfo.top,w=De(i.shape,"float32"),I=1/(c*m),T=r.data.get(a.dataId).values,E=De(a.shape,"float32",T);for(let R=0;R<d.batchSize;++R)for(let O=0;O<d.inChannels;++O)for(let $=0;$<d.inHeight;++$)for(let S=0;S<d.inWidth;++S){let P=$-b,z=S-x,j=0;for(let K=0;K<y;K+=f){let D=(P+K)/h;if(!(D<0||D>=d.outHeight||Math.floor(D)!==D))for(let Y=0;Y<A;Y+=g){let V=(z+Y)/p;V<0||V>=d.outWidth||Math.floor(V)!==V||(j+=E.get(R,D,V,O))}}w.set(j*I,R,$,S,O)}return r.makeTensorInfo(w.shape,w.dtype,w.values)}var wK={kernelName:lf,backendName:"cpu",kernelFunc:vK};function kK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ce([a,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=n;u==null&&(u=.001);let d=r.data.get(a.dataId).values,h=r.data.get(o.dataId).values,p=r.data.get(l.dataId).values,c=s?r.data.get(s.dataId).values:new Float32Array([1]),m=i?r.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(d.length),g=m.length,y=c.length,A=p.length,x=h.length,b=0,w=0,I=0,T=0;for(let E=0;E<d.length;++E)f[E]=m[b++]+(d[E]-h[w++])*c[I++]/Math.sqrt(p[T++]+u),b>=g&&(b=0),w>=x&&(w=0),I>=y&&(I=0),T>=A&&(T=0);return r.makeTensorInfo(a.shape,a.dtype,f)}var IK={kernelName:hi,backendName:"cpu",kernelFunc:kK};function SK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n;Ce([a],"batchToSpaceND");let o=s.reduce((y,A)=>y*A),l=C.getReshaped(a.shape,s,o),u=C.getPermuted(l.length,s.length),d=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),p=C.getSliceSize(d,i,s.length),c=Ct({inputs:{x:a},backend:r,attrs:{shape:l}}),m=on({inputs:{x:c},backend:r,attrs:{perm:u}}),f=Ct({inputs:{x:m},backend:r,attrs:{shape:d}}),g=zo({inputs:{x:f},backend:r,attrs:{begin:h,size:p}});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(m),r.disposeIntermediateTensorInfo(f),g}var CK={kernelName:Go,backendName:"cpu",kernelFunc:SK};function TK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i}=n,o=r.data.get(a.dataId).values,l=r.data.get(s.dataId).values,u=hA(o,l,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,u)}var NK={kernelName:df,backendName:"cpu",kernelFunc:TK};function EK(e){let{inputs:t,backend:r}=e,{s0:n,s1:a}=t,s=r.data.get(n.dataId).values,i=r.data.get(a.dataId).values,o=C.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return r.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var RK={kernelName:pf,backendName:"cpu",kernelFunc:EK},$K=gt(Qa,(e,t)=>{let r=t;return e>r.clipValueMax?r.clipValueMax:e<r.clipValueMin?r.clipValueMin:e}),MK={kernelName:Qa,backendName:"cpu",kernelFunc:$K},FK=e=>{let{x:t}=e.inputs,r=e.backend,n=new Float32Array(v.sizeFromShape(t.shape)),a=r.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=r.data.get(s.dataId).values,l=r.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let d=o[u],h=l[u];n[u]=Math.hypot(d,h)}return r.makeOutput(n,t.shape,"float32")},_K={kernelName:sh,backendName:"cpu",kernelFunc:FK};function Bu(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.data.get(n.dataId).complexTensorInfos.imag,s=r.data.get(a.dataId).values;return r.makeTensorInfo(a.shape,a.dtype,s)}var PK={kernelName:uh,backendName:"cpu",kernelFunc:Bu};function Wu(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n,s=v.parseAxisParam(a,t[0].shape)[0],i=C.computeOutShape(t.map(f=>f.shape),s);if(v.sizeFromShape(i)===0)return r.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>v.sizeFromShape(f.shape)>0);if(o.length===1)return Oa({inputs:{x:o[0]},backend:r});let l=o.map(f=>f.shape);if(C.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(b=>Oo({inputs:{input:b},backend:r})),g=o.map(b=>Bu({inputs:{input:b},backend:r})),y=Wu({inputs:f,backend:r,attrs:{axis:s}}),A=Wu({inputs:g,backend:r,attrs:{axis:s}}),x=hn({inputs:{real:y,imag:A},backend:r});return f.forEach(b=>r.disposeIntermediateTensorInfo(b)),g.forEach(b=>r.disposeIntermediateTensorInfo(b)),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(A),x}let u=o.map(f=>{let g=v.sizeFromShape(f.shape.slice(s));return Ct({inputs:{x:f},backend:r,attrs:{shape:[-1,g]}})}),d=u.map(f=>({vals:r.data.get(f.dataId).values,shape:f.shape}));i=C.computeOutShape(u.map(f=>f.shape),1);let h=u[0].shape[0]===1,p=cA(d,i,t[0].dtype,h),c=C.computeOutShape(o.map(f=>f.shape),s),m=r.makeTensorInfo(c,t[0].dtype,p);return u.forEach(f=>r.disposeIntermediateTensorInfo(f)),m}var OK={kernelName:jo,backendName:"cpu",kernelFunc:Wu};function c9(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=n;Ce([a,s],"conv2d");let h=C.convertConv2DDataFormat(l),p=C.computeConv2DInfo(a.shape,s.shape,i,u,o,d,!1,h),c=p.filterHeight,m=p.filterWidth,f=p.dilationHeight,g=p.dilationWidth,y=p.padInfo.left,A=p.padInfo.top,x=p.dataFormat==="channelsLast",b=new ir(p.outShape,a.dtype),w=v.computeStrides(a.shape),I=v.computeStrides(s.shape),T=w[0],E=x?w[1]:w[2],R=x?w[2]:1,O=x?1:w[1],$=b.strides[0],S=x?b.strides[1]:b.strides[2],P=x?b.strides[2]:1,z=x?1:b.strides[1],j=r.data.get(a.dataId).values,K=r.data.get(s.dataId).values,D=b.values;for(let Y=0;Y<p.batchSize;++Y){let V=Y*T,re=Y*$;for(let Q=0;Q<p.outHeight;++Q){let ie=re+Q*S,J=Q*p.strideHeight-A;for(let ae=0;ae<c;++ae){let de=J+ae*f;if(de<0||de>=p.inHeight)continue;let be=ae*I[0],ve=V+de*E;for(let Ee=0;Ee<p.outWidth;++Ee){let $e=ie+Ee*P,ze=Ee*p.strideWidth-y;for(let We=0;We<m;++We){let Ke=ze+We*g;if(Ke<0||Ke>=p.inWidth)continue;let ot=be+We*I[1],pt=ve+Ke*R,ht=ot;for(let Fe=0;Fe<p.inChannels;++Fe){let wt=j[pt+Fe*O];for(let xt=0;xt<p.outChannels;++xt)D[$e+xt*z]+=wt*K[ht+xt];ht+=p.outChannels}}}}}}return r.makeTensorInfo(b.shape,b.dtype,D)}var zK={kernelName:ti,backendName:"cpu",kernelFunc:c9};function DK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=n;Ce([a,s],"conv2dBackpropFilter");let h=C.convertConv2DDataFormat(l),p=C.computeConv2DInfo(a.shape,d,i,1,o,u,!1,h),{strideHeight:c,strideWidth:m,filterHeight:f,filterWidth:g}=p,y=p.dataFormat==="channelsLast",A=new ir(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,w=r.data.get(a.dataId).values,I=r.data.get(s.dataId).values,T=new ir(a.shape,a.dtype,w),E=new ir(s.shape,s.dtype,I);for(let R=0;R<f;++R){let O=Math.max(0,Math.ceil((b-R)/c)),$=Math.min(p.outHeight,(p.inHeight+b-R)/c);for(let S=0;S<g;++S){let P=Math.max(0,Math.ceil((x-S)/m)),z=Math.min(p.outWidth,(p.inWidth+x-S)/m);for(let j=0;j<p.inChannels;++j)for(let K=0;K<p.outChannels;++K){let D=0;for(let Y=0;Y<p.batchSize;++Y)for(let V=O;V<$;++V){let re=R+V*c-b;for(let Q=P;Q<z;++Q){let ie=S+Q*m-x;y?D+=T.get(Y,re,ie,j)*E.get(Y,V,Q,K):D+=T.get(Y,j,re,ie)*E.get(Y,K,V,Q)}}A.set(D,R,S,j,K)}}}return r.makeTensorInfo(A.shape,A.dtype,A.values)}var LK={kernelName:hf,backendName:"cpu",kernelFunc:DK};function BK(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=n;Ce([a,s],"conv2dBackpropInput");let h=v.computeStrides(s.shape),p=v.computeStrides(a.shape),c=C.convertConv2DDataFormat(u),m=C.computeConv2DInfo(i,s.shape,o,1,l,d,!1,c),f=new ir(m.inShape,"float32"),g=f.values,y=r.data.get(a.dataId).values,A=r.data.get(s.dataId).values,[x,b,w]=h,{batchSize:I,filterHeight:T,filterWidth:E,inChannels:R,inHeight:O,inWidth:$,outChannels:S,outHeight:P,outWidth:z,strideHeight:j,strideWidth:K}=m;c=m.dataFormat;let D=T-1-m.padInfo.top,Y=E-1-m.padInfo.left,V=c==="channelsLast",re=f.strides[0],Q=V?f.strides[1]:f.strides[2],ie=V?f.strides[2]:1,J=V?1:f.strides[1],ae=p[0],de=V?p[1]:p[2],be=V?p[2]:1,ve=V?1:p[1];for(let Ee=0;Ee<I;++Ee)for(let $e=0;$e<R;++$e)for(let ze=0;ze<O;++ze){let We=ze-D,Ke=Math.max(0,Math.ceil(We/j)),ot=Math.min(P,(T+We)/j);for(let pt=0;pt<$;++pt){let ht=pt-Y,Fe=Math.max(0,Math.ceil(ht/K)),wt=Math.min(z,(E+ht)/K),xt=0;for(let hr=Ke;hr<ot;++hr){let Qr=hr*j-We;for(let rr=Fe;rr<wt;++rr){let cr=rr*K-ht,ta=ae*Ee+de*hr+be*rr,en=x*(T-1-Qr)+b*(E-1-cr)+w*$e;for(let nr=0;nr<S;++nr){let kn=y[ta+ve*nr],In=A[en+nr];xt+=kn*In}}}let Pr=re*Ee+Q*ze+ie*pt+J*$e;g[Pr]=xt}}return r.makeTensorInfo(f.shape,f.dtype,f.values)}var WK={kernelName:ri,backendName:"cpu",kernelFunc:BK};function VK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=n;Ce([a,s],"conv3d");let u=C.computeConv3DInfo(a.shape,s.shape,i,l,o),{filterDepth:d,filterHeight:h,filterWidth:p,dilationDepth:c,dilationHeight:m,dilationWidth:f,padInfo:g}=u,y=g.front,A=g.left,x=g.top,b=new ir(u.outShape,a.dtype),w=r.data.get(a.dataId).values,I=r.data.get(s.dataId).values,T=b.values,E=v.computeStrides(a.shape),R=v.computeStrides(s.shape);for(let O=0;O<u.batchSize;++O){let $=O*E[0],S=O*b.strides[0];for(let P=0;P<u.outDepth;++P){let z=S+P*b.strides[1],j=P*u.strideDepth-y;for(let K=0;K<d;++K){let D=j+K*c;if(D<0||D>=u.inDepth)continue;let Y=K*R[0],V=$+D*E[1];for(let re=0;re<u.outHeight;++re){let Q=z+re*b.strides[2],ie=re*u.strideHeight-x;for(let J=0;J<h;++J){let ae=ie+J*m;if(ae<0||ae>=u.inHeight)continue;let de=Y+J*R[1],be=V+ae*E[2];for(let ve=0;ve<u.outWidth;++ve){let Ee=Q+ve*u.outChannels,$e=ve*u.strideWidth-A;for(let ze=0;ze<p;++ze){let We=$e+ze*f;if(We<0||We>=u.inWidth)continue;let Ke=de+ze*R[2],ot=be+We*u.inChannels,pt=Ke;for(let ht=0;ht<u.inChannels;++ht){let Fe=w[ot+ht];for(let wt=0;wt<u.outChannels;++wt)T[Ee+wt]+=Fe*I[pt+wt];pt+=u.outChannels}}}}}}}}return r.makeTensorInfo(b.shape,b.dtype,b.values)}var UK={kernelName:ih,backendName:"cpu",kernelFunc:VK};function GK(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=n;Ce([a,s],"conv3dBackpropFilterV2");let u=v.computeStrides(a.shape),d=v.computeStrides(s.shape),h=C.computeConv3DInfo(a.shape,l,i,1,o),p=h.strideDepth,c=h.strideHeight,m=h.strideWidth,f=h.filterDepth,g=h.filterHeight,y=h.filterWidth,A=new ir(h.filterShape,"float32"),x=A.values,[b,w,I,T]=A.strides,E=r.data.get(s.dataId).values,[R,O,$,S]=d,P=r.data.get(a.dataId).values,[z,j,K,D]=u,Y=h.padInfo.front,V=h.padInfo.left,re=h.padInfo.top;for(let Q=0;Q<f;++Q){let ie=Math.max(0,Math.ceil((Y-Q)/p)),J=Math.min(h.outDepth,(h.inDepth+Y-Q)/p),ae=Q*b;for(let de=0;de<g;++de){let be=Math.max(0,Math.ceil((re-de)/c)),ve=Math.min(h.outHeight,(h.inHeight+re-de)/c),Ee=de*w+ae;for(let $e=0;$e<y;++$e){let ze=Math.max(0,Math.ceil((V-$e)/m)),We=Math.min(h.outWidth,(h.inWidth+V-$e)/m),Ke=$e*I+Ee;for(let ot=0;ot<h.inChannels;++ot){let pt=ot*T+Ke;for(let ht=0;ht<h.outChannels;++ht){let Fe=0;for(let wt=0;wt<h.batchSize;++wt){let xt=wt*z,Pr=wt*R;for(let hr=ie;hr<J;++hr){let Qr=(Q+hr*p-Y)*j+xt,rr=hr*O+Pr;for(let cr=be;cr<ve;++cr){let ta=(de+cr*c-re)*K+Qr,en=cr*$+rr;for(let nr=ze;nr<We;++nr){let kn=($e+nr*m-V)*D+ta,In=nr*S+en;Fe+=P[kn+ot]*E[In+ht]}}}}x[pt+ht]=Fe}}}}}return r.makeTensorInfo(A.shape,A.dtype,A.values)}var jK={kernelName:cf,backendName:"cpu",kernelFunc:GK};function HK(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=n;Ce([a],"conv3dBackpropInputV2");let u=v.computeStrides(a.shape),d=v.computeStrides(s.shape),h=C.computeConv3DInfo(l,s.shape,o,1,i),p=new ir(h.inShape,"float32"),c=p.values,[m,f,g,y]=p.strides,A=r.data.get(a.dataId).values,[x,b,w,I]=u,T=r.data.get(s.dataId).values,[E,R,O,$]=d,{batchSize:S,filterDepth:P,filterHeight:z,filterWidth:j,inChannels:K,inDepth:D,inHeight:Y,inWidth:V,outChannels:re,outDepth:Q,outHeight:ie,outWidth:J,strideDepth:ae,strideHeight:de,strideWidth:be}=h,ve=P-1-h.padInfo.front,Ee=z-1-h.padInfo.top,$e=j-1-h.padInfo.left;for(let ze=0;ze<S;++ze)for(let We=0;We<K;++We)for(let Ke=0;Ke<D;++Ke){let ot=Ke-ve,pt=Math.max(0,Math.ceil(ot/ae)),ht=Math.min(Q,(P+ot)/ae);for(let Fe=0;Fe<Y;++Fe){let wt=Fe-Ee,xt=Math.max(0,Math.ceil(wt/de)),Pr=Math.min(ie,(z+wt)/de);for(let hr=0;hr<V;++hr){let Qr=hr-$e,rr=Math.max(0,Math.ceil(Qr/be)),cr=Math.min(J,(j+Qr)/be),ta=0;for(let en=pt;en<ht;++en){let nr=en*ae-ot;for(let kn=xt;kn<Pr;++kn){let In=kn*de-wt;for(let gs=rr;gs<cr;++gs){let io=gs*be-Qr,gc=x*ze+b*en+w*kn+I*gs,ys=E*(P-1-nr)+R*(z-1-In)+O*(j-1-io)+$*We;for(let Ua=0;Ua<re;++Ua){let up=A[gc+Ua],Ql=T[ys+Ua];ta+=up*Ql}}}}c[m*ze+f*Ke+g*Fe+y*hr+We]=ta}}}return r.makeTensorInfo(p.shape,p.dtype,p.values)}var qK={kernelName:ff,backendName:"cpu",kernelFunc:HK},XK=gt(ni,e=>Math.cos(e)),KK={kernelName:ni,backendName:"cpu",kernelFunc:XK},ZK=gt(ai,e=>Math.cosh(e)),YK={kernelName:ai,backendName:"cpu",kernelFunc:ZK};function JK(e){let{inputs:t,backend:r,attrs:n}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,[d,h,p,c]=a.shape,m=s.shape[0],[f,g]=o,y=De([m,f,g,c],"float32"),A=r.data.get(s.dataId).values,x=r.data.get(i.dataId).values,b=r.data.get(a.dataId).values,w=v.computeStrides(a.shape),I=v.computeStrides(y.shape);for(let T=0;T<m;T++){let E=T*4,R=A[E],O=A[E+1],$=A[E+2],S=A[E+3],P=x[T];if(P>=d)continue;let z=f>1?($-R)*(h-1)/(f-1):0,j=g>1?(S-O)*(p-1)/(g-1):0;for(let K=0;K<f;K++){let D=f>1?R*(h-1)+K*z:.5*(R+$)*(h-1);if(D<0||D>h-1){for(let Y=0;Y<g;Y++)for(let V=0;V<c;V++){let re=V+Y*I[2]+K*I[1]+T*I[0];y.values[re]=u}continue}if(l==="bilinear"){let Y=Math.floor(D),V=Math.ceil(D),re=D-Y;for(let Q=0;Q<g;Q++){let ie=g>1?O*(p-1)+Q*j:.5*(O+S)*(p-1);if(ie<0||ie>p-1){for(let be=0;be<c;be++){let ve=be+Q*I[2]+K*I[1]+T*I[0];y.values[ve]=u}continue}let J=Math.floor(ie),ae=Math.ceil(ie),de=ie-J;for(let be=0;be<c;be++){let ve=be+J*w[2]+Y*w[1]+P*w[0],Ee=b[ve];ve=be+ae*w[2]+Y*w[1]+P*w[0];let $e=b[ve];ve=be+J*w[2]+V*w[1]+P*w[0];let ze=b[ve];ve=be+ae*w[2]+V*w[1]+P*w[0];let We=b[ve],Ke=Ee+($e-Ee)*de,ot=ze+(We-ze)*de;ve=be+Q*I[2]+K*I[1]+T*I[0],y.values[ve]=Ke+(ot-Ke)*re}}}else for(let Y=0;Y<g;++Y){let V=g>1?O*(p-1)+Y*j:.5*(O+S)*(p-1);if(V<0||V>p-1){for(let ie=0;ie<c;ie++){let J=ie+Y*I[2]+K*I[1]+T*I[0];y.values[J]=u}continue}let re=Math.round(V),Q=Math.round(D);for(let ie=0;ie<c;ie++){let J=ie+re*w[2]+Q*w[1]+P*w[0],ae=ie+Y*I[2]+K*I[1]+T*I[0];y.values[ae]=b[J]}}}}return r.makeTensorInfo(y.shape,y.dtype,y.values)}var QK={kernelName:qo,backendName:"cpu",kernelFunc:JK};function eZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n;Ce(a,"cumprod");let l=C.getAxesPermutation([s],a.shape.length),u=a;l!=null&&(u=on({inputs:{x:a},backend:r,attrs:{perm:l}}));let d=C.getInnerMostAxes(1,a.shape.length)[0];if(d!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${d}`);let h=Nr(u.dtype,"int32"),p=v.makeOnesTypedArray(v.sizeFromShape(u.shape),h),c=r.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,A)=>y+m-A-1:(y,A)=>y+A;for(let y=0;y<c.length;y+=m)for(let A=0;A<m;A++){let x=f(y,A);if(A===0)p[x]=i?1:c[x];else{let b=f(y,A-1);p[x]=i?c[b]*p[b]:c[x]*p[b]}}let g=r.makeTensorInfo(u.shape,h,p);if(l!=null){let y=C.getUndoAxesPermutation(l),A=on({inputs:{x:g},backend:r,attrs:{perm:y}});return r.disposeIntermediateTensorInfo(g),r.disposeIntermediateTensorInfo(u),A}return g}var tZ={kernelName:Ho,backendName:"cpu",kernelFunc:eZ};function rZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n;Ce(a,"cumsum");let l=C.getAxesPermutation([s],a.shape.length),u=a;l!=null&&(u=on({inputs:{x:a},backend:r,attrs:{perm:l}}));let d=C.getInnerMostAxes(1,a.shape.length)[0];if(d!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${d}`);let h=Nr(u.dtype,"int32"),p=v.makeZerosTypedArray(v.sizeFromShape(u.shape),h),c=r.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,A)=>y+m-A-1:(y,A)=>y+A;for(let y=0;y<c.length;y+=m)for(let A=0;A<m;A++){let x=f(y,A);if(A===0)p[x]=i?0:c[x];else{let b=f(y,A-1);p[x]=i?c[b]+p[b]:c[x]+p[b]}}let g=r.makeTensorInfo(u.shape,h,p);if(l!=null){let y=C.getUndoAxesPermutation(l),A=on({inputs:{x:g},backend:r,attrs:{perm:y}});return r.disposeIntermediateTensorInfo(g),r.disposeIntermediateTensorInfo(u),A}return g}var nZ={kernelName:si,backendName:"cpu",kernelFunc:rZ};function aZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=n;if(a.shape.length===1){let l=r.data.get(a.dataId).values,u=r.data.get(s.dataId).values,d=hA(l,u,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,d)}else if(a.shape.length===2){let l=r.bufferSync(a),u=r.bufferSync(s),d=kk(l,u,i,o);return r.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var sZ={kernelName:mf,backendName:"cpu",kernelFunc:aZ};function iZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockSize:s,dataFormat:i}=n;v.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=a.shape[0],l=a.shape[1],u=a.shape[2],d=a.shape[3],h=l*s,p=u*s,c=d/(s*s),m=r.data.get(a.dataId).values,f=new Float32Array(o*h*p*c),g=0;for(let y=0;y<o;++y)for(let A=0;A<h;++A){let x=Math.floor(A/s),b=A%s;for(let w=0;w<p;++w){let I=Math.floor(w/s),T=w%s,E=(b*s+T)*c;for(let R=0;R<c;++R){let O=R+E+d*(I+u*(x+l*y));f[g++]=m[O]}}}return r.makeTensorInfo([o,h,p,c],a.dtype,f)}var oZ={kernelName:Xo,backendName:"cpu",kernelFunc:iZ};function f9(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=n;Ce([a,s],"depthwiseConv2DNative");let d=v.computeStrides(a.shape),h=v.computeStrides(s.shape),p=l;p==null&&(p=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let c=C.computeConv2DInfo(a.shape,s.shape,i,p,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:y,padInfo:A}=c,x=A.left,b=A.top,w=c.outChannels/c.inChannels,I=new ir(c.outShape,a.dtype),T=r.data.get(a.dataId).values,E=r.data.get(s.dataId).values,R=I.values;for(let O=0;O<c.batchSize;++O){let $=O*d[0],S=O*I.strides[0];for(let P=0;P<c.outHeight;++P){let z=S+P*I.strides[1],j=P*c.strideHeight-b;for(let K=0;K<m;++K){let D=j+K*g;if(D<0||D>=c.inHeight)continue;let Y=K*h[0],V=$+D*d[1];for(let re=0;re<c.outWidth;++re){let Q=z+re*I.strides[2],ie=re*c.strideWidth-x;for(let J=0;J<f;++J){let ae=ie+J*y;if(ae<0||ae>=c.inWidth)continue;let de=Y+J*h[1],be=V+ae*c.inChannels,ve=Q,Ee=de;for(let $e=0;$e<c.inChannels;++$e){let ze=T[be+$e];for(let We=0;We<w;++We)R[ve+We]+=ze*E[Ee+We];ve+=w,Ee+=w}}}}}}return r.makeTensorInfo(I.shape,I.dtype,I.values)}var lZ={kernelName:ii,backendName:"cpu",kernelFunc:f9};function uZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=n;Ce([a,s],"depthwiseConv2dNativeBackpropFilter");let h=C.computeConv2DInfo(a.shape,d,i,o,l,u,!0),{strideHeight:p,strideWidth:c,filterHeight:m,filterWidth:f}=h,g=new ir(h.filterShape,"float32"),y=h.padInfo.left,A=h.padInfo.top,x=h.outChannels/h.inChannels,b=r.data.get(a.dataId).values,w=new ir(a.shape,a.dtype,b),I=r.data.get(s.dataId).values,T=new ir(s.shape,s.dtype,I);for(let E=0;E<m;++E){let R=Math.max(0,Math.ceil((A-E)/p)),O=Math.min(h.outHeight,(h.inHeight+A-E)/p);for(let $=0;$<f;++$){let S=Math.max(0,Math.ceil((y-$)/c)),P=Math.min(h.outWidth,(h.inWidth+y-$)/c);for(let z=0;z<h.outChannels;++z){let j=Math.trunc(z/x),K=z%x,D=0;for(let Y=0;Y<h.batchSize;++Y)for(let V=R;V<O;++V){let re=E+V*p-A;for(let Q=S;Q<P;++Q){let ie=$+Q*c-y;D+=w.get(Y,re,ie,j)*T.get(Y,V,Q,z)}}g.set(D,E,$,j,K)}}}return r.makeTensorInfo(g.shape,g.dtype,g.values)}var dZ={kernelName:gf,backendName:"cpu",kernelFunc:uZ};function pZ(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=n;Ce([a,s],"depthwiseConv2DNativeBackpropInput");let h=v.computeStrides(a.shape),p=v.computeStrides(s.shape),c=C.computeConv2DInfo(d,s.shape,i,o,l,u,!0),m=new ir(c.inShape,"float32"),f=m.values,[g,y,A]=m.strides,x=r.data.get(a.dataId).values,[b,w,I]=h,T=r.data.get(s.dataId).values,[E,R,O]=p,{batchSize:$,filterHeight:S,filterWidth:P,inChannels:z,inHeight:j,inWidth:K,outChannels:D,outHeight:Y,outWidth:V,strideHeight:re,strideWidth:Q}=c,ie=S-1-c.padInfo.top,J=P-1-c.padInfo.left,ae=D/z;for(let de=0;de<$;++de)for(let be=0;be<z;++be)for(let ve=0;ve<j;++ve){let Ee=ve-ie,$e=Math.max(0,Math.ceil(Ee/re)),ze=Math.min(Y,(S+Ee)/re);for(let We=0;We<K;++We){let Ke=We-J,ot=Math.max(0,Math.ceil(Ke/Q)),pt=Math.min(V,(P+Ke)/Q),ht=0;for(let Fe=$e;Fe<ze;++Fe){let wt=Fe*re-Ee;for(let xt=ot;xt<pt;++xt){let Pr=xt*Q-Ke,hr=b*de+w*Fe+I*xt,Qr=E*(S-1-wt)+R*(P-1-Pr)+O*be;for(let rr=0;rr<ae;++rr){let cr=be*ae+rr,ta=x[hr+cr],en=T[Qr+rr];ht+=ta*en}}}f[g*de+y*ve+A*We+be]=ht}}return r.makeTensorInfo(m.shape,m.dtype,m.values)}var hZ={kernelName:yf,backendName:"cpu",kernelFunc:pZ};function cZ(e){let{inputs:t,backend:r}=e,{x:n}=t,a=v.sizeFromShape(n.shape),s=r.data.get(n.dataId).values,i=De([a,a],n.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*a+u]=s[u];let l=[...n.shape,...n.shape];return r.makeTensorInfo(l,i.dtype,i.values)}var fZ={kernelName:Af,backendName:"cpu",kernelFunc:cZ},mZ={kernelName:oh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:r})=>{let{x:n,filter:a}=e,{strides:s,pad:i,dilations:o}=r,l=t,u=l.data.get(n.dataId).values,d=n.shape.length,h=l.data.get(a.dataId).values,p=a.shape.length,{batchSize:c,inHeight:m,inWidth:f,inChannels:g,outHeight:y,outWidth:A,padInfo:x,strideHeight:b,strideWidth:w,filterHeight:I,filterWidth:T,dilationHeight:E,dilationWidth:R,outShape:O}=C.computeDilation2DInfo(n.shape,a.shape,s,i,"NHWC",o),$=v.sizeFromShape(O),S=O.length,P=v.getArrayFromDType(n.dtype,$);for(let z=0;z<c;++z)for(let j=0;j<y;++j){let K=j*b-x.top;for(let D=0;D<A;++D){let Y=D*w-x.left;for(let V=0;V<g;++V){let re=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<I;++ie){let J=K+ie*E;if(J>=0&&J<m)for(let ae=0;ae<T;++ae){let de=Y+ae*R;if(de>=0&&de<f){let be=v.locToIndex([z,J,de,V],d,v.computeStrides(n.shape)),ve=v.locToIndex([ie,ae,V],p,v.computeStrides(a.shape)),Ee=u[be]+h[ve];Ee>re&&(re=Ee)}}}let Q=v.locToIndex([z,j,D,V],S,v.computeStrides(O));P[Q]=re}}}return{dataId:l.write(v.toTypedArray(P,n.dtype),O,n.dtype),shape:O,dtype:n.dtype}}},gZ={kernelName:T0,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:r})=>{let{x:n,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=r,u=t,d=v.toNestedArray(n.shape,u.data.get(n.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:p,inHeight:c,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:b,filterHeight:w,filterWidth:I,dilationHeight:T,dilationWidth:E,outShape:R}=C.computeDilation2DInfo(n.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===R.length,()=>`Error in ${T0}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let O=v.toNestedArray(R,u.data.get(s.dataId).values),$=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let S=0;S<p;++S)for(let P=0;P<g;++P){let z=P*x-A.top;for(let j=0;j<y;++j){let K=j*b-A.left;for(let D=0;D<f;++D){let Y=Number.MIN_SAFE_INTEGER,V=0,re=0;for(let Q=0;Q<w;++Q){let ie=z+Q*T;if(ie>=0&&ie<c)for(let J=0;J<I;++J){let ae=K+J*E;if(ae>=0&&ae<m){let de=d[S][ie][ae][D]+h[Q][J][D];de>Y&&(Y=de,V=Q,re=J)}}}$[V][re][D]+=O[S][P][j][D]}}}return{dataId:u.write(v.toTypedArray($,n.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},yZ={kernelName:C0,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:r})=>{let{x:n,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=r,u=t,d=v.toNestedArray(n.shape,u.data.get(n.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:p,inHeight:c,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:b,filterHeight:w,filterWidth:I,dilationHeight:T,dilationWidth:E,outShape:R}=C.computeDilation2DInfo(n.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===R.length,()=>`Error in ${C0}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let O=v.toNestedArray(R,u.data.get(s.dataId).values),$=v.makeZerosNestedTypedArray(n.shape,n.dtype);for(let S=0;S<p;++S)for(let P=0;P<g;++P){let z=P*x-A.top;for(let j=0;j<y;++j){let K=j*b-A.left;for(let D=0;D<f;++D){let Y=Number.MIN_SAFE_INTEGER,V=z<0?0:z,re=K<0?0:K;for(let Q=0;Q<w;++Q){let ie=z+Q*T;if(ie>=0&&ie<c)for(let J=0;J<I;++J){let ae=K+J*E;if(ae>=0&&ae<m){let de=d[S][ie][ae][D]+h[Q][J][D];de>Y&&(Y=de,V=ie,re=ae)}}}$[S][V][re][D]+=O[S][P][j][D]}}}return{dataId:u.write(v.toTypedArray($,n.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function Uh(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Ce(a,"sum");let o;a.dtype==="bool"?o=Hs({inputs:{x:a},backend:r,attrs:{dtype:"int32"}}):o=Oa({inputs:{x:a},backend:r});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),d=C.getAxesPermutation(u,l),h=u,p=o;d!=null&&(p=on({inputs:{x:o},backend:r,attrs:{perm:d}}),h=C.getInnerMostAxes(h.length,l)),C.assertAxesAreInnerMostDims("sum",h,p.shape.length);let[c,m]=C.computeOutAndReduceShapes(p.shape,h),f=C.upcastType(p.dtype,"int32"),g=q0(r,c,f),y=v.sizeFromShape(m),A=r.data.get(g.dataId).values,x=r.data.get(p.dataId).values;for(let b=0;b<A.length;++b){let w=b*y,I=0;for(let T=0;T<y;++T)I+=x[w+T];A[b]=I}if(i){let b=C.expandShapeToKeepDim(g.shape,u),w=g;g=Ct({inputs:{x:g},backend:r,attrs:{shape:b}}),r.disposeIntermediateTensorInfo(w)}return r.disposeIntermediateTensorInfo(o),d!=null&&r.disposeIntermediateTensorInfo(p),g}var AZ={kernelName:Oi,backendName:"cpu",kernelFunc:Uh};function xZ(e){let{inputs:t,backend:r,attrs:n}=e,{equation:a}=n,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(a,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=C.getEinsumComputePath(o,l),h=d.length,p=null,c=i.length,m=[];for(let f=0;f<h;++f){for(let g of d[f]){let{permutationIndices:y,expandDims:A}=C.getEinsumPermutation(c,l[g]),x;C.isIdentityPermutation(y)?x=s[g]:(x=on({inputs:{x:s[g]},backend:r,attrs:{perm:y}}),m.push(x));let b=x.shape.slice();for(let w=0;w<A.length;++w)b.splice(A[w],0,1);v.arraysEqual(x.shape,b)||(x=Ct({inputs:{x},backend:r,attrs:{shape:b}}),m.push(x)),p===null?p=x:(p=$m({inputs:{a:x,b:p},backend:r}),m.push(p))}f<h-1&&(u[f]>=0&&(p=Uh({inputs:{x:p},backend:r,attrs:{axis:u[f]-(i.length-c),keepDims:!1}}),m.push(p)),c--)}for(let f of m)f!==p&&r.disposeIntermediateTensorInfo(f);return p}var bZ={kernelName:lh,backendName:"cpu",kernelFunc:xZ};function vZ(e){let{inputs:t,backend:r}=e,{dy:n,y:a}=t;Ce([n,a],"eluGrad");let s=new Float32Array(v.sizeFromShape(a.shape)),i=r.data.get(a.dataId).values,o=r.data.get(n.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return r.makeTensorInfo(a.shape,"float32",s)}var wZ={kernelName:xf,backendName:"cpu",kernelFunc:vZ},kZ=C.ERF_P,IZ=C.ERF_A1,SZ=C.ERF_A2,CZ=C.ERF_A3,TZ=C.ERF_A4,NZ=C.ERF_A5,EZ=gt(td,e=>{let t=Math.sign(e),r=Math.abs(e),n=1/(1+kZ*r);return t*(1-((((NZ*n+TZ)*n+CZ)*n+SZ)*n+IZ)*n*Math.exp(-r*r))}),RZ={kernelName:td,backendName:"cpu",kernelFunc:EZ};function Z0(e){let{inputs:t,backend:r,attrs:n}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Ct({inputs:{x:a},backend:r,attrs:{shape:o}})}var $Z={kernelName:Zo,backendName:"cpu",kernelFunc:Z0},MZ=Qt((e,t)=>e/t),bA=br(oi,MZ),dy={kernelName:oi,backendName:"cpu",kernelFunc:bA};function m9(e,t,r){let n=e.shape,a=n[0],s=n[1],i=r.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[a,s],d=v.sizeFromShape(u),h=v.getTypedArrayFromDType("float32",d),p=v.getTypedArrayFromDType("float32",d);for(let g=0;g<a;g++){let y=zo({inputs:{x:o},backend:r,attrs:{begin:[g,0],size:[1,s]}}),A=zo({inputs:{x:l},backend:r,attrs:{begin:[g,0],size:[1,s]}}),x=hn({inputs:{real:y,imag:A},backend:r}),{real:b,imag:w}=FZ(x,t,r),I=C.mergeRealAndImagArrays(b,w);for(let T=0;T<s;T++){let E=C.getComplexWithIndex(I,T);h[g*s+T]=E.real,p[g*s+T]=E.imag}r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(x)}let c=r.makeTensorInfo(u,"float32",h),m=r.makeTensorInfo(u,"float32",p),f=hn({inputs:{real:c,imag:m},backend:r});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(m),f}function FZ(e,t,r){let n=v.sizeFromShape(e.shape),a=r.data.get(e.dataId),s=r.data.get(a.complexTensorInfos.real.dataId).values,i=r.data.get(a.complexTensorInfos.imag.dataId).values;if(_Z(n)){let o=py(s,i,n,t,r),l=[e.shape[0],e.shape[1]];if(t){let u=r.makeTensorInfo(l,"float32",o.real),d=r.makeTensorInfo(l,"float32",o.imag),h=r.makeTensorInfo([],"float32",v.createScalarValue(n,"float32")),p=Oa({inputs:{x:h},backend:r}),c=dy.kernelFunc({inputs:{a:u,b:h},backend:r}),m=dy.kernelFunc({inputs:{a:d,b:p},backend:r}),f=r.data.get(c.dataId).values,g=r.data.get(m.dataId).values;return r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=C.mergeRealAndImagArrays(s,i),l=PZ(o,n,t);return C.splitRealAndImagArrays(l)}}function _Z(e){return(e&e-1)===0}function py(e,t,r,n,a){if(r===1)return{real:e,imag:t};let s=C.mergeRealAndImagArrays(e,t),i=r/2,o=C.complexWithEvenIndex(s),l=o.real,u=o.imag,d=[l.length],h=a.makeTensorInfo(d,"float32",l),p=a.makeTensorInfo(d,"float32",u),c=hn({inputs:{real:h,imag:p},backend:a}),m=C.complexWithOddIndex(s),f=m.real,g=m.imag,y=[f.length],A=a.makeTensorInfo(y,"float32",f),x=a.makeTensorInfo(y,"float32",g),b=hn({inputs:{real:A,imag:x},backend:a}),w=py(l,u,i,n,a),I=w.real,T=w.imag,E=[I.length],R=a.makeTensorInfo(E,"float32",I),O=a.makeTensorInfo(E,"float32",T),$=hn({inputs:{real:R,imag:O},backend:a}),S=py(f,g,i,n,a),P=S.real,z=S.imag,j=[P.length],K=a.makeTensorInfo(j,"float32",P),D=a.makeTensorInfo(j,"float32",z),Y=hn({inputs:{real:K,imag:D},backend:a}),V=C.exponents(r,n),re=[V.real.length],Q=a.makeTensorInfo(re,"float32",V.real),ie=a.makeTensorInfo(re,"float32",V.imag),J=hn({inputs:{real:Q,imag:ie},backend:a}),ae=$m({inputs:{a:J,b:Y},backend:a}),de=Lu({inputs:{a:$,b:ae},backend:a}),be=AA({inputs:{a:$,b:ae},backend:a}),ve=Oo({inputs:{input:de},backend:a}),Ee=Oo({inputs:{input:be},backend:a}),$e=Bu({inputs:{input:de},backend:a}),ze=Bu({inputs:{input:be},backend:a}),We=Wu({inputs:[ve,Ee],backend:a,attrs:{axis:0}}),Ke=Wu({inputs:[$e,ze],backend:a,attrs:{axis:0}}),ot=a.data.get(We.dataId).values,pt=a.data.get(Ke.dataId).values;return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(c),a.disposeIntermediateTensorInfo(A),a.disposeIntermediateTensorInfo(x),a.disposeIntermediateTensorInfo(b),a.disposeIntermediateTensorInfo(R),a.disposeIntermediateTensorInfo(O),a.disposeIntermediateTensorInfo($),a.disposeIntermediateTensorInfo(K),a.disposeIntermediateTensorInfo(D),a.disposeIntermediateTensorInfo(Y),a.disposeIntermediateTensorInfo(Q),a.disposeIntermediateTensorInfo(ie),a.disposeIntermediateTensorInfo(J),a.disposeIntermediateTensorInfo(ae),a.disposeIntermediateTensorInfo(de),a.disposeIntermediateTensorInfo(be),a.disposeIntermediateTensorInfo(ve),a.disposeIntermediateTensorInfo($e),a.disposeIntermediateTensorInfo(Ee),a.disposeIntermediateTensorInfo(ze),a.disposeIntermediateTensorInfo(We),a.disposeIntermediateTensorInfo(Ke),{real:ot,imag:pt}}function PZ(e,t,r){let n=new Float32Array(t*2);for(let a=0;a<t;a++){let s=0,i=0;for(let o=0;o<t;o++){let l=C.exponent(a*o,t,r),u=C.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}r&&(s/=t,i/=t),C.assignToTypedArray(n,s,i,a)}return n}function OZ(e){let{inputs:t,backend:r}=e,{input:n}=t,a=v.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=a/s,o=Ct({inputs:{x:n},backend:r,attrs:{shape:[i,s]}}),l=m9(o,!1,r),u=Ct({inputs:{x:l},backend:r,attrs:{shape:n.shape}});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(l),u}var zZ={kernelName:bf,backendName:"cpu",kernelFunc:OZ};function vA(e){let{backend:t,attrs:r}=e,{shape:n,value:a,dtype:s}=r,i=s||v.inferDtype(a),o=v.getArrayFromDType(i,v.sizeFromShape(n));return LZ(o,a,i),t.makeTensorInfo(n,i,o)}var DZ={kernelName:rd,backendName:"cpu",kernelFunc:vA};function LZ(e,t,r){e.fill(t)}var BZ={kernelName:Jo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,a=r,s=v.getTypedArrayFromDType(n.dtype,v.sizeFromShape(n.shape)),[i,o,l,u]=n.shape,d=a.data.get(n.dataId).values;for(let h=0;h<i;h++){let p=h*l*o*u;for(let c=0;c<o;c++){let m=c*(l*u);for(let f=0;f<l;f++){let g=f*u;for(let y=0;y<u;y++){let A=Math.round(l-f-1),x=p+m+g+y,b=d[x];if(A>=0&&A<l){let w=A*u,I=p+m+w+y;b=d[I]}s[x]=b}}}}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},WZ=Qt((e,t)=>Math.floor(e/t)),VZ=br(pi,WZ,null,"int32"),UZ={kernelName:pi,backendName:"cpu",kernelFunc:VZ};function GZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:m}=n,f=c9({inputs:{x:a,filter:s},backend:r,attrs:{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p}});if(i){let g=f;if(d==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let y=Ct({inputs:{x:i},backend:r,attrs:{shape:[i.shape[0],1,1]}});f=Lu({inputs:{a:f,b:y},backend:r}),r.disposeIntermediateTensorInfo(y)}else f=Lu({inputs:{a:f,b:i},backend:r});r.disposeIntermediateTensorInfo(g)}if(c){let g=f;if(d==="NCHW"&&c==="prelu"&&o.shape.length===1&&o.shape[0]!==1){let y=Ct({inputs:{x:o},backend:r,attrs:{shape:[o.shape[0],1,1]}});f=K0(r,f,c,y,m),r.disposeIntermediateTensorInfo(y)}else f=K0(r,f,c,o,m);r.disposeIntermediateTensorInfo(g)}return f}var jZ={kernelName:Ps,backendName:"cpu",kernelFunc:GZ};function HZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:m}=n,f=f9({inputs:{x:a,filter:s},backend:r,attrs:{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p}});if(i){let g=f;f=Lu({inputs:{a:f,b:i},backend:r}),r.disposeIntermediateTensorInfo(g)}if(c){let g=f;f=K0(r,f,c,o,m),r.disposeIntermediateTensorInfo(g)}return f}var qZ={kernelName:Os,backendName:"cpu",kernelFunc:HZ};function XZ(e){let{inputs:t,backend:r}=e,{params:n,indices:a}=t,s=v.sizeFromShape(n.shape),i=a.shape,o=i[i.length-1],[l,u,d,h]=C.prepareAndValidate(n,a);if(u===0)return r.makeTensorInfo(l,n.dtype,[]);let p=r.data.get(a.dataId).values,c=r.bufferSync(n),m=$k(p,c,n.dtype,u,o,d,h,n.shape,s);return r.makeTensorInfo(l,n.dtype,m.values)}var KZ={kernelName:el,backendName:"cpu",kernelFunc:XZ};function ZZ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=n;Ce([a,s],"gatherV2");let l=v.parseAxisParam(i,a.shape)[0],u=r.data.get(s.dataId).values,d=a.shape[l];for(let b=0;b<u.length;++b){let w=u[b];v.assert(w<=d-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${d-1}]`)}let h=o;o==null&&(h=0);let p=v.sizeFromShape(s.shape),c=C.segment_util.collectGatherOpShapeInfo(a,s,l,h),m=Ct({inputs:{x:a},backend:r,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),f=Ct({inputs:{x:s},backend:r,attrs:{shape:[c.batchSize,p/c.batchSize]}}),g=[c.batchSize,c.outerSize,p/c.batchSize,c.sliceSize],y=r.bufferSync(f),A=r.bufferSync(m),x=Mk(A,y,g);return r.disposeIntermediateTensorInfo(m),r.disposeIntermediateTensorInfo(f),r.makeTensorInfo(c.outputShape,x.dtype,x.values)}var YZ={kernelName:Qo,backendName:"cpu",kernelFunc:ZZ};function JZ(e){let{inputs:t,backend:r}=e,{input:n}=t,a=v.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=a/s,o=Ct({inputs:{x:n},backend:r,attrs:{shape:[i,s]}}),l=m9(o,!0,r),u=Ct({inputs:{x:l},backend:r,attrs:{shape:n.shape}});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(l),u}var QZ={kernelName:vf,backendName:"cpu",kernelFunc:JZ},eY=gt(nd,e=>Number.isFinite(e)?1:0,"bool"),tY={kernelName:nd,backendName:"cpu",kernelFunc:eY},rY=gt(ad,e=>Math.abs(e)===1/0?1:0,"bool"),nY={kernelName:ad,backendName:"cpu",kernelFunc:rY},aY=gt(sd,e=>Number.isNaN(e)?1:0,"bool"),sY={kernelName:sd,backendName:"cpu",kernelFunc:aY};function iY(e){let{backend:t,attrs:r}=e,{start:n,stop:a,num:s}=r,i=zk(n,a,s);return t.makeTensorInfo([i.length],"float32",i)}var oY={kernelName:wf,backendName:"cpu",kernelFunc:iY},lY=gt(id,e=>Math.log1p(e)),uY={kernelName:id,backendName:"cpu",kernelFunc:lY},dY=Qt((e,t)=>e&&t),pY=br(al,dY,null,"bool"),hY={kernelName:al,backendName:"cpu",kernelFunc:pY},cY=gt(sl,e=>e?0:1,"bool"),fY={kernelName:sl,backendName:"cpu",kernelFunc:cY},mY=Qt((e,t)=>e||t),gY=br(od,mY,null,"bool"),yY={kernelName:od,backendName:"cpu",kernelFunc:gY};function AY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;Ce(a,"LRN");let u=a.shape[3],d=u-1,h=r.data.get(a.dataId).values,p=v.sizeFromShape(a.shape),c=new Float32Array(p);function m(f){let g=f%u,y=f-g+Math.max(0,g-s),A=f-g+Math.min(g+s,d),x=0;for(;y<=A;y++){let b=h[y];x+=b*b}return x}for(let f=0;f<p;f++){let g=m(f),y=h[f]*Math.pow(i+o*g,-l);c[f]=y}return r.makeTensorInfo(a.shape,a.dtype,c)}var xY={kernelName:dh,backendName:"cpu",kernelFunc:AY};function bY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=n;Ce(i,"LRNGrad");let h=v.sizeFromShape(i.shape),p=i.shape[3],c=r.data.get(i.dataId).values,m=r.data.get(a.dataId).values,f=r.data.get(s.dataId).values,g=new Float32Array(h),y=h;for(let A=0;A<y;A++){let x=A%p,b=A-x+Math.max(0,x-o),w=A-x+Math.min(p,x+o+1),I=0;for(let T=b;T<w;T++)I+=Math.pow(m[T],2);I=u*I+l;for(let T=b;T<w;T++){let E=-2*u*d*m[T]*f[A]/I;A===T&&(E+=Math.pow(I,-d)),E*=c[A],g[T]+=E}}return r.makeTensorInfo(i.shape,a.dtype,g)}var vY={kernelName:kf,backendName:"cpu",kernelFunc:bY};function g9(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=n,o=r,l=a.shape,u=l.length,d=v.parseAxisParam(s,l),h=d,p=C.getAxesPermutation(h,u),c=o.data.get(a.dataId).values;if(p!=null){let b=new Array(u);for(let w=0;w<b.length;w++)b[w]=l[p[w]];c=mA(c,l,a.dtype,p,b),h=C.getInnerMostAxes(h.length,u),l=b}Ce(a,"max"),C.assertAxesAreInnerMostDims("max",h,u);let[m,f]=C.computeOutAndReduceShapes(l,h),g=v.sizeFromShape(f),y=Lk(c,g,m,a.dtype),A=o.write(y,m,a.dtype),x=m;return i&&(x=C.expandShapeToKeepDim(m,d)),{dataId:A,shape:x,dtype:a.dtype}}var wY={kernelName:yi,backendName:"cpu",kernelFunc:g9};function kY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;Ce(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=C.computePool2DInfo(a.shape,s,i,u,o,l),h;if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))h=Oa({inputs:{x:a},backend:r});else{let p=r.data.get(a.dataId).values,c=v.computeStrides(a.shape),m=xA(p,a.shape,a.dtype,c,d,"max");h=r.makeTensorInfo(d.outShape,a.dtype,m.values)}return h}var IY={kernelName:xi,backendName:"cpu",kernelFunc:kY};function SY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n;Ce(a,"maxPool3d");let d=C.computePool3DInfo(a.shape,s,i,1,o,l,u),h=r.data.get(a.dataId).values,p=h9(h,a.shape,a.dtype,v.computeStrides(a.shape),d,"max");return r.makeTensorInfo(p.shape,"float32",p.values)}var CY={kernelName:ph,backendName:"cpu",kernelFunc:SY};function TY(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n;Ce([a,s],"maxPool3DGrad");let d=C.computePool3DInfo(s.shape,i,o,1,l,u),h=r.bufferSync(s),p=fK(h,d),c=d.strideDepth,m=d.strideHeight,f=d.strideWidth,g=d.dilationDepth,y=d.dilationHeight,A=d.dilationWidth,x=d.effectiveFilterDepth,b=d.effectiveFilterHeight,w=d.effectiveFilterWidth,I=x-1-d.padInfo.front,T=w-1-d.padInfo.left,E=b-1-d.padInfo.top,R=De(s.shape,"float32"),O=r.bufferSync(a);for(let $=0;$<d.batchSize;++$)for(let S=0;S<d.inChannels;++S)for(let P=0;P<d.inDepth;++P)for(let z=0;z<d.inHeight;++z)for(let j=0;j<d.inWidth;++j){let K=P-I,D=z-E,Y=j-T,V=0;for(let re=0;re<x;re+=g){let Q=(K+re)/c;if(!(Q<0||Q>=d.outDepth||Math.floor(Q)!==Q))for(let ie=0;ie<b;ie+=y){let J=(D+ie)/m;if(!(J<0||J>=d.outHeight||Math.floor(J)!==J))for(let ae=0;ae<w;ae+=A){let de=(Y+ae)/f;if(de<0||de>=d.outWidth||Math.floor(de)!==de)continue;let be=x*b*w-1-p.get($,Q,J,de,S),ve=re*b*w+ie*w+ae,Ee=be===ve?1:0;Ee!==0&&(V+=O.get($,Q,J,de,S)*Ee)}}}R.set(V,$,P,z,j,S)}return r.makeTensorInfo(R.shape,R.dtype,R.values)}var NY={kernelName:Sf,backendName:"cpu",kernelFunc:TY};function EY(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s,output:i}=t,o=s;Ce([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:h}=n,p=C.computePool2DInfo(o.shape,l,u,1,d,h),c=r.data.get(o.dataId).values,m=De(p.outShape,o.dtype,p9(c,o.shape,o.dtype,p).values),f=p.strideHeight,g=p.strideWidth,y=p.dilationHeight,A=p.dilationWidth,x=p.effectiveFilterHeight,b=p.effectiveFilterWidth,w=b-1-p.padInfo.left,I=x-1-p.padInfo.top,T=De(o.shape,"float32"),E=r.data.get(a.dataId).values,R=De(a.shape,"float32",E);for(let O=0;O<p.batchSize;++O)for(let $=0;$<p.inChannels;++$)for(let S=0;S<p.inHeight;++S)for(let P=0;P<p.inWidth;++P){let z=S-I,j=P-w,K=0;for(let D=0;D<x;D+=y){let Y=(z+D)/f;if(!(Y<0||Y>=p.outHeight||Math.floor(Y)!==Y))for(let V=0;V<b;V+=A){let re=(j+V)/g;if(re<0||re>=p.outWidth||Math.floor(re)!==re)continue;let Q=x*b-1-m.get(O,Y,re,$),ie=D*b+V,J=Q===ie?1:0;J!==0&&(K+=R.get(O,Y,re,$)*J)}}T.set(K,O,S,P,$)}return r.makeTensorInfo(T.shape,T.dtype,T.values)}var RY={kernelName:If,backendName:"cpu",kernelFunc:EY};function $Y(e,t,r,n,a){let s=v.computeStrides(t),i=xA(e,t,r,s,a,"max"),o=p9(e,t,r,a,!0,n);return[i.values,o.values]}var MY={kernelName:Cf,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=r;Ce(n,"MaxPoolWithArgmax");let u=l.data.get(n.dataId).values,d=C.computePool2DInfo(n.shape,a,s,[1,1],i),[h,p]=$Y(u,n.shape,n.dtype,o,d),c=l.write(h,d.outShape,n.dtype),m=l.write(p,d.outShape,n.dtype);return[{dataId:c,shape:d.outShape,dtype:n.dtype},{dataId:m,shape:d.outShape,dtype:"int32"}]}};function FY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=v.parseAxisParam(s,a.shape),l=C.computeOutAndReduceShapes(a.shape,o)[1],u=v.sizeFromShape(l),d=[],h=r.makeTensorInfo([],"float32",new Float32Array([u]));d.push(h);let p=Hs({inputs:{x:a},backend:r,attrs:{dtype:"float32"}});d.push(p);let c=bA({inputs:{a:p,b:h},backend:r});d.push(c);let m=Uh({inputs:{x:c},backend:r,attrs:{axis:s,keepDims:i}});return d.forEach(f=>r.disposeIntermediateTensorInfo(f)),m}var _Y={kernelName:bi,backendName:"cpu",kernelFunc:FY};function PY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;Ce(a,"min");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),d=a;u!=null&&(d=on({inputs:{x:a},backend:r,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("min",l,d.shape.length);let[h,p]=C.computeOutAndReduceShapes(d.shape,l),c=v.sizeFromShape(p),m=v.makeZerosTypedArray(v.sizeFromShape(h),d.dtype),f=r.data.get(d.dataId).values;for(let y=0;y<m.length;++y){let A=y*c,x=f[A];for(let b=0;b<c;++b){let w=f[A+b];(Number.isNaN(w)||w<x)&&(x=w)}m[y]=x}u!=null&&r.disposeIntermediateTensorInfo(d);let g=r.makeTensorInfo(h,d.dtype,m);if(i){let y=C.expandShapeToKeepDim(h,o),A=Ct({inputs:{x:g},backend:r,attrs:{shape:y}});return r.disposeIntermediateTensorInfo(g),A}return g}var OY={kernelName:vi,backendName:"cpu",kernelFunc:PY};function zY(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,mode:i}=n;Ce(a,"mirrorPad");let o=s.map((A,x)=>A[0]+a.shape[x]+A[1]),l=s.map(A=>A[0]),u=s.map((A,x)=>A[0]+a.shape[x]),d=i==="reflect"?0:1,h=r.data.get(a.dataId).values,p=a.shape.length,c=v.computeStrides(a.shape),m=v.sizeFromShape(o),f=o.length,g=v.computeStrides(o),y=v.getTypedArrayFromDType(a.dtype,m);for(let A=0;A<m;A++){let x=v.indexToLoc(A,f,g);for(let w=0;w<f;w++)x[w]<l[w]?x[w]=l[w]*2-x[w]-d:x[w]>=u[w]&&(x[w]=(u[w]-1)*2-x[w]+d);x=x.map((w,I)=>w-l[I]);let b=v.locToIndex(x,p,c);y[A]=h[b]}return{dataId:r.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var DY={kernelName:ki,backendName:"cpu",kernelFunc:zY},LY=Qt((e,t)=>{let r=e%t;return e<0&&t<0||e>=0&&t>=0?r:(r+t)%t}),BY=br(ld,LY),WY={kernelName:ld,backendName:"cpu",kernelFunc:BY},VY=Wo(af());function y9(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{dim:s}=n,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],a.shape),u=g9({inputs:{x:a},backend:r,attrs:{reductionIndices:l,keepDims:!1}}),d=C.expandShapeToKeepDim(u.shape,l),h=Ct({inputs:{x:u},backend:r,attrs:{shape:d}}),p=AA({inputs:{a,b:h},backend:r}),c=Nk({inputs:{x:p},backend:r}),m=Uh({inputs:{x:c},backend:r,attrs:{axis:l,keepDims:!1}}),f=Ct({inputs:{x:m},backend:r,attrs:{shape:d}}),g=bA({inputs:{a:c,b:f},backend:r});return r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(m),r.disposeIntermediateTensorInfo(f),g}var UY={kernelName:zi,backendName:"cpu",kernelFunc:y9};function GY(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=n;Ce(a,"multinomial");let l=o?a:y9({inputs:{logits:a},backend:r,attrs:{dim:-1}}),u=l.shape[0],d=l.shape[1],h=r.data.get(l.dataId).values,p=[u,s],c=v.makeZerosTypedArray(v.sizeFromShape(p),"int32");for(let m=0;m<u;++m){let f=m*d,g=new Float32Array(d-1);g[0]=h[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+h[f+x];let y=VY.alea(i.toString()),A=m*s;for(let x=0;x<s;++x){let b=y();c[A+x]=g.length;for(let w=0;w<g.length;w++)if(b<g[w]){c[A+x]=w;break}}}return o||r.disposeIntermediateTensorInfo(l),r.makeTensorInfo(p,"int32",c)}var jY={kernelName:Tf,backendName:"cpu",kernelFunc:GY},HY=Kn.nonMaxSuppressionV3Impl;function qY(e){let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n;Ce(a,"NonMaxSuppression");let u=r.data.get(a.dataId).values,d=r.data.get(s.dataId).values,{selectedIndices:h}=HY(u,d,i,o,l);return r.makeTensorInfo([h.length],"int32",new Int32Array(h))}var XY={kernelName:ll,backendName:"cpu",kernelFunc:qY},KY=Kn.nonMaxSuppressionV4Impl;function ZY(e){let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=n;Ce(a,"NonMaxSuppressionPadded");let d=r.data.get(a.dataId).values,h=r.data.get(s.dataId).values,{selectedIndices:p,validOutputs:c}=KY(d,h,i,o,l,u);return[r.makeTensorInfo([p.length],"int32",new Int32Array(p)),r.makeTensorInfo([],"int32",new Int32Array([c]))]}var YY={kernelName:ud,backendName:"cpu",kernelFunc:ZY},JY=Kn.nonMaxSuppressionV5Impl;function QY(e){let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n;Ce(a,"NonMaxSuppressionWithScore");let d=r.data.get(a.dataId).values,h=r.data.get(s.dataId).values,p=i,c=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=JY(d,h,p,c,m,f);return[r.makeTensorInfo([g.length],"int32",new Int32Array(g)),r.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var eJ={kernelName:ul,backendName:"cpu",kernelFunc:QY};function tJ(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=n;Ce(a,"oneHot");let l=v.sizeFromShape(a.shape),u=new Float32Array(l*s);u.fill(o);let d=r.data.get(a.dataId).values;for(let h=0;h<l;++h)d[h]>=0&&d[h]<s&&(u[h*s+d[h]]=i);return r.makeTensorInfo([...a.shape,s],"int32",u)}var rJ={kernelName:pl,backendName:"cpu",kernelFunc:tJ};function Y0(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(n.dtype==="complex64"){let a=Oo({inputs:{input:n},backend:r}),s=Y0({inputs:{x:a},backend:r}),i=Bu({inputs:{input:n},backend:r}),o=Y0({inputs:{x:i},backend:r}),l=hn({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return vA({backend:r,attrs:{shape:n.shape,value:0,dtype:n.dtype}})}var nJ={kernelName:Tl,backendName:"cpu",kernelFunc:Y0};function A9(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(n.dtype==="complex64"){let a=Oo({inputs:{input:n},backend:r}),s=A9({inputs:{x:a},backend:r}),i=Bu({inputs:{input:n},backend:r}),o=Y0({inputs:{x:i},backend:r}),l=hn({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return vA({backend:r,attrs:{shape:n.shape,value:1,dtype:n.dtype}})}var aJ={kernelName:dl,backendName:"cpu",kernelFunc:A9};function x9(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return Z0({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{v.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=Z0({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=Wu({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeIntermediateTensorInfo(d)),u}var sJ={kernelName:hl,backendName:"cpu",kernelFunc:x9};function iJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,constantValue:i}=n;Ce(a,"pad");let o=s.map((y,A)=>y[0]+a.shape[A]+y[1]),l=s.map(y=>y[0]),u=r.data.get(a.dataId).values,d=v.sizeFromShape(a.shape),h=a.shape.length,p=v.computeStrides(a.shape),c=v.sizeFromShape(o),m=o.length,f=v.computeStrides(o),g=v.getTypedArrayFromDType(a.dtype,c);i!==0&&g.fill(i);for(let y=0;y<d;y++){let A=v.indexToLoc(y,h,p).map((b,w)=>b+l[w]),x=v.locToIndex(A,m,f);g[x]=u[y]}return{dataId:r.write(g,o,a.dtype),shape:o,dtype:a.dtype}}var b9={kernelName:Si,backendName:"cpu",kernelFunc:iJ},oJ=Qt((e,t)=>Math.pow(e,t)),lJ=br(Ci,oJ),uJ={kernelName:Ci,backendName:"cpu",kernelFunc:lJ};function dJ(e){let{backend:t,attrs:r}=e,{start:n,stop:a,dtype:s,step:i}=r,o=gA(n,a,i,s);return t.makeTensorInfo([o.length],s,o)}var pJ={kernelName:dd,backendName:"cpu",kernelFunc:dJ},hJ=gt(pd,e=>1/e),cJ={kernelName:pd,backendName:"cpu",kernelFunc:hJ};function fJ(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n;Ce(a,"resizeBilinear");let l=v.computeStrides(a.shape),[u,d]=o,[h,p,c,m]=a.shape,f=r.data.get(a.dataId).values,g=new Float32Array(v.sizeFromShape([h,u,d,m])),y=[s&&u>1?p-1:p,s&&d>1?c-1:c],A=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=0,b=y[0]/A[0],w=y[1]/A[1];for(let I=0;I<h;I++)for(let T=0;T<u;T++){let E;i?E=b*(T+.5)-.5:E=b*T;let R=Math.max(0,Math.floor(E)),O=E-R,$=Math.min(p-1,Math.ceil(E)),S=I*l[0]+R*l[1],P=I*l[0]+$*l[1];for(let z=0;z<d;z++){let j;i?j=w*(z+.5)-.5:j=w*z;let K=Math.max(0,Math.floor(j)),D=j-K,Y=Math.min(c-1,Math.ceil(j)),V=S+K*l[2],re=P+K*l[2],Q=S+Y*l[2],ie=P+Y*l[2];for(let J=0;J<m;J++){let ae=f[V+J],de=f[re+J],be=f[Q+J],ve=f[ie+J],Ee=ae+(be-ae)*D,$e=de+(ve-de)*D,ze=Ee+($e-Ee)*O;g[x++]=ze}}}return r.makeTensorInfo([h,u,d,m],"float32",g)}var mJ={kernelName:Ri,backendName:"cpu",kernelFunc:fJ};function gJ(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n;Ce([s,a],"resizeBilinearGrad");let o=v.computeStrides(a.shape),[l,u,d,h]=a.shape,[,p,c]=s.shape,m=new Float32Array(l*u*d*h),f=[i&&p>1?u-1:u,i&&c>1?d-1:d],g=[i&&p>1?p-1:p,i&&c>1?c-1:c],y=f[0]/g[0],A=f[1]/g[1],x=r.data.get(s.dataId).values,b=0;for(let w=0;w<l;w++){let I=w*o[0];for(let T=0;T<p;T++){let E=T*y,R=Math.floor(E),O=Math.min(Math.ceil(E),u-1),$=I+R*o[1],S=I+O*o[1],P=E-R,z=1-P;for(let j=0;j<c;j++){let K=j*A,D=Math.floor(K),Y=Math.min(Math.ceil(K),d-1),V=K-D,re=1-V,Q=$+D*o[2],ie=$+Y*o[2],J=S+D*o[2],ae=S+Y*o[2],de=z*re,be=z*V,ve=P*re,Ee=P*V;for(let $e=0;$e<h;$e++){let ze=x[b++];m[Q+$e]+=ze*de,m[ie+$e]+=ze*be,m[J+$e]+=ze*ve,m[ae+$e]+=ze*Ee}}}}return r.makeTensorInfo([l,d,u,h],"float32",m)}var yJ={kernelName:Ef,backendName:"cpu",kernelFunc:gJ};function AJ(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n;Ce(a,"resizeNearestNeighbor");let l=v.computeStrides(a.shape),[u,d]=o,[h,p,c,m]=a.shape,f=r.data.get(a.dataId).values,g=new Float32Array(h*u*d*m),y=[s&&u>1?p-1:p,s&&d>1?c-1:c],A=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=y[0]/A[0],b=y[1]/A[1],w=0;for(let I=0;I<h;I++){let T=I*l[0];for(let E=0;E<u;E++){let R=i?x*(E+.5):x*E,O=Math.min(p-1,s?Math.round(R):Math.floor(R));i&&(O=Math.max(0,O));let $=T+O*l[1];for(let S=0;S<d;S++){let P=i?b*(S+.5):b*S,z=Math.min(c-1,s?Math.round(P):Math.floor(P));i&&(z=Math.max(0,z));let j=$+z*l[2];for(let K=0;K<m;K++){let D=f[j+K];g[w++]=D}}}}return r.makeTensorInfo([h,u,d,m],a.dtype,g)}var xJ={kernelName:hd,backendName:"cpu",kernelFunc:AJ};function bJ(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n;Ce([s,a],"resizeNearestNeighborGrad");let o=v.computeStrides(a.shape),l=v.computeStrides(s.shape),[u,d,h,p]=a.shape,[,c,m]=s.shape,f=new Float32Array(u*d*h*p),g=r.data.get(s.dataId).values,y=[i&&c>1?d-1:d,i&&m>1?h-1:h],A=[i&&c>1?c-1:c,i&&m>1?m-1:m],x=y[0]/A[0],b=y[1]/A[1],w=1/x,I=1/b,T=Math.ceil(w)*2+2,E=Math.ceil(I)*2+2;for(let R=0;R<u;R++){let O=R*o[0];for(let $=0;$<d;$++){let S=O+$*o[1],P=Math.floor($*w),z=Math.floor(P-T/2);for(let j=0;j<h;j++){let K=S+j*o[2],D=Math.floor(j*I),Y=Math.floor(D-E/2);for(let V=0;V<p;V++){let re=0;for(let Q=0;Q<T;Q++){let ie=Q+z;if(ie<0||ie>=c)continue;let J=O+ie*l[1],ae=ie*x,de=Math.min(d-1,i?Math.round(ae):Math.floor(ae));if($===de)for(let be=0;be<E;be++){let ve=be+Y;if(ve<0||ve>=m)continue;let Ee=J+ve*l[2],$e=ve*b,ze=Math.min(h-1,i?Math.round($e):Math.floor($e));j===ze&&(re+=g[Ee+V])}}f[K+V]=re}}}}return r.makeTensorInfo(a.shape,a.dtype,f)}var vJ={kernelName:Nf,backendName:"cpu",kernelFunc:bJ};function wJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dims:s}=n;Ce(a,"reverse");let i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return Oa({inputs:{x:a},backend:r});let l=new ir(a.shape,a.dtype),u=r.bufferSync(a);for(let d=0;d<l.size;d++){let h=l.indexToLoc(d),p=h.slice();o.forEach(c=>p[c]=a.shape[c]-1-p[c]),l.set(u.get(...p),...h)}return r.makeTensorInfo(l.shape,l.dtype,l.values)}var kJ={kernelName:fl,backendName:"cpu",kernelFunc:wJ},IJ={kernelName:Nl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,{radians:a,fillValue:s,center:i}=t,o=r,l=v.getTypedArrayFromDType(n.dtype,v.sizeFromShape(n.shape)),[u,d,h,p]=n.shape,[c,m]=C.getImageCenter(i,d,h),f=255,g=Math.sin(a),y=Math.cos(a),A=o.data.get(n.dataId).values;for(let x=0;x<u;x++){let b=x*h*d*p;for(let w=0;w<d;w++){let I=w*(h*p);for(let T=0;T<h;T++){let E=T*p;for(let R=0;R<p;R++){let O=[u,w,T,R],$=O[2],S=O[1],P=($-c)*y-(S-m)*g,z=($-c)*g+(S-m)*y;P=Math.round(P+c),z=Math.round(z+m);let j=s;if(typeof s!="number"&&(R===3?j=f:j=s[R]),P>=0&&P<h&&z>=0&&z<d){let D=z*(h*p),Y=P*p,V=b+D+Y+R;j=A[V]}let K=b+I+E+R;l[K]=j}}}}return{dataId:o.write(l,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},SJ=gt(ml,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),CJ={kernelName:ml,backendName:"cpu",kernelFunc:SJ};function TJ(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:h}=C.calculateShapes(s,a,i),p=!0,c=r.bufferSync(a),m=r.bufferSync(s),f=vu(c,m,i,h,u,l,o,d,0,p);return r.makeTensorInfo(i,f.dtype,f.values)}var NJ={kernelName:gl,backendName:"cpu",kernelFunc:TJ};function EJ(e,t){let r=0,n=e.length,a=0;for(;r<n;)a=Math.floor((r+n)/2),e[a]<t?r=a+1:n=a;return n}function RJ(e,t){let r=0,n=e.length,a=0;for(;r<n;)a=Math.floor((r+n)/2),e[a]<=t?r=a+1:n=a;return n}function $J(e,t,r,n,a,s){let i=v.getArrayFromDType("int32",r*a);for(let o=0;o<r;++o){let l=e.slice(o*n,(o+1)*n),u=o*a;for(let d=0;d<a;++d)i[u+d]=s==="left"?EJ(l,t[d+u]):RJ(l,t[d+u])}return i}function MJ(e){let{inputs:t,backend:r,attrs:n}=e,{sortedSequence:a,values:s}=t,{side:i}=n,o=r.data.get(a.dataId).values,l=r.data.get(s.dataId).values,u=$J(o,l,a.shape[0],a.shape[1],s.shape[1],i);return r.makeTensorInfo(s.shape,"int32",u)}var FJ={kernelName:Rf,backendName:"cpu",kernelFunc:MJ};function _J(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t;Ce([n,a,s],"select");let i=n.shape.length,o=r.data.get(n.dataId).values,l=r.data.get(a.dataId).values,u=r.data.get(s.dataId).values,d=Nr(a.dtype,s.dtype),h=v.makeZerosTypedArray(v.sizeFromShape(a.shape),d),p=0,c=i===0||i>1||a.shape.length===1?1:v.sizeFromShape(a.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<c;f++)o[m]===1?h[p++]=l[m]:h[p++]=u[m];return r.makeTensorInfo(a.shape,d,h)}var PJ={kernelName:yl,backendName:"cpu",kernelFunc:_J},OJ=C.SELU_SCALEALPHA,zJ=C.SELU_SCALE,DJ=gt(cd,e=>e>=0?zJ*e:OJ*(Math.exp(e)-1)),LJ={kernelName:cd,backendName:"cpu",kernelFunc:DJ},BJ=gt(fd,e=>e<0?-1:e>0?1:0),WJ={kernelName:fd,backendName:"cpu",kernelFunc:BJ},VJ=gt(Fi,e=>Math.sin(e)),UJ={kernelName:Fi,backendName:"cpu",kernelFunc:VJ},GJ=gt(xl,e=>Math.sinh(e)),jJ={kernelName:xl,backendName:"cpu",kernelFunc:GJ},HJ=11920928955078125e-23,U4=Math.log(HJ)+2,qJ=gt(md,e=>{let t=e>-U4,r=e<U4,n=Math.exp(e),a;return r?a=n:t?a=e:a=Math.log(1+n),a}),XJ={kernelName:md,backendName:"cpu",kernelFunc:qJ};function KJ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n;Ce([a],"spaceToBatchND");let o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<a.shape.length;++g)l.push([0,0]);let u=b9.kernelFunc({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),d=C.getReshaped(u.shape,s,o,!1),h=C.getPermuted(d.length,s.length,!1),p=C.getReshapedPermuted(u.shape,s,o,!1),c=Ct({inputs:{x:u},backend:r,attrs:{shape:d}}),m=on({inputs:{x:c},backend:r,attrs:{perm:h}}),f=Ct({inputs:{x:m},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(m),f}var ZJ={kernelName:bl,backendName:"cpu",kernelFunc:KJ};function YJ(e){let{inputs:t,backend:r}=e,{indices:n,values:a,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${n.shape}`);if(a.shape.length!==1)throw new Error(`Values must be a vector, saw:
${a.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=r.data.get(n.dataId).values,l=r.data.get(a.dataId).values,u=r.data.get(s.dataId).values,d=r.data.get(i.dataId).values[0],[h,p,c,m,f]=qk(o,n.shape,n.dtype,l,a.dtype,u,d);return[r.makeTensorInfo(p,n.dtype,h),r.makeTensorInfo([p[0]],a.dtype,c),r.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),r.makeTensorInfo([f.length],n.dtype,new Int32Array(f))]}var JJ={kernelName:ch,backendName:"cpu",kernelFunc:YJ};function QJ(e){let{inputs:t,backend:r}=e,{inputIndices:n,inputShape:a,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${n.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(r.data.get(a.dataId).values),o=r.data.get(n.dataId).values,l=Array.from(r.data.get(s.dataId).values),[u,d,h]=Xk(o,n.shape,n.dtype,i,l);return[r.makeTensorInfo(d,n.dtype,u),r.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var eQ={kernelName:gd,backendName:"cpu",kernelFunc:QJ};function tQ(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(a.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=r.data.get(n.dataId).values,o=r.data.get(a.dataId).values,l=r.data.get(s.dataId).values,[u,d]=yA(i,n.shape,n.dtype,o,l,!0);return r.makeTensorInfo(d,n.dtype,u)}var rQ={kernelName:fh,backendName:"cpu",kernelFunc:tQ};function nQ(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(a.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=r.data.get(n.dataId).values,o=r.data.get(a.dataId).values,l=r.data.get(s.dataId).values,[u,d]=yA(i,n.shape,n.dtype,o,l);return r.makeTensorInfo(d,n.dtype,u)}var aQ={kernelName:mh,backendName:"cpu",kernelFunc:nQ};function sQ(e){let{inputs:t,backend:r,attrs:n}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,sliceSize:d,strides:h,outputSize:p}=C.calculateShapes(s,a,o),c=!1,m=r.bufferSync(a),f;switch(s.dtype){case"bool":{let g=r.bufferSync(s),y=Boolean(r.data.get(i.dataId).values[0]);f=vu(m,g,o,p,d,u,l,h,y,c);break}case"float32":{let g=r.bufferSync(s),y=r.data.get(i.dataId).values[0];f=vu(m,g,o,p,d,u,l,h,y,c);break}case"int32":{let g=r.bufferSync(s),y=r.data.get(i.dataId).values[0];f=vu(m,g,o,p,d,u,l,h,y,c);break}case"string":{let g=r.bufferSync(s),y=v.decodeString(r.data.get(i.dataId).values[0]);f=vu(m,g,o,p,d,u,l,h,y,c);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return r.makeTensorInfo(o,f.dtype,f.values)}var iQ={kernelName:gh,backendName:"cpu",kernelFunc:sQ};function oQ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),d=a.shape.slice();return l.map(h=>{let p=[...d];p[o]=h;let c=zo({inputs:{x:a},backend:r,attrs:{begin:u,size:p}});return u[o]+=h,c})}var lQ={kernelName:vl,backendName:"cpu",kernelFunc:oQ},uQ={kernelName:yd,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:r}=e,n=t;Ce(r,"square");let a=n.data.get(r.dataId).values,s=new Float32Array(a.length);for(let i=0;i<a.length;++i){let o=a[i];s[i]=o*o}return{dataId:n.write(s,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},dQ=gt(Wi,(e,t)=>{let r=t;return isNaN(e)?NaN:e>0?1:r.alpha}),pQ={kernelName:Wi,backendName:"cpu",kernelFunc:dQ};function hQ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n;Ce(a,"stridedSlice");let{finalShapeSparse:c,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=Dt.sliceInfo(a.shape,s,i,o,l,u,d,h,p),w;if(f)w=Ct({inputs:{x:a},backend:r,attrs:{shape:m}});else if(g||y){v.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let I=Dt.computeOutShape(A,x,b),T=zo({inputs:{x:a},backend:r,attrs:{begin:A,size:I}});w=Ct({inputs:{x:T},backend:r,attrs:{shape:m}}),r.disposeIntermediateTensorInfo(T)}else{let I=r.bufferSync(a),T=Zk(c,I,b,A);w=r.makeTensorInfo(m,T.dtype,T.values)}return w}var cQ={kernelName:wl,backendName:"cpu",kernelFunc:hQ};function fQ(e){let{inputs:t,backend:r,attrs:n}=e,{separator:a,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:d,dataSplits:h}=t,p=r.data.get(d.dataId).values,c=r.data.get(h.dataId).values,[m,f]=Yk(p,c,a,s,i,o,l,u);return[r.makeTensorInfo([m.length],"string",m),r.makeTensorInfo(h.shape,"int32",f)]}var mQ={kernelName:yh,backendName:"cpu",kernelFunc:fQ};function gQ(e){let{inputs:t,backend:r,attrs:n}=e,{skipEmpty:a}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=r.data.get(s.dataId).values,l=r.data.get(i.dataId).values[0],[u,d,h]=Jk(o,l,a),p=d.length;return[r.makeTensorInfo([p,2],"int32",u),r.makeTensorInfo([p],"string",d),r.makeTensorInfo([2],"int32",new Int32Array(h))]}var yQ={kernelName:$f,backendName:"cpu",kernelFunc:gQ};function AQ(e){let{inputs:t,backend:r,attrs:n}=e,{numBuckets:a}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(a<=0)throw new Error("Number of buckets must be at least 1");let i=r.data.get(s.dataId).values,o=Qk(i,a);return r.makeTensorInfo(s.shape,"int32",o)}var xQ={kernelName:Mf,backendName:"cpu",kernelFunc:AQ},bQ=gt(kl,e=>Math.tan(e)),vQ={kernelName:kl,backendName:"cpu",kernelFunc:bQ},wQ=gt(Bi,e=>Math.tanh(e)),kQ={kernelName:Bi,backendName:"cpu",kernelFunc:wQ};function IQ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reps:s}=n;Ce(a,"tile");let i=t9(r.bufferSync(a),s);return r.makeTensorInfo(i.shape,i.dtype,i.values)}var SQ={kernelName:es,backendName:"cpu",kernelFunc:IQ};function CQ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{k:s,sorted:i}=n;Ce(a,"topk");let o=r.data.get(a.dataId).values,[l,u]=n9(o,a.shape,a.dtype,s,i);return[r.makeTensorInfo(l.shape,l.dtype,l.values),r.makeTensorInfo(u.shape,u.dtype,u.values)]}var TQ={kernelName:Il,backendName:"cpu",kernelFunc:CQ};function NQ(e){let{inputs:t,attrs:r,backend:n}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=r,[d,h,p,c]=a.shape,[m,f]=u!=null?u:[h,p],g=[d,m,f,c],y=v.computeStrides(a.shape),A=y[0],x=y[1],b=y[2],w=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(g));w.fill(l);let I=n.data.get(a.dataId).values,T=n.data.get(s.dataId).values;for(let E=0;E<d;++E){let R=s.shape[0]===1?T:T.subarray(E*8,E*8+8);for(let O=0;O<m;++O)for(let $=0;$<f;++$)for(let S=0;S<c;++S){let P,z=R[6]*$+R[7]*O+1;if(z===0)continue;let j=(R[0]*$+R[1]*O+R[2])/z,K=(R[3]*$+R[4]*O+R[5])/z,D=G4(j,p,o),Y=G4(K,h,o);switch(i){case"nearest":P=_Q(I,h,p,A,x,b,E,Y,D,S,l);break;case"bilinear":P=PQ(I,h,p,A,x,b,E,Y,D,S,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let V=E*A+O*x+$*b+S;w[V]=P}return n.makeTensorInfo(g,a.dtype,w)}return{dataId:n.write(w,g,a.dtype),shape:a.shape,dtype:a.dtype}}var EQ={kernelName:Sl,backendName:"cpu",kernelFunc:NQ};function G4(e,t,r){switch(r){case"reflect":return RQ(e,t);case"wrap":return $Q(e,t);case"nearest":return FQ(e,t);case"constant":default:return MQ(e,t)}}function RQ(e,t){let r=e;if(r<0)if(t<=1)r=0;else{let n=2*t;r<n&&(r=n*Math.trunc(-r/n)+r),r=r<-t?r+n:-r-1}else if(r>t-1)if(t<=1)r=0;else{let n=2*t;r-=n*Math.trunc(r/n),r>=t&&(r=n-r-1)}return v.clamp(0,r,t-1)}function $Q(e,t){let r=e;if(r<0)if(t<=1)r=0;else{let n=t-1;r+=t*(Math.trunc(-r/n)+1)}else if(r>t-1)if(t<=1)r=0;else{let n=t-1;r-=t*Math.trunc(r/n)}return v.clamp(0,r,t-1)}function MQ(e,t){return e}function FQ(e,t){return v.clamp(0,e,t-1)}function _p(e,t,r,n,a,s,i,o,l,u,d){let h=i*n+o*a+l*s+u;return 0<=o&&o<t&&0<=l&&l<r?e[h]:d}function _Q(e,t,r,n,a,s,i,o,l,u,d){let h=Math.round(o),p=Math.round(l);return _p(e,t,r,n,a,s,i,h,p,u,d)}function PQ(e,t,r,n,a,s,i,o,l,u,d){let h=Math.floor(o),p=Math.floor(l),c=h+1,m=p+1,f=(m-l)*_p(e,t,r,n,a,s,i,h,p,u,d)+(l-p)*_p(e,t,r,n,a,s,i,h,m,u,d),g=(m-l)*_p(e,t,r,n,a,s,i,c,p,u,d)+(l-p)*_p(e,t,r,n,a,s,i,c,m,u,d);return(c-o)*f+(o-h)*g}function OQ(e){let{inputs:t,attrs:r,backend:n}=e,{axis:a}=r,{x:s}=t;Ce(s,"unique");let i=n.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=a9(i,a,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,o),n.makeTensorInfo([u.length],"int32",u)]}var zQ={kernelName:Ff,backendName:"cpu",kernelFunc:OQ};function DQ(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),u=0;for(let c=0;c<i;c++)c!==s&&(l[u++]=a.shape[c]);let d=new Array(i).fill(0),h=a.shape.slice();h[s]=1;let p=new Array(o);for(let c=0;c<p.length;c++){d[s]=c;let m=zo({inputs:{x:a},backend:r,attrs:{begin:d,size:h}});p[c]=Ct({inputs:{x:m},backend:r,attrs:{shape:l}}),r.disposeIntermediateTensorInfo(m)}return p}var LQ={kernelName:Cl,backendName:"cpu",kernelFunc:DQ};function BQ(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,segmentIds:s}=t,{numSegments:i}=n;Ce(a,"unsortedSegmentSum");let o=a.shape.length,l=s.shape.length,u=[],d=[],h=o-l,p=s;for(let m=0;m<h;++m){let f=Z0({inputs:{input:p},backend:r,attrs:{dim:m+1}});p=f,d.push(f)}for(let m=0;m<i;++m){let f=v.createScalarValue(m,"int32"),g=r.makeTensorInfo([],"int32",f),y=Ck({inputs:{a:g,b:p},backend:r}),A=Hs({inputs:{x:y},backend:r,attrs:{dtype:"float32"}}),x=$m({inputs:{a:A,b:a},backend:r}),b=Uh({inputs:{x},backend:r,attrs:{axis:0,keepDims:!1}});u.push(b),d.push(g),d.push(y),d.push(A),d.push(x),d.push(b)}let c=x9({inputs:u,backend:r,attrs:{axis:0}});return d.forEach(m=>r.disposeIntermediateTensorInfo(m)),c}var WQ={kernelName:Ah,backendName:"cpu",kernelFunc:BQ},VQ=[VX,_q,GX,HX,Bq,XX,ZX,JX,eK,rK,aK,iK,lK,pK,cK,gK,AK,bK,wK,BX,IK,CK,NK,RK,Dq,Vq,MK,Pq,_K,OK,zK,LK,WK,UK,jK,qK,KK,YK,QK,tZ,nZ,sZ,oZ,lZ,dZ,hZ,fZ,mZ,gZ,yZ,bZ,FX,wZ,Uq,RZ,Gq,$Z,Hq,zZ,DZ,BZ,Xq,UZ,jZ,qZ,KZ,YZ,Zq,Jq,Oq,QZ,PK,tY,nY,sY,_X,eX,rX,oY,aX,uY,hY,fY,yY,xY,vY,wY,iX,IY,CY,NY,RY,MY,_Y,OY,lX,DY,WY,jY,dX,hX,XY,YY,eJ,fX,rJ,aJ,sJ,b9,uJ,OX,yX,pJ,zq,dy,cJ,zX,DX,LX,mJ,yJ,xJ,vJ,kJ,IJ,CJ,xX,NJ,FJ,PJ,LJ,vX,WJ,UJ,jJ,wX,UY,XJ,ZJ,JJ,eQ,rQ,aQ,iQ,lQ,SX,uQ,TX,pQ,cQ,mQ,yQ,xQ,$X,AZ,vQ,kQ,SQ,TQ,EQ,mX,zQ,LQ,WQ,nJ];for(let e of VQ)qn(e);var v9={};Be(v9,{assertNotComplex:()=>$d,bindCanvasToFramebuffer:()=>QQ,bindColorTextureToFramebuffer:()=>g0,bindTextureToProgramUniformSampler:()=>O9,bindTextureUnit:()=>F9,bindVertexBufferToProgramAttribute:()=>hy,callAndCheck:()=>we,canBeRepresented:()=>w9,createFragmentShader:()=>S9,createFramebuffer:()=>M9,createProgram:()=>C9,createStaticIndexBuffer:()=>E9,createStaticVertexBuffer:()=>N9,createTexture:()=>R9,createVertexShader:()=>I9,getBatchDim:()=>Do,getExtensionOrThrow:()=>Pp,getFramebufferErrorMessage:()=>z9,getMaxTexturesInShader:()=>W9,getNumChannels:()=>YQ,getProgramUniformLocation:()=>P9,getProgramUniformLocationOrThrow:()=>_9,getRowsCols:()=>Lo,getShapeAs3D:()=>y0,getTextureShapeFromLogicalShape:()=>L9,getWebGLDisjointQueryTimerVersion:()=>V9,getWebGLErrorMessage:()=>k9,getWebGLMaxTextureSize:()=>B9,hasExtension:()=>En,isCapableOfRenderingToFloatTexture:()=>U9,isDownloadFloatTextureEnabled:()=>G9,isReshapeFree:()=>eh,isWebGLFenceEnabled:()=>j9,isWebGLVersionEnabled:()=>fy,linkProgram:()=>T9,logShaderSourceAndInfoLog:()=>kA,resetMaxTextureSize:()=>eee,resetMaxTexturesInShader:()=>tee,unbindColorTextureFromFramebuffer:()=>cy,unbindTextureUnit:()=>JQ,validateFramebuffer:()=>Op,validateProgram:()=>m0,validateTextureSize:()=>$9});var wo={},Ig={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Mm(e,t){wo[e]=t}function xa(e,t){if(!(e in wo)||t!=null){let n=GQ(e,t);if(n!==null)wo[e]=n;else return console.log("Could not get context for WebGL version",e),null}let r=wo[e];return r==null||r.isContextLost()?(delete wo[e],xa(e)):(r.disable(r.DEPTH_TEST),r.disable(r.STENCIL_TEST),r.disable(r.BLEND),r.disable(r.DITHER),r.disable(r.POLYGON_OFFSET_FILL),r.disable(r.SAMPLE_COVERAGE),r.enable(r.SCISSOR_TEST),r.enable(r.CULL_FACE),r.cullFace(r.BACK),wo[e])}function UQ(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function GQ(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let r=t==null?UQ(e):t;return r.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete wo[e]},!1),e===1?r.getContext("webgl",Ig)||r.getContext("experimental-webgl",Ig):r.getContext("webgl2",Ig)}function Gh(e,t){return[t,e]}function jQ(e,t){return e*t}function l0(e){let t=v.sizeFromShape(e),r=Math.ceil(t/4);return v.sizeToSquarishShape(r)}function Rd(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function HQ(e,t){let[r,n]=Rd(e,t);return r*n*4}function wA(e,t){let r=e,n,a,s,i,o,l,u,d,h,p;return Z().getNumber("WEBGL_VERSION")===2?(n=r.R32F,a=r.R16F,s=r.RGBA16F,i=r.RGBA32F,o=r.RED,u=4,d=1,h=r.HALF_FLOAT,p=r.FLOAT,l=r.RGBA8):(n=e.RGBA,a=e.RGBA,s=e.RGBA,i=r.RGBA,o=e.RGBA,u=4,d=4,h=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT,l=e.RGBA),{internalFormatFloat:n,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:d,textureTypeHalfFloat:h,textureTypeFloat:p}}function we(e,t){let r=t();return Z().getBool("DEBUG")&&qQ(e),r}function qQ(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+k9(e,t))}var XQ=596e-10,KQ=65504;function w9(e){return!!(Z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||XQ<Math.abs(e)&&Math.abs(e)<KQ)}function k9(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Pp(e,t){return ss(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function I9(e,t){let r=ss(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(we(e,()=>e.shaderSource(r,t)),we(e,()=>e.compileShader(r)),e.getShaderParameter(r,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(r)),new Error("Failed to compile vertex shader.");return r}function S9(e,t){let r=ss(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(we(e,()=>e.shaderSource(r,t)),we(e,()=>e.compileShader(r)),Z().get("ENGINE_COMPILE_ONLY"))return r;if(e.getShaderParameter(r,e.COMPILE_STATUS)===!1)throw kA(t,e.getShaderInfoLog(r)),new Error("Failed to compile fragment shader.");return r}var ZQ=/ERROR: [0-9]+:([0-9]+):/g;function kA(e,t){let r=ZQ.exec(t);if(r==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let n=+r[1],a=e.split(`
`),s=a.length.toString().length+2,i=a.map((h,p)=>v.rightPad((p+1).toString(),s)+h),o=0;for(let h=0;h<i.length;h++)o=Math.max(i[h].length,o);let l=i.slice(0,n-1),u=i.slice(n-1,n),d=i.slice(n);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${v.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(d.join(`
`))}function C9(e){return ss(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function T9(e,t){if(we(e,()=>e.linkProgram(t)),!Z().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function m0(e,t){if(we(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function N9(e,t){let r=ss(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),we(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),r}function E9(e,t){let r=ss(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,r)),we(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),r}function YQ(){return Z().getNumber("WEBGL_VERSION")===2?1:4}function R9(e){return ss(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function $9(e,t){let r=Z().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let n=`[${e}x${t}]`;throw new Error("Requested texture size "+n+" is invalid.")}if(e>r||t>r){let n=`[${e}x${t}]`,a=`[${r}x${r}]`;throw new Error("Requested texture size "+n+" greater than WebGL maximum on this browser / GPU "+a+".")}}function M9(e){return ss(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function hy(e,t,r,n,a,s,i){let o=e.getAttribLocation(t,r);return o===-1?!1:(we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),we(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),we(e,()=>e.enableVertexAttribArray(o)),!0)}function F9(e,t,r){D9(e,r),we(e,()=>e.activeTexture(e.TEXTURE0+r)),we(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function JQ(e,t){D9(e,t),we(e,()=>e.activeTexture(e.TEXTURE0+t)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function _9(e,t,r){return ss(e,()=>e.getUniformLocation(t,r),'uniform "'+r+'" not present in program.')}function P9(e,t,r){return e.getUniformLocation(t,r)}function O9(e,t,r,n){we(e,()=>F9(e,t,n)),we(e,()=>e.uniform1i(r,n))}function QQ(e){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),we(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function g0(e,t,r){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,r)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function cy(e,t){we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),we(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Op(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+z9(e,t))}function z9(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ss(e,t,r){let n=we(e,()=>t());if(n==null)throw new Error(r);return n}function D9(e,t){let r=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,n=t+e.TEXTURE0;if(n<e.TEXTURE0||n>r){let a=`[gl.TEXTURE0, gl.TEXTURE${r}]`;throw new Error(`textureUnit must be in ${a}.`)}}function Do(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function Lo(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function y0(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Do(e),...Lo(e)]),t}function L9(e,t=!1){let r=Z().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(r=r*2,e=e.map((a,s)=>s>=e.length-2?v.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let n=v.sizeFromShape(e);if(e.length<=1&&n<=r)return[1,n];if(e.length===2&&e[0]<=r&&e[1]<=r)return e;if(e.length===3&&e[0]*e[1]<=r&&e[2]<=r)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=r&&e[1]*e[2]<=r)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=r&&e[3]<=r)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=r&&e[1]*e[2]*e[3]<=r)return[e[0],e[1]*e[2]*e[3]];if(t){let a=Do(e),s=2,i=2;return e.length&&([s,i]=Lo(e)),n=a*(s/2)*(i/2),v.sizeToSquarishShape(n).map(o=>o*2)}return v.sizeToSquarishShape(n)}function u0(e){return e%2===0}function eh(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let r=e.slice(-1)[0],n=t.slice(-1)[0];if(r===n||u0(r)&&u0(n)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&u0(e[0])&&u0(t[0])}var A0,x0;function B9(e){if(A0==null){let t=xa(e);A0=t.getParameter(t.MAX_TEXTURE_SIZE)}return A0}function eee(){A0=null}function tee(){x0=null}function W9(e){if(x0==null){let t=xa(e);x0=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,x0)}function V9(e){if(e===0)return 0;let t,r=xa(e);return En(r,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:En(r,"EXT_disjoint_timer_query")?t=1:t=0,t}function En(e,t){return e.getExtension(t)!=null}function fy(e){try{if(xa(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function U9(e){if(e===0)return!1;let t=xa(e);if(e===1){if(!En(t,"OES_texture_float"))return!1}else if(!En(t,"EXT_color_buffer_float"))return!1;return my(t)}function G9(e){if(e===0)return!1;let t=xa(e);if(e===1){if(!En(t,"OES_texture_float")||!En(t,"WEBGL_color_buffer_float"))return!1}else{if(En(t,"EXT_color_buffer_float"))return my(t);let r="EXT_color_buffer_half_float";if(En(t,r)){let n=t.getExtension(r);return ree(t,n)}return!1}return my(t)}function my(e){let t=wA(e),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let n=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,n,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(s),i}function ree(e,t){let r=wA(e,t),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,r.internalFormatHalfFloat,a,s,0,r.textureFormatFloat,r.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(i),o}function j9(e){return e!==2?!1:xa(e).fenceSync!=null}function $d(e,t){Array.isArray(e)||(e=[e]),e.forEach(r=>{r!=null&&v.assert(r.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Me=Z();Me.registerFlag("HAS_WEBGL",()=>Me.getNumber("WEBGL_VERSION")>0);Me.registerFlag("WEBGL_VERSION",()=>fy(2)?2:fy(1)?1:0);Me.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Me.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Me.get("WEBGL_VERSION")===2);Me.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Me.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Me.registerFlag("WEBGL_PACK",()=>Me.getBool("HAS_WEBGL"));Me.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_CLIP",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_REDUCE",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_LAZILY_UNPACK",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_CONV_IM2COL",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>B9(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>W9(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Me.getNumber("WEBGL_VERSION");return e===0?0:V9(e)});Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Me.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!wh.isMobile());Me.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>U9(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Me.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Me.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Me.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>G9(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_FENCE_API_ENABLED",()=>j9(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Me.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Me.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Me.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>wh.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Me.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Me.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Me.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Me.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function Xr(){let e,t,r,n,a,s,i,o,l,u;return Z().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",r="out",n="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=`
bool isnan_custom(float val) {
uint floatToUint = floatBitsToUint(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",r="varying",n="varying",a="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:r,varyingFs:n,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function zl(e,t,r="index"){let n=v.computeStrides(t);return n.map((a,s)=>{let i=`int ${e[s]} = ${r} / ${a}`,o=s===n.length-1?`int ${e[s+1]} = ${r} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function Fm(e,t,r="index"){let n=v.computeStrides(t);return n.map((a,s)=>{let i=`int ${e[s]} = ${r} / outShapeStrides[${s}]`,o=s===n.length-1?`int ${e[s+1]} = ${r} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function nee(e,t){let r=e.length,n=e.map(s=>`${t}[${s}]`),a=new Array(r-1);a[r-2]=n[r-1];for(let s=r-3;s>=0;--s)a[s]=`(${a[s+1]} * ${n[s+1]})`;return a}function aee(e,t,r="index"){let n=e.map((s,i)=>i),a=nee(n,t);return a.map((s,i)=>{let o=`int ${e[i]} = ${r} / ${a[i]}`,l=i===a.length-1?`int ${e[i+1]} = ${r} - ${e[i]} * ${a[i]}`:`index -= ${e[i]} * ${a[i]}`;return`${o}; ${l};`}).join("")}function IA(e){let t=v.computeStrides(e).map(r=>r.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function SA(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var H9=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,{getBroadcastDims:q9}=C;function see(e,t,r){let n=[];if(e.forEach(p=>{let c=v.sizeFromShape(p.shapeInfo.logicalShape);if(p.shapeInfo.isUniform?n.push(`uniform float ${p.name}${c>1?`[${c}]`:""};`):(n.push(`uniform sampler2D ${p.name};`),n.push(`uniform int offset${p.name};`)),r.enableShapeUniforms){let{uniformShape:m}=CA(r.packedInputs,p.shapeInfo.logicalShape,p.shapeInfo.texShape);switch(m.length){case 1:n.push(`uniform int ${p.name}Shape;`);break;case 2:n.push(`uniform ivec2 ${p.name}Shape;`);break;case 3:n.push(`uniform ivec3 ${p.name}Shape;`);break;case 4:n.push(`uniform ivec4 ${p.name}Shape;`);break;default:break}n.push(`uniform ivec2 ${p.name}TexShape;`)}}),r.enableShapeUniforms){switch(t.logicalShape.length){case 1:n.push("uniform int outShape;");break;case 2:n.push("uniform ivec2 outShape;"),n.push("uniform int outShapeStrides;");break;case 3:n.push("uniform ivec3 outShape;"),n.push("uniform ivec2 outShapeStrides;");break;case 4:n.push("uniform ivec4 outShape;"),n.push("uniform ivec3 outShapeStrides;");break;default:break}n.push("uniform ivec2 outTexShape;")}r.customUniforms&&r.customUniforms.forEach(p=>{n.push(`uniform ${p.type} ${p.name}${p.arrayIndex?`[${p.arrayIndex}]`:""};`)});let a=n.join(`
`),s=e.map(p=>iee(p,t,r.packedInputs,r.enableShapeUniforms)).join(`
`),i=t.texShape,o=Xr(),l=uee(o),u,d,h=hee(o);return t.isPacked?(u=oee(t.logicalShape,i,r.enableShapeUniforms),d=pee(o)):(u=lee(t.logicalShape,i,r.enableShapeUniforms),d=dee(o)),r.packedInputs&&(h+=gee),[h,l,d,a,u,s,r.userCode].join(`
`)}function Md(e,t=!1){let r=e.shapeInfo.logicalShape;switch(r.length){case 0:return Nee(e,t);case 1:return Ree(e,t);case 2:return Mee(e,t);case 3:return _ee(e,t);case 4:return Oee(e,t);case 5:return zee(e);case 6:return Dee(e);default:throw new Error(`${r.length}-D input sampling is not yet supported`)}}function X9(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return Tee(e);case 1:return Eee(e,t);case 2:return $ee(e,t);case 3:return Fee(e,t);default:return Pee(e,t)}}function iee(e,t,r=!1,n){let a="";r?a+=X9(e,n):a+=Md(e,n);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(r?a+=Lee(e,t):a+=Bee(e,t)),a}function oee(e,t,r){switch(e.length){case 0:return K9();case 1:return yee(e,t,r);case 2:return See(e,t,r);case 3:return xee(e,t,r);default:return vee(e,t,r)}}function lee(e,t,r){switch(e.length){case 0:return K9();case 1:return Aee(e,t,r);case 2:return Cee(e,t,r);case 3:return bee(e,t,r);case 4:return wee(e,t,r);case 5:return kee(e,t);case 6:return Iee(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function uee(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function dee(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function pee(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function hee(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${cee}
${fee}
${mee}
`}var cee=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,fee=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,mee=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,gee=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function K9(){return`
int getOutputCoords() {
return 0;
}
`}function yee(e,t,r){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?r?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${n[1]}.0);
}
`:n[1]===1?r?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${n[0]}.0);
}
`:r?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
}
`}function Aee(e,t,r){return t[0]===1?r?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?r?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:r?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function xee(e,t,r){if(r)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),s=a*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec3(b, r, c);
}
`}function bee(e,t,r){if(r)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Fm(["r","c","d"],e)}
return ivec3(r, c, d);
}
`;let n=zl(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec3(r, c, d);
}
`}function vee(e,t,r){if(r)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),s=a*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
int b${u} = index / ${i};
index -= b${u} * ${i};
`+o,l=`b${u}, `+l;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
${o}
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec${e.length}(${l});
}
`}function wee(e,t,r){if(r)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Fm(["r","c","d","d2"],e)}
return ivec4(r, c, d, d2);
}
`;let n=zl(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec4(r, c, d, d2);
}
`}function kee(e,t){let r=zl(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${r}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function Iee(e,t){let r=zl(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${r}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function See(e,t,r){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return r?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
}
`;let a=Math.ceil(e[1]/2);return r?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec2(r, c);
}
`}function Cee(e,t,r){return v.arraysEqual(e,t)?r?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?r?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?r?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:r?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function Dl(e){return`offset${e}`}function Tee(e){let t=e.name,r="get"+t.charAt(0).toUpperCase()+t.slice(1),n=Xr();return`
vec4 ${r}() {
return ${n.texture2D}(${t}, halfCR);
}
`}function Nee(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${r};}`;let[a,s]=e.shapeInfo.texShape;if(a===1&&s===1)return`
float ${n}() {
return sampleTexture(${r}, halfCR);
}
`;let i=Dl(r);if(t)return`
float ${n}() {
vec2 uv = uvFromFlat(${r}TexShape[0], ${r}TexShape[1], ${i});
return sampleTexture(${r}, uv);
}
`;let[o,l]=e.shapeInfo.texShape;return`
float ${n}() {
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
return sampleTexture(${r}, uv);
}
`}function Eee(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),a=e.shapeInfo.texShape,s=Xr();if(t)return`
vec4 ${n}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${r}TexShape[0]) / 2.0), ceil(float(${r}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${s.texture2D}(${r}, uv);
}
`;let i=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];return`
vec4 ${n}(int index) {
vec2 uv = packedUVfrom1D(
${i[0]}, ${i[1]}, index);
return ${s.texture2D}(${r}, uv);
}
`}function Ree(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1);if(e.shapeInfo.isUniform)return`
float ${n}(int index) {
${Fd(e)}
}
`;let a=e.shapeInfo.texShape,s=a[0],i=a[1];if(i===1&&s===1)return`
float ${n}(int index) {
return sampleTexture(${r}, halfCR);
}
`;let o=Dl(r);return i===1?t?`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${r}TexShape[0]));
return sampleTexture(${r}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
return sampleTexture(${r}, uv);
}
`:s===1?t?`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${r}TexShape[1]), 0.5);
return sampleTexture(${r}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
return sampleTexture(${r}, uv);
}
`:t?`
float ${n}(int index) {
vec2 uv = uvFromFlat(${r}TexShape[0], ${r}TexShape[1], index + ${o});
return sampleTexture(${r}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
return sampleTexture(${r}, uv);
}
`}function $ee(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=Xr();if(s!=null&&v.arraysEqual(r,s))return t?`
vec4 ${a}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
return ${l.texture2D}(${n}, uv);
}
`:`
vec4 ${a}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
return ${l.texture2D}(${n}, uv);
}
`;if(t)return`
vec4 ${a}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${n}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${l.texture2D}(${n}, uv);
}
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],d=Math.ceil(r[1]/2);return`
vec4 ${a}(int row, int col) {
vec2 uv = packedUVfrom2D(${d}, ${u[0]}, ${u[1]}, row, col);
return ${l.texture2D}(${n}, uv);
}
`}function Mee(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape;if(s!=null&&v.arraysEqual(r,s)){if(t)return`
float ${a}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`;let p=s[0],c=s[1];return`
float ${a}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${c}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`}let{newShape:i,keptDims:o}=v.squeezeShape(r),l=i;if(l.length<r.length){let p=_d(e,l),c=["row","col"];return`
${Md(p,t)}
float ${a}(int row, int col) {
return ${a}(${Pd(c,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${r[1]}, 1)));
${Fd(e)}
}
`;let u=s[0],d=s[1],h=Dl(n);return d===1?t?`
float ${a}(int row, int col) {
float index = dot(vec3(row, col, ${h}), vec3(${n}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col) {
float index = dot(vec3(row, col, ${h}), vec3(${r[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
return sampleTexture(${n}, uv);
}
`:u===1?t?`
float ${a}(int row, int col) {
float index = dot(vec3(row, col, ${h}), vec3(${n}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col) {
float index = dot(vec3(row, col, ${h}), vec3(${r[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${d}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${a}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n}Shape[1] + col + ${h};
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${r[1]} + col + ${h};
vec2 uv = uvFromFlat(${u}, ${d}, index);
return sampleTexture(${n}, uv);
}
`}function Fee(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(r[0]===1){let p=r.slice(1),c=[1,2],m=_d(e,p),f=["b","row","col"];return`
${X9(m,t)}
vec4 ${a}(int b, int row, int col) {
return ${a}(${Pd(f,c)});
}
`}let o=Xr();if(t)return`
vec4 ${a}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${n}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${o.texture2D}(${n}, uv);
}
`;let l=i[0],u=i[1],d=Math.ceil(r[2]/2),h=d*Math.ceil(r[1]/2);return`
vec4 ${a}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${l}, ${u}, ${h}, ${d}, b, row, col);
return ${o.texture2D}(${n}, uv);
}
`}function _ee(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r[1]*r[2],i=r[2],{newShape:o,keptDims:l}=v.squeezeShape(r),u=o;if(u.length<r.length){let f=_d(e,u),g=["row","col","depth"];return`
${Md(f,t)}
float ${a}(int row, int col, int depth) {
return ${a}(${Pd(g,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${s}, ${i}, 1)));
${Fd(e)}
}
`;let d=e.shapeInfo.texShape,h=d[0],p=d[1],c=e.shapeInfo.flatOffset;if(p===s&&c==null)return t?`
float ${a}(int row, int col, int depth) {
int stride1 = ${n}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${i}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(p===i&&c==null)return t?`
float ${a}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${r[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let m=Dl(n);return t?`
float ${a}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${n}Shape[1] * ${n}Shape[2];
int stride1 = ${n}Shape[2];
int index = row * ${s} + col * ${i} + depth + ${m};
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s} + col * ${i} + depth + ${m};
vec2 uv = uvFromFlat(${h}, ${p}, index);
return sampleTexture(${n}, uv);
}
`}function Pee(e,t){let r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),a=Xr();if(t)return`
vec4 ${n}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${r}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${r}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${r}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${r}TexShape[0]) / 2.0), ceil(float(${r}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${a.texture2D}(${r}, uv);
}
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],d=l[1],h=Math.ceil(s[i-1]/2),p=h*Math.ceil(s[i-2]/2),c="int b, int row, int col",m=`b * ${p} + (row / 2) * ${h} + (col / 2)`;for(let f=2;f<i-1;f++)c=`int b${f}, `+c,p*=s[i-f-1],m=`b${f} * ${p} + `+m;return`
vec4 ${n}(${c}) {
int index = ${m};
int texR = index / ${d};
int texC = index - texR * ${d};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${d}, ${u});
return ${a.texture2D}(${r}, uv);
}
`}function Oee(e,t){let r=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r[3],i=r[2]*s,o=r[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(r);if(l.length<r.length){let A=_d(e,l),x=["row","col","depth","depth2"];return`
${Md(A,t)}
float ${a}(int row, int col, int depth, int depth2) {
return ${a}(${Pd(x,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, 1)));
${Fd(e)}
}
`;let d=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,p=h[0],c=h[1],m=`int stride2 = ${n}Shape[3];`,f=`int stride1 = ${n}Shape[2] * stride2;`,g=`int stride0 = ${n}Shape[1] * stride1;`;if(c===o&&d==null)return t?`
float ${a}(int row, int col, int depth, int depth2) {
${m}
${f}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${i}, ${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${c}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(c===s&&d==null)return t?`
float ${a}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n}Shape[1] * ${n}Shape[2], ${n}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${r[1]*r[2]}, ${r[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${c}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let y=Dl(n);return t?`
float ${a}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${m}
${f}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${y});
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} +
depth * ${s} + depth2;
vec2 uv = uvFromFlat(${p}, ${c}, index + ${y});
return sampleTexture(${n}, uv);
}
`}function zee(e){let t=e.shapeInfo.logicalShape,r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),a=t[4],s=t[3]*a,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let f=_d(e,l),g=["row","col","depth","depth2","depth3"];return`
${Md(f)}
float ${n}(int row, int col, int depth, int depth2, int depth3) {
return ${n}(${Pd(g,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${a})) +
depth3;
${Fd(e)}
}
`;let d=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,p=h[0],c=h[1];if(c===o&&d==null)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${c}.0, ${p}.0);
return sampleTexture(${r}, uv);
}
`;if(c===a&&d==null)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${c}.0, ${p}.0);
return sampleTexture(${r}, uv);
}
`;let m=Dl(r);return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${a} + depth3 + ${m};
vec2 uv = uvFromFlat(${p}, ${c}, index);
return sampleTexture(${r}, uv);
}
`}function Dee(e){let t=e.shapeInfo.logicalShape,r=e.name,n="get"+r.charAt(0).toUpperCase()+r.slice(1),{newShape:a,keptDims:s}=v.squeezeShape(t);if(a.length<t.length){let g=_d(e,a),y=["row","col","depth","depth2","depth3","depth4"];return`
${Md(g)}
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${n}(${Pd(y,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,d=t[1]*u;if(e.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${d}, ${u}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${Fd(e)}
}
`;let h=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,c=p[0],m=p[1];if(m===d&&h==null)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${c}.0);
return sampleTexture(${r}, uv);
}
`;if(m===i&&h==null)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${c}.0);
return sampleTexture(${r}, uv);
}
`;let f=Dl(r);return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${d} + col * ${u} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
vec2 uv = uvFromFlat(${c}, ${m}, index);
return sampleTexture(${r}, uv);
}
`}function Fd(e){let t=e.name,r=v.sizeFromShape(e.shapeInfo.logicalShape);return r<2?`return ${t};`:`
for (int i = 0; i < ${r}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function Lee(e,t){let r=e.name,n=r.charAt(0).toUpperCase()+r.slice(1),a="get"+n+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=q9(e.shapeInfo.logicalShape,t.logicalShape),l=yt(i),u=i-s,d,h=["x","y","z","w","u","v"];s===0?d="":i<2&&o.length>=1?d="coords = 0;":d=o.map(g=>`coords.${h[g+u]} = 0;`).join(`
`);let p="";i<2&&s>0?p="coords":p=e.shapeInfo.logicalShape.map((g,y)=>`coords.${h[y+u]}`).join(", ");let c="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,f=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)c=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!f)i===1?c=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:c=`
return vec4(outputValue.x);
`;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?c="return vec4(outputValue.x);":o.indexOf(g)>-1?c="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(c="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${a}() {
${l} coords = getOutputCoords();
${d}
vec4 outputValue = get${n}(${p});
${c}
}
`}function Bee(e,t){let r=e.name,n=r.charAt(0).toUpperCase()+r.slice(1),a="get"+n+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return`
float ${a}() {
return sampleTexture(${r}, resultUV);
}
`;let u=yt(l),d=q9(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,p,c=["x","y","z","w","u","v"];o===0?p="":l<2&&d.length>=1?p="coords = 0;":p=d.map(f=>`coords.${c[f+h]} = 0;`).join(`
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${c[g+h]}`).join(", "),`
float ${a}() {
${u} coords = getOutputCoords();
${p}
return get${n}(${m});
}
`}function yt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function CA(e,t,r){let{newShape:n,keptDims:a}=v.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):n,l=!e&&s>1&&!v.arraysEqual(t,r)&&n.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:a}}function _d(e,t){let r=JSON.parse(JSON.stringify(e));return r.shapeInfo.logicalShape=t,r}function Pd(e,t){return t.map(r=>e[r]).join(", ")}function Wee(e,t,r,n){let a=r.map((d,h)=>{let p={logicalShape:d.shape,texShape:d.isUniform?null:d.texData.texShape,isUniform:d.isUniform,isPacked:d.isUniform?!1:d.texData.isPacked,flatOffset:null};return d.texData!=null&&d.texData.slice!=null&&d.texData.slice.flatOffset>0&&(p.flatOffset=d.texData.slice.flatOffset),{name:t.variableNames[h],shapeInfo:p}}),s=a.map(d=>d.shapeInfo),i={logicalShape:n.shape,texShape:n.texData.texShape,isUniform:!1,isPacked:n.texData.isPacked,flatOffset:null},o=see(a,i,t),l=S9(e.gl,o),u=e.createProgram(l);return Z().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,...Z9(e,t,u)}}function Z9(e,t,r){let n={},a={},s={},i=[],o,l,u,d=null,h=null;h=e.getUniformLocation(r,"NAN",!1),Z().getNumber("WEBGL_VERSION")===1&&(d=e.getUniformLocation(r,"INFINITY",!1));let p=!1;for(let c=0;c<t.variableNames.length;c++){let m=t.variableNames[c];n[m]=e.getUniformLocation(r,m,p),n[`offset${m}`]=e.getUniformLocation(r,`offset${m}`,p),t.enableShapeUniforms&&(a[`${m}Shape`]=e.getUniformLocation(r,`${m}Shape`,p),s[`${m}TexShape`]=e.getUniformLocation(r,`${m}TexShape`,p))}return t.enableShapeUniforms&&(o=e.getUniformLocation(r,"outShape",p),u=e.getUniformLocation(r,"outShapeStrides",p),l=e.getUniformLocation(r,"outTexShape",p)),t.customUniforms&&t.customUniforms.forEach((c,m)=>{i[m]=e.getUniformLocation(r,c.name,p)}),{uniformLocations:n,customUniformLocations:i,infLoc:d,nanLoc:h,inShapesLocations:a,inTexShapesLocations:s,outShapeLocation:o,outShapeStridesLocation:u,outTexShapeLocation:l}}function j4(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((r,n)=>{let a=r.logicalShape,s=t[n],i=s.shape;if(!v.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(r.isUniform&&s.isUniform)return;let o=r.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function Vee(e,t,r,n,a){t.program.enableShapeUniforms||(j4(t.inShapeInfos,r),j4([t.outShapeInfo],[n]));let s=n.texData.texture,i=n.texData.texShape;n.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),Z().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),r.forEach((l,u)=>{let d=t.program.variableNames[u],h=t.uniformLocations[d],p=t.uniformLocations[`offset${d}`],c=t.inShapesLocations[`${d}Shape`],m=t.inTexShapesLocations[`${d}TexShape`];if(c){let{uniformShape:f}=CA(t.program.packedInputs,l.shape,l.texData.texShape);switch(f.length){case 1:e.gl.uniform1iv(c,new Int32Array(f));break;case 2:e.gl.uniform2iv(c,new Int32Array(f));break;case 3:e.gl.uniform3iv(c,new Int32Array(f));break;case 4:e.gl.uniform4iv(c,new Int32Array(f));break;default:break}}if(m&&e.gl.uniform2i(m,l.texData.texShape[0],l.texData.texShape[1]),h!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(h,l.uniformValues[0]);else{let f=l.uniformValues;f instanceof Float32Array||(f=new Float32Array(f)),e.gl.uniform1fv(h,f)}return}l.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,h,u)}});let o=t.outShapeLocation;if(o)switch(n.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(n.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(n.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(n.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(n.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(n.shape);switch(n.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,n.texData.texShape[0],n.texData.texShape[1]),t.program.customUniforms&&a&&t.program.customUniforms.forEach((l,u)=>{let d=t.customUniformLocations[u],h=a[u];if(l.type==="float")e.gl.uniform1fv(d,h);else if(l.type==="vec2")e.gl.uniform2fv(d,h);else if(l.type==="vec3")e.gl.uniform3fv(d,h);else if(l.type==="vec4")e.gl.uniform4fv(d,h);else if(l.type==="int")e.gl.uniform1iv(d,h);else if(l.type==="ivec2")e.gl.uniform2iv(d,h);else if(l.type==="ivec3")e.gl.uniform3iv(d,h);else if(l.type==="ivec4")e.gl.uniform4iv(d,h);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function Uee(e,t,r){let n="";t.concat(r).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:d,keptDims:h}=CA(e.packedInputs,i.shape,l),p="",c="",m="";if(d.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];p=`${w[0]>1}_${w[1]>1}`}else if(d.length===2&&!e.packedInputs)c=`${d[0]>1}_${d[1]>1}`;else if(d.length>2&&!e.packedInputs){let w=v.computeStrides(d);m=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let f=i.shape.length,g=d.length===2&&v.arraysEqual(i.shape,l),y=v.sizeFromShape(i.shape)===1,A=C.getBroadcastDims(i.shape,r.shape),x=!e.packedInputs&&f===r.shape.length&&v.arraysEqual(l,r.texData.texShape),b=e.packedInputs||d.length>2?"":`${l[0]>1}_${l[1]>1}`;n+=`${f}_${x}_${u?h:""}_${d.length}_${y}_${A}_${g}_${p}_${c}_${m}_${b}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;n+=`${i.shape}_${l}_${o}`}});let a=e.userCode,s=e.constructor.name;return s+="_"+n+"_"+a+`${Z().getNumber("WEBGL_VERSION")}`,s}function un(e){return Z().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var Gee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Xr();this.outputShape=e,this.enableShapeUniforms=un(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Fm(["r","c","d"],e):zl(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}},jee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Xr();this.outputShape=e,this.enableShapeUniforms=un(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Fm(["r","c","d"],e):zl(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}},Hee=class{constructor(e){this.variableNames=["A"],this.outTexUsage=3;let t=Xr();this.outputShape=e,this.userCode=`
${H9}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},qee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=3;let t=Xr();this.outputShape=e,this.userCode=`
${H9}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},Xee=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let r=Xr();this.outputShape=e,this.enableShapeUniforms=un(this.outputShape.length);let n="result";t&&(n="floor(result * 255. + 0.5)"),this.userCode=`
${this.enableShapeUniforms?SA():IA(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${r.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${r.output} = vec4(${n}, 0., 0., 0.);
}
`}},Kee=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let r=Xr();this.outputShape=e,this.enableShapeUniforms=un(this.outputShape.length);let n="",a="result";t&&(a="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;n+=`
localCoords = coords;
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${i};
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${s};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${r.texture2D}(A, uv);
if (offset == 0) {
result[${o}] = values[0];
} else if (offset == 1) {
result[${o}] = values[1];
} else if (offset == 2) {
result[${o}] = values[2];
} else {
result[${o}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?SA():IA(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${n}
${r.output} = ${a};
}
`}},Y9={};Be(Y9,{bindVertexProgramAttributeStreams:()=>iI,createBufferFromOutputTexture:()=>uI,createFloat16MatrixTexture:()=>rI,createFloat16PackedMatrixTexture:()=>sI,createFloat32MatrixTexture:()=>tI,createIndexBuffer:()=>eI,createPackedMatrixTexture:()=>aI,createUnsignedBytesMatrixTexture:()=>nI,createVertexBuffer:()=>Q9,createVertexShader:()=>J9,downloadByteEncodedFloatMatrixFromOutputTexture:()=>pI,downloadFloat32MatrixFromBuffer:()=>dI,downloadMatrixFromPackedOutputTexture:()=>cI,downloadPackedMatrixFromBuffer:()=>hI,getInternalFormatForFloat16MatrixTexture:()=>NA,getInternalFormatForFloat16PackedMatrixTexture:()=>$A,getInternalFormatForFloat32MatrixTexture:()=>TA,getInternalFormatForPackedMatrixTexture:()=>RA,getInternalFormatForUnsignedBytesMatrixTexture:()=>EA,uploadDenseMatrixToTexture:()=>oI,uploadPixelDataToTexture:()=>lI});function J9(e){let t=Xr(),r=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return I9(e,r)}function Q9(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return N9(e,t)}function eI(e){let t=new Uint16Array([0,1,2,2,1,3]);return E9(e,t)}function jh(e,t,r,n,a,s){$9(t,r);let i=R9(e),o=e.TEXTURE_2D;return we(e,()=>e.bindTexture(o,i)),we(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),we(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),we(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),Z().getNumber("WEBGL_VERSION")===1?we(e,()=>e.texImage2D(o,0,n,t,r,0,a,s,null)):we(e,()=>e.texStorage2D(o,1,n,t,r)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[r,t]}}function TA(e){return e.internalFormatFloat}function tI(e,t,r,n){let[a,s]=Gh(t,r);return jh(e,a,s,TA(n),n.textureFormatFloat,e.FLOAT)}function NA(e){return e.internalFormatHalfFloat}function rI(e,t,r,n){let[a,s]=Gh(t,r);return jh(e,a,s,NA(n),n.textureFormatFloat,n.textureTypeHalfFloat)}function EA(e){return e.downloadTextureFormat}function nI(e,t,r,n){let[a,s]=Gh(t,r);return jh(e,a,s,EA(n),e.RGBA,e.UNSIGNED_BYTE)}function RA(e){return e.internalFormatPackedFloat}function aI(e,t,r,n){let[a,s]=Rd(t,r);return jh(e,a,s,RA(n),e.RGBA,e.FLOAT)}function $A(e){return e.internalFormatPackedHalfFloat}function sI(e,t,r,n){let[a,s]=Rd(t,r);return jh(e,a,s,$A(n),e.RGBA,n.textureTypeHalfFloat)}function iI(e,t,r){return we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),hy(e,t,"clipSpacePos",r,3,20,0)&&hy(e,t,"uv",r,2,20,12)}function oI(e,t,r,n,a,s){we(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(r*n*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(r*n*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),Z().getNumber("WEBGL_VERSION")===2?we(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,r,n,e.RGBA,o,i)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,r,n,0,e.RGBA,o,i)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function lI(e,t,r){we(e,()=>e.bindTexture(e.TEXTURE_2D,t)),r.data instanceof Uint8Array?Z().getNumber("WEBGL_VERSION")===2?we(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,r.width,r.height,e.RGBA,e.UNSIGNED_BYTE,r.data)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,r.width,r.height,0,e.RGBA,e.UNSIGNED_BYTE,r.data)):Z().getNumber("WEBGL_VERSION")===2?we(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,r)):we(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,r)),we(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function uI(e,t,r,n){let a=e.createBuffer();we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*r;return we(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),we(e,()=>e.readPixels(0,0,r,t,e.RGBA,e.FLOAT,0)),we(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function dI(e,t,r){let n=e,a=new Float32Array(r);return n.bindBuffer(n.PIXEL_PACK_BUFFER,t),n.getBufferSubData(n.PIXEL_PACK_BUFFER,0,a),n.bindBuffer(n.PIXEL_PACK_BUFFER,null),a}function pI(e,t,r,n){let[a,s]=Gh(t,r),i=4,o=new Uint8Array(jQ(t*r,i));return we(e,()=>e.readPixels(0,0,a,s,n.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function hI(e,t,r,n,a,s,i,o){let l=e,u=new Float32Array(HQ(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function cI(e,t,r){let n=new Float32Array(t*r*4);return we(e,()=>e.readPixels(0,0,r,t,e.RGBA,e.FLOAT,n)),n}var Cu=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Z().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Mm(t,e)):this.gl=xa(t);let r="WEBGL_color_buffer_float",n="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),Z().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Pp(this.gl,a),En(this.gl,s))this.textureHalfFloatExtension=Pp(this.gl,s);else if(Z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(r),En(this.gl,n))this.colorBufferHalfFloatExtension=Pp(this.gl,n);else if(Z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(r="EXT_color_buffer_float",En(this.gl,r))this.colorBufferFloatExtension=this.gl.getExtension(r);else if(En(this.gl,n))this.colorBufferHalfFloatExtension=this.gl.getExtension(n);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=Q9(this.gl),this.indexBuffer=eI(this.gl),this.framebuffer=M9(this.gl),this.textureConfig=wA(this.gl,this.textureHalfFloatExtension)}get debug(){return Z().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;we(e,()=>e.finish()),we(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),we(e,()=>e.deleteFramebuffer(this.framebuffer)),we(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),we(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),we(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),tI(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),rI(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),nI(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),lI(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,r,n){this.throwIfDisposed(),oI(this.gl,e,t,r,n,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),sI(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),aI(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(cy(this.gl,this.framebuffer),this.outputTexture=null),we(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,r){return this.downloadMatrixDriver(e,()=>pI(this.gl,t,r,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,r,n,a,s){return hI(this.gl,e,t,r,n,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return dI(this.gl,e,t)}createBufferFromTexture(e,t,r){this.bindTextureToFrameBuffer(e);let n=uI(this.gl,t,r,this.textureConfig);return this.unbindTextureToFrameBuffer(),n}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,r;if(Z().getBool("WEBGL_FENCE_API_ENABLED")){let n=e,a=n.fenceSync(n.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),r=()=>{let s=n.clientWaitSync(a,0,0);return s===n.ALREADY_SIGNALED||s===n.CONDITION_SATISFIED},t=a}else Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),r=()=>this.isQueryAvailable(t,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):r=()=>!0;return{query:t,isFencePassed:r}}downloadMatrixFromPackedTexture(e,t,r){return this.downloadMatrixDriver(e,()=>cI(this.gl,t,r))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=J9(t));let r=C9(t);return we(t,()=>t.attachShader(r,this.vertexShader)),we(t,()=>t.attachShader(r,e)),T9(t,r),this.debug&&m0(t,r),this.vertexAttrsAreBound||(this.setProgram(r),this.vertexAttrsAreBound=iI(t,this.program,this.vertexBuffer)),r}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&we(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&m0(this.gl,this.program),we(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,r=!0){return this.throwIfDisposed(),r?_9(this.gl,e,t):P9(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),we(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,r){this.throwIfDisposed(),this.throwIfNoProgram(),O9(this.gl,e,t,r)}setOutputMatrixTexture(e,t,r){this.setOutputMatrixTextureDriver(e,r,t)}setOutputPackedMatrixTexture(e,t,r){this.throwIfDisposed();let[n,a]=Rd(t,r);this.setOutputMatrixTextureDriver(e,n,a)}setOutputMatrixWriteRegion(e,t,r,n){this.setOutputMatrixWriteRegionDriver(r,e,n,t)}setOutputPackedMatrixWriteRegion(e,t,r,n){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&m0(this.gl,this.program),Op(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),we(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),we(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Pp(this.gl,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let r=this.gl,n=this.getQueryTimerExtensionWebGL2(),a=r.createQuery();return r.beginQuery(n.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,r=this.getQueryTimerExtensionWebGL2();t.endQuery(r.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let r=this.gl;return r.getQueryParameter(e,r.QUERY_RESULT)/1e6}else{let r=this.getQueryTimerExtensionWebGL1();return r.getQueryObjectEXT(e,r.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let r=this.gl,n=this.getQueryTimerExtensionWebGL2(),a=r.getQueryParameter(e,r.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let r=this.getQueryTimerExtensionWebGL1(),n=r.getQueryObjectEXT(e,r.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),n&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=Zee(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:r}=this.itemsToPoll[t];r()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),g0(this.gl,e,this.framebuffer),this.debug&&Op(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(g0(this.gl,this.outputTexture,this.framebuffer),this.debug&&Op(this.gl)):cy(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let r=t();return this.unbindTextureToFrameBuffer(),r}setOutputMatrixTextureDriver(e,t,r){this.throwIfDisposed();let n=this.gl;g0(n,e,this.framebuffer),this.debug&&Op(n),this.outputTexture=e,we(n,()=>n.viewport(0,0,t,r)),we(n,()=>n.scissor(0,0,t,r))}setOutputMatrixWriteRegionDriver(e,t,r,n){this.throwIfDisposed(),we(this.gl,()=>this.gl.scissor(e,t,r,n))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function Zee(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:Yee,bincountImpl:fI,bincountReduceImpl:Jee,ceilImpl:Qee,concatImpl:ete,equalImpl:tte,expImpl:rte,expm1Impl:nte,floorImpl:ate,gatherNdImpl:ste,gatherV2Impl:ite,greaterImpl:ote,greaterEqualImpl:lte,lessImpl:ute,lessEqualImpl:dte,linSpaceImpl:pte,logImpl:hte,maxImpl:cte,maximumImpl:fte,minimumImpl:mte,multiplyImpl:gte,negImpl:yte,notEqualImpl:Ate,prodImpl:xte,rangeImpl:bte,rsqrtImpl:vte,scatterImpl:wte,sigmoidImpl:kte,simpleAbsImpl:mI,sliceImpl:Ite,sparseFillEmptyRowsImpl:Ste,sparseReshapeImpl:Cte,sparseSegmentReductionImpl:gI,sqrtImpl:Tte,stridedSliceImpl:Nte,stringNGramsImpl:Ete,stringSplitImpl:Rte,stringToHashBucketFastImpl:$te,subImpl:Mte,tileImpl:Fte,topKImpl:_te,transposeImpl:MA,uniqueImpl:Pte}=Rm;function yI(e,t){return["x","y","z","w","u","v"].slice(0,t).map(r=>`${e}.${r}`)}function Wr(e,t){return t===1?[e]:yI(e,t)}function Ote(e,t){if(e===1)return"rc";let r="";for(let n=0;n<e;n++)r+=t[n],n<e-1&&(r+=",");return r}var zte=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=un(this.outputShape.length),this.rank===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let t=Wr("rc",this.rank),r=yt(this.rank),n=this.getOutOfBoundsCondition(t),a=this.getSetup(t),s=this.getOutput(t);this.userCode=`
void main() {
${r} rc = getOutputCoords();
if(${n}) {
setOutput(vec4(0));
} else {
${a}
setOutput(vec4(${s}));
}
}
`}}getSourceCoordsArr(e){let t=[];for(let r=0;r<=1;r++)for(let n=0;n<=1;n++){let a=`${r===0?"r":"rp1"}, ${n===0?"c":"cp1"}`;for(let s=2;s<this.rank;s++)a=`${e[e.length-1-s]},`+a;t.push(a)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let r=this.rank-2;r<this.rank;r++)t+=`${e[r]} >= ${this.enableShapeUniforms?`outShape[${r}]`:this.outputShape[r]}`,r<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),r=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],n=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
int r = ${t[0]};
int c = ${t[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${r};
bool rEdge = rp1 >= ${n};
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
cEdge ? 0. : getA(${t[1]}),
rEdge ? 0. : getA(${t[2]}),
rEdge || cEdge ? 0. : getA(${t[3]})`}},AI=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=un(this.outputShape.length);let r="";for(let n=0;n<4;n++){let a="thisRC = rc;";n%2===1&&(a+="thisRC.z += 1;"),n>1&&(a+="thisRC.y += 1;"),r+=`
${a}
${n>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${n}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${n>0?"}":""}
`}this.userCode=`
${Dte(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?SA():IA(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${r}
setOutput(result);
}
`}};function Dte(e,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?aee(["r","c","d"],"inputShape"):zl(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var Lte=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,r){let n=q4(t,r),a=X4(e,n,r);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=H4(e,n,this.gpgpu.gl,this.gpgpu.textureConfig,r);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return n===3?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):n===4?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):n===1?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):n===0?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):n===2&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,r,n){if(this.freeTextures==null)return;let a=q4(r,n),s=X4(t,a,n);s in this.freeTextures||(this.freeTextures[s]=[]);let i=H4(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,n),o=Z().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function Bte(e,t){let r=e;if(t===r.R32F)return 4;if(t===r.R16F)return 2;if(t===r.RGBA32F||t===e.RGBA)return 16;if(t===r.RGBA16F)return 8;if(t===r.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function H4(e,t,r,n,a){let s=Wte(t,n),i;if(a){let[l,u]=Rd(e[0],e[1]);i=l*u}else{let[l,u]=Gh(e[0],e[1]);i=l*u}let o=Bte(r,s);return i*o}function Wte(e,t){switch(e){case 3:return RA(t);case 4:return $A(t);case 1:return TA(t);case 0:return NA(t);case 2:return EA(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function Vte(e){return Z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?3:1:e?4:0}function q4(e,t){if(e===1)return 3;if(e===0||e==null)return Vte(t);if(e===3||e===2)return 2;throw new Error(`Unknown logical texture type ${e}`)}function X4(e,t,r){return`${e[0]}_${e[1]}_${t}_${r}`}var Xa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=un(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},Yn="if (isnan(x)) return x;",Ute="return x;",K4="return abs(x);",Gte="return (x >= 0.0) ? x : (exp(x) - 1.0);",jte=Yn+`
return (x < 0.0) ? 0.0 : x;
`,Hte=Yn+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,cu="return x;",qte="return 1.0 / (1.0 + exp(-1.0 * x));",Xte="return x;",Kte=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,Zte=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Yte=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Jte="return 1.0 / (1.0 + exp(-1.0 * x));",So=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=un(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},Qte=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=un(this.outputShape.length);let t=e.length,r=Wr("rc",t),n=yt(t),a=Ote(t,r),s=r.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${n} rc = getOutputCoords();
vec4 packedInput = getA(${a});
setOutput(getChannel(packedInput, ${i}));
}
`}},ere=Kn.whereImpl,tre=1e-7,rre=1e-4,Sg={};function nre(e){return e in Sg||(Sg[e]={}),Sg[e]}var are=Z().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),sre=600;function ire(){return Z().global.screen==null?1024:Z().global.screen.height*Z().global.screen.width*window.devicePixelRatio*sre/1024/1024}var xI=class extends Uu{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!Z().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof Cu)t=e;else{let r=xa(Z().getNumber("WEBGL_VERSION"),e);t=new Cu(r)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let r=xa(Z().getNumber("WEBGL_VERSION"));t=new Cu(r),this.binaryCache=nre(Z().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new Lte(this.gpgpu),this.numMBBeforeWarning=ire(),this.texData=new rh(this,Xt())}nextDataId(){return xI.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,r){if((Z().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Z().getBool("DEBUG"))&&this.checkNumericalProblems(e),r==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()};return this.texData.set(n,{shape:t,dtype:r,values:e,usage:1,refCount:1}),n}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,r,n,a){if(Z().getBool("DEBUG")&&this.checkNumericalProblems(t),n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:r,dtype:n,values:t,usage:1,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:r,dtype:n,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new So(i,cu):h=new Xa(i,cu);let p=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:n}],n),c=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),c}if(r!=null)return this.convertAndCacheOnCPU(e);if(n==="string")return r;let l=this.activeTimers!=null,u;l&&(u=v.now());let d;if(n==="complex64"){let h=this.readSync(a.real.dataId),p=this.readSync(a.imag.dataId);d=C.mergeRealAndImagArrays(h,p)}else d=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,d)}async read(e){if(this.pendingRead.has(e)){let c=this.pendingRead.get(e);return new Promise(m=>c.push(m))}let t=this.texData.get(e),{values:r,shape:n,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let c;o?c=new So(n,cu):c=new Xa(n,cu);let m=this.runWebGLProgram(c,[{dataId:e,shape:n,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(r!=null)return this.convertAndCacheOnCPU(e);if(Z().getBool("DEBUG")&&!Z().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Z().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&Z().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let c=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(c.texture.texture,...l0(n))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let d;if(s==="complex64"){let c=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=c[0],f=c[1];d=C.mergeRealAndImagArrays(m,f)}else if(l==null)d=this.getValuesFromTexture(e);else{let c=v.sizeFromShape(n);d=this.gpgpu.downloadFloat32MatrixFromBuffer(l,c)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let c=this.gpgpu.gl;we(c,()=>c.deleteBuffer(l))}let h=this.convertAndCacheOnCPU(e,d),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(c=>c(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Xt().removeDataId(e,this),this.pendingDeletes--),h}readToGPU(e,t={}){let r=this.texData.get(e),{values:n,shape:a,slice:s,dtype:i,isPacked:o,texture:l}=r;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let p;o?p=new So(a,cu):p=new Xa(a,cu);let c=this.runWebGLProgram(p,[{dataId:e,shape:a,dtype:i}],i),m=this.readToGPU(c,t);return this.disposeIntermediateTensorInfo(c),m}if(l==null)throw n!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),d=Xt().makeTensorFromTensorInfo(u),h=this.texData.get(u.dataId);return{tensorRef:d,...h.texture}}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let r=t.map(n=>v.decodeString(n));return De(e.shape,e.dtype,r)}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return De(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let r=e[t];if(!w9(r))throw Z().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${r} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${r} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:r,isPacked:n}=this.texData.get(e),a=v.sizeFromShape(t);if(Z().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let h=this.decode(e),p=this.texData.get(h.dataId),c=this.gpgpu.downloadMatrixFromPackedTexture(p.texture.texture,...l0(t)).subarray(0,a);return this.disposeIntermediateTensorInfo(h),c}let s=Z().getBool("WEBGL_PACK")&&n===!0,i=s?y0(t):t,o=s?new qee(i):new Hee(i),l=this.runWebGLProgram(o,[{shape:i,dtype:r,dataId:e}],"float32"),u=this.texData.get(l.dataId),d=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,a);return this.disposeIntermediateTensorInfo(l),d}timerAvailable(){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,r=[],n=!1;this.programTimersStack==null?(this.programTimersStack=r,n=!0):this.activeTimers.push(r),this.activeTimers=r,e();let a=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:r}=this.texData.get(e);return r!=null&&(this.disposeData(r.real.dataId,t),this.disposeData(r.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:r,texShape:n,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(n,r),this.textureManager.releaseTexture(t,n,a,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=are){return Z().getBool("WEBGL_CPU_FORWARD")&&e.every(r=>this.texData.get(r.dataId).texture==null&&v.sizeFromShape(r.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return ere(e.shape,t)}packedUnaryOp(e,t,r){let n=new So(e.shape,t),a=this.compileAndRun(n,[e],r);return Xt().makeTensorFromTensorInfo(a)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let n=mI(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,n)}if(Z().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,K4,e.dtype);let t=new Xa(e.shape,K4),r=this.compileAndRun(t,[e]);return Xt().makeTensorFromTensorInfo(r)}makeTensorInfo(e,t,r){let n;if(t==="string"&&r!=null&&r.length>0&&v.isString(r[0])){let a=r.map(s=>v.encodeString(s));n=this.write(a,e,t)}else n=this.write(r,e,t);return this.texData.get(n).usage=null,{dataId:n,shape:e,dtype:t}}makeOutput(e,t,r){return Xt().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,r),this)}unpackTensor(e){let t=new Qte(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new zte(e.shape),r=!0;return this.runWebGLProgram(t,[e],e.dtype,null,r)}packedReshape(e,t){let r=[Do(e.shape),...Lo(e.shape)],n={dtype:e.dtype,shape:r,dataId:e.dataId},a=[Do(t),...Lo(t)],s=new AI(a,r),i=!0,o=[r],l=this.runWebGLProgram(s,[n],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let r=this.texData.get(e),{isPacked:n,shape:a,dtype:s}=r;if(t!=null){let h=v.sizeFromShape(a),p=t[0]*t[1]*4;v.assert(h<=p,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=y0(a),o;n?o=new jee(i):o=new Gee(i);let l=!0,u=[t!=null?t:l0(i)],d=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:a,dataId:d.dataId}}runWebGLProgram(e,t,r,n,a=!1,s){let i=this.makeTensorInfo(e.outputShape,r),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===0){let g=s!=null?s:l0(e.outputShape);o.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(i.shape)===0)return o.values=v.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=Z().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!eh(y.shape,g.shape)){let A=g,x=g.shape;g.shape=y.shape,g=this.packedReshape(g,x),l.push(g),y=this.texData.get(g.dataId),A.shape=x}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(i.dataId);let d={shape:i.shape,texData:o,isUniform:!1},h=Uee(e,u,d),p=this.getAndSaveBinary(h,()=>Wee(this.gpgpu,e,u,d)),c=this.activeTimers!=null,m;c&&(m=this.startTimer()),Z().get("ENGINE_COMPILE_ONLY")||Vee(this.gpgpu,p,u,d,n),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),c&&(m=this.endTimer(m),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(m)}));let f=Z().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let g=v.now();g-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!Z().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&a===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,r,n,a=!1){return r=r||t[0].dtype,this.runWebGLProgram(e,t,r,n,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Z().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=X(()=>{if(!Z().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Z().getBool("DEBUG");Z().set("DEBUG",!1);let t=this.abs(Se(1e-8)).dataSync()[0];if(Z().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?tre:rre}uploadToGPU(e){let t=this.texData.get(e),{shape:r,dtype:n,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let d=t.texShape;if(d==null&&(d=L9(r,o),t.texShape=d),a!=null){let h=y0(r),p,c=d[1],m=d[0],f=a instanceof Uint8Array||a instanceof Uint8ClampedArray;(o||!f)&&([c,m]=Rd(d[0],d[1])),o?p=new Kee(h,f):p=new Xee(h,f);let g=f?[m,c]:d,y=this.makeTensorInfo(g,n),A=this.texData.get(y.dataId);f?A.usage=2:A.usage=1,A.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),c,m,a);let x=[[m,c]],b=!0,w=this.runWebGLProgram(p,[y],n,x,b),I=this.texData.get(w.dataId);t.texShape=I.texShape,t.isPacked=I.isPacked,t.usage=I.usage,Z().get("ENGINE_COMPILE_ONLY")?this.disposeData(w.dataId):(t.texture=I.texture,t.values=null,this.texData.delete(w.dataId)),this.disposeIntermediateTensorInfo(y),l&&(this.uploadWaitMs+=v.now()-u)}else{let h=this.acquireTexture(d,i,n,o);t.texture=h}}convertAndCacheOnCPU(e,t){let r=this.texData.get(e),{dtype:n}=r;return this.releaseGPUData(e),t!=null&&(r.values=ore(t,n)),r.values}acquireTexture(e,t,r,n){if(this.numBytesInGPU+=this.computeBytes(e,r),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,n)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let r=new Promise(n=>{try{this.checkCompletion_(t),n(!0)}catch(a){throw a}});e.push(r)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await $3(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(kA(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:r,infLoc:n,nanLoc:a,inShapesLocations:s,inTexShapesLocations:i,outShapeLocation:o,outShapeStridesLocation:l,outTexShapeLocation:u}=Z9(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=r,e.infLoc=n,e.nanLoc=a,e.inShapesLocations=s,e.inTexShapesLocations=i,e.outShapeLocation=o,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}},Hh=xI;Hh.nextDataId=0;function ore(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let r=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let n=0;n<r.length;++n)r[n]=Math.round(e[n]);return r}else throw new Error(`Unknown dtype ${t}`)}var lre="0.0.0";function bI(){Z().set("WEBGL_FORCE_F16_TEXTURES",!0)}wh.isBrowser()&&El("webgl",()=>new Hh,2);var ure={forceHalfFloat:bI},vI=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,Vu=class{constructor(e,t,r){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,r),this.enableShapeUniforms=un(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},_m=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,qh=class{constructor(e,t,r,n=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,r);let a=this.outputShape.length;this.enableShapeUniforms=un(a);let s="";if(n)if(a===0||v.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${yt(a)} coords = getOutputCoords();
`,a===1)this.enableShapeUniforms?s+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=Wr("coords",a);this.enableShapeUniforms?s+=`
bool nextRowOutOfBounds =
(${i[a-2]} + 1) >= outShape[${a} - 2];
bool nextColOutOfBounds =
(${i[a-1]} + 1) >= outShape[${a} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:s+=`
bool nextRowOutOfBounds =
(${i[a-2]} + 1) >= ${this.outputShape[a-2]};
bool nextColOutOfBounds =
(${i[a-1]} + 1) >= ${this.outputShape[a-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function mn(e){let{inputs:t,backend:r}=e,{x:n}=t;return r.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var dre={kernelName:fi,backendName:"webgl",kernelFunc:mn};function ji(e){let{inputs:t,backend:r}=e,{real:n,imag:a}=t,s=r.makeTensorInfo(n.shape,"complex64"),i=r.texData.get(s.dataId),o=mn({inputs:{x:n},backend:r}),l=mn({inputs:{x:a},backend:r});return i.complexTensorInfos={real:o,imag:l},s}var pre={kernelName:ah,backendName:"webgl",kernelFunc:ji},wI="return (a < 0.) ? b * a : a;",kI=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function hre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{alpha:s}=n,i=r.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new qh(kI,a.shape,i.shape):new Vu(wI,a.shape,i.shape),l=r.runWebGLProgram(o,[a,i],"float32");return r.disposeIntermediateTensorInfo(i),l}var cre={kernelName:mi,backendName:"webgl",kernelFunc:hre},II="return (a < 0.) ? b * a : a;",SI=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function fre(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t,s=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new qh(SI,n.shape,a.shape):new Vu(II,n.shape,a.shape);return r.runWebGLProgram(s,[n,a],"float32")}var mre={kernelName:Ti,backendName:"webgl",kernelFunc:fre},Od="if (isnan(x)) return x;",gre=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,yre=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function it({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:r,dtype:n}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=n||i.dtype;if(o.shouldExecuteOnCPU([i])&&r!=null){let h=o.texData.get(i.dataId),p=r(h.values,l);return o.makeTensorInfo(i.shape,l,p)}let u=Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,d;return u?d=new So(i.shape,t):d=new Xa(i.shape,e),o.runWebGLProgram(d,[i],l)}}function wr({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:r=!1,supportsComplex:n=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,d=o;if(n&&l.dtype==="complex64"){let m=d.texData.get(l.dataId),f=d.texData.get(u.dataId),[g,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[b,w]=x,I={dataId:b.dataId,dtype:b.dtype,shape:l.shape},T={dataId:w.dataId,dtype:w.dtype,shape:u.shape},E=new Vu(e,l.shape,u.shape);return d.runWebGLProgram(E,[I,T],Nr(b.dtype,w.dtype))}),A=ji({inputs:{real:g,imag:y},backend:d});return d.disposeIntermediateTensorInfo(g),d.disposeIntermediateTensorInfo(y),A}let h=s||Nr(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||d.shouldExecuteOnCPU([l,u]))&&a!=null){let m=d.texData.get(l.dataId).values,f=d.texData.get(u.dataId).values,g=l.dtype==="string"?C.fromUint8ToStringArray(m):m,y=l.dtype==="string"?C.fromUint8ToStringArray(f):f,[A,x]=a(l.shape,u.shape,g,y,h),b=d.makeTensorInfo(x,h),w=d.texData.get(b.dataId);return w.values=A,b}let p=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,c;return p?c=new qh(t,l.shape,u.shape,r):c=new Vu(e,l.shape,u.shape),d.runWebGLProgram(c,[l,u],h)}}function Pm(e,t=!1){if(e==="linear")return t?Xte:Ute;if(e==="relu")return t?Zte:jte;if(e==="elu")return t?Kte:Gte;if(e==="relu6")return t?Yte:Hte;if(e==="prelu")return t?SI:II;if(e==="leakyrelu")return t?kI:wI;if(e==="sigmoid")return t?Jte:qte;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var CI=class{constructor(e,t,r,n=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=r,this.enableShapeUniforms=un(this.outputShape.length);let u=n?e[1]:e[2],d=Math.ceil(u/2),h=n?"i * 2, rc.y":"rc.y, i * 2",p=a?"rc.z, i * 2":"i * 2, rc.z",c=n?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?f=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:f=`vec4 activation(vec4 x) {
${i}
}`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let A="rc.x",x="rc.x";e[0]<t[0]?A=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${f}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${d}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${d}; i++) {
int batchA = ${A};
int batchB = ${x};
vec4 a = getMatrixA(batchA, ${h});
vec4 b = getMatrixB(batchB, ${p});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${c[0]} * ${m[0]});
result += (${c[1]} * ${m[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${y}
${g}
setOutput(result);
}
`}},Z4={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Y4=class{constructor(e,t,r){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,r),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},J4="return a * b;";function FA(e){let{inputs:t,backend:r}=e,{a:n,b:a}=t,s=C.upcastType(n.dtype,a.dtype);if(n.dtype==="complex64"){let o=r.texData.get(n.dataId),l=r.texData.get(a.dataId),u=new Y4(Z4.REAL,n.shape,a.shape),d=new Y4(Z4.IMAG,n.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:n.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:n.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],p=r.runWebGLProgram(u,h,"float32"),c=r.runWebGLProgram(d,h,"float32"),m=ji({inputs:{real:p,imag:c},backend:r});return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),m}if(r.shouldExecuteOnCPU([n,a])){let o=r.texData.get(n.dataId),l=r.texData.get(a.dataId),[u,d]=gte(n.shape,a.shape,o.values,l.values,s),h=r.makeTensorInfo(d,s),p=r.texData.get(h.dataId);return p.values=u,h}let i;return Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new qh(J4,n.shape,a.shape):i=new Vu(J4,n.shape,a.shape),r.runWebGLProgram(i,[n,a],s)}var Are={kernelName:Ii,backendName:"webgl",kernelFunc:FA};function xre(e,t,r){let n=[Do(e.shape),...Lo(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},s=[Do(t),...Lo(t)],i=new AI(s,n),o=!0,l=[n],u=r.runWebGLProgram(i,[a],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function Ae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{shape:s}=n,i=r,o=v.sizeFromShape(a.shape),l=v.inferFromImplicitShape(s,o),u=v.sizeFromShape(l);v.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let d=i.texData.get(a.dataId);return d.isPacked&&!eh(a.shape,l)&&!(d.texture!==null&&eh(d.shape,l))?xre(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var bre={kernelName:cl,backendName:"webgl",kernelFunc:Ae},Q4=class{constructor(e,t){this.variableNames=["x"];let{windowSize:r,batchSize:n,inSize:a,outSize:s}=e;this.outputShape=[n,s];let i=Math.floor(r/4)*4,o=r%4,l="sumValue += dot(values, ones);";if(t!=null){let d=1/t;l=`sumValue += dot(values * ${v.isInt(d)?d.toPrecision(2):d}, ones);`}let u="";a%r>0&&(u=`
if (inIdx < 0 || inIdx >= ${a}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${u}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${r};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},vre=class{constructor(e,t){this.variableNames=["x"];let{windowSize:r,batchSize:n,inSize:a,outSize:s}=e;this.outputShape=[n,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(r/4)*4,d=r%4,h=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${o}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,p="vec4";t==="all"?(i="1.0",h=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,p="bvec4"):t==="any"&&(i="0.0",h=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,p="bvec4");let c="";a%r>0&&(c=`
if (inIdx < 0 || inIdx >= ${a}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${r};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${h}
}
int inIdx = inOffset + ${u};
if (${d===1}) {
${p} values = ${p}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${h}
} else if (${d===2}) {
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${h}
} else if (${d===3}) {
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${h}
}
setOutput(${l});
}
`}};function wre(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let r=t.length?t[t.length-1].outSize:e[1],n=C.computeOptimalWindowSize(r);t.push({inSize:r,windowSize:n,outSize:Math.ceil(r/n)})}return t}function Ll(e,t,r,n){let a=wre(e.shape),s=e;for(let i=0;i<a.length;i++){let{inSize:o,windowSize:l,outSize:u}=a[i],d,h;r==="mean"?d=i===0?new Q4({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new Q4({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):d=new vre({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},r),h=s,s=n.runWebGLProgram(d,[s],t),h.dataId!==e.dataId&&n.disposeIntermediateTensorInfo(h)}return s}var kre=class{constructor(e,t){this.variableNames=["A"];let r=new Array(e.length);for(let s=0;s<r.length;s++)r[s]=e[t[s]];this.outputShape=r,this.rank=r.length;let n=yt(this.rank),a=Ire(t);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${a}));
}
`}};function Ire(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let r=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],n=new Array(t);for(let a=0;a<e.length;a++)n[e[a]]=r[a];return n.join()}var Sre=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let r=new Array(e.length);for(let u=0;u<r.length;u++)r[u]=e[t[u]];if(this.outputShape=r,this.rank=r.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let n=yt(this.rank),a=yI("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=a[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${a[this.rank-1]} < ${r[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${n} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${a[this.rank-1]};
if(++${a[this.rank-2]} < ${r[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function Om(e,t,r){let n=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Sre(e.shape,t):new kre(e.shape,t);return r.runWebGLProgram(n,[e],e.dtype)}function Cre(e,t,r,n){let a=t,s=e.shape.length,i=v.parseAxisParam(a,e.shape),o=i,l=C.getAxesPermutation(o,s),u=l!=null,d=e;u&&(d=Om(e,l,n),o=C.getInnerMostAxes(o.length,s)),C.assertAxesAreInnerMostDims("sum",o,s);let[h,p]=C.computeOutAndReduceShapes(d.shape,o),c=h;r&&(c=C.expandShapeToKeepDim(h,i));let m=v.sizeFromShape(p),f=v.sizeFromShape(e.shape)/m,g=Ae({inputs:{x:d},attrs:{shape:[f,m]},backend:n}),y=vh(e.dtype),A=Ll(g,y,"sum",n),x=Ae({inputs:{x:A},attrs:{shape:c},backend:n});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(A),u&&n.disposeIntermediateTensorInfo(d),x}function zm(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return Cre(a,s,i,r)}var Tre={kernelName:Oi,backendName:"webgl",kernelFunc:zm};function Gr(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{perm:s}=n,i=r,o=a.shape.length,l=new Array(o);for(let d=0;d<l.length;d++)l[d]=a.shape[s[d]];let u;if(i.shouldExecuteOnCPU([a])){let d=i.texData.get(a.dataId).values,h=MA(d,a.shape,a.dtype,s,l);u=i.makeTensorInfo(l,a.dtype);let p=i.texData.get(u.dataId);p.values=h}else u=Om(a,s,i);return u}var Nre={kernelName:$a,backendName:"webgl",kernelFunc:Gr},TI=1e3;function J0({a:e,b:t,transposeA:r,transposeB:n,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,d=t.shape.length,h=r?e.shape[u-2]:e.shape[u-1],p=n?t.shape[d-1]:t.shape[d-2],c=r?e.shape[u-1]:e.shape[u-2],m=n?t.shape[d-2]:t.shape[d-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(f),A=v.sizeFromShape(g),x=Rl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([c,m]);v.assert(h===p,()=>`Error in matMul: inner shapes (${h}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${r} and transposeB=${n} must match.`);let b=r?[y,h,c]:[y,c,h],w=n?[A,m,p]:[A,p,m],I=Ae({inputs:{x:e},backend:a,attrs:{shape:b}}),T=Ae({inputs:{x:t},backend:a,attrs:{shape:w}}),E=[I,T],R=Math.max(y,A),O=r?I.shape[1]:I.shape[2],$=s!=null,S=i!=null,P=l==="leakyrelu",z=l!=null?Pm(l,!0):null,j=$||S||P||z!=null,K;if((c===1||m===1)&&O>TI&&j===!1){let Y=I,V=T;r&&(Y=Gr({inputs:{x:I},backend:a,attrs:{perm:[0,2,1]}}),E.push(Y)),n&&(V=Gr({inputs:{x:T},backend:a,attrs:{perm:[0,2,1]}}),E.push(V));let re=m!==1,Q=m===1,ie=Y;re&&(ie=Ae({inputs:{x:Y},backend:a,attrs:{shape:[R,O,1]}}),E.push(ie));let J=m===1?2:1,ae=V;Q&&(ae=Ae({inputs:{x:V},backend:a,attrs:{shape:[R,1,O]}}),E.push(ae));let de=FA({inputs:{a:ie,b:ae},backend:a});K=zm({inputs:{x:de},backend:a,attrs:{axis:J,keepDims:!0}}),E.push(de)}else{let Y=Nr(e.dtype,t.dtype),V=new CI(b,w,[R,c,m],r,n,$,z,S,P),re=[I,T];if(s!=null&&re.push(s),S&&re.push(i),P){let Q=a.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));re.push(Q),E.push(Q)}K=a.runWebGLProgram(V,re,Y)}let D=Ae({inputs:{x:K},backend:a,attrs:{shape:x}});E.push(K);for(let Y of E)a.disposeIntermediateTensorInfo(Y);return D}function Ere(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n;return J0({a,b:s,transposeA:l,transposeB:u,backend:r,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:d})}var Rre={kernelName:_s,backendName:"webgl",kernelFunc:Ere},e7="return abs(x);";function $re(e){let{inputs:t,backend:r}=e,{x:n}=t;if(r.shouldExecuteOnCPU([n])&&n.dtype!=="complex64"){let s=r.texData.get(n.dataId),i=mI(s.values);return r.makeTensorInfo(n.shape,n.dtype,i)}let a;return Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new So(n.shape,e7):a=new Xa(n.shape,e7),r.runWebGLProgram(a,[n],n.dtype)}var Mre={kernelName:Uo,backendName:"webgl",kernelFunc:$re},Fre=Yn+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,_re=it({opSnippet:Fre}),Pre={kernelName:ju,backendName:"webgl",kernelFunc:_re},Ore=Yn+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,zre=it({opSnippet:Ore}),Dre={kernelName:Hu,backendName:"webgl",kernelFunc:zre},t7="return a + b;",Lre=wr({opSnippet:t7,packedOpSnippet:t7,supportsComplex:!0,cpuKernelImpl:Yee}),Bre={kernelName:Ja,backendName:"webgl",kernelFunc:Lre},Wre=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let r=[];this.variableNames.forEach(a=>{r.push(`float v${a} = get${a}AtOutCoords();`)});let n=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
void main() {
${r.join(`
`)}
float result = ${n};
setOutput(result);
}
`}},Vre=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let r=[];this.variableNames.forEach(a=>{r.push(`vec4 v${a} = get${a}AtOutCoords();`)});let n=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
void main() {
${r.join(`
`)}
vec4 result = ${n};
setOutput(result);
}
`}};function b0(e){let{inputs:t,backend:r}=e,n=t;if(n.length===1)return mn({inputs:{x:n[0]},backend:r});if(n.length>Z().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(n.length/2),l=b0({inputs:n.slice(0,o),backend:r}),u=b0({inputs:n.slice(o),backend:r});return b0({inputs:[l,u],backend:r})}let a=n.map(o=>o.dtype).reduce((o,l)=>Nr(o,l)),s=n.map(o=>o.shape),i=Z().getBool("WEBGL_PACK")?new Vre(n[0].shape,s):new Wre(n[0].shape,s);return r.runWebGLProgram(i,n,a)}var Ure={kernelName:Ks,backendName:"webgl",kernelFunc:b0};function Gre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,d=C.getAxesPermutation(u,o),h=a;d!=null&&(h=Gr({inputs:{x:a},backend:r,attrs:{perm:d}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("all",u,o);let[p,c]=C.computeOutAndReduceShapes(h.shape,u),m=v.sizeFromShape(c),f=Ae({inputs:{x:h},backend:r,attrs:{shape:[-1,m]}}),g=Ll(f,f.dtype,"all",r),y;if(i){let A=C.expandShapeToKeepDim(p,l);y=Ae({inputs:{x:g},backend:r,attrs:{shape:A}})}else y=Ae({inputs:{x:g},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(f),r.disposeIntermediateTensorInfo(g),d!=null&&r.disposeIntermediateTensorInfo(h),y}var jre={kernelName:qu,backendName:"webgl",kernelFunc:Gre};function Hre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,d=C.getAxesPermutation(u,o),h=a;d!=null&&(h=Gr({inputs:{x:a},backend:r,attrs:{perm:d}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("any",u,o);let[p,c]=C.computeOutAndReduceShapes(h.shape,u),m=v.sizeFromShape(c),f=Ae({inputs:{x:h},backend:r,attrs:{shape:[-1,m]}}),g=Ll(f,f.dtype,"any",r),y;if(i){let A=C.expandShapeToKeepDim(p,l);y=Ae({inputs:{x:g},backend:r,attrs:{shape:A}})}else y=Ae({inputs:{x:g},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(f),r.disposeIntermediateTensorInfo(g),d!=null&&r.disposeIntermediateTensorInfo(h),y}var qre={kernelName:Xu,backendName:"webgl",kernelFunc:Hre},Xre=class{constructor(e,t,r){this.variableNames=["A"];let{windowSize:n,batchSize:a,outSize:s}=e;r||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=r?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${n}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},Kre=class{constructor(e,t,r,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${r.charAt(0).toUpperCase()+r.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),n||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=yt(o),u=Wr("coords",o),d,h;if(s===1){h=o+1;let T=yt(h);d=`
${T} sourceLocR = ${T}(${u.join()}, 0);
++${u[o-1]};
${T} sourceLocG = ${T}(${u.join()}, 0);
++${u[o-2]};
${T} sourceLocA = ${T}(${u.join()}, 0);
--${u[o-1]};
${T} sourceLocB = ${T}(${u.join()}, 0);
--${u[o-2]};`}else h=o,d=`
${l} sourceLocR = coords;
++${u[o-1]};
${l} sourceLocG = coords;
++${u[o-2]};
${l} sourceLocA = coords;
--${u[o-1]};
${l} sourceLocB = coords;
--${u[o-2]};`;let p=["x","y","z","w","u","v"].slice(0,h),c="."+p[h-1],m=p.map(T=>"int "+T),f=Wr("sourceLocR",h-1).concat("inIdx.r"),g=Wr("sourceLocG",h-1).concat("inIdx.g"),y=Wr("sourceLocB",h-1).concat("inIdx.b"),A=Wr("sourceLocA",h-1).concat("inIdx.a"),x=r==="max"?"greaterThan":"lessThan",b=n?"":`
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${A.join()})));`,w=`vec4(
getAChannel(${f.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${y.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${A.join()}) : 0.)`,I=n?"":`
float getBestIndicesAChannel(${m.join()}) {
return getChannel(getBestIndicesA(${p.join()}),
vec2(${p.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${m.join()}) {
return getChannel(getA(${p.join()}),
vec2(${p.slice(-2).join()}));
}
${I}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
${d}
ivec4 srcIdx = ivec4(sourceLocR${c}, sourceLocG${c},
sourceLocB${c}, sourceLocA${c}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${w};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${b}
vec4 candidate = ${w};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function NI(e,t,r,n=null){let a=t.shape[0],s=t.shape[1];n!=null&&(a=n.shape[0],s=n.shape[1]);let i=C.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new Xre(o,r,n==null),u=[t];n!=null&&u.push(n);let d=e.runWebGLProgram(l,u,"int32");if(d.shape[1]===1)return d;let h=NI(e,t,r,d);return e.disposeIntermediateTensorInfo(d),h}function EI(e,t,r,n=null){let a=n!=null?n.shape:t.shape,s=a[a.length-1],i=C.computeOptimalWindowSize(s),o=new Kre(a,i,r,n==null),l=n==null?[t]:[t,n],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let d=EI(e,t,r,u);return e.disposeIntermediateTensorInfo(u),d}return u}function RI(e,t,r,n){let a=[r];if(C.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),a,t.shape.length),!Z().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,d]=C.computeOutAndReduceShapes(l.shape,a),h=v.sizeFromShape(d),p=Ae({inputs:{x:l},backend:e,attrs:{shape:[-1,h]}});s.push(p);let c=NI(e,p,n);s.push(c);let m=Ae({inputs:{x:c},backend:e,attrs:{shape:u}});return s.forEach(f=>e.disposeIntermediateTensorInfo(f)),m}return EI(e,t,n)}function Zre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=Gr({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let d=RI(r,l,i[0],"max");return u.forEach(h=>r.disposeIntermediateTensorInfo(h)),d}var Yre={kernelName:Zs,backendName:"webgl",kernelFunc:Zre};function Jre(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=Gr({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let d=RI(r,l,i[0],"min");return u.forEach(h=>r.disposeIntermediateTensorInfo(h)),d}var Qre={kernelName:Ku,backendName:"webgl",kernelFunc:Jre},ene=Yn+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,tne=it({opSnippet:ene}),rne={kernelName:Zu,backendName:"webgl",kernelFunc:tne},nne=Yn+"return log(x + sqrt(x * x + 1.0));",ane=it({opSnippet:nne}),sne={kernelName:Yu,backendName:"webgl",kernelFunc:ane},ine=Yn+`
return atan(x);
`,one=it({opSnippet:ine}),lne={kernelName:Ju,backendName:"webgl",kernelFunc:one},une=gre+`
return atan(a, b);
`,dne=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+yre+`
return result;
`,pne=wr({opSnippet:une,packedOpSnippet:dne}),hne={kernelName:ed,backendName:"webgl",kernelFunc:pne},cne=Yn+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fne=it({opSnippet:cne}),mne={kernelName:Qu,backendName:"webgl",kernelFunc:fne},th=class{constructor(e,t,r,n=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&r)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,p=e.padInfo.top,c=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),r){let T=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${p}, ${c});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${d};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${h};
wC += ${u}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${T} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${n?a?f:g:`wR * ${h} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let A="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(s/4)*4,w=s%4,I=`
if (${m}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${A}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${p}, ${c});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${d};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${b}; wC += 4) {
int xC = xCCorner + wC * ${u};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
getValue(batch, xR, xC + 3 * ${u}, d)
);
${I}
}
int xC = xCCorner + ${b};
if (${w===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${I}
} else if (${w===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
initializationValue,
initializationValue
);
${I}
} else if (${w===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
initializationValue
);
${I}
}
}
setOutput(${x});
}
`}},_A=class{constructor(e,t,r,n=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&r)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,d=e.dilationHeight,h=e.dilationWidth,p=e.effectiveFilterDepth,c=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let A=t==="avg",x="0.0";if(A||(x="-1.0 / 1e-20"),r){let R=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${p};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${c};
wR += ${d}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${h}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${R} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${n?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${c} * ${m} +
wR * ${m} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let I=Math.floor(s/4)*4,T=s%4,E=`
if (${A}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${b}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
const float initializationValue = ${x};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${x});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${p};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${c};
wR += ${d}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${I}; wC += 4) {
int xC = xCCorner + wC * ${h};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
getValue(batch, xD, xR, xC + 3 * ${h}, ch)
);
${E}
}
int xC = xCCorner + ${I};
if (${T===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${E}
} else if (${T===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
initializationValue,
initializationValue
);
${E}
} else if (${T===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
initializationValue
);
${E}
}
}
setOutput(${w});
}
}
`}};function gne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;$d(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=C.computePool2DInfo(a.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))return mn({inputs:{x:a},backend:r});let h=new th(d,"avg",!1);return r.runWebGLProgram(h,[a],"float32")}var yne={kernelName:Ys,backendName:"webgl",kernelFunc:gne};function Ane(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=n,d=[1,1,1],h=C.computePool3DInfo(a.shape,s,i,d,o,l,u),p=new _A(h,"avg",!1);return r.runWebGLProgram(p,[a],"float32")}var xne={kernelName:nh,backendName:"webgl",kernelFunc:Ane},bne=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,r=e.filterWidth,n=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,d=l-1-e.padInfo.left,h=1/(t*r);this.userCode=`
const ivec2 pads = ivec2(${u}, ${d});
const float avgMultiplier = float(${h});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},vne=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,r=e.filterHeight,n=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,p=e.effectiveFilterWidth,c=d-1-e.padInfo.front,m=h-1-e.padInfo.top,f=p-1-e.padInfo.left,g=1/(t*r*n);this.userCode=`
const ivec3 pads = ivec3(${c}, ${m}, ${f});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${d};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${a}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${h};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${p};
wC += ${u}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function wne(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=n,h=[1,1,1],p=C.computePool3DInfo(i.shape,o,l,h,u,d),c=new vne(p);return r.runWebGLProgram(c,[a],i.dtype)}var kne={kernelName:uf,backendName:"webgl",kernelFunc:wne};function Ine(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s;$d([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=n,d=C.computePool2DInfo(i.shape,o,l,1,u),h=new bne(d);return r.runWebGLProgram(h,[a],i.dtype)}var Sne={kernelName:lf,backendName:"webgl",kernelFunc:Ine};function Cne(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;return J0({a,b:s,transposeA:i,transposeB:o,backend:r})}var Tne={kernelName:Js,backendName:"webgl",kernelFunc:Cne},Nne=class{constructor(e,t,r,n,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,r);let i="0.0";n!=null&&(C.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},Ene=class{constructor(e,t,r,n,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,r);let i="vec4(0.0)";n!=null&&(C.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},Rne=({inputs:e,backend:t,attrs:r})=>{let{x:n,mean:a,variance:s,offset:i,scale:o}=e;v.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=r;l==null&&(l=.001);let u=[n,a,s],d=null;i!=null&&(d=i.shape,u.push(i));let h=null;o!=null&&(h=o.shape,u.push(o));let p=Z().getBool("WEBGL_PACK_NORMALIZATION")?new Ene(n.shape,a.shape,s.shape,d,h,l):new Nne(n.shape,a.shape,s.shape,d,h,l);return t.runWebGLProgram(p,u,u[0].dtype)},$ne={kernelName:hi,backendName:"webgl",kernelFunc:Rne},Mne=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=yt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let r=Fne(this.rank),n,a=e.map((s,i)=>`sourceLoc.${gy[i]} = start[${i}] + coords.${gy[i]};`);n=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${a.join(`
`)}
`,this.userCode=`
void main() {
${n}
setOutput(getSource(${r}));
}
`}},gy=["x","y","z","w","u","v"];function Fne(e){if(e===1)return"sourceLoc";if(e<=6)return gy.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var _ne=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=yt(this.rank),r=Wr("coords",this.rank),n=Wr("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${n.slice(-2).join()})`,s=`getChannel(getSource(${n.join()}), ${a})`,i=`
result.x = ${s};
if (++${r[this.rank-1]} < ${e[this.rank-1]}) {
++${n[this.rank-1]};
result.y = ${s};
--${n[this.rank-1]};
}
`,o=this.rank===1?"":`
--${r[this.rank-1]};
if (++${r[this.rank-2]} < ${e[this.rank-2]}) {
++${n[this.rank-2]};
result.z = ${s};
if (++${r[this.rank-1]} < ${e[this.rank-1]}) {
++${n[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((u,d)=>`start[${d}]`).join()});`:e.map((u,d)=>`${n[d]} = ${r[d]} + start[${d}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}};function Pne(e,t,r,n){let a=n.texData.get(e.dataId),s=n.makeTensorInfo(r,e.dtype),i=n.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=r,i.dtype=e.dtype;let o=Dt.computeFlatOffset(t,v.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=n.dataRefCount.get(i.slice.origDataId)||1;return n.dataRefCount.set(i.slice.origDataId,l+1),s}function zd(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,size:i}=n,[o,l]=Dt.parseSliceParams(a,s,i);if(Dt.assertParamsValid(a,o,l),v.sizeFromShape(l)===0)return r.makeTensorInfo(l,a.dtype,[]);if(r.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=r.texData.get(a.dataId),p=Ite(h.values,o,l,a.shape,a.dtype);return r.makeTensorInfo(l,a.dtype,p)}let{isPacked:u}=r.texData.get(a.dataId),d=Dt.isSliceContinous(a.shape,o,l);if(u||!d){let h=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new _ne(l):new Mne(l),p=[o];return r.runWebGLProgram(h,[a],a.dtype,p)}return r.uploadToGPU(a.dataId),Pne(a,o,l,r)}var One={kernelName:Al,backendName:"webgl",kernelFunc:zd},zne=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n;v.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((A,x)=>A*x),l=C.getReshaped(a.shape,s,o),u=C.getPermuted(l.length,s.length),d=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),p=C.getSliceSize(d,i,s.length),c=[],m=Ae({inputs:{x:a},backend:r,attrs:{shape:l}}),f=Gr({inputs:{x:m},backend:r,attrs:{perm:u}}),g=Ae({inputs:{x:f},backend:r,attrs:{shape:d}}),y=zd({inputs:{x:g},backend:r,attrs:{begin:h,size:p}});return c.push(m),c.push(f),c.push(g),c.forEach(A=>r.disposeIntermediateTensorInfo(A)),y},Dne={kernelName:Go,backendName:"webgl",kernelFunc:zne};function Lne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i}=n,o=r.readSync(a.dataId),l=r.readSync(s.dataId),u=fI(o,l,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,u)}var Bne={kernelName:df,backendName:"webgl",kernelFunc:Lne};function Wne(e){let{inputs:t,backend:r}=e,{s0:n,s1:a}=t,s=r.readSync(n.dataId),i=r.readSync(a.dataId),o=C.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return r.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var Vne={kernelName:pf,backendName:"webgl",kernelFunc:Wne},Une="return float(a != b);",$I=wr({opSnippet:Une,cpuKernelImpl:Ate,dtype:"bool"}),Gne={kernelName:ol,backendName:"webgl",kernelFunc:$I};function Xh(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.texData.get(n.dataId);return mn({inputs:{x:a.complexTensorInfos.real},backend:r})}var jne={kernelName:hh,backendName:"webgl",kernelFunc:Xh},Hne="return float(int(x));";function qne(e,t){let r=new Xa(e.shape,Hne),n=t.runWebGLProgram(r,[e],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function yy(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dtype:s}=n;if(s==="complex64"){if(a.dtype==="complex64")return mn({inputs:{x:a},backend:r});let i=Ot(a.shape),o=yy({inputs:{x:a},backend:r,attrs:{dtype:"float32"}}),l=ji({inputs:{real:o,imag:i},backend:r});return i.dispose(),r.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=Xh({inputs:{input:a},backend:r}),o=yy({inputs:{x:i},backend:r,attrs:{dtype:s}});return r.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=mn({inputs:{x:a},backend:r});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return qne(a,r);if(s==="bool"){let i=r.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=$I({inputs:{a,b:i},backend:r});return r.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var Xne={kernelName:Qs,backendName:"webgl",kernelFunc:yy},r7="return ceil(x);",Kne=it({opSnippet:r7,packedOpSnippet:r7,cpuKernelImpl:Qee}),Zne={kernelName:ei,backendName:"webgl",kernelFunc:Kne},Yne=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}},Jne=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function Qne(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=n,o;Z().getBool("WEBGL_PACK_CLIP")?o=new Jne(a.shape):o=new Yne(a.shape);let l=[[s],[i]];return r.runWebGLProgram(o,[a],a.dtype,l)}var eae={kernelName:Qa,backendName:"webgl",kernelFunc:Qne},tae=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function n7(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function rae(e){let{inputs:t,backend:r}=e,{x:n}=t,a=r.texData.get(n.dataId),s=new tae(n.shape),i=[n7(n,a.complexTensorInfos.real),n7(n,a.complexTensorInfos.imag)];return r.runWebGLProgram(s,i,i[0].dtype)}var nae={kernelName:sh,backendName:"webgl",kernelFunc:rae},aae=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let r=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];r.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let n=t.length,a=t[t.length-1];r.push(`else setOutput(getT${n}(yR, yC-${a}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${r.join(`
`)}
}
`}},sae=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let r=this.outputShape,n=r.length,a=yt(n),s=Wr("coords",n),i=["x","y","z","w","u","v"].slice(0,n);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),d=i.join(),h=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${d}), vec2(${u.join()}));
}`;for(let m=1;m<o.length;m++){let f=o[m-1];h+=`
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
return getChannel(
getT${m}(${d0(i,l,f)}),
vec2(${d0(u,l,f)}));
}`}let p=o.length,c=o[o.length-1];h+=`
return getChannel(
getT${p}(${d0(i,l,c)}),
vec2(${d0(u,l,c)}));`,this.userCode=`
float getValue(${i.map(m=>"int "+m)}) {
${h}
}
void main() {
${a} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[n-1]} = ${s[n-1]} + 1;
if (${s[n-1]} < ${r[n-1]}) {
result.g = getValue(${s});
}
${s[n-2]} = ${s[n-2]} + 1;
if (${s[n-2]} < ${r[n-2]}) {
result.a = getValue(${s});
}
${s[n-1]} = ${s[n-1]} - 1;
if (${s[n-2]} < ${r[n-2]} &&
${s[n-1]} < ${r[n-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function d0(e,t,r){let n=e.indexOf(t);return e.map((a,s)=>s===n?`${a} - ${r}`:a).join()}function Dm(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.texData.get(n.dataId);return mn({inputs:{x:a.complexTensorInfos.imag},backend:r})}var iae={kernelName:uh,backendName:"webgl",kernelFunc:Dm};function bu(e,t,r){let n=e[0].dtype;if(n==="complex64"){let d=e.map(f=>Xh({inputs:{input:f},backend:r})),h=e.map(f=>Dm({inputs:{input:f},backend:r})),p=bu(d,t,r),c=bu(h,t,r),m=ji({inputs:{real:p,imag:c},backend:r});return d.forEach(f=>r.disposeIntermediateTensorInfo(f)),h.forEach(f=>r.disposeIntermediateTensorInfo(f)),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),m}let a=r.shouldExecuteOnCPU(e);if(n==="string"&&(a=!0),a){let d=e.map(y=>{let A=v.sizeFromShape(y.shape.slice(t));return Ae({inputs:{x:y},backend:r,attrs:{shape:[-1,A]}})}),h=d.map(y=>({vals:r.readSync(y.dataId),shape:y.shape})),p=C.computeOutShape(d.map(y=>y.shape),1),c=d[0].shape[0]===1,m=ete(h,p,n,c),f=C.computeOutShape(e.map(y=>y.shape),t),g=r.makeTensorInfo(f,n,m);return d.forEach(y=>r.disposeIntermediateTensorInfo(y)),g}if(e.length>Z().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let d=Math.floor(e.length/2),h=bu(e.slice(0,d),t,r),p=bu(e.slice(d),t,r),c=bu([h,p],t,r);return r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),c}if(Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let d=new sae(e.map(h=>h.shape),t);return r.runWebGLProgram(d,e,n)}let{tensors2D:s,outShape:i}=oae(e,t,r),o=new aae(s.map(d=>d.shape)),l=r.runWebGLProgram(o,s,n);s.forEach(d=>r.disposeIntermediateTensorInfo(d));let u=Ae({inputs:{x:l},attrs:{shape:i},backend:r});return r.disposeIntermediateTensorInfo(l),u}function oae(e,t,r){let n=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>Ae({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:r})),outShape:n}}function MI(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n,s=v.parseAxisParam(a,t[0].shape)[0],i=C.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(i)===0)return r.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>v.sizeFromShape(u.shape)>0);if(o.length===1)return mn({inputs:{x:o[0]},backend:r});let l=o.map(u=>u.shape);return C.assertParamsConsistent(l,s),bu(o,s,r)}var lae={kernelName:jo,backendName:"webgl",kernelFunc:MI},FI=class{constructor(e,t=!1,r=null,n=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,p=e.filterWidth,c=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,y=f?2:3,A=f?3:1,x="",b="";r&&(n?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${r}
}`:a?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${r}
}`:x=`
float activation(float x) {
${r}
}
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${A}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${y}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p}; wC++) {
int xC = xCCorner + wC * ${d};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${c}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${f}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${m===1}) {
if (${f}) {
dotProd +=
getX(batch, xR, xC, ${c}) *
getW(wR, wC, ${c}, d2);
} else {
dotProd +=
getX(batch, ${c}, xR, xC) *
getW(wR, wC, ${c}, d2);
}
} else if (${m===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${c}, d2),
getW(wR, wC, ${c} + 1, d2)
);
if (${f}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${c}),
getX(batch, xR, xC, ${c} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${c}, xR, xC),
getX(batch, ${c} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${m===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${c}, d2),
getW(wR, wC, ${c} + 1, d2),
getW(wR, wC, ${c} + 2, d2)
);
if (${f}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${c}),
getX(batch, xR, xC, ${c} + 1),
getX(batch, xR, xC, ${c} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${c}, xR, xC),
getX(batch, ${c} + 1, xR, xC),
getX(batch, ${c} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${w}
${b}
setOutput(result);
}
`}},uae=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,r=e.padInfo.top,n=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.filterDepth,h=e.filterHeight,p=e.filterWidth,c=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${a}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${r}, ${n});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${d}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${c}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${m===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${c}) *
getW(wF, wR, wC, ${c}, d2);
} else if (${m===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${c}),
getX(batch, xF, xR, xC, ${c} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${c}, d2),
getW(wF, wR, wC, ${c} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${m===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${c}),
getX(batch, xF, xR, xC, ${c} + 1),
getX(batch, xF, xR, xC, ${c} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${c}, d2),
getW(wF, wR, wC, ${c} + 1, d2),
getW(wF, wR, wC, ${c} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},dae=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=un(this.outputShape.length);let{dataFormat:r}=t,n=Xr(),a=r==="channelsLast",s=a?1:2,i=a?2:3,o=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${e[2]} && pos < ${e[1]}) {`,l="";for(let u=0;u<=1;u++)for(let d=0;d<=1;d++)l+=`
blockIndex = rc.z + ${d};
pos = rc.y + ${u};
${o}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${s}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${i}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${a}) {
innerDims = vec2(d1, ch);
result[${u*2+d}] = getChannel(
getA(rc.x, d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${u*2+d}] = getChannel(
getA(rc.x, ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${n.output} = result;
}
`}};function Q0(e,t){let r=e.length;return r>=3?t?[...e.slice(0,-3),e[r-3]*e[r-2],e[r-1]]:[...e.slice(0,-3),e[r-3],e[r-2]*e[r-1]]:!t&&r===1&&e[0]>1?[e[0],1]:null}function _I({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=n.texData.get(e.dataId),d=r.inChannels,h=l[0]*l[1]*l[2],p=r.outChannels,c=r.dataFormat==="channelsLast",m=!1,f=!1,g,y=[];if(s!=null){let A=Q0(s.shape,c);A!=null&&(s=Ae({inputs:{x:s},backend:n,attrs:{shape:A}}),y.push(s))}if(a!=null){let A=Q0(a.shape,c);A!=null&&(a=Ae({inputs:{x:a},backend:n,attrs:{shape:A}}),y.push(a))}if(!((h===1||p===1)&&d>TI)&&u.isPacked&&c&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let A=l[0]*l[1]*(l[2]+1),x={dataId:e.dataId,shape:[1,A,r.inChannels],dtype:e.dtype},b=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(eh(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let w=Ae({inputs:{x:t},backend:n,attrs:{shape:[1,r.inChannels,r.outChannels]}});y.push(w);let I=J0({a:x,b:w,backend:n,transposeA:m,transposeB:f,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),T=n.texData.get(I.dataId);v.assert(T.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=b,T.shape=r.outShape,g=mn({inputs:{x:I},backend:n}),g.shape=r.outShape,y.push(I)}else{let A=r.outHeight*r.outWidth,x=Ae({inputs:{x:e},backend:n,attrs:{shape:c?[r.batchSize,A,r.inChannels]:[r.batchSize,r.inChannels,A]}}),b=Ae({inputs:{x:t},backend:n,attrs:{shape:[1,r.inChannels,r.outChannels]}}),w=J0({a:c?x:b,b:c?b:x,transposeA:!c,transposeB:f,backend:n,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=Ae({inputs:{x:w},backend:n,attrs:{shape:r.outShape}}),y.push(x),y.push(b),y.push(w)}for(let A of y)n.disposeIntermediateTensorInfo(A);return g}function PI({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:d,outWidth:h,outHeight:p,dataFormat:c}=r,m=c==="channelsLast",f=l*u*d,g=p*h,y=[r.batchSize,f,g],A=!0,x=!1,b=[];if(s!=null){let Y=Q0(s.shape,m);Y!=null&&(s=Ae({inputs:{x:s},backend:n,attrs:{shape:Y}}),b.push(s))}if(a!=null){let Y=Q0(a.shape,m);Y!=null&&(a=Ae({inputs:{x:a},backend:n,attrs:{shape:Y}}),b.push(a))}let w=Ae({inputs:{x:t},backend:n,attrs:{shape:[1,f,v.sizeFromShape(t.shape)/f]}});b.push(w);let I=new dae(y,r),T=[e.shape,[r.padInfo.top,r.padInfo.left],[r.strideHeight,r.strideWidth],[r.dilationHeight,r.dilationWidth],[r.inChannels],[r.filterWidth*r.inChannels],[r.outWidth]],E=n.runWebGLProgram(I,[e],"float32",T),R=Ae({inputs:{x:E},backend:n,attrs:{shape:y}});b.push(E),b.push(R);let O=a!=null,$=s!=null,S=o==="leakyrelu",P=o?Pm(o,!0):null,z=new CI(m?R.shape:w.shape,m?w.shape:R.shape,m?[r.batchSize,g,r.outChannels]:[r.batchSize,r.outChannels,g],A,x,O,P,$,S),j=m?[R,w]:[w,R];if(a&&j.push(a),$&&j.push(s),S){let Y=n.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));j.push(Y),b.push(Y)}let K=n.runWebGLProgram(z,j,"float32"),D=Ae({inputs:{x:K},backend:n,attrs:{shape:r.outShape}});b.push(K);for(let Y of b)n.disposeIntermediateTensorInfo(Y);return D}function pae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=n,h=C.convertConv2DDataFormat(l),p=C.computeConv2DInfo(a.shape,s.shape,i,u,o,d,!1,h),c;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))c=_I({x:a,filter:s,convInfo:p,backend:r});else if(Z().getBool("WEBGL_CONV_IM2COL"))c=PI({x:a,filter:s,convInfo:p,backend:r});else{let f=new FI(p);c=r.runWebGLProgram(f,[a,s],"float32")}let m=Ae({inputs:{x:c},backend:r,attrs:{shape:p.outShape}});return r.disposeIntermediateTensorInfo(c),m}var hae={kernelName:ti,backendName:"webgl",kernelFunc:pae},cae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,r=e.strideWidth,n=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${n};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${r} - ${a};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${s}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},fae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,r=e.filterWidth,n=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=r-1-e.padInfo.left,l=s?1:2,u=s?2:3,d=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${d}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${r}; wC++) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${r} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},mae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,r=e.strideHeight,n=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${a};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${r} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},gae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,r=e.filterHeight,n=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=r-1-e.padInfo.top,u=n-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${u});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${a}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${r}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${r} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function yae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=n,h=C.convertConv2DDataFormat(l),p=C.computeConv2DInfo(a.shape,d,i,1,o,u,!1,h),c=new cae(p);return r.runWebGLProgram(c,[a,s],"float32")}var Aae={kernelName:hf,backendName:"webgl",kernelFunc:yae};function xae(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=n,h=C.convertConv2DDataFormat(u),p=C.computeConv2DInfo(i,s.shape,o,1,l,d,!1,h),c=new fae(p);return r.runWebGLProgram(c,[a,s],"float32")}var bae={kernelName:ri,backendName:"webgl",kernelFunc:xae};function vae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=n,u=C.computeConv3DInfo(a.shape,s.shape,i,l,o),d=new uae(u);return r.runWebGLProgram(d,[a,s],"float32")}var wae={kernelName:ih,backendName:"webgl",kernelFunc:vae};function kae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=n,u=C.computeConv3DInfo(a.shape,l,i,1,o),d=new mae(u);return r.runWebGLProgram(d,[a,s],"float32")}var Iae={kernelName:cf,backendName:"webgl",kernelFunc:kae};function Sae(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=n,u=C.computeConv3DInfo(l,s.shape,o,1,i),d=new gae(u);return r.runWebGLProgram(d,[a,s],"float32")}var Cae={kernelName:ff,backendName:"webgl",kernelFunc:Sae},Tae=Od+`
return cos(x);
`,Nae=it({opSnippet:Tae}),Eae={kernelName:ni,backendName:"webgl",kernelFunc:Nae},Rae=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,$ae=it({opSnippet:Rae}),Mae={kernelName:ai,backendName:"webgl",kernelFunc:$ae},Fae=class{constructor(e,t,r,n,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[d,h]=r;this.outputShape=[u,d,h,l];let p=n==="bilinear"?1:0,[c,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,y]=d>1?[`${(i-1)/(d-1)}`,"(y2-y1) * height_ratio",`y1*${c} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${c}`],[A,x,b]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
const float height_ratio = float(${f});
const float width_ratio = float(${A});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${g};
float width_scale = ${x};
float in_y = ${y};
if( in_y < 0.0 || in_y > ${c} ) {
setOutput(float(${a}));
return;
}
float in_x = ${b};
if( in_x < 0.0 || in_x > ${m} ) {
setOutput(float(${a}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${p} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},_ae=e=>{let{inputs:t,backend:r,attrs:n}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,d=new Fae(a.shape,s.shape,o,l,u);return r.runWebGLProgram(d,[a,s,i],"float32")},Pae={kernelName:qo,backendName:"webgl",kernelFunc:_ae},a7=class{constructor(e,t,r,n){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let a=this.outputShape.length,s=this.op==="*"?"1.0":"0.0",i=r?s:`getX(${s7(a,"coords",this.op)})`,o=this.outputShape[this.outputShape.length-1],l="",u="";r?(l=n?`end != ${o-1}`:"end != 0",u=n?"end + 1":"end - 1"):(l=n?`end + pow2 < ${o}`:"end >= pow2",u=n?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${yt(a)} coords = getOutputCoords();
int end = ${i7(a,"coords",this.op)};
float val = ${i};
int pow2 = int(pow(2.0, index));
if (${l}) {
int idx = ${u};
${i7(a,"coords",this.op)} = idx;
val ${this.op}= getX(${s7(a,"coords",this.op)});
}
setOutput(val);
}
`}};function s7(e,t,r){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${r} for rank ${e} is not yet supported`)}function i7(e,t,r){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${r} for rank ${e} is not yet supported`)}function OI(e,t,r,n,a,s){let i=t.shape.length,o=C.getAxesPermutation([n],i),l=t;o!=null&&(l=Gr({inputs:{x:t},backend:r,attrs:{perm:o}}));let u=C.getInnerMostAxes(1,i)[0];if(u!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${n}`);let d=l.shape[u],h=mn({inputs:{x:l},backend:r});for(let p=0;p<=Math.ceil(Math.log2(d))-1;p++){let c=new a7(e,l.shape,!1,s),m=[[p]],f=h;h=r.runWebGLProgram(c,[h],h.dtype,m),r.disposeIntermediateTensorInfo(f)}if(a){let p=new a7(e,l.shape,a,s),c=h;h=r.runWebGLProgram(p,[h],h.dtype),r.disposeIntermediateTensorInfo(c)}if(o!=null){let p=C.getUndoAxesPermutation(o),c=Gr({inputs:{x:h},backend:r,attrs:{perm:p}});return r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(l),c}return h}function Oae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n;return OI("*",a,r,s,i,o)}var zae={kernelName:Ho,backendName:"webgl",kernelFunc:Oae};function Dae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n;return OI("+",a,r,s,i,o)}var Lae={kernelName:si,backendName:"webgl",kernelFunc:Dae};function Bae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=n;if(a.shape.length===1){let l=r.readSync(a.dataId),u=r.readSync(s.dataId),d=fI(l,u,s.dtype,s.shape,i);return r.makeTensorInfo([i],s.dtype,d)}else if(a.shape.length===2){let l=r.bufferSync(a),u=r.bufferSync(s),d=Jee(l,u,i,o);return r.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var Wae={kernelName:mf,backendName:"webgl",kernelFunc:Bae},Vae=class{constructor(e,t,r){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Uae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockSize:s,dataFormat:i}=n,o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],d=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,p=u*s,c=d/(s*s),m=i==="NHWC"?[o,h,p,c]:[o,c,h,p],f=new Vae(m,s,i);return r.runWebGLProgram(f,[a],a.dtype)}var Gae={kernelName:Xo,backendName:"webgl",kernelFunc:Uae},zI=class{constructor(e,t=!1,r=null,n=!1,a=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=un(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";r&&(n?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${r}
}`:a?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${r}
}`:l=`
float activation(float x) {
${r}
}
`,u="result = activation(result);");let d=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${o};
int q = d2 - d1 * ${o};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${s}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${i}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${d}
${u}
setOutput(result);
}
`}},DI=class{constructor(e,t=!1,r=null,n=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=un(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,d=e.filterWidth,h=d,p=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<d;g++)p+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;p+=`
for (int r = 0; r < ${u}; r++) {
`;for(let g=0;g<d;g++)p+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;p+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(h+1)/2;g++){let y=g*2;if(p+=`
xC = xCCorner + ${y*l};
`,o===1){if(y<d&&(i%2===1?(p+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
`,l===1&&y>0?p+=`
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
`:p+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
} else {
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
}
`):p+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xC${y} = xTexelC${y};
`,y+1<d)){let A=i%2===0?v.nearestLargerEven(l):l;l%2===0&&i%2===1||l%2!==0&&i%2!==1?(p+=`
xCOffset = xC + imod(pads[1], 2) + ${A};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
`,l>1&&(p+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
xTexelC${y}Ready = 1;
}
`),p+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
`):A===1?p+=`
xC${y+1} = xTexelC${y};
`:p+=`
xCOffset = xC + ${A};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y+1} = xTexelC${y+1};
`}}else y<d&&(i%2===1?(p+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`,y+1<d&&(p+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
`)):(p+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(
xTexelC${y}.xy, xTexelC${y+1}.xy);
`,y+1<d&&(p+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`)));y<d&&(p+=`
wTexel = getW(r, ${y}, d1, q);
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
`,y+1<d&&(p+=`
wTexel = getW(r, ${y+1}, d1, q);
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
`))}p+=`
}
`,p+=`
}
`;let c="",m="";r&&(n?c=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${r}
}`:a?c=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${r}
}`:c=`vec4 activation(vec4 x) {
${r}
}`,m="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${c}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${s};
int q = d2 - d1 * ${s};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${p}
vec4 result = dotProd - vec4(0.000000000000001);
${f}
${m}
setOutput(result);
}
`}};function jae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=n,d=l;d==null&&(d=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let h=C.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),p;Z().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels===1?p=new DI(h):p=new zI(h);let c=[[h.padInfo.top,h.padInfo.left],[h.strideHeight,h.strideWidth],[h.dilationHeight,h.dilationWidth],[h.inHeight,h.inWidth]];return r.runWebGLProgram(p,[a,s],"float32",c)}var Hae={kernelName:ii,backendName:"webgl",kernelFunc:jae},qae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,r=e.strideWidth,n=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${n};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${r} - ${a};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},Xae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,r=e.filterWidth,n=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=r-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${r}; wC++) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${r} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function Kae(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=n,h=C.computeConv2DInfo(a.shape,d,i,o,l,u,!0),p=new qae(h);return r.runWebGLProgram(p,[a,s],"float32")}var Zae={kernelName:gf,backendName:"webgl",kernelFunc:Kae};function Yae(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=n,h=C.computeConv2DInfo(d,s.shape,i,o,l,u,!0),p=new Xae(h);return r.runWebGLProgram(p,[a,s],"float32")}var Jae={kernelName:yf,backendName:"webgl",kernelFunc:Yae},Qae=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function ese(e){let{inputs:t,backend:r}=e,{x:n}=t,a=[...n.shape,...n.shape],s=v.sizeFromShape(n.shape),i=Ae({inputs:{x:n},backend:r,attrs:{shape:[s]}}),o=new Qae(s),l=r.runWebGLProgram(o,[i],i.dtype),u=Ae({inputs:{x:l},backend:r,attrs:{shape:a}});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(l),u}var tse={kernelName:Af,backendName:"webgl",kernelFunc:ese},rse=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:r,padInfo:n,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:d,left:h}=n;this.userCode=`
const ivec2 strides = ivec2(${a}, ${s});
const ivec2 pads = ivec2(${d}, ${h});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${u};
if (wIn >= 0 && wIn < ${r}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function nse(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=n,u=C.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),d,h=new rse(u);d=r.runWebGLProgram(h,[a,s],"float32");let p=Ae({inputs:{x:d},backend:r,attrs:{shape:u.outShape}});return r.disposeIntermediateTensorInfo(d),p}var ase={kernelName:oh,backendName:"webgl",kernelFunc:nse};function sse(e){let{inputs:t,backend:r,attrs:n}=e,{equation:a}=n,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(a,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=C.getEinsumComputePath(o,l),h=d.length,p=null,c=i.length,m=[];for(let f=0;f<h;++f){for(let g of d[f]){let{permutationIndices:y,expandDims:A}=C.getEinsumPermutation(c,l[g]),x;C.isIdentityPermutation(y)?x=s[g]:(x=Gr({inputs:{x:s[g]},backend:r,attrs:{perm:y}}),m.push(x));let b=x.shape.slice();for(let w=0;w<A.length;++w)b.splice(A[w],0,1);v.arraysEqual(x.shape,b)||(x=Ae({inputs:{x},backend:r,attrs:{shape:b}}),m.push(x)),p===null?p=x:(p=FA({inputs:{a:x,b:p},backend:r}),m.push(p))}f<h-1&&(u[f]>=0&&(p=zm({inputs:{x:p},backend:r,attrs:{axis:u[f]-(i.length-c),keepDims:!1}}),m.push(p)),c--)}for(let f of m)f!==p&&r.disposeIntermediateTensorInfo(f);return p}var ise={kernelName:lh,backendName:"webgl",kernelFunc:sse},ose="return (x >= 0.0) ? x : (exp(x) - 1.0);",lse=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,use=it({opSnippet:ose,packedOpSnippet:lse}),dse={kernelName:li,backendName:"webgl",kernelFunc:use},pse="return (b >= 1.0) ? a : a * (b + 1.0);",hse=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,cse=e=>{let{inputs:t,backend:r}=e,{dy:n,y:a}=t,s=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new qh(hse,n.shape,a.shape):new Vu(pse,n.shape,a.shape);return r.runWebGLProgram(s,[n,a],n.dtype)},fse={kernelName:xf,backendName:"webgl",kernelFunc:cse},mse=`
return vec4(equal(a, b));
`,gse="return float(a == b);",yse=wr({opSnippet:gse,packedOpSnippet:mse,dtype:"bool",cpuKernelImpl:tte}),Ase={kernelName:Ko,backendName:"webgl",kernelFunc:yse},xse=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${C.ERF_P};
float a1 = ${C.ERF_A1};
float a2 = ${C.ERF_A2};
float a3 = ${C.ERF_A3};
float a4 = ${C.ERF_A4};
float a5 = ${C.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,bse=it({opSnippet:xse}),vse={kernelName:td,backendName:"webgl",kernelFunc:bse},wse=Od+`
return exp(x);
`,kse=`
vec4 result = exp(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,LI=it({opSnippet:wse,packedOpSnippet:kse,cpuKernelImpl:rte,dtype:"float32"}),Ise={kernelName:ui,backendName:"webgl",kernelFunc:LI};function Ay(e){let{inputs:t,attrs:r,backend:n}=e,{dim:a}=r,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(v.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),Ae({inputs:{x:s},backend:n,attrs:{shape:o}})}var Sse={kernelName:Zo,backendName:"webgl",kernelFunc:Ay},o7="return exp(x) - 1.0;",Cse=it({opSnippet:o7,packedOpSnippet:o7,cpuKernelImpl:nte}),Tse={kernelName:Yo,backendName:"webgl",kernelFunc:Cse},l7=class{constructor(e,t,r){this.variableNames=["real","imag"];let n=t[1];this.outputShape=t;let a=r?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=r?`${n}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${a};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${n});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${n}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function BI(e,t,r){let n=r.texData.get(e.dataId),a=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=Ae({inputs:{x:e},backend:r,attrs:{shape:[i,s]}}),l=o.shape,u=new l7("real",l,t),d=new l7("imag",l,t),h=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:l},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:l}],p=r.runWebGLProgram(u,h,"float32"),c=r.runWebGLProgram(d,h,"float32"),m=ji({inputs:{real:p,imag:c},backend:r});r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c);let f=Ae({inputs:{x:m},backend:r,attrs:{shape:e.shape}});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(m),f}function Nse(e){let{inputs:t,backend:r}=e,{input:n}=t;return BI(n,!1,r)}var Ese={kernelName:bf,backendName:"webgl",kernelFunc:Nse},Rse=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function Kh(e){let{backend:t,attrs:r}=e,{shape:n,value:a}=r,{dtype:s}=r;if(s=s||v.inferDtype(a),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(n));return i.fill(a),t.makeTensorInfo(n,s,i)}else{let i=new Rse(n,a),o=[[a]];return t.runWebGLProgram(i,[],s,o)}}var $se={kernelName:rd,backendName:"webgl",kernelFunc:Kh},Mse=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},Fse={kernelName:Jo,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:r}=e,n=t,a=new Mse(r.shape);return n.runWebGLProgram(a,[r],r.dtype)}},u7="return floor(x);",_se=it({opSnippet:u7,packedOpSnippet:u7,cpuKernelImpl:ate}),Pse={kernelName:di,backendName:"webgl",kernelFunc:_se},Ose=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,zse=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,Dse=wr({opSnippet:Ose,packedOpSnippet:zse,dtype:"int32"}),Lse={kernelName:pi,backendName:"webgl",kernelFunc:Dse},Bse=class{constructor(e){this.variableNames=["A"];let t=Xr(),[r,n]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}.0, ${r}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},Wse=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Xr(),[r,n]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}.0, ${r}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},Vse={kernelName:Gp,backendName:"webgl",kernelFunc:Use},fu;function Use(e){let{inputs:t,backend:r,attrs:n}=e,{pixels:a}=t,{numChannels:s}=n,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,[l,u]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],d=[u,l],h=[u,l,s];(o||i)&&(fu==null&&(fu=document.createElement("canvas").getContext("2d")),fu.canvas.width=l,fu.canvas.height=u,fu.drawImage(a,0,0,l,u),a=fu.canvas);let p=r.makeTensorInfo(d,"int32");r.texData.get(p.dataId).usage=2,r.gpgpu.uploadPixelDataToTexture(r.getTexture(p.dataId),a);let c=Z().getBool("WEBGL_PACK")?new Wse(h):new Bse(h),m=r.runWebGLProgram(c,[p],"int32");return r.disposeData(p.dataId),m}function Gse(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:m}=n,f=C.convertConv2DDataFormat(d),g=C.computeConv2DInfo(a.shape,s.shape,l,h,u,p,!1,f),y,A=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=_I({x:a,filter:s,convInfo:g,backend:r,bias:i,activation:c,preluActivationWeights:o,leakyreluAlpha:m});else if(Z().getBool("WEBGL_CONV_IM2COL"))y=PI({x:a,filter:s,convInfo:g,backend:r,bias:i,activation:c,preluActivationWeights:o,leakyreluAlpha:m});else{let b=i!=null,w=o!=null,I=c==="leakyrelu",T=c?Pm(c,!1):null,E=new FI(g,b,T,w,I),R=[a,s],O=($,S)=>{if(S==="NCHW"&&$.shape.length===1&&$.shape[0]!==1){let P=Ae({inputs:{x:$},backend:r,attrs:{shape:[$.shape[0],1,1]}});return A.push(P),P}return $};if(b&&R.push(O(i,d)),w&&R.push(O(o,d)),I){let $=r.makeTensorInfo([],"float32",v.createScalarValue(m,"float32"));R.push($),A.push($)}y=r.runWebGLProgram(E,R,"float32")}let x=Ae({inputs:{x:y},backend:r,attrs:{shape:g.outShape}});return A.push(y),A.forEach(b=>r.disposeIntermediateTensorInfo(b)),x}var jse={kernelName:Ps,backendName:"webgl",kernelFunc:Gse};function Hse(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:c}=n,m=[],f=d;f==null&&(f=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=C.computeConv2DInfo(a.shape,s.shape,l,f,u,h,!0),y=Z().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,A=p?Pm(p,y):null,x=[a,s],b=i!=null,w=o!=null,I=p==="leakyrelu";if(b&&x.push(i),w&&x.push(o),I){let O=r.makeTensorInfo([],"float32",v.createScalarValue(c,"float32"));x.push(O),m.push(O)}let T;y?T=new DI(g,b,A,w,I):T=new zI(g,b,A,w,I);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],R=r.runWebGLProgram(T,x,"float32",E);return m.forEach(O=>r.disposeIntermediateTensorInfo(O)),R}var qse={kernelName:Os,backendName:"webgl",kernelFunc:Hse},Xse=class{constructor(e,t,r,n){this.sliceDim=e,this.strides=t,this.paramsShape=n,this.variableNames=["x","indices"],this.outputShape=r;let a=yt(t.length),s=yt(r.length),i=this.sliceDim>1?"strides[j]":"strides",o=yt(n.length),l=n.length>1?"paramsShape[j]":"paramsShape";this.userCode=`
${a} strides = ${a}(${this.strides});
${o} paramsShape = ${o}(${this.paramsShape});
void main() {
${s} coords = getOutputCoords();
int flattenIndex = 0;
bool out_of_bounds = false;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
out_of_bounds = out_of_bounds || index < 0;
out_of_bounds = out_of_bounds || index >= ${l};
flattenIndex += index * ${i};
}
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
}
`}};function Kse(e){let{inputs:t,backend:r}=e,{params:n,indices:a}=t,s=a.shape,i=s[s.length-1],o=v.sizeFromShape(n.shape),[l,u,d,h]=C.prepareAndValidate(n,a),p=Ae({inputs:{x:a},backend:r,attrs:{shape:[u,i]}}),c=Ae({inputs:{x:n},backend:r,attrs:{shape:[v.sizeFromShape(n.shape)/d,d]}});if(r.shouldExecuteOnCPU([n,a])||n.dtype==="string"){let y=r.readSync(a.dataId),A=r.bufferSync(n),x=ste(y,A,n.dtype,u,i,d,h,n.shape,o);return r.makeTensorInfo(l,n.dtype,x.values)}let m=new Xse(i,h,[u,d],n.shape),f=r.runWebGLProgram(m,[c,p],c.dtype),g=Ae({inputs:{x:f},backend:r,attrs:{shape:l}});return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(f),g}var Zse={kernelName:el,backendName:"webgl",kernelFunc:Kse},Yse=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let r=yt(this.rank),n=Jse(e,2);this.userCode=`
void main() {
${r} resRC = getOutputCoords();
int index = int(getIndices(resRC.x, resRC.z));
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
setOutput(inBounds * getA(${n}));
}
`}};function Jse(e,t){let r=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let a=0;a<e.length;a++)a===2?n.push("index"):n.push(`${r[a]}`);return n.join()}function WI(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=n,l=v.parseAxisParam(i,a.shape)[0];if(Z().get("DEBUG")){let A=r.readSync(s.dataId),x=a.shape[l];for(let b=0;b<A.length;++b){let w=A[b];v.assert(w<=x-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${x-1}]`)}}let u=C.segment_util.collectGatherOpShapeInfo(a,s,l,o),d=v.sizeFromShape(s.shape),h=[],p=Ae({inputs:{x:a},backend:r,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),c=Ae({inputs:{x:s},backend:r,attrs:{shape:[u.batchSize,d/u.batchSize]}});h.push(p),h.push(c);let m=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize];if(r.shouldExecuteOnCPU([a,s])||a.dtype==="string"){let A=r.bufferSync(c),x=r.bufferSync(p),b=ite(x,A,m);return h.forEach(w=>r.disposeIntermediateTensorInfo(w)),r.makeTensorInfo(u.outputShape,b.dtype,b.values)}let f=new Yse(p.shape,m),g=r.runWebGLProgram(f,[p,c],p.dtype);h.push(g);let y=Ae({inputs:{x:g},backend:r,attrs:{shape:u.outputShape}});return h.forEach(A=>r.disposeIntermediateTensorInfo(A)),y}var Qse={kernelName:Qo,backendName:"webgl",kernelFunc:WI},eie="return float(a > b);",tie=`
return vec4(greaterThan(a, b));
`,rie=wr({opSnippet:eie,packedOpSnippet:tie,cpuKernelImpl:ote,dtype:"bool"}),nie={kernelName:tl,backendName:"webgl",kernelFunc:rie},aie="return float(a >= b);",sie=`
return vec4(greaterThanEqual(a, b));
`,iie=wr({opSnippet:aie,packedOpSnippet:sie,dtype:"bool",cpuKernelImpl:lte}),oie={kernelName:ci,backendName:"webgl",kernelFunc:iie};function lie(e){let{inputs:t,backend:r}=e,{input:n}=t;return BI(n,!0,r)}var uie={kernelName:vf,backendName:"webgl",kernelFunc:lie},die="return float(!isnan(x) && !isinf(x));",pie=it({opSnippet:die,dtype:"bool"}),hie={kernelName:nd,backendName:"webgl",kernelFunc:pie},cie="return float(isinf(x));",fie=it({opSnippet:cie,dtype:"bool"}),mie={kernelName:ad,backendName:"webgl",kernelFunc:fie},gie="return float(isnan(x));",yie=it({opSnippet:gie,dtype:"bool"}),Aie={kernelName:sd,backendName:"webgl",kernelFunc:yie},xie="return float(a < b);",bie=`
return vec4(lessThan(a, b));
`,vie=wr({opSnippet:xie,packedOpSnippet:bie,cpuKernelImpl:ute,dtype:"bool"}),wie={kernelName:rl,backendName:"webgl",kernelFunc:vie},kie="return float(a <= b);",Iie=`
return vec4(lessThanEqual(a, b));
`,Sie=wr({opSnippet:kie,packedOpSnippet:Iie,cpuKernelImpl:dte,dtype:"bool"}),Cie={kernelName:nl,backendName:"webgl",kernelFunc:Sie};function Tie(e){let{backend:t,attrs:r}=e,{start:n,stop:a,num:s}=r,i=pte(n,a,s);return t.makeTensorInfo([i.length],"float32",i)}var Nie={kernelName:wf,backendName:"webgl",kernelFunc:Tie},Eie=Od+`
return x < 0.0 ? 0./0. : log(x);
`,Rie=`
vec4 result = log(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
return result;
`,$ie=it({opSnippet:Eie,packedOpSnippet:Rie,cpuKernelImpl:hte}),Mie={kernelName:gi,backendName:"webgl",kernelFunc:$ie},Fie=Od+`
return log(1.0 + x);
`,_ie=it({opSnippet:Fie}),Pie={kernelName:id,backendName:"webgl",kernelFunc:_ie},Oie="return float(a >= 1.0 && b >= 1.0);",zie=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,Die=wr({opSnippet:Oie,packedOpSnippet:zie,dtype:"bool"}),Lie={kernelName:al,backendName:"webgl",kernelFunc:Die},Bie="return float(!(x >= 1.0));",Wie=it({opSnippet:Bie}),Vie={kernelName:sl,backendName:"webgl",kernelFunc:Wie},Uie="return float(a >= 1.0 || b >= 1.0);",Gie=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,jie=wr({opSnippet:Uie,packedOpSnippet:Gie,dtype:"bool"}),Hie={kernelName:od,backendName:"webgl",kernelFunc:jie},qie=class{constructor(e,t,r,n,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${r}) + float(${n}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},Xie=class{constructor(e,t,r,n,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${r}) + float(${n}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},Kie=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n,u=Z().getBool("WEBGL_PACK_NORMALIZATION")?new Xie(a.shape,s,i,o,l):new qie(a.shape,s,i,o,l);return r.runWebGLProgram(u,[a],a.dtype)},Zie={kernelName:dh,backendName:"webgl",kernelFunc:Kie},Yie=class{constructor(e,t,r,n,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=r,this.alpha=n,this.beta=a,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${n}) * norm + float(${r});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${n})
* float(${a})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${a});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},Jie=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=n,h=new Yie(a.shape,o,l,u,d);return r.runWebGLProgram(h,[a,s,i],a.dtype)},Qie={kernelName:kf,backendName:"webgl",kernelFunc:Jie};function eoe(e,t,r,n){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=Ae({inputs:{x:e},attrs:{shape:[s,a]},backend:n}),o=Ll(i,e.dtype,"max",n),l=Ae({inputs:{x:o},attrs:{shape:r},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}function VI(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,d=C.getAxesPermutation(u,o),h=d!=null,p=r.shouldExecuteOnCPU([a]),c=a;if(h){if(p){let A=r.texData.get(c.dataId).values,x=new Array(o);for(let I=0;I<x.length;I++)x[I]=a.shape[d[I]];let b=MA(A,a.shape,a.dtype,d,x);c=r.makeTensorInfo(x,a.dtype);let w=r.texData.get(c.dataId);w.values=b}else c=Om(a,d,r);u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("max",u,o);let[m,f]=C.computeOutAndReduceShapes(c.shape,u),g=m;i&&(g=C.expandShapeToKeepDim(m,l));let y;if(p){let A=r.texData.get(c.dataId).values,x=cte(A,v.sizeFromShape(f),g,a.dtype);y=r.makeTensorInfo(g,a.dtype);let b=r.texData.get(y.dataId);b.values=x}else y=eoe(c,f,g,r);return h&&r.disposeIntermediateTensorInfo(c),y}var toe={kernelName:yi,backendName:"webgl",kernelFunc:VI},roe=vI+`
return max(a, b);
`,noe=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+_m+`
return result;
`,aoe=wr({opSnippet:roe,packedOpSnippet:noe,cpuKernelImpl:fte}),soe={kernelName:Ai,backendName:"webgl",kernelFunc:aoe};function ioe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t;$d(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=C.computePool2DInfo(a.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))return mn({inputs:{x:a},backend:r});let h=new th(d,"max",!1);return r.runWebGLProgram(h,[a],a.dtype)}var ooe={kernelName:xi,backendName:"webgl",kernelFunc:ioe};function loe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=n,d=[1,1,1],h=C.computePool3DInfo(a.shape,s,i,d,o,u,l),p=new _A(h,"max",!1);return r.runWebGLProgram(p,[a],a.dtype)}var uoe={kernelName:ph,backendName:"webgl",kernelFunc:loe},doe=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,r=e.strideWidth,n=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${a};
wR += ${n}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},poe=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,r=e.strideHeight,n=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,d=o-1-e.padInfo.front,h=l-1-e.padInfo.top,p=u-1-e.padInfo.left,c=o*l*u-1;this.userCode=`
const ivec3 pads = ivec3(${d}, ${h}, ${p});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${a}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${c} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${u} +
wR * ${u} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function hoe(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=n,h=[1,1,1],p=C.computePool3DInfo(i.shape,o,l,h,u,d),c=new _A(p,"max",!0),m=r.runWebGLProgram(c,[i],i.dtype),f=new poe(p),g=r.runWebGLProgram(f,[a,m],i.dtype);return r.disposeIntermediateTensorInfo(m),g}var coe={kernelName:Sf,backendName:"webgl",kernelFunc:hoe};function foe(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,input:s,output:i}=t,o=s;$d([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:h}=n,p=C.computePool2DInfo(o.shape,l,u,1,d,h),c=!0,m=new th(p,"max",c),f=r.runWebGLProgram(m,[o],o.dtype),g=new doe(p),y=r.runWebGLProgram(g,[a,f],o.dtype);return r.disposeIntermediateTensorInfo(f),y}var moe={kernelName:If,backendName:"webgl",kernelFunc:foe};function goe(e,t,r,n){let a=new th(r,"max",!1),s=n.runWebGLProgram(a,[e],"float32");a=new th(r,"max",!0,!0,t);let i=n.runWebGLProgram(a,[e],"float32");return[s,i]}var yoe={kernelName:Cf,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=r;v.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);let u=[1,1];v.assert(C.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let d=C.computePool2DInfo(n.shape,a,s,u,i),[h,p]=goe(n,o,d,l);return[h,p]}};function Aoe(e,t,r,n){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=Ae({inputs:{x:e},attrs:{shape:[s,a]},backend:n}),o=Ll(i,"float32","mean",n),l=Ae({inputs:{x:o},attrs:{shape:r},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}var xoe={kernelName:bi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{keepDims:a,axis:s}=t,i=r,o=n.shape.length,l=v.parseAxisParam(s,n.shape),u=l,d=C.getAxesPermutation(u,o),h=d!=null,p=i.shouldExecuteOnCPU([n]),c=[],m=n;if(h){if(p){let x=i.texData.get(m.dataId).values,b=new Array(o);for(let T=0;T<b.length;T++)b[T]=n.shape[d[T]];let w=MA(x,n.shape,n.dtype,d,b);m=i.makeTensorInfo(b,n.dtype);let I=i.texData.get(m.dataId);I.values=w}else m=Om(n,d,i);c.push(m),u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("sum",u,o);let[f,g]=C.computeOutAndReduceShapes(m.shape,u),y=f;a&&(y=C.expandShapeToKeepDim(f,l));let A=Aoe(m,g,y,i);for(let x of c)i.disposeIntermediateTensorInfo(x);return A}};function boe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,d=C.getAxesPermutation(u,o),h=a;d!=null&&(h=Gr({inputs:{x:a},backend:r,attrs:{perm:d}}),u=C.getInnerMostAxes(u.length,a.shape.length)),C.assertAxesAreInnerMostDims("min",u,o);let[p,c]=C.computeOutAndReduceShapes(h.shape,u),m=v.sizeFromShape(c),f=Ae({inputs:{x:h},backend:r,attrs:{shape:[-1,m]}}),g=Ll(f,f.dtype,"min",r),y;if(i){let A=C.expandShapeToKeepDim(p,l);y=Ae({inputs:{x:g},backend:r,attrs:{shape:A}})}else y=Ae({inputs:{x:g},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(f),r.disposeIntermediateTensorInfo(g),d!=null&&r.disposeIntermediateTensorInfo(h),y}var voe={kernelName:vi,backendName:"webgl",kernelFunc:boe},woe=vI+`
return min(a, b);
`,koe=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+_m+`
return result;
`,Ioe=wr({opSnippet:woe,packedOpSnippet:koe,cpuKernelImpl:mte}),Soe={kernelName:wi,backendName:"webgl",kernelFunc:Ioe},Coe=class{constructor(e,t,r){this.variableNames=["x"],this.outputShape=t.map((u,d)=>u[0]+e[d]+u[1]);let n=e.length,a=yt(n),s=t.map(u=>u[0]).join(","),i=t.map((u,d)=>u[0]+e[d]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n),l=r==="reflect"?0:1;if(n===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${a} start = ${a}(${s});
${a} end = ${a}(${i});
void main() {
${a} outC = getOutputCoords();
for (int i = 0; i < ${n}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${a} coords = outC - start;
setOutput(getX(${o}));
}
`}},Toe=class{constructor(e,t,r){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((c,m)=>c[0]+e[m]+c[1]);let n=e.length,a=yt(n),s=t.map(c=>c[0]).join(","),i=t.map((c,m)=>c[0]+e[m]).join(","),o=Wr("rc",n),l=Wr("source",n),u=`${o[n-1]} < ${this.outputShape[n-1]}`,d=n===1?"source":`vec2(${l.slice(-2).join()})`,h=r==="reflect"?0:1,p="";if(n===1){let c=`
${a} source = rc;
if (source < start) {
source = start * 2 - source - ${h};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${h};
}
source -= start;
`;p=`
${a} rc = outputLoc;
${c}
result[0] = getChannel(getX(${l.join()}), ${d});
${o[n-1]} += 1;
if(${u}) {
${c}
result[1] = getChannel(getX(${l.join()}), ${d});
}
`}else{let c=`
${a} source = rc;
${a} lt = ${a}(lessThan(source, start));
${a} gte = ${a}(greaterThanEqual(source, end));
${a} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${h}) +
gte * ((end - 1) * 2 - source + ${h});
source -= start;
`;p=`
${a} rc = outputLoc;
${c}
result[0] = getChannel(getX(${l.join()}), ${d});
${o[n-1]} += 1;
if(${u}) {
${c}
result[1] = getChannel(getX(${l.join()}), ${d});
}
rc = outputLoc;
${o[n-2]} += 1;
if(${o[n-2]} < ${this.outputShape[n-2]}) {
${c}
result[2] = getChannel(getX(${l.join()}), ${d});
${o[n-1]} += 1;
if(${u}) {
${c}
result[3] = getChannel(getX(${l.join()}), ${d});
}
}
`}this.userCode=`
const ${a} start = ${a}(${s});
const ${a} end = ${a}(${i});
void main() {
${a} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${p}
setOutput(result);
}
`}},Noe=({inputs:e,backend:t,attrs:r})=>{let{x:n}=e,{paddings:a,mode:s}=r,i=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Toe(n.shape,a,s):new Coe(n.shape,a,s);return t.runWebGLProgram(i,[n],n.dtype)},Eoe={kernelName:ki,backendName:"webgl",kernelFunc:Noe},Roe=`if (b == 0.0) return NAN;
return mod(a, b);`,$oe=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+_m+`
return result;
`,Moe=wr({opSnippet:Roe,packedOpSnippet:$oe}),Foe={kernelName:ld,backendName:"webgl",kernelFunc:Moe},_oe=class{constructor(e,t,r){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,r],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}},Poe=`
if (a == b) {
return 1.0;
};
return a / b;`,Ooe=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,UI=wr({opSnippet:Poe,packedOpSnippet:Ooe,checkOutOfBounds:!0}),zoe={kernelName:oi,backendName:"webgl",kernelFunc:UI},d7="return a - b;",GI=wr({opSnippet:d7,packedOpSnippet:d7,supportsComplex:!0,cpuKernelImpl:Mte}),Doe={kernelName:Li,backendName:"webgl",kernelFunc:GI};function jI(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{dim:s}=n,i=v.parseAxisParam([s],a.shape),o=VI({inputs:{x:a},backend:r,attrs:{reductionIndices:i,keepDims:!1}}),l=C.expandShapeToKeepDim(o.shape,i),u=Ae({inputs:{x:o},backend:r,attrs:{shape:l}}),d=GI({inputs:{a,b:u},backend:r}),h=LI({inputs:{x:d},backend:r}),p=zm({inputs:{x:h},backend:r,attrs:{axis:i,keepDims:!1}}),c=Ae({inputs:{x:p},backend:r,attrs:{shape:l}}),m=UI({inputs:{a:h,b:c},backend:r});return r.disposeIntermediateTensorInfo(o),r.disposeIntermediateTensorInfo(u),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),m}var Loe={kernelName:zi,backendName:"webgl",kernelFunc:jI};function Boe(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=n,l=o?a:jI({inputs:{logits:a},backend:r,attrs:{dim:a.shape.length-1}}),u=l.shape[0],d=l.shape[1],h=new _oe(u,d,s),p=[[i]],c=r.runWebGLProgram(h,[l],"int32",p);return o||r.disposeIntermediateTensorInfo(l),c}var Woe={kernelName:Tf,backendName:"webgl",kernelFunc:Boe},Voe=Yn+`
return -x;
`,Uoe=`
vec4 result = -x;
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`;function Goe(e){let{inputs:t,backend:r}=e,{x:n}=t;if(r.shouldExecuteOnCPU([n])){let s=r.texData.get(n.dataId),[i,o]=yte(s.values,n.shape,n.dtype);return r.makeTensorInfo(o,n.dtype,i)}let a;return Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new So(n.shape,Uoe):a=new Xa(n.shape,Voe),r.runWebGLProgram(a,[n],n.dtype)}var joe={kernelName:il,backendName:"webgl",kernelFunc:Goe},Hoe=Kn.nonMaxSuppressionV3Impl;function qoe(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n,u=r.readSync(a.dataId),d=r.readSync(s.dataId),{selectedIndices:h}=Hoe(u,d,i,o,l);return r.makeTensorInfo([h.length],"int32",new Int32Array(h))}var Xoe={kernelName:ll,backendName:"webgl",kernelFunc:qoe},Koe=Kn.nonMaxSuppressionV4Impl;function Zoe(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=n,d=r.readSync(a.dataId),h=r.readSync(s.dataId),{selectedIndices:p,validOutputs:c}=Koe(d,h,i,o,l,u);return[r.makeTensorInfo([p.length],"int32",new Int32Array(p)),r.makeTensorInfo([],"int32",new Int32Array([c]))]}var Yoe={kernelName:ud,backendName:"webgl",kernelFunc:Zoe},Joe=Kn.nonMaxSuppressionV5Impl;function Qoe(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n,d=r.readSync(a.dataId),h=r.readSync(s.dataId),p=i,c=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=Joe(d,h,p,c,m,f);return[r.makeTensorInfo([g.length],"int32",new Int32Array(g)),r.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var ele={kernelName:ul,backendName:"webgl",kernelFunc:Qoe},tle=class{constructor(e,t,r,n){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${n}), float(${r}),
float(index == coords.y)));
}
`}},rle=e=>{let{inputs:t,backend:r,attrs:n}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=n,l=v.sizeFromShape(a.shape),u=new tle(l,s,i,o),d=Ae({inputs:{x:a},backend:r,attrs:{shape:[l]}}),h=r.runWebGLProgram(u,[d],a.dtype);r.disposeIntermediateTensorInfo(d);let p=[...a.shape,s],c=Ae({inputs:{x:h},backend:r,attrs:{shape:p}});return r.disposeIntermediateTensorInfo(h),c},nle={kernelName:pl,backendName:"webgl",kernelFunc:rle};function ef(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="complex64"){let a=Xh({inputs:{input:n},backend:r}),s=ef({inputs:{x:a},backend:r}),i=Dm({inputs:{input:n},backend:r}),o=ef({inputs:{x:i},backend:r}),l=ji({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return Kh({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:r})}var ale={kernelName:Tl,backendName:"webgl",kernelFunc:ef};function HI(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let a=Xh({inputs:{input:n},backend:r}),s=HI({inputs:{x:a},backend:r}),i=Dm({inputs:{input:n},backend:r}),o=ef({inputs:{x:i},backend:r}),l=ji({inputs:{real:s,imag:o},backend:r});return r.disposeIntermediateTensorInfo(a),r.disposeIntermediateTensorInfo(s),r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}else return Kh({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:r})}var sle={kernelName:dl,backendName:"webgl",kernelFunc:HI};function ile(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return Ay({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{v.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=Ay({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=MI({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeIntermediateTensorInfo(d)),u}var ole={kernelName:hl,backendName:"webgl",kernelFunc:ile},lle=class{constructor(e,t,r){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let n=e.length,a=yt(n),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n);if(n===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${a} start = ${a}(${s});
${a} end = ${a}(${i});
void main() {
${a} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${a} coords = outC - start;
setOutput(getX(${o}));
}
}
`}},ule=class{constructor(e,t,r){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let n=e.length,a=yt(n),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=Wr("rc",n),l=Wr("source",n),u=`${o[n-1]} < ${this.outputShape[n-1]}`,d=n===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[n-1]} += 1;
if(${u}) {
`,n===1?"":`}
rc = outputLoc;
${o[n-2]} += 1;
if(${o[n-2]} < ${this.outputShape[n-2]}) {`,n===1?"":` ${o[n-1]} += 1;
if(${u}) {`],p=n===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",c="";for(let m=0,f=n===1?2:4;m<f;m++)c+=`
${h[m]}
if (${p}) {
result[${m}] = float(value);
} else {
${a} source = rc - start;
result[${m}] = getChannel(getX(${l.join()}), ${d});
}
`;c+=n===1?"} ":"}}",this.userCode=`
const ${a} start = ${a}(${s});
const ${a} end = ${a}(${i});
void main() {
${a} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${c}
setOutput(result);
}
`}},qI=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,constantValue:i}=n;if(v.sizeFromShape(a.shape)===0){let u=s.map((d,h)=>d[0]+a.shape[h]+d[1]);return Kh({backend:r,attrs:{shape:u,value:i,dtype:a.dtype}})}let o=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new ule(a.shape,s,i):new lle(a.shape,s,i),l=[[i]];return r.runWebGLProgram(o,[a],a.dtype,l)},dle={kernelName:Si,backendName:"webgl",kernelFunc:qI},ple=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,hle=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+_m+`
return result;
`,cle=wr({opSnippet:ple,packedOpSnippet:hle}),fle={kernelName:Ci,backendName:"webgl",kernelFunc:cle};function mle(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n,o=a.shape.length,l=[],u=v.parseAxisParam(s,a.shape),d=u,h=C.getAxesPermutation(d,o),p=a;h!=null&&(p=Gr({inputs:{x:a},backend:r,attrs:{perm:h}}),d=C.getInnerMostAxes(d.length,o),l.push(p)),C.assertAxesAreInnerMostDims("prod",d,o);let c;if(r.shouldExecuteOnCPU([p])){let m=r.texData.get(p.dataId).values,{outVals:f,outShape:g,outDtype:y}=xte(p.shape,p.dtype,m,d);c=r.makeTensorInfo(g,y,f)}else{let[m,f]=C.computeOutAndReduceShapes(p.shape,d),g=v.sizeFromShape(f),y=Ae({inputs:{x:p},backend:r,attrs:{shape:[-1,g]}}),A=vh(a.dtype),x=Ll(y,A,"prod",r);c=Ae({inputs:{x},backend:r,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(c);let m=C.expandShapeToKeepDim(c.shape,u);c=Ae({inputs:{x:c},backend:r,attrs:{shape:m}})}return l.forEach(m=>r.disposeIntermediateTensorInfo(m)),c}var gle={kernelName:Ni,backendName:"webgl",kernelFunc:mle},XI=e=>{let{backend:t,attrs:r}=e,{start:n,stop:a,step:s,dtype:i}=r,o=bte(n,a,s,i);return t.makeTensorInfo([o.length],i,o)},yle={kernelName:dd,backendName:"webgl",kernelFunc:XI},Ale="return 1.0 / x;",xle=it({opSnippet:Ale}),ble={kernelName:pd,backendName:"webgl",kernelFunc:xle},vle=Yn+`
return (x < 0.0) ? 0.0 : x;
`,wle=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,kle=it({opSnippet:vle,packedOpSnippet:wle}),Ile={kernelName:Ei,backendName:"webgl",kernelFunc:kle},Sle=Yn+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Cle=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Tle=it({opSnippet:Sle,packedOpSnippet:Cle}),Nle={kernelName:$i,backendName:"webgl",kernelFunc:Tle},Ele=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/d[0]},
${u[1]/d[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${h};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},Rle=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/d[0]},
${u[1]/d[1]},
${u[1]/d[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${h};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${r-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function $le(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,d=Z().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Rle(a.shape,l,u,s,i):new Ele(a.shape,l,u,s,i);return r.runWebGLProgram(d,[a],"float32")}var Mle={kernelName:Ri,backendName:"webgl",kernelFunc:$le},Fle=class{constructor(e,t,r){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,a]=t,[,s,i]=e,o=[r&&s>1?n-1:n,r&&i>1?a-1:a],l=[r&&s>1?s-1:s,r&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],h=1/u,p=1/d,c=Math.ceil(h)*2+2,m=Math.ceil(p)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${d});
const float invHeightScale = float(${h});
const float invWidthScale = float(${p});
const int winHeight = int(${c});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${n-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${a-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function _le(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n,o=new Fle(s.shape,a.shape,i);return r.runWebGLProgram(o,[s],s.dtype)}var Ple={kernelName:Ef,backendName:"webgl",kernelFunc:_le},Ole=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h=n?"0.5":"0.0",p;a?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/d[0]},
${u[1]/d[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${p};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},zle=class{constructor(e,t,r,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,r,l];let u=[n&&t>1?i-1:i,n&&r>1?o-1:o],d=[n&&t>1?t-1:t,n&&r>1?r-1:r],h=n?"0.5":"0.0",p;a?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/d[0]},
${u[1]/d[1]},
${u[1]/d[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${p};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${r-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function Dle(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,d=Z().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new zle(a.shape,l,u,s,i):new Ole(a.shape,l,u,s,i);return r.runWebGLProgram(d,[a],a.dtype)}var Lle={kernelName:hd,backendName:"webgl",kernelFunc:Dle},Ble=class{constructor(e,t,r){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,a]=t,[,s,i]=e,o=[r&&s>1?n-1:n,r&&i>1?a-1:a],l=[r&&s>1?s-1:s,r&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],h=1/u,p=1/d,c=Math.ceil(h)*2+2,m=Math.ceil(p)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${d});
const float invHeightScale = float(${h});
const float invWidthScale = float(${p});
const int winHeight = int(${c});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${n}) - 1),
${r} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${a}) - 1),
${r} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Wle(e){let{inputs:t,backend:r,attrs:n}=e,{images:a,dy:s}=t,{alignCorners:i}=n,o=new Ble(s.shape,a.shape,i);return r.runWebGLProgram(o,[s],s.dtype)}var Vle={kernelName:Nf,backendName:"webgl",kernelFunc:Wle},Ule=class{constructor(e,t){this.variableNames=["x"];let r=e.length;if(r>4)throw new Error(`WebGL backend: Reverse of rank-${r} tensor is not yet supported`);if(this.outputShape=e,r===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let n=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,a=e.map((i,o)=>n(o)).join(","),s=yt(r);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${a}));
}
`}},Gle=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let r=e.length;if(r>4)throw new Error(`WebGL backend: Reverse of rank-${r} tensor is not yet supported`);this.outputShape=e;let n=Wr("rc",r),a=`${n[r-1]} + 1 < ${this.outputShape[r-1]}`,s=`${n[r-2]} + 1 < ${this.outputShape[r-2]}`,i=yt(r);r===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${a}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(n.slice())};
if(${a}){
result.g = ${l(n.slice())};
}
if(${s}) {
result.b = ${u(n.slice())};
if(${a}) {
result.a = ${d(n.slice())};
}
}
setOutput(result);
}
`;function o(c){return h(c)}function l(c){return c[r-1]="("+c[r-1]+" + 1)",h(c)}function u(c){return c[r-2]="("+c[r-2]+" + 1)",h(c)}function d(c){return c[r-1]="("+c[r-1]+" + 1)",c[r-2]="("+c[r-2]+" + 1)",h(c)}function h(c){let m=e.map((y,A)=>p(A,c)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function p(c,m){return t.indexOf(c)!==-1&&e[c]!==1?`${e[c]} - ${m[c]} - 1`:`${m[c]}`}}};function jle(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dims:s}=n,i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return mn({inputs:{x:a},backend:r});let l=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Gle(a.shape,o):new Ule(a.shape,o);return r.runWebGLProgram(l,[a],a.dtype)}var Hle={kernelName:fl,backendName:"webgl",kernelFunc:jle},qle=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let r=e[1],n=e[2];this.outputShape=e;let a="";typeof t=="number"?a=`float outputValue = ${t.toFixed(2)};`:a=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${a}
if(coordX >= 0 && coordX < ${n} && coordY >= 0 && coordY < ${r}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},Xle={kernelName:Nl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,{radians:a,fillValue:s,center:i}=t,o=r,l=new qle(n.shape,s),[u,d]=C.getImageCenter(i,n.shape[1],n.shape[2]),h=[[u,d,Math.sin(a),Math.cos(a)]];return o.runWebGLProgram(l,[n],n.dtype,h)}},Kle=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,Zle=it({opSnippet:Kle}),Yle={kernelName:ml,backendName:"webgl",kernelFunc:Zle},Jle="return inversesqrt(x);",Qle=it({opSnippet:Jle,cpuKernelImpl:vte}),eue={kernelName:Mi,backendName:"webgl",kernelFunc:Qle},KI=class{constructor(e,t,r,n,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=yt(a.length),l=yt(s.length),u="";r===1?u="i":r===2&&(u="i, j");let d=`getIndices(${u})`,h="";n===1?h="i":n===2&&(h="i, coords[1]");let p=`getUpdates(${h})`,c=t>1?"strides[j]":"strides";this.userCode=`
${o} strides = ${o}(${a});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${d});
flattenedIndex += index * ${c};
}
if (flattenedIndex == coords[0]) {
sum += ${p};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function tue(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:h}=C.calculateShapes(s,a,i),p=[h/u,u];if(h===0)return r.makeTensorInfo(i,a.dtype);let c=Ae({inputs:{x:a},backend:r,attrs:{shape:[l,o]}}),m=Ae({inputs:{x:s},backend:r,attrs:{shape:[l,u]}}),f=r.makeTensorInfo([],"float32",new Float32Array([0])),g=new KI(l,o,c.shape.length,m.shape.length,d,p),y=r.runWebGLProgram(g,[m,c,f],m.dtype),A=Ae({inputs:{x:y},backend:r,attrs:{shape:i}});return r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(m),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(f),A}var rue={kernelName:gl,backendName:"webgl",kernelFunc:tue},nue=class{constructor(e,t,r,n){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,r];let a="while (left < right) {",s=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,i=Z().getNumber("WEBGL_VERSION")===2?a:s,o=n==="left"?"<":"<=";this.userCode=`
int findBound(int batch, float value) {
int left = 0;
int right = numInputs;
int mid;
${i}
mid = (left + right) / 2;
if (getSortedSequence(batch, mid) ${o} value) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int valueIndex = coords[1];
float value = getValues(batch, valueIndex);
setOutput(float(findBound(batch, value)));
}
`}};function aue(e){let{inputs:t,backend:r,attrs:n}=e,{sortedSequence:a,values:s}=t,{side:i}=n,o=new nue(a.shape[0],a.shape[1],s.shape[1],i),l=[[a.shape[1]]];return r.runWebGLProgram(o,[a,s],"int32",l)}var sue={kernelName:Rf,backendName:"webgl",kernelFunc:aue},iue=class{constructor(e,t,r){this.variableNames=["c","a","b"],this.outputShape=t;let n,a;if(r>4)throw Error(`Where for rank ${r} is not yet supported`);if(r===1)a="resRC",n="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);n=o.join(),a=l.join()}let s=yt(r);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${n});
if (cVal >= 1.0) {
setOutput(getA(${a}));
} else {
setOutput(getB(${a}));
}
}
`}};function oue(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t,i=new iue(n.shape.length,a.shape,a.shape.length);return r.runWebGLProgram(i,[n,a,s],Nr(a.dtype,s.dtype))}var lue={kernelName:yl,backendName:"webgl",kernelFunc:oue},uue=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${C.SELU_SCALEALPHA};
float scale = ${C.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,due=it({opSnippet:uue}),pue={kernelName:cd,backendName:"webgl",kernelFunc:due},hue=Od+`
return 1.0 / (1.0 + exp(-1.0 * x));
`,cue=`
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,fue=it({opSnippet:hue,packedOpSnippet:cue,cpuKernelImpl:kte}),mue={kernelName:_i,backendName:"webgl",kernelFunc:fue},gue=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,yue=it({opSnippet:gue}),Aue={kernelName:fd,backendName:"webgl",kernelFunc:yue},xue=Od+`
return sin(x);
`,bue=it({opSnippet:xue}),vue={kernelName:Fi,backendName:"webgl",kernelFunc:bue},wue=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,kue=it({opSnippet:wue}),Iue={kernelName:xl,backendName:"webgl",kernelFunc:kue},Sue=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,Cue=it({opSnippet:Sue}),Tue={kernelName:md,backendName:"webgl",kernelFunc:Cue},Nue=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n;v.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,A)=>y*A),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let u=[],d=qI({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),h=C.getReshaped(d.shape,s,o,!1),p=C.getPermuted(h.length,s.length,!1),c=C.getReshapedPermuted(d.shape,s,o,!1),m=Ae({inputs:{x:d},backend:r,attrs:{shape:h}}),f=Gr({inputs:{x:m},backend:r,attrs:{perm:p}}),g=Ae({inputs:{x:f},backend:r,attrs:{shape:c}});return u.push(d),u.push(m),u.push(f),u.forEach(y=>r.disposeIntermediateTensorInfo(y)),g},Eue={kernelName:bl,backendName:"webgl",kernelFunc:Nue};function Rue(e){let{inputs:t,backend:r}=e,{indices:n,values:a,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${n.shape}`);if(a.shape.length!==1)throw new Error(`Values must be a vector, saw:
${a.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=r.readSync(n.dataId),l=r.readSync(a.dataId),u=r.readSync(s.dataId),d=r.readSync(i.dataId)[0],[h,p,c,m,f]=Ste(o,n.shape,n.dtype,l,a.dtype,u,d);return[r.makeTensorInfo(p,n.dtype,h),r.makeTensorInfo([p[0]],a.dtype,c),r.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),r.makeTensorInfo([f.length],n.dtype,new Int32Array(f))]}var $ue={kernelName:ch,backendName:"webgl",kernelFunc:Rue};function Mue(e){let{inputs:t,backend:r}=e,{inputIndices:n,inputShape:a,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${n.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(r.readSync(a.dataId)),o=r.readSync(n.dataId),l=Array.from(r.readSync(s.dataId)),[u,d,h]=Cte(o,n.shape,n.dtype,i,l);return[r.makeTensorInfo(d,n.dtype,u),r.makeTensorInfo([h.length],s.dtype,new Int32Array(h))]}var Fue={kernelName:gd,backendName:"webgl",kernelFunc:Mue};function _ue(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=r.readSync(n.dataId),o=r.readSync(a.dataId),l=r.readSync(s.dataId),[u,d]=gI(i,n.shape,n.dtype,o,l,!0);return r.makeTensorInfo(d,n.dtype,u)}var Pue={kernelName:fh,backendName:"webgl",kernelFunc:_ue};function Oue(e){let{inputs:t,backend:r}=e,{data:n,indices:a,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(a.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${a.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=r.readSync(n.dataId),o=r.readSync(a.dataId),l=r.readSync(s.dataId),[u,d]=gI(i,n.shape,n.dtype,o,l);return r.makeTensorInfo(d,n.dtype,u)}var zue={kernelName:mh,backendName:"webgl",kernelFunc:Oue};function Due(e){let{inputs:t,backend:r,attrs:n}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,sliceSize:d,strides:h,outputSize:p}=C.calculateShapes(s,a,o),c=!1;if(s.dtype==="string"){let y=r.bufferSync(a),A=r.bufferSync(s),x=v.decodeString(r.readSync(i.dataId)[0]),b=wte(y,A,o,p,d,u,l,h,x,c);return r.makeTensorInfo(o,b.dtype,b.values)}let m=new KI(u,l,a.shape.length,s.shape.length,h,[p,1],c),f=r.runWebGLProgram(m,[s,a,i],s.dtype),g=Ae({inputs:{x:f},backend:r,attrs:{shape:o}});return r.disposeIntermediateTensorInfo(f),g}var Lue={kernelName:gh,backendName:"webgl",kernelFunc:Due};function Bue(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=a.shape.length,d=new Array(u).fill(0),h=a.shape.slice();return l.map(p=>{let c=[...h];c[o]=p;let m=zd({inputs:{x:a},backend:r,attrs:{begin:d,size:c}});return d[o]+=p,m})}var Wue={kernelName:vl,backendName:"webgl",kernelFunc:Bue},p7="return sqrt(x);",Vue=it({opSnippet:p7,packedOpSnippet:p7,cpuKernelImpl:Tte}),Uue={kernelName:Pi,backendName:"webgl",kernelFunc:Vue},Gue="return x * x;",jue=it({opSnippet:Gue}),Hue={kernelName:yd,backendName:"webgl",kernelFunc:jue},h7="return (a - b) * (a - b);",que=wr({opSnippet:h7,packedOpSnippet:h7}),Xue={kernelName:Di,backendName:"webgl",kernelFunc:que};function Kue({inputs:e,attrs:t,backend:r}){let{x:n}=e,a=Yn+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new Xa(n.shape,a);return r.runWebGLProgram(s,[n],n.dtype)}var Zue={kernelName:Wi,backendName:"webgl",kernelFunc:Kue},Yue=class{constructor(e,t,r){this.variableNames=["x"],this.outputShape=r;let n=r.length,a=yt(r.length),s=yt(r.length),i="";if(n===1)i="coords * strides + begin";else{let o=0;i=r.map((l,u)=>(o++,r.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
${a} begin = ${a}(${e});
${a} strides = ${a}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function Jue(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n,{finalShapeSparse:c,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=Dt.sliceInfo(a.shape,s,i,o,l,u,d,h,p),w;if(f)w=Ae({inputs:{x:a},backend:r,attrs:{shape:m}});else if(g||y){v.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let T=Dt.computeOutShape(A,x,b),E=zd({inputs:{x:a},backend:r,attrs:{begin:A,size:T}});w=Ae({inputs:{x:E},backend:r,attrs:{shape:m}}),r.disposeIntermediateTensorInfo(E)}else if(r.shouldExecuteOnCPU([a])){let T=r.readSync(a.dataId),E=De(a.shape,a.dtype,T),R=Nte(c,E,b,A);w=r.makeTensorInfo(m,a.dtype,R.values)}else{let T=new Yue(A,b,c);w=r.runWebGLProgram(T,[a],a.dtype)}let I=Ae({inputs:{x:w},backend:r,attrs:{shape:m}});return r.disposeIntermediateTensorInfo(w),I}var Que={kernelName:wl,backendName:"webgl",kernelFunc:Jue};function ede(e){let{inputs:t,backend:r,attrs:n}=e,{separator:a,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:d,dataSplits:h}=t,p=r.readSync(d.dataId),c=r.readSync(h.dataId),[m,f]=Ete(p,c,a,s,i,o,l,u);return[r.makeTensorInfo([m.length],"string",m),r.makeTensorInfo(h.shape,"int32",f)]}var tde={kernelName:yh,backendName:"webgl",kernelFunc:ede};function rde(e){let{inputs:t,backend:r,attrs:n}=e,{skipEmpty:a}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=r.readSync(s.dataId),l=r.readSync(i.dataId)[0],[u,d,h]=Rte(o,l,a),p=d.length;return[r.makeTensorInfo([p,2],"int32",u),r.makeTensorInfo([p],"string",d),r.makeTensorInfo([2],"int32",new Int32Array(h))]}var nde={kernelName:$f,backendName:"webgl",kernelFunc:rde};function ade(e){let{inputs:t,backend:r,attrs:n}=e,{numBuckets:a}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(a<=0)throw new Error("Number of buckets must be at least 1");let i=r.readSync(s.dataId),o=$te(i,a);return r.makeTensorInfo(s.shape,"int32",o)}var sde={kernelName:Mf,backendName:"webgl",kernelFunc:ade},ide="return tan(x);",ode=it({opSnippet:ide}),lde={kernelName:kl,backendName:"webgl",kernelFunc:ode},ude=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,dde=it({opSnippet:ude}),pde={kernelName:Bi,backendName:"webgl",kernelFunc:dde},hde=class{constructor(e,t){this.variableNames=["A"];let r=new Array(e.length);for(let s=0;s<r.length;s++)r[s]=e[s]*t[s];this.outputShape=r,this.rank=r.length;let n=yt(this.rank),a=cde(e);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${a}));
}
`}};function cde(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let r=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],n=[];for(let a=0;a<e.length;a++)n.push(`imod(${r[a]}, ${e[a]})`);return n.join()}function ZI(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reps:s}=n;if(a.dtype==="string"||a.shape.length>5){let o=r.readSync(a.dataId),l=a.dtype==="string"?o.map(h=>v.decodeString(h)):o,u=De(a.shape,a.dtype,l),d=Fte(u,s);return r.makeTensorInfo(d.shape,d.dtype,d.values)}let i=new hde(a.shape,s);return r.runWebGLProgram(i,[a],a.dtype)}var fde={kernelName:es,backendName:"webgl",kernelFunc:ZI},mde=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},gde=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function mo(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function c7(e){let t=1;for(;t<e;)t*=2;return t}function yde(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{k:s,sorted:i}=n,o=Z().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=Z().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=a.shape,d=u[u.length-1];if(r.shouldExecuteOnCPU([a])||d<o||s>l){let R=r.readSync(a.dataId),[O,$]=_te(R,u,a.dtype,s,i);return[r.makeTensorInfo(O.shape,O.dtype,O.values),r.makeTensorInfo($.shape,$.dtype,$.values)]}if(s===0)return u[u.length-1]=0,[r.makeTensorInfo(u,a.dtype,[]),r.makeTensorInfo(u,"int32",[])];if(d===1)return[a,Kh({attrs:{shape:u,dtype:"int32",value:0},backend:r})];let h=r.texData.get(a.dataId),p=h!==null&&h.isPacked,c=p?r.unpackTensor(a):a,m=v.sizeFromShape(u)/d,f=Ae({inputs:{x:c},attrs:{shape:[m,d]},backend:r});p&&mo(r,c);let g=c7(s),y=c7(d),A=null,x=()=>A===null?[f,f]:[f,A],b=(R,O,$)=>{let S=x(),P=new mde($),z=[[d],[A===null?1:0],[Number.NEGATIVE_INFINITY],[R],[O]],j=A;A=r.runWebGLProgram(P,S,"int32",z),mo(r,j)};for(let R=1;R<g;R*=2){let O=R*2;for(let $=R;$>=1;$/=2)b(O,$,[m,y])}for(let R=y;R>g;R/=2){let O=x(),$=new gde([m,R/2]),S=[[d],[A===null?1:0],[g]],P=A;A=r.runWebGLProgram($,O,"int32",S),mo(r,P);let z=g/2,j=z*2;for(let K=z;K>=1;K/=2)b(j,K,A.shape)}let w=A;A=zd({inputs:{x:A},backend:r,attrs:{begin:0,size:[m,s]}}),mo(r,w);let I=WI({inputs:{x:f,indices:A},backend:r,attrs:{axis:1,batchDims:1}});mo(r,f);let T=u.slice(0,-1);T.push(s),w=A,A=Ae({inputs:{x:A},attrs:{shape:T},backend:r}),mo(r,w);let E=I;return I=Ae({inputs:{x:I},attrs:{shape:T},backend:r}),mo(r,E),[I,A]}var Ade={kernelName:Il,backendName:"webgl",kernelFunc:yde},xde=class{constructor(e,t,r,n,a,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=r==="nearest"?1:2,o;switch(n){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${o} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${a});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${a});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function bde(e){let{inputs:t,backend:r,attrs:n}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,h,p,c]=a.shape,[m,f]=u!=null?u:[h,p],g=[d,m,f,c],y=new xde(h,p,i,o,l,g);return r.runWebGLProgram(y,[a,s],"float32")}var vde={kernelName:Sl,backendName:"webgl",kernelFunc:bde};function wde(e){let{inputs:t,attrs:r,backend:n}=e,{axis:a}=r,{x:s}=t;$d(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=n.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=Pte(i,a,s.shape,s.dtype);return[n.makeTensorInfo(l,s.dtype,o),n.makeTensorInfo([u.length],"int32",u)]}var kde={kernelName:Ff,backendName:"webgl",kernelFunc:wde};function Ide(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],u=new Array(o-1),d=0;for(let f=0;f<o;f++)f!==s&&(u[d++]=i.shape[f]);let h=[],p=new Array(o).fill(0),c=i.shape.slice();c[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){p[s]=f;let g=zd({inputs:{x:i},backend:r,attrs:{begin:p,size:c}}),y=Ae({inputs:{x:g},backend:r,attrs:{shape:u}});m[f]=y,h.push(g)}return h.forEach(f=>r.disposeIntermediateTensorInfo(f)),m}var Sde={kernelName:Cl,backendName:"webgl",kernelFunc:Ide},Cde=class{constructor(e,t){this.variableNames=["x","segmentIds"];let r=e.windowSize,n=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/r);this.outputShape=[n,i];let o="0.0",l="sumValue",u=Math.floor(r/4)*4,d=r%4,h=`
sumValue += dot(values, segFilter);
`,p="";a%r>0&&(p=`
if (inIdx < 0 || inIdx >= ${a}) {
return initializationValue;
}
`);let c="";a%r>0&&(c=`
if (inIdx < 0 || inIdx >= ${a}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${p}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${c}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${r}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${h}
}
int inIdx = inOffset + ${u};
if (${d===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${h}
} else if (${d===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${h}
} else if (${d===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${h}
}
setOutput(${l});
}
`}};function Tde(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,segmentIds:s}=t,{numSegments:i}=n,o=a.shape.length,l=[],u=0,d=C.getAxesPermutation([u],o),h=a;d!=null&&(h=Gr({inputs:{x:a},backend:r,attrs:{perm:d}}),l.push(h),u=C.getInnerMostAxes(1,o)[0]);let p=C.segment_util.computeOutShape(h.shape,u,i),c=v.sizeFromShape([h.shape[u]]),m=Ae({inputs:{x:h},backend:r,attrs:{shape:[-1,c]}});l.push(m);let f=vh(a.dtype),g=(b,w,I,T,E)=>{let R=b.shape[0],O=b.shape[1],$=C.segment_util.segOpComputeOptimalWindowSize(O,E),S={windowSize:$,inSize:O,batchSize:R,numSegments:E},P=new Cde(S,w),z=r.compileAndRun(P,[b,I],T);if(l.push(z),z.shape[1]===E)return z;let j=XI({backend:r,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),K=ZI({inputs:{x:j},backend:r,attrs:{reps:[O/$]}});return l.push(j),l.push(K),g(z,w,K,T,E)},y=g(m,"unsortedSegmentSum",s,f,i),A=Ae({inputs:{x:y},backend:r,attrs:{shape:p}}),x=A;if(d!=null){l.push(A);let b=C.getUndoAxesPermutation(d);x=Gr({inputs:{x},backend:r,attrs:{perm:b}})}return l.forEach(b=>r.disposeIntermediateTensorInfo(b)),x}var Nde={kernelName:Ah,backendName:"webgl",kernelFunc:Tde},Ede=[Rre,Mre,Pre,Dre,Bre,Ure,jre,qre,Yre,Qre,rne,sne,lne,hne,mne,yne,xne,kne,Sne,Tne,$ne,Dne,Bne,Vne,Xne,Zne,eae,pre,nae,lae,hae,Aae,bae,wae,Iae,Cae,Eae,Mae,Pae,zae,Lae,Wae,Gae,Hae,Zae,Jae,tse,ase,ise,dse,fse,Ase,vse,Ise,Sse,Tse,Ese,$se,Fse,Pse,Lse,Vse,jse,qse,Zse,Qse,nie,oie,dre,uie,iae,hie,mie,Aie,cre,wie,Cie,Nie,Mie,Pie,Lie,Vie,Hie,Zie,Qie,toe,soe,ooe,uoe,coe,moe,yoe,xoe,voe,Soe,Eoe,Foe,Woe,Are,joe,Xoe,Yoe,ele,Gne,nle,sle,ole,dle,fle,mre,gle,yle,jne,zoe,ble,Ile,Nle,bre,Mle,Ple,Lle,Vle,Hle,Xle,Yle,eue,rue,sue,lue,pue,mue,Aue,vue,Iue,One,Loe,Tue,Eue,$ue,Fue,Pue,zue,Lue,Wue,Uue,Hue,Xue,Zue,Que,tde,nde,sde,Doe,Tre,lde,pde,fde,Ade,vde,Nre,kde,Sde,Nde,ale];for(let e of Ede)qn(e);var Hi=Z();Hi.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);Hi.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);Hi.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);Hi.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);Hi.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);Hi.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);Hi.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);Hi.registerFlag("WEBGPU_USE_IMPORT",()=>!1);var Rde="return a + b;",$de="return areal * breal - aimag * bimag;",Mde="return areal * bimag + aimag * breal;",Fde="return a / b;",_de="return a * b;",Pde="return (a - b) * (a - b);",Ode="return a - b;",zde="return f32(a == b);",Dde="return vec4<f32>(a == b);",Lde="return f32(a > b);",Bde="return vec4<f32>(a > b);",Wde="return f32(a >= b);",Vde="return vec4<f32>(a >= b);",Ude="return f32(a < b);",Gde="return vec4<f32>(a < b);",jde="return f32(a <= b);",Hde="return vec4<f32>(a <= b);",qde="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",Xde=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
vec4<f32>(b >= vec4<f32>(1.0)));`,Kde=`
if (isnan(a)) { return a; }
if (isnan(b)) { return b; }
`,YI=`
if (isNaN.r) {
resultTemp.r = uniforms.NAN;
}
if (isNaN.g) {
resultTemp.g = uniforms.NAN;
}
if (isNaN.b) {
resultTemp.b = uniforms.NAN;
}
if (isNaN.a) {
resultTemp.a = uniforms.NAN;
}
`,Zde=`
let s = sign(a) * sign(b);
let ia = i32(round(a));
let ib = i32(round(b));
return f32(idiv(ia, ib, s));
`,Yde=`
let ia = vec4<i32>(round(a));
let ib = vec4<i32>(round(b));
let cond = ib != vec4<i32>(0);
var resultTemp = vec4<i32>(0);
let s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4<f32>(resultTemp);
`,Jde="return f32(a != b);",Qde="return vec4<f32>(a != b);",epe=`
if(a < 0.0 && floor(b) < b) {
return uniforms.NAN;
}
if (b == 0.0) {
return 1.0;
}
if (round(abs(b) % 2.0) != 1.0) {
return pow(abs(a), b);
}
return sign(a) * pow(abs(a), b);
`,tpe=`
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
let isModRound1 = vec4<f32>(isModRound1Bool);
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
var resultTemp = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
let isExpZero = b == vec4<f32>(0.0);
if (isExpZero.r) {
resultTemp.r = 1.0;
}
if (isExpZero.g) {
resultTemp.g = 1.0;
}
if (isExpZero.b) {
resultTemp.b = 1.0;
}
if (isExpZero.a) {
resultTemp.a = 1.0;
}
let isNaN = a < vec4<f32>(0.0) & floor(b) < b;
${YI}
return resultTemp;
`,rpe="if (a < 0.0) { return b * a; } return a;",npe=`
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
`;function f7(e,t){let r=t?YI:Kde;return t?`
var resultTemp = vec4<f32>(${e}(a, b));
let isNaN = isnanVec4(a) | isnanVec4(b);
`+r+`
return resultTemp;
`:r+`
return ${e}(a, b);
`}function Zh(e,t){switch(e){case 0:return _de;case 1:return Rde;case 2:return Ode;case 3:return Fde;case 4:return t?Dde:zde;case 5:return t?Bde:Lde;case 6:return t?Vde:Wde;case 7:return t?Gde:Ude;case 8:return t?Hde:jde;case 9:return t?Xde:qde;case 10:return t?Qde:Jde;case 11:return Pde;case 12:return t?Yde:Zde;case 14:return t?npe:rpe;case 15:return f7("max",t);case 16:return f7("min",t);case 13:return t?tpe:epe;case 17:return $de;case 18:return Mde;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var ape="return abs(a);",spe="return ceil(a);",ipe="return cos(a);",ope=`
let e2x = exp(-a);
return (e2x + 1.0 / e2x) / 2.0;
`,lpe="return exp(a) - 1.0;",upe="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",dpe=`
var resFloat = exp(a) - vec4<f32>(1.0);
if (a.r >= 0.0) {
resFloat.r = a.r;
}
if (a.g >= 0.0) {
resFloat.g = a.g;
}
if (a.b >= 0.0) {
resFloat.b = a.b;
}
if (a.a >= 0.0) {
resFloat.a = a.a;
}
return resFloat;
`,ppe="return exp(a);",hpe="return floor(a);",cpe="return a;",fpe=`if (a < 0.0) { return 1.0/0.0; }
return log(a);`,mpe="return f32(!(a >= 1.0));",gpe="return -a;",ype="if (a < 0.0) { return uniforms.alpha * a; } return a;",Ape=`
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
return (aLessThanZero * (uniforms.alpha * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
`,xpe="return select(a, 0.0, a < 0.0);",bpe="return clamp(a, 0.0, 6.0);",vpe="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",wpe=`
return select(a, vec4<f32>(0.0), a < vec4<f32>(0.0));
`,kpe="return 1.0/sqrt(a);",Ipe="return 1.0 / (1.0 + exp(-1.0 * a));",Spe="return sin(a);",Cpe=`
let e2x = exp(a);
return (e2x - 1.0 / e2x) / 2.0;
`,Tpe="return sqrt(a);",Npe="return a * a;",Epe=`
let e2x = exp(-2.0 * abs(a));
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
`,Rpe="return f32(i32((a)));";function Ao(e,t){switch(e){case 0:return ape;case 2:return ipe;case 3:return ope;case 1:return spe;case 4:return t?dpe:upe;case 5:return ppe;case 6:return lpe;case 7:return hpe;case 8:return cpe;case 9:return fpe;case 10:return mpe;case 11:return gpe;case 14:return t?Ape:ype;case 12:return t?wpe:xpe;case 13:return t?vpe:bpe;case 15:return kpe;case 18:return Ipe;case 16:return Spe;case 17:return Cpe;case 19:return Tpe;case 20:return Npe;case 21:return Epe;case 22:return Rpe;default:throw new Error(`BinaryType ${e} is not implemented!`)}}function Bl(e,t=!1){if(e===null)return null;if(e==="linear")return Ao(8);if(e==="relu")return Ao(12,t);if(e==="elu")return Ao(4,t);if(e==="relu6")return Ao(13,t);if(e==="prelu")return Zh(14,t);if(e==="sigmoid")return Ao(18,t);if(e==="leakyrelu")return Ao(14,t);throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`)}var JI={};Be(JI,{ArrayBufferToTypedArray:()=>eS,GPUBytesPerElement:()=>v0,computeDispatch:()=>Le,computeWorkGroupSizeForConv2d:()=>PA,computeWorkGroupSizeForMatMul:()=>QI,computeWorkPerThreadForConv2d:()=>OA,flatDispatchLayout:()=>Je,isWebGPUSupported:()=>zA,tilesFitEvenlyIntoShape:()=>$pe});var Eo=e=>{let t=1;for(let r=0;r<e.length;r++)t*=e[r];return t};function $pe(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((r,n)=>r%e[n]===0)}function Le(e,t,r=[1,1,1],n=[1,1,1]){let[a,s,i]=[Math.ceil(Eo(e.x.map(o=>t[o]))/(r[0]*n[0])),e.y?Math.ceil(Eo(e.y.map(o=>t[o]))/(r[1]*n[1])):1,e.z?Math.ceil(Eo(e.z.map(o=>t[o]))/(r[2]*n[2])):1];return[a,s,i]}function PA(e,t,r=!1){if(r)return[8,8,1];let n=Eo(e.x.map(s=>t[s])),a=Eo(e.y.map(s=>t[s]));return n<=4?[4,16,1]:a<=4?[16,4,1]:[16,16,1]}function QI(e,t,r){return e===1?[32,1,1]:r===1?[1,32,1]:[8,8,1]}function OA(e,t,r=!1){if(r)return[4,4,1];let n=Eo(e.x.map(s=>t[s])),a=Eo(e.y.map(s=>t[s]));return n<=4?[1,2,1]:a<=4?[2,1,1]:[2,2,1]}function Je(e){return{x:e.map((t,r)=>r)}}function v0(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function eS(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function zA(){return(typeof window!="undefined"||typeof WorkerGlobalScope!="undefined")&&!!navigator.gpu}var Mpe=(e,t)=>e?`
mm_Asub[inputRow][inputCol] = mm_readA(
t * TileInner + inputRow,
globalRowStart / ${t} + inputCol, globalId);
`:`
mm_Asub[inputRow][inputCol] = mm_readA(
globalRow + innerRow,
t * TileInner / ${t} + inputCol, globalId);
`,Fpe=(e,t)=>e?`
let ACached0 = mm_Asub[k * InnerElementSize][localRow];
let ACached1 = mm_Asub[k * InnerElementSize + 1][localRow];
let ACached2 = mm_Asub[k * InnerElementSize + 2][localRow];
${t===3?"":"let ACached3 = mm_Asub[k * InnerElementSize + 3][localRow];"}
for (var i = 0; i < RowPerThread; i = i + 1) {
acc[i] = BCached[0] * ACached0[i] + acc[i];
acc[i] = BCached[1] * ACached1[i] + acc[i];
acc[i] = BCached[2] * ACached2[i] + acc[i];
${t===3?"":"acc[i] = BCached[3] * ACached3[i] + acc[i];"}
}`:`
for (var i = 0; i < RowPerThread; i = i + 1) {
let ACached = mm_Asub[tileRow + i][k];
acc[i] = BCached[0] * ACached.x + acc[i];
acc[i] = BCached[1] * ACached.y + acc[i];
acc[i] = BCached[2] * ACached.z + acc[i];
${t===3?"":"acc[i] = BCached[3] * ACached.w + acc[i];"}
}`;function tS(e,t,r,n,a=4,s=!1){let i=s?t:n,o=s?n:t,l=s?e[1]:a;return v.assert((s&&t===r||n%4===0||n%3===0)&&e[0]===4&&(a===3||a===4),()=>`tileInner ${n} must be divisible by 4|3. ColPerThread ${e[0]} must be 4.
innerElementSize ${a} must be 3|4.`),`
var<workgroup> mm_Asub : array<array<vec${l}<f32>, ${i/l}>, ${o}>;
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${r/e[0]}>, ${n}>;
let RowPerThread = ${e[1]};
let ColPerThread = ${e[0]};
let InnerElementSize = ${a};
let TileInner = ${n};
@stage(compute) @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(num_workgroups) NumWorkgroups: vec3<u32>,
@builtin(workgroup_id) workgroupId: vec3<u32>) {
localId = LocalId;
globalId = GlobalId;
numWorkgroups = NumWorkgroups;
let localRow = i32(localId.y);
let tileRow = ${t===1?"0":"localRow * RowPerThread"};
let tileCol = i32(localId.x);
let globalRow = ${t===1?"0":"i32(globalId.y) * RowPerThread"};
let globalCol = i32(globalId.x);
let globalRowStart = i32(workgroupId.y) * ${t};
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
var acc: array<vec4<f32>, RowPerThread>;
var BCached : array<vec4<f32>, 4>;
// Loop over shared dimension.
let RowPerThreadB = TileInner / i32(workGroupSizeY);
let tileRowB = localRow * RowPerThreadB;
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
let inputRow = tileRow + innerRow;
let inputCol = tileCol;
${Mpe(s,l)}
}
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol;
mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol, globalId);
}
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < TileInner / InnerElementSize; k = k + 1) {
BCached[0] = mm_Bsub[k * InnerElementSize][tileCol];
BCached[1] = mm_Bsub[k * InnerElementSize + 1][tileCol];
BCached[2] = mm_Bsub[k * InnerElementSize + 2][tileCol];
${a===3?"":"BCached[3] = mm_Bsub[k * InnerElementSize + 3][tileCol];"}
${Fpe(s,a)}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
mm_write(globalRow + innerRow,
globalCol,
acc[innerRow], globalId);
}
}`}var _pe=class{constructor(e,t,r,n,a=!1,s=null,i=null,o=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1&&!a?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread);let l=s!=null,u=o!=null;l&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.tileAOuter=t[1]===1&&!a?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.tileBOuter,this.aShape=e,this.addBias=l,this.activation=i,this.hasPreluActivationWeights=u,this.batchAEqualOne=r,this.batchBEqualOne=n,this.transposeA=a;let d=a?e[1]:e[2];this.fitAOuter=t[1]%this.tileAOuter===0,this.fitBOuter=t[2]%this.tileBOuter===0,this.fitInner=d%this.tileInner===0,this.shaderKey=`matMulPackedVec4_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.elementsPerThread}_${this.batchAEqualOne}_${this.batchBEqualOne}_${this.transposeA}`}getUserCode(){let e=this.fitAOuter&&this.fitInner?"return A[batch * batchASize + row * uniforms.aShape[2] / 4 + col]":`if (coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.aShape[1], uniforms.aShape[2]))) {
return A[batch * batchASize + row * uniforms.aShape[2] / 4 + col];
}
return vec4<f32>(0.0)`,t=this.fitInner&&this.fitBOuter?"return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col];
}
return vec4<f32>(0.0)`,r="",n="";if(this.activation){let s=Bl(this.activation,this.isVec4);this.hasPreluActivationWeights?r=`fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
let b = getPreluActivationWeightsByOutputCoords(outCoord);
${s}
}`:r=`
fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
${s}
}`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
${r}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
${this.batchAEqualOne?`
let batchASize = 0;
let batch = 0;
`:`
let batchASize = uniforms.aShape[1] * uniforms.aShape[2] / 4;
let batch = i32(globalId.z);
`}
${e};
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
${this.batchBEqualOne?`
let batchBSize = 0;
let batch = 0;
`:`
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2] / 4;
let batch = i32(globalId.z);
`}
${t};
}
fn mm_write(row : i32, col : i32, valueIn : vec4<f32>, globalId : vec3<u32>) {
if (row < uniforms.dimAOuter && col * 4 < uniforms.dimBOuter)
{
var value = valueIn;
let batch = i32(globalId.z);
let outCoord = vec3<i32>(batch, row, col * 4);
${a}
${n}
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], value);
}
}
${tS(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner,4,this.transposeA)}
`}};function Ppe(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let r=e.length,n=e.map(s=>`${t}[${s}]`),a=new Array(r-1);a[r-2]=n[r-1];for(let s=r-3;s>=0;--s)a[s]=`(${a[s+1]} * ${n[s+1]})`;return a}var m7=(e,t,r,n,a,s=!1)=>{let i={dtype:a.dtype,shape:a.shape},o=Ope(n,i,t,s),l=e.createShaderModule({code:o,label:t.constructor.name});return e.createComputePipeline({layout:r,compute:{module:l,entryPoint:"main"},label:t.constructor.name})};function Ar(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";if(e===5)return"vec5";if(e===6)return"vec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Ms(e){if(e===0)return"x";if(e===1)return"y";if(e===2)return"z";if(e===3)return"w";if(e===4)return"u";if(e===5)return"v";throw Error(`Index ${e} is not yet supported`)}function rt(){return`
${Yh()}
let index = getGlobalIndex();
`}function Yh(){return`
${DA()}
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(num_workgroups) NumWorkgroups: vec3<u32>) {
localId = LocalId;
globalId = GlobalId;
numWorkgroups = NumWorkgroups;
`}function DA(){return`
@stage(compute) @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
`}function Ope(e,t,r,n=!1){let a=[];if(a.push(`
let workGroupSizeX = ${r.workGroupSize[0]}u;
let workGroupSizeY = ${r.workGroupSize[1]}u;
let workGroupSizeZ = ${r.workGroupSize[2]}u;
var<private> localId: vec3<u32>;
var<private> globalId: vec3<u32>;
var<private> numWorkgroups: vec3<u32>;
// Only used when the y/z dimension of workgroup size is 1.
fn getGlobalIndex() -> i32 {
${rS(r)?" return i32(globalId.x);":` let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
localId.y * workGroupSizeX + localId.x;
let workGroupID = (globalId - localId)/vec3<u32>(
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +
workGroupID.y * numWorkgroups.x + workGroupID.x) *
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
localInvocationIndex);
`}
}
`),n===!0)return a.push(`
struct Uniform {
size : i32,
numChannels : i32,
outShapeStrides : vec2<i32>,
dispatchSize : vec3<u32>,
};
@group(0) @binding(0) var<storage, write> result: array<${w0(t.dtype,r.isVec4)}>;
@group(0) @binding(2) var<uniform> uniforms: Uniform;
`),[y7,a.join(`
`),A7(t.shape),r.getUserCode()].join(`
`);let s=!1,i=!1,o="struct Uniforms { NAN : f32, ";r.variableNames.forEach((m,f)=>{let g=Ar(e[f].shape.length);(g==="vec5"||g==="vec6")&&(i=!0),(s||i)&&(o+="@align(16) "),s=i,o+=`${m.charAt(0).toLowerCase()+m.slice(1)}Shape : ${g}, `});let l=Ar(t.shape.length);i=l==="vec5"||l==="vec6",(s||i)&&(o+="@align(16) "),s=i,o+=`outShape : ${l}, `;let u=t.shape.length-1,d=Ar(u);i=d==="vec5"||d==="vec6",(s||i)&&(o+="@align(16) "),s=i,o+=`
outShapeStrides: ${d}, `,r.size&&(s&&(o+="@align(16) "),s=!1,o+="size : i32, "),r.uniforms&&(s&&(o+="@align(16) "),o+=r.uniforms),o+="};",a.push(o),r.atomic?a.push(`
@group(0) @binding(0) var<storage, read_write> result: array<atomic<i32>>;
`):a.push(`
@group(0) @binding(0) var<storage, write> result: array<${w0(t.dtype,r.isVec4)}>;
`),r.variableNames.forEach((m,f)=>{a.push(`
@group(0) @binding(${1+f}) var<storage, read> ${m}: array<${r.variableTypes?r.variableTypes[f]:w0(e[f].dtype,r.isVec4)}>;
`)}),o!==""&&a.push(`
@group(0) @binding(${1+r.variableNames.length}) var<uniform> uniforms: Uniforms;
`);let[h,p]=Bpe(t.shape,r.dispatchLayout),c=[y7,a.join(`
`),A7(t.shape),h,Wpe(t.shape.length)];if(r.atomic||c.push(Vpe(t.shape,t.dtype,r.isVec4)),p===t.shape.length){let m=e.map((f,g)=>Lpe(f,t.shape,r.variableTypes?r.variableTypes[g]==="vec4<f32>":r.isVec4,r.dispatchLayout.x.length===t.shape.length)).join(`
`);c.push(m)}return c.push(r.getUserCode()),c.join(`
`)}function g7(e,t,r=[],n="",a=""){let s=rS(e)?"flatDispatch":"";return e.shaderKey+"_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(i=>i.length).join(",")+r.join(",")+e.variableNames.join(",")+n+a+s}var y7=`
struct vec5 {x: i32, y: i32, z: i32, w: i32, u: i32};
struct vec6 {x: i32, y: i32, z: i32, w: i32, u: i32, v: i32};
// Checks whether coordinates lie within the bounds of the shape.
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
return all(coord >= vec2<i32>(0)) && all(coord < shape);
}
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
return all(coord >= vec3<i32>(0)) && all(coord < shape);
}
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
return all(coord >= vec4<i32>(0)) && all(coord < shape);
}
fn getIndexFromCoords1D(coord : i32, shape : i32) -> i32 {
return coord;
}
fn getIndexFromCoords2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
return dot(coords, vec2<i32>(shape.y, 1));
}
fn getIndexFromCoords3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
return dot(coords, vec3<i32>(shape.y * shape.z, shape.z, 1));
}
fn getIndexFromCoords4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
return dot(coords, vec4<i32>(
shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));
}
fn getIndexFromCoords5D(coords : vec5, shape : vec5) -> i32 {
let shapeStrides: vec5 = vec5(shape.y * shape.z * shape.w * shape.u, shape.z * shape.w * shape.u, shape.w * shape.u, shape.u, 1);
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u;
}
fn getIndexFromCoords6D(coords : vec6, shape : vec6) -> i32 {
let shapeStrides: vec6 = vec6(shape.y * shape.z * shape.w * shape.u * shape.v, shape.z * shape.w * shape.u * shape.v, shape.w * shape.u * shape.v, shape.u * shape.v, shape.v, 1);
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u + coords.v*shapeStrides.v;
}
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
var res: i32 = a / b;
let mod: i32 = a % b;
if (sign < 0. && mod != 0) {
res = res - 1;
}
return res;
}
// NaN defination in IEEE 754-1985 is :
// - sign = either 0 or 1.
// - biased exponent = all 1 bits.
// - fraction = anything except all 0 bits (since all 0 bits represents infinity).
// https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers
fn isnan(val: f32) -> bool {
let floatToUint: u32 = bitcast<u32>(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
fn isnanVec4(val : vec4<f32>) -> vec4<bool> {
return vec4<bool>(isnan(val[0]), isnan(val[1]), isnan(val[2]), isnan(val[3]));
}
`;function A7(e){let t=e.length;if(t<=1)return"fn getCoordsFromIndex(index : i32) -> i32 { return index; }";let r=v.computeStrides(e),n=Ar(t),a=[];for(let i=0;i<t;i++)a.push(`d${i}`);if(r.length===1)return` fn getCoordsFromIndex(index : i32) -> vec2<i32> {
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
return vec2<i32>(d0, d1);
}`;let s;return s="var index2 = index;"+r.map((i,o)=>{let l=`let ${a[o]} = index2 / uniforms.outShapeStrides.${Ms(o)}`,u=o===r.length-1?`let ${a[o+1]} = index2 - ${a[o]} * uniforms.outShapeStrides.${Ms(o)}`:`index2 = index2 - ${a[o]} * uniforms.outShapeStrides.${Ms(o)}`;return`${l}; ${u};`}).join(""),`
fn getCoordsFromIndex(index : i32) -> ${n} {
${s}
return ${n}(${a.join(",")});
}
`}function zpe(e,t){let r=e.name,n=e.shape.length,a=Ar(n),s="get"+r.charAt(0).toUpperCase()+r.slice(1),i=["d0","d1","d2","d3","d4","d5"].slice(0,n),o=i.map(d=>`${d} : i32`).join(", ");if(n<1)return t?`
fn ${s}() -> vec4<f32> {
return vec4<f32>(${r}[0]);
}
`:`
fn ${s}() ->f32 {
return f32(${r}[0]);
}
`;let l=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,u=`${n}D`;return n===0&&(u="1D"),t?`
fn ${s}(${o}) -> vec4<f32> {
return vec4<f32>(${r}[getIndexFromCoords${u}(${a}(${i.join(",")}),
${l}) / 4]);
}
`:`
fn ${s}(${o}) -> f32 {
return f32(${r}[getIndexFromCoords${u}(${a}(${i.join(",")}),
${l})]);
}
`}function Dpe(e,t,r,n){let a=e.name,s=a.charAt(0).toUpperCase()+a.slice(1),i="get"+s+"ByOutput",o=e.shape.length,l=t.length,u=Ar(l);if(v.arraysEqual(e.shape,t)&&n)return r?`
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
return vec4<f32>(${a}[globalIndex]);
}
fn ${i}Coords(coords : ${u}) -> vec4<f32> {
return vec4<f32>(${a}[${l>1?"getOutputIndexFromCoords(coords)":"coords"} / 4]);
}
`:`
fn ${i}Index(globalIndex : i32) -> f32 {
return f32(${a}[globalIndex]);
}
fn ${i}Coords(coords : ${u}) -> f32 {
return f32(${a}[${l>1?"getOutputIndexFromCoords(coords)":"coords"}]);
}
`;let d=C.getBroadcastDims(e.shape,t),h=l-o,p="";if(o===0)return r?`
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
return get${s}();
}
fn ${i}Coords(coords : ${u}) -> vec4<f32> {
return get${s}();
}
`:`
fn ${i}Index(globalIndex : i32) -> f32{
return get${s}();
}
fn ${i}Coords(coords : ${u}) -> f32{
return get${s}();
}
`;l<2&&d.length>=1?p="coords = 0;":p=d.map(g=>`coords.${Ms(g+h)} = 0;`).join(`
`);let c="";if(l<2&&o>0)c="coords";else if(l>1){let g=Ar(o),y=e.shape.map((A,x)=>`coords.${Ms(x+h)}`).join(", ");c=`${g}(${y})`}else c="coords";let m=`uniforms.${a.charAt(0).toLowerCase()+a.slice(1)}Shape`,f=`${o}D`;return r?`
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
var coords = getCoordsFromIndex(globalIndex);
${p}
return ${a}[getIndexFromCoords${f}(${c}, ${m}) / 4];
}
fn ${i}Coords(coordsIn : ${u}) -> vec4<f32> {
var coords = coordsIn;
${p}
return ${a}[getIndexFromCoords${f}(${c}, ${m}) / 4];
}
`:`
fn ${i}Index(globalIndex : i32) -> f32 {
var coords = getCoordsFromIndex(globalIndex);
${p}
return f32(${a}[getIndexFromCoords${f}(${c}, ${m})]);
}
fn ${i}Coords(coordsIn : ${u}) -> f32 {
var coords = coordsIn;
${p}
return f32(${a}[getIndexFromCoords${f}(${c}, ${m})]);
}
`}function Lpe(e,t,r,n){let a=zpe(e,r);return e.shape.length<=t.length&&(a+=Dpe(e,t,r,n)),a}function Bpe(e,t){let{x:r,y:n=[],z:a=[]}=t,s=e.length;if(r.length===s)return[`fn getOutputCoords() -> ${Ar(s)}{
let globalIndex = getGlobalIndex();
return getCoordsFromIndex(globalIndex);
}
`,s];let i="",o=[r,n,a],l=0;for(let p=0;p<o.length;p++){let c=o[p];if(c.length!==0)if(l+=c.length,c.length===1)i+=`let d${c[0]} = i32(globalId[${p}]);`;else{let m=Ppe(c,"uniforms.outShape");i+=`var index${p} = i32(globalId[${p}]);`;for(let f=0;f<m.length;f++)i+=`let d${c[f]} = index${p} / ${m[f]};`,f===m.length-1?i+=`let d${c[f+1]} = index${p} - d${c[f]} * ${m[f]};`:i+=`index${p} = index${p} - d${c[f]} * ${m[f]};`}}let u=[];for(let p=0;p<l;p++)u.push(`d${p}`);let d=Ar(l),h=`fn getOutputCoords() -> ${d} {
${i}
`;return u.length===0?h+=`return ${d}(0); }`:h+=`return ${d}(${u.join(",")}); }`,[h,l]}function Wpe(e){let t="";switch(e){case 0:case 1:t+=`
fn getOutputIndexFromCoords(coords : i32) -> i32 {
return coords;
}
`;break;case 2:t+=`
fn getOutputIndexFromCoords(coords : vec2<i32>) -> i32 {
return dot(coords, vec2<i32>(uniforms.outShapeStrides, 1));
}
`;break;case 3:t+=`
fn getOutputIndexFromCoords(coords : vec3<i32>) -> i32 {
return dot(coords, vec3<i32>(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));
}
`;break;case 4:t+=`
fn getOutputIndexFromCoords(coords : vec4<i32>) -> i32 {
return dot(coords, vec4<i32>(
uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));
}
`;break;case 5:t+=`
fn getOutputIndexFromCoords(coords : vec5) -> i32 {
return coords.x * uniforms.outShapeStrides.x +
coords.y * uniforms.outShapeStrides.y +
coords.z * uniforms.outShapeStrides.z +
coords.w * uniforms.outShapeStrides.w +
coords.u;
}
`;break;case 6:t+=`
fn getOutputIndexFromCoords(coords : vec6) -> i32 {
return coords.x * uniforms.outShapeStrides.x +
coords.y * uniforms.outShapeStrides.y +
coords.z * uniforms.outShapeStrides.z +
coords.w * uniforms.outShapeStrides.w +
coords.u * uniforms.outShapeStrides.u +
coords.v;
}
`;break;default:v.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function rS(e){return e.dispatch[1]===1&&e.dispatch[2]===1}function w0(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function Vpe(e,t,r){let n=e.length,a=w0(t,r),s;if(r?s=`fn setOutputAtIndex(flatIndex : i32, value : vec4<f32>) {
result[flatIndex] = ${a}(value);
}
fn setOutputAtIndexI32(flatIndex : i32, value : vec4<i32>) {
result[flatIndex] = ${a}(value);
}`:s=`fn setOutputAtIndex(flatIndex : i32, value : f32) {
result[flatIndex] = ${a}(value);
}
fn setOutputAtIndexI32(flatIndex : i32, value : i32) {
result[flatIndex] = ${a}(value);
}`,n>=2){let i=["d0","d1","d2","d3","d4","d5"].slice(0,n),o=Ar(n);r?s+=`
fn setOutputAtCoords(${i.map(l=>`${l} : i32`).join(", ")}, value : vec4<f32>) {
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
setOutputAtIndex(flatIndex / 4, value);
}
fn setOutputAtCoordsI32(${i.map(l=>`${l} : i32`).join(", ")}, value : vec4<i32>) {
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
setOutputAtIndexI32(flatIndex / 4, value);
}
`:s+=`
fn setOutputAtCoords(${i.map(l=>`${l} : i32`).join(", ")}, value : f32) {
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
setOutputAtIndex(flatIndex, value);
}
fn setOutputAtCoordsI32(${i.map(l=>`${l} : i32`).join(", ")}, value : i32) {
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
setOutputAtIndexI32(flatIndex, value);
}
`}return s}var Upe=e=>e?`
mm_Asub[inputRow][inputCol] = mm_readA(
t * TileInner + inputRow,
globalRowStart + inputCol, globalId);
`:`
mm_Asub[inputRow][inputCol] = mm_readA(
globalRowStart + inputRow,
t * TileInner + inputCol, globalId);
`,Gpe=e=>e?"let ACached = mm_Asub[k][tileRow + innerRow];":"let ACached = mm_Asub[tileRow + innerRow][k];";function LA(e,t,r=!1,n=32){let a=e[1]*t[1],s=e[0]*t[0],i=r?a:n,o=r?n:a;v.assert(o%t[1]===0&&i%t[0]===0&&n%t[1]===0,()=>`tileAHight ${o} must be divisible by workGroupSize[1]${t[1]}, tileAWidth ${i} must be divisible by workGroupSize[0]${t[0]}, tileInner ${n} must be divisible by workGroupSize[1]${t[1]}`);let l=o/t[1],u=i/t[0],d=n/t[1];return`
var<workgroup> mm_Asub : array<array<f32, ${i}>, ${o}>;
var<workgroup> mm_Bsub : array<array<f32, ${s}>, ${n}>;
let RowPerThread = ${e[1]};
let ColPerThread = ${e[0]};
let TileInner = ${n};
@stage(compute) @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(num_workgroups) NumWorkgroups: vec3<u32>,
@builtin(workgroup_id) workgroupId: vec3<u32>) {
localId = LocalId;
globalId = GlobalId;
numWorkgroups = NumWorkgroups;
let tileRow = i32(localId.y) * RowPerThread;
let tileCol = i32(localId.x) * ColPerThread;
let globalRow = i32(globalId.y) * RowPerThread;
let globalCol = i32(globalId.x) * ColPerThread;
let globalRowStart = i32(workgroupId.y) * ${a};
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
var acc : array<array<f32, ColPerThread>, RowPerThread>;
// Without this initialization strange values show up in acc.
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = 0.0;
}
}
let tileRowA = i32(localId.y) * ${l};
let tileColA = i32(localId.x) * ${u};
let tileRowB = i32(localId.y) * ${d};
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < ${l}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${u}; innerCol = innerCol + 1) {
let inputRow = tileRowA + innerRow;
let inputCol = tileColA + innerCol;
${Upe(r)}
}
}
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < ${d}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol + innerCol;
mm_Bsub[inputRow][inputCol] = mm_readB(
t * ${n} + inputRow,
globalCol + innerCol, globalId);
}
}
workgroupBarrier();
// Compute acc values for a single thread.
var BCached : array<f32, ColPerThread>;
for (var k = 0; k < TileInner; k = k + 1) {
for (var inner = 0; inner < ColPerThread; inner = inner + 1) {
BCached[inner] = mm_Bsub[k][tileCol + inner];
}
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
${Gpe(r)}
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
}
}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
mm_write(globalRow + innerRow,
globalCol + innerCol,
acc[innerRow][innerCol], globalId);
}
}
}
`}var jpe=e=>e?`
mm_readA(colA, globalRow, globalId),
mm_readA(colA + 1, globalRow, globalId),
mm_readA(colA + 2, globalRow, globalId),
mm_readA(colA + 3, globalRow, globalId)
`:`
mm_readA(globalRow, colA, globalId),
mm_readA(globalRow, colA + 1, globalId),
mm_readA(globalRow, colA + 2, globalId),
mm_readA(globalRow, colA + 3, globalId)
`;function Hpe(e,t=!1){return v.assert(e[1]===1&&e[2]===1,()=>`A linear work group size is required. But got ${e}.`),`
let TileSize = ${e[0]*4};
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
${Yh()}
let tileCol = i32(localId.x);
let globalCol = i32(globalId.x);
let globalRow = i32(globalId.y);
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
// Without this initialization strange values show up in acc.
var acc = 0.0;
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
let colA = t * TileSize + tileCol * 4;
mm_Asub[tileCol] = vec4<f32>(${jpe(t)});
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < TileSize / 4; k = k + 1) {
let rowB = t * TileSize + k * 4;
let BCached = vec4<f32>(mm_readB(rowB, globalCol, globalId),
mm_readB(rowB + 1, globalCol, globalId),
mm_readB(rowB + 2, globalCol, globalId),
mm_readB(rowB + 3, globalCol, globalId));
let ACached = mm_Asub[k];
acc = acc + dot(ACached, BCached);
}
workgroupBarrier();
}
mm_write(globalRow, globalCol, acc, globalId);
}
`}var qpe=class{constructor(e,t,r,n,a,s=!1,i=!1,o=null,l=null,u=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let d=s?e[1]:e[2];this.workGroupSize=QI(t[1],d,t[2]),(t[1]===1||t[2]===1)&&(r=1),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[r,r,1]),v.arraysEqual(this.dispatch,[1,1,1])&&(r=1,this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[r,r,1]));let h=o!=null,p=u!=null;h&&this.variableNames.push("bias"),p&&this.variableNames.push("preluActivationWeights"),this.workPerThread=r,this.transposeA=s,this.transposeB=i,this.addBias=h,this.activation=l,this.hasPreluActivationWeights=p,this.batchAEqualOne=n,this.batchBEqualOne=a,[this.fitAOuter,this.fitBOuter,this.fitInner]=this.getShapeFit(t[1],t[2],d),this.shaderKey=`matMulPacked_${this.workPerThread}_${s}_${i}_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.outputShape[1]>1}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getShapeFit(e,t,r){let n=this.workGroupSize[1]*this.workPerThread,a=this.workGroupSize[0]*this.workPerThread;this.tileInner=32,this.outputShape[1]===1&&(this.tileInner=this.workGroupSize[0]*4);let s=e%n===0,i=t%a===0,o=r%this.tileInner===0;return[s,i,o]}getUserCode(){let e=this.fitAOuter&&this.fitInner?"return A[batch * batchASize + row * uniforms.aShape[2] + col];":`
if(row < uniforms.aShape[1] && col < uniforms.aShape[2]) {
return A[batch * batchASize + row * uniforms.aShape[2] + col];
}
return 0.0;
`,t;this.transposeB===!1?t="return B[batch * batchBSize + row * uniforms.dimBOuter + col];":t="return B[batch * batchBSize + col * uniforms.dimInner + row];";let r="",n="";if(this.activation){let s=Bl(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
let b = getPreluActivationWeightsByOutputCoords(outCoord);
${s}
}`:r=`
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
${s}
}
`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
${r}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
${this.batchAEqualOne?`
let batch = 0;
let batchASize = 0;
`:`
let batch = i32(globalId.z);
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
`}
${e}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
${this.batchBEqualOne?`
let batch = 0;
let batchBSize = 0;
`:`
let batch = i32(globalId.z);
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
`}
${t}
}
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
${this.fitAOuter&&this.fitBOuter?"":"if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)"}
{
var value = valueIn;
let batch = i32(globalId.z);
let outCoord = vec3<i32>(batch, row, col);
${a}
${n}
setOutputAtCoords(batch, row, col, value);
}
}
${this.outputShape[1]>1?LA([this.workPerThread,this.workPerThread,1],this.workGroupSize,this.transposeA,this.tileInner):Hpe(this.workGroupSize,this.transposeA)}
`}};function Xpe(){return`
var<workgroup> sumValues : array<f32, workGroupSizeX>;
${Yh()}
let coords = getOutputCoords();
let batch = coords[0];
let row = coords[1];
let col = coords[2];
var sum = 0.0;
let Length = uniforms.dimInner;
for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {
let dataA = mm_readA(batch, row, k);
let dataB = mm_readB(batch, k, col);
sum = sum + dataA * dataB;
}
sumValues[localId.x] = sum;
workgroupBarrier();
for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;
currentSize = currentSize / 2u) {
if (localId.x < currentSize)
{
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
}
workgroupBarrier();
}
if (localId.x == 0u) {
sum = sumValues[0] + sumValues[1];
mm_write(batch, row, col, sum);
}
}
`}var Kpe=class{constructor(e,t,r,n=!1,a=!1,s=null,i=null,o=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize);let l=s!=null,u=o!=null;l&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.transposeA=n,this.transposeB=a,this.addBias=l,this.activation=i,this.hasPreluActivationWeights=u,this.batchAEqualOne=t,this.batchBEqualOne=r,this.shaderKey=`matMulReduce_${this.activation}_${n}_${a}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){let e;this.transposeA===!1?e="return f32(A[batch * batchASize + row * uniforms.dimInner + col]);":e="return f32(A[batch * batchASize + col * uniforms.dimAOuter + row]);";let t;this.transposeB===!1?t="return f32(B[batch * batchBSize + row * uniforms.dimBOuter + col]);":t="return f32(B[batch * batchBSize + col * uniforms.dimInner + row]);";let r="",n="";if(this.activation){let s=Bl(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
let b = getPreluActivationWeightsByOutputCoords(outCoord);
${s}
}`:r=`
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
${s}
}
`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
${r}
fn mm_readA(batchIn: i32, row : i32, col : i32) -> f32 {
${this.batchAEqualOne?`
let batchASize = 0;
let batch = 0;
`:`
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
let batch = batchIn;
`}
${e}
}
fn mm_readB(batchIn: i32, row : i32, col : i32) -> f32 {
${this.batchBEqualOne?`
let batch = 0;
let batchBSize = 0;
`:`
let batch = batchIn;
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
`}
${t}
}
fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) {
var value = valueIn;
let outCoord = vec3<i32>(batch, row, col);
${a}
${n}
setOutputAtCoords(batch, row, col, value);
}
${Xpe()}
`}};function Zpe(e){let t=e[1]/2,r=e[0],n=t>r?t:r;return`
var<workgroup> mm_Asub1 : array<array<f32, ${n}>, ${t}>;
var<workgroup> mm_Bsub1 : array<array<f32, ${r}>, ${n}>;
var<workgroup> mm_Asub2 : array<array<f32, ${n}>, ${t}>;
var<workgroup> mm_Bsub2 : array<array<f32, ${r}>, ${n}>;
// If the output size is small for matrix multiplication, avoid to use vec4
// and handle some elements per thread to optimally utilize the ALU.
// Introduces two shared memory buffers, some logical threads could handle
// arithmetic operations and others handle IO operations between barrier api,
// makes ALUs and load/store units work simultaneously, could improves
// the performance.
${Yh()}
let tileRow = i32(localId.y);
let tileCol = i32(localId.x);
let globalRow = i32(globalId.y);
let globalCol = i32(globalId.x);
// uniforms.dimInner should be greater than 0.
let numTiles = (uniforms.dimInner - 1) / ${n} + 1;
var acc = 0.0;
var globalColA = tileCol;
var globalRowB = tileRow;
for (var t = 0; t < numTiles; t = t + 1) {
if (t == 0) {
if (tileRow < ${t}) {
// Load one tile of A and B into local memory.
// globalRow is always greater than or equal tileRow.
mm_Asub1[tileRow][tileCol] =
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
globalColA = globalColA + ${n};
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
globalRowB = globalRowB + ${n};
}
} else {
if (tileRow < ${t}) {
// Load one tile of A and B into local memory.
// globalRow is always greater than or equal tileRow.
mm_Asub1[tileRow][tileCol] =
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
globalColA = globalColA + ${n};
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
globalRowB = globalRowB + ${n};
} else {
// Compute acc values for a single thread.
for (var k = 0; k < ${n}; k = k + 1) {
let subRow = tileRow - ${t};
if (subRow < 0) {
continue;
}
acc = acc + mm_Asub2[subRow][k] * mm_Bsub2[k][tileCol];
}
}
}
workgroupBarrier();
if (t != 0) {
t = t + 1;
}
if (t < numTiles) {
if (tileRow < ${t}) {
// Load one tile of A and B into local memory.
// globalRow is always greater than or equal tileRow.
mm_Asub2[tileRow][tileCol] =
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
globalColA = globalColA + ${n};
mm_Bsub2[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
globalRowB = globalRowB + ${n};
} else {
// Compute acc values for a single thread.
for (var k = 0; k < ${n}; k = k + 1) {
let subRow = tileRow - ${t};
if (subRow < 0) {
continue;
}
acc = acc + mm_Asub1[subRow][k] * mm_Bsub1[k][tileCol];
}
}
}
workgroupBarrier();
}
let writeCol = (globalRow - tileRow) / 2 + tileRow - ${t};
if (tileRow >= ${t} && writeCol >= 0) {
mm_write(writeCol, globalCol, acc, globalId);
}
}
`}var Ype=class{constructor(e,t,r,n=null,a=null,s=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,16,1],v.assert(e[1]<=16||t[2]<=16,()=>"This program can be only used when A width or B Height are small"),this.outputShape=r,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(r[2]/this.workGroupSize[0]),Math.ceil(r[1]*2/this.workGroupSize[1]),r[0]];let i=n!=null;i&&this.variableNames.push("bias");let o=s!=null;o&&this.variableNames.push("preluActivationWeights"),this.addBias=i,this.activation=a,this.hasPreluActivationWeights=o,this.batchAEqualOne=e[0]===1,this.batchBEqualOne=t[0]===1,this.shaderKey=`matMulSmallOutputSize_${this.activation}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){let e=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A[batch * batchASize + row * uniforms.dimInner + col];
}
return 0.0;`,t=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B[batch * batchBSize + row * uniforms.dimBOuter + col];
}
return 0.0;`,r="",n="";if(this.activation){let s=Bl(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
let b = getPreluActivationWeightsByOutputCoords(outCoord);
${s}
}`:r=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
${s}
}`,n="value = activation(value, outCoord);"}let a=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
${r}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
${this.batchAEqualOne?`
let batch = 0;
let batchASize = 0;
`:`
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
let batch = i32(globalId.z);
`}
${e}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
${this.batchBEqualOne?`
let batch = 0;
let batchBSize = 0;
`:`
let batch = i32(globalId.z);
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
`}
${t}
}
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimBOuter))) {
let batch = i32(globalId.z);
let outCoord = vec3<i32>(batch, row, col);
var value = valueIn;
${a}
${n}
setOutputAtCoords(batch, row, col, value);
}
}
${Zpe(this.workGroupSize)}
`}};function qe(e){let{inputs:t,attrs:r}=e,{x:n}=t,{shape:a}=r,s=v.sizeFromShape(n.shape),i=v.inferFromImplicitShape(a,s),o=v.sizeFromShape(i);return v.assert(s===o,()=>`The new shape (${i}) has ${o} elements and the old shape (${n.shape}) has ${s} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var Jpe={kernelName:cl,backendName:"webgpu",kernelFunc:qe};function BA({a:e,b:t,transposeA:r,transposeB:n,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,d=t.shape.length,h=r?e.shape[u-2]:e.shape[u-1],p=n?t.shape[d-1]:t.shape[d-2],c=r?e.shape[u-1]:e.shape[u-2],m=n?t.shape[d-2]:t.shape[d-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(f),A=v.sizeFromShape(g),x=Rl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([c,m]);v.assert(h===p,()=>`Error in matMul: inner shapes (${h}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${r} and transposeB=${n} must match.`);let b=r?[y,h,c]:[y,c,h],w=n?[A,m,p]:[A,p,m],I=qe({inputs:{x:e},backend:a,attrs:{shape:b}}),T=qe({inputs:{x:t},backend:a,attrs:{shape:w}}),E=[I,T],R=Math.max(y,A),O=y===1,$=A===1,S=(h%4===0&&!r||c%4===0&&r)&&m%4===0&&!n,P;c*m<=32?P=new Kpe([R,c,m],O,$,r,n,s,l,i):!r&&!n&&(c<=16&&(m<=512||p>=2*m)||m<=16&&(c<=512||h>=2*c))?P=new Ype(b,w,[R,c,m],s,l,i):S?P=new _pe(b,[R,c,m],O,$,r,s,l,i):P=new qpe(b,[R,c,m],Z().get("WEBGPU_MATMUL_WORK_PER_THREAD"),O,$,r,n,s,l,i);let z=[I,T];s&&z.push(s),i&&z.push(i);let j=[{type:"int32",data:[c]},{type:"int32",data:[m]},{type:"int32",data:[h]}];l==="leakyrelu"&&(j.push({type:"float32",data:[o]}),P.uniforms+=" alpha : f32,");let K=a.runWebGPUProgram(P,z,e.dtype,j),D=qe({inputs:{x:K},backend:a,attrs:{shape:x}});E.push(K);for(let Y of E)a.disposeData(Y.dataId);return D}function Qpe(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n;return BA({a,b:s,transposeA:l,transposeB:u,backend:r,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:d})}var ehe={kernelName:_s,backendName:"webgpu",kernelFunc:Qpe},x7=class{constructor(e,t,r){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=C.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
fn binaryOpComplex(
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
${Zh(this.op,!1)}
}
${rt()}
if(index < uniforms.size) {
let areal = getARealByOutputIndex(index);
let aimag = getAImagByOutputIndex(index);
let breal = getBRealByOutputIndex(index);
let bimag = getBImagByOutputIndex(index);
setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag));
}
}
`}},the=class{constructor(e,t,r,n){this.variableNames=["A","B"],this.size=!0;let a=256;this.workGroupSize=[a,1,1],this.outputShape=C.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Je(this.outputShape),this.lastDimensionSize=n?r[0]:t[0],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4,this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.useSharedMemoryWithB=n,this.op=e,this.shaderKey=`binaryShared_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`}getUserCode(){let e=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",t=this.useSharedMemoryWithB?`let a = getAByOutputCoords(coords);
let b = sharedBuf[${e}];`:`let a = sharedBuf[${e}];
let b = getBByOutputCoords(coords);`;return`
fn binaryOperation(a : f32, b : f32) -> f32 {
${Zh(this.op,!1)}
}
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
${rt()}
// Fill in the shared memory buffer. Here we need a loop to make sure
// that all data in A|B are uploaded when |sharedMemorySize| is larger
// than work group size.
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}[localIndex]);
}
workgroupBarrier();
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
${t}
setOutputAtIndex(flatIndex, binaryOperation(a, b));
}
}
}
`}},rhe=class{constructor(e,t,r){this.variableNames=["A","B"],this.workPerThread=4,this.isVec4=!0,this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=C.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.op=e,this.shaderKey=`binaryVec4_${e}`}getUserCode(){return`
fn binaryOperation(a : vec4<f32>, b : vec4<f32>) -> vec4<f32> {
${Zh(this.op,this.isVec4)}
}
${rt()}
if (index < uniforms.size) {
let a = getAByOutputIndex(index);
let b = getBByOutputIndex(index);
setOutputAtIndex(index, binaryOperation(a, b));
}
}
`}},nS=class{constructor(e,t,r){this.variableNames=["A","B"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=C.assertAndGetBroadcastShape(t,r),this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binary_${e}`,this.op=e}getUserCode(){return`
fn binaryOperation(a : f32, b : f32) -> f32 {
${Zh(this.op,!1)}
}
${rt()}
if (index < uniforms.size) {
let a = getAByOutputIndex(index);
let b = getBByOutputIndex(index);
setOutputAtIndex(index, binaryOperation(a, b));
}
}
`}};function b7(e,t,r){if(v.arraysEqual(t,r)&&v.sizeFromShape(t)%4===0)return new rhe(e,t,r);let n=t.length===1&&r.length>1&&t[0]<1024,a=r.length===1&&t.length>1&&r[0]<1024;return n||a?new the(e,t,r,a):new nS(e,t,r)}function zn(e){let{inputs:t}=e,{x:r}=t;return e.backend.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var nhe={kernelName:fi,backendName:"webgpu",kernelFunc:zn};function Dd(e){let{inputs:t,backend:r}=e,{real:n,imag:a}=t,s=r.makeTensorInfo(n.shape,"complex64"),i=r.tensorMap.get(s.dataId),o=zn({inputs:{x:n},backend:r}),l=zn({inputs:{x:a},backend:r});return i.complexTensorInfos={real:o,imag:l},s}var ahe={kernelName:ah,backendName:"webgpu",kernelFunc:Dd},Jh=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let r=128;this.workGroupSize=[r,1,1],this.outputShape=e,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
fn unaryOperation(a : f32) -> f32 {
${Ao(this.op,!1)}
}
${rt()}
if (index < uniforms.size) {
let a = getAByOutputIndex(index);
setOutputAtIndex(index, unaryOperation(a));
}
}
`}};function kr({opType:e,cpuKernelImpl:t,dtype:r}){return({inputs:n,backend:a})=>{let{x:s}=n,i=a,o=r||s.dtype;if(i.shouldExecuteOnCPU([s])&&t!=null){let u=i.tensorMap.get(s.dataId),d=t(u.values,o);return i.makeTensorInfo(s.shape,o,d)}let l=new Jh(s.shape,e);return i.runWebGPUProgram(l,[s],o)}}function Kr({opSnippet:e,cpuKernelImpl:t,supportsComplex:r=!1,dtype:n}){return({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(r&&i.dtype==="complex64"){let h=l.tensorMap.get(i.dataId),p=l.tensorMap.get(o.dataId),c,m;if(e!==0)[c,m]=[[h.complexTensorInfos.real,p.complexTensorInfos.real],[h.complexTensorInfos.imag,p.complexTensorInfos.imag]].map(g=>{let[y,A]=g,x={dataId:y.dataId,dtype:y.dtype,shape:i.shape},b={dataId:A.dataId,dtype:A.dtype,shape:o.shape},w=b7(e,i.shape,o.shape);return l.runWebGPUProgram(w,[x,b],Nr(y.dtype,A.dtype))});else{let g=new x7(17,i.shape,o.shape),y=new x7(18,i.shape,o.shape),A=[{dataId:h.complexTensorInfos.real.dataId,dtype:h.complexTensorInfos.real.dtype,shape:i.shape},{dataId:h.complexTensorInfos.imag.dataId,dtype:h.complexTensorInfos.imag.dtype,shape:i.shape},{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:o.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:o.shape}];c=l.runWebGPUProgram(g,A,"float32"),m=l.runWebGPUProgram(y,A,"float32")}let f=Dd({inputs:{real:c,imag:m},backend:l});return l.disposeData(c.dataId),l.disposeData(m.dataId),f}let u=n||Nr(i.dtype,o.dtype);if((i.dtype==="string"||o.dtype==="string"||l.shouldExecuteOnCPU([i,o]))&&t!=null){let h=l.tensorMap.get(i.dataId).values,p=l.tensorMap.get(o.dataId).values,c=i.dtype==="string"?C.fromUint8ToStringArray(h):h,m=i.dtype==="string"?C.fromUint8ToStringArray(p):p,[f,g]=t(i.shape,o.shape,c,m,u);return l.makeTensorInfo(g,u,f)}let d=b7(e,i.shape,o.shape);return l.runWebGPUProgram(d,[i,o],u)}}var{addImpl:she,ceilImpl:ihe,concatImpl:ohe,equalImpl:lhe,expImpl:uhe,expm1Impl:dhe,floorImpl:phe,gatherNdImpl:hhe,gatherV2Impl:che,greaterEqualImpl:fhe,greaterImpl:mhe,lessEqualImpl:ghe,lessImpl:yhe,logImpl:Ahe,maxImpl:xhe,maximumImpl:bhe,minimumImpl:vhe,multiplyImpl:whe,negImpl:khe,notEqualImpl:Ihe,prodImpl:She,rangeImpl:Che,rsqrtImpl:The,scatterImpl:Nhe,simpleAbsImpl:Ehe,sliceImpl:Rhe,stridedSliceImpl:$he,stringNGramsImpl:Mhe,subImpl:Fhe,tileImpl:_he,topKImpl:Phe,transposeImpl:Ohe,uniqueImpl:AAe}=Rm,zhe=kr({opType:0,cpuKernelImpl:Ehe}),Dhe={kernelName:Uo,backendName:"webgpu",kernelFunc:zhe},Lhe=Kr({opSnippet:1,cpuKernelImpl:she,supportsComplex:!0}),Bhe={kernelName:Ja,backendName:"webgpu",kernelFunc:Lhe},Whe=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,r)=>`T${r}`),this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(r=>{e.push(`let v${r} = get${r}ByOutputCoords(coords);`)});let t=this.variableNames.map(r=>`v${r}`).join(" + ");return`
${rt()}
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
${e.join(`
`)}
setOutputAtIndex(flatIndex, ${t});
}
}
}
`}};function Vhe(e){let{inputs:t,backend:r}=e,n=t;if(n.length===1)return zn({inputs:{x:n[0]},backend:r});let a=n.map(o=>o.dtype).reduce((o,l)=>Nr(o,l)),s=n.map(o=>o.shape),i=new Whe(s);return r.runWebGPUProgram(i,n,a)}var Uhe={kernelName:Ks,backendName:"webgpu",kernelFunc:Vhe},aS=class{constructor(e,t,r){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="infinityValue : f32,",this.size=!0;let n=[t];C.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),n,e.length),this.op=r==="min"?"<":">";let[a]=C.computeOutAndReduceShapes(e,n);this.outputShape=a.length===0?[1]:a,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,[1,1,1]),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=`
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
`,t=()=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape.${Ms(this.inputShape.length-1)}`,r=()=>{let n="";if(this.outputShape.length===1)this.inputShape.length!==1&&(n+="outputCoords,");else for(let a=0;a<this.outputShape.length;a++)n+=`outputCoords.${Ms(a)},`;return n};return`
fn DIV_CEIL(a : u32, b : u32) -> u32 {
return ((a - 1u) / b + 1u);
}
${e}
${rt()}
let outputIndex = index / i32(workGroupSizeX);
let reduceLength = ${t()};
var bestIndex = i32(localId.x);
var bestValue = uniforms.infinityValue;
let outputCoords = getCoordsFromIndex(outputIndex);
for (var k = i32(localId.x); k < reduceLength && outputIndex < uniforms.size;
k = k + i32(workGroupSizeX)) {
let candidate = getX(${r()} k);
if (!isnan(candidate) && candidate ${this.op} bestValue) {
bestValue = candidate;
bestIndex = k;
}
}
xBestValues[localId.x] = bestValue;
xBestIndices[localId.x] = bestIndex;
workgroupBarrier();
var reduceSize = min(u32(reduceLength), workGroupSizeX);
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
currentSize = reduceSize / 2u) {
let interval = DIV_CEIL(reduceSize, 2u);
if (localId.x < currentSize) {
let candidate = xBestValues[localId.x + interval];
if (candidate ${this.op} bestValue) {
bestValue = candidate;
xBestValues[localId.x] = bestValue;
xBestIndices[localId.x] = xBestIndices[localId.x + interval];
}
}
reduceSize = interval;
workgroupBarrier();
}
if (localId.x == 0u && outputIndex < uniforms.size) {
setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]);
}
}
`}},Ghe=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[t[n]];this.outputShape=r,this.dispatchLayout={x:[0],y:[1]},this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
let TILE_DIM = ${this.workGroupSize[0]};
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
${DA()}
fn main(@builtin(local_invocation_id) localId : vec3<u32>,
@builtin(workgroup_id) workgroupId : vec3<u32>) {
var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);
var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);
let width = uniforms.outShape[0];
let height = uniforms.outShape[1];
if (x < width && y < height) {
tile[localId.y][localId.x] = A[y * width + x];
}
workgroupBarrier();
x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);
y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);
if (x < height && y < width) {
setOutputAtIndex((y * height + x), tile[localId.x]
[localId.y]);
}
}
`}},jhe=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0;let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[t[n]];this.outputShape=r,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=Ar(this.outputShape.length),t=Hhe(this.newDim);return`
${rt()}
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let resRC = getCoordsFromIndex(flatIndex);
setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D(
${e}(${t}), uniforms.aShape)]);
}
}
}
`}};function Hhe(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let r=new Array(t);for(let n=0;n<e.length;n++)r[e[n]]=`resRC.${Ms(n)}`;return r.join()}function Ya(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{perm:s}=n,i=r,o=a.shape.length,l=new Array(o);for(let d=0;d<l.length;d++)l[d]=a.shape[s[d]];if(r.shouldExecuteOnCPU([a])){let d=i.tensorMap.get(a.dataId).values,h=Ohe(d,a.shape,a.dtype,s,l);return r.makeTensorInfo(l,a.dtype,h)}if(a.shape.length===2&&v.arraysEqual(s,[1,0])){let d=new Ghe(a.shape,s);return i.runWebGPUProgram(d,[a],a.dtype)}let u=new jhe(a.shape,s);return i.runWebGPUProgram(u,[a],a.dtype)}var qhe={kernelName:$a,backendName:"webgpu",kernelFunc:Ya};function Xhe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=Ya({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let d=new aS(l.shape,i[0],"max"),h=[{type:"float32",data:[Number.NEGATIVE_INFINITY]}],p=r.runWebGPUProgram(d,[l],"int32",h);return u.forEach(c=>r.disposeData(c.dataId)),p}var Khe={kernelName:Zs,backendName:"webgpu",kernelFunc:Xhe};function Zhe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s}=n,i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=Ya({inputs:{x:a},backend:r,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let d=new aS(l.shape,i[0],"min"),h=[{type:"float32",data:[Number.POSITIVE_INFINITY]}],p=r.runWebGPUProgram(d,[l],"int32",h);return u.forEach(c=>r.disposeData(c.dataId)),p}var Yhe={kernelName:Ku,backendName:"webgpu",kernelFunc:Zhe},sS=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>, pad : vec2<i32>, dilation : vec2<i32>, convDims : vec2<i32>, filterDims : vec2<i32>,",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
var count = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
let xR = xRCorner + wR;
if (xR < 0 || xR >= uniforms.convDims.x) {
continue;
}
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
let xC = xCCorner + wC;
if (xC < 0 || xC >= uniforms.convDims.y) {
continue;
}
let value = getX(batch, xR, xC, coords[3]);
${e}
}
}
setOutputAtIndex(index, ${t});
}
}
`}},iS=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>,",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let d = coords[3];
let xRCCorner = coords.yz * uniforms.stride;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
let value = getX(batch, xRCorner, xCCorner, d);
setOutputAtIndex(index, value);
}
}
`}};function Jhe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1,d=C.computePool2DInfo(a.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&v.arraysEqual(d.inShape,d.outShape))return zn({inputs:{x:a},backend:r});let h,p=[{type:"int32",data:[d.strideHeight,d.strideWidth]}];return d.filterHeight===1&&d.filterWidth===1?h=new iS(d):(h=new sS(d,"avg"),p.push({type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.dilationHeight,d.dilationWidth]},{type:"int32",data:[d.inHeight,d.inWidth]},{type:"int32",data:[d.effectiveFilterHeight,d.effectiveFilterWidth]})),r.runWebGPUProgram(h,[a],a.dtype,p)}var Qhe={kernelName:Ys,backendName:"webgpu",kernelFunc:Jhe};function ece(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;return BA({a,b:s,transposeA:i,transposeB:o,backend:r})}var tce={kernelName:Js,backendName:"webgpu",kernelFunc:ece},rce=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${Ar(e.length)}, `,this.shaderKey="slice"}getUserCode(){let e=Ar(this.rank),t=nce(this.rank),r;return this.start.length===1?r=this.outputShape.map((n,a)=>"sourceLoc = uniforms.start + coords;"):r=this.outputShape.map((n,a)=>`sourceLoc.${xy[a]} = uniforms.start[${a}] + coords.${xy[a]};`),`
${rt()}
if (index < uniforms.size) {
var sourceLoc : ${e};
let coords = getCoordsFromIndex(index);
${r.join(`
`)}
setOutputAtIndex(index, getSource(${t}));
}
}
`}},xy=["x","y","z","w","u","v"];function nce(e){if(e===1)return"sourceLoc";if(e<=6)return xy.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function Ld(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,size:i}=n,[o,l]=Dt.parseSliceParams(a,s,i);if(Dt.assertParamsValid(a,o,l),r.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=r.tensorMap.get(a.dataId),p=Rhe(h.values,o,l,a.shape,a.dtype);return r.makeTensorInfo(l,a.dtype,p)}if(v.sizeFromShape(l)===0)return r.makeTensorInfo(l,a.dtype,[]);let u=new rce(o,l),d=[{type:"int32",data:o}];return r.runWebGPUProgram(u,[a],a.dtype,d)}var ace={kernelName:Al,backendName:"webgpu",kernelFunc:Ld},sce=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n;v.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let o=s.reduce((A,x)=>A*x),l=C.getReshaped(a.shape,s,o),u=C.getPermuted(l.length,s.length),d=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),p=C.getSliceSize(d,i,s.length),c=[],m=qe({inputs:{x:a},backend:r,attrs:{shape:l}}),f=Ya({inputs:{x:m},backend:r,attrs:{perm:u}}),g=qe({inputs:{x:f},backend:r,attrs:{shape:d}}),y=Ld({inputs:{x:g},backend:r,attrs:{begin:h,size:p}});return c.push(m),c.push(f),c.push(g),c.forEach(A=>r.disposeData(A.dataId)),y},ice={kernelName:Go,backendName:"webgpu",kernelFunc:sce},oS=Kr({opSnippet:10,dtype:"bool",cpuKernelImpl:Ihe}),oce={kernelName:ol,backendName:"webgpu",kernelFunc:oS};function Qh(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.tensorMap.get(n.dataId);return zn({inputs:{x:a.complexTensorInfos.real},backend:r})}var lce={kernelName:hh,backendName:"webgpu",kernelFunc:Qh};function uce(e,t){let r=new Jh(e.shape,22),n=t.runWebGPUProgram(r,[e],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function by(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dtype:s}=n;if(s==="complex64"){if(a.dtype==="complex64")return zn({inputs:{x:a},backend:r});let i=Ot(a.shape),o=by({inputs:{x:a},backend:r,attrs:{dtype:"float32"}}),l=Dd({inputs:{real:o,imag:i},backend:r});return i.dispose(),r.disposeData(o.dataId),l}if(a.dtype==="complex64"){let i=Qh({inputs:{input:a},backend:r}),o=by({inputs:{x:i},backend:r,attrs:{dtype:s}});return r.disposeData(i.dataId),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=zn({inputs:{x:a},backend:r});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return uce(a,r);if(s==="bool"){let i=r.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=oS({inputs:{a,b:i},backend:r});return r.disposeData(i.dataId),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var dce={kernelName:Qs,backendName:"webgpu",kernelFunc:by},pce=kr({opType:1,cpuKernelImpl:ihe}),hce={kernelName:ei,backendName:"webgpu",kernelFunc:pce},cce=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
${rt()}
if(index < uniforms.size) {
let value = getAByOutputIndex(index);
var clampedValue : vec4<f32>;
for (var i = 0; i < 4; i = i + 1) {
if (isnan(value[i])) {
clampedValue[i] = value[i];
} else {
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
}
}
setOutputAtIndex(index, clampedValue);
}
}
`}},fce=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return`
${rt()}
if(index < uniforms.size) {
let value = getAByOutputIndex(index);
if (isnan(value)) {
setOutputAtIndex(index, value);
return;
}
setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal));
}
}
`}};function mce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=n,o,l=[{type:"float32",data:[s]},{type:"float32",data:[i]}];return v.sizeFromShape(a.shape)%4===0?o=new cce(a.shape):o=new fce(a.shape),r.runWebGPUProgram(o,[a],a.dtype,l)}var gce={kernelName:Qa,backendName:"webgpu",kernelFunc:mce},yce=class{constructor(e){this.uniforms="",this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((t,r)=>`T${r}`),this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t<this.offsetLength;t++)this.uniforms+=`offset${t} : i32,`;this.shaderKey="concat"}getUserCode(){let e=[];if(this.offsetLength>0){e.push("if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }");for(let n=1;n<this.offsetLength;n++)e.push(`else if (yC < uniforms.offset${[n]}){ setOutputAtCoords(coords.x, coords.y, getT${n}(yR, yC - uniforms.offset${n-1})); }`);let t=this.offsetLength,r=this.offsetLength-1;e.push(`else { setOutputAtCoords(coords.x, coords.y, getT${t}(yR, yC - uniforms.offset${r})); }`)}else e.push("setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));");return`
${rt()}
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
let yR = coords.x;
let yC = coords.y;
${e.join(`
`)}
}
}
}
`}};function Lm(e){let{inputs:t,backend:r}=e,{input:n}=t,a=r.tensorMap.get(n.dataId);return zn({inputs:{x:a.complexTensorInfos.imag},backend:r})}var Ace={kernelName:uh,backendName:"webgpu",kernelFunc:Lm};function vy(e,t,r){let n=e[0].dtype;if(n==="complex64"){let c=e.map(A=>Qh({inputs:{input:A},backend:r})),m=e.map(A=>Lm({inputs:{input:A},backend:r})),f=vy(c,t,r),g=vy(m,t,r),y=Dd({inputs:{real:f,imag:g},backend:r});return c.forEach(A=>r.disposeData(A.dataId)),m.forEach(A=>r.disposeData(A.dataId)),r.disposeData(f.dataId),r.disposeData(g.dataId),y}let a=r.shouldExecuteOnCPU(e);if(n==="string"&&(a=!0),a){let c=e.map(b=>{let w=v.sizeFromShape(b.shape.slice(t));return qe({inputs:{x:b},backend:r,attrs:{shape:[-1,w]}})}),m=c.map(b=>({vals:r.readSync(b.dataId),shape:b.shape})),f=C.computeOutShape(c.map(b=>b.shape),1),g=c[0].shape[0]===1,y=ohe(m,f,n,g),A=C.computeOutShape(e.map(b=>b.shape),t),x=r.makeTensorInfo(A,n,y);return c.forEach(b=>r.disposeData(b.dataId)),x}let{tensors2D:s,outShape:i}=xce(e,t,r),o=s.map(c=>c.shape),l=new yce(o),u=[],d=new Array(o.length-1);if(d.length>0){d[0]=o[0][1],u.push({type:"int32",data:[d[0]]});for(let c=1;c<d.length;c++)d[c]=d[c-1]+o[c][1],u.push({type:"int32",data:[d[c]]})}let h=r.runWebGPUProgram(l,s,s[0].dtype,u);s.forEach(c=>r.disposeData(c.dataId));let p=qe({inputs:{x:h},backend:r,attrs:{shape:i}});return r.disposeData(h.dataId),p}function xce(e,t,r){let n=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>qe({inputs:{x:a},backend:r,attrs:{shape:[v.sizeFromShape(a.shape.slice(0,t)),v.sizeFromShape(a.shape.slice(t))]}})),outShape:n}}function lS(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n,s=v.parseAxisParam(a,t[0].shape)[0],i=C.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(i)===0)return r.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>v.sizeFromShape(u.shape)>0);if(o.length===1)return zn({inputs:{x:o[0]},backend:r});let l=o.map(u=>u.shape);return C.assertParamsConsistent(l,s),vy(o,s,r)}var bce={kernelName:jo,backendName:"webgpu",kernelFunc:lS},mu=e=>{switch(e){case 1:return"f32";case 2:return"vec2<f32>";case 3:return"vec3<f32>";case 4:return"vec4<f32>";default:throw new Error(`innerElementSize ${e} is not supported.`)}};function vce(e,t,r,n,a=!1,s=null,i=!1,o=4,l=4,u=4){let d=O=>{switch(O){case 1:return"resData = x[xIndex];";case 3:return"resData = vec3<f32>(x[xIndex], x[xIndex + 1], x[xIndex + 2]);";case 4:return"resData = x[xIndex / 4];";default:throw new Error(`innerElementSize ${O} is not supported.`)}},h=O=>{switch(O){case 1:return"return W[row * uniforms.wShape[3] + colIn];";case 4:return"return W[row * uniforms.wShape[3] / 4 + colIn];";default:throw new Error(`innerElementSize ${O} is not supported.`)}},p=e?`
let coord = vec4<i32>(batch, xRow, xCol, xCh);
`:`
let coord = vec4<i32>(batch, xCh, xRow, xCol);
`,c=e?`
let outCoord = vec4<i32>(
batch,
row / outWidth,
row % outWidth,
col);
`:`
let outCoord = vec4<i32>(
batch,
row,
col / outWidth,
col % outWidth);
`,m=e?"uniforms.xShape[1]":"uniforms.xShape[2]",f=e?"uniforms.xShape[2]":"uniforms.xShape[3]",g=e?"row":"col",y=e?"col":"row",A=`
let inChannels = uniforms.wShape[2];
let outWidth = ${e?"uniforms.outShape[2]":"uniforms.outShape[3]"};
let outRow = ${g} / outWidth;
let outCol = ${g} % outWidth;
let WRow = ${y} / (uniforms.filterDims[1] * inChannels);
let WCol = ${y} / inChannels % uniforms.filterDims[1];
let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0];
let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1];
let xCh = ${y} % inChannels;
var resData = ${mu(o)}(0.0);
// The bounds checking is always needed since we use it to pad zero for
// the 'same' padding type.
if (xRow >= 0 && xRow < ${m} && xCol >= 0 && xCol < ${f}) {
${p}
let xIndex = getIndexFromCoords4D(coord, uniforms.xShape);
${d(o)}
}
return resData;`,x=e?t&&n?`
let col = colIn * ${o};
${A}`:`
let col = colIn * ${o};
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
${A}
}
return ${mu(o)}(0.0);`:n&&r?`
let col = colIn * ${o};
${A}`:`
let col = colIn * ${o};
if (row < uniforms.dimInner && col < uniforms.dimBOuter) {
${A}
}
return ${mu(o)}(0.0);`,b=`${h(l)}`,w=mu(u),I=mu(e?o:l),T=mu(e?l:o),E="",R="";if(s){let O=Bl(s,u===4);i?E=`fn activation(a: ${w}, outCoord : vec4<i32>) -> ${w} {
let b = getPreluActivationWeightsByOutputCoords(outCoord);
${O}
}`:E=`
fn activation(a : ${w}, outCoord : vec4<i32>) -> ${w} {
${O}
}`,R="value = activation(value, outCoord);"}return`
${E}
fn mm_readA(row : i32, colIn : i32, globalId : vec3<u32>) -> ${I} {
var batch = i32(globalId.z);
${e?x:b}
}
fn mm_readB(row : i32, colIn : i32, globalId : vec3<u32>) -> ${T} {
var batch = i32(globalId.z);
${e?b:x}
}
fn mm_write(row : i32, colIn : i32, valueIn : ${w}, globalId : vec3<u32>) {
var col = colIn * ${u};
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)
{
var batch = i32(globalId.z);
var value = valueIn;
let outWidth = ${e?"uniforms.outShape[2]":"uniforms.outShape[3]"};
${c}
${a?"value = value + getBiasByOutputCoords(outCoord);":""}
${R}
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], outCoord[3], value);
}
}`}var wce=class{constructor(e,t,r,n,a=!1,s=null,i=!1,o=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.outShape,this.isChannelsLast=e.dataFormat==="channelsLast",this.isVec4=o,this.dispatchLayout=this.isChannelsLast?{x:[3],y:[1,2],z:[0]}:{x:[2,3],y:[1],z:[0]},this.workGroupSize=PA(this.dispatchLayout,this.outputShape,this.isVec4),this.elementsPerThread=OA(this.dispatchLayout,this.outputShape,this.isVec4),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.innerElementSize=this.isVec4?e.inChannels%4===0?4:3:this.elementsPerThread[0],this.isVec4&&(this.variableTypes=this.innerElementSize===3?["f32","vec4<f32>"]:["vec4<f32>","vec4<f32>"]),a&&(this.variableNames.push("bias"),this.isVec4&&this.variableTypes.push("vec4<f32>")),i&&(this.variableNames.push("preluActivationWeights"),this.isVec4&&this.variableTypes.push("vec4<f32>")),this.addBias=a,this.activation=s,this.hasPreluActivationWeights=i,this.tileAOuter=this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=Math.max(this.workGroupSize[0]*this.innerElementSize,this.workGroupSize[1]),this.fitAOuter=t%this.tileAOuter===0,this.fitBOuter=r%this.tileBOuter===0,this.fitInner=n%this.tileInner===0,this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.innerElementSize}_${this.isChannelsLast}`}getUserCode(){let e=this.isVec4?tS(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner,this.innerElementSize,!this.isChannelsLast):LA(this.elementsPerThread,this.workGroupSize,!this.isChannelsLast,this.tileInner),t=this.isVec4?[this.isChannelsLast?this.innerElementSize:4,4,4]:[1,1,1];return`
${vce(this.isChannelsLast,this.fitAOuter,this.fitBOuter,this.fitInner,this.addBias,this.activation,this.hasPreluActivationWeights,t[0],t[1],t[2])}
${e}
`}};function v7(e,t){let r=e.length;return r>=3?t?[...e.slice(0,-3),e[r-3]*e[r-2],e[r-1]]:[...e.slice(0,-3),e[r-3],e[r-2]*e[r-1]]:!t&&r===1&&e[0]>1?[e[0],1]:null}function kce({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=r.dataFormat==="channelsLast",u=!l,d=!1,h=l&&r.filterHeight===r.inHeight&&r.filterWidth===r.inWidth&&r.padInfo.type==="VALID",p=[],c,m;if(h){let y=r.inHeight*r.inWidth*r.inChannels;c=qe({inputs:{x:e},backend:n,attrs:{shape:[1,r.batchSize,y]}}),m=qe({inputs:{x:t},backend:n,attrs:{shape:[1,y,r.outChannels]}})}else c=qe({inputs:{x:e},backend:n,attrs:{shape:l?[r.batchSize,r.inHeight*r.inWidth,r.inChannels]:[r.batchSize,r.inChannels,r.inHeight*r.inWidth]}}),m=qe({inputs:{x:t},backend:n,attrs:{shape:[1,r.inChannels,r.outChannels]}});if(p.push(c),p.push(m),s!=null){let y=v7(s.shape,l);y!=null&&(s=qe({inputs:{x:s},backend:n,attrs:{shape:y}}),p.push(s))}if(a!=null){let y=v7(a.shape,l);y!=null&&(a=qe({inputs:{x:a},backend:n,attrs:{shape:y}}),p.push(a))}let f=BA({a:l?c:m,b:l?m:c,transposeA:u,transposeB:d,backend:n,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),g=qe({inputs:{x:f},backend:n,attrs:{shape:r.outShape}});p.push(f);for(let y of p)n.disposeData(y.dataId);return g}function uS({x:e,filter:t,convInfo:r,backend:n,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=a!=null,u=s!=null,d=r.dataFormat==="channelsLast";if(d&&r.filterHeight===r.inHeight&&r.filterWidth===r.inWidth&&r.padInfo.type==="VALID"||r.filterHeight===1&&r.filterWidth===1&&r.dilationHeight===1&&r.dilationWidth===1&&r.strideHeight===1&&r.strideWidth===1&&(r.padInfo.type==="SAME"||r.padInfo.type==="VALID"))return kce({x:e,filter:t,convInfo:r,backend:n,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});let h=((r.inChannels%4===0||r.inChannels%3===0)&&d||r.outWidth%4===0&&!d)&&r.outChannels%4===0,p=d?r.outHeight*r.outWidth:r.outChannels,c=d?r.outChannels:r.outHeight*r.outWidth,m=r.filterHeight*r.filterWidth*r.inChannels,f=[r.padInfo.top,r.padInfo.left],g=[{type:"int32",data:[r.filterHeight,r.filterWidth]},{type:"int32",data:[...f]},{type:"int32",data:[r.strideHeight,r.strideWidth]},{type:"int32",data:[r.dilationHeight,r.dilationWidth]},{type:"int32",data:[p]},{type:"int32",data:[c]},{type:"int32",data:[m]}],y=new wce(r,p,c,m,l,o,u,h),A=[],x=[e,t];l&&(!d&&a.shape.length===1&&(a=qe({inputs:{x:a},backend:n,attrs:{shape:[a.shape[0],1,1]}}),A.push(a)),x.push(a)),u&&(!d&&s.shape.length===1&&(s=qe({inputs:{x:s},backend:n,attrs:{shape:[s.shape[0],1,1]}}),A.push(s)),x.push(s)),o==="leakyrelu"&&(g.push({type:"float32",data:[i]}),y.uniforms+=" alpha : f32,");let b=n.runWebGPUProgram(y,x,e.dtype,g);for(let w of A)n.disposeData(w.dataId);return b}function Ice(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=r,h=C.convertConv2DDataFormat(l),p=C.computeConv2DInfo(a.shape,s.shape,i,u,o,d,!1,h);return uS({x:a,filter:s,convInfo:p,backend:n})}var Sce={kernelName:ti,backendName:"webgpu",kernelFunc:Ice},Cce=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=PA(this.dispatchLayout,this.outputShape),this.elementsPerThread=OA(this.dispatchLayout,this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.shaderKey=`conv2DDerInputMM_${this.elementsPerThread}`}getUserCode(){return`
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
var batch = i32(globalId.z);
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
let outRow = row / uniforms.outShape[2];
let outCol = row % uniforms.outShape[2];
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
return 0.0;
}
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
return 0.0;
}
let coord = vec4<i32>(
batch,
i32(xR),
i32(xC),
col % uniforms.outBackprop[3]);
return x[getIndexFromCoords4D(coord, uniforms.xShape)];
}
return 0.0;
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let coordX = uniforms.filterDims.x - 1 -
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let coordY = uniforms.filterDims.y - 1 -
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
coordX >= 0 && coordY >= 0) {
let coord = vec4<i32>(coordX, coordY, col,
row % uniforms.outBackprop[3]);
return W[getIndexFromCoords4D(coord, uniforms.wShape)];
}
return 0.0;
}
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)
{
var batch = i32(globalId.z);
var value = valueInput;
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col);
result[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value;
}
}
${LA(this.elementsPerThread,this.workGroupSize)}
`}},Tce=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,r=this.isChannelsLast?3:1;return`
${rt()} {
if(index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let d1 = coords[${r}];
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
let dyRCorner = dyCorner.x;
let dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
let wRPerm = uniforms.filterDims.x - 1 - wR;
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
wRPerm < 0) {
continue;
}
let idyR = dyR;
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
let wCPerm = uniforms.filterDims.y - 1 - wC;
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
fract(dyC) > 0.0 || wCPerm < 0) {
continue;
}
let idyC = dyC;
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
if (${this.isChannelsLast}) {
let xValue = getDy(batch, idyR, idyC, d2);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
} else {
let xValue = getDy(batch, d2, idyR, idyC);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
}
}
}
}
setOutputAtIndex(index, dotProd);
}
}
`}};function Nce(e){let{inputs:t,backend:r,attrs:n}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=n,h=C.convertConv2DDataFormat(u),p=C.computeConv2DInfo(i,s.shape,o,1,l,d,!1,h),c=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[p.filterHeight-1-p.padInfo.top,p.filterWidth-1-p.padInfo.left]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.batchSize,p.outHeight,p.outWidth,p.outChannels]}],m;if(Z().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))m=new Tce(p);else{m=new Cce(p);let f=p.inShape[1]*p.inShape[2],g=p.inShape[3],y=p.filterHeight*p.filterWidth*p.outChannels;c.push({type:"uint32",data:[f]},{type:"uint32",data:[g]},{type:"uint32",data:[y]})}return r.runWebGPUProgram(m,[a,s],"float32",c)}var Ece={kernelName:ri,backendName:"webgpu",kernelFunc:Nce},Rce=kr({opType:2}),$ce={kernelName:ni,backendName:"webgpu",kernelFunc:Rce},Mce=kr({opType:3}),Fce={kernelName:ai,backendName:"webgpu",kernelFunc:Mce},_ce=class{constructor(e,t,r,n){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32,",this.workGroupSize=[64,1,1],this.size=!0;let[a]=t;this.outputShape=[a,r[0],r[1],e],this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=n==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[r,n,a]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[s,i,o]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let height_ratio = f32(${r});
let width_ratio = f32(${s});
let b = coords[0];
let y = coords[1];
let x = coords[2];
let d = coords[3];
// get box vals
let y1 = getBoxes(b, 0);
let x1 = getBoxes(b, 1);
let y2 = getBoxes(b, 2);
let x2 = getBoxes(b, 3);
// get image in batch index
let bInd = i32(round(getBoxInd(b)));
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
return;
}
let height_scale = ${n};
let width_scale = ${i};
let in_y = ${a};
if( in_y < 0.0 || in_y > ${e} ) {
setOutputAtIndex(index, uniforms.extrapolationValue);
return;
}
let in_x = ${o};
if( in_x < 0.0 || in_x > ${t} ) {
setOutputAtIndex(index, uniforms.extrapolationValue);
return;
}
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
if(${this.methodId} == 1) {
// Compute the four integer indices.
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
let top = topLeft + (topRight - topLeft) * fracCR.x;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
let newValue = top + (bottom - top) * fracCR.y;
setOutputAtIndex(index, newValue);
} else {
// Compute the coordinators of nearest neighbor point.
let sourceNearestCR = vec2<i32>(floor(
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
let newValue = getImage(
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
setOutputAtIndex(index, newValue);
}
}
}
`}},Pce=e=>{let{inputs:t,backend:r,attrs:n}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=n,d=new _ce(a.shape[3],s.shape,o,l),h=[{type:"float32",data:[u]}];return r.runWebGPUProgram(d,[a,s,i],"float32",h)},Oce={kernelName:qo,backendName:"webgpu",kernelFunc:Pce},w7=class{constructor(e,t,r,n){this.variableNames=["x"],this.uniforms="index : f32,",this.size=!0;let a=128;this.workGroupSize=[a,1,1],this.outputShape=t,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.exclusive=r,this.reverse=n,this.op=e,this.shaderKey=`cum_${this.op}_${this.exclusive}_${this.reverse}`}getUserCode(){let e=this.outputShape.length,t=this.op==="*"?"1.0":"0.0",r=this.exclusive?t:`getX(${k7(e,"coords",this.op)})`,n=this.outputShape[this.outputShape.length-1],a="",s="";return this.exclusive?(a=this.reverse?`end != ${n-1}`:"end != 0",s=this.reverse?"end + 1":"end - 1"):(a=this.reverse?`end + pow2 < ${n}`:"end >= pow2",s=this.reverse?"end + pow2":"end - pow2"),`
${rt()}
if (index < uniforms.size) {
var coords = getCoordsFromIndex(index);
let end = ${I7(e,"coords",this.op)};
var val = ${r};
let pow2 = i32(pow(2.0, uniforms.index));
if (${a}) {
let idx = ${s};
${I7(e,"coords",this.op)} = idx;
val ${this.op}= getX(${k7(e,"coords",this.op)});
}
setOutputAtIndex(index, val);
}
}
`}};function k7(e,t,r){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative ${r} for rank ${e} is not yet supported`)}function I7(e,t,r){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative ${r} for rank ${e} is not yet supported`)}function dS(e,t,r,n,a,s){let i=t.shape.length,o=C.getAxesPermutation([n],i),l=t;o!=null&&(l=Ya({inputs:{x:t},backend:r,attrs:{perm:o}}));let u=C.getInnerMostAxes(1,i)[0];if(u!==i-1)throw new Error(`WebGPU cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${n}`);let d=l.shape[u],h=zn({inputs:{x:l},backend:r});for(let p=0;p<=Math.ceil(Math.log2(d))-1;p++){let c=new w7(e,l.shape,!1,s),m=h,f=[{type:"float32",data:[p]}];h=r.runWebGPUProgram(c,[h],h.dtype,f),r.disposeData(m.dataId)}if(a){let p=new w7(e,l.shape,a,s),c=h,m=[{type:"float32",data:[0]}];h=r.runWebGPUProgram(p,[h],h.dtype,m),r.disposeData(c.dataId)}if(o!=null){let p=C.getUndoAxesPermutation(o),c=Ya({inputs:{x:h},backend:r,attrs:{perm:p}});return r.disposeData(h.dataId),r.disposeData(l.dataId),c}return h}function zce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n;return dS("*",a,r,s,i,o)}var Dce={kernelName:Ho,backendName:"webgpu",kernelFunc:zce};function Lce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n;return dS("+",a,r,s,i,o)}var Bce={kernelName:si,backendName:"webgpu",kernelFunc:Lce},Wce=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32,",this.outputShape=e,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let h = ${this.getHeightCoordString()};
let w = ${this.getWidthCoordString()};
let d = ${this.getDepthCoordString()};
let in_h = h / uniforms.blockSize;
let offset_h = h % uniforms.blockSize;
let in_w = w / uniforms.blockSize;
let offset_w = w % uniforms.blockSize;
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
${this.getOutputDepthSize()};
let in_d = d + offset_d;
let rlt = ${this.getInputSamplingString()};
setOutputAtIndex(index, rlt);
}
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Vce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockSize:s,dataFormat:i}=n,o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],d=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,p=u*s,c=d/(s*s),m=i==="NHWC"?[o,h,p,c]:[o,c,h,p],f=[{type:"int32",data:[s]}],g=new Wce(m,i);return r.runWebGPUProgram(g,[a],a.dtype,f)}var Uce={kernelName:Xo,backendName:"webgpu",kernelFunc:Vce},pS=class{constructor(e,t=!1,r=null,n=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, inDims : vec2<i32>,",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[0,1],y:[2],z:[3]},this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,4,4]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivation=n,this.shaderKey=`depthwise3x3_${r}`}getUserCode(){let e="",t="";if(this.activation){let n=Bl(this.activation,this.isVec4);this.hasPreluActivation?e=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
let b = getPreluActivationWeightsByOutputCoords(outCoord);
${n}
}`:e=`
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
${n}
}
`,t="dotProd[i] = activation(dotProd[i], coords);"}let r=this.addBias?"dotProd[i] = dotProd[i] + getBiasByOutputCoords(coords);":"";return`
${e}
${DA()}
fn main(@builtin(global_invocation_id) globalId: vec3<u32>) {
let batch = 0;
let r = i32(globalId.x);
let c = i32(globalId.y) * 4;
let d2 = i32(globalId.z) * 4;
let xRCCorner = vec2<i32>(r, c) * uniforms.stride - uniforms.pad;
let d1 = d2;
let q = 0;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var wVals : array<vec4<f32>, 9>;
wVals[0] = getW(0, 0, d1, q);
wVals[1] = getW(0, 1, d1, q);
wVals[2] = getW(0, 2, d1, q);
wVals[3] = getW(1, 0, d1, q);
wVals[4] = getW(1, 1, d1, q);
wVals[5] = getW(1, 2, d1, q);
wVals[6] = getW(2, 0, d1, q);
wVals[7] = getW(2, 1, d1, q);
wVals[8] = getW(2, 2, d1, q);
var xVals : array<array<vec4<f32>, 6>, 3>;
for (var wR = 0; wR < 3; wR = wR + 1) {
let xR = xRCorner + wR * uniforms.dilation[0];
for (var wC = 0; wC < 6; wC = wC + 1) {
let xC = xCCorner + wC * uniforms.dilation[1];
if (xR < 0 || xR >= uniforms.inDims[0] || xC < 0 || xC >= uniforms.inDims[1]) {
xVals[wR][wC] = vec4<f32>(0.0);
} else {
xVals[wR][wC] = getX(batch, xR, xC, d1);
}
}
}
var dotProd : array<vec4<f32>, 4>;
dotProd[0] = vec4<f32>(0.0);
dotProd[1] = vec4<f32>(0.0);
dotProd[2] = vec4<f32>(0.0);
dotProd[3] = vec4<f32>(0.0);
for (var wR = 0; wR < 3; wR = wR + 1) {
for (var wC = 0; wC < 3; wC = wC + 1) {
let indexW = wR * 3 + wC;
dotProd[0] = dotProd[0] + xVals[wR][0 + wC] * wVals[indexW];
dotProd[1] = dotProd[1] + xVals[wR][1 + wC] * wVals[indexW];
dotProd[2] = dotProd[2] + xVals[wR][2 + wC] * wVals[indexW];
dotProd[3] = dotProd[3] + xVals[wR][3 + wC] * wVals[indexW];
}
}
for (var i = 0; i < 4; i = i + 1) {
let coords = vec4<i32>(batch, r, c + i, d2);
if (coordsInBounds4D(coords, uniforms.outShape)) {
${r}
${t}
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], dotProd[i]);
}
}
}
`}},hS=class{constructor(e,t=!1,r=null,n=!1){this.variableNames=["x","W"],this.uniforms=`pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,
inDims : vec2<i32>, filterHeight : i32, filterWidth : i32,
channelMul : i32,`,this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=r,this.hasPreluActivation=n,this.shaderKey=`depthwise_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let n=Bl(this.activation,!1);this.hasPreluActivation?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
let b = getPreluActivationWeightsByOutputCoords(outCoord);
${n}
}`:e=`
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
${n}
}
`,t="dotProd = activation(dotProd, coords);"}let r=this.addBias?"dotProd = dotProd + getBiasByOutputCoords(coords);":"";return`
${e}
fn writeResult(batch : i32, row : i32, col : i32, chan : i32,
value : f32) {
let coord = vec4<i32>(batch, row, col, chan);
if (coordsInBounds4D(coord, uniforms.outShape)) {
setOutputAtCoords(batch, row, col, chan, value);
}
}
${Yh()}
let coords = getOutputCoords();
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
let d2 = coords[3];
let d1 = d2 / uniforms.channelMul;
let q = d2 - d1 * uniforms.channelMul;
let inputRowStart = xRCCorner.x;
let inputColStart = xRCCorner.y;
let inputRowEnd = inputRowStart + uniforms.filterHeight *
uniforms.dilation[0];
let inputColEnd = inputColStart + uniforms.filterWidth *
uniforms.dilation[1];
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
// Extract if checking out of for loop for performance.
if (inputRowStart >= 0 && inputColStart >= 0 &&
inputRowEnd < uniforms.inDims[0] &&
inputColEnd < uniforms.inDims[1]) {
// Here using a constant value |this.convInfo.filterHeight| instead
// of uniform value is in order to loop unrolling.
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
let xVal = getX(batch, xR, xC, d1);
let wVal = getW(wR, wC, d1, q);
dotProd = dotProd + xVal * wVal;
}
}
} else {
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
if (xR < 0 || xR >= uniforms.inDims[0]) {
continue;
}
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
if (xC < 0 || xC >= uniforms.inDims[1]) {
continue;
}
let xVal = getX(batch, xR, xC, d1);
let wVal = getW(wR, wC, d1, q);
dotProd = dotProd + xVal * wVal;
}
}
}
${r}
${t}
writeResult(batch, coords[1], coords[2], d2, dotProd);
}
`}};function Gce(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=n,d=l;d==null&&(d=[1,1]);let h=C.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),p=[{type:"int32",data:[h.padInfo.top,h.padInfo.left]},{type:"int32",data:[h.strideHeight,h.strideWidth]},{type:"int32",data:[h.dilationHeight,h.dilationWidth]},{type:"int32",data:[h.inHeight,h.inWidth]}],c;return h.batchSize===1&&h.inHeight===h.outHeight&&h.inWidth===h.outWidth&&h.strideHeight===1&&h.strideWidth===1&&h.filterHeight===h.filterWidth&&h.inChannels===h.outChannels&&h.dilationHeight===1&&h.dilationWidth===1&&h.filterHeight===3&&h.inChannels%4===0?c=new pS(h):(c=new hS(h),p.push({type:"int32",data:[h.filterHeight]},{type:"int32",data:[h.filterWidth]},{type:"int32",data:[h.outChannels/h.inChannels]})),r.runWebGPUProgram(c,[a,s],a.dtype,p)}var jce={kernelName:ii,backendName:"webgpu",kernelFunc:Gce},cS=Kr({opSnippet:0,cpuKernelImpl:whe,supportsComplex:!0}),Hce={kernelName:Ii,backendName:"webgpu",kernelFunc:cS},qce=class{constructor(e,t){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32,",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[r]=C.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=r.length===0?[1]:r,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0";this.reduceType==="min"||this.reduceType==="max"?(e=`
if (isnan(candidate)) {
bestValue = uniforms.NAN;
} else if (!isnan(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue)
{ bestValue = candidate; }`,t="f32(x[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(e=" bestValue = bestValue * candidate; ",t="1.0");let r=this.reduceType==="mean"?"setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputAtIndex(outputIndex, bestValue);";return`
fn DIV_CEIL(a : u32, b : u32) -> u32 {
return ((a - 1u) / b + 1u);
}
${`
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
`}
fn getOffset(outputIndex : i32) -> i32 {
let outputCoords = getCoordsFromIndex(outputIndex);
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
return offset;
}
${rt()}
let outputIndex = index / i32(workGroupSizeX);
let offset = getOffset(outputIndex);
var bestValue = ${t};
let Length = uniforms.reduceSize;
let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX);
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
k = k + i32(workGroupSizeX)) {
let candidate = f32(x[offset + k]);
${e}
}
xBestValues[localId.x] = bestValue;
workgroupBarrier();
var reduceSize = min(u32(Length), workGroupSizeX);
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
currentSize = reduceSize / 2u) {
let interval = DIV_CEIL(reduceSize, 2u);
if (localId.x < currentSize) {
let candidate = xBestValues[localId.x + interval];
${e}
xBestValues[localId.x] = bestValue;
}
reduceSize = interval;
workgroupBarrier();
}
if (localId.x == 0u && outputIndex < uniforms.size) {
${r}
}
}
`}};function ec(e,t,r,n,a){let s=e.shape.length,i=[],o=v.parseAxisParam(t,e.shape),l=o,u=C.getAxesPermutation(l,s),d=e;u!=null&&(d=Ya({inputs:{x:e},attrs:{perm:u},backend:a}),l=C.getInnerMostAxes(l.length,s),i.push(d)),C.assertAxesAreInnerMostDims(n,l,s);let[h,p]=C.computeOutAndReduceShapes(d.shape,l),c=h;r&&(c=C.expandShapeToKeepDim(h,o));let m;if((n==="max"||n==="prod")&&a.shouldExecuteOnCPU([d])){let f=a.tensorMap.get(d.dataId).values;switch(n){case"max":let g=xhe(f,v.sizeFromShape(p),c,e.dtype);m=a.makeTensorInfo(c,e.dtype,g);break;case"prod":let{outVals:y,outShape:A,outDtype:x}=She(d.shape,d.dtype,f,l);m=a.makeTensorInfo(A,x,y);break;default:throw new Error(`${n} CPU implementation is not yet supported.`)}}else{let f=v.sizeFromShape(p),g=v.sizeFromShape(d.shape)/f,y={windowSize:f,inSize:f,batchSize:g,outSize:1},A=n==="mean"?"float32":vh(e.dtype),x=[{type:"int32",data:[f]}],b=new qce(y,n),w=a.runWebGPUProgram(b,[d],A,x);i.push(w),m=qe({inputs:{x:w},attrs:{shape:c},backend:a})}return i.forEach(f=>a.disposeData(f.dataId)),m}function WA(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return ec(a,s,i,"sum",r)}var Xce={kernelName:Oi,backendName:"webgpu",kernelFunc:WA};function Kce(e){let{inputs:t,backend:r,attrs:n}=e,{equation:a}=n,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(a,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=C.getEinsumComputePath(o,l),h=d.length,p=null,c=i.length,m=[];for(let f=0;f<h;++f){for(let g of d[f]){let{permutationIndices:y,expandDims:A}=C.getEinsumPermutation(c,l[g]),x;C.isIdentityPermutation(y)?x=s[g]:(x=Ya({inputs:{x:s[g]},backend:r,attrs:{perm:y}}),m.push(x));let b=x.shape.slice();for(let w=0;w<A.length;++w)b.splice(A[w],0,1);v.arraysEqual(x.shape,b)||(x=qe({inputs:{x},backend:r,attrs:{shape:b}}),m.push(x)),p===null?p=x:(p=cS({inputs:{a:x,b:p},backend:r}),m.push(p))}f<h-1&&(u[f]>=0&&(p=WA({inputs:{x:p},backend:r,attrs:{axis:u[f]-(i.length-c),keepDims:!1}}),m.push(p)),c--)}for(let f of m)f!==p&&r.disposeData(f.dataId);return p}var Zce={kernelName:lh,backendName:"webgpu",kernelFunc:Kce},Yce=kr({opType:4}),Jce={kernelName:li,backendName:"webgpu",kernelFunc:Yce},Qce=Kr({opSnippet:4,dtype:"bool",cpuKernelImpl:lhe}),e0e={kernelName:Ko,backendName:"webgpu",kernelFunc:Qce},fS=kr({opType:5,cpuKernelImpl:uhe,dtype:"float32"}),t0e={kernelName:ui,backendName:"webgpu",kernelFunc:fS};function wy(e){let{inputs:t,attrs:r,backend:n}=e,{dim:a}=r,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(v.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),qe({inputs:{x:s},backend:n,attrs:{shape:o}})}var r0e={kernelName:Zo,backendName:"webgpu",kernelFunc:wy},n0e=kr({opType:6,cpuKernelImpl:dhe}),a0e={kernelName:Yo,backendName:"webgpu",kernelFunc:n0e},s0e=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return`
${rt()}
if (index < uniforms.size) {
setOutputAtIndex(index, uniforms.value);
}
}
`}};function Bd(e){let{backend:t,attrs:r}=e,{shape:n,value:a}=r,{dtype:s}=r;if(s=s||v.inferDtype(a),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(n));return i.fill(a),t.makeTensorInfo(n,s,i)}else{let i=new s0e(n),o=[{type:"float32",data:[a]}];return t.runWebGPUProgram(i,[],s,o)}}var i0e={kernelName:rd,backendName:"webgpu",kernelFunc:Bd},o0e=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let coordX = uniforms.xShape[2] - coords[2] - 1;
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
setOutputAtIndex(index, outputValue);
}
}
`}},l0e={kernelName:Jo,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:r}=e,n=t,a=new o0e(r.shape);return n.runWebGPUProgram(a,[r],r.dtype)}},u0e=kr({opType:7,cpuKernelImpl:phe}),d0e={kernelName:di,backendName:"webgpu",kernelFunc:u0e},p0e=Kr({opSnippet:12,dtype:"int32"}),h0e={kernelName:pi,backendName:"webgpu",kernelFunc:p0e},c0e=class{constructor(e,t=!1){this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.useImport=t,this.shaderKey=`fromPixels_${this.useImport}`}getUserCode(){let e=this.useImport?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
@binding(1) @group(0) var src: ${this.useImport?"texture_external":"texture_2d<f32>"};
${rt()}
let flatIndexBase = index * uniforms.numChannels;
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
let flatIndex = flatIndexBase + i;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndexBase);
let values = ${e};
result[flatIndex] = i32(floor(255.0 * values[i]));
}
}
}
`}},f0e={kernelName:Gp,backendName:"webgpu",kernelFunc:m0e},gu;function m0e(e){let{inputs:t,backend:r,attrs:n}=e,{pixels:a}=t,{numChannels:s}=n;if(a==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&a instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&a instanceof OffscreenCanvas,u=typeof ImageBitmap!="undefined"&&a instanceof ImageBitmap,[d,h]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],p=[h,d,s];if(Z().getBool("WEBGPU_USE_IMPORT")&&i)return S7({externalImage:a,backend:r,attrs:n,outShape:p,useImport:!0});if((i||o)&&(gu==null&&(gu=document.createElement("canvas").getContext("2d")),gu.canvas.width=d,gu.canvas.height=h,gu.drawImage(a,0,0,d,h),a=gu.canvas),u||l||i||o)return S7({externalImage:a,backend:r,attrs:n,outShape:p,useImport:!1});let c=a.data,m=c;if(s!=null&&s!==4){m=new Uint8Array(a.width*a.height*s);let y=c.length,A=0;for(let x=0;x<y;x++)x%4<s&&(m[A++]=c[x])}let f=r.makeTensorInfo(p,"int32"),g=r.tensorMap.get(f.dataId);return g.values=new Int32Array(m),r.maybeReleaseBuffer(f.dataId),r.uploadToGPU(f.dataId),f}function S7(e){let{externalImage:t,backend:r,attrs:n,outShape:a,useImport:s}=e,{numChannels:i}=n,o=v.sizeFromShape(a),l=v.computeStrides(a),u=new c0e(a,s),d=[{type:"uint32",data:[o]},{type:"uint32",data:[i]},{type:"uint32",data:[...l]},{type:"uint32",data:[...u.dispatch]}];return r.runFromPixelsProgram(u,a,d,s,t)}var g0e=class{constructor(e,t,r,n,a){this.uniforms="varianceEpsilon : f32,",this.workGroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,r),this.outputShape=e,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),n!=null&&(C.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset")),a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale")),this.offsetShape=n,this.scaleShape=a,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetByOutputIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleByOutputIndex(index)"),`
${rt()}
if (index < uniforms.size)
{
let xValue = getXByOutputIndex(index);
let meanValue = getMeanByOutputIndex(index);
let varianValue = getVarianceByOutputIndex(index);
let offsetValue = ${e};
let scaleValue = ${t};
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
setOutputAtIndex(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
}
}
`}},y0e={kernelName:hi,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n,scale:a,offset:s,mean:i,variance:o}=e,{varianceEpsilon:l}=t,u=r,d=[n,i,o],h=null;s!=null&&(h=s.shape,d.push(s));let p=null;a!=null&&(p=a.shape,d.push(a));let c=new g0e(n.shape,i.shape,o.shape,h,p),m=[{type:"float32",data:[l]}];return u.runWebGPUProgram(c,d,n.dtype,m)}};function A0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:h,dimRoundingMode:p,activation:c,leakyreluAlpha:m}=n,f=C.convertConv2DDataFormat(d),g=C.computeConv2DInfo(a.shape,s.shape,l,h,u,p,!1,f);return uS({x:a,filter:s,convInfo:g,backend:r,bias:i,preluActivationWeights:o,leakyreluAlpha:m,activation:c})}var x0e={kernelName:Ps,backendName:"webgpu",kernelFunc:A0e};function b0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:c}=n,m=d;m==null&&(m=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let f=C.computeConv2DInfo(a.shape,s.shape,l,m,u,h,!0),g=[a,s],y=i!=null,A=o!=null;y&&g.push(i),A&&g.push(o);let x=[{type:"int32",data:[f.padInfo.top,f.padInfo.left]},{type:"int32",data:[f.strideHeight,f.strideWidth]},{type:"int32",data:[f.dilationHeight,f.dilationWidth]},{type:"int32",data:[f.inHeight,f.inWidth]}],b;return f.batchSize===1&&f.inHeight===f.outHeight&&f.inWidth===f.outWidth&&f.strideHeight===1&&f.strideWidth===1&&f.filterHeight===f.filterWidth&&f.inChannels===f.outChannels&&f.dilationHeight===1&&f.dilationWidth===1&&f.filterHeight===3&&f.inChannels%4===0?b=new pS(f,y,p,A):(b=new hS(f,y,p,A),x.push({type:"int32",data:[f.filterHeight]},{type:"int32",data:[f.filterWidth]},{type:"int32",data:[f.outChannels/f.inChannels]})),p==="leakyrelu"&&(x.push({type:"float32",data:[c]}),b.uniforms+=" alpha : f32,"),r.runWebGPUProgram(b,g,"float32",x)}var v0e={kernelName:Os,backendName:"webgpu",kernelFunc:b0e},w0e=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32, strides : ${Ar(e)},`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
var flattenIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexTemp = i32(round(getIndices(coords[0], j)));
let strideNum = ${e};
flattenIndex = flattenIndex + indexTemp * strideNum;
}
setOutputAtIndex(index, getA(flattenIndex, coords[1]));
}
}
`}};function k0e(e){let{inputs:t,backend:r}=e,{params:n,indices:a}=t,s=a.shape,i=s[s.length-1],o=v.sizeFromShape(n.shape),[l,u,d,h]=C.prepareAndValidate(n,a),p=qe({inputs:{x:a},backend:r,attrs:{shape:[u,i]}}),c=qe({inputs:{x:n},backend:r,attrs:{shape:[v.sizeFromShape(n.shape)/d,d]}});if(r.shouldExecuteOnCPU([n,a])||n.dtype==="string"){let A=r.readSync(a.dataId),x=r.bufferSync(n),b=hhe(A,x,n.dtype,u,i,d,h,n.shape,o);return r.makeTensorInfo(l,n.dtype,b.values)}let m=new w0e(i,[u,d]),f=[{type:"int32",data:[i]},{type:"int32",data:h}],g=r.runWebGPUProgram(m,[c,p],c.dtype,f),y=qe({inputs:{x:g},backend:r,attrs:{shape:l}});return r.disposeData(p.dataId),r.disposeData(c.dataId),r.disposeData(g.dataId),y}var I0e={kernelName:el,backendName:"webgpu",kernelFunc:k0e},S0e=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=C0e(this.aShape);return`
${rt()}
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
let indexZ = i32(getIndices(resRC.x, resRC.z));
let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]);
setOutputAtIndex(index, inBounds * getA(${e}));
}
}
`}};function C0e(e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let n=0;n<e.length;n++)n===2?r.push("indexZ"):r.push(`${t[n]}`);return r.join()}function mS(e){let{inputs:t,backend:r,attrs:n}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=n,l=v.parseAxisParam(i,a.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(a,s,l,o),d=v.sizeFromShape(s.shape),h=[],p=qe({inputs:{x:a},backend:r,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),c=qe({inputs:{x:s},backend:r,attrs:{shape:[u.batchSize,d/u.batchSize]}});h.push(p),h.push(c);let m=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize];if(r.shouldExecuteOnCPU([a,s])){let A=r.tensorMap.get(c.dataId).values,x=De(c.shape,c.dtype,A),b=r.tensorMap.get(p.dataId).values,w=De(p.shape,p.dtype,b),I=che(w,x,m);return h.forEach(T=>r.disposeData(T.dataId)),r.makeTensorInfo(u.outputShape,I.dtype,I.values)}let f=new S0e(p.shape,m),g=r.runWebGPUProgram(f,[p,c],p.dtype);h.push(g);let y=qe({inputs:{x:g},backend:r,attrs:{shape:u.outputShape}});return h.forEach(A=>r.disposeData(A.dataId)),y}var T0e={kernelName:Qo,backendName:"webgpu",kernelFunc:mS},N0e=Kr({opSnippet:5,cpuKernelImpl:mhe,dtype:"bool"}),E0e={kernelName:tl,backendName:"webgpu",kernelFunc:N0e},R0e=Kr({opSnippet:6,dtype:"bool",cpuKernelImpl:fhe}),$0e={kernelName:ci,backendName:"webgpu",kernelFunc:R0e};function M0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{alpha:s}=n,i=[{type:"float32",data:[s]}],o=new Jh(a.shape,14);return o.uniforms="alpha : f32,",r.runWebGPUProgram(o,[a],"float32",i)}var F0e={kernelName:mi,backendName:"webgpu",kernelFunc:M0e},_0e=Kr({opSnippet:7,dtype:"bool",cpuKernelImpl:yhe}),P0e={kernelName:rl,backendName:"webgpu",kernelFunc:_0e},O0e=Kr({opSnippet:8,dtype:"bool",cpuKernelImpl:ghe}),z0e={kernelName:nl,backendName:"webgpu",kernelFunc:O0e},D0e=kr({opType:9,cpuKernelImpl:Ahe}),L0e={kernelName:gi,backendName:"webgpu",kernelFunc:D0e},B0e=Kr({opSnippet:9,dtype:"bool"}),W0e={kernelName:al,backendName:"webgpu",kernelFunc:B0e},V0e=kr({opType:10}),U0e={kernelName:sl,backendName:"webgpu",kernelFunc:V0e};function gS(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=n;return ec(a,s,i,"max",r)}var G0e={kernelName:yi,backendName:"webgpu",kernelFunc:gS},j0e=Kr({opSnippet:15,cpuKernelImpl:bhe}),H0e={kernelName:Ai,backendName:"webgpu",kernelFunc:j0e};function q0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n,u=1,d=C.computePool2DInfo(a.shape,s,i,u,o,l),h,p=[];if(d.filterHeight===1&&d.filterWidth===1){if(v.arraysEqual(d.inShape,d.outShape))return zn({inputs:{x:a},backend:r});h=new iS(d),p.push({type:"int32",data:[d.strideHeight,d.strideWidth]})}else h=new sS(d,"max"),p.push({type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.dilationHeight,d.dilationWidth]},{type:"int32",data:[d.inHeight,d.inWidth]},{type:"int32",data:[d.effectiveFilterHeight,d.effectiveFilterWidth]});return r.runWebGPUProgram(h,[a],a.dtype,p)}var X0e={kernelName:xi,backendName:"webgpu",kernelFunc:q0e};function K0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{keepDims:s,axis:i}=n;return ec(a,i,s,"mean",r)}var Z0e={kernelName:bi,backendName:"webgpu",kernelFunc:K0e};function Y0e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return ec(a,s,i,"min",r)}var J0e={kernelName:vi,backendName:"webgpu",kernelFunc:Y0e},Q0e=Kr({opSnippet:16,cpuKernelImpl:vhe}),efe={kernelName:wi,backendName:"webgpu",kernelFunc:Q0e},tfe=class{constructor(e,t,r){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,a)=>n[0]+e[a]+n[1]),this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((n,a)=>{this.uniforms+=` pad${a} : vec2<i32>,`}),this.offset=r==="reflect"?0:1,this.shaderKey=`mirrorPad_${r}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,u)=>`uniforms.pad${u}[0]`).join(","),r=this.xShape.map((l,u)=>`uniforms.pad${u}[0] + uniforms.xShape${e>1?`[${u}]`:""}`).join(","),n=e===1?"start":"start[i]",a=e===1?"end":"end[i]",s=e===1?"outC":"outC[i]",i=Ar(e),o=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${rt()}
if (index < uniforms.size) {
let start = ${i}(${t});
let end = ${i}(${r});
var outC = getCoordsFromIndex(index);
for (var i = 0; i < ${e}; i = i + 1) {
if (${s} < ${n}) {
${s} = ${n} * 2 - ${s} - ${this.offset};
} else if(${s} >= ${a}) {
${s} = (${a} - 1) * 2 - ${s} + ${this.offset};
}
}
let coords = outC - start;
setOutputAtIndex(index, getX(${o}));
}
}
`}},rfe={kernelName:ki,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{x:n}=e,{paddings:a,mode:s}=t,i=r,o=a.map(u=>({type:"int32",data:[u[0],u[1]]})),l=new tfe(n.shape,a,s);return i.runWebGPUProgram(l,[n],n.dtype,o)}};function nfe(e){let{inputs:t,backend:r}=e,{x:n}=t;if(r.shouldExecuteOnCPU([n])){let s=r.tensorMap.get(n.dataId),[i,o]=khe(s.values,n.shape,n.dtype);return r.makeTensorInfo(o,n.dtype,i)}let a=new Jh(n.shape,11);return r.runWebGPUProgram(a,[n],n.dtype)}var afe={kernelName:il,backendName:"webgpu",kernelFunc:nfe};function sfe(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=n,u=r.readSync(a.dataId),d=r.readSync(s.dataId),{selectedIndices:h}=Kn.nonMaxSuppressionV3Impl(u,d,i,o,l);return r.makeTensorInfo([h.length],"int32",new Int32Array(h))}var ife={kernelName:ll,backendName:"webgpu",kernelFunc:sfe};function ofe(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:r,attrs:n}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=n,d=r.readSync(a.dataId),h=r.readSync(s.dataId),p=i,c=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=Kn.nonMaxSuppressionV5Impl(d,h,p,c,m,f);return[r.makeTensorInfo([g.length],"int32",new Int32Array(g)),r.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var lfe={kernelName:ul,backendName:"webgpu",kernelFunc:ofe};function tf(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="complex64"){let a=Qh({inputs:{input:n},backend:r}),s=tf({inputs:{x:a},backend:r}),i=Lm({inputs:{input:n},backend:r}),o=tf({inputs:{x:i},backend:r}),l=Dd({inputs:{real:s,imag:o},backend:r});return r.disposeData(a.dataId),r.disposeData(s.dataId),r.disposeData(i.dataId),r.disposeData(o.dataId),l}else return Bd({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:r})}var ufe={kernelName:Tl,backendName:"webgpu",kernelFunc:tf};function yS(e){let{inputs:t,backend:r}=e,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let a=Qh({inputs:{input:n},backend:r}),s=yS({inputs:{x:a},backend:r}),i=Lm({inputs:{input:n},backend:r}),o=tf({inputs:{x:i},backend:r}),l=Dd({inputs:{real:s,imag:o},backend:r});return r.disposeData(a.dataId),r.disposeData(s.dataId),r.disposeData(i.dataId),r.disposeData(o.dataId),l}else return Bd({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:r})}var dfe={kernelName:dl,backendName:"webgpu",kernelFunc:yS};function pfe(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return wy({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{v.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=wy({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=lS({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeData(d.dataId)),u}var hfe={kernelName:hl,backendName:"webgpu",kernelFunc:pfe},cfe=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((r,n)=>r[0]+e[n]+r[1]),this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((r,n)=>{this.uniforms+=` pad${n} : vec2<i32>,`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=Ar(e),r=this.xShape.map((u,d)=>`uniforms.pad${d}[0]`).join(","),n=this.xShape.map((u,d)=>`uniforms.pad${d}[0] + uniforms.xShape${e>1?`[${d}]`:""}`).join(","),a=e>1?`${t}(${r})`:`${r}`,s=e>1?`${t}(${n})`:`${n}`,i=e>1?"any(outC < start)":"outC < start",o=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${rt()}
if (index < uniforms.size) {
let start = ${a};
let end = ${s};
let outC = getCoordsFromIndex(index);
if (${i} || ${o}) {
setOutputAtIndex(index, uniforms.constantValue);
} else {
let coords = outC - start;
setOutputAtIndex(index, getX(${l}));
}
}
}
`}},AS=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{paddings:s,constantValue:i}=n;if(s.every(u=>v.arraysEqual(u,[0,0])))return zn({inputs:{x:a},backend:r});if(v.sizeFromShape(a.shape)===0){let u=s.map((d,h)=>d[0]+a.shape[h]+d[1]);return Bd({backend:r,attrs:{shape:u,value:i,dtype:a.dtype}})}let o=[{type:"float32",data:[i]}];s.map(u=>o.push({type:"int32",data:[u[0],u[1]]}));let l=new cfe(a.shape,s);return r.runWebGPUProgram(l,[a],a.dtype,o)},ffe={kernelName:Si,backendName:"webgpu",kernelFunc:AS},mfe=Kr({opSnippet:13}),gfe={kernelName:Ci,backendName:"webgpu",kernelFunc:mfe};function yfe(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t,s=new nS(14,n.shape,a.shape);return r.runWebGPUProgram(s,[n,a],"float32")}var Afe={kernelName:Ti,backendName:"webgpu",kernelFunc:yfe};function xfe(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,keepDims:i}=n;return ec(a,s,i,"prod",r)}var bfe={kernelName:Ni,backendName:"webgpu",kernelFunc:xfe},vfe=e=>{let{backend:t,attrs:r}=e,{start:n,stop:a,step:s,dtype:i}=r,o=Che(n,a,s,i);return t.makeTensorInfo([o.length],i,o)},wfe={kernelName:dd,backendName:"webgpu",kernelFunc:vfe},xS=Kr({opSnippet:3}),kfe={kernelName:oi,backendName:"webgpu",kernelFunc:xS},Ife=kr({opType:12}),Sfe={kernelName:Ei,backendName:"webgpu",kernelFunc:Ife},Cfe=kr({opType:13}),Tfe={kernelName:$i,backendName:"webgpu",kernelFunc:Cfe},Nfe=class{constructor(e,t,r){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, halfPixelCenters : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,r,e[3]],this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveOutSize = vec2<f32>(
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC =
(vec2<f32>(rc) + vec2<f32>(uniforms.halfPixelCenters)) *
effectiveInputOverOutputRatioRC - vec2<f32>(uniforms.halfPixelCenters);
// Compute the four integer indices.
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
let sourceCeilRC = vec2<i32>(
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
let top = topLeft + (topRight - topLeft) * fracRC.y;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
let newValue = top + (bottom - top) * fracRC.x;
setOutputAtIndex(index, newValue);
}
}
`}};function Efe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,size:i,halfPixelCenters:o}=n,[l,u]=i,d=s&&l>1?1:0,h=s&&u>1?1:0,p=[{type:"float32",data:[d,h]},{type:"float32",data:[o?.5:0]}],c=new Nfe(a.shape,l,u);return r.runWebGPUProgram(c,[a],"float32",p)}var Rfe={kernelName:Ri,backendName:"webgpu",kernelFunc:Efe},$fe=class{constructor(e,t,r,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, roundBase : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,r,e[3]],this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.halfPixelCenters=n,this.shaderKey=`resizeNearest_${n}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":e="vec2<f32>(rc) * effectiveInputOverOutputRatioRC",`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveOutSize = vec2<f32>(
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC = ${e};
// Compute the coordinators of nearest neighbor point.
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
let sourceNearestRC = vec2<i32>(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutputAtIndex(index, newValue);
}
}
`}};function Mfe(e){let{inputs:t,backend:r,attrs:n}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,d=s&&l>1?1:0,h=s&&u>1?1:0,p=[{type:"float32",data:[d,h]},{type:"float32",data:[s?.5:0]}],c=new $fe(a.shape,l,u,i);return r.runWebGPUProgram(c,[a],a.dtype,p)}var Ffe={kernelName:hd,backendName:"webgpu",kernelFunc:Mfe},_fe=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32, centerY : f32, sinRadians : f32,
cosRadians : f32,`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32,",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>,",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
uniforms.sinRadians;
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
uniforms.cosRadians;
let coordX = i32(round(coordXFloat + uniforms.centerX));
let coordY = i32(round(coordYFloat + uniforms.centerY));
${this.fillSnippet}
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
coordY < uniforms.xShape[1]) {
outputValue = getX(coords[0], coordY, coordX, coords[3]);
}
setOutputAtIndex(index, outputValue);
}
}
`}},Pfe={kernelName:Nl,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:r})=>{let{image:n}=e,{radians:a,fillValue:s,center:i}=t,o=r,l=new _fe(n.shape,s),[u,d]=C.getImageCenter(i,n.shape[1],n.shape[2]),h=[{type:"float32",data:[u]},{type:"float32",data:[d]},{type:"float32",data:[Math.sin(a)]},{type:"float32",data:[Math.cos(a)]}];return typeof s=="number"?h.push({type:"float32",data:[Number.parseFloat(s.toFixed(2))]}):h.push({type:"float32",data:s}),o.runWebGPUProgram(l,[n],n.dtype,h)}},Ofe=kr({opType:15,cpuKernelImpl:The}),zfe={kernelName:Mi,backendName:"webgpu",kernelFunc:Ofe},Dfe=class{constructor(e,t,r,n,a,s,i){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=s,this.type=i,this.dispatchLayout=Je(e),this.dispatch=Le(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${r}_${n}_${this.sliceDimGreaterThanOne}_${i}`;let o=Ar(a.length);this.uniforms=`sliceDim : i32, strides: ${o}, size: i32,`,this.updatesRank=n,this.indicesRank=r}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,r=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",n="",a="",s="";this.updatesRank===1?(n="coords[0]",a="flattenedIndex",s=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
return index;
}
`):this.updatesRank===2&&(n="coords[0], coords[1]",a="vec2<i32>(flattenedIndex, coords[1])",s=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
let d0 = index / uniforms.updatesShape[1];
let d1 = index - d0 * uniforms.updatesShape[1];
return vec2<i32>(d0, d1);
}
`);let i=`getUpdates(${n})`,o=this.type==="int32"?"atomicAdd(&(result[flatIndex]), i32(updateValue));":`
var oldValue = atomicLoad(&(result[flatIndex]));
var exchanged = false;
for (; !exchanged;) {
let newValueF32 = bitcast<f32>(oldValue) + updateValue;
let newValue = bitcast<i32>(newValueF32);
let res = atomicCompareExchangeWeak(&(result[flatIndex]), oldValue, newValue);
oldValue = res.old_value;
exchanged = res.exchanged;
}
`;return`
${s}
${rt()}
if (index < uniforms.size) {
let coords = getUpdatesCoordsFromFlatIndex(index);
var flattenedIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexInside = i32(round(${t}));
flattenedIndex = flattenedIndex + indexInside * ${r};
}
let updateValue = ${i};
let flatIndex = getOutputIndexFromCoords(${a});
${o}
}
}`}};function Lfe(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a,updates:s}=t,{shape:i}=n,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:h}=C.calculateShapes(s,a,i),p=[h/u,u];if(h===0)return r.makeTensorInfo(i,a.dtype);let c=qe({inputs:{x:a},backend:r,attrs:{shape:[l,o]}}),m=qe({inputs:{x:s},backend:r,attrs:{shape:[l,u]}}),f=m.dtype,g=Bd({backend:r,attrs:{shape:p,value:0,dtype:f}}),y=v.sizeFromShape(m.shape),A=[{type:"int32",data:[o]},{type:"int32",data:d},{type:"int32",data:[y]}],x=new Dfe(m.shape,o,c.shape.length,m.shape.length,d,p,f),b=r.runWebGPUProgram(x,[m,c],f,A,g),w=qe({inputs:{x:b},backend:r,attrs:{shape:i}});return r.disposeData(c.dataId),r.disposeData(m.dataId),r.disposeData(b.dataId),w}var Bfe={kernelName:gl,backendName:"webgpu",kernelFunc:Lfe},Wfe=class{constructor(e,t,r){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=r,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let r=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[],a=[];for(let s=0;s<this.outputShape.length;s++)a.push(`${r[s]}`),s<this.cRank&&n.push(`${r[s]}`);e=n.join(),t=a.join()}return`
${rt()}
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
let cVal = getC(${e});
if (cVal >= 1.0) {
setOutputAtIndex(index, getA(${t}));
} else {
setOutputAtIndex(index, getB(${t}));
}
}
}
`}};function Vfe(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t,i=new Wfe(n.shape.length,a.shape,a.shape.length);return r.runWebGPUProgram(i,[n,a,s],Nr(a.dtype,s.dtype))}var Ufe={kernelName:yl,backendName:"webgpu",kernelFunc:Vfe},Gfe=kr({opType:18}),jfe={kernelName:_i,backendName:"webgpu",kernelFunc:Gfe},Hfe=kr({opType:16}),qfe={kernelName:Fi,backendName:"webgpu",kernelFunc:Hfe},Xfe=kr({opType:17}),Kfe={kernelName:xl,backendName:"webgpu",kernelFunc:Xfe},bS=Kr({opSnippet:2,cpuKernelImpl:Fhe,supportsComplex:!0}),Zfe={kernelName:Li,backendName:"webgpu",kernelFunc:bS};function Yfe(e){let{inputs:t,backend:r,attrs:n}=e,{logits:a}=t,{dim:s}=n,i=v.parseAxisParam([s],a.shape),o=gS({inputs:{x:a},backend:r,attrs:{reductionIndices:i,keepDims:!1}}),l=C.expandShapeToKeepDim(o.shape,i),u=qe({inputs:{x:o},backend:r,attrs:{shape:l}}),d=bS({inputs:{a,b:u},backend:r}),h=fS({inputs:{x:d},backend:r}),p=WA({inputs:{x:h},backend:r,attrs:{axis:i,keepDims:!1}}),c=qe({inputs:{x:p},backend:r,attrs:{shape:l}}),m=xS({inputs:{a:h,b:c},backend:r});return r.disposeData(o.dataId),r.disposeData(u.dataId),r.disposeData(d.dataId),r.disposeData(h.dataId),r.disposeData(p.dataId),r.disposeData(c.dataId),m}var Jfe={kernelName:zi,backendName:"webgpu",kernelFunc:Yfe},Qfe=e=>{let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n;v.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let o=s.reduce((y,A)=>y*A),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let u=[],d=AS({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),h=C.getReshaped(d.shape,s,o,!1),p=C.getPermuted(h.length,s.length,!1),c=C.getReshapedPermuted(d.shape,s,o,!1),m=qe({inputs:{x:d},backend:r,attrs:{shape:h}}),f=Ya({inputs:{x:m},backend:r,attrs:{perm:p}}),g=qe({inputs:{x:f},backend:r,attrs:{shape:c}});return u.push(d),u.push(m),u.push(f),u.forEach(y=>r.disposeData(y.dataId)),g},eme={kernelName:bl,backendName:"webgpu",kernelFunc:Qfe},tme=class{constructor(e,t,r,n,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.workGroupSize=[64,1,1],this.workPerThread=4,this.size=!0,this.outputShape=s,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let o=t>1;this.shaderKey=`scatter_${r}_${n}_${o}`;let l=Ar(a.length);this.uniforms=`updateSize : i32, sliceDim : i32, strides: ${l},`;let u="";r===1?u="i":r===2&&(u="i, j"),this.indicesSnippet=`getIndices(${u})`;let d="";n===1?d="i":n===2&&(d="i, coords[1]"),this.updatesSnippet=`getUpdates(${d})`,this.strideString=o?"uniforms.strides[j]":"uniforms.strides"}getUserCode(){return`
${rt()}
let globalIndex = index * ${this.workPerThread};
if (globalIndex < uniforms.size) {
var sum = vec4<f32>(0.0);
var found = vec4<bool>(false);
for (var i = 0; i < uniforms.updateSize; i = i + 1) {
var flattenedIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexInside = i32(round(${this.indicesSnippet}));
flattenedIndex = flattenedIndex + indexInside * ${this.strideString};
}
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
let curIndex = globalIndex + innerIndex;
let coords = getCoordsFromIndex(curIndex);
if (flattenedIndex == coords[0]) {
sum[innerIndex] = sum[innerIndex] + ${this.updatesSnippet};
found[innerIndex] = true;
}
}
}
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
let curIndex = globalIndex + innerIndex;
if (curIndex < uniforms.size)
{
setOutputAtIndex(curIndex, mix(getDefaultValue(), sum[innerIndex], f32(found[innerIndex])));
}
}
}
}`}};function rme(e){let{inputs:t,backend:r,attrs:n}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=n,{sliceRank:l,numUpdates:u,sliceSize:d,strides:h,outputSize:p}=C.calculateShapes(s,a,o),c=!1;if(s.dtype==="string"){let A=r.bufferSync(a),x=r.bufferSync(s),b=v.decodeString(r.readSync(i.dataId)[0]),w=Nhe(A,x,o,p,d,u,l,h,b,c);return r.makeTensorInfo(o,w.dtype,w.values)}let m=[{type:"int32",data:[u]},{type:"int32",data:[l]},{type:"int32",data:h}],f=new tme(u,l,a.shape.length,s.shape.length,h,[p,1],c),g=r.runWebGPUProgram(f,[s,a,i],s.dtype,m),y=qe({inputs:{x:g},backend:r,attrs:{shape:o}});return r.disposeData(g.dataId),y}var nme={kernelName:gh,backendName:"webgpu",kernelFunc:rme};function ame(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=a.shape.length,d=new Array(u).fill(0),h=a.shape.slice();return l.map(p=>{let c=[...h];c[o]=p;let m=Ld({inputs:{x:a},backend:r,attrs:{begin:d,size:c}});return d[o]+=p,m})}var sme={kernelName:vl,backendName:"webgpu",kernelFunc:ame},ime=kr({opType:19}),ome={kernelName:Pi,backendName:"webgpu",kernelFunc:ime},lme={kernelName:yd,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:r}=e,n=t,a=new Jh(r.shape,20);return n.runWebGPUProgram(a,[r],r.dtype)}},ume=Kr({opSnippet:11}),dme={kernelName:Di,backendName:"webgpu",kernelFunc:ume},pme=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=Ar(this.outputShape.length);this.uniforms=`begin : ${t}, strides : ${t}, `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let r=0;t=this.outputShape.map((n,a)=>(r++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${r-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
setOutputAtIndex(index, getX(${t}));
}
}
`}};function hme(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n,{finalShapeSparse:c,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=Dt.sliceInfo(a.shape,s,i,o,l,u,d,h,p),w;if(f)w=qe({inputs:{x:a},backend:r,attrs:{shape:m}});else if(g||y){v.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let I=Dt.computeOutShape(A,x,b),T=Ld({inputs:{x:a},backend:r,attrs:{begin:A,size:I}});w=qe({inputs:{x:T},backend:r,attrs:{shape:m}}),r.disposeData(T.dataId)}else if(r.shouldExecuteOnCPU([a])){let I=r.readSync(a.dataId),T=De(a.shape,a.dtype,I),E=$he(c,T,b,A);w=r.makeTensorInfo(m,a.dtype,E.values)}else{let I=new pme(c),T=[{type:"int32",data:A},{type:"int32",data:b}],E=r.runWebGPUProgram(I,[a],a.dtype,T);w=qe({inputs:{x:E},backend:r,attrs:{shape:m}}),r.disposeData(E.dataId)}return w}var cme={kernelName:wl,backendName:"webgpu",kernelFunc:hme};function fme(e){let{inputs:t,backend:r,attrs:n}=e,{separator:a,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=n,{data:d,dataSplits:h}=t,p=r.readSync(d.dataId),c=r.readSync(h.dataId),[m,f]=Mhe(p,c,a,s,i,o,l,u);return[r.makeTensorInfo([m.length],"string",m),r.makeTensorInfo(h.shape,"int32",f)]}var mme={kernelName:yh,backendName:"webgpu",kernelFunc:fme},gme=kr({opType:21}),yme={kernelName:Bi,backendName:"webgpu",kernelFunc:gme},Ame=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[n]*t[n];this.outputShape=r,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=xme(this.rank,"uniforms.");return`
${rt()}
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
setOutputAtIndex(index, getA(${e}));
}
}
`}};function xme(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let r=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let a=0;a<e;a++)n.push(`(${r[a]} % ${t}aShape[${a}])`);return n.join()}function bme(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{reps:s}=n;if(r.shouldExecuteOnCPU([a])||a.dtype==="string"||a.shape.length>=5){let o=r.readSync(a.dataId),l=a.dtype==="string"?o.map(h=>v.decodeString(h)):o,u=De(a.shape,a.dtype,l),d=_he(u,s);return r.makeTensorInfo(d.shape,d.dtype,d.values)}let i=new Ame(a.shape,s);return r.runWebGPUProgram(i,[a],a.dtype)}var vme={kernelName:es,backendName:"webgpu",kernelFunc:bme},wme=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32, firstPass : i32, negativeInf : f32,
dir : i32, inc : i32,`,this.shaderKey="swap"}getUserCode(){return`
${rt()}
if (index < uniforms.size) {
let outC = getCoordsFromIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced
// above, Figure5(a) shows that element[1] is in the second half of
// the group when group size is 2, but it is in the first half of
// the group when group size is 4.
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
var i = 0;
if (isFirstInPair) {
i = elemIdx;
} else {
i = elemIdx - uniforms.inc;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.inc;
} else {
i1 = i32(getIndices(batch, i + uniforms.inc));
}
var x0 = f32(0.0);
var x1 = f32(0.0);
if (i0 < uniforms.inputSize) {
x0 = getX(batch, i0);
} else {
x0 = uniforms.negativeInf;
}
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = uniforms.negativeInf;
}
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) {
// Elements in opposite order of direction
let iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutputAtIndex(index, f32(i0));
} else {
setOutputAtIndex(index, f32(i1));
}
}
}
`}},kme=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32, firstPass : i32, k : i32,",this.shaderKey="merge"}getUserCode(){return`
${rt()}
if (index < uniforms.size) {
let outC = getCoordsFromIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
// (k=4), we only need to output the indices at positions |, the
// indices at positions _ can be thrown away, see Figure5(b) After
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
// above.
// For example, the paper shows we only need to output the orange
// bars. The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back to
// the previous sequence to find the corresponding value, we need
// to double the index. When we double the index, we basically
// interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
// position of each 2k positions by - elemIdx % k. E.g. for output
// at index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
var i = 0;
if (elemIdx < uniforms.k) {
i = elemIdx;
} else {
i = elemIdx * 2 - elemIdx % uniforms.k;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.k;
} else {
i1 = i32(getIndices(batch, i + uniforms.k));
}
let x0 = getX(batch, i0);
var x1 = f32(0.0);
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = x0;
}
if (x0 >= x1) {
setOutputAtIndex(index, f32(i0));
} else {
setOutputAtIndex(index, f32(i1));
}
}
}
`}};function yu(e,t){t!==null&&e.disposeData(t.dataId)}function C7(e){let t=1;for(;t<e;)t*=2;return t}function Ime(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{k:s,sorted:i}=n,o=a.shape,l=o[o.length-1];if(r.shouldExecuteOnCPU([a])){let b=r.readSync(a.dataId),[w,I]=Phe(b,o,a.dtype,s,i);return[r.makeTensorInfo(w.shape,w.dtype,w.values),r.makeTensorInfo(I.shape,I.dtype,I.values)]}if(s===0)return o[o.length-1]=0,[r.makeTensorInfo(o,a.dtype,[]),r.makeTensorInfo(o,"int32",[])];if(l===1)return[a,Bd({attrs:{shape:o,dtype:"int32",value:0},backend:r})];let u=v.sizeFromShape(o)/l,d=qe({inputs:{x:a},attrs:{shape:[u,l]},backend:r}),h=C7(s),p=C7(l),c=null,m=()=>c===null?[d,d]:[d,c],f=(b,w,I)=>{let T=m(),E=new wme(I),R=[{type:"int32",data:[l]},{type:"int32",data:[c===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[b]},{type:"int32",data:[w]}],O=c;c=r.runWebGPUProgram(E,T,"int32",R),yu(r,O)};for(let b=1;b<h;b*=2){let w=b*2;for(let I=b;I>=1;I/=2)f(w,I,[u,p])}for(let b=p;b>h;b/=2){let w=m(),I=new kme([u,b/2]),T=[{type:"int32",data:[l]},{type:"int32",data:[c===null?1:0]},{type:"int32",data:[h]}],E=c;c=r.runWebGPUProgram(I,w,"int32",T),yu(r,E);let R=h/2,O=R*2;for(let $=R;$>=1;$/=2)f(O,$,c.shape)}let g=c;c=Ld({inputs:{x:c},backend:r,attrs:{begin:0,size:[u,s]}}),yu(r,g);let y=mS({inputs:{x:d,indices:c},backend:r,attrs:{axis:1,batchDims:1}});yu(r,d);let A=o.slice(0,-1);A.push(s),g=c,c=qe({inputs:{x:c},attrs:{shape:A},backend:r}),yu(r,g);let x=y;return y=qe({inputs:{x:y},attrs:{shape:A},backend:r}),yu(r,x),[y,c]}var Sme={kernelName:Il,backendName:"webgpu",kernelFunc:Ime},Cme=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32, fillModeId : i32, fillValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Je(this.outputShape),this.dispatch=Le(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
fn mapCoord(outCoord : f32, len : f32) -> f32{
var inCoord = outCoord;
if(uniforms.fillModeId == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
inCoord;
}
if (inCoord < -len) {
inCoord = inCoord + sz2;
} else {
inCoord = -inCoord - 1.0;
}
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (uniforms.fillModeId == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (uniforms.fillModeId == 4) {
return clamp(outCoord, 0.0, len - 1.0);
}
return outCoord;
}
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
channel : i32) -> f32 {
var outputValue : f32;
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = uniforms.fillValue;
}
return outputValue;
}
${rt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
var outputValue : f32;
let batch = coords[0];
let x = coords[2];
let y = coords[1];
let channel = coords[3];
let xf = f32(x);
let yf = f32(y);
let a1 = getTransforms(batch, 0);
let a2 = getTransforms(batch, 1);
let a3 = getTransforms(batch, 2);
let b1 = getTransforms(batch, 3);
let b2 = getTransforms(batch, 4);
let b3 = getTransforms(batch, 5);
let c1 = getTransforms(batch, 6);
let c2 = getTransforms(batch, 7);
let projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = uniforms.fillValue;
} else {
let inX = (a1 * xf + a2 * yf + a3) / projection;
let inY = (b1 * xf + b2 * yf + b3) / projection;
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
if (uniforms.interpolationModeId == 1) {
let coordY = i32(round(mapY));
let coordX = i32(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
let yFloor = floor(mapY);
let xFloor = floor(mapX);
let yCeil = yFloor + 1.0;
let xCeil = xFloor + 1.0;
let valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
let valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutputAtIndex(index, outputValue);
}
}
`}};function Tme(e){let{inputs:t,backend:r,attrs:n}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,h,p,c]=a.shape,[m,f]=u!=null?u:[h,p],g=[d,m,f,c],y=new Cme(g),A=i==="nearest"?1:2,x;switch(o){case"constant":x=1;break;case"reflect":x=2;break;case"wrap":x=3;break;case"nearest":x=4;break;default:x=1;break}let b=[{type:"int32",data:[A]},{type:"int32",data:[x]},{type:"float32",data:[l]}];return r.runWebGPUProgram(y,[a,s],"float32",b)}var Nme={kernelName:Sl,backendName:"webgpu",kernelFunc:Tme};function Eme(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],u=new Array(o-1),d=0;for(let f=0;f<o;f++)f!==s&&(u[d++]=i.shape[f]);let h=[],p=new Array(o).fill(0),c=i.shape.slice();c[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){p[s]=f;let g=Ld({inputs:{x:i},backend:r,attrs:{begin:p,size:c}}),y=qe({inputs:{x:g},backend:r,attrs:{shape:u}});m[f]=y,h.push(g)}return h.forEach(f=>r.disposeData(f.dataId)),m}var Rme={kernelName:Cl,backendName:"webgpu",kernelFunc:Eme},$me=[ehe,Dhe,Bhe,Uhe,Khe,Yhe,Qhe,tce,ice,dce,hce,gce,ahe,bce,Sce,Ece,$ce,Fce,Oce,Dce,Bce,Uce,jce,Zce,Jce,e0e,t0e,r0e,a0e,i0e,l0e,f0e,d0e,h0e,y0e,x0e,v0e,I0e,T0e,E0e,$0e,nhe,Ace,F0e,P0e,z0e,L0e,W0e,U0e,G0e,H0e,X0e,Z0e,J0e,efe,rfe,Hce,afe,ife,lfe,oce,dfe,hfe,ffe,gfe,Afe,bfe,wfe,lce,kfe,Sfe,Tfe,Jpe,Rfe,Ffe,Pfe,zfe,Bfe,Ufe,jfe,qfe,Kfe,ace,cme,mme,Jfe,eme,nme,sme,ome,lme,dme,Zfe,Xce,yme,vme,Sme,Nme,qhe,Rme,ufe];for(let e of $me)qn(e);var Mme=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireUploadBuffer(e,t){return this.acquireBuffer(e,t,!0)}acquireBuffer(e,t,r=!1){let n=T7(e,t);if(this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.usedBuffers.has(n)||this.usedBuffers.set(n,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(n).length>0){this.numFreeBuffers--;let s=this.freeBuffers.get(n).shift();return this.usedBuffers.get(n).push(s),s}this.numBytesAllocated+=e;let a=this.device.createBuffer({mappedAtCreation:r,size:e,usage:t});return this.usedBuffers.get(n).push(a),a}releaseBuffer(e,t,r){if(this.freeBuffers.size===0)return;let n=T7(t,r);this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.freeBuffers.get(n).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let a=this.usedBuffers.get(n),s=a.indexOf(e);if(s<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");a.splice(s,1),this.numBytesUsed-=t}releaseUploadBuffer(e,t,r){e.mapAsync(GPUMapMode.WRITE).then(()=>{this.releaseBuffer(e,t,r)},n=>{})}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}dispose(){this.freeBuffers.forEach((e,t)=>{e.forEach(r=>{r.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(r=>{r.destroy()})}),this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function T7(e,t){return`${e}_${t}`}var Fme=class{constructor(e){this.device=e,this.numUsedTextures=0,this.numFreeTextures=0,this.freeTextures=new Map,this.usedTextures=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireTexture(e,t,r,n){let a=E7(r),s=e*t*a,i=N7(e,t,r,n);if(this.freeTextures.has(i)||this.freeTextures.set(i,[]),this.usedTextures.has(i)||this.usedTextures.set(i,[]),this.numBytesUsed+=s,this.numUsedTextures++,this.freeTextures.get(i).length>0){this.numFreeTextures--;let l=this.freeTextures.get(i).shift();return this.usedTextures.get(i).push(l),l}this.numBytesAllocated+=s;let o=this.device.createTexture({size:[e,t],format:r,usage:n});return this.usedTextures.get(i).push(o),o}releaseTexture(e,t,r,n,a){if(this.freeTextures.size===0)return;let s=N7(t,r,n,a);this.freeTextures.has(s)||this.freeTextures.set(s,[]),this.freeTextures.get(s).push(e),this.numFreeTextures++,this.numUsedTextures--;let i=this.usedTextures.get(s),o=i.indexOf(e);if(o<0)throw new Error("Cannot release a texture that was never provided by this texture manager");i.splice(o,1);let l=E7(n),u=t*r*l;this.numBytesUsed-=u}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){this.freeTextures.forEach((e,t)=>{e.forEach(r=>{r.destroy()})}),this.usedTextures.forEach((e,t)=>{e.forEach(r=>{r.destroy()})}),this.freeTextures=new Map,this.usedTextures=new Map,this.numUsedTextures=0,this.numFreeTextures=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function N7(e,t,r,n){return`${e}_${t}_${r}_${n}`}function E7(e){if(e==="rgba8unorm")return 16;throw new Error(`${e} is not supported!`)}var _me=Z().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),R7=(e,t)=>{let r=e.limits.maxComputeWorkgroupsPerDimension,n=t.dispatchLayout,a=t.dispatch;if(a.every(i=>i<=r))return a;v.assert(a[0]>r&&n.y===void 0&&n.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let s=Math.ceil(Math.sqrt(a[0]));return s>r?(s=Math.ceil(Math.cbrt(a[0])),v.assert(s<=r,()=>"Total dispatch size exceeds WebGPU maximum."),[s,s,s]):[s,s,1]},vS=class extends Uu{constructor(e,t=!1){if(super(),this.commandQueueOwnedIds=new WeakSet,this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[],this.textureDisposalQueue=[],this.disposed=!1,this.uploadWaitMs=0,this.downloadWaitMs=0,this.dispatchNumberInEncoder=0,this.fromPixelTextureLayout=null,this.fromPixelImportTextureLayout=null,!zA())throw new Error("WebGPU is not supported on this device");this.layoutCache={},this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new Mme(this.device),this.textureManager=new Fme(this.device),this.tensorMap=new rh(this,Xt()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),Z().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return vS.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}flushDisposalQueue(){this.tensorDisposalQueue.forEach(e=>{this.maybeReleaseBuffer(e),this.tensorMap.delete(e)}),this.uniformDisposalQueue.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.byteSize,e.usage)),this.stagingDisposalQueue.forEach(e=>this.bufferManager.releaseUploadBuffer(e.buffer,e.byteSize,e.usage)),this.textureDisposalQueue.forEach(e=>this.textureManager.releaseTexture(e.texture,e.width,e.height,e.format,e.usage)),this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[],this.textureDisposalQueue=[]}disposeData(e,t=!1){if(this.tensorMap.has(e)){let r=this.tensorMap.get(e);if(r.refCount--,!t&&r.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDisposalQueue.push(e),!1;this.maybeReleaseBuffer(e);let{complexTensorInfos:n}=this.tensorMap.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.tensorMap.delete(e)}return!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}getBufferManager(){return this.bufferManager}getTextureManager(){return this.textureManager}acquireBuffer(e,t=this.defaultGpuBufferUsage()){return this.bufferManager.acquireBuffer(e,t)}maybeReleaseBuffer(e){let t=this.tensorMap.get(e);t!=null&&t.bufferInfo.buffer!=null&&(this.bufferManager.releaseBuffer(t.bufferInfo.buffer,t.bufferInfo.byteSize,t.bufferInfo.usage),t.bufferInfo.buffer=null)}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,r){if(r==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()},a=v.sizeFromShape(t)*v0(r);return this.tensorMap.set(n,{dtype:r,shape:t,values:e,bufferInfo:{byteSize:a,usage:this.defaultGpuBufferUsage()},refCount:1}),n}move(e,t,r,n,a){if(n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s=v.sizeFromShape(r)*v0(n);this.tensorMap.set(e,{dtype:n,shape:r,values:t,bufferInfo:{byteSize:s,usage:this.defaultGpuBufferUsage()},refCount:a})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.flushDisposalQueue()}getBuffer(e){return this.uploadToGPU(e),this.tensorMap.get(e).bufferInfo.buffer}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.end(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e,t){let r=this.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e,0,r,0,t),this.submitQueue(),await r.mapAsync(GPUMapMode.READ);let n=r.getMappedRange().slice(0);return r.unmap(),r!=null&&this.bufferManager.releaseBuffer(r,t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),Z().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),n}convertAndCacheOnCPU(e,t){let r=this.tensorMap.get(e);return this.maybeReleaseBuffer(e),r.values=t,r.values}readSync(e){let t=this.tensorMap.get(e),{values:r}=t;if(r==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return r}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:r}=t;if(r!=null)return this.convertAndCacheOnCPU(e,r);let n;if(t.dtype==="complex64"){let a=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),s=a[0],i=a[1];n=C.mergeRealAndImagArrays(s,i)}else{let a=t.values!=null?t.values:await this.getBufferData(t.bufferInfo.buffer,t.bufferInfo.byteSize);n=eS(a,t.dtype)}return this.convertAndCacheOnCPU(e,n),n}readToGPU(e){let t=this.tensorMap.get(e),{values:r,dtype:n,shape:a,bufferInfo:s}=t;if(n==="complex64")throw new Error("Does not support reading buffer for complex64 dtype.");if(s.buffer==null)throw r!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let i=v.sizeFromShape(a)*v0(n),o=this.acquireBuffer(i);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(s.buffer,0,o,0,i),this.submitQueue();let l=this.makeTensorInfo(a,n),u=Xt().makeTensorFromTensorInfo(l),d=this.tensorMap.get(l.dataId);return d.bufferInfo.buffer=o,{tensorRef:u,buffer:o,bufSize:i}}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let r=t.map(n=>v.decodeString(n));return De(e.shape,e.dtype,r)}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return De(e.shape,e.dtype,t)}async time(e){let t=this.activeTimers,r=[],n=!1;this.programTimersStack==null?(this.programTimersStack=r,n=!0):this.activeTimers.push(r),this.activeTimers=r,e();let a=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),s=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},o=await Promise.all(a);return i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,i}getAndSavePipeline(e,t){return e in this.pipelineCache||(this.pipelineCache[e]=t()),this.pipelineCache[e]}makeTensorInfo(e,t,r){let n;if(t==="string"&&r!=null&&r.length>0&&v.isString(r[0])){let a=r.map(s=>v.encodeString(s));n=this.write(a,e,t)}else n=this.write(r,e,t);return{dataId:n,shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);return{offset:0,size:t.bufferInfo.byteSize,buffer:t.bufferInfo.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);if(t.bufferInfo.buffer==null&&(t.bufferInfo.buffer=this.acquireBuffer(t.bufferInfo.byteSize),t.values)){let r=this.bufferManager.acquireUploadBuffer(t.bufferInfo.byteSize,GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC),n=r.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(n).set(t.values):new Float32Array(n).set(t.values),r.unmap(),this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(r,0,t.bufferInfo.buffer,0,t.bufferInfo.byteSize);let a={byteSize:t.bufferInfo.byteSize,usage:GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC,buffer:r};this.stagingDisposalQueue.push(a)}}makeUniforms(e){let t=0,r=0,n=[];e.forEach(o=>{o.data.length===0&&(o.data=[1]);let l;switch(o.data.length){case 1:l=4;break;case 2:l=8;break;case 3:l=16;break;case 4:l=16;break;case 5:l=16;break;case 6:l=16;break;default:v.assert(!1,()=>`Unsupported ${o.data.length}D shape`)}(r===5||r===6)&&(l=16),t=Math.ceil(t/l)*l,r=o.data.length,n.push(t),t+=o.data.length*4});let a=new ArrayBuffer(t);e.forEach((o,l)=>{let u=n[l];o.type==="int32"?new Int32Array(a,u,o.data.length).set(o.data):o.type==="uint32"?new Uint32Array(a,u,o.data.length).set(o.data):new Float32Array(a,u,o.data.length).set(o.data)});let s=this.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);this.queue.writeBuffer(s,0,a,0,t);let i={byteSize:t,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:s};return this.uniformDisposalQueue.push(i),{offset:0,size:t,buffer:s}}createLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}});for(let a=0;a<e;a++)t.push({binding:a+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"read-only-storage"}});t.push({binding:e+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"uniform"}});let r=this.device.createBindGroupLayout({entries:t}),n=this.device.createPipelineLayout({bindGroupLayouts:[r]});return{bindGroupLayout:r,pipelineLayout:n}}getCachedOrCreateLayout(e){return e in this.layoutCache||(this.layoutCache[e]=this.createLayout(e)),this.layoutCache[e]}makeBindGroup(e,t,r,n,a){let s=[n,...r];return a&&s.push(a),e.createBindGroup({layout:t,entries:s.map((i,o)=>({binding:o,resource:i}))})}runWebGPUProgram(e,t,r,n,a){if(!a){if(a=this.makeTensorInfo(e.outputShape,r),v.sizeFromShape(a.shape)===0){let I=this.tensorMap.get(a.dataId);return I.values=v.getTypedArrayFromDType(a.dtype,0),a}this.uploadToGPU(a.dataId)}e.dispatch=R7(this.device,e);let s=[{type:"float32",data:[NaN]}],i=t.concat(a).map(I=>I.shape),o="int32";i.map(I=>{s.push({type:o,data:I})});let l=v.computeStrides(a.shape);if(s.push({type:o,data:l}),e.size){let I=v.sizeFromShape(e.outputShape);s.push({type:o,data:[e.isVec4?I/4:I]})}n&&(s=[...s,...n]);let u=this.makeUniforms(s),d=t.map((I,T)=>{if(I.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(I.dataId),{dtype:this.tensorMap.get(I.dataId).dtype,shape:I.shape,name:e.variableNames[T]}}),h=d.map(I=>I.dtype).concat(a.dtype),p=d.map(I=>C.getBroadcastDims(I.shape,a.shape)),c=d.map(I=>v.arraysEqual(I.shape,a.shape)).join("_"),m=p.map(I=>I.join("_")).join(";"),f=g7(e,i,h,m,c),{bindGroupLayout:g,pipelineLayout:y}=this.getCachedOrCreateLayout(e.variableNames.length),A=this.getAndSavePipeline(f,()=>m7(this.device,e,y,d,a)),x=this.activeTimers!=null,b=this.makeBindGroup(this.device,g,t.map(I=>this.tensorToBinding(I)),this.tensorToBinding(a),u);this.ensureCommandEncoderReady();let w=this.getComputePass();return x&&this.supportTimeQuery&&w.writeTimestamp(this.querySet,0),w.setPipeline(A),w.setBindGroup(0,b),w.dispatchWorkgroups(e.dispatch[0],e.dispatch[1],e.dispatch[2]),x&&this.supportTimeQuery&&w.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(I=>{this.commandQueueOwnedIds.add(I.dataId)}),this.commandQueueOwnedIds.add(a.dataId),Z().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),x&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),a}getFromPixelTextureLayout(e){return e?(this.fromPixelImportTextureLayout===null&&(this.fromPixelImportTextureLayout=this.createFromPixelTextureLayout(!0)),this.fromPixelImportTextureLayout):(this.fromPixelTextureLayout===null&&(this.fromPixelTextureLayout=this.createFromPixelTextureLayout(!1)),this.fromPixelTextureLayout)}createFromPixelTextureLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),e?t.push({binding:1,visibility:GPUShaderStage.COMPUTE,externalTexture:{}}):t.push({binding:1,visibility:GPUShaderStage.COMPUTE,texture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let r=this.device.createBindGroupLayout({entries:t}),n=this.device.createPipelineLayout({bindGroupLayouts:[r]});return{bindGroupLayout:r,pipelineLayout:n}}copyExternalImageToTexture(e,t){let r=GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING,n="rgba8unorm",a=this.textureManager.acquireTexture(t[1],t[0],n,r),s=a.createView();this.queue.copyExternalImageToTexture({source:e},{texture:a},[t[1],t[0]]);let i={width:t[1],height:t[0],format:n,usage:r,texture:a};return this.textureDisposalQueue.push(i),s}runFromPixelsProgram(e,t,r,n,a){e.dispatch=R7(this.device,e);let s=this.makeTensorInfo(t,"int32");if(v.sizeFromShape(s.shape)===0){let f=this.tensorMap.get(s.dataId);return f.values=v.getTypedArrayFromDType(s.dtype,0),s}this.uploadToGPU(s.dataId);let i=g7(e,[s.shape]),o=this.getFromPixelTextureLayout(n),l=this.getAndSavePipeline(i,()=>m7(this.device,e,o.pipelineLayout,[],s,!0)),u;if(n){let f={source:a};u=this.device.importExternalTexture(f)}else u=this.copyExternalImageToTexture(a,s.shape);let d=this.tensorToBinding(s),h=this.makeUniforms(r),p=this.device.createBindGroup({layout:o.bindGroupLayout,entries:[{binding:0,resource:{buffer:d.buffer}},{binding:1,resource:u},{binding:2,resource:{buffer:h.buffer}}]});this.ensureCommandEncoderReady();let c=this.getComputePass(),m=this.activeTimers!=null;return m&&this.supportTimeQuery&&c.writeTimestamp(this.querySet,0),c.setPipeline(l),c.setBindGroup(0,p),c.dispatchWorkgroups(e.dispatch[0],e.dispatch[1],e.dispatch[2]),m&&this.supportTimeQuery&&c.writeTimestamp(this.querySet,1),this.commandQueueOwnedIds.add(s.dataId),this.dispatchNumberInEncoder++,Z().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),m&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),s}async getTimeFromQuerySet(e){let t=this.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r=this.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,r,0,16),this.submitQueue(),await r.mapAsync(GPUMapMode.READ);let n=new BigUint64Array(r.getMappedRange()),a=Number(n[1]-n[0]);return r.unmap(),this.bufferManager.releaseBuffer(r,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),a/1e6}shouldExecuteOnCPU(e,t=_me){return Z().getBool("WEBGPU_CPU_FORWARD")&&e.every(r=>this.tensorMap.get(r.dataId).bufferInfo.buffer==null&&v.sizeFromShape(r.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDisposalQueue.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.textureManager.dispose(),this.disposed=!0)}},VA=vS;VA.nextDataId=0;var wS={};Be(wS,{WebGPUBackend:()=>VA,webgpu_util:()=>JI});zA()&&El("webgpu",async()=>{Z().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:Z().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),r=t.limits,n={},a=t.features.has("timestamp-query");n.requiredLimits={maxComputeWorkgroupStorageSize:r.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:r.maxComputeWorkgroupsPerDimension},a?n.requiredFeatures=["timestamp-query"]:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let s=await t.requestDevice(n);return new VA(s,a)},3);var Ut=(e=>(e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64",e))(Ut||{}),Bm=(e=>(e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu",e))(Bm||{}),kS;function Pme(e){kS=e.wasm.cwrap(_s,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Ome(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:h}=n,p=r.dataIdMap.get(a.dataId).id,c=r.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let E=r.dataIdMap.get(i.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);m=E.id}let f=o==null?0:r.dataIdMap.get(o.dataId).id,g=Bm[d];if(g==null)throw new Error(`${d} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],A=u?s.shape[1]:s.shape[2],x=Rl.assertAndGetBroadcastShape(a.shape.slice(0,-2),s.shape.slice(0,-2)),b=r.makeOutput([...x,y,A],a.dtype),w=r.dataIdMap.get(b.dataId).id,I=new Uint8Array(new Int32Array(a.shape).buffer),T=new Uint8Array(new Int32Array(s.shape).buffer);return kS(p,I,a.shape.length,c,T,s.shape.length,l,u,g,m,f,h||0,w),b}var zme={kernelName:_s,backendName:"wasm",setupFunc:Pme,kernelFunc:Ome};function vr(e,t){let r;function n(s){r=s.wasm.cwrap(e,null,["number","number","number"])}function a(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),d=i.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||r(l,Ut[o.dtype],d),u}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var Dme=vr(Uo);function Ir(e,t,r){let n;function a(i){n=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:d}=l,h=o.dataIdMap.get(u.dataId).id,p=o.dataIdMap.get(d.dataId).id,c=r!=null?r:u.dtype,m=C.assertAndGetBroadcastShape(u.shape,d.shape),f=o.makeOutput(m,c);if(v.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(d.shape).buffer),A=o.dataIdMap.get(f.dataId).id;return n(h,g,u.shape.length,p,y,d.shape.length,Ut[u.dtype],A),f}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var Lme=!0,Bme=Ir(Ja,Lme),IS;function Wme(e){IS=e.wasm.cwrap(Ks,null,["array","number","number","number"])}function Vme(e){let{inputs:t,backend:r}=e,n=r.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(n.shape)===0)return n;let a=t.map(o=>r.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=r.dataIdMap.get(n.dataId).id;return IS(s,a.length,Ut[n.dtype],i),n}var Ume={kernelName:Ks,backendName:"wasm",setupFunc:Wme,kernelFunc:Vme};function Wm(e){let{inputs:{x:t},backend:r}=e,n=r.makeOutput(t.shape,t.dtype),a=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(n).set(a),n}var Gme={kernelName:fi,backendName:"wasm",kernelFunc:Wm},SS;function jme(e){SS=e.wasm.cwrap($a,null,["number","array","number","number","number","array","number"])}function qs(e){let{inputs:t,backend:r,attrs:n}=e,[a,s]=qme(t.x.shape,n.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=Hme(t.x.shape,n.perm),l={dataId:t.x.dataId,shape:a,dtype:t.x.dtype};if(i){let m=Wm({inputs:t,backend:r});return m.shape=o,m}let u=r.makeOutput(o,l.dtype),d=r.dataIdMap.get(l.dataId).id,h=r.dataIdMap.get(u.dataId).id,p=new Uint8Array(new Int32Array(s).buffer),c=new Uint8Array(new Int32Array(l.shape).buffer);return SS(d,c,l.shape.length,Ut[l.dtype],h,p,s.length),u}function Hme(e,t){let r=new Array(e.length);for(let n=0;n<r.length;n++)r[n]=e[t[n]];return r}function qme(e,t){let r=[],n=[];for(let a=0;a<e.length;++a)e[a]!==1&&r.push(e[a]),e[t[a]]!==1&&n.push(t[a]);for(let a=0;a<n.length;++a){let s=-1;for(let i=0;i<n.length;++i)n[i]>=a&&(s===-1||n[s]>n[i])&&(s=i);n[s]=a}return[r,n]}var Xme={kernelName:$a,backendName:"wasm",kernelFunc:qs,setupFunc:jme};function qi(e,t,r){let n=e.shape,a=e.shape.length,s=v.parseAxisParam(t,n),i=s,o=C.getAxesPermutation(i,a),l=null,u=!1;if(o!=null){let d=new Array(a);for(let p=0;p<d.length;p++)d[p]=n[o[p]];i=C.getInnerMostAxes(i.length,a),l=qs({inputs:{x:e},attrs:{perm:o},backend:r});let h=r.dataIdMap.get(e.dataId).id;r.dataIdMap.get(l.dataId).id!==h&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var CS;function Kme(e){CS=e.wasm.cwrap(qu,null,["number, number, number"])}function Zme(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:h,inputWasTransposed:p}=qi(i,a,t);if(p){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let c=l.shape.length;C.assertAxesAreInnerMostDims("all",d,c);let[m,f]=C.computeOutAndReduceShapes(l.shape,d),g=v.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;CS(o,g,A)}if(p&&t.disposeData(u.dataId),s){let A=C.expandShapeToKeepDim(y.shape,h);y.shape=A}return y}var Yme={kernelName:qu,backendName:"wasm",setupFunc:Kme,kernelFunc:Zme},TS;function Jme(e){TS=e.wasm.cwrap(Xu,null,["number, number, number"])}function Qme(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:h,inputWasTransposed:p}=qi(i,a,t);if(p){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let c=l.shape.length;C.assertAxesAreInnerMostDims("any",d,c);let[m,f]=C.computeOutAndReduceShapes(l.shape,d),g=v.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;TS(o,g,A)}if(p&&t.disposeData(u.dataId),s){let A=C.expandShapeToKeepDim(y.shape,h);y.shape=A}return y}var e1e={kernelName:Xu,backendName:"wasm",setupFunc:Jme,kernelFunc:Qme},NS;function t1e(e){NS=e.wasm.cwrap(Zs,null,["number","number","number","number","number"])}function r1e(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a}=n,{x:s}=r,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:d,inputWasTransposed:h}=qi(s,a,t);if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let p=l.shape.slice(0,-1),c=t.makeOutput(p,"int32"),m=t.dataIdMap.get(c.dataId).id,f=v.sizeFromShape(c.shape),g=l.shape[d[0]];return NS(o,Ut[l.dtype],f,g,m),h&&t.disposeData(u.dataId),c}var n1e={kernelName:Zs,backendName:"wasm",kernelFunc:r1e,setupFunc:t1e},ES;function a1e(e){ES=e.wasm.cwrap(Ys,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function s1e(e){let{inputs:t,attrs:r,backend:n}=e,a=t.x,s=n.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r,d=C.computePool2DInfo(a.shape,i,o,1,l,u),h=d.filterHeight,p=d.filterWidth,c=d.padInfo.top,m=d.padInfo.right,f=d.padInfo.bottom,g=d.padInfo.left,y=d.strideHeight,A=d.strideWidth,x=d.inChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);if(d.dilationWidth!==1||d.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${d.dilationHeight}, ${d.dilationWidth}].`);let b=n.makeOutput(d.outShape,"float32"),w=n.dataIdMap.get(b.dataId).id;return ES(s,a.shape[0],a.shape[1],a.shape[2],h,p,c,m,f,g,y,A,x,w),b}var i1e={kernelName:Ys,backendName:"wasm",setupFunc:a1e,kernelFunc:s1e};function nn(e){let{inputs:t,attrs:r}=e,{x:n}=t,{shape:a}=r,s=v.sizeFromShape(n.shape),i=v.inferFromImplicitShape(a,s);return v.assert(s===v.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${n.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var o1e={kernelName:cl,backendName:"wasm",kernelFunc:nn},RS;function l1e(e){RS=e.wasm.cwrap(Js,null,["number","array","number","number","array","number","number","number","number"])}function u1e(e){let{inputs:t,backend:r,attrs:n}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=n;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,u=s.shape.length,d=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],p=i?a.shape[l-1]:a.shape[l-2],c=o?s.shape[u-2]:s.shape[u-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),y=v.sizeFromShape(f),A=Rl.assertAndGetBroadcastShape(a.shape.slice(0,-2),s.shape.slice(0,-2)).concat([p,c]);v.assert(d===h,()=>`Error in matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,d,p]:[g,p,d],b=o?[y,c,h]:[y,h,c],w=nn({inputs:{x:a},backend:r,attrs:{shape:x}}),I=nn({inputs:{x:s},backend:r,attrs:{shape:b}}),T=r.dataIdMap.get(w.dataId).id,E=r.dataIdMap.get(I.dataId).id,R=i?w.shape[2]:w.shape[1],O=o?I.shape[1]:I.shape[2],$=Math.max(g,y),S=r.makeOutput([$,R,O],w.dtype),P=r.dataIdMap.get(S.dataId).id,z=new Uint8Array(new Int32Array(w.shape).buffer),j=new Uint8Array(new Int32Array(I.shape).buffer);return RS(T,z,w.shape.length,E,j,I.shape.length,i,o,P),r.disposeData(w.dataId),r.disposeData(I.dataId),S.shape=A,S}var d1e={kernelName:Js,backendName:"wasm",setupFunc:l1e,kernelFunc:u1e};function Bo(e){let{inputs:{x:t},attrs:{begin:r,size:n},backend:a}=e,[s,i]=Dt.parseSliceParams(t,r,n),o=Dt.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),u=a.makeOutput(i,t.dtype),d=v.computeStrides(t.shape),h=a.dataIdMap.get(u.dataId);if(o){let m=Dt.computeFlatOffset(s,d);return t.dtype==="string"?h.stringBytes=l.slice(m,m+v.sizeFromShape(i)):a.typedArrayFromHeap(u).set(l.subarray(m,m+v.sizeFromShape(i))),u}if(t.dtype==="string"){let m=X0(l,s,i,t.shape,t.dtype);return h.stringBytes=m,u}let p=a.typedArrayFromHeap(u),c=t.shape.length;if(c===2)p1e(l,d[0],p,s,i);else if(c===3)h1e(l,d[0],d[1],p,s,i);else if(c===4)c1e(l,d[0],d[1],d[2],p,s,i);else{let m=X0(l,s,i,t.shape,t.dtype);p.set(m)}return u}function p1e(e,t,r,n,a){let s=0,i=n[0],o=n[1],l=i+a[0];for(let u=i;u<l;u++){let d=u*t+o;r.set(e.subarray(d,d+a[1]),s),s+=a[1]}}function h1e(e,t,r,n,a,s){let i=0,o=a[0],l=a[1],u=a[2],d=o+s[0],h=l+s[1];for(let p=o;p<d;p++)for(let c=l;c<h;c++){let m=p*t+c*r+u;n.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function c1e(e,t,r,n,a,s,i){let o=0,l=s[0],u=s[1],d=s[2],h=l+i[0],p=u+i[1],c=d+i[2],m=s[3];for(let f=l;f<h;f++)for(let g=u;g<p;g++)for(let y=d;y<c;y++){let A=f*t+g*r+y*n+m;a.set(e.subarray(A,A+i[3]),o),o+=i[3]}}var f1e={kernelName:Al,backendName:"wasm",kernelFunc:Bo};function m1e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,crops:i}=n,o=s.reduce((y,A)=>y*A),l=C.getReshaped(a.shape,s,o),u=C.getPermuted(l.length,s.length),d=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),p=C.getSliceSize(d,i,s.length),c=nn({inputs:{x:a},backend:r,attrs:{shape:l}}),m=qs({inputs:{x:c},backend:r,attrs:{perm:u}}),f=nn({inputs:{x:m},backend:r,attrs:{shape:d}}),g=Bo({inputs:{x:f},backend:r,attrs:{begin:h,size:p}});return r.disposeData(c.dataId),r.disposeData(m.dataId),r.disposeData(c.dataId),g}var g1e={kernelName:Go,backendName:"wasm",kernelFunc:m1e};function tc(e){let{inputs:{x:t},attrs:{dtype:r},backend:n}=e,a=n.makeOutput(t.shape,r),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(s),a}var y1e={kernelName:Qs,backendName:"wasm",kernelFunc:tc},A1e=vr(ei),$S;function x1e(e){$S=e.wasm.cwrap(Qa,null,["number","number","number","number"])}function b1e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=n,o=r.dataIdMap.get(a.dataId).id,l=r.makeOutput(a.shape,a.dtype),u=r.dataIdMap.get(l.dataId).id;return $S(o,s,i,u),l}var v1e={kernelName:Qa,backendName:"wasm",setupFunc:x1e,kernelFunc:b1e};function MS(e){let{inputs:t,backend:r}=e,n=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=C.computeOutShape(t.map(c=>c.shape),n),s=t.filter(c=>v.sizeFromShape(c.shape)>0);if(s.length===1)return Wm({inputs:{x:s[0]},backend:r});let i=r.makeOutput(a,t[0].dtype);if(v.sizeFromShape(a)===0)return i;let o=s.map(c=>c.shape);if(C.assertParamsConsistent(o,n),s[0].dtype==="string"){let c=s.map(x=>{let b=v.sizeFromShape(x.shape.slice(n));return nn({inputs:{x},backend:r,attrs:{shape:[-1,b]}})}),m=c.map(x=>({vals:r.readSync(x.dataId),shape:x.shape}));a=C.computeOutShape(c.map(x=>x.shape),1);let f=c[0].shape[0]===1,g=cA(m,a,t[0].dtype,f),y=C.computeOutShape(s.map(x=>x.shape),n);i.shape=y;let A=r.dataIdMap.get(i.dataId);return A.stringBytes=C.fromStringArrayToUint8(g),c.forEach(x=>r.disposeData(x.dataId)),i}let l=v.sizeFromShape(s[0].shape.slice(0,n)),u=0,d=s.map(c=>{let m=v.sizeFromShape(c.shape.slice(n));return u+=m,m}),h=s.map(c=>r.typedArrayFromHeap(c)),p=r.typedArrayFromHeap(i);for(let c=0;c<l;c++){let m=c*u;for(let f=0;f<h.length;f++){let g=d[f],y=c*g,A=h[f].subarray(y,y+g);p.set(A,m),m+=g}}return i}var w1e={kernelName:jo,backendName:"wasm",kernelFunc:MS},FS;function k1e(e){FS=e.wasm.cwrap(ti,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function I1e(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:h,dataFormat:p}=r,c=C.convertConv2DDataFormat(p),m=C.computeConv2DInfo(a.shape,s.shape,l,u,d,h,!1,c),f=m.filterHeight,g=m.filterWidth,y=m.padInfo.top,A=m.padInfo.right,x=m.padInfo.bottom,b=m.padInfo.left,w=m.dilationHeight,I=m.dilationWidth,T=m.strideHeight,E=m.strideWidth,R=m.inChannels,O=m.outChannels,$=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let S=n.makeOutput(m.outShape,"float32"),P=n.dataIdMap.get(S.dataId).id;return FS(i,a.shape[0],a.shape[1],a.shape[2],o,f,g,y,A,x,b,$,w,I,T,E,R,O,P),S}var S1e={kernelName:ti,backendName:"wasm",setupFunc:k1e,kernelFunc:I1e},_S;function C1e(e){_S=e.wasm.cwrap(ri,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function T1e(e){let{backend:t,inputs:r,attrs:n}=e,{dy:a,filter:s}=r,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:d}=n,h=1,p=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(d,s.shape,i,h,o,u,!1,p),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:y,inHeight:A,inWidth:x,outChannels:b,outHeight:w,outWidth:I,strideHeight:T,strideWidth:E}=c,R=f-1-c.padInfo.top,O=g-1-c.padInfo.left,$=c.dataFormat==="channelsLast",S=v.computeStrides(c.inShape),P=v.computeStrides(a.shape),[z,j,K]=v.computeStrides(s.shape),D=S[0],Y=$?S[1]:S[2],V=$?S[2]:1,re=$?1:S[1],Q=P[0],ie=$?P[1]:P[2],J=$?P[2]:1,ae=$?1:P[1],de=t.makeOutput(c.inShape,"float32"),be=t.dataIdMap.get(de.dataId).id,ve=t.dataIdMap.get(a.dataId).id,Ee=t.dataIdMap.get(s.dataId).id;return _S(ve,Ee,m,f,g,A,x,y,w,I,b,T,E,R,O,z,j,K,D,Y,V,re,Q,ie,J,ae,be),de}var N1e={kernelName:ri,backendName:"wasm",setupFunc:C1e,kernelFunc:T1e},E1e=vr(ni),R1e=vr(ai),PS=(e=>(e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest",e))(PS||{}),OS;function $1e(e){OS=e.wasm.cwrap(qo,null,["number","number","number","number","array","number","number","number","number","number"])}function M1e(e){let{backend:t,inputs:r,attrs:n}=e,{method:a,extrapolationValue:s,cropSize:i}=n,{image:o,boxes:l,boxInd:u}=r,d=l.shape[0],[h,p]=i,c=[d,h,p,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=tc({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,y=t.dataIdMap.get(l.dataId).id,A=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(c,"float32"),b=t.dataIdMap.get(x.dataId).id,w=new Uint8Array(new Int32Array(o.shape).buffer);return OS(g,y,A,d,w,h,p,PS[a],s,b),f!=null&&t.disposeData(f.dataId),x}var F1e={kernelName:qo,backendName:"wasm",setupFunc:$1e,kernelFunc:M1e},zS;function _1e(e){zS=e.wasm.cwrap(Ho,null,["number","number","number","number","number","number"])}function P1e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n,l=a.shape.length;v.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumprod does not support ${a.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([s],l),d=a;u!==null&&(d=qs({inputs:{x:a},attrs:{perm:u},backend:r}));let h=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumprod",[h],l);let p=r.makeOutput(d.shape,d.dtype),c=d.shape[h],m=r.dataIdMap.get(d.dataId).id,f=r.dataIdMap.get(p.dataId).id;zS(m,i?1:0,o?1:0,c,f,Ut[a.dtype]);let g=p;if(u!==null){let y=C.getUndoAxesPermutation(u);g=qs({inputs:{x:p},attrs:{perm:y},backend:r}),r.disposeData(d.dataId),r.disposeData(p.dataId)}return g}var O1e={kernelName:Ho,backendName:"wasm",setupFunc:_1e,kernelFunc:P1e},DS;function z1e(e){DS=e.wasm.cwrap(si,null,["number","number","number","number","number","number"])}function D1e(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=n,l=a.shape.length;v.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumsum does not support ${a.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([s],l),d=a;u!==null&&(d=qs({inputs:{x:a},attrs:{perm:u},backend:r}));let h=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[h],l);let p=r.makeOutput(d.shape,d.dtype),c=d.shape[h],m=r.dataIdMap.get(d.dataId).id,f=r.dataIdMap.get(p.dataId).id;DS(m,i?1:0,o?1:0,c,f,Ut[a.dtype]);let g=p;if(u!==null){let y=C.getUndoAxesPermutation(u);g=qs({inputs:{x:p},attrs:{perm:y},backend:r}),r.disposeData(d.dataId),r.disposeData(p.dataId)}return g}var L1e={kernelName:si,backendName:"wasm",setupFunc:z1e,kernelFunc:D1e},LS;function B1e(e){LS=e.wasm.cwrap(Xo,null,["number","number","number","array","number","array","array","number","number"])}function W1e(e){let{backend:t,inputs:r,attrs:n}=e,{x:a}=r,{blockSize:s,dataFormat:i}=n,o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],d=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,p=u*s,c=d/(s*s),m=i==="NHWC"?[o,h,p,c]:[o,c,h,p],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(v.computeStrides(a.shape)).buffer),A=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer),b=t.dataIdMap.get(f.dataId).id;return LS(g,s,i==="NHWC"?1:0,y,a.shape.length-1,A,x,m.length,b),f}var V1e={kernelName:Xo,backendName:"wasm",setupFunc:B1e,kernelFunc:W1e},BS;function U1e(e){BS=e.wasm.cwrap(ii,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function G1e(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:h}=r,p=u==null?[1,1]:u,c=C.computeConv2DInfo(a.shape,s.shape,l,p,d,h,!0),m=c.filterHeight,f=c.filterWidth,g=c.padInfo.top,y=c.padInfo.right,A=c.padInfo.bottom,x=c.padInfo.left,b=c.dilationHeight,w=c.dilationWidth,I=c.strideHeight,T=c.strideWidth,E=c.inChannels,R=c.outChannels,O=c.padInfo.type==="SAME"?1:0;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let $=n.makeOutput(c.outShape,"float32"),S=n.dataIdMap.get($.dataId).id;return BS(i,a.shape[0],a.shape[1],a.shape[2],o,m,f,g,y,A,x,O,b,w,I,T,E,R,S),$}var j1e={kernelName:ii,backendName:"wasm",setupFunc:U1e,kernelFunc:G1e},H1e=vr(li),q1e=!1,X1e=Ir(Ko,q1e,"bool"),K1e=vr(ui,"float32");function ky(e){let{inputs:t,attrs:r,backend:n}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),nn({inputs:{x:a},backend:n,attrs:{shape:o}})}var Z1e={kernelName:Zo,backendName:"wasm",kernelFunc:ky};function WS(e){let{attrs:{shape:t,value:r,dtype:n},backend:a}=e,s=a.makeOutput(t,n);return a.typedArrayFromHeap(s).fill(r),s}var Y1e={kernelName:rd,backendName:"wasm",kernelFunc:WS},VS;function J1e(e){VS=e.wasm.cwrap(Jo,null,["number","number","number","number","number","number"])}function Q1e(e){let{inputs:t,backend:r}=e,{image:n}=t,a=r.makeOutput(n.shape,n.dtype),s=r.dataIdMap.get(n.dataId).id,i=r.dataIdMap.get(a.dataId).id,[o,l,u,d]=n.shape;return VS(s,o,l,u,d,i),a}var e2e={kernelName:Jo,backendName:"wasm",kernelFunc:Q1e,setupFunc:J1e},t2e=vr(di),r2e=!1,n2e=Ir(pi,r2e),US;function a2e(e){US=e.wasm.cwrap(hi,null,["number","number","number","number","number","number","number"])}function s2e(e){let{backend:t,inputs:r,attrs:n}=e,{varianceEpsilon:a}=n,{x:s,mean:i,variance:o,offset:l,scale:u}=r,d=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,p=t.dataIdMap.get(o.dataId).id,c=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return US(d,h,p,c,m,a,g),f}var i2e={kernelName:hi,backendName:"wasm",setupFunc:a2e,kernelFunc:s2e},GS;function o2e(e){GS=e.wasm.cwrap(Ps,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function l2e(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:h,dimRoundingMode:p,activation:c,leakyreluAlpha:m}=r,f=C.computeConv2DInfo(a.shape,s.shape,l,d,u,p),g=Bm[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=n.dataIdMap.get(a.dataId).id,A=n.dataIdMap.get(s.dataId).id,x=f.outChannels,b=0;if(i!=null){let J=n.dataIdMap.get(i.dataId);if(J.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let w=f.filterHeight,I=f.filterWidth,T=f.padInfo.top,E=f.padInfo.right,R=f.padInfo.bottom,O=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,P=f.strideHeight,z=f.strideWidth,j=f.inChannels,K=f.padInfo.type==="SAME"?1:0,D=f.batchSize,Y=f.inHeight,V=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let re=n.makeOutput(f.outShape,"float32"),Q=n.dataIdMap.get(re.dataId).id,ie=o==null?0:n.dataIdMap.get(o.dataId).id;return GS(y,D,Y,V,A,w,I,b,T,E,R,O,K,$,S,P,z,j,x,g,ie,m||0,Q),re}var u2e={kernelName:Ps,backendName:"wasm",setupFunc:o2e,kernelFunc:l2e},jS;function d2e(e){jS=e.wasm.cwrap(Os,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function p2e(e){let{inputs:t,attrs:r,backend:n}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:h,dimRoundingMode:p,activation:c,leakyreluAlpha:m}=r,f=C.computeConv2DInfo(a.shape,s.shape,l,d,u,p,!0),g=Bm[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=n.dataIdMap.get(a.dataId).id,A=n.dataIdMap.get(s.dataId).id,x=f.outChannels,b=0;if(i!=null){let J=n.dataIdMap.get(i.dataId);if(J.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let w=f.filterHeight,I=f.filterWidth,T=f.padInfo.top,E=f.padInfo.right,R=f.padInfo.bottom,O=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,P=f.strideHeight,z=f.strideWidth,j=f.inChannels,K=f.padInfo.type==="SAME"?1:0,D=f.batchSize,Y=f.inHeight,V=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let re=n.makeOutput(f.outShape,"float32"),Q=n.dataIdMap.get(re.dataId).id,ie=o==null?0:n.dataIdMap.get(o.dataId).id;return jS(y,D,Y,V,A,w,I,b,T,E,R,O,K,$,S,P,z,j,x,g,ie,m||0,Q),re}var h2e={kernelName:Os,backendName:"wasm",setupFunc:d2e,kernelFunc:p2e},HS;function c2e(e){HS=e.wasm.cwrap(el,null,["number","number","number","number","number","number","array","number"])}function f2e(e){let{backend:t,inputs:r}=e,{params:n,indices:a}=r,[s,i,o,l]=Uy.prepareAndValidate(n,a),u=t.makeOutput(s,n.dtype);if(i===0)return u;let d=a.shape,h=d[d.length-1],p=t.dataIdMap.get(n.dataId).id,c=t.dataIdMap.get(a.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return HS(p,Ut[n.dtype],c,i,h,o,m,f),u}var m2e={kernelName:el,backendName:"wasm",setupFunc:c2e,kernelFunc:f2e},qS;function g2e(e){qS=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function y2e(e){let{backend:t,inputs:r,attrs:n}=e,{x:a,indices:s}=r,{axis:i,batchDims:o}=n,l=v.parseAxisParam(i,a.shape)[0],u=t.readSync(s.dataId),d=a.shape[l];for(let T=0;T<u.length;++T){let E=u[T];v.assert(E<=d-1&&E>=0,()=>`GatherV2: the index value ${E} is not in [0, ${d-1}]`)}let h=C.segment_util.collectGatherOpShapeInfo(a,s,l,o),p=nn({inputs:{x:a},attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]},backend:t}),c=v.sizeFromShape(s.shape),m=nn({inputs:{x:s},attrs:{shape:[h.batchSize,c/h.batchSize]},backend:t}),f=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],g=t.makeOutput(f,a.dtype);if(v.sizeFromShape(a.shape)===0)return g;let y=p.shape.length-1,A=t.dataIdMap.get(p.dataId).id,x=t.dataIdMap.get(m.dataId).id,b=t.dataIdMap.get(g.dataId).id,w=new Uint8Array(new Int32Array(v.computeStrides(p.shape)).buffer),I=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer);return qS(A,Ut[a.dtype],w,y,x,h.batchSize,I,b),t.disposeData(p.dataId),t.disposeData(m.dataId),g.shape=h.outputShape,g}var A2e={kernelName:Qo,backendName:"wasm",setupFunc:g2e,kernelFunc:y2e},x2e=!1,b2e=Ir(tl,x2e,"bool"),v2e=!1,w2e=Ir(ci,v2e,"bool"),XS;function k2e(e){XS=e.wasm.cwrap(mi,null,["number","number","number","number"])}function I2e(e){let{inputs:{x:t},attrs:{alpha:r},backend:n}=e,a=n.dataIdMap.get(t.dataId).id,s=n.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let i=n.dataIdMap.get(s.dataId).id;XS(a,Ut[t.dtype],r,i)}return s}var S2e={kernelName:mi,backendName:"wasm",setupFunc:k2e,kernelFunc:I2e},C2e=!1,T2e=Ir(rl,C2e,"bool"),N2e=!1,E2e=Ir(nl,N2e,"bool"),R2e=vr(gi),$2e=!1,M2e=Ir(al,$2e,"bool"),F2e=vr(sl),_2e=!1,P2e=Ir(od,_2e,"bool"),O2e=!1,z2e=Ir(X7,O2e,"bool"),KS;function D2e(e){KS=e.wasm.cwrap(yi,null,["number","number","number","number"])}function L2e(e){let{backend:t,inputs:r,attrs:n}=e,{reductionIndices:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:h,inputWasTransposed:p}=qi(i,a,t);if(p){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let c=l.shape.length;C.assertAxesAreInnerMostDims("max",d,c);let[m,f]=C.computeOutAndReduceShapes(l.shape,d),g=v.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;KS(o,Ut[i.dtype],g,A)}if(p&&t.disposeData(u.dataId),s){let A=C.expandShapeToKeepDim(y.shape,h);y.shape=A}return y}var B2e={kernelName:yi,backendName:"wasm",setupFunc:D2e,kernelFunc:L2e},W2e=!1,V2e=Ir(Ai,W2e),ZS;function U2e(e){ZS=e.wasm.cwrap(xi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function G2e(e){let{inputs:t,attrs:r,backend:n}=e,a=t.x,s=n.dataIdMap.get(a.dataId).id;v.assert(a.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${a.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r,d=C.computePool2DInfo(a.shape,i,o,1,l,u),h=d.filterHeight,p=d.filterWidth,c=d.padInfo.top,m=d.padInfo.right,f=d.padInfo.bottom,g=d.padInfo.left,y=d.dilationHeight,A=d.dilationWidth,x=d.strideHeight,b=d.strideWidth,w=d.inChannels,I=d.outChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let T=n.makeOutput(d.outShape,"float32"),E=n.dataIdMap.get(T.dataId).id;return ZS(s,a.shape[0],a.shape[1],a.shape[2],h,p,c,m,f,g,y,A,x,b,w,I,E),T}var j2e={kernelName:xi,backendName:"wasm",setupFunc:U2e,kernelFunc:G2e},YS;function H2e(e){YS=e.wasm.cwrap(bi,null,["number, number, number"])}function q2e(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=qi(i,a,t),m=h;if(c){let b=t.dataIdMap.get(d.dataId).id;b!==o&&(u=d,l=b,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=C.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(g),A=u;u.dtype!=="float32"&&(A=tc({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(A.dataId).id);let x=t.makeOutput(f,"float32");if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;YS(l,y,b)}if(c&&t.disposeData(d.dataId),s){let b=C.expandShapeToKeepDim(x.shape,p);x.shape=b}return u.dtype!=="float32"&&t.disposeData(A.dataId),x}var X2e={kernelName:bi,backendName:"wasm",setupFunc:H2e,kernelFunc:q2e},JS;function K2e(e){JS=e.wasm.cwrap(vi,null,["number","number","number","number"])}function Z2e(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=qi(i,a,t);if(c){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x)}let m=u.shape.length;C.assertAxesAreInnerMostDims("min",h,m);let[f,g]=C.computeOutAndReduceShapes(u.shape,h),y=v.sizeFromShape(g),A=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;JS(l,Ut[i.dtype],y,x)}if(c&&t.disposeData(d.dataId),s){let x=C.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var Y2e={kernelName:vi,backendName:"wasm",setupFunc:K2e,kernelFunc:Z2e},J2e=!1,Q2e=Ir(wi,J2e),QS=(e=>(e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric",e))(QS||{}),eC;function ege(e){eC=e.wasm.cwrap(ki,null,["number","array","number","number","array","array","number","number"])}function tge(e){let{inputs:{x:t},backend:r,attrs:{paddings:n,mode:a}}=e,s=n.map((m,f)=>m[0]+t.shape[f]+m[1]),i=r.dataIdMap.get(t.dataId).id,o=r.makeOutput(s,t.dtype),l=r.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=n.map(m=>m[0]),h=n.map(m=>m[1]),p=new Uint8Array(new Int32Array(d).buffer),c=new Uint8Array(new Int32Array(h).buffer);return eC(i,u,t.shape.length,Ut[t.dtype],p,c,QS[a],l),o}var rge={kernelName:ki,backendName:"wasm",kernelFunc:tge,setupFunc:ege},nge=!0,age=Ir(Ii,nge),sge=vr(il);function UA(e,t){let r=new Int32Array(e.wasm.HEAPU8.buffer,t,4),n=r[0],a=r[1],s=r[2],i=r[3];return e.wasm._free(t),{pSelectedIndices:n,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var tC;function ige(e){tC=e.wasm.cwrap(ll,"number",["number","number","number","number","number"])}function oge(e){let{backend:t,inputs:r,attrs:n}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=n,{boxes:o,scores:l}=r,u=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(l.dataId).id,h=tC(u,d,s,a,i),{pSelectedIndices:p,selectedSize:c,pSelectedScores:m,pValidOutputs:f}=UA(t,h);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([c],"int32",p)}var lge={kernelName:ll,backendName:"wasm",setupFunc:ige,kernelFunc:oge},rC;function uge(e){rC=e.wasm.cwrap(ud,"number",["number","number","number","number","number","bool"])}function dge(e){let{backend:t,inputs:r,attrs:n}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=n,{boxes:l,scores:u}=r,d=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,p=rC(d,h,s,a,i,o),{pSelectedIndices:c,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=UA(t,p);t.wasm._free(f);let y=t.makeOutput([m],"int32",c),A=t.makeOutput([],"int32",g);return[y,A]}var pge={kernelName:ud,backendName:"wasm",setupFunc:uge,kernelFunc:dge},nC;function hge(e){nC=e.wasm.cwrap(ul,"number",["number","number","number","number","number","number"])}function cge(e){let{backend:t,inputs:r,attrs:n}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=n,{boxes:l,scores:u}=r,d=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,p=nC(d,h,s,a,i,o),{pSelectedIndices:c,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=UA(t,p);t.wasm._free(g);let y=t.makeOutput([m],"int32",c),A=t.makeOutput([m],"float32",f);return[y,A]}var fge={kernelName:ul,backendName:"wasm",setupFunc:hge,kernelFunc:cge},mge=!1,gge=Ir(ol,mge,"bool"),aC;function yge(e){aC=e.wasm.cwrap(pl,null,["number","number","number","number","number"])}function Age(e){let{inputs:t,backend:r,attrs:n}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=n,l=r.makeOutput([...a.shape,s],"int32"),u=r.dataIdMap.get(l.dataId).id,d=r.dataIdMap.get(a.dataId).id;return aC(d,s,i,o,u),l}var xge={kernelName:pl,backendName:"wasm",setupFunc:yge,kernelFunc:Age};function bge(e){let{inputs:{x:t},backend:r}=e,n=r.makeOutput(t.shape,t.dtype);return r.typedArrayFromHeap(n).fill(1),n}var vge={kernelName:dl,backendName:"wasm",kernelFunc:bge};function wge(e){let{inputs:t,backend:r,attrs:n}=e,{axis:a}=n;if(t.length===1)return ky({inputs:{input:t[0]},backend:r,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{v.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let h=ky({inputs:{input:d},backend:r,attrs:{dim:a}});return o.push(h),h}),u=MS({inputs:l,backend:r,attrs:{axis:a}});return o.forEach(d=>r.disposeData(d.dataId)),u}var kge={kernelName:hl,backendName:"wasm",kernelFunc:wge},sC;function Ige(e){sC=e.wasm.cwrap(Si,null,["number","array","number","number","array","array","number","number"])}function Sge(e){let{inputs:{x:t},backend:r,attrs:{paddings:n,constantValue:a}}=e,s=n.map((m,f)=>m[0]+t.shape[f]+m[1]);if(v.sizeFromShape(t.shape)===0)return WS({backend:r,attrs:{shape:s,value:a,dtype:t.dtype}});let i=r.dataIdMap.get(t.dataId).id,o=r.makeOutput(s,t.dtype),l=r.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=n.map(m=>m[0]),h=n.map(m=>m[1]),p=new Uint8Array(new Int32Array(d).buffer),c=new Uint8Array(new Int32Array(h).buffer);return sC(i,u,t.shape.length,Ut[t.dtype],p,c,a,l),o}var iC={kernelName:Si,backendName:"wasm",kernelFunc:Sge,setupFunc:Ige},Cge=!1,Tge=Ir(Ci,Cge),oC;function Nge(e){oC=e.wasm.cwrap(Ti,null,["number","number","number"])}function Ege(e){let{inputs:t,backend:r}=e,{x:n,alpha:a}=t,s=r.dataIdMap.get(n.dataId).id,i=r.dataIdMap.get(a.dataId).id,o=s,l=n,u=l;l.dtype!=="float32"&&(u=tc({backend:r,inputs:{x:n},attrs:{dtype:"float32"}}),o=r.dataIdMap.get(u.dataId).id);let d=r.makeOutput(n.shape,"float32"),h=r.dataIdMap.get(d.dataId).id;return oC(o,i,h),l.dtype!=="float32"&&r.disposeData(u.dataId),d}var Rge={kernelName:Ti,backendName:"wasm",setupFunc:Nge,kernelFunc:Ege},lC;function $ge(e){lC=e.wasm.cwrap(Ni,null,["number","number","number","number"])}function Mge(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=qi(i,a,t),m=h;if(c){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=C.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(g),A=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;lC(l,y,Ut[A.dtype],x)}if(c&&t.disposeData(d.dataId),s){let x=C.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var Fge={kernelName:Ni,backendName:"wasm",setupFunc:$ge,kernelFunc:Mge},_ge=e=>{let{backend:t,attrs:r}=e,{start:n,stop:a,step:s,dtype:i}=r,o=gA(n,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},Pge={kernelName:dd,backendName:"wasm",kernelFunc:_ge},Oge=!0,zge=Ir(oi,Oge),Dge=vr(Ei),Lge=vr($i),uC;function Bge(e){uC=e.wasm.cwrap(Ri,null,["number","number","number","number","number","number","number","number","number","number"])}function Wge(e){let{backend:t,inputs:r,attrs:n}=e,{images:a}=r,{alignCorners:s,halfPixelCenters:i,size:o}=n,[l,u]=o,[d,h,p,c]=a.shape,m=[d,l,u,c],f=t.dataIdMap.get(a.dataId),g;f.dtype!=="float32"&&(g=tc({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,A=t.makeOutput(m,"float32");if(v.sizeFromShape(a.shape)===0)return A;let x=t.dataIdMap.get(A.dataId).id;return uC(y,d,h,p,c,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),A}var Vge={kernelName:Ri,backendName:"wasm",setupFunc:Bge,kernelFunc:Wge},dC;function Uge(e){dC=e.wasm.cwrap(fl,null,["number","array","number","array","number","number"])}function Gge(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{dims:s}=n,i=v.parseAxisParam(s,a.shape);if(a.shape.length===0)return Wm({inputs:{x:a},backend:r});let o=r.makeOutput(a.shape,a.dtype),l=r.dataIdMap.get(a.dataId).id,u=r.dataIdMap.get(o.dataId).id,d=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);dC(l,d,i.length,h,a.shape.length,u);let p=nn({inputs:{x:o},attrs:{shape:a.shape},backend:r});return r.disposeData(o.dataId),p}var jge={kernelName:fl,backendName:"wasm",kernelFunc:Gge,setupFunc:Uge},pC;function Hge(e){pC=e.wasm.cwrap(Nl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function qge(e){let{inputs:t,backend:r,attrs:n}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=n,l=r.makeOutput(a.shape,a.dtype),u=r.dataIdMap.get(a.dataId).id,d=r.dataIdMap.get(l.dataId).id,[h,p,c,m]=a.shape,[f,g]=C.getImageCenter(o,p,c),y=i===0,A=255,x=typeof i=="number"?[i,i,i,y?0:A]:[...i,A],b=new Uint8Array(new Int32Array(x).buffer);return pC(u,h,p,c,m,s,f,g,b,x.length,d),l}var Xge={kernelName:Nl,backendName:"wasm",kernelFunc:qge,setupFunc:Hge},Kge=vr(ml),Zge=vr(Mi),hC;function Yge(e){hC=e.wasm.cwrap(gl,null,["number","number","number","number","number","number","array","number","number"])}function Jge(e){let{backend:t,inputs:r,attrs:n}=e,{indices:a,updates:s}=r,{shape:i}=n,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:d,strides:h,outputSize:p}=Gy.calculateShapes(s,a,i),c=t.dataIdMap.get(a.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(h).buffer),g=t.dataIdMap.get(o.dataId).id;return hC(c,m,Ut[s.dtype],l,u,d,f,p,g),o}var Qge={kernelName:gl,backendName:"wasm",setupFunc:Yge,kernelFunc:Jge},cC;function eye(e){cC=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function tye(e){let{inputs:t,backend:r}=e,{condition:n,t:a,e:s}=t,i=r.dataIdMap.get(n.dataId).id,o=r.dataIdMap.get(a.dataId).id,l=r.dataIdMap.get(s.dataId).id,u=r.makeOutput(a.shape,a.dtype),d=r.dataIdMap.get(u.dataId).id,h=n.shape.length,p=a.shape.length,c=h===0||h>1||p===1?1:v.sizeFromShape(a.shape.slice(1));return cC(i,o,l,c,d),u}var rye={kernelName:yl,backendName:"wasm",kernelFunc:tye,setupFunc:eye},fC;function nye(e){fC=e.wasm.cwrap(_i,null,["number","number"])}function aye(e){let{backend:t,inputs:{x:r}}=e,n=t.dataIdMap.get(r.dataId).id,a=t.makeOutput(r.shape,r.dtype),s=t.dataIdMap.get(a.dataId).id;return v.sizeFromShape(a.shape)===0||fC(n,s),a}var sye={kernelName:"Sigmoid",backendName:"wasm",setupFunc:nye,kernelFunc:aye},iye=vr(Fi),mC;function oye(e){mC=e.wasm.cwrap(zi,null,["number","number","number","number"])}function lye(e){let{backend:t,inputs:{logits:r},attrs:{dim:n}}=e,a=t.dataIdMap.get(r.dataId).id,s=t.makeOutput(r.shape,r.dtype),i=t.dataIdMap.get(s.dataId).id,o=r.shape[n],l=v.sizeFromShape(r.shape)/o;return v.sizeFromShape(s.shape)===0||mC(a,i,o,l),s}var uye={kernelName:zi,backendName:"wasm",setupFunc:oye,kernelFunc:lye};function dye(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,{blockShape:s,paddings:i}=n,o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<a.shape.length;++g)l.push([0,0]);let u=iC.kernelFunc({inputs:{x:a},backend:r,attrs:{paddings:l,constantValue:0}}),d=C.getReshaped(u.shape,s,o,!1),h=C.getPermuted(d.length,s.length,!1),p=C.getReshapedPermuted(u.shape,s,o,!1),c=nn({inputs:{x:u},backend:r,attrs:{shape:d}}),m=qs({inputs:{x:c},backend:r,attrs:{perm:h}}),f=nn({inputs:{x:m},backend:r,attrs:{shape:p}});return r.disposeData(u.dataId),r.disposeData(c.dataId),r.disposeData(m.dataId),f}var pye={kernelName:bl,backendName:"wasm",kernelFunc:dye},gC;function hye(e){gC=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function cye(e){let{backend:t,inputs:r}=e,{indices:n,values:a,denseShape:s,defaultValue:i}=r,o=n.shape[0],l=n.shape[1],u=t.readSync(s.dataId)[0],d=[o+u,l],h=t.dataIdMap.get(n.dataId).id,p=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(i.dataId).id,m=t.makeOutput(d,n.dtype),f=t.dataIdMap.get(m.dataId).id,g=t.makeOutput(d.slice(0,1),a.dtype),y=t.dataIdMap.get(g.dataId).id,A=t.makeOutput([u],"bool"),x=t.dataIdMap.get(A.dataId).id,b=t.makeOutput([o],n.dtype),w=t.dataIdMap.get(b.dataId).id,I=t.makeOutput([4],"int32"),T=t.dataIdMap.get(I.dataId).id,E=gC(h,p,Ut[a.dtype],o,u,l,c,f,y,x,w,T),R=t.readSync(I.dataId),O;switch(R[0]){case 1:{O=C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(R[1]);break}case 2:{O=C.getSparseFillEmptyRowsNegativeIndexErrorMessage(R[1],R[2]);break}case 3:O=C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(R[1],R[2],R[3]);break;default:O=""}if(t.disposeData(I.dataId),O)throw t.disposeData(m.dataId),t.disposeData(g.dataId),t.disposeData(A.dataId),t.disposeData(b.dataId),new Error(O);let $=m,S=g;return E!==d[0]&&($=Bo({inputs:{x:m},attrs:{begin:0,size:[E,l]},backend:t}),S=Bo({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(m.dataId),t.disposeData(g.dataId)),[$,S,A,b]}var fye={kernelName:ch,backendName:"wasm",setupFunc:hye,kernelFunc:cye},yC;function mye(e){yC=e.wasm.cwrap(gd,null,["number","number","number","number","number","number","number"])}function gye(e){let{backend:t,inputs:r}=e,{inputIndices:n,inputShape:a,newShape:s}=r;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${n.shape}`);if(a.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${a.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(n.dataId).id,o=t.dataIdMap.get(a.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=n.shape[0],d=v.sizeFromShape(s.shape),h=t.makeOutput([u,d],n.dtype),p=t.dataIdMap.get(h.dataId).id,c=t.makeOutput([d],s.dtype),m=t.dataIdMap.get(c.dataId).id,f=t.makeOutput([3],"int32"),g=t.dataIdMap.get(f.dataId).id;yC(i,o,l,u,p,m,g);let y=t.readSync(f.dataId),A;switch(y[0]){case 0:{A=C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{A=C.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:A=C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let x=Array.from(t.readSync(a.dataId)),b=Array.from(t.readSync(c.dataId));A=C.getSparseReshapeInputOutputMultipleErrorMessage(x,b);break}case 4:{let x=Array.from(t.readSync(a.dataId)),b=Array.from(t.readSync(c.dataId));A=C.getSparseReshapeInputOutputMismatchErrorMessage(x,b);break}default:A=""}if(t.disposeData(f.dataId),A)throw t.disposeData(h.dataId),t.disposeData(c.dataId),new Error(A);return[h,c]}var yye={kernelName:gd,backendName:"wasm",setupFunc:mye,kernelFunc:gye},AC;function xC(e){AC=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function bC(e,t){let{backend:r,inputs:n}=e,{data:a,indices:s,segmentIds:i}=n,o=s.shape[0],l=r.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=a.shape.slice();d[0]=u;let h=r.dataIdMap.get(a.dataId).id,p=r.dataIdMap.get(s.dataId).id,c=r.dataIdMap.get(i.dataId).id,m=r.makeOutput(d,a.dtype),f=r.dataIdMap.get(m.dataId).id,g=r.makeOutput([4],"int32"),y=r.dataIdMap.get(g.dataId).id;AC(h,Ut[a.dtype],a.shape[0],p,c,f,y,t,0);let A=r.readSync(g.dataId),x;switch(A[0]){case 0:{x=C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(A[1],A[2]);break;case 3:x=C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(A[1],A[2],A[3]);break;default:x=""}if(r.disposeData(g.dataId),x)throw r.disposeData(m.dataId),new Error(x);return m}function Aye(e){return bC(e,!0)}var xye={kernelName:fh,backendName:"wasm",setupFunc:xC,kernelFunc:Aye};function bye(e){return bC(e,!1)}var vye={kernelName:mh,backendName:"wasm",setupFunc:xC,kernelFunc:bye};function wye(e){let{inputs:t,attrs:r,backend:n}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),d=a.shape.slice();return l.map(h=>{let p=[...d];p[o]=h;let c=Bo({inputs:{x:a},attrs:{begin:u,size:p},backend:n});return u[o]+=h,c})}var kye={kernelName:vl,backendName:"wasm",kernelFunc:wye},Iye=vr(Pi),Sye=vr(yd),Cye=!0,Tye=Ir(Di,Cye),vC;function Nye(e){vC=e.wasm.cwrap(Wi,null,["number","number","number","number"])}function Eye(e){let{backend:t,inputs:r,attrs:n}=e,{alpha:a}=n,{x:s}=r,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return vC(i,a,Ut[s.dtype],l),o}var Rye={kernelName:Wi,backendName:"wasm",setupFunc:Nye,kernelFunc:Eye},wC;function $ye(e){wC=e.wasm.cwrap(wl,null,["number","array","number","array","array","array","array","array","number","number"])}function Mye(e){let{backend:t,inputs:r,attrs:n}=e,{x:a}=r,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:h,shrinkAxisMask:p}=n,{finalShapeSparse:c,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:A,end:x,strides:b}=Dt.sliceInfo(a.shape,s,i,o,l,u,d,h,p),w;if(f)w=nn({inputs:{x:a},backend:t,attrs:{shape:m}});else if(g||y){v.assert(a.shape.length>=1,()=>`Input must have rank at least 1, got: ${a.shape.length}`);let I=Dt.computeOutShape(A,x,b),T=Bo({inputs:{x:a},backend:t,attrs:{begin:A,size:I}});w=nn({inputs:{x:T},backend:t,attrs:{shape:m}}),t.disposeData(T.dataId)}else{let I=t.makeOutput(c,"float32"),T=t.dataIdMap.get(a.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(a.shape)).buffer),R=new Uint8Array(new Int32Array(A).buffer),O=new Uint8Array(new Int32Array(x).buffer),$=new Uint8Array(new Int32Array(b).buffer),S=new Uint8Array(new Int32Array(c).buffer),P=new Uint8Array(new Int32Array(v.computeStrides(c)).buffer),z=t.dataIdMap.get(I.dataId).id;wC(T,E,a.shape.length,R,O,$,S,P,c.length,z),w=nn({inputs:{x:I},backend:t,attrs:{shape:m}}),t.disposeData(I.dataId)}return w}var Fye={kernelName:wl,backendName:"wasm",setupFunc:$ye,kernelFunc:Mye},_ye=!0,Pye=Ir(Li,_ye),kC;function Oye(e){kC=e.wasm.cwrap(Oi,null,["number","number","number","number"])}function zye(e){let{backend:t,inputs:r,attrs:n}=e,{axis:a,keepDims:s}=n,{x:i}=r,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:h,originalAxes:p,inputWasTransposed:c}=qi(i,a,t),m=h;if(c){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=C.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(g),A=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;kC(l,y,Ut[A.dtype],x)}if(c&&t.disposeData(d.dataId),s){let x=C.expandShapeToKeepDim(A.shape,p);A.shape=x}return A}var Dye={kernelName:Oi,backendName:"wasm",setupFunc:Oye,kernelFunc:zye},Lye=vr(kl),Bye=vr(Bi),IC;function Wye(e){IC=e.wasm.cwrap(es,null,["number","array","number","array","number","number"])}function Vye(e){let{inputs:t,backend:r,attrs:n}=e,{x:a}=t,s=r.dataIdMap.get(a.dataId).id,{reps:i}=n,o=new Array(a.shape.length);for(let p=0;p<o.length;p++)o[p]=a.shape[p]*i[p];let l=new Uint8Array(new Int32Array(a.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),d=r.makeOutput(o,a.dtype),h=r.dataIdMap.get(d.dataId).id;return IC(s,l,a.shape.length,u,o.length,Ut[d.dtype],h),d}var Uye={kernelName:es,backendName:"wasm",setupFunc:Wye,kernelFunc:Vye},SC;function Gye(e){SC=e.wasm.cwrap(Il,null,["number","array","number","number","number","bool","number","number"])}var jye=({inputs:e,backend:t,attrs:r})=>{let{x:n}=e,{k:a,sorted:s}=r,i=t.dataIdMap.get(n.dataId).id,o=new Uint8Array(new Int32Array(n.shape).buffer),l=n.shape.slice();l[l.length-1]=a;let u=t.makeOutput(l,n.dtype),d=t.dataIdMap.get(u.dataId).id,h=t.makeOutput(l,"int32"),p=t.dataIdMap.get(h.dataId).id;return SC(i,o,n.shape.length,Ut[n.dtype],a,s,d,p),[u,h]},Hye={kernelName:Il,backendName:"wasm",setupFunc:Gye,kernelFunc:jye},CC;function qye(e){CC=e.wasm.cwrap(Sl,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function Xye(e){let{backend:t,inputs:r,attrs:n}=e,{image:a,transforms:s}=r,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,h,p,c]=a.shape,[m,f]=u!=null?u:[h,p],g=[d,m,f,c],y=new Uint8Array(new Int32Array(v.computeStrides(a.shape)).buffer),A=t.makeOutput(g,a.dtype),x=t.dataIdMap.get(A.dataId).id,b=t.dataIdMap.get(a.dataId).id,w=t.dataIdMap.get(s.dataId).id,I=i==="nearest"?1:2,T;switch(o){case"constant":T=1;break;case"reflect":T=2;break;case"wrap":T=3;break;case"nearest":T=4;break;default:T=1;break}return CC(b,w,s.shape[0]>1,d,m,f,c,p,h,y,a.shape.length-1,I,T,l,x),A}var Kye={kernelName:Sl,backendName:"wasm",setupFunc:qye,kernelFunc:Xye};function Zye(e){let{inputs:t,backend:r,attrs:n}=e,{value:a}=t,{axis:s}=n;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),u=0;for(let c=0;c<o;c++)c!==s&&(l[u++]=a.shape[c]);let d=new Array(i),h=new Array(o).fill(0),p=a.shape.slice();p[s]=1;for(let c=0;c<d.length;c++)h[s]=c,d[c]=Bo({inputs:{x:a},attrs:{begin:h,size:p},backend:r});return d.map(({dataId:c,dtype:m})=>({dataId:c,dtype:m,shape:l}))}var Yye={kernelName:Cl,backendName:"wasm",kernelFunc:Zye};function Jye(e){let{inputs:{x:t},backend:r}=e,n=r.makeOutput(t.shape,t.dtype);return r.typedArrayFromHeap(n).fill(0),n}var Qye={kernelName:Tl,backendName:"wasm",kernelFunc:Jye},e3e=[zme,Dme,Bme,Ume,Yme,e1e,n1e,i1e,d1e,g1e,y1e,A1e,v1e,w1e,S1e,N1e,E1e,R1e,F1e,O1e,L1e,V1e,j1e,H1e,X1e,K1e,Z1e,Y1e,e2e,t2e,n2e,i2e,u2e,h2e,m2e,A2e,b2e,w2e,Gme,S2e,T2e,E2e,R2e,M2e,F2e,P2e,z2e,B2e,V2e,j2e,X2e,Y2e,Q2e,rge,age,sge,lge,pge,fge,gge,xge,vge,kge,iC,Tge,Rge,Fge,Pge,zge,Dge,Lge,o1e,Vge,jge,Xge,Kge,Zge,Qge,rye,sye,iye,f1e,uye,pye,fye,yye,xye,vye,kye,Iye,Sye,Tye,Rye,Fye,Pye,Dye,Lye,Bye,Uye,Hye,Kye,Xme,Yye,Qye];for(let e of e3e)qn(e);var Iy=Z();Iy.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Iy.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Iy.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var $7=Wo(RR()),t3e=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`,r3e=Wo($R()),TC=class extends Uu{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(NC),Sy=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new rh(this,Xt())}write(e,t,r){let n={id:this.dataIdNextNumber++};return this.move(n,e,t,r,1),n}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,r,n,a){let s=this.dataIdNextNumber++;if(n==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:r,dtype:n,memoryOffset:null,refCount:a});return}let i=v.sizeFromShape(r),o=i*v.bytesPerElement(n),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:r,dtype:n,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,r){let{memoryOffset:n,dtype:a,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(a==="string")return(t==null||t===0)&&(r==null||r>=i.length)?i:i.slice(t,r);t=t||0,r=r||v.sizeFromShape(s);let o=v.bytesPerElement(a),l=this.wasm.HEAPU8.slice(n+t*o,n+r*o);return s3e(l.buffer,a)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let r=this.dataIdMap.get(e);if(r.refCount--,!t&&r.refCount>0)return!1;this.wasm._free(r.memoryOffset),this.wasm.tfjs.disposeData(r.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,r){let n;if(r==null)n=this.write(null,e,t);else{let a=this.dataIdNextNumber++;n={id:a},this.dataIdMap.set(n,{id:a,memoryOffset:r,shape:e,dtype:t,refCount:1});let s=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,r)}return{dataId:n,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:r}){let n=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(r),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(n,a,s);case"int32":return new Int32Array(n,a,s);case"bool":return new Uint8Array(n,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function n3e(e){return(t,r)=>(v.fetch(e,{credentials:"same-origin"}).then(n=>{n.ok||t.env.a(`failed to load wasm binary file at '${e}'`),n.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{r(s.instance,s.module)})})}),{})}function M7(e,t,r){if(rf!=null)return rf;let n="tfjs-backend-wasm.wasm";return e&&t?n="tfjs-backend-wasm-threaded-simd.wasm":e&&(n="tfjs-backend-wasm-simd.wasm"),Wp!=null&&Wp[n]!=null?Wp[n]:r+n}async function a3e(){let[e,t]=await Promise.all([Z().getAsync("WASM_HAS_SIMD_SUPPORT"),Z().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((r,n)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=t3e.replace(/\n/g,"\\n"),d=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(d)}return o.endsWith(".wasm")?M7(e,t,zp!=null?zp:l):l+o},GA&&(a.instantiateWasm=n3e(M7(e,t,zp!=null?zp:"")));let s=!1;a.onAbort=()=>{s||Vp||(Vp=!0,n({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&rf==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+$7.default.toString()],{type:"text/javascript"}),i=(0,$7.default)(a)):i=(0,r3e.default)(a),i.then(o=>{s=!0,Vp=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},r({wasm:o})})})}function s3e(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var i3e=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],rf=null,zp=null,Wp={},Vp=!1,GA=!1;function o3e(e,t=!1){if(By("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Vp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");rf=e,GA=t}function jA(e,t=!1){if(Vp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")zp=e;else{Wp=e;let r=i3e.filter(n=>Wp[n]==null);if(r.length>0)throw new Error(`There were no entries found for the following binaries: ${r.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}GA=t}var NC=-1,Sy=-1;function l3e(e){NC=e}function u3e(){if(Sy===-1)throw new Error("WASM backend not initialized.");return Sy}var d3e="0.0.0",p3e=2;El("wasm",async()=>{let{wasm:e}=await a3e();return new TC(e)},p3e);var ks="3.18.0-20220602",rc={tfjs:ks,"tfjs-core":ks,"tfjs-data":ks,"tfjs-layers":ks,"tfjs-converter":ks,"tfjs-backend-cpu":ks,"tfjs-backend-webgl":ks,"tfjs-backend-wasm":ks};var EC=`
precision highp float;
attribute vec2 pos;
attribute vec2 uv;
varying vec2 vUv;
uniform float flipY;
void main(void) {
vUv = uv;
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
}
`;var RC=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform float m[20];
void main(void) {
vec4 c = texture2D(texture, vUv);
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
}
`,$C=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform float m[20];
void main(void) {
vec4 c = texture2D(texture, vUv);
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
gl_FragColor.a = c.a;
}
`,MC=`
precision highp float;
varying vec2 vUv;
uniform vec2 size;
uniform sampler2D texture;
vec2 pixelate(vec2 coord, vec2 size) {
return floor( coord / size ) * size;
}
void main(void) {
gl_FragColor = vec4(0.0);
vec2 coord = pixelate(vUv, size);
gl_FragColor += texture2D(texture, coord);
}
`,FC=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform vec2 px;
void main(void) {
gl_FragColor = vec4(0.0);
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
}
`,_C=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform vec2 px;
uniform float m[9];
void main(void) {
vec4 c11 = texture2D(texture, vUv - px); // top left
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
vec4 c22 = texture2D(texture, vUv); // mid center
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
gl_FragColor =
c11 * m[0] + c12 * m[1] + c22 * m[2] +
c21 * m[3] + c22 * m[4] + c23 * m[5] +
c31 * m[6] + c32 * m[7] + c33 * m[8];
gl_FragColor.a = c22.a;
}
`;var HA=(e,t,r)=>{let n=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(n,(a,s)=>(r[s]=0,a))},qA=class{constructor(t,r,n){fe(this,"uniform",{});fe(this,"attribute",{});fe(this,"gl");fe(this,"id");fe(this,"compile",(t,r)=>{let n=this.gl.createShader(r);return n?(this.gl.shaderSource(n,t),this.gl.compileShader(n),this.gl.getShaderParameter(n,this.gl.COMPILE_STATUS)?n:(se(`filter: gl compile failed: ${this.gl.getShaderInfoLog(n)}`),null)):(se("filter: could not create shader"),null)});this.gl=t;let a=this.compile(r,this.gl.VERTEX_SHADER),s=this.compile(n,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!a||!s)){if(!this.id){se("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,a),this.gl.attachShader(this.id,s),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){se(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);return}this.gl.useProgram(this.id),HA(r,"attribute",this.attribute);for(let i in this.attribute)this.attribute[i]=this.gl.getAttribLocation(this.id,i);HA(r,"uniform",this.uniform),HA(n,"uniform",this.uniform);for(let i in this.uniform)this.uniform[i]=this.gl.getUniformLocation(this.id,i)}}};function PC(){let e=0,t=null,r=!1,n=-1,a=[null,null],s=[],i=null,o=null,l=Zr(100,100),u={},d={INTERMEDIATE:1},h=l.getContext("webgl");if(!h){se("filter: cannot get webgl context");return}this.gl=h;function p(A,x){if(!(A===l.width&&x===l.height)){if(l.width=A,l.height=x,!i){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);i=h.createBuffer(),h.bindBuffer(h.ARRAY_BUFFER,i),h.bufferData(h.ARRAY_BUFFER,b,h.STATIC_DRAW),h.pixelStorei(h.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}h.viewport(0,0,l.width,l.height),a=[null,null]}}function c(A,x){let b=h.createFramebuffer();h.bindFramebuffer(h.FRAMEBUFFER,b);let w=h.createRenderbuffer();h.bindRenderbuffer(h.RENDERBUFFER,w);let I=h.createTexture();return h.bindTexture(h.TEXTURE_2D,I),h.texImage2D(h.TEXTURE_2D,0,h.RGBA,A,x,0,h.RGBA,h.UNSIGNED_BYTE,null),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MAG_FILTER,h.LINEAR),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MIN_FILTER,h.LINEAR),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_S,h.CLAMP_TO_EDGE),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_T,h.CLAMP_TO_EDGE),h.framebufferTexture2D(h.FRAMEBUFFER,h.COLOR_ATTACHMENT0,h.TEXTURE_2D,I,0),h.bindTexture(h.TEXTURE_2D,null),h.bindFramebuffer(h.FRAMEBUFFER,null),{fbo:b,texture:I}}function m(A){return a[A]=a[A]||c(l.width,l.height),a[A]}function f(A=0){if(!o)return;let x=null,b=null,w=!1;e===0?x=t:x=m(n).texture||null,e++,r&&!(A&d.INTERMEDIATE)?(b=null,w=e%2===0):(n=(n+1)%2,b=m(n).fbo||null),h.bindTexture(h.TEXTURE_2D,x),h.bindFramebuffer(h.FRAMEBUFFER,b),h.uniform1f(o.uniform.flipY,w?-1:1),h.drawArrays(h.TRIANGLES,0,6)}function g(A){if(u[A])return o=u[A],h.useProgram((o?o.id:null)||null),o;if(o=new qA(h,EC,A),!o)return se("filter: could not get webgl program"),null;let x=Float32Array.BYTES_PER_ELEMENT,b=4*x;return h.enableVertexAttribArray(o.attribute.pos),h.vertexAttribPointer(o.attribute.pos,2,h.FLOAT,!1,b,0*x),h.enableVertexAttribArray(o.attribute.uv),h.vertexAttribPointer(o.attribute.uv,2,h.FLOAT,!1,b,2*x),u[A]=o,o}let y={colorMatrix:A=>{let x=new Float32Array(A);x[4]/=255,x[9]/=255,x[14]/=255,x[19]/=255;let b=x[18]===1&&x[3]===0&&x[8]===0&&x[13]===0&&x[15]===0&&x[16]===0&&x[17]===0&&x[19]===0?$C:RC,w=g(b);!w||(h.uniform1fv(w.uniform.m,x),f())},brightness:A=>{let x=(A||0)+1;y.colorMatrix([x,0,0,0,0,0,x,0,0,0,0,0,x,0,0,0,0,0,1,0])},saturation:A=>{let x=(A||0)*2/3+1,b=(x-1)*-.5;y.colorMatrix([x,b,b,0,0,b,x,b,0,0,b,b,x,0,0,0,0,0,1,0])},desaturate:()=>{y.saturation(-1)},contrast:A=>{let x=(A||0)+1,b=-128*(x-1);y.colorMatrix([x,0,0,0,b,0,x,0,0,b,0,0,x,0,b,0,0,0,1,0])},negative:()=>{y.contrast(-2)},hue:A=>{A=(A||0)/180*Math.PI;let x=Math.cos(A),b=Math.sin(A),w=.213,I=.715,T=.072;y.colorMatrix([w+x*(1-w)+b*-w,I+x*-I+b*-I,T+x*-T+b*(1-T),0,0,w+x*-w+b*.143,I+x*(1-I)+b*.14,T+x*-T+b*-.283,0,0,w+x*-w+b*-(1-w),I+x*-I+b*I,T+x*(1-T)+b*T,0,0,0,0,0,1,0])},desaturateLuminance:()=>{y.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{y.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{y.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{y.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{y.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{y.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{y.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{y.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:A=>{let x=new Float32Array(A),b=1/l.width,w=1/l.height,I=g(_C);!I||(h.uniform1fv(I.uniform.m,x),h.uniform2f(I.uniform.px,b,w),f())},detectEdges:()=>{y.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{y.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{y.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:A=>{let x=A||1;y.convolution.call(this,[0,-1*x,0,-1*x,1+4*x,-1*x,0,-1*x,0])},emboss:A=>{let x=A||1;y.convolution.call(this,[-2*x,-1*x,0,-1*x,1,1*x,0,1*x,2*x])},blur:A=>{let x=A/7/l.width,b=A/7/l.height,w=g(FC);!w||(h.uniform2f(w.uniform.px,0,b),f(d.INTERMEDIATE),h.uniform2f(w.uniform.px,x,0),f())},pixelate:A=>{let x=A/l.width,b=A/l.height,w=g(MC);!w||(h.uniform2f(w.uniform.size,x,b),f())}};this.add=function(A){let x=Array.prototype.slice.call(arguments,1),b=y[A];s.push({func:b,args:x})},this.reset=function(){s=[]},this.get=function(){return s},this.apply=function(A){p(A.width,A.height),e=0,t||(t=h.createTexture()),h.bindTexture(h.TEXTURE_2D,t),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_S,h.CLAMP_TO_EDGE),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_WRAP_T,h.CLAMP_TO_EDGE),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MIN_FILTER,h.NEAREST),h.texParameteri(h.TEXTURE_2D,h.TEXTURE_MAG_FILTER,h.NEAREST),h.texImage2D(h.TEXTURE_2D,0,h.RGBA,h.RGBA,h.UNSIGNED_BYTE,A);for(let x=0;x<s.length;x++){r=x===s.length-1;let b=s[x];b.func.apply(this,b.args||[])}return l},this.draw=function(A){return this.add("brightness",0),this.apply(A)}}async function Vm(e){let t=e.shape.length===4?et(e):e,r=Yt(t,3,2),n=[Ls(r[0]),Ls(r[1]),Ls(r[2])],a=[yr(r[0]),yr(r[1]),yr(r[2])],s=await Promise.all(a.map(c=>c.data())),i=.99*Math.max(s[0][0],s[1][0],s[2][0]),o=[ce(r[0],n[0]),ce(r[1],n[1]),ce(r[2],n[2])],l=[ce(a[0],n[0]),ce(a[1],n[1]),ce(a[2],n[2])],u=[pe(i,l[0]),pe(i,l[1]),pe(i,l[2])],d=[L(o[0],u[0]),L(o[1],u[1]),L(o[2],u[2])],h=ur([d[0],d[1],d[2]],2),p=U(h,[1,t.shape[0],t.shape[1],3]);return te([...r,...n,...a,...o,...l,...u,...d,h,t]),p}var Um=3840,ut=null,er=null,Wd=null,Et,is={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function Zr(e,t){let r;if(he.browser)if(he.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");r=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");r=document.createElement("canvas"),r.width=e,r.height=t}else typeof he.Canvas!="undefined"?r=new he.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(r=new globalThis.Canvas(e,t));return r}function Gm(e,t){let r=t||Zr(e.width,e.height);return r.getContext("2d").drawImage(e,0,0),r}async function Vd(e,t,r=!0){if(!e)return t.debug&&se("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof nt)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof he.Canvas!="undefined"&&e instanceof he.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof nt){let n=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)n=Kt(e,0);else if(e.shape[2]===4){let a=Fl(e,[0,0,0],[-1,-1,3]);n=Kt(a,0),te(a)}}else e.shape.length===4&&(e.shape[3]===3?n=Vr(e):e.shape[3]===4&&(n=_o(e,[0,0,0,0],[-1,-1,-1,3])));if(n==null||n.shape.length!==4||n.shape[0]!==1||n.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape}`);if(n.dtype==="int32"){let a=me(n,"float32");te(n),n=a}return{tensor:n,canvas:t.filter.return?er:null}}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&se("input stream is not ready"),{tensor:null,canvas:ut};let n=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!n||!a)return t.debug&&se("cannot determine input dimensions"),{tensor:null,canvas:ut};let s=n,i=a;if(s>Um&&(s=Um,i=Math.trunc(s*a/n)),i>Um&&(i=Um,s=Math.trunc(i*n/a)),(t.filter.width||0)>0?s=t.filter.width:(t.filter.height||0)>0&&(s=n*((t.filter.height||0)/a)),(t.filter.height||0)>0?i=t.filter.height:(t.filter.width||0)>0&&(i=a*((t.filter.width||0)/n)),!s||!i)throw new Error("input error: cannot determine dimension");(!ut||(ut==null?void 0:ut.width)!==s||(ut==null?void 0:ut.height)!==i)&&(ut=Zr(s,i));let o=ut.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?o.putImageData(e,0,0):t.filter.flip&&typeof o.translate!="undefined"?(o.translate(n,0),o.scale(-1,1),o.drawImage(e,0,0,n,a,0,0,ut==null?void 0:ut.width,ut==null?void 0:ut.height),o.setTransform(1,0,0,1,0,0)):o.drawImage(e,0,0,n,a,0,0,ut==null?void 0:ut.width,ut==null?void 0:ut.height),(!er||ut.width!==er.width||(ut==null?void 0:ut.height)!==(er==null?void 0:er.height))&&(er=Zr(ut.width,ut.height)),t.filter.enabled&&he.webgl.supported?(Et||(Et=he.browser?new PC:null),he.filter=!!Et,!Et||!Et.add?(t.debug&&se("input process error: cannot initialize filters"),he.webgl.supported=!1,t.filter.enabled=!1,Gm(ut,er)):(Et.reset(),t.filter.brightness!==0&&Et.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Et.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Et.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Et.add("blur",t.filter.blur),t.filter.saturation!==0&&Et.add("saturation",t.filter.saturation),t.filter.hue!==0&&Et.add("hue",t.filter.hue),t.filter.negative&&Et.add("negative"),t.filter.sepia&&Et.add("sepia"),t.filter.vintage&&Et.add("brownie"),t.filter.sepia&&Et.add("sepia"),t.filter.kodachrome&&Et.add("kodachrome"),t.filter.technicolor&&Et.add("technicolor"),t.filter.polaroid&&Et.add("polaroid"),t.filter.pixelate!==0&&Et.add("pixelate",t.filter.pixelate),Et.get()>0?er=Et.apply(ut):er=Et.draw(ut))):(Gm(ut,er),Et&&(Et=null),he.filter=!!Et),!r)return{tensor:null,canvas:er};if(!er)throw new Error("canvas error: cannot create output");let l,u=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(he.browser&&Ln)l=Ln?Ln.fromPixels(e):null;else{u=e.data.length/e.height/e.width;let p=new Uint8Array(e.data.buffer);l=ft(p,[e.height,e.width,u],"int32")}else if((!Wd||er.width!==Wd.width||er.height!==Wd.height)&&(Wd=Zr(er.width,er.height)),Ln&&he.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=Ln.fromPixels(er):(Wd=Gm(er),l=Ln.fromPixels(Wd));else{let m=Gm(er).getContext("2d").getImageData(0,0,s,i);u=m.data.length/s/i;let f=new Uint8Array(m.data.buffer);l=ft(f,[s,i,u])}if(u===4){let p=Fl(l,[0,0,0],[-1,-1,3]);te(l),l=p}if(!l)throw new Error("input error: cannot create tensor");let d=me(l,"float32"),h=t.filter.equalization?await Vm(d):Kt(d,0);return te([l,d]),{tensor:h,canvas:t.filter.return?er:null}}}async function OC(e,t){let r=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return r;if(!is.inputTensor)is.inputTensor=Vr(t);else if(is.inputTensor.shape[1]!==t.shape[1]||is.inputTensor.shape[2]!==t.shape[2])te(is.inputTensor),is.inputTensor=Vr(t);else{let n={};n.diff=ce(t,is.inputTensor),n.squared=L(n.diff,n.diff),n.sum=ke(n.squared);let s=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;te([is.inputTensor,n.diff,n.squared,n.sum]),is.inputTensor=Vr(t),r=s<=(e.cacheSensitivity||0)}return r}async function zC(e,t,r){let n={};if(!t||!r||t.shape.length!==4||t.shape.length!==r.shape.length)return e.debug||se("invalid input tensor or tensor shapes do not match:",t.shape,r.shape),0;if(t.shape[0]!==1||r.shape[0]!==1||t.shape[3]!==3||r.shape[3]!==3)return e.debug||se("input tensors must be of shape [1, height, width, 3]:",t.shape,r.shape),0;n.input1=Vr(t),n.input2=t.shape[1]!==r.shape[1]||t.shape[2]!==r.shape[2]?Ie.resizeBilinear(r,[t.shape[1],t.shape[2]]):Vr(r),n.diff=ce(n.input1,n.input2),n.squared=L(n.diff,n.diff),n.sum=ke(n.squared);let s=(await n.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return te([n.input1,n.input2,n.diff,n.squared,n.sum]),s}var XA=class{constructor(){fe(this,"browser");fe(this,"node");fe(this,"worker");fe(this,"platform","");fe(this,"agent","");fe(this,"backends",[]);fe(this,"initial");fe(this,"filter");fe(this,"tfjs");fe(this,"offscreen");fe(this,"perfadd",!1);fe(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});fe(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});fe(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});fe(this,"cpu",{model:void 0,flags:[]});fe(this,"kernels",[]);fe(this,"Canvas");fe(this,"Image");fe(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:rc["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let r=t[0].match(/\(([^()]+)\)/g);this.platform=r&&r[0]?r[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(Xt().registryFactory),this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&Hr()==="wasm"&&(this.wasm.simd=await Z().getAsync("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=await Z().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let t=Zr(100,100),r=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof r!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(Hr()==="webgl"||Hr()==="humangl")){let n=Dn().gpgpu!=="undefined"?await Dn().getGPGPUContext().gl:null;n&&(this.webgl.version=n.getParameter(n.VERSION),this.webgl.renderer=n.getParameter(n.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{this.webgpu.supported&&(this.webgpu.adapter=(await navigator.gpu.requestAdapter()).name)}catch(n){this.webgpu.supported=!1}try{this.kernels=Fa(Hr()).map(n=>n.kernelName.toLowerCase())}catch(n){}}async updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},he=new XA;var os={cacheModels:!1,verbose:!0,debug:!1,modelBasePath:""};async function m3e(e,t){return os.debug&&se("load model fetch:",e,t),fetch(e,t)}function DC(e){os.cacheModels=e.cacheModels,os.verbose=e.debug,os.modelBasePath=e.modelBasePath}async function Ge(e){let t=Gb(os.modelBasePath,e||"");t.toLowerCase().endsWith(".json")||(t+=".json");let r=t.split("/"),n="indexeddb://"+r[r.length-1].replace(".json",""),a=await Cr.listModels(),s=os.cacheModels&&Object.keys(a).includes(n),i=typeof fetch=="undefined"?{}:{fetchFunc:(u,d)=>m3e(u,d)},o=new Vh(s?n:t,i),l=!1;try{o.findIOHandler(),os.debug&&se("model load handler:",o.handler);let u=await o.handler.load();o.loadSync(u),os.verbose&&se("load model:",o.modelUrl),l=!0}catch(u){se("error loading model:",t,u)}if(l&&os.cacheModels&&!s)try{let u=await o.save(n);se("model saved:",n,u)}catch(u){se("error saving model:",t,u)}return o}var KA="2.8.0";var C1={};vs(C1,{Models:()=>hc,load:()=>ib,reset:()=>S1,validate:()=>ob});var Jn,ZA=[],A3e=["white","black","asian","indian","other"],x3e=[15,23,28,35.5,45.5,55.5,65],LC=0,BC=0,YA=Number.MAX_SAFE_INTEGER;async function WC(e){return he.initial&&(Jn=null),Jn?e.debug&&se("cached model:",Jn.modelUrl):Jn=await Ge(e.face.gear),Jn}async function JA(e,t,r,n){var i,o;if(!Jn)return{age:0,gender:"unknown",genderScore:0,race:[]};let a=YA<(((i=t.face.gear)==null?void 0:i.skipFrames)||0),s=(((o=t.face.gear)==null?void 0:o.skipTime)||0)>oe()-BC;return t.skipAllowed&&s&&a&&LC===n&&ZA[r]?(YA++,ZA[r]):(YA=0,new Promise(async l=>{var y,A;if(!(Jn!=null&&Jn.inputs[0].shape))return;let u={},d=[[0,.1,.9,.9]];u.resize=Ie.cropAndResize(e,d,[0],[Jn.inputs[0].shape[2],Jn.inputs[0].shape[1]]);let h={age:0,gender:"unknown",genderScore:0,race:[]};(y=t.face.gear)!=null&&y.enabled&&([u.age,u.gender,u.race]=Jn.execute(u.resize,["age_output","gender_output","race_output"]));let p=await u.gender.data();h.gender=p[0]>p[1]?"male":"female",h.genderScore=Math.round(100*(p[0]>p[1]?p[0]:p[1]))/100;let c=await u.race.data();for(let x=0;x<c.length;x++)c[x]>(((A=t.face.gear)==null?void 0:A.minConfidence)||.2)&&h.race.push({score:Math.round(100*c[x])/100,race:A3e[x]});h.race.sort((x,b)=>b.score-x.score);let f=Array.from(await u.age.data()).map((x,b)=>[x3e[b],x]).sort((x,b)=>b[1]-x[1]),g=f[0][0];for(let x=1;x<f.length;x++)g+=f[x][1]*(f[x][0]-g);h.age=Math.round(10*g)/10,Object.keys(u).forEach(x=>te(u[x])),ZA[r]=h,LC=n,BC=oe(),l(h)}))}var Qe={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function UC(){Qe.tf255=Se(255,"float32"),Qe.tf1=Se(1,"float32"),Qe.tf2=Se(2,"float32"),Qe.tf05=Se(.5,"float32"),Qe.tf127=Se(127.5,"float32"),Qe.rgb=Nt([.2989,.587,.114],"float32")}var yn,jm=[],GC=0,jC=0,QA=Number.MAX_SAFE_INTEGER;async function HC(e){return he.initial&&(yn=null),yn?e.debug&&se("cached model:",yn.modelUrl):yn=await Ge(e.face.ssrnet.modelPathAge),yn}async function ex(e,t,r,n){var i,o,l,u;if(!yn)return{age:0};let a=QA<(((i=t.face.ssrnet)==null?void 0:i.skipFrames)||0),s=(((o=t.face.ssrnet)==null?void 0:o.skipTime)||0)>oe()-jC;return t.skipAllowed&&a&&s&&GC===n&&((l=jm[r])==null?void 0:l.age)&&((u=jm[r])==null?void 0:u.age)>0?(QA++,jm[r]):(QA=0,new Promise(async d=>{if(!(yn!=null&&yn.inputs)||!yn.inputs[0]||!yn.inputs[0].shape)return;let h={};h.resize=Ie.resizeBilinear(e,[yn.inputs[0].shape[2],yn.inputs[0].shape[1]],!1),h.enhance=L(h.resize,Qe.tf255);let p={age:0};if(t.face.ssrnet.enabled&&(h.age=yn.execute(h.enhance)),h.age){let c=await h.age.data();p.age=Math.trunc(10*c[0])/10}Object.keys(h).forEach(c=>te(h[c])),jm[r]=p,GC=n,jC=oe(),d(p)}))}var Qn,Hm=[],XC=0,KC=0,tx=Number.MAX_SAFE_INTEGER,rx=[.2989,.587,.114];async function ZC(e){return he.initial&&(Qn=null),Qn?e.debug&&se("cached model:",Qn.modelUrl):Qn=await Ge(e.face.ssrnet.modelPathGender),Qn}async function nx(e,t,r,n){var i,o,l,u;if(!Qn)return{gender:"unknown",genderScore:0};let a=tx<(((i=t.face.ssrnet)==null?void 0:i.skipFrames)||0),s=(((o=t.face.ssrnet)==null?void 0:o.skipTime)||0)>oe()-KC;return t.skipAllowed&&a&&s&&XC===n&&((l=Hm[r])==null?void 0:l.gender)&&((u=Hm[r])==null?void 0:u.genderScore)>0?(tx++,Hm[r]):(tx=0,new Promise(async d=>{if(!(Qn!=null&&Qn.inputs[0].shape))return;let h={};h.resize=Ie.resizeBilinear(e,[Qn.inputs[0].shape[2],Qn.inputs[0].shape[1]],!1),h.enhance=X(()=>{let[m,f,g]=Yt(h.resize,3,3),y=L(m,rx[0]),A=L(f,rx[1]),x=L(g,rx[2]),b=Pf([y,A,x]);return L(ce(b,Qe.tf05),2)});let p={gender:"unknown",genderScore:0};t.face.ssrnet.enabled&&(h.gender=Qn.execute(h.enhance));let c=await h.gender.data();p.gender=c[0]>c[1]?"female":"male",p.genderScore=c[0]>c[1]?Math.trunc(100*c[0])/100:Math.trunc(100*c[1])/100,Object.keys(h).forEach(m=>te(h[m])),Hm[r]=p,XC=n,KC=oe(),d(p)}))}var Rr,qm=[],ax=Number.MAX_SAFE_INTEGER,JC=0,QC=0;async function eT(e){var t;return he.initial&&(Rr=null),Rr?e.debug&&se("cached model:",Rr.modelUrl):Rr=await Ge((t=e.face.antispoof)==null?void 0:t.modelPath),Rr}async function sx(e,t,r,n){var i,o;if(!Rr)return 0;let a=(((i=t.face.antispoof)==null?void 0:i.skipTime)||0)>oe()-QC,s=ax<(((o=t.face.antispoof)==null?void 0:o.skipFrames)||0);return t.skipAllowed&&a&&s&&JC===n&&qm[r]?(ax++,qm[r]):(ax=0,new Promise(async l=>{let u=Ie.resizeBilinear(e,[Rr!=null&&Rr.inputs[0].shape?Rr.inputs[0].shape[2]:0,Rr!=null&&Rr.inputs[0].shape?Rr.inputs[0].shape[1]:0],!1),d=Rr==null?void 0:Rr.execute(u),h=(await d.data())[0];qm[r]=Math.round(100*h)/100,JC=n,QC=oe(),te([u,d]),l(qm[r])}))}var ea={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[185,40,39,37,0,267,269,270,409],lipsLowerOuter:[61,146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[191,80,81,82,13,312,311,310,415],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],lipsLowerSemiOuter:[76,77,90,180,85,16,315,404,320,307,306],lipsUpperSemiOuter:[184,74,73,72,11,302,303,304,408],lipsLowerSemiInner:[62,96,89,179,86,15,316,403,319,325,292],lipsUpperSemiInner:[183,42,41,38,12,268,271,272,407],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},ix={count:468,mouth:13,symmetryLine:[13,ea.midwayBetweenEyes[0]]},Wl={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},ox=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],ac=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],Vl=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var v3e=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],w3e=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],k3e=[33,133,362,263,1,78,308],Swe=v3e.map(e=>ac[e]),Cwe=w3e.map(e=>ac[e]),Twe=k3e.map(e=>ac[e]);function Xi(e){let t=e.map(r=>r[0]);return t.push(e[e.length-1][1]),t}var I3e=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],S3e=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],C3e=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],T3e=[[474,475],[475,476],[476,477],[477,474]],N3e=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],E3e=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],R3e=[[469,470],[470,471],[471,472],[472,469]],$3e=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]],Nwe={lips:Xi(I3e),leftEye:Xi(S3e),leftEyebrow:Xi(C3e),leftIris:Xi(T3e),rightEye:Xi(N3e),rightEyebrow:Xi(E3e),rightIris:Xi(R3e),faceOval:Xi($3e)};var Ud=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],Xm=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],Km=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],Zm=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],aT=(e,t)=>{let r=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:r,endPoint:n,landmarks:e.landmarks,confidence:e.confidence}},ux=(e,t,r)=>{let n=t.shape[1],a=t.shape[2],s=[e.startPoint[1]/n,e.startPoint[0]/a,e.endPoint[1]/n,e.endPoint[0]/a],i=Ie.cropAndResize(t,[s],[0],r),o=pe(i,Qe.tf255);return te(i),o},Ym=(e,t)=>{let r=Xm(e),n=Ud(e),a=[t*n[0]/2,t*n[1]/2];return{startPoint:[r[0]-a[0],r[1]-a[1]],endPoint:[r[0]+a[0],r[1]+a[1]],landmarks:e.landmarks,confidence:e.confidence}},Jm=e=>{let t=Xm(e),r=Ud(e),n=Math.max(...r)/2;return{startPoint:[Math.round(t[0]-n),Math.round(t[1]-n)],endPoint:[Math.round(t[0]+n),Math.round(t[1]+n)],landmarks:e.landmarks,confidence:e.confidence}},sT=e=>{let t=e.map(n=>n[0]),r=e.map(n=>n[1]);return{startPoint:[Math.min(...t),Math.min(...r)],endPoint:[Math.max(...t),Math.max(...r)],landmarks:e}},dx=[[1,0,0],[0,1,0],[0,0,1]],M3e=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),F3e=(e,t)=>M3e(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var rT=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Ul=(e,t)=>{let r=0;for(let n=0;n<e.length;n++)r+=e[n]*t[n];return r},_3e=(e,t)=>{let r=[];for(let n=0;n<e.length;n++)r.push(e[n][t]);return r},nT=(e,t)=>{let r=[],n=e.length;for(let a=0;a<n;a++){r.push([]);for(let s=0;s<n;s++)r[a].push(Ul(e[a],_3e(t,s)))}return r},iT=(e,t)=>{let r=Math.cos(e),n=Math.sin(e),a=[[r,-n,0],[n,r,0],[0,0,1]],s=rT(t[0],t[1]),i=nT(s,a),o=rT(-t[0],-t[1]);return nT(i,o)},P3e=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],r=[e[0][2],e[1][2]],n=[-Ul(t[0],r),-Ul(t[1],r)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]},O3e=(e,t)=>[Ul(e,t[0]),Ul(e,t[1])];function oT(e){let t=e===192?{strides:[4],anchors:[1]}:{strides:[e/16,e/8],anchors:[2,6]},r=[];for(let n=0;n<t.strides.length;n++){let a=t.strides[n],s=Math.floor((e+a-1)/a),i=Math.floor((e+a-1)/a),o=t.anchors[n];for(let l=0;l<s;l++){let u=a*(l+.5);for(let d=0;d<i;d++){let h=a*(d+.5);for(let p=0;p<o;p++)r.push([h,u])}}}return r}function lT(e,t,r,n,a){let s=Ud(t),i=e.map(c=>[s[0]/a*(c[0]-a/2),s[1]/a*(c[1]-a/2),c[2]||0]),o=r&&r!==0&&Math.abs(r)>.2,l=o?iT(r,[0,0]):dx,u=o?i.map(c=>[...O3e(c,l),c[2]]):i,d=o?P3e(n):dx,h=Xm(t),p=[Ul(h,d[0]),Ul(h,d[1])];return u.map(c=>[Math.trunc(c[0]+p[0]),Math.trunc(c[1]+p[1]),Math.trunc(c[2]||0)])}function uT(e,t,r,n){let a=t.landmarks.length>=ix.count?ix.symmetryLine:Wl.symmetryLine,s=0,i=dx,o;if(e&&he.kernels.includes("rotatewithoffset"))if(s=F3e(t.landmarks[a[0]],t.landmarks[a[1]]),s&&s!==0&&Math.abs(s)>.2){let u=Xm(t),d=[u[0]/r.shape[2],u[1]/r.shape[1]],h=Ie.rotateWithOffset(r,s,0,d);i=iT(-s,u),o=ux(t,h,[n,n]),te(h)}else o=ux(t,r,[n,n]);else o=ux(t,r,[n,n]);return[s,i,o]}var z3e=e=>{let t=e.map(n=>n[0]),r=e.map(n=>n[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...r)+(Math.max(...r)-Math.min(...r))/2]},dT=(e,t)=>{let r=z3e(e),n=Ud(t);return{startPoint:[r[0]-n[0]/2,r[1]-n[1]/2],endPoint:[r[0]+n[0]/2,r[1]+n[1]/2]}};var pT=6,D3e=1.4,La,hT=null,Ki=0,sc=null,Gd=()=>Ki;async function cT(e){var t;return he.initial&&(La=null),La?e.debug&&se("cached model:",La.modelUrl):La=await Ge((t=e.face.detector)==null?void 0:t.modelPath),Ki=La.inputs[0].shape?La.inputs[0].shape[2]:0,sc=Se(Ki,"int32"),hT=ca(oT(Ki)),La}function L3e(e){let t={};t.boxStarts=_e(e,[0,1],[-1,2]),t.centers=le(t.boxStarts,hT),t.boxSizes=_e(e,[0,3],[-1,2]),t.boxSizesNormalized=pe(t.boxSizes,sc),t.centersNormalized=pe(t.centers,sc),t.halfBoxSize=pe(t.boxSizesNormalized,Qe.tf2),t.starts=ce(t.centersNormalized,t.halfBoxSize),t.ends=le(t.centersNormalized,t.halfBoxSize),t.startNormalized=L(t.starts,sc),t.endNormalized=L(t.ends,sc);let r=xd([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(n=>te(t[n])),r}async function fT(e,t){var o,l,u,d;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let r={};r.resized=Ie.resizeBilinear(e,[Ki,Ki]),r.div=pe(r.resized,Qe.tf127),r.normalized=ce(r.div,Qe.tf05);let n=La==null?void 0:La.execute(r.normalized);if(Array.isArray(n)&&n.length>2){let h=n.sort((p,c)=>p.size-c.size);r.concat384=St([h[0],h[2]],2),r.concat512=St([h[1],h[3]],2),r.concat=St([r.concat512,r.concat384],1),r.batch=et(r.concat,0)}else Array.isArray(n)?r.batch=et(n[0]):r.batch=et(n);te(n),r.boxes=L3e(r.batch),r.logits=_e(r.batch,[0,0],[-1,1]),r.sigmoid=Tr(r.logits),r.scores=et(r.sigmoid),r.nms=await Ie.nonMaxSuppressionAsync(r.boxes,r.scores,((o=t.face.detector)==null?void 0:o.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((u=t.face.detector)==null?void 0:u.minConfidence)||0);let a=await r.nms.array(),s=[],i=await r.scores.data();for(let h=0;h<a.length;h++){let p=i[a[h]];if(p>(((d=t.face.detector)==null?void 0:d.minConfidence)||0)){let c={};c.bbox=_e(r.boxes,[a[h],0],[1,-1]),c.slice=_e(r.batch,[a[h],pT-1],[1,-1]),c.squeeze=et(c.slice),c.landmarks=U(c.squeeze,[pT,-1]);let m=await c.bbox.data(),f={startPoint:[m[0],m[1]],endPoint:[m[2],m[3]],landmarks:await c.landmarks.array(),confidence:p},g=aT(f,[(e.shape[2]||0)/Ki,(e.shape[1]||0)/Ki]),y=Ym(g,t.face.scale||D3e),A=Jm(y);s.push(A),Object.keys(c).forEach(x=>te(c[x]))}}return Object.keys(r).forEach(h=>te(r[h])),s}var Qm={};vs(Qm,{connected:()=>cx,kpt:()=>hx});var hx=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],cx={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var gT=224,B3e,W3e=5,e1=[8,16,32,32,32];async function yT(){let e=[],t=0;for(;t<W3e;){let r=0,n=t;for(;n<e1.length&&e1[n]===e1[t];)r+=2,n++;let a=e1[t],s=Math.ceil(gT/a),i=Math.ceil(gT/a);for(let o=0;o<s;++o)for(let l=0;l<i;++l)for(let u=0;u<r;++u)e.push({x:(l+.5)/i,y:(o+.5)/s});t=n}B3e={x:Nt(e.map(r=>r.x)),y:Nt(e.map(r=>r.y))}}function ls(e,t=[1,1]){let r=[e.map(o=>o[0]),e.map(o=>o[1])],n=[Math.min(...r[0]),Math.min(...r[1])],a=[Math.max(...r[0]),Math.max(...r[1])],s=[n[0],n[1],a[0]-n[0],a[1]-n[1]],i=[s[0]/t[0],s[1]/t[1],s[2]/t[0],s[3]/t[1]];return{box:s,boxRaw:i}}function AT(e,t=[1,1]){let r=[e.map(u=>u[0]),e.map(u=>u[1])],n=[Math.min(...r[0]),Math.min(...r[1])],a=[Math.max(...r[0]),Math.max(...r[1])],s=[(n[0]+a[0])/2,(n[1]+a[1])/2],i=Math.max(s[0]-n[0],s[1]-n[1],-s[0]+a[0],-s[1]+a[1]),o=[Math.trunc(s[0]-i),Math.trunc(s[1]-i),Math.trunc(2*i),Math.trunc(2*i)],l=[o[0]/t[0],o[1]/t[1],o[2]/t[0],o[3]/t[1]];return{box:o,boxRaw:l}}function t1(e,t){let r=[e[2]*t,e[3]*t];return[e[0]-(r[0]-e[2])/2,e[1]-(r[1]-e[3])/2,r[0],r[1]]}var vT={initial:!0},An={detector:null,landmarks:null},jd={detector:[224,224],landmarks:[256,256]},fx=Number.MAX_SAFE_INTEGER,U3e={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},n1=null,ic,Zi=[[0,0],[0,0],[0,0],[0,0]],xT=0,bT=e=>1-1/(1+Math.exp(e));async function wT(e){if(vT.initial&&(An.detector=null),!An.detector&&e.body.detector&&e.body.detector.modelPath){An.detector=await Ge(e.body.detector.modelPath);let t=Object.values(An.detector.modelSignature.inputs);jd.detector[0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,jd.detector[1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}else e.debug&&An.detector&&se("cached model:",An.detector.modelUrl);return await yT(),An.detector}async function kT(e){if(vT.initial&&(An.landmarks=null),An.landmarks)e.debug&&se("cached model:",An.landmarks.modelUrl);else{An.landmarks=await Ge(e.body.modelPath);let t=Object.values(An.landmarks.modelSignature.inputs);jd.landmarks[0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,jd.landmarks[1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return An.landmarks}async function G3e(e,t){let r={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;let n;if(ic&&(r.cropped=Ie.cropAndResize(e,[ic],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let a=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],s=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];Zi=[[0,0],a,s,[0,0]],r.pad=Xn(r.cropped||e,Zi),r.resize=Ie.resizeBilinear(r.pad,[t,t]),n=pe(r.resize,Qe.tf255)}else e.shape[1]!==t?(r.resize=Ie.resizeBilinear(r.cropped||e,[t,t]),n=pe(r.resize,Qe.tf255)):n=pe(r.cropped||e,Qe.tf255);return Object.keys(r).forEach(a=>te(r[a])),n}function j3e(e,t){for(let r of e)r.position=[Math.trunc(r.position[0]*(t[0]+Zi[2][0]+Zi[2][1])/t[0]-Zi[2][0]),Math.trunc(r.position[1]*(t[1]+Zi[1][0]+Zi[1][1])/t[1]-Zi[1][0]),r.position[2]],r.positionRaw=[r.position[0]/t[0],r.position[1]/t[1],2*r.position[2]/(t[0]+t[1])];if(ic)for(let r of e)r.positionRaw=[r.positionRaw[0]+ic[1],r.positionRaw[1]+ic[0],r.positionRaw[2]],r.position=[Math.trunc(r.positionRaw[0]*t[0]),Math.trunc(r.positionRaw[1]*t[1]),r.positionRaw[2]];return e}async function H3e(e){let t=e.find(o=>o.part==="leftPalm"),r=e.find(o=>o.part==="leftWrist"),n=e.find(o=>o.part==="leftIndex");t.position[2]=((r.position[2]||0)+(n.position[2]||0))/2;let a=e.find(o=>o.part==="rightPalm"),s=e.find(o=>o.part==="rightWrist"),i=e.find(o=>o.part==="rightIndex");a.position[2]=((s.position[2]||0)+(i.position[2]||0))/2}async function q3e(e,t,r){var m;let n={};[n.ld,n.segmentation,n.heatmap,n.world,n.poseflag]=(m=An.landmarks)==null?void 0:m.execute(e,U3e.landmarks);let a=(await n.poseflag.data())[0],s=await n.ld.data(),i=await n.world.data();Object.keys(n).forEach(f=>te(n[f]));let o=[],l=5;for(let f=0;f<s.length/l;f++){let g=bT(s[l*f+3]),y=bT(s[l*f+4]),A=Math.trunc(100*g*y*a)/100,x=[s[l*f+0]/jd.landmarks[0],s[l*f+1]/jd.landmarks[1],s[l*f+2]+0],b=[Math.trunc(r[0]*x[0]),Math.trunc(r[1]*x[1]),x[2]],w=[i[l*f+0],i[l*f+1],i[l*f+2]+0];o.push({part:hx[f],positionRaw:x,position:b,distance:w,score:A})}if(a<(t.body.minConfidence||0))return null;H3e(o);let u=j3e(o,r),d=u.map(f=>f.position),h=ls(d,[r[0],r[1]]),p={};for(let[f,g]of Object.entries(cx)){let y=[];for(let A=0;A<g.length-1;A++){let x=u.find(w=>w.part===g[A]),b=u.find(w=>w.part===g[A+1]);x&&b&&y.push([x.position,b.position])}p[f]=y}return{id:0,score:Math.trunc(100*a)/100,box:h.box,boxRaw:h.boxRaw,keypoints:u,annotations:p}}async function mx(e,t){let r=[e.shape[2]||0,e.shape[1]||0],n=(t.body.skipTime||0)>oe()-xT,a=fx<(t.body.skipFrames||0);if(t.skipAllowed&&n&&a&&n1!==null)fx++;else{let s={};s.landmarks=await G3e(e,256),n1=await q3e(s.landmarks,t,r),Object.keys(s).forEach(i=>te(s[i])),xT=oe(),fx=0}return n1?[n1]:[]}var Hd=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var us,Gl=0,gx=[],ST=0,yx=Number.MAX_SAFE_INTEGER;async function CT(e){if(he.initial&&(us=null),us)e.debug&&se("cached model:",us.modelUrl);else{us=await Ge(e.object.modelPath);let t=Object.values(us.modelSignature.inputs);Gl=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return us}async function X3e(e,t,r){if(!e)return[];let n={},a=[],s=await e.array();n.squeeze=et(e);let i=Yt(n.squeeze,6,1);n.stack=ur([i[1],i[0],i[3],i[2]],1),n.boxes=et(n.stack),n.scores=et(i[4]),n.classes=et(i[5]),te([e,...i]),n.nms=await Ie.nonMaxSuppressionAsync(n.boxes,n.scores,r.object.maxDetected,r.object.iouThreshold,r.object.minConfidence||0);let o=await n.nms.data(),l=0;for(let u of Array.from(o)){let d=Math.trunc(100*s[0][u][4])/100,h=s[0][u][5],p=Hd[h].label,[c,m]=[s[0][u][0]/Gl,s[0][u][1]/Gl],f=[c,m,s[0][u][2]/Gl-c,s[0][u][3]/Gl-m],g=[Math.trunc(f[0]*t[0]),Math.trunc(f[1]*t[1]),Math.trunc(f[2]*t[0]),Math.trunc(f[3]*t[1])];a.push({id:l++,score:d,class:h,label:p,box:g,boxRaw:f})}return Object.keys(n).forEach(u=>te(n[u])),a}async function Ax(e,t){let r=(t.object.skipTime||0)>oe()-ST,n=yx<(t.object.skipFrames||0);return t.skipAllowed&&r&&n&&gx.length>0?(yx++,gx):(yx=0,new Promise(async a=>{let s=[e.shape[2]||0,e.shape[1]||0],i=Ie.resizeBilinear(e,[Gl,Gl]),o=t.object.enabled?us==null?void 0:us.execute(i,["tower_0/detections"]):null;ST=oe(),te(i);let l=await X3e(o,s,t);gx=l,a(l)}))}var a1={};vs(a1,{connected:()=>bx,kpt:()=>xx});var xx=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],bx={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var $r,NT=0,Yr={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},vx=Number.MAX_SAFE_INTEGER;async function ET(e){return he.initial&&($r=null),$r?e.debug&&se("cached model:",$r.modelUrl):$r=await Ge(e.body.modelPath),$r}async function K3e(e,t){let[r,n]=e.shape,a=U(e,[n*r]),s=yr(a,0),i=(await s.data())[0];if(te([a,s]),i>t){let o=$n(a,0),l=wd(o,r),u=(await l.data())[0],d=pe(o,Se(r,"int32")),h=(await d.data())[0];return te([l,d]),[u,h,i]}return[0,0,i]}async function wx(e,t){let r=(t.body.skipTime||0)>oe()-NT,n=vx<(t.body.skipFrames||0);return t.skipAllowed&&r&&n&&Object.keys(Yr.keypoints).length>0?(vx++,[Yr]):(vx=0,new Promise(async a=>{var h;let s=X(()=>{if(!($r!=null&&$r.inputs[0].shape))return null;let p=Ie.resizeBilinear(e,[$r.inputs[0].shape[2],$r.inputs[0].shape[1]],!1),c=L(p,Qe.tf2);return ce(c,Qe.tf1)}),i;if(t.body.enabled&&(i=$r==null?void 0:$r.execute(s)),NT=oe(),te(s),i){Yr.keypoints.length=0;let p=i.squeeze();te(i);let c=p.unstack(2);te(p);for(let m=0;m<c.length;m++){let[f,g,y]=await K3e(c[m],t.body.minConfidence);y>(((h=t.body)==null?void 0:h.minConfidence)||0)&&Yr.keypoints.push({score:Math.round(100*y)/100,part:xx[m],positionRaw:[f/$r.inputs[0].shape[2],g/$r.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/$r.inputs[0].shape[2]),Math.round(e.shape[1]*g/$r.inputs[0].shape[1])]})}c.forEach(m=>te(m))}Yr.score=Yr.keypoints.reduce((p,c)=>c.score>p?c.score:p,0);let o=Yr.keypoints.map(p=>p.position[0]),l=Yr.keypoints.map(p=>p.position[1]);Yr.box=[Math.min(...o),Math.min(...l),Math.max(...o)-Math.min(...o),Math.max(...l)-Math.min(...l)];let u=Yr.keypoints.map(p=>p.positionRaw[0]),d=Yr.keypoints.map(p=>p.positionRaw[1]);Yr.boxRaw=[Math.min(...u),Math.min(...d),Math.max(...u)-Math.min(...u),Math.max(...d)-Math.min(...d)];for(let[p,c]of Object.entries(bx)){let m=[];for(let f=0;f<c.length-1;f++){let g=Yr.keypoints.find(A=>A.part===c[f]),y=Yr.keypoints.find(A=>A.part===c[f+1]);g&&y&&g.score>(t.body.minConfidence||0)&&y.score>(t.body.minConfidence||0)&&m.push([g.position,y.position])}Yr.annotations[p]=m}a([Yr])}))}var Z3e=["angry","disgust","fear","happy","sad","surprise","neutral"],Wn,s1=[],$T=0,MT=0,kx=Number.MAX_SAFE_INTEGER;async function FT(e){var t;return he.initial&&(Wn=null),Wn?e.debug&&se("cached model:",Wn.modelUrl):Wn=await Ge((t=e.face.emotion)==null?void 0:t.modelPath),Wn}async function Ix(e,t,r,n){var i,o;if(!Wn)return[];let a=kx<(((i=t.face.emotion)==null?void 0:i.skipFrames)||0),s=(((o=t.face.emotion)==null?void 0:o.skipTime)||0)>oe()-MT;return t.skipAllowed&&s&&a&&$T===n&&s1[r]&&s1[r].length>0?(kx++,s1[r]):(kx=0,new Promise(async l=>{var d,h;let u=[];if((d=t.face.emotion)!=null&&d.enabled){let p={},c=Wn!=null&&Wn.inputs[0].shape?Wn.inputs[0].shape[2]:0;p.resize=Ie.resizeBilinear(e,[c,c],!1),p.channels=L(p.resize,Qe.rgb),p.grayscale=ke(p.channels,3,!0),p.grayscaleSub=ce(p.grayscale,Qe.tf05),p.grayscaleMul=L(p.grayscaleSub,Qe.tf2),p.emotion=Wn==null?void 0:Wn.execute(p.grayscaleMul),MT=oe();let m=await p.emotion.data();for(let f=0;f<m.length;f++)m[f]>(((h=t.face.emotion)==null?void 0:h.minConfidence)||0)&&u.push({score:Math.min(.99,Math.trunc(100*m[f])/100),emotion:Z3e[f]});u.sort((f,g)=>g.score-f.score),Object.keys(p).forEach(f=>te(p[f]))}s1[r]=u,$T=n,l(u)}))}var xn,Sx=[],PT=0,OT=0,zT=Number.MAX_SAFE_INTEGER;async function DT(e){return he.initial&&(xn=null),xn?e.debug&&se("cached model:",xn.modelUrl):xn=await Ge(e.face.mobilefacenet.modelPath),xn}async function Cx(e,t,r,n){var i,o;if(!xn)return[];let a=zT<(((i=t.face.embedding)==null?void 0:i.skipFrames)||0),s=(((o=t.face.embedding)==null?void 0:o.skipTime)||0)>oe()-OT;return t.skipAllowed&&s&&a&&PT===n&&Sx[r]?(zT++,Sx[r]):new Promise(async l=>{var d;let u=[];if(((d=t.face.embedding)==null?void 0:d.enabled)&&(xn==null?void 0:xn.inputs[0].shape)){let h={};h.crop=Ie.resizeBilinear(e,[xn.inputs[0].shape[2],xn.inputs[0].shape[1]],!1),h.data=xn==null?void 0:xn.execute(h.crop);let p=await h.data.data();u=Array.from(p)}Sx[r]=u,PT=n,OT=oe(),l(u)})}var ds,Yi=0,Y3e=2.3,Tx=ea.leftEyeLower0,Nx=ea.rightEyeLower0,qd={leftBounds:[Tx[0],Tx[Tx.length-1]],rightBounds:[Nx[0],Nx[Nx.length-1]]},Xd={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function UT(e){var t;return he.initial&&(ds=null),ds?e.debug&&se("cached model:",ds.modelUrl):ds=await Ge((t=e.face.iris)==null?void 0:t.modelPath),Yi=ds.inputs[0].shape?ds.inputs[0].shape[2]:0,Yi===-1&&(Yi=64),ds}function i1(e,t,r,n){for(let a=0;a<ox.length;a++){let{key:s,indices:i}=ox[a],o=ea[`${r}${s}`];if(!n||n.includes(s))for(let l=0;l<i.length;l++){let u=i[l];e[o[l]]=[t[u][0],t[u][1],(t[u][2]+e[o[l]][2])/2]}}}var J3e=e=>{let t=e[qd.leftBounds[0]][2],r=e[qd.rightBounds[0]][2];return t-r},BT=(e,t,r,n,a,s=!1)=>{let i=Jm(Ym(sT([e[r],e[n]]),Y3e)),o=Ud(i),l=Ie.cropAndResize(t,[[i.startPoint[1]/a,i.startPoint[0]/a,i.endPoint[1]/a,i.endPoint[0]/a]],[0],[Yi,Yi]);if(s&&he.kernels.includes("flipleftright")){let u=Ie.flipLeftRight(l);te(l),l=u}return{box:i,boxSize:o,crop:l}},WT=(e,t,r,n=!1)=>{let a=[];for(let s=0;s<Xd.numCoordinates;s++){let i=e[s*3],o=e[s*3+1],l=e[s*3+2];a.push([(n?1-i/Yi:i/Yi)*r[0]+t.startPoint[0],o/Yi*r[1]+t.startPoint[1],l])}return{rawCoords:a,iris:a.slice(Xd.index)}},VT=(e,t,r)=>{let n=e[ea[`${r}EyeUpper0`][Xd.upperCenter]][2],a=e[ea[`${r}EyeLower0`][Xd.lowerCenter]][2],s=(n+a)/2;return t.map((i,o)=>{let l=s;return o===2?l=n:o===4&&(l=a),[i[0],i[1],l]})};async function GT(e,t,r,n){if(!ds)return r.debug&&se("face mesh iris detection requested, but model is not loaded"),e;let{box:a,boxSize:s,crop:i}=BT(e,t,qd.leftBounds[0],qd.leftBounds[1],n,!0),{box:o,boxSize:l,crop:u}=BT(e,t,qd.rightBounds[0],qd.rightBounds[1],n,!0),d=St([i,u]);te(i),te(u);let h=ds.execute(d);te(d);let p=await h.data();te(h);let c=p.slice(0,Xd.numCoordinates*3),{rawCoords:m,iris:f}=WT(c,a,s,!0),g=p.slice(Xd.numCoordinates*3),{rawCoords:y,iris:A}=WT(g,o,l,!1),x=J3e(e);Math.abs(x)<30?(i1(e,m,"left",null),i1(e,y,"right",null)):x<1?i1(e,m,"left",["EyeUpper0","EyeLower0"]):i1(e,y,"right",["EyeUpper0","EyeLower0"]);let b=VT(e,f,"left"),w=VT(e,A,"right");return e.concat(b).concat(w)}var Q3e=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],e5e=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],t5e=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],r5e=[[474,475],[475,476],[476,477],[477,474]],n5e=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],a5e=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],s5e=[[469,470],[470,471],[471,472],[472,469]],i5e=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]];function Ji(e){let t=e.map(r=>r[0]);return t.push(e[e.length-1][1]),t}var o5e={lips:Ji(Q3e),leftEye:Ji(e5e),leftEyebrow:Ji(t5e),leftIris:Ji(r5e),rightEye:Ji(n5e),rightEyebrow:Ji(a5e),rightIris:Ji(s5e),faceOval:Ji(i5e)},l5e=Object.entries(o5e).map(([e,t])=>t.map(r=>[r,e])).flat(),n8e=new Map(l5e),oc=[61,146,91,181,84,17,314,405,321,375,291,185,40,39,37,0,267,269,270,409,78,95,88,178,87,14,317,402,318,324,308,191,80,81,82,13,312,311,310,415,76,77,90,180,85,16,315,404,320,307,306,184,74,73,72,11,302,303,304,408,62,96,89,179,86,15,316,403,319,325,292,183,42,41,38,12,268,271,272,407],jl=[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],Hl=[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417];async function qT(e,t){let r={lips:await t.filter(s=>s.size===160)[0].data(),irisL:await t.filter(s=>s.size===10)[0].data(),eyeL:await t.filter(s=>s.size===142)[0].data(),irisR:await t.filter(s=>s.size===10)[1].data(),eyeR:await t.filter(s=>s.size===142)[1].data()},n=jl.reduce((s,i)=>s+=e[i][2],0)/jl.length;for(let s=0;s<r.irisL.length/2;s++)e.push([r.irisL[2*s+0],r.irisL[2*s+1],n]);let a=Hl.reduce((s,i)=>s+=e[i][2],0)/Hl.length;for(let s=0;s<r.irisR.length/2;s++)e.push([r.irisR[2*s+0],r.irisR[2*s+1],a]);for(let s=0;s<r.eyeL.length/2;s++)e[jl[s]]=[r.eyeL[2*s+0],r.eyeL[2*s+1],e[jl[s]][2]];for(let s=0;s<r.eyeR.length/2;s++)e[Hl[s]]=[r.eyeR[2*s+0],r.eyeR[2*s+1],e[Hl[s]][2]];for(let s=0;s<r.lips.length/2;s++)e[oc[s]]=[r.lips[2*s+0],r.lips[2*s+1],e[oc[s]][2]];return e}var Ba={boxes:[],skipped:Number.MAX_SAFE_INTEGER,timestamp:0},Mr=null,ql=0;async function XT(e,t){var o,l,u,d,h,p,c,m,f,g,y;let r=(((o=t.face.detector)==null?void 0:o.skipTime)||0)>oe()-Ba.timestamp,n=Ba.skipped<(((l=t.face.detector)==null?void 0:l.skipFrames)||0);!t.skipAllowed||!r||!n||Ba.boxes.length===0?(Ba.boxes=await fT(e,t),Ba.timestamp=oe(),Ba.skipped=0):Ba.skipped++;let a=[],s=[],i=0;for(let A=0;A<Ba.boxes.length;A++){let x=Ba.boxes[A],b=0,w,I={id:i++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if([b,w,I.tensor]=uT((u=t.face.detector)==null?void 0:u.rotation,x,e,(d=t.face.mesh)!=null&&d.enabled?ql:Gd()),(h=t==null?void 0:t.filter)!=null&&h.equalization){let T=await Vm(I.tensor);te(I.tensor),I.tensor=T}if(I.boxScore=Math.round(100*x.confidence)/100,(p=t.face.mesh)!=null&&p.enabled)if(!Mr)t.debug&&se("face mesh detection requested, but model is not loaded");else{let T=Mr.execute(I.tensor),E=T.find(P=>P.shape[P.shape.length-1]===1),R=T.find(P=>P.shape[P.shape.length-1]===1404),O=await E.data();I.faceScore=Math.round(100*O[0])/100;let $=U(R,[-1,3]),S=await $.array();if(I.faceScore<(((c=t.face.detector)==null?void 0:c.minConfidence)||1)){if(x.confidence=I.faceScore,(m=t.face.mesh)!=null&&m.keepInvalid){I.box=Km(x,e),I.boxRaw=Zm(x,e),I.score=I.boxScore,I.mesh=x.landmarks.map(P=>[(x.startPoint[0]+x.endPoint[0])/2+(x.endPoint[0]+x.startPoint[0])*P[0]/Gd(),(x.startPoint[1]+x.endPoint[1])/2+(x.endPoint[1]+x.startPoint[1])*P[1]/Gd()]),I.meshRaw=I.mesh.map(P=>[P[0]/(e.shape[2]||0),P[1]/(e.shape[1]||0),(P[2]||0)/ql]);for(let P of Object.keys(Wl))I.annotations[P]=[I.mesh[Wl[P]]]}}else{(f=t.face.attention)!=null&&f.enabled?S=await qT(S,T):(g=t.face.iris)!=null&&g.enabled&&(S=await GT(S,I.tensor,t,ql)),I.mesh=lT(S,x,b,w,ql),I.meshRaw=I.mesh.map(z=>[z[0]/(e.shape[2]||0),z[1]/(e.shape[1]||0),(z[2]||0)/ql]);for(let z of Object.keys(ea))I.annotations[z]=ea[z].map(j=>I.mesh[j]);I.score=I.faceScore;let P={...dT(I.mesh,x),confidence:x.confidence,landmarks:x.landmarks};I.box=Km(P,e),I.boxRaw=Zm(P,e),s.push(P)}te([...T,$])}else{I.box=Km(x,e),I.boxRaw=Zm(x,e),I.score=I.boxScore,I.mesh=x.landmarks.map(T=>[(x.startPoint[0]+x.endPoint[0])/2+(x.endPoint[0]+x.startPoint[0])*T[0]/Gd(),(x.startPoint[1]+x.endPoint[1])/2+(x.endPoint[1]+x.startPoint[1])*T[1]/Gd()]),I.meshRaw=I.mesh.map(T=>[T[0]/(e.shape[2]||0),T[1]/(e.shape[1]||0),(T[2]||0)/ql]);for(let T of Object.keys(Wl))I.annotations[T]=[I.mesh[Wl[T]]]}I.score>(((y=t.face.detector)==null?void 0:y.minConfidence)||1)?a.push(I):te(I.tensor)}return Ba.boxes=s,a}async function KT(e){var t,r,n,a,s,i;return he.initial&&(Mr=null),((r=(t=e==null?void 0:e.face)==null?void 0:t.attention)==null?void 0:r.enabled)&&(Mr==null?void 0:Mr.signature)&&Object.keys(((n=Mr==null?void 0:Mr.signature)==null?void 0:n.outputs)||{}).length<6&&(Mr=null),Mr?e.debug&&se("cached model:",Mr.modelUrl):(a=e.face.attention)!=null&&a.enabled?Mr=await Ge((s=e.face.attention)==null?void 0:s.modelPath):Mr=await Ge((i=e.face.mesh)==null?void 0:i.modelPath),ql=Mr.inputs[0].shape?Mr.inputs[0].shape[2]:0,Mr}var ZT=Vl,YT=ac;var bn,o1=[],JT=0,QT=0,Rx=Number.MAX_SAFE_INTEGER;async function eN(e){var t;return he.initial&&(bn=null),bn?e.debug&&se("cached model:",bn.modelUrl):bn=await Ge((t=e.face.description)==null?void 0:t.modelPath),bn}function $x(e){let t=e.image||e.tensor||e;if(!(bn!=null&&bn.inputs[0].shape))return t;let r=Ie.resizeBilinear(t,[bn.inputs[0].shape[2],bn.inputs[0].shape[1]],!1),n=L(r,Qe.tf255);return te(r),n}async function Mx(e,t,r,n){var i,o,l,u;if(!bn)return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let a=Rx<(((i=t.face.description)==null?void 0:i.skipFrames)||0),s=(((o=t.face.description)==null?void 0:o.skipTime)||0)>oe()-JT;return t.skipAllowed&&a&&s&&QT===n&&((l=o1[r])==null?void 0:l.age)&&((u=o1[r])==null?void 0:u.age)>0?(Rx++,o1[r]):(Rx=0,new Promise(async d=>{var p,c;let h={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((p=t.face.description)!=null&&p.enabled){let m=$x(e),f=bn==null?void 0:bn.execute(m);JT=oe(),te(m);let y=await(await f.find(R=>R.shape[1]===1)).data(),A=Math.trunc(200*Math.abs(y[0]-.5))/100;A>(((c=t.face.description)==null?void 0:c.minConfidence)||0)&&(h.gender=y[0]<=.5?"female":"male",h.genderScore=Math.min(.99,A));let x=$n(f.find(R=>R.shape[1]===100),1),b=(await x.data())[0];te(x);let I=await f.find(R=>R.shape[1]===100).data();h.age=Math.round(I[b-1]>I[b+1]?10*b-100*I[b-1]:10*b+100*I[b+1])/10;let T=f.find(R=>R.shape[1]===1024),E=T?await T.data():[];h.descriptor=Array.from(E),f.forEach(R=>te(R))}o1[r]=h,QT=n,d(h)}))}function l1(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function lc(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function nN(e,t,r){let n=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/n,e.startPoint[0]/a,e.endPoint[1]/n,e.endPoint[0]/a]];return Ie.cropAndResize(t,s,[0],r)}function aN(e,t){let r=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],n=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:r,endPoint:n,palmLandmarks:a,confidence:e.confidence}}function u1(e,t=1.5){let r=lc(e),n=l1(e),a=[t*n[0]/2,t*n[1]/2],s=[r[0]-a[0],r[1]-a[1]],i=[r[0]+a[0],r[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function d1(e){let t=lc(e),r=l1(e),a=Math.max(...r)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function d5e(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function sN(e,t){let r=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return d5e(r)}var tN=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Qi(e,t){let r=0;for(let n=0;n<e.length;n++)r+=e[n]*t[n];return r}function p5e(e,t){let r=[];for(let n=0;n<e.length;n++)r.push(e[n][t]);return r}function rN(e,t){let r=[],n=e.length;for(let a=0;a<n;a++){r.push([]);for(let s=0;s<n;s++)r[a].push(Qi(e[a],p5e(t,s)))}return r}function _x(e,t){let r=Math.cos(e),n=Math.sin(e),a=[[r,-n,0],[n,r,0],[0,0,1]],s=tN(t[0],t[1]),i=rN(s,a),o=tN(-t[0],-t[1]);return rN(i,o)}function iN(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],r=[e[0][2],e[1][2]],n=[-Qi(t[0],r),-Qi(t[1],r)];return[t[0].concat(n[0]),t[1].concat(n[1]),[0,0,1]]}function Px(e,t){return[Qi(e,t[0]),Qi(e,t[1])]}var lN=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var p1=class{constructor(t){fe(this,"model");fe(this,"anchors");fe(this,"anchorsTensor");fe(this,"inputSize");fe(this,"inputSizeTensor");fe(this,"doubleInputSizeTensor");this.model=t,this.anchors=lN.map(r=>[r.x,r.y]),this.anchorsTensor=ca(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=Nt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Nt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let r={};r.boxOffsets=_e(t,[0,0],[-1,2]),r.boxSizes=_e(t,[0,2],[-1,2]),r.div=pe(r.boxOffsets,this.inputSizeTensor),r.boxCenterPoints=le(r.div,this.anchorsTensor),r.halfBoxSizes=pe(r.boxSizes,this.doubleInputSizeTensor),r.sub=ce(r.boxCenterPoints,r.halfBoxSizes),r.startPoints=L(r.sub,this.inputSizeTensor),r.add=le(r.boxCenterPoints,r.halfBoxSizes),r.endPoints=L(r.add,this.inputSizeTensor);let n=xd([r.startPoints,r.endPoints],1);return Object.keys(r).forEach(a=>te(r[a])),n}normalizeLandmarks(t,r){let n={};n.reshape=U(t,[-1,7,2]),n.div=pe(n.reshape,this.inputSizeTensor),n.landmarks=le(n.div,this.anchors[r]);let a=L(n.landmarks,this.inputSizeTensor);return Object.keys(n).forEach(s=>te(n[s])),a}async predict(t,r){let n={};n.resize=Ie.resizeBilinear(t,[this.inputSize,this.inputSize]),n.div=pe(n.resize,Qe.tf127),n.image=ce(n.div,Qe.tf1),n.batched=this.model.execute(n.image),n.predictions=et(n.batched),n.slice=_e(n.predictions,[0,0],[-1,1]),n.sigmoid=Tr(n.slice),n.scores=et(n.sigmoid);let a=await n.scores.data();n.boxes=_e(n.predictions,[0,1],[-1,4]),n.norm=this.normalizeBoxes(n.boxes),n.nms=await Ie.nonMaxSuppressionAsync(n.norm,n.scores,3*r.hand.maxDetected,r.hand.iouThreshold,r.hand.minConfidence);let s=await n.nms.array(),i=[];for(let o of s){let l={};l.box=_e(n.norm,[o,0],[1,-1]),l.slice=_e(n.predictions,[o,5],[1,14]),l.norm=this.normalizeLandmarks(l.slice,o),l.palmLandmarks=U(l.norm,[-1,2]);let u=await l.box.data(),d=u.slice(0,2),h=u.slice(2,4),p=await l.palmLandmarks.array(),c={startPoint:d,endPoint:h,palmLandmarks:p,confidence:a[o]},m=aN(c,[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]);i.push(m),Object.keys(l).forEach(f=>te(l[f]))}return Object.keys(n).forEach(o=>te(n[o])),i}};var f5e=5,uN=1.65,dN=[0,5,9,13,17,1,2],m5e=0,g5e=2,pN=0,h1=class{constructor(t,r){fe(this,"handDetector");fe(this,"handPoseModel");fe(this,"inputSize");fe(this,"storedBoxes");fe(this,"skipped");fe(this,"detectedHands");this.handDetector=t,this.handPoseModel=r,this.inputSize=this.handPoseModel&&this.handPoseModel.inputs[0].shape?this.handPoseModel.inputs[0].shape[2]:0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let r=t.map(i=>i[0]),n=t.map(i=>i[1]),a=[Math.min(...r),Math.min(...n)],s=[Math.max(...r),Math.max(...n)];return{startPoint:a,endPoint:s}}getBoxForPalmLandmarks(t,r){let n=t.map(s=>Px([...s,1],r)),a=this.calculateLandmarksBoundingBox(n);return u1(d1(a),f5e)}getBoxForHandLandmarks(t){let r=this.calculateLandmarksBoundingBox(t),n=u1(d1(r),uN);n.palmLandmarks=[];for(let a=0;a<dN.length;a++)n.palmLandmarks.push(t[dN[a]].slice(0,2));return n}transformRawCoords(t,r,n,a){let s=l1(r),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(c=>[i[0]*(c[0]-this.inputSize/2),i[1]*(c[1]-this.inputSize/2),i[2]*c[2]]),l=_x(n,[0,0]),u=o.map(c=>[...Px(c,l),c[2]]),d=iN(a),h=[...lc(r),1],p=[Qi(h,d[0]),Qi(h,d[1])];return u.map(c=>[Math.trunc(c[0]+p[0]),Math.trunc(c[1]+p[1]),Math.trunc(c[2])])}async estimateHands(t,r){let n=!1,a,s=(r.hand.skipTime||0)>oe()-pN,i=this.skipped<(r.hand.skipFrames||0);r.skipAllowed&&s&&i&&(a=await this.handDetector.predict(t,r),this.skipped=0),r.skipAllowed&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==r.hand.maxDetected||!r.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(n=!0));let o=[];for(let l=0;l<this.storedBoxes.length;l++){let u=this.storedBoxes[l];if(!!u)if(r.hand.landmarks){let d=r.hand.rotation?sN(u.palmLandmarks[m5e],u.palmLandmarks[g5e]):0,h=lc(u),p=[h[0]/t.shape[2],h[1]/t.shape[1]],c=r.hand.rotation&&he.kernels.includes("rotatewithoffset")?Ie.rotateWithOffset(t,d,0,p):t.clone(),m=_x(-d,h),f=n?this.getBoxForPalmLandmarks(u.palmLandmarks,m):u,g=nN(f,c,[this.inputSize,this.inputSize]),y=pe(g,Qe.tf255);te(g),te(c);let[A,x]=this.handPoseModel.execute(y);pN=oe(),te(y);let b=(await A.data())[0];if(te(A),b>=r.hand.minConfidence/4){let w=U(x,[-1,3]),I=await w.array();te(x),te(w);let T=this.transformRawCoords(I,f,d,m),E=this.getBoxForHandLandmarks(T);this.storedBoxes[l]={...E,confidence:b};let R={landmarks:T,confidence:b,boxConfidence:u.confidence,fingerConfidence:b,box:{topLeft:E.startPoint,bottomRight:E.endPoint}};o.push(R)}else this.storedBoxes[l]=null;te(x)}else{let d=u1(d1(u),uN),h={confidence:u.confidence,boxConfidence:u.confidence,fingerConfidence:0,box:{topLeft:d.startPoint,bottomRight:d.endPoint},landmarks:[]};o.push(h)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=o.length,o.length>r.hand.maxDetected&&(o.length=r.hand.maxDetected),o}};var Jr={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>Jr.nameMapping[e],getPoints:e=>Jr.pointsMapping[e]},to={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>to.nameMapping[e]},Bt={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>Bt.nameMapping[e]},eo=class{constructor(t){fe(this,"name");fe(this,"curls");fe(this,"directions");fe(this,"weights");fe(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,r,n){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([r,n])}direction(t,r,n){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([r,n])}weight(t,r){this.weights[t]=r;let n=this.weights.reduce((a,s)=>a+s,0);this.weightsRelative=this.weights.map(a=>a*5/n)}matchAgainst(t,r){let n=0;for(let a in t){let s=t[a],i=this.curls[a];if(typeof i=="undefined"){n+=this.weightsRelative[a];continue}for(let[o,l]of i)if(s===o){n+=l*this.weightsRelative[a];break}}for(let a in r){let s=r[a],i=this.directions[a];if(typeof i=="undefined"){n+=this.weightsRelative[a];continue}for(let[o,l]of i)if(s===o){n+=l*this.weightsRelative[a];break}}return n/10}};var{thumb:wa,index:ps,middle:hs,ring:Xl,pinky:Kl}=Jr,{none:ka,half:A5e,full:Ia}=to,{verticalUp:Kd,verticalDown:A8e,horizontalLeft:Ox,horizontalRight:x5e,diagonalUpRight:b5e,diagonalUpLeft:Zd,diagonalDownRight:x8e,diagonalDownLeft:b8e}=Bt,ro=new eo("thumbs up");ro.curl(wa,ka,1);ro.direction(wa,Kd,1);ro.direction(wa,Zd,.25);ro.direction(wa,b5e,.25);for(let e of[Jr.index,Jr.middle,Jr.ring,Jr.pinky])ro.curl(e,Ia,1),ro.direction(e,Ox,1),ro.direction(e,x5e,1);var tr=new eo("victory");tr.curl(wa,A5e,.5);tr.curl(wa,ka,.5);tr.direction(wa,Kd,1);tr.direction(wa,Zd,1);tr.curl(ps,ka,1);tr.direction(ps,Kd,.75);tr.direction(ps,Zd,1);tr.curl(hs,ka,1);tr.direction(hs,Kd,1);tr.direction(hs,Zd,.75);tr.curl(Xl,Ia,1);tr.direction(Xl,Kd,.2);tr.direction(Xl,Zd,1);tr.direction(Xl,Ox,.2);tr.curl(Kl,Ia,1);tr.direction(Kl,Kd,.2);tr.direction(Kl,Zd,1);tr.direction(Kl,Ox,.2);tr.weight(ps,2);tr.weight(hs,2);var no=new eo("point");no.curl(wa,Ia,1);no.curl(ps,ka,.5);no.curl(hs,Ia,.5);no.curl(Xl,Ia,.5);no.curl(Kl,Ia,.5);no.weight(ps,2);no.weight(hs,2);var ao=new eo("middle finger");ao.curl(wa,ka,1);ao.curl(ps,Ia,.5);ao.curl(hs,Ia,.5);ao.curl(Xl,Ia,.5);ao.curl(Kl,Ia,.5);ao.weight(ps,2);ao.weight(hs,2);var Yd=new eo("open palm");Yd.curl(wa,ka,.75);Yd.curl(ps,ka,.75);Yd.curl(hs,ka,.75);Yd.curl(Xl,ka,.75);Yd.curl(Kl,ka,.75);var hN=[ro,tr,no,ao,Yd];var v5e=.7,Zl={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function cN(e,t,r,n){let a=(t-n)/(e-r),s=Math.atan(a)*180/Math.PI;return s<=0?s=-s:s>0&&(s=180-s),s}function mN(e,t){if(!e||!t)return[0,0];let r=cN(e[0],e[1],t[0],t[1]);if(e.length===2)return r;let n=cN(e[1],e[2],t[1],t[2]);return[r,n]}function fN(e,t=1){let r=0,n=0,a=0;return e>=75&&e<=105?r=1*t:e>=25&&e<=155?n=1*t:a=1*t,[r,n,a]}function w5e(e,t,r){let n=e[0]-t[0],a=e[0]-r[0],s=t[0]-r[0],i=e[1]-t[1],o=e[1]-r[1],l=t[1]-r[1],u=e[2]-t[2],d=e[2]-r[2],h=t[2]-r[2],p=Math.sqrt(n*n+i*i+u*u),c=Math.sqrt(a*a+o*o+d*d),m=Math.sqrt(s*s+l*l+h*h),f=(m*m+p*p-c*c)/(2*m*p);f>1?f=1:f<-1&&(f=-1);let g=Math.acos(f);g=57.2958*g%180;let y;return g>Zl.NO_CURL_START_LIMIT?y=to.none:g>Zl.HALF_CURL_START_LIMIT?y=to.half:y=to.full,y}function gN(e,t,r,n){let a;return n===Math.abs(e)?e>0?a=Bt.horizontalLeft:a=Bt.horizontalRight:n===Math.abs(t)?t>0?a=Bt.horizontalLeft:a=Bt.horizontalRight:r>0?a=Bt.horizontalLeft:a=Bt.horizontalRight,a}function yN(e,t,r,n){let a;return n===Math.abs(e)?e<0?a=Bt.verticalDown:a=Bt.verticalUp:n===Math.abs(t)?t<0?a=Bt.verticalDown:a=Bt.verticalUp:r<0?a=Bt.verticalDown:a=Bt.verticalUp,a}function k5e(e,t,r,n,a,s,i,o){let l,u=yN(e,t,r,n),d=gN(a,s,i,o);return u===Bt.verticalUp?d===Bt.horizontalLeft?l=Bt.diagonalUpLeft:l=Bt.diagonalUpRight:d===Bt.horizontalLeft?l=Bt.diagonalDownLeft:l=Bt.diagonalDownRight,l}function I5e(e,t,r,n){let a=e[0]-t[0],s=e[0]-r[0],i=t[0]-r[0],o=e[1]-t[1],l=e[1]-r[1],u=t[1]-r[1],d=Math.max(Math.abs(a),Math.abs(s),Math.abs(i)),h=Math.max(Math.abs(o),Math.abs(l),Math.abs(u)),p=0,c=0,m=0,f=h/(d+1e-5);f>1.5?p+=Zl.DISTANCE_VOTE_POWER:f>.66?c+=Zl.DISTANCE_VOTE_POWER:m+=Zl.DISTANCE_VOTE_POWER;let g=Math.sqrt(a*a+o*o),y=Math.sqrt(s*s+l*l),A=Math.sqrt(i*i+u*u),x=Math.max(g,y,A),b=e[0],w=e[1],I=r[0],T=r[1];x===g?(I=r[0],T=r[1]):x===A&&(b=t[0],w=t[1]);let O=mN([b,w],[I,T]),$=fN(O,Zl.TOTAL_ANGLE_VOTE_POWER);p+=$[0],c+=$[1],m+=$[2];for(let P of n){let z=fN(P,Zl.SINGLE_ANGLE_VOTE_POWER);p+=z[0],c+=z[1],m+=z[2]}let S;return p===Math.max(p,c,m)?S=yN(l,o,u,h):m===Math.max(c,m)?S=gN(s,a,i,d):S=k5e(l,o,u,h,s,a,i,d),S}function AN(e){let t=[],r=[],n=[],a=[];if(!e)return{curls:n,directions:a};for(let s of Jr.all){let i=Jr.getPoints(s),o=[],l=[];for(let u of i){let d=e[u[0]],h=e[u[1]],p=mN(d,h),c=p[0],m=p[1];o.push(c),l.push(m)}t.push(o),r.push(l)}for(let s of Jr.all){let i=s===Jr.thumb?1:0,o=Jr.getPoints(s),l=e[o[i][0]],u=e[o[i+1][1]],d=e[o[3][1]],h=w5e(l,u,d),p=I5e(l,u,d,t[s].slice(i));n[s]=h,a[s]=p}return{curls:n,directions:a}}function c1(e){if(!e||e.length===0)return null;let t=AN(e),r={};for(let n of Jr.all)r[Jr.getName(n)]={curl:to.getName(t.curls[n]),direction:Bt.getName(t.directions[n])};return r}function xN(e){let t=[];if(!e||e.length===0)return t;let r=AN(e);for(let n of hN){let a=n.matchAgainst(r.curls,r.directions);a>=v5e&&t.push({name:n.name,confidence:a})}return t}var bN={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},Jd,Qd,vN;async function Dx(e,t){let r=await vN.estimateHands(e,t);if(!r)return[];let n=[];for(let a=0;a<r.length;a++){let s={};if(r[a].landmarks)for(let d of Object.keys(bN))s[d]=bN[d].map(h=>r[a].landmarks[h]);let i=r[a].landmarks,o=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(i&&i.length>0){for(let d of i)d[0]<o[0]&&(o[0]=d[0]),d[1]<o[1]&&(o[1]=d[1]),d[0]>o[2]&&(o[2]=d[0]),d[1]>o[3]&&(o[3]=d[1]);o[2]-=o[0],o[3]-=o[1],l=[o[0]/(e.shape[2]||0),o[1]/(e.shape[1]||0),o[2]/(e.shape[2]||0),o[3]/(e.shape[1]||0)]}else o=r[a].box?[Math.trunc(Math.max(0,r[a].box.topLeft[0])),Math.trunc(Math.max(0,r[a].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,r[a].box.bottomRight[0])-Math.max(0,r[a].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,r[a].box.bottomRight[1])-Math.max(0,r[a].box.topLeft[1]))]:[0,0,0,0],l=[r[a].box.topLeft[0]/(e.shape[2]||0),r[a].box.topLeft[1]/(e.shape[1]||0),(r[a].box.bottomRight[0]-r[a].box.topLeft[0])/(e.shape[2]||0),(r[a].box.bottomRight[1]-r[a].box.topLeft[1])/(e.shape[1]||0)];let u=c1(i);n.push({id:a,score:Math.round(100*r[a].confidence)/100,boxScore:Math.round(100*r[a].boxConfidence)/100,fingerScore:Math.round(100*r[a].fingerConfidence)/100,label:"hand",box:o,boxRaw:l,keypoints:i,annotations:s,landmarks:u})}return n}async function Lx(e){var r,n;he.initial&&(Jd=null,Qd=null),!Jd||!Qd?[Jd,Qd]=await Promise.all([e.hand.enabled?Ge((r=e.hand.detector)==null?void 0:r.modelPath):null,e.hand.landmarks?Ge((n=e.hand.skeleton)==null?void 0:n.modelPath):null]):(e.debug&&se("cached model:",Jd.modelUrl),e.debug&&se("cached model:",Qd.modelUrl));let t=new p1(Jd);return vN=new h1(t,Qd),[Jd,Qd]}var pr=[null,null],S5e=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],so=[[0,0],[0,0]],C5e=["hand","fist","pinch","point","face","tip","pinchtip"],kN=4,IN=1.6,T5e=512,N5e=1.4,f1=Number.MAX_SAFE_INTEGER,Bx=0,cs=[0,0],Ht={boxes:[],hands:[]},SN={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function CN(e){var t;if(he.initial&&(pr[0]=null),pr[0])e.debug&&se("cached model:",pr[0].modelUrl);else{m1(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),pr[0]=await Ge((t=e.hand.detector)==null?void 0:t.modelPath);let r=Object.values(pr[0].modelSignature.inputs);so[0][0]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[1].size):0,so[0][1]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[2].size):0}return pr[0]}async function TN(e){var t;if(he.initial&&(pr[1]=null),pr[1])e.debug&&se("cached model:",pr[1].modelUrl);else{pr[1]=await Ge((t=e.hand.skeleton)==null?void 0:t.modelPath);let r=Object.values(pr[1].modelSignature.inputs);so[1][0]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[1].size):0,so[1][1]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[2].size):0}return pr[1]}async function E5e(e,t){let r=[];if(!e||!pr[0])return r;let n={},a=(e.shape[2]||1)/(e.shape[1]||1),s=Math.min(Math.round((e.shape[1]||0)/8)*8,T5e),i=Math.round(s*a/8)*8;n.resize=Ie.resizeBilinear(e,[s,i]),n.cast=me(n.resize,"int32"),[n.rawScores,n.rawBoxes]=await pr[0].executeAsync(n.cast,S5e),n.boxes=et(n.rawBoxes,[0,2]),n.scores=et(n.rawScores,[0]);let o=an(n.scores,1);te(o[kN]),o.splice(kN,1),n.filtered=ur(o,1),te(o),n.max=yr(n.filtered,1),n.argmax=$n(n.filtered,1);let l=0;n.nms=await Ie.nonMaxSuppressionAsync(n.boxes,n.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let u=await n.nms.data(),d=await n.max.data(),h=await n.argmax.data();for(let p of Array.from(u)){let c=_e(n.boxes,p,1),m=await c.data();te(c);let f=[m[1],m[0],m[3]-m[1],m[2]-m[0]],g=t1(f,N5e),y=[Math.trunc(f[0]*cs[0]),Math.trunc(f[1]*cs[1]),Math.trunc(f[2]*cs[0]),Math.trunc(f[3]*cs[1])],A=d[p],x=C5e[h[p]],b={id:l++,score:A,box:y,boxRaw:g,label:x};r.push(b)}return Object.keys(n).forEach(p=>te(n[p])),r.sort((p,c)=>c.score-p.score),r.length>(t.hand.maxDetected||1)&&(r.length=t.hand.maxDetected||1),r}async function Wx(e,t,r){let n={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&pr[1]&&r.hand.landmarks&&t.score>(r.hand.minConfidence||0)){let a={},s=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];a.crop=Ie.cropAndResize(e,[s],[0],[so[1][0],so[1][1]],"bilinear"),a.div=pe(a.crop,Qe.tf255),[a.score,a.keypoints]=pr[1].execute(a.div,["Identity_1","Identity"]);let i=(await a.score.data())[0],o=(100-Math.trunc(100/(1+Math.exp(i))))/100;if(o>=(r.hand.minConfidence||0)){n.fingerScore=o,a.reshaped=U(a.keypoints,[-1,3]);let d=(await a.reshaped.array()).map(h=>[h[0]/so[1][1],h[1]/so[1][0],h[2]||0]).map(h=>[h[0]*t.boxRaw[2],h[1]*t.boxRaw[3],h[2]||0]);n.keypoints=d.map(h=>[cs[0]*(h[0]+t.boxRaw[0]),cs[1]*(h[1]+t.boxRaw[1]),h[2]||0]),n.landmarks=c1(n.keypoints);for(let h of Object.keys(SN))n.annotations[h]=SN[h].map(p=>n.landmarks&&n.keypoints[p]?n.keypoints[p]:null)}Object.keys(a).forEach(l=>te(a[l]))}return n}async function Vx(e,t){var a,s;if(!pr[0]||!pr[1]||!((a=pr[0])!=null&&a.inputs[0].shape)||!((s=pr[1])!=null&&s.inputs[0].shape))return[];cs=[e.shape[2]||0,e.shape[1]||0],f1++;let r=(t.hand.skipTime||0)>oe()-Bx,n=f1<(t.hand.skipFrames||0);return t.skipAllowed&&r&&n?Ht.hands:new Promise(async i=>{let o=3*(t.hand.skipTime||0)>oe()-Bx,l=f1<3*(t.hand.skipFrames||0);t.skipAllowed&&Ht.hands.length===t.hand.maxDetected?Ht.hands=await Promise.all(Ht.boxes.map(d=>Wx(e,d,t))):t.skipAllowed&&o&&l&&Ht.hands.length>0?Ht.hands=await Promise.all(Ht.boxes.map(d=>Wx(e,d,t))):(Ht.boxes=await E5e(e,t),Bx=oe(),Ht.hands=await Promise.all(Ht.boxes.map(d=>Wx(e,d,t))),f1=0);let u=[...Ht.boxes];if(Ht.boxes.length=0,t.cacheSensitivity>0)for(let d=0;d<Ht.hands.length;d++){let h=AT(Ht.hands[d].keypoints,cs);if(h.box[2]/(e.shape[2]||1)>.05&&h.box[3]/(e.shape[1]||1)>.05&&Ht.hands[d].fingerScore&&Ht.hands[d].fingerScore>(t.hand.minConfidence||0)){let p=t1(h.box,IN),c=t1(h.boxRaw,IN);Ht.boxes.push({...u[d],box:p,boxRaw:c})}}for(let d=0;d<Ht.hands.length;d++){let h=ls(Ht.hands[d].keypoints,cs);Ht.hands[d].box=h.box,Ht.hands[d].boxRaw=h.boxRaw}i(Ht.hands)})}var Fr,g1=[],Ux=Number.MAX_SAFE_INTEGER,EN=0,RN=0;async function $N(e){var t;return he.initial&&(Fr=null),Fr?e.debug&&se("cached model:",Fr.modelUrl):Fr=await Ge((t=e.face.liveness)==null?void 0:t.modelPath),Fr}async function Gx(e,t,r,n){var i,o;if(!Fr)return 0;let a=(((i=t.face.liveness)==null?void 0:i.skipTime)||0)>oe()-RN,s=Ux<(((o=t.face.liveness)==null?void 0:o.skipFrames)||0);return t.skipAllowed&&a&&s&&EN===n&&g1[r]?(Ux++,g1[r]):(Ux=0,new Promise(async l=>{let u=Ie.resizeBilinear(e,[Fr!=null&&Fr.inputs[0].shape?Fr.inputs[0].shape[2]:0,Fr!=null&&Fr.inputs[0].shape?Fr.inputs[0].shape[1]:0],!1),d=Fr==null?void 0:Fr.execute(u),h=(await d.data())[0];g1[r]=Math.round(100*h)/100,EN=n,RN=oe(),te([u,d]),l(g1[r])}))}var uc={};vs(uc,{connected:()=>A1,horizontal:()=>jx,kpt:()=>y1,relative:()=>qx,vertical:()=>Hx});var y1=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],jx=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],Hx=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],qx=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],A1={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var FN=.005,vn={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function Xx(e){for(let t of jx){let r=e.keypoints.findIndex(a=>a.part===t[0]),n=e.keypoints.findIndex(a=>a.part===t[1]);if(e.keypoints[r]&&e.keypoints[n]&&e.keypoints[r].position[0]<e.keypoints[n].position[0]){let a=e.keypoints[r];e.keypoints[r]=e.keypoints[n],e.keypoints[n]=a}}for(let t of Hx){let r=e.keypoints.findIndex(a=>a&&a.part===t[0]),n=e.keypoints.findIndex(a=>a&&a.part===t[1]);e.keypoints[r]&&e.keypoints[n]&&e.keypoints[r].position[1]<e.keypoints[n].position[1]&&e.keypoints.splice(r,1)}for(let[t,r]of qx){let n=e.keypoints.findIndex(u=>u&&u.part===t[0]),a=e.keypoints.findIndex(u=>u&&u.part===t[1]),s=e.keypoints.findIndex(u=>u&&u.part===r[0]),i=e.keypoints.findIndex(u=>u&&u.part===r[1]);if(!e.keypoints[s]||!e.keypoints[i])continue;let o=e.keypoints[n]?[Math.abs(e.keypoints[s].position[0]-e.keypoints[n].position[0]),Math.abs(e.keypoints[i].position[0]-e.keypoints[n].position[0])]:[0,0],l=e.keypoints[a]?[Math.abs(e.keypoints[i].position[0]-e.keypoints[a].position[0]),Math.abs(e.keypoints[s].position[0]-e.keypoints[a].position[0])]:[0,0];if(o[0]>o[1]||l[0]>l[1]){let u=e.keypoints[n];e.keypoints[n]=e.keypoints[a],e.keypoints[a]=u}}}function _N(e){for(let t=0;t<e.length;t++)if(e[t]&&vn.keypoints[t]){let r=[Math.abs(e[t].positionRaw[0]-vn.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-vn.keypoints[t].positionRaw[1])];r[0]<FN&&r[1]<FN?e[t]=vn.keypoints[t]:vn.keypoints[t]=e[t]}else vn.keypoints[t]=e[t];return e}function PN(e,t){let r={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;vn.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],r.pad=Xn(e,vn.padding),r.resize=Ie.resizeBilinear(r.pad,[t,t]);let n=me(r.resize,"int32");return Object.keys(r).forEach(a=>te(r[a])),n}function ON(e,t){e.keypoints=e.keypoints.filter(n=>n&&n.position);for(let n of e.keypoints)n.position=[n.position[0]*(t[0]+vn.padding[2][0]+vn.padding[2][1])/t[0]-vn.padding[2][0],n.position[1]*(t[1]+vn.padding[1][0]+vn.padding[1][1])/t[1]-vn.padding[1][0]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1]];let r=ls(e.keypoints.map(n=>n.position),t);return e.box=r.box,e.boxRaw=r.boxRaw,e}var wn,x1=0,Kx=Number.MAX_SAFE_INTEGER,Yl={boxes:[],bodies:[],last:0};async function zN(e){return he.initial&&(wn=null),wn?e.debug&&se("cached model:",wn.modelUrl):(m1(["size"],e),wn=await Ge(e.body.modelPath)),x1=wn.inputs[0].shape?wn.inputs[0].shape[2]:0,x1<64&&(x1=256),wn}async function $5e(e,t,r){let n=e[0][0],a=[],s=0;for(let d=0;d<n.length;d++)if(s=n[d][2],s>t.body.minConfidence){let h=[n[d][1],n[d][0]];a.push({score:Math.round(100*s)/100,part:y1[d],positionRaw:h,position:[Math.round((r.shape[2]||0)*h[0]),Math.round((r.shape[1]||0)*h[1])]})}s=a.reduce((d,h)=>h.score>d?h.score:d,0);let i=[],o=ls(a.map(d=>d.position),[r.shape[2],r.shape[1]]),l={};for(let[d,h]of Object.entries(A1)){let p=[];for(let c=0;c<h.length-1;c++){let m=a.find(g=>g.part===h[c]),f=a.find(g=>g.part===h[c+1]);m&&f&&m.score>(t.body.minConfidence||0)&&f.score>(t.body.minConfidence||0)&&p.push([m.position,f.position])}l[d]=p}let u={id:0,score:s,box:o.box,boxRaw:o.boxRaw,keypoints:a,annotations:l};return Xx(u),i.push(u),i}async function M5e(e,t,r){let n=[];for(let a=0;a<e[0].length;a++){let s=e[0][a],i=Math.round(100*s[51+4])/100;if(i>t.body.minConfidence){let o=[];for(let h=0;h<17;h++){let p=s[3*h+2];if(p>t.body.minConfidence){let c=[s[3*h+1],s[3*h+0]];o.push({part:y1[h],score:Math.round(100*p)/100,positionRaw:c,position:[Math.round((r.shape[2]||0)*c[0]),Math.round((r.shape[1]||0)*c[1])]})}}let l=ls(o.map(h=>h.position),[r.shape[2],r.shape[1]]),u={};for(let[h,p]of Object.entries(A1)){let c=[];for(let m=0;m<p.length-1;m++){let f=o.find(y=>y.part===p[m]),g=o.find(y=>y.part===p[m+1]);f&&g&&f.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&c.push([f.position,g.position])}u[h]=c}let d={id:a,score:i,box:l.box,boxRaw:l.boxRaw,keypoints:[...o],annotations:u};Xx(d),n.push(d)}}return n.sort((a,s)=>s.score-a.score),n.length>t.body.maxDetected&&(n.length=t.body.maxDetected),n}async function Zx(e,t){if(!wn||!(wn!=null&&wn.inputs[0].shape))return[];t.skipAllowed||(Yl.boxes.length=0),Kx++;let r=(t.body.skipTime||0)>oe()-Yl.last,n=Kx<(t.body.skipFrames||0);return t.skipAllowed&&r&&n?Yl.bodies:new Promise(async a=>{let s={};Kx=0,s.input=PN(e,x1),s.res=wn==null?void 0:wn.execute(s.input),Yl.last=oe();let i=await s.res.array();Yl.bodies=s.res.shape[2]===17?await $5e(i,t,e):await M5e(i,t,e);for(let o of Yl.bodies)ON(o,[e.shape[2]||1,e.shape[1]||1]),_N(o.keypoints);Object.keys(s).forEach(o=>te(s[o])),a(Yl.bodies)})}var ep,b1=[],LN=0,Yx=Number.MAX_SAFE_INTEGER,w1=0,v1=2.5;async function BN(e){if(!ep||he.initial){ep=await Ge(e.object.modelPath);let t=Object.values(ep.modelSignature.inputs);w1=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}else e.debug&&se("cached model:",ep.modelUrl);return ep}async function F5e(e,t,r){let n=0,a=[];for(let l of[1,2,4])X(async()=>{let u=l*13,d=et(e.find(f=>f.shape[1]===u**2&&(f.shape[2]||0)===Hd.length)),h=et(e.find(f=>f.shape[1]===u**2&&(f.shape[2]||0)<Hd.length)),c=await h.reshape([-1,4,h.shape[1]/4]).argMax(2).array(),m=await d.array();for(let f=0;f<d.shape[0];f++)for(let g=0;g<d.shape[1];g++){let y=m[f][g];if(y>(r.object.minConfidence||0)&&g!==61){let A=(.5+Math.trunc(f%u))/u,x=(.5+Math.trunc(f/u))/u,b=c[f].map(S=>S*(u/l/w1)),[w,I]=[A-v1/l*b[0],x-v1/l*b[1]],[T,E]=[A+v1/l*b[2]-w,x+v1/l*b[3]-I],R=[w,I,T,E];R=R.map(S=>Math.max(0,Math.min(S,1)));let O=[R[0]*t[0],R[1]*t[1],R[2]*t[0],R[3]*t[1]],$={id:n++,score:Math.round(100*y)/100,class:g+1,label:Hd[g].label,box:O.map(S=>Math.trunc(S)),boxRaw:R};a.push($)}}});e.forEach(l=>te(l));let s=a.map(l=>[l.boxRaw[1],l.boxRaw[0],l.boxRaw[3],l.boxRaw[2]]),i=a.map(l=>l.score),o=[];if(s&&s.length>0){let l=await Ie.nonMaxSuppressionAsync(s,i,r.object.maxDetected,r.object.iouThreshold,r.object.minConfidence);o=await l.data(),te(l)}return a=a.filter((l,u)=>o.includes(u)).sort((l,u)=>u.score-l.score),a}async function Jx(e,t){let r=(t.object.skipTime||0)>oe()-LN,n=Yx<(t.object.skipFrames||0);return t.skipAllowed&&r&&n&&b1.length>0?(Yx++,b1):(Yx=0,!he.kernels.includes("mod")||!he.kernels.includes("sparsetodense")?b1:new Promise(async a=>{let s=[e.shape[2]||0,e.shape[1]||0],i=Ie.resizeBilinear(e,[w1,w1],!1),o=pe(i,Qe.tf255),l=o.transpose([0,3,1,2]);te(o),te(i);let u;t.object.enabled&&(u=ep.execute(l)),LN=oe(),te(l);let d=await F5e(u,s,t);b1=d,a(d)}))}var pc=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],_5e=pc.length,dc=pc.reduce((e,t,r)=>(e[t]=r,e),{}),P5e=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],G8e=P5e.map(([e,t])=>[dc[e],dc[t]]),VN=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function UN(e){let t=e.reduce(({maxX:r,maxY:n,minX:a,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(r,i),maxY:Math.max(n,o),minX:Math.min(a,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function GN(e,[t,r],[n,a]){let s=t/n,i=r/a,o=(u,d)=>({id:d,score:u.score,boxRaw:[u.box[0]/a,u.box[1]/n,u.box[2]/a,u.box[3]/n],box:[Math.trunc(u.box[0]*i),Math.trunc(u.box[1]*s),Math.trunc(u.box[2]*i),Math.trunc(u.box[3]*s)],keypoints:u.keypoints.map(({score:h,part:p,position:c})=>({score:h,part:p,position:[Math.trunc(c.x*i),Math.trunc(c.y*s)],positionRaw:[c.x/n,c.y/n]})),annotations:{}});return e.map((u,d)=>o(u,d))}var k1=class{constructor(t,r){fe(this,"priorityQueue");fe(this,"numberOfElements");fe(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=r}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let r=2*t;if(r<this.numberOfElements&&this.less(r,r+1)&&r++,!this.less(t,r))break;this.exchange(t,r),t=r}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,r){return this.getValueAt(t)<this.getValueAt(r)}exchange(t,r){let n=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[r],this.priorityQueue[r]=n}};function Qx(e,t,r,n){return{y:n.get(e,t,r),x:n.get(e,t,r+_5e)}}function eb(e,t,r){let{heatmapY:n,heatmapX:a,id:s}=e,{y:i,x:o}=Qx(n,a,s,r);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function tb(e,t,r){return e<t?t:e>r?r:e}function jN(e,t,r,n){let a=r-e,s=n-t;return a*a+s*s}function rb(e,t){return{x:e.x+t.x,y:e.y+t.y}}var Sa,z5e=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],I1=1,tp=16,D5e=50**2;function HN(e,t,r,n,a,s,i=2){let o=y=>({y:s.get(y.y,y.x,e),x:s.get(y.y,y.x,s.shape[2]/2+e)}),l=(y,A,x)=>({y:tb(Math.round(y.y/tp),0,A-1),x:tb(Math.round(y.x/tp),0,x-1)}),[u,d]=n.shape,h=l(t.position,u,d),p=o(h),m=rb(t.position,p);for(let y=0;y<i;y++){let A=l(m,u,d),x=Qx(A.y,A.x,r,a);m=rb({x:A.x*tp,y:A.y*tp},{x:x.x,y:x.y})}let f=l(m,u,d),g=n.get(f.y,f.x,r);return{position:m,part:pc[r],score:g}}function L5e(e,t,r,n,a){let s=VN.map(([p,c])=>[dc[p],dc[c]]),i=s.map(([,p])=>p),o=s.map(([p])=>p),l=t.shape[2],u=i.length,d=new Array(l),h=eb(e.part,tp,r);d[e.part.id]={score:e.score,part:pc[e.part.id],position:h};for(let p=u-1;p>=0;--p){let c=i[p],m=o[p];d[c]&&!d[m]&&(d[m]=HN(p,d[c],m,t,r,a))}for(let p=0;p<u;++p){let c=o[p],m=i[p];d[c]&&!d[m]&&(d[m]=HN(p,d[c],m,t,r,n))}return d}function B5e(e,t,r,n,a){let[s,i]=a.shape,o=!0,l=Math.max(r-I1,0),u=Math.min(r+I1+1,s);for(let d=l;d<u;++d){let h=Math.max(n-I1,0),p=Math.min(n+I1+1,i);for(let c=h;c<p;++c)if(a.get(d,c,e)>t){o=!1;break}if(!o)break}return o}function W5e(e,t){let[r,n,a]=t.shape,s=new k1(r*n*a,({score:i})=>i);for(let i=0;i<r;++i)for(let o=0;o<n;++o)for(let l=0;l<a;++l){let u=t.get(i,o,l);u<e||B5e(l,u,i,o,t)&&s.enqueue({score:u,part:{heatmapY:i,heatmapX:o,id:l}})}return s}function qN(e,{x:t,y:r},n){return e.some(({keypoints:a})=>{var i;let s=(i=a[n])==null?void 0:i.position;return s?jN(r,t,s.y,s.x)<=D5e:!1})}function V5e(e,t){return t.reduce((n,{position:a,score:s},i)=>(qN(e,a,i)||(n+=s),n),0)/t.length}function U5e(e,t,r,n,a,s){let i=[],o=W5e(s,t);for(;i.length<a&&!o.empty();){let l=o.dequeue(),u=eb(l.part,tp,e);if(qN(i,u,l.part.id))continue;let d=L5e(l,t,e,r,n);d=d.filter(c=>c.score>s);let h=V5e(i,d),p=UN(d);h>s&&i.push({keypoints:d,box:p,score:Math.round(100*h)/100})}return i}async function nb(e,t){let r=X(()=>{if(!Sa.inputs[0].shape)return[];let i=Ie.resizeBilinear(e,[Sa.inputs[0].shape[2],Sa.inputs[0].shape[1]]),o=ce(pe(me(i,"float32"),127.5),1),u=Sa.execute(o,z5e).map(d=>et(d,[0]));return u[1]=Tr(u[1]),u}),n=await Promise.all(r.map(i=>i.buffer()));for(let i of r)te(i);let a=await U5e(n[0],n[1],n[2],n[3],t.body.maxDetected,t.body.minConfidence);return Sa.inputs[0].shape?GN(a,[e.shape[1],e.shape[2]],[Sa.inputs[0].shape[2],Sa.inputs[0].shape[1]]):[]}async function XN(e){return!Sa||he.initial?Sa=await Ge(e.body.modelPath):e.debug&&se("cached model:",Sa.modelUrl),Sa}var Wa,ab=!1;async function sb(e){return!Wa||he.initial?Wa=await Ge(e.segmentation.modelPath):e.debug&&se("cached model:",Wa.modelUrl),Wa}async function ZN(e,t,r){var f,g;if(ab)return{data:[],canvas:null,alpha:null};ab=!0,Wa||await sb(r);let n=await Vd(e,r),a=((f=n.tensor)==null?void 0:f.shape[2])||0,s=((g=n.tensor)==null?void 0:g.shape[1])||0;if(!n.tensor)return{data:[],canvas:null,alpha:null};let i={};i.resize=Ie.resizeBilinear(n.tensor,[Wa.inputs[0].shape?Wa.inputs[0].shape[1]:0,Wa.inputs[0].shape?Wa.inputs[0].shape[2]:0],!1),te(n.tensor),i.norm=pe(i.resize,Qe.tf255),i.res=Wa.execute(i.norm),i.squeeze=et(i.res,0),i.squeeze.shape[2]===2?(i.softmax=Id(i.squeeze),[i.bg,i.fg]=an(i.softmax,2),i.expand=Kt(i.fg,2),i.pad=Kt(i.expand,0),i.crop=Ie.cropAndResize(i.pad,[[0,0,.5,.5]],[0],[a,s]),i.data=et(i.crop,0)):i.data=Ie.resizeBilinear(i.squeeze,[s,a]);let o=Array.from(await i.data.data());if(he.node&&!he.Canvas&&typeof ImageData=="undefined")return r.debug&&se("canvas support missing"),Object.keys(i).forEach(y=>te(i[y])),{data:o,canvas:null,alpha:null};let l=Zr(a,s);Ln&&await Ln.toPixels(i.data,l);let u=l.getContext("2d");r.segmentation.blur&&r.segmentation.blur>0&&(u.filter=`blur(${r.segmentation.blur}px)`);let d=u.getImageData(0,0,a,s),h=Zr(a,s),p=h.getContext("2d");n.canvas&&p.drawImage(n.canvas,0,0),p.globalCompositeOperation="darken",r.segmentation.blur&&r.segmentation.blur>0&&(p.filter=`blur(${r.segmentation.blur}px)`),p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none";let c=p.getImageData(0,0,a,s);for(let y=0;y<a*s;y++)c.data[4*y+3]=d.data[4*y+0];p.putImageData(c,0,0);let m=null;if(t&&h){m=Zr(a,s);let y=await Vd(t,r);te(y.tensor);let A=m.getContext("2d");A.drawImage(y.canvas,0,0,m.width,m.height),A.drawImage(h,0,0)}return Object.keys(i).forEach(y=>te(i[y])),ab=!1,{data:o,canvas:h,alpha:l}}var hc=class{constructor(){fe(this,"ssrnetage",null);fe(this,"gear",null);fe(this,"blazeposedetect",null);fe(this,"blazepose",null);fe(this,"centernet",null);fe(this,"efficientpose",null);fe(this,"mobilefacenet",null);fe(this,"emotion",null);fe(this,"facedetect",null);fe(this,"faceiris",null);fe(this,"facemesh",null);fe(this,"faceres",null);fe(this,"ssrnetgender",null);fe(this,"handpose",null);fe(this,"handskeleton",null);fe(this,"handtrack",null);fe(this,"liveness",null);fe(this,"movenet",null);fe(this,"nanodet",null);fe(this,"posenet",null);fe(this,"segmentation",null);fe(this,"antispoof",null)}};function S1(e){for(let t of Object.keys(e.models))e.models[t]=null}async function ib(e){var t,r,n,a,s,i,o,l,u,d,h,p,c,m,f,g,y,A,x,b,w,I,T,E,R,O,$,S,P,z,j;he.initial&&S1(e),e.config.hand.enabled&&(!e.models.handpose&&((r=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await Lx(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((a=(n=e.config.hand.detector)==null?void 0:n.modelPath)==null?void 0:a.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await Lx(e.config))),e.config.body.enabled&&!e.models.blazepose&&((i=(s=e.config.body)==null?void 0:s.modelPath)==null?void 0:i.includes("blazepose"))&&(e.models.blazepose=kT(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=wT(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((l=(o=e.config.body)==null?void 0:o.modelPath)==null?void 0:l.includes("efficientpose"))&&(e.models.efficientpose=ET(e.config)),e.config.body.enabled&&!e.models.movenet&&((d=(u=e.config.body)==null?void 0:u.modelPath)==null?void 0:d.includes("movenet"))&&(e.models.movenet=zN(e.config)),e.config.body.enabled&&!e.models.posenet&&((p=(h=e.config.body)==null?void 0:h.modelPath)==null?void 0:p.includes("posenet"))&&(e.models.posenet=XN(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=cT(e.config)),e.config.face.enabled&&((c=e.config.face.antispoof)==null?void 0:c.enabled)&&!e.models.antispoof&&(e.models.antispoof=eT(e.config)),e.config.face.enabled&&((m=e.config.face.liveness)==null?void 0:m.enabled)&&!e.models.liveness&&(e.models.liveness=$N(e.config)),e.config.face.enabled&&((f=e.config.face.description)==null?void 0:f.enabled)&&!e.models.faceres&&(e.models.faceres=eN(e.config)),e.config.face.enabled&&((g=e.config.face.emotion)==null?void 0:g.enabled)&&!e.models.emotion&&(e.models.emotion=FT(e.config)),e.config.face.enabled&&((y=e.config.face.iris)==null?void 0:y.enabled)&&!((A=e.config.face.attention)!=null&&A.enabled)&&!e.models.faceiris&&(e.models.faceiris=UT(e.config)),e.config.face.enabled&&((x=e.config.face.mesh)==null?void 0:x.enabled)&&!e.models.facemesh&&(e.models.facemesh=KT(e.config)),e.config.face.enabled&&((b=e.config.face.gear)==null?void 0:b.enabled)&&!e.models.gear&&(e.models.gear=WC(e.config)),e.config.face.enabled&&((w=e.config.face.ssrnet)==null?void 0:w.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=HC(e.config)),e.config.face.enabled&&((I=e.config.face.ssrnet)==null?void 0:I.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=ZC(e.config)),e.config.face.enabled&&((T=e.config.face.mobilefacenet)==null?void 0:T.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=DT(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((R=(E=e.config.hand.detector)==null?void 0:E.modelPath)==null?void 0:R.includes("handtrack"))&&(e.models.handtrack=CN(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&(($=(O=e.config.hand.detector)==null?void 0:O.modelPath)==null?void 0:$.includes("handtrack"))&&(e.models.handskeleton=TN(e.config)),e.config.object.enabled&&!e.models.centernet&&((P=(S=e.config.object)==null?void 0:S.modelPath)==null?void 0:P.includes("centernet"))&&(e.models.centernet=CT(e.config)),e.config.object.enabled&&!e.models.nanodet&&((j=(z=e.config.object)==null?void 0:z.modelPath)==null?void 0:j.includes("nanodet"))&&(e.models.nanodet=BN(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=sb(e.config));for await(let K of Object.keys(e.models))e.models[K]&&typeof e.models[K]!="undefined"&&(e.models[K]=await e.models[K])}async function ob(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let r of Object.keys(e.models)){let n=e.models[r];if(!n)continue;let a=[],s=n==null?void 0:n.executor;if(s&&s.graph.nodes)for(let o of Object.values(s.graph.nodes)){let l=o.op.toLowerCase();a.includes(l)||a.push(l)}else!s&&e.config.debug&&se("model signature not determined:",r);let i=[];for(let o of a)!t.includes(o)&&!e.env.kernels.includes(o)&&!e.env.kernels.includes(o.replace("_",""))&&!e.env.kernels.includes(o.replace("native",""))&&!e.env.kernels.includes(o.replace("v2",""))&&i.push(o);e.config.debug&&i.length>0&&se("model validation failed:",r,i)}}var Rt={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function G5e(){let e=Rt.gl;!e||(Rt.extensions=e.getSupportedExtensions())}async function JN(e){var t;if(e.config.backend==="humangl"&&(Rt.name in Xt().registry&&(!Rt.gl||!Rt.gl.getParameter(Rt.gl.VERSION))&&(se("error: humangl backend invalid context"),S1(e)),!Vy(Rt.name))){try{Rt.canvas=await Zr(100,100)}catch(n){se("error: cannot create canvas:",n);return}try{if(Rt.gl=(t=Rt.canvas)==null?void 0:t.getContext("webgl2",Rt.webGLattr),!Rt.gl.getParameter(Rt.gl.VERSION).includes("2.0")){se("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}Rt.canvas&&(Rt.canvas.addEventListener("webglcontextlost",async a=>{throw se("error: humangl:",a.type),se("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),Rt.canvas.addEventListener("webglcontextrestored",a=>{se("error: humangl context restored:",a)}),Rt.canvas.addEventListener("webglcontextcreationerror",a=>{se("error: humangl context create:",a)}))}catch(n){se("error: cannot get WebGL context:",n);return}try{Mm(2,Rt.gl)}catch(n){se("error: cannot set WebGL context:",n);return}try{let n=new Cu(Rt.gl);El(Rt.name,()=>new Hh(n),Rt.priority)}catch(n){se("error: cannot register WebGL backend:",n);return}try{Fa("webgl").forEach(a=>{let s={...a,backendName:Rt.name};qn(s)})}catch(n){se("error: cannot update WebGL backend registration:",n);return}let r=Dn().getGPGPUContext?Dn().getGPGPUContext().gl:null;if(r)se(`humangl webgl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`);else{se("error: no current gl context:",r,Rt.gl);return}try{ba.set("WEBGL_VERSION",2)}catch(n){se("error: cannot set WebGL backend flags:",n);return}G5e(),se("backend registered:",Rt.name)}}function j5e(){if(!he.kernels.includes("mod")){let e={kernelName:"Mod",backendName:Hr(),kernelFunc:t=>X(()=>ce(t.inputs.a,L(pe(t.inputs.a,t.inputs.b),t.inputs.b)))};qn(e),he.kernels.push("mod")}if(!he.kernels.includes("floormod")){let e={kernelName:"FloorMod",backendName:Hr(),kernelFunc:t=>X(()=>Sh(t.inputs.a/t.inputs.b)*t.inputs.b+wd(t.inputs.a,t.inputs.b))};qn(e),he.kernels.push("floormod")}}async function T1(e,t=!1){if(e.state="backend",t||he.initial||e.config.backend&&e.config.backend.length>0&&Hr()!==e.config.backend){let r=oe();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&se("running inside web worker"),he.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&se("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),he.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&se(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),he.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")se("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let a=await navigator.gpu.requestAdapter();if(e.config.debug&&se("enumerated webgpu adapter:",a),!a)se("override: backend set to webgpu but browser reports no available gpu"),e.config.backend="humangl";else{let s="requestAdapterInfo"in a?await a.requestAdapterInfo():void 0;se("webgpu adapter info:",s)}}e.config.backend==="humangl"&&await JN(e);let n=Object.keys(Xt().registryFactory);if(e.config.debug&&se("available backends:",n),n.includes(e.config.backend)||(se(`error: backend ${e.config.backend} not found in registry`),e.config.backend=he.node?"tensorflow":"webgl",e.config.debug&&se(`override: setting backend ${e.config.backend}`)),e.config.debug&&se("setting backend:",e.config.backend),e.config.backend==="wasm"){try{Z().set("CANVAS2D_WILL_READ_FREQUENTLY",!0)}catch(i){}if(e.config.debug&&se("wasm path:",e.config.wasmPath),typeof(Ue==null?void 0:Ue.setWasmPaths)!="undefined")await jA(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let a=await Z().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await Z().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&se(`wasm execution: ${a?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),e.config.debug&&!a&&se("warning: wasm simd support is not enabled")}try{await Wy(e.config.backend),await Ad(),UC()}catch(a){return se("error: cannot set backend:",e.config.backend,a),!1}}if(Hr()==="humangl"&&(ba.set("CHECK_COMPUTATION_FOR_ERRORS",!1),ba.set("WEBGL_CPU_FORWARD",!0),ba.set("WEBGL_USE_SHAPES_UNIFORMS",!0),ba.set("CPU_HANDOFF_SIZE_THRESHOLD",256),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(se("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),ba.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),Dn().getGPGPUContext)){let n=await Dn().getGPGPUContext().gl;e.config.debug&&se(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}Hr(),Ly(),await Ad(),e.performance.initBackend=Math.trunc(oe()-r),e.config.backend=Hr(),await he.updateBackend(),j5e()}return!0}function m1(e,t){for(let r of e){let n={kernelName:r,backendName:t.backend,kernelFunc:()=>{t.debug&&se("kernelFunc",r,t.backend)}};qn(n)}he.kernels=Fa(Hr()).map(r=>r.kernelName.toLowerCase())}var fb={};vs(fb,{all:()=>cb,body:()=>np,canvas:()=>hb,face:()=>rp,gesture:()=>ip,hand:()=>ap,object:()=>sp,options:()=>_r,person:()=>pb});var Vn=e=>{if(!e)se("draw error: invalid canvas");else if(!e.getContext)se("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)se("draw error: cannot get canvas context");else return t}return null},Jl=e=>Math.round(e*180/Math.PI),fs=(e,t)=>{if(!t.useDepth||typeof e=="undefined")return t.color;let r=Uint8ClampedArray.from([127+2*e,127-2*e,255]);return`rgba(${r[0]}, ${r[1]}, ${r[2]}, ${t.alpha})`};function ms(e,t,r,n,a){e.fillStyle=fs(n,a),e.beginPath(),e.arc(t,r,a.pointSize,0,2*Math.PI),e.fill()}function Va(e,t,r,n,a,s){if(e.beginPath(),e.lineWidth=s.lineWidth,s.useCurves){let i=(t+t+n)/2,o=(r+r+a)/2;e.ellipse(i,o,n/2,a/2,0,0,2*Math.PI)}else e.moveTo(t+s.roundRect,r),e.lineTo(t+n-s.roundRect,r),e.quadraticCurveTo(t+n,r,t+n,r+s.roundRect),e.lineTo(t+n,r+a-s.roundRect),e.quadraticCurveTo(t+n,r+a,t+n-s.roundRect,r+a),e.lineTo(t+s.roundRect,r+a),e.quadraticCurveTo(t,r+a,t,r+a-s.roundRect),e.lineTo(t,r+s.roundRect),e.quadraticCurveTo(t,r,t+s.roundRect,r),e.closePath();e.stroke()}function lb(e,t,r){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let n of t)e.strokeStyle=fs(n[2],r),e.lineTo(Math.trunc(n[0]),Math.trunc(n[1]));e.stroke(),r.fillPolygons&&(e.closePath(),e.fill())}}function eE(e,t,r){if(!(t.length<2)){if(e.lineWidth=r.lineWidth,!r.useCurves||t.length<=2){lb(e,t,r);return}e.moveTo(t[0][0],t[0][1]);for(let n=0;n<t.length-2;n++){let a=(t[n][0]+t[n+1][0])/2,s=(t[n][1]+t[n+1][1])/2;e.quadraticCurveTo(t[n][0],t[n][1],a,s)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),r.fillPolygons&&(e.closePath(),e.fill())}}function ub(e,t,r,n=5){let a,s,i;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(r[0],r[1]),a=Math.atan2(r[1]-t[1],r[0]-t[0]),s=n*Math.cos(a)+r[0],i=n*Math.sin(a)+r[1],e.moveTo(s,i),a+=1/3*(2*Math.PI),s=n*Math.cos(a)+r[0],i=n*Math.sin(a)+r[1],e.lineTo(s,i),a+=1/3*(2*Math.PI),s=n*Math.cos(a)+r[0],i=n*Math.sin(a)+r[1],e.lineTo(s,i),e.closePath(),e.stroke(),e.fill()}var _r={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",alpha:.5,font:'small-caps 16px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawAttention:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1};var dt;function q5e(e,t){if(dt.drawLabels){let r=[];if(r.push(`face: ${Math.trunc(100*e.score)}%`),e.genderScore&&r.push(`${e.gender||""} ${Math.trunc(100*e.genderScore)}%`),e.age&&r.push(`age: ${e.age||""}`),e.iris&&r.push(`distance: ${e.iris}`),e.real&&r.push(`real: ${Math.trunc(100*e.real)}%`),e.live&&r.push(`live: ${Math.trunc(100*e.live)}%`),e.emotion&&e.emotion.length>0){let n=e.emotion.map(a=>`${Math.trunc(100*a.score)}% ${a.emotion}`);n.length>3&&(n.length=3),r.push(n.join(" "))}e.rotation&&e.rotation.angle&&e.rotation.gaze&&(e.rotation.angle.roll&&r.push(`roll: ${Jl(e.rotation.angle.roll)}\xB0 yaw:${Jl(e.rotation.angle.yaw)}\xB0 pitch:${Jl(e.rotation.angle.pitch)}\xB0`),e.rotation.gaze.bearing&&r.push(`gaze: ${Jl(e.rotation.gaze.bearing)}\xB0`)),r.length===0&&r.push("face"),t.fillStyle=dt.color;for(let n=r.length-1;n>=0;n--){let a=Math.max(e.box[0],0),s=n*dt.lineHeight+e.box[1];dt.shadowColor&&dt.shadowColor!==""&&(t.fillStyle=dt.shadowColor,t.fillText(r[n],a+5,s+16)),t.fillStyle=dt.labelColor,t.fillText(r[n],a+4,s+15)}}}function X5e(e,t){if(e.annotations&&e.annotations.leftEyeIris&&e.annotations.leftEyeIris[0]){t.strokeStyle=dt.useDepth?"rgba(255, 200, 255, 0.3)":dt.color,t.beginPath();let r=Math.abs(e.annotations.leftEyeIris[3][0]-e.annotations.leftEyeIris[1][0])/2,n=Math.abs(e.annotations.leftEyeIris[4][1]-e.annotations.leftEyeIris[2][1])/2;t.ellipse(e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1],r,n,0,0,2*Math.PI),t.stroke(),dt.fillPolygons&&(t.fillStyle=dt.useDepth?"rgba(255, 255, 200, 0.3)":dt.color,t.fill())}if(e.annotations&&e.annotations.rightEyeIris&&e.annotations.rightEyeIris[0]){t.strokeStyle=dt.useDepth?"rgba(255, 200, 255, 0.3)":dt.color,t.beginPath();let r=Math.abs(e.annotations.rightEyeIris[3][0]-e.annotations.rightEyeIris[1][0])/2,n=Math.abs(e.annotations.rightEyeIris[4][1]-e.annotations.rightEyeIris[2][1])/2;t.ellipse(e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1],r,n,0,0,2*Math.PI),t.stroke(),dt.fillPolygons&&(t.fillStyle=dt.useDepth?"rgba(255, 255, 200, 0.3)":dt.color,t.fill())}}function K5e(e,t){var r;if(dt.drawGaze&&((r=e.rotation)==null?void 0:r.angle)&&typeof Path2D!="undefined"){t.strokeStyle="pink";let n=e.box[0]+e.box[2]/2-e.box[3]*Jl(e.rotation.angle.yaw)/90,a=e.box[1]+e.box[3]/2+e.box[2]*Jl(e.rotation.angle.pitch)/90,s=new Path2D(`
M ${e.box[0]+e.box[2]/2} ${e.box[1]}
C
${n} ${e.box[1]},
${n} ${e.box[1]+e.box[3]},
${e.box[0]+e.box[2]/2} ${e.box[1]+e.box[3]}
`),i=new Path2D(`
M ${e.box[0]} ${e.box[1]+e.box[3]/2}
C
${e.box[0]} ${a},
${e.box[0]+e.box[2]} ${a},
${e.box[0]+e.box[2]} ${e.box[1]+e.box[3]/2}
`);t.stroke(i),t.stroke(s)}}function Z5e(e,t){var r,n,a,s;if(dt.drawGaze&&((n=(r=e.rotation)==null?void 0:r.gaze)==null?void 0:n.strength)&&((s=(a=e.rotation)==null?void 0:a.gaze)==null?void 0:s.bearing)&&e.annotations.leftEyeIris&&e.annotations.rightEyeIris&&e.annotations.leftEyeIris[0]&&e.annotations.rightEyeIris[0]){t.strokeStyle="pink",t.fillStyle="pink";let i=[e.annotations.leftEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.leftEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];ub(t,[e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1]],[i[0],i[1]],4);let o=[e.annotations.rightEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.rightEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];ub(t,[e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1]],[o[0],o[1]],4)}}function Y5e(e,t){if(dt.drawPolygons&&e.mesh.length>=468){t.lineWidth=1;for(let r=0;r<Vl.length/3;r++){let n=[Vl[r*3+0],Vl[r*3+1],Vl[r*3+2]].map(a=>e.mesh[a]);lb(t,n,dt)}X5e(e,t)}}function J5e(e,t){if(dt.drawPoints&&e.mesh.length>=468)for(let r=0;r<e.mesh.length;r++)ms(t,e.mesh[r][0],e.mesh[r][1],e.mesh[r][2],dt),dt.drawAttention&&(oc.includes(r)&&ms(t,e.mesh[r][0],e.mesh[r][1],e.mesh[r][2]+127,dt),jl.includes(r)&&ms(t,e.mesh[r][0],e.mesh[r][1],e.mesh[r][2]-127,dt),Hl.includes(r)&&ms(t,e.mesh[r][0],e.mesh[r][1],e.mesh[r][2]-127,dt))}function Q5e(e,t){dt.drawBoxes&&Va(t,e.box[0],e.box[1],e.box[2],e.box[3],dt)}async function rp(e,t,r){if(dt=Gt(_r,r),!t||!e)return;let n=Vn(e);if(!!n){n.font=dt.font,n.strokeStyle=dt.color,n.fillStyle=dt.color;for(let a of t)Q5e(a,n),q5e(a,n),a.mesh&&a.mesh.length>0&&(J5e(a,n),Y5e(a,n),K5e(a,n),Z5e(a,n))}}async function np(e,t,r){var s;let n=Gt(_r,r);if(!t||!e)return;let a=Vn(e);if(!!a){a.lineJoin="round";for(let i=0;i<t.length;i++){if(a.strokeStyle=n.color,a.fillStyle=n.color,a.lineWidth=n.lineWidth,a.font=n.font,n.drawBoxes&&t[i].box&&((s=t[i].box)==null?void 0:s.length)===4&&(Va(a,t[i].box[0],t[i].box[1],t[i].box[2],t[i].box[3],n),n.drawLabels&&(n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(`body ${100*t[i].score}%`,t[i].box[0]+3,1+t[i].box[1]+n.lineHeight,t[i].box[2])),a.fillStyle=n.labelColor,a.fillText(`body ${100*t[i].score}%`,t[i].box[0]+2,0+t[i].box[1]+n.lineHeight,t[i].box[2]))),n.drawPoints&&t[i].keypoints)for(let o=0;o<t[i].keypoints.length;o++)!t[i].keypoints[o].score||t[i].keypoints[o].score===0||(a.fillStyle=fs(t[i].keypoints[o].position[2],n),ms(a,t[i].keypoints[o].position[0],t[i].keypoints[o].position[1],0,n));if(n.drawLabels&&t[i].keypoints){a.font=n.font;for(let o of t[i].keypoints)!o.score||o.score===0||(a.fillStyle=fs(o.position[2],n),a.fillText(`${o.part} ${Math.trunc(100*o.score)}%`,o.position[0]+4,o.position[1]+4))}if(n.drawPolygons&&t[i].keypoints&&t[i].annotations)for(let o of Object.values(t[i].annotations))for(let l of o)eE(a,l,n)}}}async function ap(e,t,r){let n=Gt(_r,r);if(!t||!e)return;let a=Vn(e);if(!!a){a.lineJoin="round",a.font=n.font;for(let s of t){if(n.drawBoxes&&(a.strokeStyle=n.color,a.fillStyle=n.color,Va(a,s.box[0],s.box[1],s.box[2],s.box[3],n),n.drawLabels&&(n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(`hand:${Math.trunc(100*s.score)}%`,s.box[0]+3,1+s.box[1]+n.lineHeight,s.box[2])),a.fillStyle=n.labelColor,a.fillText(`hand:${Math.trunc(100*s.score)}%`,s.box[0]+2,0+s.box[1]+n.lineHeight,s.box[2])),a.stroke()),n.drawPoints&&s.keypoints&&s.keypoints.length>0)for(let i of s.keypoints)a.fillStyle=fs(i[2],n),ms(a,i[0],i[1],0,n);if(n.drawLabels&&s.annotations){let i=(o,l)=>{if(!o||o.length===0||!o[0])return;let u=o[o.length-1][2]||-256;a.fillStyle=fs(u,n),a.fillText(l,o[o.length-1][0]+4,o[o.length-1][1]+4)};a.font=n.font,i(s.annotations.index,"index"),i(s.annotations.middle,"middle"),i(s.annotations.ring,"ring"),i(s.annotations.pinky,"pinky"),i(s.annotations.thumb,"thumb"),i(s.annotations.palm,"palm")}if(n.drawPolygons&&s.annotations){let i=o=>{if(!(!o||o.length===0||!o[0]))for(let l=0;l<o.length;l++){a.beginPath();let u=o[l][2]||0;a.strokeStyle=fs(l*u,n),a.moveTo(o[l>0?l-1:0][0],o[l>0?l-1:0][1]),a.lineTo(o[l][0],o[l][1]),a.stroke()}};a.lineWidth=n.lineWidth,i(s.annotations.index),i(s.annotations.middle),i(s.annotations.ring),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function sp(e,t,r){let n=Gt(_r,r);if(!t||!e)return;let a=Vn(e);if(!!a){a.lineJoin="round",a.font=n.font;for(let s of t)if(n.drawBoxes){if(a.strokeStyle=n.color,a.fillStyle=n.color,Va(a,s.box[0],s.box[1],s.box[2],s.box[3],n),n.drawLabels){let i=`${s.label} ${Math.round(100*s.score)}%`;n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(i,s.box[0]+3,1+s.box[1]+n.lineHeight,s.box[2])),a.fillStyle=n.labelColor,a.fillText(i,s.box[0]+2,0+s.box[1]+n.lineHeight,s.box[2])}a.stroke()}}}async function ip(e,t,r){let n=Gt(_r,r);if(!(!t||!e)&&n.drawGestures){let a=Vn(e);if(!a)return;a.font=n.font,a.fillStyle=n.color;let s=1;for(let i=0;i<t.length;i++){let o=[],l=[];if([o,l]=Object.entries(t[i]),l.length>1&&l[1].length>0){let u=o[1]>0?`#${o[1]}`:"",d=`${o[0]} ${u}: ${l[1]}`;n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(d,8,2+s*n.lineHeight)),a.fillStyle=n.labelColor,a.fillText(d,6,0+s*n.lineHeight),s+=1}}}}var db=0;async function pb(e,t,r){let n=Gt(_r,r);if(!t||!e)return;let a=Vn(e);if(!!a){a.lineJoin="round",a.font=n.font;for(let s=0;s<t.length;s++)if(n.drawBoxes){if(a.strokeStyle=n.color,a.fillStyle=n.color,Va(a,t[s].box[0],t[s].box[1],t[s].box[2],t[s].box[3],n),n.drawLabels){let i=`person #${s}`;n.shadowColor&&n.shadowColor!==""&&(a.fillStyle=n.shadowColor,a.fillText(i,t[s].box[0]+3,1+t[s].box[1]+n.lineHeight,t[s].box[2])),a.fillStyle=n.labelColor,a.fillText(i,t[s].box[0]+2,0+t[s].box[1]+n.lineHeight,t[s].box[2])}a.stroke()}}}async function hb(e,t){if(!e||!t)return;let r=Vn(t);!r||r.drawImage(e,0,0)}async function cb(e,t,r){if(!t||!t.performance||!t||!e)return null;let n=oe(),a=Gt(_r,r),s=Promise.all([rp(e,t.face,a),np(e,t.body,a),ap(e,t.hand,a),sp(e,t.object,a),ip(e,t.gesture,a)]);return db=he.perfadd?db+Math.round(oe()-n):Math.round(oe()-n),t.performance.draw=db,s}var op=.1,mb=.5;function eAe(e,t,r){let n=!1,a=r.length-1;for(let s=0;s<r.length;a=s++)r[s].y>t!=r[a].y>t&&e<(r[a].x-r[s].x)*(t-r[s].y)/(r[a].y-r[s].y)+r[s].x&&(n=!n);return n}async function tE(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,r=e.tensor.shape[1]||0,n=await e.tensor.buffer(),a=[];for(let i of ea.silhouette)a.push({x:(e.mesh[i][0]-e.box[0])/e.box[2],y:(e.mesh[i][1]-e.box[1])/e.box[3]});op&&op>0&&(a=a.map(i=>({x:i.x>.5?i.x+op:i.x-op,y:i.y>.5?i.y+op:i.y-op})));for(let i=0;i<t;i++)for(let o=0;o<r;o++)eAe(i/t,o/t,a)||(n.set(mb*n.get(0,o,i,0),0,o,i,0),n.set(mb*n.get(0,o,i,1),0,o,i,1),n.set(mb*n.get(0,o,i,2),0,o,i,2));let s=n.toTensor();return te(n),s}var rAe=e=>{let t=(h,p)=>Math.atan2(h[1]-p[1],h[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let r=[0,-.1],n=1,a=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),s=a?e.mesh[473]:e.mesh[468],i=a?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],o=a?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(i[0]-s[0])/o[0]-r[0],n*(s[1]-i[1])/o[1]-r[1]],u=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},rE=(e,t)=>{let r=f=>{let g=Math.sqrt(f[0]*f[0]+f[1]*f[1]+f[2]*f[2]);return f[0]/=g,f[1]/=g,f[2]/=g,f},n=(f,g)=>{let y=f[0]-g[0],A=f[1]-g[1],x=f[2]-g[2];return[y,A,x]},a=(f,g)=>{let y=f[1]*g[2]-f[2]*g[1],A=f[2]*g[0]-f[0]*g[2],x=f[0]*g[1]-f[1]*g[0];return[y,A,x]},s=f=>{let[g,y,A,x,b,w,I,T,E]=f,R,O,$;return x<1?x>-1?($=Math.asin(x),O=Math.atan2(-I,g),R=Math.atan2(-w,b)):($=-Math.PI/2,O=-Math.atan2(T,E),R=0):($=Math.PI/2,O=Math.atan2(T,E),R=0),isNaN(R)&&(R=0),isNaN(O)&&(O=0),isNaN($)&&($=0),{pitch:2*-R,yaw:2*-O,roll:2*-$}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let o=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[i[10],i[152],i[234],i[454]].map(f=>[f[0]*t[0]/o,f[1]*t[1]/o,f[2]]),u=r(n(l[1],l[0])),d=r(n(l[3],l[2])),h=r(a(d,u));d=a(u,h);let p=[d[0],d[1],d[2],u[0],u[1],u[2],h[0],h[1],h[2]],c=s(p),m=i.length===478?rAe(e):{bearing:0,strength:0};return{angle:c,matrix:p,gaze:m}};var gb=async(e,t)=>{var c,m,f,g,y,A,x,b,w,I,T,E,R,O,$,S,P,z,j,K,D,Y;let r=oe(),n,a,s,i,o,l,u,d,h=[];e.state="run:face";let p=await XT(t,e.config);if(e.performance.face=he.perfadd?(e.performance.face||0)+Math.trunc(oe()-r):Math.trunc(oe()-r),!t.shape||t.shape.length!==4)return[];if(!p)return[];for(let V=0;V<p.length;V++){if(e.analyze("Get Face"),!p[V].tensor||p[V].tensor.isDisposedInternal){se("Face object is disposed:",p[V].tensor);continue}if((c=e.config.face.detector)!=null&&c.mask){let ae=await tE(p[V]);te(p[V].tensor),p[V].tensor=ae}let re=p[V].mesh&&p[V].mesh.length>200?rE(p[V],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?i=(m=e.config.face.emotion)!=null&&m.enabled?Ix(p[V].tensor||ft([]),e.config,V,p.length):[]:(e.state="run:emotion",r=oe(),i=(f=e.config.face.emotion)!=null&&f.enabled?await Ix(p[V].tensor||ft([]),e.config,V,p.length):[],e.performance.emotion=he.perfadd?(e.performance.emotion||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?l=(g=e.config.face.antispoof)!=null&&g.enabled?sx(p[V].tensor||ft([]),e.config,V,p.length):0:(e.state="run:antispoof",r=oe(),l=(y=e.config.face.antispoof)!=null&&y.enabled?await sx(p[V].tensor||ft([]),e.config,V,p.length):0,e.performance.antispoof=he.perfadd?(e.performance.antispoof||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?u=(A=e.config.face.liveness)!=null&&A.enabled?Gx(p[V].tensor||ft([]),e.config,V,p.length):0:(e.state="run:liveness",r=oe(),u=(x=e.config.face.liveness)!=null&&x.enabled?await Gx(p[V].tensor||ft([]),e.config,V,p.length):0,e.performance.liveness=he.perfadd?(e.performance.antispoof||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?a=(b=e.config.face.gear)!=null&&b.enabled?JA(p[V].tensor||ft([]),e.config,V,p.length):null:(e.state="run:gear",r=oe(),a=(w=e.config.face.gear)!=null&&w.enabled?await JA(p[V].tensor||ft([]),e.config,V,p.length):null,e.performance.gear=Math.trunc(oe()-r)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(n=(I=e.config.face.ssrnet)!=null&&I.enabled?ex(p[V].tensor||ft([]),e.config,V,p.length):null,s=(T=e.config.face.ssrnet)!=null&&T.enabled?nx(p[V].tensor||ft([]),e.config,V,p.length):null):(e.state="run:ssrnet",r=oe(),n=(E=e.config.face.ssrnet)!=null&&E.enabled?await ex(p[V].tensor||ft([]),e.config,V,p.length):null,s=(R=e.config.face.ssrnet)!=null&&R.enabled?await nx(p[V].tensor||ft([]),e.config,V,p.length):null,e.performance.ssrnet=Math.trunc(oe()-r)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?o=(O=e.config.face.mobilefacenet)!=null&&O.enabled?Cx(p[V].tensor||ft([]),e.config,V,p.length):null:(e.state="run:mobilefacenet",r=oe(),o=($=e.config.face.mobilefacenet)!=null&&$.enabled?await Cx(p[V].tensor||ft([]),e.config,V,p.length):null,e.performance.mobilefacenet=Math.trunc(oe()-r)),e.analyze("End MobileFaceNet:"),e.analyze("Start Description:"),e.config.async?d=(S=e.config.face.description)!=null&&S.enabled?Mx(p[V].tensor||ft([]),e.config,V,p.length):null:(e.state="run:description",r=oe(),d=(P=e.config.face.description)!=null&&P.enabled?await Mx(p[V].tensor||ft([]),e.config,V,p.length):null,e.performance.description=he.perfadd?(e.performance.description||0)+Math.trunc(oe()-r):Math.trunc(oe()-r)),e.analyze("End Description:"),e.config.async&&([n,s,i,o,d,a,l,u]=await Promise.all([n,s,i,o,d,a,l,u])),e.analyze("Finish Face:"),((z=e.config.face.ssrnet)==null?void 0:z.enabled)&&n&&s&&(d={...d,age:n.age,gender:s.gender,genderScore:s.genderScore}),((j=e.config.face.gear)==null?void 0:j.enabled)&&a&&(d={...d,age:a.age,gender:a.gender,genderScore:a.genderScore,race:a.race}),((K=e.config.face.mobilefacenet)==null?void 0:K.enabled)&&o&&(d.descriptor=o),(D=e.config.face.iris)!=null&&D.enabled;let Q=p[V].annotations&&p[V].annotations.leftEyeIris&&p[V].annotations.leftEyeIris[0]&&p[V].annotations.rightEyeIris&&p[V].annotations.rightEyeIris[0]&&p[V].annotations.leftEyeIris.length>0&&p[V].annotations.rightEyeIris.length>0&&p[V].annotations.leftEyeIris[0]!==null&&p[V].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(p[V].annotations.leftEyeIris[3][0]-p[V].annotations.leftEyeIris[1][0]),Math.abs(p[V].annotations.rightEyeIris[4][1]-p[V].annotations.rightEyeIris[2][1]))/t.shape[2]:0,ie=(Y=e.config.face.detector)!=null&&Y.return?et(p[V].tensor):null;te(p[V].tensor),p[V].tensor&&delete p[V].tensor;let J={...p[V],id:V};d!=null&&d.age&&(J.age=d.age),d!=null&&d.gender&&(J.gender=d.gender),d!=null&&d.genderScore&&(J.genderScore=d==null?void 0:d.genderScore),d!=null&&d.descriptor&&(J.embedding=d==null?void 0:d.descriptor),d!=null&&d.race&&(J.race=d==null?void 0:d.race),i&&(J.emotion=i),l&&(J.real=l),u&&(J.live=u),Q&&Q!==0&&(J.iris=Math.trunc(500/Q/11.7)/100),re&&(J.rotation=re),ie&&(J.tensor=ie),h.push(J),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),h};var nE=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++){let n=e[r].keypoints.find(l=>l.part==="leftWrist"),a=e[r].keypoints.find(l=>l.part==="rightWrist"),s=e[r].keypoints.find(l=>l.part==="nose");s&&n&&a&&n.position[1]<s.position[1]&&a.position[1]<s.position[1]?t.push({body:r,gesture:"i give up"}):s&&n&&n.position[1]<s.position[1]?t.push({body:r,gesture:"raise left hand"}):s&&a&&a.position[1]<s.position[1]&&t.push({body:r,gesture:"raise right hand"});let i=e[r].keypoints.find(l=>l.part==="leftShoulder"),o=e[r].keypoints.find(l=>l.part==="rightShoulder");i&&o&&Math.abs(i.positionRaw[1]-o.positionRaw[1])>.1&&t.push({body:r,gesture:`leaning ${i.position[1]>o.position[1]?"left":"right"}`})}return t},aE=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++)if(e[r].mesh&&e[r].mesh.length>450){let n=(e[r].mesh[33][2]||0)-(e[r].mesh[263][2]||0),a=e[r].mesh[33][0]-e[r].mesh[263][0];Math.abs(n/a)<=.15?t.push({face:r,gesture:"facing center"}):t.push({face:r,gesture:`facing ${n<0?"left":"right"}`}),Math.abs(e[r].mesh[374][1]-e[r].mesh[386][1])/Math.abs(e[r].mesh[443][1]-e[r].mesh[450][1])<.2&&t.push({face:r,gesture:"blink left eye"}),Math.abs(e[r].mesh[145][1]-e[r].mesh[159][1])/Math.abs(e[r].mesh[223][1]-e[r].mesh[230][1])<.2&&t.push({face:r,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[r].mesh[13][1]-e[r].mesh[14][1])/Math.abs(e[r].mesh[10][1]-e[r].mesh[152][1]));o>10&&t.push({face:r,gesture:`mouth ${Math.trunc(o)}% open`});let l=e[r].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:r,gesture:`head ${l<0?"up":"down"}`})}return t},sE=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++){if(!e[r].annotations||!e[r].annotations.leftEyeIris||!e[r].annotations.leftEyeIris[0]||!e[r].annotations.rightEyeIris||!e[r].annotations.rightEyeIris[0])continue;let n=e[r].annotations.leftEyeIris[3][0]-e[r].annotations.leftEyeIris[1][0],a=e[r].annotations.leftEyeIris[4][1]-e[r].annotations.leftEyeIris[2][1],s=Math.abs(n*a),i=e[r].annotations.rightEyeIris[3][0]-e[r].annotations.rightEyeIris[1][0],o=e[r].annotations.rightEyeIris[4][1]-e[r].annotations.rightEyeIris[2][1],l=Math.abs(i*o),u=!1;Math.abs(s-l)/Math.max(s,l)<.25&&(u=!0,t.push({iris:r,gesture:"facing center"}));let h=Math.abs(e[r].mesh[263][0]-e[r].annotations.leftEyeIris[0][0])/e[r].box[2],p=Math.abs(e[r].mesh[33][0]-e[r].annotations.rightEyeIris[0][0])/e[r].box[2];(h>.06||p>.06)&&(u=!1),h>p?h>.05&&t.push({iris:r,gesture:"looking right"}):p>.05&&t.push({iris:r,gesture:"looking left"});let c=Math.abs(e[r].mesh[145][1]-e[r].annotations.rightEyeIris[0][1])/e[r].box[3],m=Math.abs(e[r].mesh[374][1]-e[r].annotations.leftEyeIris[0][1])/e[r].box[3];(m<.01||c<.01||m>.022||c>.022)&&(u=!1),(m<.01||c<.01)&&t.push({iris:r,gesture:"looking down"}),(m>.022||c>.022)&&t.push({iris:r,gesture:"looking up"}),u&&t.push({iris:r,gesture:"looking center"})}return t},iE=e=>{if(!e)return[];let t=[];for(let r=0;r<e.length;r++){let n=[];if(e[r].annotations)for(let[a,s]of Object.entries(e[r].annotations))a!=="palmBase"&&Array.isArray(s)&&s[0]&&n.push({name:a.toLowerCase(),position:s[0]});if(n&&n.length>0){let a=n.reduce((i,o)=>(i.position[2]||0)<(o.position[2]||0)?i:o);t.push({hand:r,gesture:`${a.name} forward`});let s=n.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:r,gesture:`${s.name} up`})}if(e[r].keypoints){let a=xN(e[r].keypoints);for(let s of a)t.push({hand:r,gesture:s.name})}}return t};var Ne={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null},yb=0;function oE(e,t){var i,o,l,u,d,h,p,c,m,f,g,y,A,x,b,w,I,T,E,R,O,$,S,P,z,j,K;let r=oe();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null};let n=Date.now()-e.timestamp,a=n<1e3?8-Math.log(n+1):1;if(e.canvas&&(Ne.canvas=e.canvas),e.error&&(Ne.error=e.error),!Ne.body||e.body.length!==Ne.body.length)Ne.body=JSON.parse(JSON.stringify(e.body));else for(let D=0;D<e.body.length;D++){let Y=e.body[D].box.map((J,ae)=>((a-1)*Ne.body[D].box[ae]+J)/a),V=e.body[D].boxRaw.map((J,ae)=>((a-1)*Ne.body[D].boxRaw[ae]+J)/a),re=e.body[D].keypoints.map((J,ae)=>{var de,be,ve,Ee,$e,ze,We,Ke,ot;return{score:J.score,part:J.part,position:[Ne.body[D].keypoints[ae]?((a-1)*(Ne.body[D].keypoints[ae].position[0]||0)+(J.position[0]||0))/a:J.position[0],Ne.body[D].keypoints[ae]?((a-1)*(Ne.body[D].keypoints[ae].position[1]||0)+(J.position[1]||0))/a:J.position[1],Ne.body[D].keypoints[ae]?((a-1)*(Ne.body[D].keypoints[ae].position[2]||0)+(J.position[2]||0))/a:J.position[2]],positionRaw:[Ne.body[D].keypoints[ae]?((a-1)*(Ne.body[D].keypoints[ae].positionRaw[0]||0)+(J.positionRaw[0]||0))/a:J.positionRaw[0],Ne.body[D].keypoints[ae]?((a-1)*(Ne.body[D].keypoints[ae].positionRaw[1]||0)+(J.positionRaw[1]||0))/a:J.positionRaw[1],Ne.body[D].keypoints[ae]?((a-1)*(Ne.body[D].keypoints[ae].positionRaw[2]||0)+(J.positionRaw[2]||0))/a:J.positionRaw[2]],distance:[Ne.body[D].keypoints[ae]?((a-1)*(((de=Ne.body[D].keypoints[ae].distance)==null?void 0:de[0])||0)+(((be=J.distance)==null?void 0:be[0])||0))/a:(ve=J.distance)==null?void 0:ve[0],Ne.body[D].keypoints[ae]?((a-1)*(((Ee=Ne.body[D].keypoints[ae].distance)==null?void 0:Ee[1])||0)+((($e=J.distance)==null?void 0:$e[1])||0))/a:(ze=J.distance)==null?void 0:ze[1],Ne.body[D].keypoints[ae]?((a-1)*(((We=Ne.body[D].keypoints[ae].distance)==null?void 0:We[2])||0)+(((Ke=J.distance)==null?void 0:Ke[2])||0))/a:(ot=J.distance)==null?void 0:ot[2]]}}),Q={},ie={connected:{}};(o=(i=t.body)==null?void 0:i.modelPath)!=null&&o.includes("efficientpose")?ie=a1:(u=(l=t.body)==null?void 0:l.modelPath)!=null&&u.includes("blazepose")?ie=Qm:(h=(d=t.body)==null?void 0:d.modelPath)!=null&&h.includes("movenet")&&(ie=uc);for(let[J,ae]of Object.entries(ie.connected)){let de=[];for(let be=0;be<ae.length-1;be++){let ve=re.find($e=>$e.part===ae[be]),Ee=re.find($e=>$e.part===ae[be+1]);ve&&Ee&&de.push([ve.position,Ee.position])}Q[J]=de}Ne.body[D]={...e.body[D],box:Y,boxRaw:V,keypoints:re,annotations:Q}}if(!Ne.hand||e.hand.length!==Ne.hand.length)Ne.hand=JSON.parse(JSON.stringify(e.hand));else for(let D=0;D<e.hand.length;D++){let Y=e.hand[D].box.map((ie,J)=>((a-1)*Ne.hand[D].box[J]+ie)/a),V=e.hand[D].boxRaw.map((ie,J)=>((a-1)*Ne.hand[D].boxRaw[J]+ie)/a);Ne.hand[D].keypoints.length!==e.hand[D].keypoints.length&&(Ne.hand[D].keypoints=e.hand[D].keypoints);let re=e.hand[D].keypoints&&e.hand[D].keypoints.length>0?e.hand[D].keypoints.map((ie,J)=>ie.map((ae,de)=>((a-1)*(Ne.hand[D].keypoints[J][de]||1)+(ae||0))/a)):[],Q={};if(Object.keys(Ne.hand[D].annotations).length!==Object.keys(e.hand[D].annotations).length)Ne.hand[D].annotations=e.hand[D].annotations,Q=Ne.hand[D].annotations;else if(e.hand[D].annotations)for(let ie of Object.keys(e.hand[D].annotations))Q[ie]=e.hand[D].annotations[ie]&&e.hand[D].annotations[ie][0]?e.hand[D].annotations[ie].map((J,ae)=>J.map((de,be)=>((a-1)*Ne.hand[D].annotations[ie][ae][be]+de)/a)):null;Ne.hand[D]={...e.hand[D],box:Y,boxRaw:V,keypoints:re,annotations:Q}}if(!Ne.face||e.face.length!==Ne.face.length)Ne.face=JSON.parse(JSON.stringify(e.face));else for(let D=0;D<e.face.length;D++){let Y=e.face[D].box.map((re,Q)=>((a-1)*Ne.face[D].box[Q]+re)/a),V=e.face[D].boxRaw.map((re,Q)=>((a-1)*Ne.face[D].boxRaw[Q]+re)/a);if(e.face[D].rotation){let re={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};re.matrix=(p=e.face[D].rotation)==null?void 0:p.matrix,re.angle={roll:((a-1)*(((m=(c=Ne.face[D].rotation)==null?void 0:c.angle)==null?void 0:m.roll)||0)+(((g=(f=e.face[D].rotation)==null?void 0:f.angle)==null?void 0:g.roll)||0))/a,yaw:((a-1)*(((A=(y=Ne.face[D].rotation)==null?void 0:y.angle)==null?void 0:A.yaw)||0)+(((b=(x=e.face[D].rotation)==null?void 0:x.angle)==null?void 0:b.yaw)||0))/a,pitch:((a-1)*(((I=(w=Ne.face[D].rotation)==null?void 0:w.angle)==null?void 0:I.pitch)||0)+(((E=(T=e.face[D].rotation)==null?void 0:T.angle)==null?void 0:E.pitch)||0))/a},re.gaze={bearing:((a-1)*(((O=(R=Ne.face[D].rotation)==null?void 0:R.gaze)==null?void 0:O.bearing)||0)+(((S=($=e.face[D].rotation)==null?void 0:$.gaze)==null?void 0:S.bearing)||0))/a,strength:((a-1)*(((z=(P=Ne.face[D].rotation)==null?void 0:P.gaze)==null?void 0:z.strength)||0)+(((K=(j=e.face[D].rotation)==null?void 0:j.gaze)==null?void 0:K.strength)||0))/a},Ne.face[D]={...e.face[D],rotation:re,box:Y,boxRaw:V}}Ne.face[D]={...e.face[D],box:Y,boxRaw:V}}if(!Ne.object||e.object.length!==Ne.object.length)Ne.object=JSON.parse(JSON.stringify(e.object));else for(let D=0;D<e.object.length;D++){let Y=e.object[D].box.map((re,Q)=>((a-1)*Ne.object[D].box[Q]+re)/a),V=e.object[D].boxRaw.map((re,Q)=>((a-1)*Ne.object[D].boxRaw[Q]+re)/a);Ne.object[D]={...e.object[D],box:Y,boxRaw:V}}if(e.persons){let D=e.persons;if(!Ne.persons||D.length!==Ne.persons.length)Ne.persons=JSON.parse(JSON.stringify(D));else for(let Y=0;Y<D.length;Y++)Ne.persons[Y].box=D[Y].box.map((V,re)=>((a-1)*Ne.persons[Y].box[re]+V)/a)}e.gesture&&(Ne.gesture=e.gesture);let s=oe();return yb=he.perfadd?yb+Math.round(s-r):Math.round(s-r),e.performance&&(Ne.performance={...e.performance,interpolate:yb}),Ne}var bb={};vs(bb,{distance:()=>cc,match:()=>xb,similarity:()=>Ab});function cc(e,t,r={order:2,multiplier:25}){let n=0;for(let a=0;a<e.length;a++){let s=!r.order||r.order===2?e[a]-t[a]:Math.abs(e[a]-t[a]);n+=!r.order||r.order===2?s*s:s**r.order}return(r.multiplier||20)*n}var lE=(e,t,r,n)=>{if(e===0)return 1;let a=t===2?Math.sqrt(e):e**(1/t),s=(1-a/100-r)/(n-r);return Math.max(Math.min(s,1),0)};function Ab(e,t,r={order:2,multiplier:25,min:.2,max:.8}){let n=cc(e,t,r);return lE(n,r.order||2,r.min||0,r.max||1)}function xb(e,t,r={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0||e.length!==t[0].length)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let n=Number.MAX_SAFE_INTEGER,a=-1;for(let i=0;i<t.length;i++){let o=cc(e,t[i],r);if(o<n&&(n=o,a=i),n<(r.threshold||0))break}let s=lE(n,r.order||2,r.min||0,r.max||1);return{index:a,distance:n,similarity:s}}function uE(e,t,r,n,a){var o,l,u,d,h,p,c,m,f,g,y,A,x,b,w,I;let s=0,i=[];for(let T of e){let E={id:s++,face:T,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let z of t)T.box[0]>z.box[0]&&T.box[0]<z.box[0]+z.box[2]&&T.box[1]+T.box[3]>z.box[1]&&T.box[1]+T.box[3]<z.box[1]+z.box[3]&&(E.body=z);if(E.body)for(let z of r)z.box[0]+z.box[2]>E.body.box[0]&&z.box[0]+z.box[2]<E.body.box[0]+E.body.box[2]&&z.box[1]+z.box[3]>E.body.box[1]&&z.box[1]+z.box[3]<E.body.box[1]+E.body.box[3]&&E.hands&&(E.hands.left=z),z.box[0]<E.body.box[0]+E.body.box[2]&&z.box[0]>E.body.box[0]&&z.box[1]+z.box[3]>E.body.box[1]&&z.box[1]+z.box[3]<E.body.box[1]+E.body.box[3]&&E.hands&&(E.hands.right=z);for(let z of n)z.face!==void 0&&z.face===T.id?(o=E.gestures)==null||o.push(z):z.iris!==void 0&&z.iris===T.id?(l=E.gestures)==null||l.push(z):z.body!==void 0&&z.body===((u=E.body)==null?void 0:u.id)?(d=E.gestures)==null||d.push(z):z.hand!==void 0&&z.hand===((p=(h=E.hands)==null?void 0:h.left)==null?void 0:p.id)?(c=E.gestures)==null||c.push(z):z.hand!==void 0&&z.hand===((f=(m=E.hands)==null?void 0:m.right)==null?void 0:f.id)&&((g=E.gestures)==null||g.push(z));let R=[],O=[],$=z=>{z&&z.length===4&&(R.push(z[0],z[0]+z[2]),O.push(z[1],z[1]+z[3]))};$((y=E.face)==null?void 0:y.box),$((A=E.body)==null?void 0:A.box),$((b=(x=E.hands)==null?void 0:x.left)==null?void 0:b.box),$((I=(w=E.hands)==null?void 0:w.right)==null?void 0:I.box);let S=Math.min(...R),P=Math.min(...O);E.box=[S,P,Math.max(...R)-S,Math.max(...O)-P],a&&a[1]&&a[2]&&(E.boxRaw=[E.box[0]/a[2],E.box[1]/a[1],E.box[2]/a[2],E.box[3]/a[1]]),i.push(E)}return i}var N1=`
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,E1=`
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
2Q==`;async function lAe(e){let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),r,n;switch(e.config.warmup){case"face":r=await t(N1);break;case"body":case"full":r=await t(E1);break;default:r=null}if(r){let a=await createImageBitmap(r);n=await e.detect(a,e.config),a.close()}return n}async function uAe(e){return new Promise(t=>{let r;switch(e.config.warmup){case"face":r="data:image/jpeg;base64,"+N1;break;case"full":case"body":r="data:image/jpeg;base64,"+E1;break;default:r=null}let n;if(typeof Image!="undefined")n=new Image;else if(he.Image)n=new he.Image;else return;n.onload=async()=>{let a=Zr(n.naturalWidth,n.naturalHeight);if(!a)se("Warmup: Canvas not found"),t(void 0);else{let s=a.getContext("2d");s&&s.drawImage(n,0,0);let i=await e.image(a),o=await e.detect(i.tensor,e.config);t(o)}},r?n.src=r:t(void 0)})}async function dAe(e){let t=a=>Buffer.from(a,"base64"),r;e.config.warmup==="face"?r=t(N1):r=t(E1);let n;if("node"in Ue){let a=(void 0).decodeJpeg(r),s=a.expandDims(0);e.tf.dispose(a),n=await e.detect(s,e.config),e.tf.dispose(s)}else e.config.debug&&se("Warmup tfjs-node not loaded");return n}async function pAe(e){let t;return typeof createImageBitmap=="function"?t=await lAe(e):typeof Image!="undefined"||he.Canvas!==void 0?t=await uAe(e):t=await dAe(e),t}async function hAe(e){let t=Hr(),r=Dn();if(t!=="webgl"&&t!=="humangl"||!r||!r.checkCompileCompletion)return;Z().set("ENGINE_COMPILE_ONLY",!0);let n=Xt().state.numTensors,a=[];for(let[o,l]of Object.entries(e).filter(([u,d])=>u!==null&&d!==null)){let u=l.inputs&&l.inputs[0]&&l.inputs[0].shape?[...l.inputs[0].shape]:[1,64,64,3],d=l.inputs&&l.inputs[0]&&l.inputs[0].dtype?l.inputs[0].dtype:"float32";for(let p=0;p<u.length;p++)u[p]===-1&&(u[p]=p===0?1:64);let h=Ot(u,d);try{let p=l.execute(h);a.push(o),Array.isArray(p)?p.forEach(c=>te(c)):te(p)}catch(p){se("compile fail model:",o)}te(h)}let s=await r.checkCompileCompletionAsync();r.getUniformLocations(),se("compile pass models:",a),se("compile pass kernels:",s.length),Z().set("ENGINE_COMPILE_ONLY",!1);let i=Xt().state.numTensors;i-n>0&&se("tensor leak:",i-n)}async function dE(e,t){let r=oe();return e.state="warmup",t&&(e.config=Gt(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:oe(),persons:[],error:null}:new Promise(async n=>{await hAe(e.models);let a=await pAe(e),s=oe();e.config.debug&&se("warmup",e.config.warmup,Math.round(s-r),"ms"),e.emit("warmup"),n(a)})}var lp,fc,mc,R1,vb=class{constructor(t){fe(this,"version");fe(this,"config");fe(this,"result");fe(this,"state");fe(this,"process");fe(this,"tf");fe(this,"env");fe(this,"draw");fe(this,"models");fe(this,"events");fe(this,"faceTriangulation");fe(this,"faceUVMap");fe(this,"performance");wp(this,lp,void 0);wp(this,fc,void 0);wp(this,mc,void 0);fe(this,"gl");fe(this,"analyze",(...t)=>{if(!vp(this,fc))return;let r=this.tf.engine().state.numTensors,n=vp(this,lp);kp(this,lp,r);let a=r-n;a!==0&&se(...t,a)});wp(this,R1,t=>{if(!vp(this,mc))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof nt))return"input must be a tensor";try{this.tf.getBackend()}catch(r){return"backend not loaded"}return null});fe(this,"similarity",Ab);fe(this,"distance",cc);fe(this,"match",xb);fe(this,"emit",t=>{var r;this.events&&this.events.dispatchEvent&&((r=this.events)==null||r.dispatchEvent(new Event(t)))});var n;this.env=he;let r=(((n=rc)==null?void 0:n.tfjs)||Ky).replace(/-(.*)/,"");ws.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${r}/dist/`,ws.modelBasePath=he.browser?"../models/":"file://models/",ws.backend=he.browser?"humangl":"tensorflow",this.version=KA,Object.defineProperty(this,"version",{value:KA}),this.config=JSON.parse(JSON.stringify(ws)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=Gt(this.config,t)),DC(this.config),this.tf=Ue,this.state="idle",kp(this,lp,0),kp(this,fc,!1),kp(this,mc,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new hc,this.draw={options:_r,canvas:(a,s)=>hb(a,s),face:(a,s,i)=>rp(a,s,i),body:(a,s,i)=>np(a,s,i),hand:(a,s,i)=>ap(a,s,i),gesture:(a,s,i)=>ip(a,s,i),object:(a,s,i)=>sp(a,s,i),person:(a,s,i)=>pb(a,s,i),all:(a,s,i)=>cb(a,s,i)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=ZT,this.faceUVMap=YT,this.gl=Rt,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(ws)),this.config.backend=t}validate(t){return pg(ws,t||this.config)}now(){return oe()}image(t,r=!0){return Vd(t,this.config,r)}async segmentation(t,r){return ZN(t,r,this.config)}enhance(t){return $x(t)}compare(t,r){return zC(this.config,t,r)}async init(){await T1(this,!0),await this.tf.ready()}async load(t){this.state="load";let r=oe(),n=Object.values(this.models).filter(i=>i).length;t&&(this.config=Gt(this.config,t)),this.env.initial&&(this.config.debug&&se(`version: ${this.version}`),this.config.debug&&se(`tfjs version: ${this.tf.version["tfjs-core"]}`),await T1(this)||se("error: backend check failed"),await Ad(),this.env.browser&&(this.config.debug&&se("configuration:",this.config),this.config.debug&&se("environment:",this.env),this.config.debug&&se("tf flags:",this.tf.ENV.flags))),await ib(this),this.env.initial&&this.config.debug&&se("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(i=>i).length!==n&&(await ob(this),this.emit("load"));let s=Math.trunc(oe()-r);s>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+s:s)}next(t=this.result){return oE(t,this.config)}async warmup(t){let r=oe(),n=await dE(this,t),a=oe();return this.performance.warmup=Math.trunc(a-r),n}async profile(t,r){let n=await this.tf.profile(()=>this.detect(t,r)),a={};for(let o of n.kernels)a[o.name]?a[o.name]+=o.kernelTimeMs:a[o.name]=o.kernelTimeMs;let s=[];Object.entries(a).forEach(o=>s.push({name:o[0],ms:o[1]})),s.sort((o,l)=>l.ms-o.ms),s.length=20;let i={};for(let o of s)i[o.name]=o.ms;return i}async detect(t,r){return this.state="detect",new Promise(async n=>{var g,y,A,x,b,w,I,T,E,R,O,$,S,P,z,j,K,D,Y,V,re,Q;this.state="config";let a;this.config=Gt(this.config,r),this.state="check";let s=vp(this,R1).call(this,t);s&&(se(s,t),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:oe(),persons:[],error:s}));let i=oe();await T1(this),await this.load(),a=oe(),this.state="image";let o=await Vd(t,this.config);if(this.process=o,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(oe()-a):Math.trunc(oe()-a),this.analyze("Get Image:"),!o.tensor){this.config.debug&&se("could not convert input to tensor"),this.emit("error"),n({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:oe(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),a=oe(),this.config.skipAllowed=await OC(this.config,o.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(oe()-a):Math.trunc(oe()-a),this.analyze("Check Changed:");let l=[],u=[],d=[],h=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?gb(this,o.tensor):[],this.performance.face&&delete this.performance.face):(a=oe(),l=this.config.face.enabled?await gb(this,o.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let p=this.config.body.maxDetected===-1?Gt(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?u=this.config.body.enabled?nb(o.tensor,p):[]:(y=this.config.body.modelPath)!=null&&y.includes("blazepose")?u=this.config.body.enabled?mx(o.tensor,p):[]:(A=this.config.body.modelPath)!=null&&A.includes("efficientpose")?u=this.config.body.enabled?wx(o.tensor,p):[]:(x=this.config.body.modelPath)!=null&&x.includes("movenet")&&(u=this.config.body.enabled?Zx(o.tensor,p):[]),this.performance.body&&delete this.performance.body):(a=oe(),(b=this.config.body.modelPath)!=null&&b.includes("posenet")?u=this.config.body.enabled?await nb(o.tensor,p):[]:(w=this.config.body.modelPath)!=null&&w.includes("blazepose")?u=this.config.body.enabled?await mx(o.tensor,p):[]:(I=this.config.body.modelPath)!=null&&I.includes("efficientpose")?u=this.config.body.enabled?await wx(o.tensor,p):[]:(T=this.config.body.modelPath)!=null&&T.includes("movenet")&&(u=this.config.body.enabled?await Zx(o.tensor,p):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let c=this.config.hand.maxDetected===-1?Gt(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((R=(E=this.config.hand.detector)==null?void 0:E.modelPath)!=null&&R.includes("handdetect")?d=this.config.hand.enabled?Dx(o.tensor,c):[]:($=(O=this.config.hand.detector)==null?void 0:O.modelPath)!=null&&$.includes("handtrack")&&(d=this.config.hand.enabled?Vx(o.tensor,c):[]),this.performance.hand&&delete this.performance.hand):(a=oe(),(P=(S=this.config.hand.detector)==null?void 0:S.modelPath)!=null&&P.includes("handdetect")?d=this.config.hand.enabled?await Dx(o.tensor,c):[]:(j=(z=this.config.hand.detector)==null?void 0:z.modelPath)!=null&&j.includes("handtrack")&&(d=this.config.hand.enabled?await Vx(o.tensor,c):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((K=this.config.object.modelPath)!=null&&K.includes("nanodet")?h=this.config.object.enabled?Jx(o.tensor,this.config):[]:(D=this.config.object.modelPath)!=null&&D.includes("centernet")&&(h=this.config.object.enabled?Ax(o.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(a=oe(),(Y=this.config.object.modelPath)!=null&&Y.includes("nanodet")?h=this.config.object.enabled?await Jx(o.tensor,this.config):[]:(V=this.config.object.modelPath)!=null&&V.includes("centernet")&&(h=this.config.object.enabled?await Ax(o.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,u,d,h]=await Promise.all([l,u,d,h])),this.state="detect:gesture";let m=[];this.config.gesture.enabled&&(a=oe(),m=[...aE(l),...nE(u),...iE(d),...sE(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(oe()-a):Math.trunc(oe()-a)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(oe()-i):Math.trunc(oe()-i);let f=((Q=(re=this.process)==null?void 0:re.tensor)==null?void 0:Q.shape)||[];this.result={face:l,body:u,hand:d,gesture:m,object:h,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return uE(l,u,d,m,f)}},te(o.tensor),this.emit("detect"),this.state="idle",n(this.result)})}};lp=new WeakMap,fc=new WeakMap,mc=new WeakMap,R1=new WeakMap;return uR(fAe);})();
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use backend file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2022 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2022 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2022 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2022 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the 'License');
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an 'AS IS' BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* Human main module
* @default Human Library
* @summary <https://github.com/vladmandic/human>
* @author <https://github.com/vladmandic>
* @copyright <https://github.com/vladmandic>
* @license MIT
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */