human/dist/human.js

5546 lines
1.4 MiB

/*
Human
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
var Human=(()=>{var vg=Object.defineProperty;var US=(e,t,n)=>t in e?vg(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var HS=e=>vg(e,"__esModule",{value:!0});var Ba=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var l5=(e,t)=>{HS(e);for(var n in t)vg(e,n,{get:t[n],enumerable:!0})};var Ne=(e,t,n)=>(US(e,typeof t!="symbol"?t+"":t,n),n),u5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var rc=(e,t,n)=>(u5(e,t,"read from private field"),n?n.call(e):t.get(e)),ac=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},oc=(e,t,n,s)=>(u5(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var Cue={};l5(Cue,{Human:()=>eS,Models:()=>Yd,default:()=>eS,defaults:()=>ta,env:()=>oe});function rt(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: ${r} expecting json file`);return r}function re(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var et=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function wg(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")wg(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&re("invalid configuration",s),s}function rn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=rn(a,o):n[r]=o}),n),{})}var ta={backend:"",modelBasePath:"",wasmPath:"",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:11,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:12,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:13,minConfidence:.1}},body:{enabled:!0,modelPath:"movenet-lightning.json",detector:{modelPath:""},maxDetected:-1,minConfidence:.2,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:14,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:15},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Ii={};l5(Ii,{Abs:()=>Gi,Acos:()=>ji,Acosh:()=>qi,AdadeltaOptimizer:()=>af,AdagradOptimizer:()=>of,AdamOptimizer:()=>lf,AdamaxOptimizer:()=>uf,Add:()=>ra,AddN:()=>Ha,All:()=>Xi,Any:()=>Ki,ArgMax:()=>Ga,ArgMin:()=>dc,Asin:()=>Zi,Asinh:()=>Yi,Atan:()=>Ji,Atan2:()=>el,Atanh:()=>Qi,AvgPool:()=>ja,AvgPool3D:()=>pc,AvgPool3DGrad:()=>Dp,AvgPoolGrad:()=>Rp,BackendWasm:()=>x8,BatchMatMul:()=>qa,BatchToSpaceND:()=>tl,Bincount:()=>_p,BroadcastArgs:()=>Eg,BroadcastTo:()=>N5,Callback:()=>gw,CallbackList:()=>lv,Cast:()=>Xa,Ceil:()=>Ka,ClipByValue:()=>aa,Complex:()=>$p,ComplexAbs:()=>hc,Concat:()=>nl,Conv2D:()=>Za,Conv2DBackpropFilter:()=>Fp,Conv2DBackpropInput:()=>Ya,Conv3D:()=>fc,Conv3DBackpropFilterV2:()=>Op,Conv3DBackpropInputV2:()=>Pp,Cos:()=>Ja,Cosh:()=>Qa,CropAndResize:()=>sl,Cumsum:()=>eo,CustomCallback:()=>cv,DataStorage:()=>Sp,DenseBincount:()=>Mp,DepthToSpace:()=>rl,DepthwiseConv2dNative:()=>to,DepthwiseConv2dNativeBackpropFilter:()=>zp,DepthwiseConv2dNativeBackpropInput:()=>Lp,Diag:()=>Bp,Dilation2D:()=>mc,Dilation2DBackpropFilter:()=>Vp,Dilation2DBackpropInput:()=>Wp,ENV:()=>Ws,EarlyStopping:()=>yw,Einsum:()=>Up,Elu:()=>so,EluGrad:()=>Hp,Environment:()=>C5,Equal:()=>ol,Erf:()=>al,Exp:()=>ro,ExpandDims:()=>il,Expm1:()=>ll,FFT:()=>Gp,Fill:()=>gc,FlipLeftRight:()=>ul,Floor:()=>ao,FloorDiv:()=>oo,FromPixels:()=>ph,FusedBatchNorm:()=>io,FusedConv2D:()=>Vo,FusedDepthwiseConv2D:()=>Uo,GPGPUContext:()=>c0,GatherNd:()=>dl,GatherV2:()=>cl,GraphModel:()=>Zw,Greater:()=>pl,GreaterEqual:()=>lo,History:()=>uv,IFFT:()=>jp,Identity:()=>uo,Imag:()=>qp,InputSpec:()=>Ht,IsFinite:()=>hl,IsInf:()=>fl,IsNan:()=>ml,KernelBackend:()=>lc,LRN:()=>xc,LRNGrad:()=>Kp,LayerVariable:()=>sv,LayersModel:()=>Wr,LeakyRelu:()=>co,Less:()=>gl,LessEqual:()=>Al,LinSpace:()=>Xp,Log:()=>po,Log1p:()=>yl,LogSoftmax:()=>E5,LogicalAnd:()=>xl,LogicalNot:()=>Ac,LogicalOr:()=>yc,MathBackendWebGL:()=>_u,Max:()=>ho,MaxPool:()=>mo,MaxPool3D:()=>bc,MaxPool3DGrad:()=>Yp,MaxPoolGrad:()=>Zp,MaxPoolWithArgmax:()=>Jp,Maximum:()=>fo,Mean:()=>go,Min:()=>Ao,Minimum:()=>yo,MirrorPad:()=>xo,Mod:()=>bl,MomentumOptimizer:()=>cf,Multinomial:()=>Qp,Multiply:()=>bo,Neg:()=>vl,NonMaxSuppressionV3:()=>kl,NonMaxSuppressionV4:()=>Il,NonMaxSuppressionV5:()=>Sl,NotEqual:()=>wl,OP_SCOPE_SUFFIX:()=>H5,OneHot:()=>vo,OnesLike:()=>Cl,Optimizer:()=>zr,Pack:()=>Tl,PadV2:()=>wo,Pool:()=>BC,Pow:()=>ko,Prelu:()=>Io,Prod:()=>Nl,RMSPropOptimizer:()=>df,RNN:()=>xr,Range:()=>vc,Rank:()=>Fg,Real:()=>eh,RealDiv:()=>no,Reciprocal:()=>El,Reduction:()=>Rn,Relu:()=>So,Relu6:()=>To,Reshape:()=>Rl,ResizeBilinear:()=>Co,ResizeBilinearGrad:()=>nh,ResizeNearestNeighbor:()=>wc,ResizeNearestNeighborGrad:()=>th,Reverse:()=>No,RotateWithOffset:()=>Gl,Round:()=>Eo,Rsqrt:()=>Ro,SGDOptimizer:()=>ed,ScatterNd:()=>Dl,Select:()=>_l,Selu:()=>$l,Sequential:()=>yu,Sigmoid:()=>_o,Sign:()=>Pl,Sin:()=>Do,Sinh:()=>Ol,Slice:()=>Fl,Softmax:()=>Oo,Softplus:()=>Ml,SpaceToBatchND:()=>zl,SparseFillEmptyRows:()=>sh,SparseReshape:()=>rh,SparseSegmentMean:()=>ah,SparseSegmentSum:()=>oh,SparseToDense:()=>ih,SplitV:()=>Ll,Sqrt:()=>$o,Square:()=>kc,SquaredDifference:()=>Po,Step:()=>ia,StridedSlice:()=>Bl,StringNGrams:()=>lh,StringSplit:()=>uh,StringToHashBucketFast:()=>ch,Sub:()=>Mo,Sum:()=>Fo,SymbolicTensor:()=>Js,Tan:()=>zo,Tanh:()=>Lo,Tensor:()=>He,TensorBuffer:()=>Kt,Tile:()=>oa,TopK:()=>Wl,Transform:()=>Vl,Transpose:()=>Bo,Unique:()=>dh,Unpack:()=>Ul,UnsortedSegmentSum:()=>Ic,Variable:()=>_c,ZerosLike:()=>Hl,_FusedMatMul:()=>Wo,abs:()=>Wt,acos:()=>lA,acosh:()=>uA,add:()=>le,addN:()=>Th,all:()=>Nh,any:()=>Mc,argMax:()=>Gs,argMin:()=>cA,asin:()=>dA,asinh:()=>pA,atan:()=>hA,atan2:()=>fA,atanh:()=>mA,avgPool:()=>Lc,avgPool3d:()=>yA,backend:()=>$r,backend_util:()=>_,basicLSTMCell:()=>xN,batchNorm:()=>Jo,batchNorm2d:()=>_b,batchNorm3d:()=>$b,batchNorm4d:()=>Fb,batchToSpaceND:()=>Bc,bincount:()=>xA,booleanMaskAsync:()=>CD,broadcastArgs:()=>Ob,broadcastTo:()=>tu,browser:()=>_s,buffer:()=>Ge,callbacks:()=>BL,cast:()=>pe,ceil:()=>bA,clipByValue:()=>Vn,clone:()=>Hs,complex:()=>ca,concat:()=>gt,concat1d:()=>Pb,concat2d:()=>nu,concat3d:()=>Mb,concat4d:()=>zb,constraints:()=>P3,conv1d:()=>Rh,conv2d:()=>Fr,conv2dTranspose:()=>Dh,conv3d:()=>wA,conv3dTranspose:()=>Bb,copyRegisteredKernels:()=>UC,cos:()=>Wc,cosh:()=>_h,cosineWindow:()=>KA,cumsum:()=>$h,customGrad:()=>pr,data:()=>Yw,denseBincount:()=>Wb,deprecationWarn:()=>oA,depthToSpace:()=>kA,depthwiseConv2d:()=>su,deregisterOp:()=>VL,device_util:()=>Fc,diag:()=>KN,dilation2d:()=>IA,disableDeprecationWarnings:()=>OT,dispose:()=>Z,disposeVariables:()=>PT,div:()=>he,divNoNan:()=>SA,dot:()=>Vb,dropout:()=>u3,einsum:()=>Ub,elu:()=>ru,enableDebugMode:()=>FT,enableProdMode:()=>Tb,enclosingPowerOfTwo:()=>c3,engine:()=>Qn,env:()=>Y,equal:()=>es,erf:()=>CA,exp:()=>ts,expandDims:()=>zt,expm1:()=>TA,eye:()=>NA,fft:()=>Yc,fill:()=>au,findBackend:()=>iA,findBackendFactory:()=>BT,floor:()=>ou,floorDiv:()=>Ch,forceHalfFloat:()=>I4,fused:()=>Aa,gather:()=>Qo,gatherND:()=>l3,gather_util:()=>Qg,getBackend:()=>cr,getGradient:()=>Rg,getKernel:()=>hh,getKernelsForBackend:()=>Dr,gpgpu_util:()=>J6,grad:()=>SE,grads:()=>CE,greater:()=>Un,greaterEqual:()=>ma,ifft:()=>cu,imag:()=>Fh,image:()=>De,inTopKAsync:()=>MD,initializers:()=>U3,input:()=>$v,io:()=>Bn,irfft:()=>Kh,isFinite:()=>Hb,isInf:()=>Gb,isNaN:()=>EA,keep:()=>un,kernel_impls:()=>fr,layers:()=>ev,leakyRelu:()=>Vc,less:()=>Oh,lessEqual:()=>ga,linalg:()=>w3,linspace:()=>jb,loadGraphModel:()=>st,loadLayersModel:()=>ZM,localResponseNormalization:()=>RA,log:()=>ns,log1p:()=>Uc,logSigmoid:()=>Xb,logSoftmax:()=>Mh,logSumExp:()=>$A,logicalAnd:()=>$s,logicalNot:()=>Hc,logicalOr:()=>zh,logicalXor:()=>Jb,losses:()=>x$,matMul:()=>Ue,math:()=>lb,max:()=>ss,maxPool:()=>Gc,maxPool3d:()=>FA,maxPoolWithArgmax:()=>Qb,maximum:()=>hr,mean:()=>Dt,memory:()=>Ih,meshgrid:()=>XE,metrics:()=>hw,min:()=>jc,minimum:()=>iu,mirrorPad:()=>OA,mod:()=>PA,model:()=>XM,models:()=>fw,moments:()=>Lh,movingAverage:()=>ED,mul:()=>z,multiRNNCell:()=>nR,multinomial:()=>e3,neg:()=>St,nextFrame:()=>pf,norm:()=>Qh,notEqual:()=>ni,oneHot:()=>Yl,ones:()=>rs,onesLike:()=>as,op:()=>W,outerProduct:()=>iR,pad:()=>Or,pad1d:()=>cR,pad2d:()=>pR,pad3d:()=>fR,pad4d:()=>gR,pool:()=>t3,pow:()=>Pr,prelu:()=>Xc,print:()=>nb,prod:()=>Bh,profile:()=>MT,rand:()=>SR,randomGamma:()=>ER,randomNormal:()=>n3,randomUniform:()=>lu,range:()=>uu,ready:()=>Sh,real:()=>Kc,reciprocal:()=>LA,registerBackend:()=>Ql,registerCallbackConstructor:()=>YM,registerGradient:()=>R5,registerKernel:()=>la,registerOp:()=>WL,regularizers:()=>mw,relu:()=>js,relu6:()=>Wh,removeBackend:()=>LT,reshape:()=>V,reverse:()=>os,reverse1d:()=>zR,reverse2d:()=>BR,reverse3d:()=>VR,reverse4d:()=>HR,rfft:()=>Jc,round:()=>Vh,rsqrt:()=>Uh,scalar:()=>Ce,scatterND:()=>i3,scatter_util:()=>eA,selu:()=>Hh,separableConv2d:()=>BA,sequential:()=>KM,serialization:()=>ue,setBackend:()=>Nb,setPlatform:()=>WT,setWasmPath:()=>ble,setWasmPaths:()=>v8,setWebGLContext:()=>t0,setdiff1dAsync:()=>s3,sigmoid:()=>Wn,sign:()=>WA,signal:()=>y$,sin:()=>Gh,sinh:()=>jh,slice:()=>_e,slice1d:()=>qh,slice2d:()=>VA,slice3d:()=>Xh,slice4d:()=>Zc,slice_util:()=>Nn,softmax:()=>si,softplus:()=>ei,spaceToBatchND:()=>qc,sparse:()=>Qc,sparseToDense:()=>XA,spectral:()=>A$,split:()=>Vt,sqrt:()=>An,square:()=>ft,squaredDifference:()=>Zh,squeeze:()=>at,stack:()=>yn,step:()=>du,stridedSlice:()=>UA,string:()=>rf,sub:()=>ye,sum:()=>we,sumOutType:()=>yh,tan:()=>HA,tanh:()=>Yo,tensor:()=>ln,tensor1d:()=>Ut,tensor2d:()=>qs,tensor3d:()=>vh,tensor4d:()=>gD,tensor5d:()=>AD,tensor6d:()=>yD,tensor_util:()=>Vs,test_util:()=>Ib,tidy:()=>H,tile:()=>xs,time:()=>zT,topk:()=>GA,train:()=>ai,transpose:()=>Ze,truncatedNormal:()=>Yh,unique:()=>Jh,unregisterGradient:()=>VC,unregisterKernel:()=>WC,unsortedSegmentSum:()=>jA,unstack:()=>En,upcastType:()=>Ds,util:()=>w,valueAndGrad:()=>TE,valueAndGrads:()=>NE,variable:()=>r3,variableGrads:()=>qb,version:()=>Dle,version_converter:()=>GB,version_core:()=>kh,version_layers:()=>R1,version_wasm:()=>vle,version_webgl:()=>sZ,webgl:()=>rZ,webgl_util:()=>w6,where:()=>kn,whereAsync:()=>qA,zeros:()=>Pt,zerosLike:()=>Ye});var GS=Object.create,Ip=Object.defineProperty,jS=Object.getOwnPropertyDescriptor,qS=Object.getOwnPropertyNames,XS=Object.getPrototypeOf,KS=Object.prototype.hasOwnProperty,c5=e=>Ip(e,"__esModule",{value:!0}),Vi=(e=>typeof Ba!="undefined"?Ba:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof Ba!="undefined"?Ba:t)[n]}):e)(function(e){if(typeof Ba!="undefined")return Ba.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),It=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},Le=(e,t)=>{c5(e);for(var n in t)Ip(e,n,{get:t[n],enumerable:!0})},ZS=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of qS(t))!KS.call(e,s)&&s!=="default"&&Ip(e,s,{get:()=>t[s],enumerable:!(n=jS(t,s))||n.enumerable});return e},Wa=e=>ZS(c5(Ip(e!=null?GS(XS(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),YS=It({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(R){}function s(R,T,P){this.low=R|0,this.high=T|0,this.unsigned=!!P}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(R){return(R&&R.__isLong__)===!0}s.isLong=r;var a={},o={};function i(R,T){var P,U,j;return T?(R>>>=0,(j=0<=R&&R<256)&&(U=o[R],U)?U:(P=u(R,(R|0)<0?-1:0,!0),j&&(o[R]=P),P)):(R|=0,(j=-128<=R&&R<128)&&(U=a[R],U)?U:(P=u(R,R<0?-1:0,!1),j&&(a[R]=P),P))}s.fromInt=i;function l(R,T){if(isNaN(R))return T?b:x;if(T){if(R<0)return b;if(R>=g)return D}else{if(R<=-A)return O;if(R+1>=A)return C}return R<0?l(-R,T).neg():u(R%f|0,R/f|0,T)}s.fromNumber=l;function u(R,T,P){return new s(R,T,P)}s.fromBits=u;var c=Math.pow;function d(R,T,P){if(R.length===0)throw Error("empty string");if(R==="NaN"||R==="Infinity"||R==="+Infinity"||R==="-Infinity")return x;if(typeof T=="number"?(P=T,T=!1):T=!!T,P=P||10,P<2||36<P)throw RangeError("radix");var U;if((U=R.indexOf("-"))>0)throw Error("interior hyphen");if(U===0)return d(R.substring(1),T,P).neg();for(var j=l(c(P,8)),q=x,X=0;X<R.length;X+=8){var te=Math.min(8,R.length-X),ne=parseInt(R.substring(X,X+te),P);if(te<8){var se=l(c(P,te));q=q.mul(se).add(l(ne))}else q=q.mul(j),q=q.add(l(ne))}return q.unsigned=T,q}s.fromString=d;function p(R,T){return typeof R=="number"?l(R,T):typeof R=="string"?d(R,T):u(R.low,R.high,typeof T=="boolean"?T:R.unsigned)}s.fromValue=p;var h=1<<16,m=1<<24,f=h*h,g=f*f,A=g/2,y=i(m),x=i(0);s.ZERO=x;var b=i(0,!0);s.UZERO=b;var v=i(1);s.ONE=v;var k=i(1,!0);s.UONE=k;var S=i(-1);s.NEG_ONE=S;var C=u(4294967295|0,2147483647|0,!1);s.MAX_VALUE=C;var D=u(4294967295|0,4294967295|0,!0);s.MAX_UNSIGNED_VALUE=D;var O=u(0,2147483648|0,!1);s.MIN_VALUE=O;var E=s.prototype;E.toInt=function(){return this.unsigned?this.low>>>0:this.low},E.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},E.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(O)){var P=l(T),U=this.div(P),j=U.mul(P).sub(this);return U.toString(T)+j.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var q=l(c(T,6),this.unsigned),X=this,te="";;){var ne=X.div(q),se=X.sub(ne.mul(q)).toInt()>>>0,ae=se.toString(T);if(X=ne,X.isZero())return ae+te;for(;ae.length<6;)ae="0"+ae;te=""+ae+te}},E.getHighBits=function(){return this.high},E.getHighBitsUnsigned=function(){return this.high>>>0},E.getLowBits=function(){return this.low},E.getLowBitsUnsigned=function(){return this.low>>>0},E.getNumBitsAbs=function(){if(this.isNegative())return this.eq(O)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,P=31;P>0&&(T&1<<P)==0;P--);return this.high!=0?P+33:P+1},E.isZero=function(){return this.high===0&&this.low===0},E.eqz=E.isZero,E.isNegative=function(){return!this.unsigned&&this.high<0},E.isPositive=function(){return this.unsigned||this.high>=0},E.isOdd=function(){return(this.low&1)==1},E.isEven=function(){return(this.low&1)==0},E.equals=function(T){return r(T)||(T=p(T)),this.unsigned!==T.unsigned&&this.high>>>31==1&&T.high>>>31==1?!1:this.high===T.high&&this.low===T.low},E.eq=E.equals,E.notEquals=function(T){return!this.eq(T)},E.neq=E.notEquals,E.ne=E.notEquals,E.lessThan=function(T){return this.comp(T)<0},E.lt=E.lessThan,E.lessThanOrEqual=function(T){return this.comp(T)<=0},E.lte=E.lessThanOrEqual,E.le=E.lessThanOrEqual,E.greaterThan=function(T){return this.comp(T)>0},E.gt=E.greaterThan,E.greaterThanOrEqual=function(T){return this.comp(T)>=0},E.gte=E.greaterThanOrEqual,E.ge=E.greaterThanOrEqual,E.compare=function(T){if(r(T)||(T=p(T)),this.eq(T))return 0;var P=this.isNegative(),U=T.isNegative();return P&&!U?-1:!P&&U?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},E.comp=E.compare,E.negate=function(){return!this.unsigned&&this.eq(O)?O:this.not().add(v)},E.neg=E.negate,E.add=function(T){r(T)||(T=p(T));var P=this.high>>>16,U=this.high&65535,j=this.low>>>16,q=this.low&65535,X=T.high>>>16,te=T.high&65535,ne=T.low>>>16,se=T.low&65535,ae=0,Q=0,ce=0,de=0;return de+=q+se,ce+=de>>>16,de&=65535,ce+=j+ne,Q+=ce>>>16,ce&=65535,Q+=U+te,ae+=Q>>>16,Q&=65535,ae+=P+X,ae&=65535,u(ce<<16|de,ae<<16|Q,this.unsigned)},E.subtract=function(T){return r(T)||(T=p(T)),this.add(T.neg())},E.sub=E.subtract,E.multiply=function(T){if(this.isZero())return x;if(r(T)||(T=p(T)),n){var P=n.mul(this.low,this.high,T.low,T.high);return u(P,n.get_high(),this.unsigned)}if(T.isZero())return x;if(this.eq(O))return T.isOdd()?O:x;if(T.eq(O))return this.isOdd()?O:x;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(y)&&T.lt(y))return l(this.toNumber()*T.toNumber(),this.unsigned);var U=this.high>>>16,j=this.high&65535,q=this.low>>>16,X=this.low&65535,te=T.high>>>16,ne=T.high&65535,se=T.low>>>16,ae=T.low&65535,Q=0,ce=0,de=0,fe=0;return fe+=X*ae,de+=fe>>>16,fe&=65535,de+=q*ae,ce+=de>>>16,de&=65535,de+=X*se,ce+=de>>>16,de&=65535,ce+=j*ae,Q+=ce>>>16,ce&=65535,ce+=q*se,Q+=ce>>>16,ce&=65535,ce+=X*ne,Q+=ce>>>16,ce&=65535,Q+=U*ae+j*se+q*ne+X*te,Q&=65535,u(de<<16|fe,Q<<16|ce,this.unsigned)},E.mul=E.multiply,E.divide=function(T){if(r(T)||(T=p(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var P=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return u(P,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var U,j,q;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return k;q=b}else{if(this.eq(O)){if(T.eq(v)||T.eq(S))return O;if(T.eq(O))return v;var X=this.shr(1);return U=X.div(T).shl(1),U.eq(x)?T.isNegative()?v:S:(j=this.sub(T.mul(U)),q=U.add(j.div(T)),q)}else if(T.eq(O))return this.unsigned?b:x;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();q=x}for(j=this;j.gte(T);){U=Math.max(1,Math.floor(j.toNumber()/T.toNumber()));for(var te=Math.ceil(Math.log(U)/Math.LN2),ne=te<=48?1:c(2,te-48),se=l(U),ae=se.mul(T);ae.isNegative()||ae.gt(j);)U-=ne,se=l(U,this.unsigned),ae=se.mul(T);se.isZero()&&(se=v),q=q.add(se),j=j.sub(ae)}return q},E.div=E.divide,E.modulo=function(T){if(r(T)||(T=p(T)),n){var P=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return u(P,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},E.mod=E.modulo,E.rem=E.modulo,E.not=function(){return u(~this.low,~this.high,this.unsigned)},E.and=function(T){return r(T)||(T=p(T)),u(this.low&T.low,this.high&T.high,this.unsigned)},E.or=function(T){return r(T)||(T=p(T)),u(this.low|T.low,this.high|T.high,this.unsigned)},E.xor=function(T){return r(T)||(T=p(T)),u(this.low^T.low,this.high^T.high,this.unsigned)},E.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?u(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):u(0,this.low<<T-32,this.unsigned)},E.shl=E.shiftLeft,E.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?u(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):u(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},E.shr=E.shiftRight,E.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var P=this.high;if(T<32){var U=this.low;return u(U>>>T|P<<32-T,P>>>T,this.unsigned)}else return T===32?u(P,0,this.unsigned):u(P>>>T-32,0,this.unsigned)},E.shru=E.shiftRightUnsigned,E.shr_u=E.shiftRightUnsigned,E.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},E.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},E.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},E.toBytesLE=function(){var T=this.high,P=this.low;return[P&255,P>>>8&255,P>>>16&255,P>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},E.toBytesBE=function(){var T=this.high,P=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,P>>>24,P>>>16&255,P>>>8&255,P&255]},s.fromBytes=function(T,P,U){return U?s.fromBytesLE(T,P):s.fromBytesBE(T,P)},s.fromBytesLE=function(T,P){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,P)},s.fromBytesBE=function(T,P){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],P)}}}),JS=It({"(disabled):node_modules/.pnpm/node-fetch@2.6.5/node_modules/node-fetch/browser.js"(){}}),QS=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,d=l();c.next=function(){var p=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=p-(c.c=p|0)},c.c=1,c.s0=d(" "),c.s1=d(" "),c.s2=d(" "),c.s0-=d(u),c.s0<0&&(c.s0+=1),c.s1-=d(u),c.s1<0&&(c.s1+=1),c.s2-=d(u),c.s2<0&&(c.s2+=1),d=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var d=new a(u),p=c&&c.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var u=4022871197,c=function(d){d=d.toString();for(var p=0;p<d.length;p++){u+=d.charCodeAt(p);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),eC=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var p=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^p^p>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function i(l,u){var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),tC=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var p=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(p^p<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,d==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),nC=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.x,p=u.i,h,m,f;return h=d[p],h^=h>>>7,m=h^h<<24,h=d[p+1&7],m^=h^h>>>10,h=d[p+3&7],m^=h^h>>>3,h=d[p+4&7],m^=h^h<<7,h=d[p+7&7],h=h^h<<13,m^=h^h<<9,d[p]=m,u.i=p+1&7,m};function c(d,p){var h,m,f=[];if(p===(p|0))m=f[0]=p;else for(p=""+p,h=0;h<p.length;++h)f[h&7]=f[h&7]<<15^p.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],d.x=f,d.i=0,h=256;h>0;--h)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},p.int32=c.next,p.quick=p,d&&(d.x&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),sC=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.w,p=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=p[h+34&127],m=p[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=p[h]=f^m,u.i=h,f+(d^d>>>16)|0};function c(d,p){var h,m,f,g,A,y=[],x=128;for(p===(p|0)?(m=p,p=null):(p=p+"\0",m=0,x=Math.max(x,p.length)),f=0,g=-32;g<x;++g)p&&(m^=p.charCodeAt((g+32)%p.length)),g===0&&(A=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(A=A+1640531527|0,h=y[g&127]^=m+A,f=h==0?f+1:0);for(f>=128&&(y[(p&&p.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=y[f+34&127],h=y[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,y[f]=m^h;d.w=A,d.X=y,d.i=f}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},p.int32=c.next,p.quick=p,d&&(d.X&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),rC=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var p=u.b,h=u.c,m=u.d,f=u.a;return p=p<<25^p>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-p|0,u.b=p=p<<20^p>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-p|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d<c.length+20;d++)u.b^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),d5=It({"(disabled):crypto"(){}}),aC=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s){var r=this,a=256,o=6,i=52,l="random",u=s.pow(a,o),c=s.pow(2,i),d=c*2,p=a-1,h;function m(v,k,S){var C=[];k=k==!0?{entropy:!0}:k||{};var D=y(A(k.entropy?[v,b(n)]:v==null?x():v,3),C),O=new f(C),E=function(){for(var R=O.g(o),T=u,P=0;R<c;)R=(R+P)*a,T*=a,P=O.g(1);for(;R>=d;)R/=2,T/=2,P>>>=1;return(R+P)/T};return E.int32=function(){return O.g(4)|0},E.quick=function(){return O.g(4)/4294967296},E.double=E,y(b(O.S),n),(k.pass||S||function(R,T,P,U){return U&&(U.S&&g(U,O),R.state=function(){return g(O,{})}),P?(s[l]=R,T):R})(E,D,"global"in k?k.global:this==s,k.state)}s["seed"+l]=m;function f(v){var k,S=v.length,C=this,D=0,O=C.i=C.j=0,E=C.S=[];for(S||(v=[S++]);D<a;)E[D]=D++;for(D=0;D<a;D++)E[D]=E[O=p&O+v[D%S]+(k=E[D])],E[O]=k;(C.g=function(R){for(var T,P=0,U=C.i,j=C.j,q=C.S;R--;)T=q[U=p&U+1],P=P*a+q[p&(q[U]=q[j=p&j+T])+(q[j]=T)];return C.i=U,C.j=j,P})(a)}function g(v,k){return k.i=v.i,k.j=v.j,k.S=v.S.slice(),k}function A(v,k){var S=[],C=typeof v,D;if(k&&C=="object")for(D in v)try{S.push(A(v[D],k-1))}catch(O){}return S.length?S:C=="string"?v:v+"\0"}function y(v,k){for(var S=v+"",C,D=0;D<S.length;)k[p&D]=p&(C^=k[p&D]*19)+S.charCodeAt(D++);return b(k)}function x(){try{var v;return h&&(v=h.randomBytes)?v=v(a):(v=new Uint8Array(a),(r.crypto||r.msCrypto).getRandomValues(v)),b(v)}catch(C){var k=r.navigator,S=k&&k.plugins;return[+new Date,r,S,r.screen,b(n)]}}function b(v){return String.fromCharCode.apply(0,v)}if(y(s.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=d5()}catch(v){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}}),p5=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js"(e,t){var n=QS(),s=eC(),r=tC(),a=nC(),o=sC(),i=rC(),l=aC();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),oC=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,d=l();c.next=function(){var p=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=p-(c.c=p|0)},c.c=1,c.s0=d(" "),c.s1=d(" "),c.s2=d(" "),c.s0-=d(u),c.s0<0&&(c.s0+=1),c.s1-=d(u),c.s1<0&&(c.s1+=1),c.s2-=d(u),c.s2<0&&(c.s2+=1),d=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var d=new a(u),p=c&&c.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var u=4022871197,c=function(d){d=String(d);for(var p=0;p<d.length;p++){u+=d.charCodeAt(p);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),iC=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var p=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^p^p>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function i(l,u){var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),lC=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var p=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(p^p<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,d==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),uC=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.x,p=u.i,h,m,f;return h=d[p],h^=h>>>7,m=h^h<<24,h=d[p+1&7],m^=h^h>>>10,h=d[p+3&7],m^=h^h>>>3,h=d[p+4&7],m^=h^h<<7,h=d[p+7&7],h=h^h<<13,m^=h^h<<9,d[p]=m,u.i=p+1&7,m};function c(d,p){var h,m,f=[];if(p===(p|0))m=f[0]=p;else for(p=""+p,h=0;h<p.length;++h)f[h&7]=f[h&7]<<15^p.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],d.x=f,d.i=0,h=256;h>0;--h)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},p.int32=c.next,p.quick=p,d&&(d.x&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),cC=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.w,p=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=p[h+34&127],m=p[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=p[h]=f^m,u.i=h,f+(d^d>>>16)|0};function c(d,p){var h,m,f,g,A,y=[],x=128;for(p===(p|0)?(m=p,p=null):(p=p+"\0",m=0,x=Math.max(x,p.length)),f=0,g=-32;g<x;++g)p&&(m^=p.charCodeAt((g+32)%p.length)),g===0&&(A=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(A=A+1640531527|0,h=y[g&127]^=m+A,f=h==0?f+1:0);for(f>=128&&(y[(p&&p.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=y[f+34&127],h=y[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,y[f]=m^h;d.w=A,d.X=y,d.i=f}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},p.int32=c.next,p.quick=p,d&&(d.X&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),dC=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var p=u.b,h=u.c,m=u.d,f=u.a;return p=p<<25^p>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-p|0,u.b=p=p<<20^p>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-p|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d<c.length+20;d++)u.b^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),pC=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",u=r.pow(a,o),c=r.pow(2,i),d=c*2,p=a-1,h;function m(v,k,S){var C=[];k=k==!0?{entropy:!0}:k||{};var D=y(A(k.entropy?[v,b(s)]:v==null?x():v,3),C),O=new f(C),E=function(){for(var R=O.g(o),T=u,P=0;R<c;)R=(R+P)*a,T*=a,P=O.g(1);for(;R>=d;)R/=2,T/=2,P>>>=1;return(R+P)/T};return E.int32=function(){return O.g(4)|0},E.quick=function(){return O.g(4)/4294967296},E.double=E,y(b(O.S),s),(k.pass||S||function(R,T,P,U){return U&&(U.S&&g(U,O),R.state=function(){return g(O,{})}),P?(r[l]=R,T):R})(E,D,"global"in k?k.global:this==r,k.state)}function f(v){var k,S=v.length,C=this,D=0,O=C.i=C.j=0,E=C.S=[];for(S||(v=[S++]);D<a;)E[D]=D++;for(D=0;D<a;D++)E[D]=E[O=p&O+v[D%S]+(k=E[D])],E[O]=k;(C.g=function(R){for(var T,P=0,U=C.i,j=C.j,q=C.S;R--;)T=q[U=p&U+1],P=P*a+q[p&(q[U]=q[j=p&j+T])+(q[j]=T)];return C.i=U,C.j=j,P})(a)}function g(v,k){return k.i=v.i,k.j=v.j,k.S=v.S.slice(),k}function A(v,k){var S=[],C=typeof v,D;if(k&&C=="object")for(D in v)try{S.push(A(v[D],k-1))}catch(O){}return S.length?S:C=="string"?v:v+"\0"}function y(v,k){for(var S=v+"",C,D=0;D<S.length;)k[p&D]=p&(C^=k[p&D]*19)+S.charCodeAt(D++);return b(k)}function x(){try{var v;return h&&(v=h.randomBytes)?v=v(a):(v=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(v)),b(v)}catch(C){var k=n.navigator,S=k&&k.plugins;return[+new Date,n,S,n.screen,b(s)]}}function b(v){return String.fromCharCode.apply(0,v)}if(y(r.random(),s),typeof t=="object"&&t.exports){t.exports=m;try{h=d5()}catch(v){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}}),h5=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=oC(),s=iC(),r=lC(),a=uC(),o=cC(),i=dC(),l=pC();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),f5=It({"(disabled):node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js"(){}}),ic=It({"(disabled):path"(){}}),hC=It({"(disabled):worker_threads"(){}}),fC=It({"(disabled):perf_hooks"(){}}),mC=It({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.9.0_@tensorflow+tfjs-core@3.9.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return Q.buffer!=qe&&mn(Q.buffer),Mn}function o(){return Q.buffer!=qe&&mn(Q.buffer),Et}function i(){return Q.buffer!=qe&&mn(Q.buffer),Ns}function l(){return Q.buffer!=qe&&mn(Q.buffer),In}function u(){return Q.buffer!=qe&&mn(Q.buffer),ms}var c=typeof r!="undefined"?r:{},d,p;c.ready=new Promise(function(N,F){d=N,p=F});var h={},m;for(m in c)c.hasOwnProperty(m)&&(h[m]=c[m]);var f=[],g="./this.program",A=function(N,F){throw F},y=!1,x=!1,b=!1,v=!1;y=typeof window=="object",x=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",v=!y&&!b&&!x;var k=c.ENVIRONMENT_IS_PTHREAD||!1;k&&(qe=c.buffer);var S="";function C(N){return c.locateFile?c.locateFile(N,S):S+N}var D,O,E,R,T,P;if(b){x?S=ic().dirname(S)+"/":S=__dirname+"/",D=function(F,B){return T||(T=Vi("fs")),P||(P=ic()),F=P.normalize(F),T.readFileSync(F,B?null:"utf8")},E=function(F){var B=D(F,!0);return B.buffer||(B=new Uint8Array(B)),xe(B.buffer),B},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(N){if(!(N instanceof sc))throw N}),process.on("unhandledRejection",Tr),A=function(N){process.exit(N)},c.inspect=function(){return"[Emscripten Module object]"};var U;try{U=hC()}catch(N){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),N}global.Worker=U.Worker}else v?(typeof read!="undefined"&&(D=function(F){return read(F)}),E=function(F){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer(F)):(B=read(F,"binary"),xe(typeof B=="object"),B)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(A=function(N){quit(N)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(y||x)&&(x?S=self.location.href:typeof document!="undefined"&&document.currentScript&&(S=document.currentScript.src),typeof s!="undefined"&&s&&(S=s),S.indexOf("blob:")!==0?S=S.substr(0,S.lastIndexOf("/")+1):S="",b?(D=function(F,B){return T||(T=Vi("fs")),P||(P=ic()),F=P.normalize(F),T.readFileSync(F,B?null:"utf8")},E=function(F){var B=D(F,!0);return B.buffer||(B=new Uint8Array(B)),xe(B.buffer),B}):(D=function(N){var F=new XMLHttpRequest;return F.open("GET",N,!1),F.send(null),F.responseText},x&&(E=function(N){var F=new XMLHttpRequest;return F.open("GET",N,!1),F.responseType="arraybuffer",F.send(null),new Uint8Array(F.response)}),O=function(N,F,B){var K=new XMLHttpRequest;K.open("GET",N,!0),K.responseType="arraybuffer",K.onload=function(){if(K.status==200||K.status==0&&K.response){F(K.response);return}B()},K.onerror=B,K.send(null)}),R=function(N){document.title=N});b&&typeof performance=="undefined"&&(global.performance=fC().performance);var j=c.print||console.log.bind(console),q=c.printErr||console.warn.bind(console);for(m in h)h.hasOwnProperty(m)&&(c[m]=h[m]);h=null,c.arguments&&(f=c.arguments),c.thisProgram&&(g=c.thisProgram),c.quit&&(A=c.quit);var X=Atomics.load,te=Atomics.store,ne=Atomics.compareExchange,se;c.wasmBinary&&(se=c.wasmBinary);var ae=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Tr("no native wasm support detected");var Q,ce,de=!1,fe;function xe(N,F){N||Tr("Assertion failed: "+F)}function Ee(N){var F=c["_"+N];return xe(F,"Cannot call unknown function "+N+", make sure it is exported"),F}function Re(N,F,B,K,Ae){var me={string:function(Sn){var Wi=0;if(Sn!=null&&Sn!==0){var i5=(Sn.length<<2)+1;Wi=zi(i5),lt(Sn,Wi,i5)}return Wi},array:function(Sn){var Wi=zi(Sn.length);return ot(Sn,Wi),Wi}};function ge(Sn){return F==="string"?Me(Sn):F==="boolean"?Boolean(Sn):Sn}var Ie=Ee(N),ct=[],sn=0;if(K)for(var Xt=0;Xt<K.length;Xt++){var ea=me[B[Xt]];ea?(sn===0&&(sn=nc()),ct[Xt]=ea(K[Xt])):ct[Xt]=K[Xt]}var Bi=Ie.apply(null,ct);return Bi=ge(Bi),sn!==0&&Mi(sn),Bi}function Pe(N,F,B,K){B=B||[];var Ae=B.every(function(ge){return ge==="number"}),me=F!=="string";return me&&Ae&&!K?Ee(N):function(){return Re(N,F,B,arguments,K)}}function Be(N,F,B){for(var K=F+B,Ae="";!(F>=K);){var me=N[F++];if(!me)return Ae;if(!(me&128)){Ae+=String.fromCharCode(me);continue}var ge=N[F++]&63;if((me&224)==192){Ae+=String.fromCharCode((me&31)<<6|ge);continue}var Ie=N[F++]&63;if((me&240)==224?me=(me&15)<<12|ge<<6|Ie:me=(me&7)<<18|ge<<12|Ie<<6|N[F++]&63,me<65536)Ae+=String.fromCharCode(me);else{var ct=me-65536;Ae+=String.fromCharCode(55296|ct>>10,56320|ct&1023)}}return Ae}function Me(N,F){return N?Be(o(),N,F):""}function mt(N,F,B,K){if(!(K>0))return 0;for(var Ae=B,me=B+K-1,ge=0;ge<N.length;++ge){var Ie=N.charCodeAt(ge);if(Ie>=55296&&Ie<=57343){var ct=N.charCodeAt(++ge);Ie=65536+((Ie&1023)<<10)|ct&1023}if(Ie<=127){if(B>=me)break;F[B++]=Ie}else if(Ie<=2047){if(B+1>=me)break;F[B++]=192|Ie>>6,F[B++]=128|Ie&63}else if(Ie<=65535){if(B+2>=me)break;F[B++]=224|Ie>>12,F[B++]=128|Ie>>6&63,F[B++]=128|Ie&63}else{if(B+3>=me)break;F[B++]=240|Ie>>18,F[B++]=128|Ie>>12&63,F[B++]=128|Ie>>6&63,F[B++]=128|Ie&63}}return F[B]=0,B-Ae}function lt(N,F,B){return mt(N,o(),F,B)}function ut(N){for(var F=0,B=0;B<N.length;++B){var K=N.charCodeAt(B);K>=55296&&K<=57343&&(K=65536+((K&1023)<<10)|N.charCodeAt(++B)&1023),K<=127?++F:K<=2047?F+=2:K<=65535?F+=3:F+=4}return F}function ot(N,F){a().set(N,F)}function ht(N,F){return N%F>0&&(N+=F-N%F),N}var qe,Mn,Et,Zn,fn,Ns,In,fs,ms;function mn(N){qe=N,c.HEAP8=Mn=new Int8Array(N),c.HEAP16=Zn=new Int16Array(N),c.HEAP32=Ns=new Int32Array(N),c.HEAPU8=Et=new Uint8Array(N),c.HEAPU16=fn=new Uint16Array(N),c.HEAPU32=In=new Uint32Array(N),c.HEAPF32=fs=new Float32Array(N),c.HEAPF64=ms=new Float64Array(N)}var gs=c.INITIAL_MEMORY||16777216;if(k)Q=c.wasmMemory,qe=c.buffer;else if(c.wasmMemory)Q=c.wasmMemory;else if(Q=new WebAssembly.Memory({initial:gs/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(qe=Q.buffer),gs=qe.byteLength,mn(qe);var As,Yn=[],ar=[],Sr=[],Kr=[],Di=[],or=!1,np=!1;k||ar.push({func:function(){Ap()}});function K0(){if(!k){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)rp(c.preRun.shift());$i(Yn)}}function qu(){or=!0,!k&&$i(ar)}function Z0(){k||$i(Sr)}function sp(){k||(np=!0)}function zn(){if(!k){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)Y0(c.postRun.shift());$i(Di)}}function rp(N){Yn.unshift(N)}function Y0(N){Di.unshift(N)}var Cr=0,Zr=null,Ma=null;function J0(N){xe(!k,"addRunDependency cannot be used in a pthread worker"),Cr++,c.monitorRunDependencies&&c.monitorRunDependencies(Cr)}function Q0(N){if(Cr--,c.monitorRunDependencies&&c.monitorRunDependencies(Cr),Cr==0&&(Zr!==null&&(clearInterval(Zr),Zr=null),Ma)){var F=Ma;Ma=null,F()}}c.preloadedImages={},c.preloadedAudios={};function Tr(N){c.onAbort&&c.onAbort(N),k&&console.error("Pthread aborting at "+new Error().stack),N+="",q(N),de=!0,fe=1,N="abort("+N+"). Build with -s ASSERTIONS=1 for more info.";var F=new WebAssembly.RuntimeError(N);throw p(F),F}function ap(N,F){return String.prototype.startsWith?N.startsWith(F):N.indexOf(F)===0}var _i="data:application/octet-stream;base64,";function op(N){return ap(N,_i)}var em="file://";function ip(N){return ap(N,em)}var Ln="tfjs-backend-wasm-threaded-simd.wasm";op(Ln)||(Ln=C(Ln));function lp(N){try{if(N==Ln&&se)return new Uint8Array(se);if(E)return E(N);throw"both async and sync fetching of the wasm failed"}catch(F){Tr(F)}}function tm(){if(!se&&(y||x)){if(typeof fetch=="function"&&!ip(Ln))return fetch(Ln,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+Ln+"'";return N.arrayBuffer()}).catch(function(){return lp(Ln)});if(O)return new Promise(function(N,F){O(Ln,function(B){N(new Uint8Array(B))},F)})}return Promise.resolve().then(function(){return lp(Ln)})}function nm(){var N={a:jm};function F(ge,Ie){var ct=ge.exports;if(c.asm=ct,As=c.asm.F,ce=Ie,!k){var sn=Te.unusedWorkers.length;Te.unusedWorkers.forEach(function(Xt){Te.loadWasmModuleToWorker(Xt,function(){--sn||Q0("wasm-instantiate")})})}}k||J0("wasm-instantiate");function B(ge){F(ge.instance,ge.module)}function K(ge){return tm().then(function(Ie){return WebAssembly.instantiate(Ie,N)}).then(ge,function(Ie){q("failed to asynchronously prepare wasm: "+Ie),Tr(Ie)})}function Ae(){return!se&&typeof WebAssembly.instantiateStreaming=="function"&&!op(Ln)&&!ip(Ln)&&typeof fetch=="function"?fetch(Ln,{credentials:"same-origin"}).then(function(ge){var Ie=WebAssembly.instantiateStreaming(ge,N);return Ie.then(B,function(ct){return q("wasm streaming compile failed: "+ct),q("falling back to ArrayBuffer instantiation"),K(B)})}):K(B)}if(c.instantiateWasm)try{var me=c.instantiateWasm(N,F);return me}catch(ge){return q("Module.instantiateWasm callback failed with error: "+ge),!1}return Ae().catch(p),{}}var sm={10024:function(){throw"Canceled!"},10042:function(N,F){setTimeout(function(){t5(N,F)},0)}};function up(){Te.initRuntime()}function $i(N){for(;N.length>0;){var F=N.shift();if(typeof F=="function"){F(c);continue}var B=F.func;typeof B=="number"?F.arg===void 0?As.get(B)():As.get(B)(F.arg):B(F.arg===void 0?null:F.arg)}}function Xu(N,F){if(N<=0||N>a().length||N&!0||F<0)return-28;if(F==0)return 0;F>=2147483647&&(F=1/0);var B=Atomics.load(i(),Li>>2),K=0;if(B==N){var Ae=Atomics.compareExchange(i(),Li>>2,B,0);if(Ae==B&&(--F,K=1,F<=0))return 1}var me=Atomics.notify(i(),N>>2,F);if(me>=0)return me+K;throw"Atomics.notify returned an unexpected value "+me}c._emscripten_futex_wake=Xu;function rm(N){if(k)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in killThread!";i()[N+12>>2]=0;var F=Te.pthreads[N];F.worker.terminate(),Te.freeThreadData(F),Te.runningWorkers.splice(Te.runningWorkers.indexOf(F.worker),1),F.worker.pthread=void 0}function am(N){if(k)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cancelThread!";var F=Te.pthreads[N];F.worker.postMessage({cmd:"cancel"})}function om(N){if(k)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cleanupThread!";var F=Te.pthreads[N];if(F){i()[N+12>>2]=0;var B=F.worker;Te.returnWorkerToPool(B)}}var Te={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var N=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),F=0;F<N;++F)Te.allocateUnusedWorker()},initRuntime:function(){for(var N=La(228),F=0;F<228/4;++F)l()[N/4+F]=0;i()[N+12>>2]=N;var B=N+152;i()[B>>2]=B;for(var K=La(512),F=0;F<128;++F)l()[K/4+F]=0;Atomics.store(l(),N+100>>2,K),Atomics.store(l(),N+40>>2,N),xg(N,!x,1),e5(N)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Te.threadExitHandlers.length>0;)Te.threadExitHandlers.pop()();k&&Pi()&&Qx()},runExitHandlersAndDeinitThread:function(N,F){Atomics.store(l(),N+56>>2,1),Atomics.store(l(),N+60>>2,0),Te.runExitHandlers(),Atomics.store(l(),N+4>>2,F),Atomics.store(l(),N+0>>2,1),Xu(N+0,2147483647),xg(0,0,0)},threadExit:function(N){var F=Pi();F&&(Te.runExitHandlersAndDeinitThread(F,N),k&&postMessage({cmd:"exit"}))},threadCancel:function(){Te.runExitHandlersAndDeinitThread(Pi(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var N in Te.pthreads){var F=Te.pthreads[N];F&&F.worker&&Te.returnWorkerToPool(F.worker)}Te.pthreads={};for(var B=0;B<Te.unusedWorkers.length;++B){var K=Te.unusedWorkers[B];K.terminate()}Te.unusedWorkers=[];for(var B=0;B<Te.runningWorkers.length;++B){var K=Te.runningWorkers[B],F=K.pthread;Te.freeThreadData(F),K.terminate()}Te.runningWorkers=[]},freeThreadData:function(N){if(!!N){if(N.threadInfoStruct){var F=i()[N.threadInfoStruct+100>>2];i()[N.threadInfoStruct+100>>2]=0,tc(F),tc(N.threadInfoStruct)}N.threadInfoStruct=0,N.allocatedOwnStack&&N.stackBase&&tc(N.stackBase),N.stackBase=0,N.worker&&(N.worker.pthread=null)}},returnWorkerToPool:function(N){Te.runWithoutMainThreadQueuedCalls(function(){delete Te.pthreads[N.pthread.threadInfoStruct],Te.unusedWorkers.push(N),Te.runningWorkers.splice(Te.runningWorkers.indexOf(N),1),Te.freeThreadData(N.pthread),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){i()[o5>>2]=0;try{N()}finally{i()[o5>>2]=1}},receiveObjectTransfer:function(N){},loadWasmModuleToWorker:function(N,F){N.onmessage=function(B){var K=B.data,Ae=K.cmd;if(N.pthread&&(Te.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),K.targetThread&&K.targetThread!=Pi()){var me=Te.pthreads[K.targetThread];me?me.worker.postMessage(B.data,K.transferList):console.error('Internal error! Worker sent a message "'+Ae+'" to target pthread '+K.targetThread+", but that thread no longer exists!"),Te.currentProxiedOperationCallerThread=void 0;return}if(Ae==="processQueuedMainThreadWork")Ag();else if(Ae==="spawnThread")mp(B.data);else if(Ae==="cleanupThread")om(K.thread);else if(Ae==="killThread")rm(K.thread);else if(Ae==="cancelThread")am(K.thread);else if(Ae==="loaded")N.loaded=!0,F&&F(N),N.runPthread&&(N.runPthread(),delete N.runPthread);else if(Ae==="print")j("Thread "+K.threadId+": "+K.text);else if(Ae==="printErr")q("Thread "+K.threadId+": "+K.text);else if(Ae==="alert")alert("Thread "+K.threadId+": "+K.text);else if(Ae==="exit"){var ge=N.pthread&&Atomics.load(l(),N.pthread.threadInfoStruct+64>>2);ge&&Te.returnWorkerToPool(N)}else if(Ae==="exitProcess")try{VS(K.returnCode)}catch(Ie){if(Ie instanceof sc)return;throw Ie}else Ae==="cancelDone"?Te.returnWorkerToPool(N):Ae==="objectTransfer"?Te.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?N.postMessage(B.data):q("worker sent an unknown command "+Ae);Te.currentProxiedOperationCallerThread=void 0},N.onerror=function(B){q("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},b&&(N.on("message",function(B){N.onmessage({data:B})}),N.on("error",function(B){N.onerror(B)}),N.on("exit",function(B){})),N.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||s,wasmMemory:Q,wasmModule:ce})},allocateUnusedWorker:function(){var N=C("tfjs-backend-wasm-threaded-simd.worker.js");Te.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return Te.unusedWorkers.length==0&&(Te.allocateUnusedWorker(),Te.loadWasmModuleToWorker(Te.unusedWorkers[0])),Te.unusedWorkers.length>0?Te.unusedWorkers.pop():null},busySpinWait:function(N){for(var F=performance.now()+N;performance.now()<F;);}};function im(N,F){r5(N,F),Mi(N)}c.establishStackSpace=im;function lm(){return ae}c.getNoExitRuntime=lm;function um(N,F){return As.get(N)(F)}c.invokeEntryPoint=um;function cm(N,F,B,K){Tr("Assertion failed: "+Me(N)+", at: "+[F?Me(F):"unknown filename",B,K?Me(K):"unknown function"])}function dm(N,F){var B=_main(N,F)}var za;b?za=function(){var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:k?za=function(){return performance.now()-c.__performance_now_clock_drift}:typeof dateNow!="undefined"?za=dateNow:za=function(){return performance.now()};function pm(N){return i()[Yx()>>2]=N,N}function hm(N,F){if(k)return Yr(1,1,N,F)}function fm(N,F){if(N==F)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var B=Te.pthreads[N],K=B&&B.worker;if(!K)return;K.postMessage({cmd:"processThreadQueue"})}return 1}function mm(){Tr()}function gm(N,F,B){var K=vm(F,B);return sm[N].apply(null,K)}function Am(N,F){}function ym(N,F,B){if(N<=0||N>a().length||N&!0)return-28;if(y){if(Atomics.load(i(),N>>2)!=F)return-6;for(var Ae=performance.now(),me=Ae+B,ge=Atomics.exchange(i(),Li>>2,N);;){if(Ae=performance.now(),Ae>me)return ge=Atomics.exchange(i(),Li>>2,0),-73;if(ge=Atomics.exchange(i(),Li>>2,0),ge==0)break;if(Ag(),Atomics.load(i(),N>>2)!=F)return-6;ge=Atomics.exchange(i(),Li>>2,N)}return 0}else{var K=Atomics.wait(i(),N>>2,F,B);if(K==="timed-out")return-73;if(K==="not-equal")return-6;if(K==="ok")return 0;throw"Atomics.wait returned an unexpected value "+K}}function xm(N,F,B){o().copyWithin(N,F,F+B)}function bm(){return b?Vi("os").cpus().length:navigator.hardwareConcurrency}function Yr(N,F){for(var B=arguments.length-2,K=nc(),Ae=B,me=zi(Ae*8),ge=me>>3,Ie=0;Ie<B;Ie++){var ct=arguments[2+Ie];u()[ge+Ie]=ct}var sn=s5(N,Ae,me,F);return Mi(K),sn}var Ku=[],Zu=[];function vm(N,F){Zu.length=0;var B;for(F>>=2;B=o()[N++];){var K=B<105;K&&F&1&&F++,Zu.push(K?u()[F++>>1]:i()[F]),++F}return Zu}function wm(N,F,B){Ku.length=F;for(var K=B>>3,Ae=0;Ae<F;Ae++)Ku[Ae]=u()[K+Ae];var me=N<0,ge=me?sm[-N-1]:Gm[N];return ge.apply(null,Ku)}function km(){return o().length}function Im(N){try{return Q.grow(N-qe.byteLength+65535>>>16),mn(Q.buffer),1}catch(F){}}function Sm(N){var F=km();if(N<=F)return!1;var B=2147483648;if(N>B)return!1;for(var K=1;K<=4;K*=2){var Ae=F*(1+.2/K);Ae=Math.min(Ae,N+100663296);var me=Math.min(B,ht(Math.max(N,Ae),65536)),ge=Im(me);if(ge)return!0}return!1}var Ve={inEventHandler:0,removeAllEventListeners:function(){for(var N=Ve.eventHandlers.length-1;N>=0;--N)Ve._removeHandler(N);Ve.eventHandlers=[],Ve.deferredCalls=[]},registerRemoveEventListeners:function(){Ve.removeEventListenersRegistered||(Kr.push(Ve.removeAllEventListeners),Ve.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,F,B){function K(ge,Ie){if(ge.length!=Ie.length)return!1;for(var ct in ge)if(ge[ct]!=Ie[ct])return!1;return!0}for(var Ae in Ve.deferredCalls){var me=Ve.deferredCalls[Ae];if(me.targetFunction==N&&K(me.argsList,B))return}Ve.deferredCalls.push({targetFunction:N,precedence:F,argsList:B}),Ve.deferredCalls.sort(function(ge,Ie){return ge.precedence<Ie.precedence})},removeDeferredCalls:function(N){for(var F=0;F<Ve.deferredCalls.length;++F)Ve.deferredCalls[F].targetFunction==N&&(Ve.deferredCalls.splice(F,1),--F)},canPerformEventHandlerRequests:function(){return Ve.inEventHandler&&Ve.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Ve.canPerformEventHandlerRequests())for(var N=0;N<Ve.deferredCalls.length;++N){var F=Ve.deferredCalls[N];Ve.deferredCalls.splice(N,1),--N,F.targetFunction.apply(null,F.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,F){for(var B=0;B<Ve.eventHandlers.length;++B)Ve.eventHandlers[B].target==N&&(!F||F==Ve.eventHandlers[B].eventTypeString)&&Ve._removeHandler(B--)},_removeHandler:function(N){var F=Ve.eventHandlers[N];F.target.removeEventListener(F.eventTypeString,F.eventListenerFunc,F.useCapture),Ve.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var F=function(Ae){++Ve.inEventHandler,Ve.currentEventHandler=N,Ve.runDeferredCalls(),N.handlerFunc(Ae),Ve.runDeferredCalls(),--Ve.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=F,N.target.addEventListener(N.eventTypeString,F,N.useCapture),Ve.eventHandlers.push(N),Ve.registerRemoveEventListeners();else for(var B=0;B<Ve.eventHandlers.length;++B)Ve.eventHandlers[B].target==N.target&&Ve.eventHandlers[B].eventTypeString==N.eventTypeString&&Ve._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(N,F,B,K,Ae){var me=nc(),ge=zi(12);i()[ge>>2]=B,i()[ge+4>>2]=K,i()[ge+8>>2]=Ae,yg(0,N,637534208,F,K,ge),Mi(me)},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return Te.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Cm(N){var F=ut(N)+1,B=La(F);return lt(N,B,F),B}function Tm(N,F,B,K){var Ae=nc(),me=zi(12),ge=0;F&&(ge=Cm(F)),i()[me>>2]=ge,i()[me+4>>2]=B,i()[me+8>>2]=K,yg(0,N,657457152,0,ge,me),Mi(Ae)}function Nm(N,F,B,K){F=F?Me(F):"",Tm(N,F,B,K)}function Em(N){return N>2?Me(N):N}var Rm=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Dm(N){N=Em(N);var F=Rm[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return F}function Yu(N){return Dm(N)}function cp(N,F,B){var K=Yu(N);if(!K)return-4;if(K.canvasSharedPtr&&(i()[K.canvasSharedPtr>>2]=F,i()[K.canvasSharedPtr+4>>2]=B),K.offscreenCanvas||!K.controlTransferredOffscreen){K.offscreenCanvas&&(K=K.offscreenCanvas);var Ae=!1;if(K.GLctxObject&&K.GLctxObject.GLctx){var me=K.GLctxObject.GLctx.getParameter(2978);Ae=me[0]===0&&me[1]===0&&me[2]===K.width&&me[3]===K.height}K.width=F,K.height=B,Ae&&K.GLctxObject.GLctx.viewport(0,0,F,B)}else if(K.canvasSharedPtr){var ge=i()[K.canvasSharedPtr+8>>2];return Nm(ge,N,F,B),1}else return-4;return 0}function dp(N,F,B){return k?Yr(2,1,N,F,B):cp(N,F,B)}function _m(N,F,B){var K=Yu(N);return K?cp(N,F,B):dp(N,F,B)}function $m(N){}function Fm(N,F){}function Om(N){var F=N.getExtension("ANGLE_instanced_arrays");if(F)return N.vertexAttribDivisor=function(B,K){F.vertexAttribDivisorANGLE(B,K)},N.drawArraysInstanced=function(B,K,Ae,me){F.drawArraysInstancedANGLE(B,K,Ae,me)},N.drawElementsInstanced=function(B,K,Ae,me,ge){F.drawElementsInstancedANGLE(B,K,Ae,me,ge)},1}function Pm(N){var F=N.getExtension("OES_vertex_array_object");if(F)return N.createVertexArray=function(){return F.createVertexArrayOES()},N.deleteVertexArray=function(B){F.deleteVertexArrayOES(B)},N.bindVertexArray=function(B){F.bindVertexArrayOES(B)},N.isVertexArray=function(B){return F.isVertexArrayOES(B)},1}function Mm(N){var F=N.getExtension("WEBGL_draw_buffers");if(F)return N.drawBuffers=function(B,K){F.drawBuffersWEBGL(B,K)},1}function zm(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var it={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(F){it.lastError||(it.lastError=F)},getNewId:function(N){for(var F=it.counter++,B=N.length;B<F;B++)N[B]=null;return F},getSource:function(N,F,B,K){for(var Ae="",me=0;me<F;++me){var ge=K?i()[K+me*4>>2]:-1;Ae+=Me(i()[B+me*4>>2],ge<0?void 0:ge)}return Ae},createContext:function(N,F){var B=N.getContext("webgl",F);if(!B)return 0;var K=it.registerContext(B,F);return K},registerContext:function(N,F){var B=La(8);i()[B+4>>2]=Pi();var K={handle:B,attributes:F,version:F.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=K),it.contexts[B]=K,(typeof F.enableExtensionsByDefault=="undefined"||F.enableExtensionsByDefault)&&it.initExtensions(K),B},makeContextCurrent:function(N){return it.currentContext=it.contexts[N],c.ctx=Jr=it.currentContext&&it.currentContext.GLctx,!(N&&!Jr)},getContext:function(N){return it.contexts[N]},deleteContext:function(N){it.currentContext===it.contexts[N]&&(it.currentContext=null),typeof Ve=="object"&&Ve.removeAllHandlersOnTarget(it.contexts[N].GLctx.canvas),it.contexts[N]&&it.contexts[N].GLctx.canvas&&(it.contexts[N].GLctx.canvas.GLctxObject=void 0),tc(it.contexts[N].handle),it.contexts[N]=null},initExtensions:function(N){if(N||(N=it.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var F=N.GLctx;Om(F),Pm(F),Mm(F),F.disjointTimerQueryExt=F.getExtension("EXT_disjoint_timer_query"),zm(F);var B=F.getSupportedExtensions()||[];B.forEach(function(K){K.indexOf("lose_context")<0&&K.indexOf("debug")<0&&F.getExtension(K)})}},populateUniformTable:function(N){for(var F=it.programs[N],B=it.programInfos[N]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},K=B.uniforms,Ae=Jr.getProgramParameter(F,35718),me=0;me<Ae;++me){var ge=Jr.getActiveUniform(F,me),Ie=ge.name;B.maxUniformLength=Math.max(B.maxUniformLength,Ie.length+1),Ie.slice(-1)=="]"&&(Ie=Ie.slice(0,Ie.lastIndexOf("[")));var ct=Jr.getUniformLocation(F,Ie);if(ct){var sn=it.getNewId(it.uniforms);K[Ie]=[ge.size,sn],it.uniforms[sn]=ct;for(var Xt=1;Xt<ge.size;++Xt){var ea=Ie+"["+Xt+"]";ct=Jr.getUniformLocation(F,ea),sn=it.getNewId(it.uniforms),it.uniforms[sn]=ct}}}}},Lm=["default","low-power","high-performance"];function Bm(N,F){var B=F>>2,K=i()[B+(24>>2)],Ae={alpha:!!i()[B+(0>>2)],depth:!!i()[B+(4>>2)],stencil:!!i()[B+(8>>2)],antialias:!!i()[B+(12>>2)],premultipliedAlpha:!!i()[B+(16>>2)],preserveDrawingBuffer:!!i()[B+(20>>2)],powerPreference:Lm[K],failIfMajorPerformanceCaveat:!!i()[B+(28>>2)],majorVersion:i()[B+(32>>2)],minorVersion:i()[B+(36>>2)],enableExtensionsByDefault:i()[B+(40>>2)],explicitSwapControl:i()[B+(44>>2)],proxyContextToMainThread:i()[B+(48>>2)],renderViaOffscreenBackBuffer:i()[B+(52>>2)]},me=Yu(N);if(!me||Ae.explicitSwapControl)return 0;var ge=it.createContext(me,Ae);return ge}function Wm(N,F){return Bm(N,F)}var Fi={mappings:{},buffers:[null,[],[]],printChar:function(N,F){var B=Fi.buffers[N];F===0||F===10?((N===1?j:q)(Be(B,0)),B.length=0):B.push(F)},varargs:void 0,get:function(){Fi.varargs+=4;var N=i()[Fi.varargs-4>>2];return N},getStr:function(N){var F=Me(N);return F},get64:function(N,F){return N}};function pp(N){return k?Yr(3,1,N):0}function hp(N,F,B,K,Ae){if(k)return Yr(4,1,N,F,B,K,Ae)}function fp(N,F,B,K){if(k)return Yr(5,1,N,F,B,K);for(var Ae=0,me=0;me<B;me++){for(var ge=i()[F+me*8>>2],Ie=i()[F+(me*8+4)>>2],ct=0;ct<Ie;ct++)Fi.printChar(N,o()[ge+ct]);Ae+=Ie}return i()[K>>2]=Ae,0}function Vm(N){var F=Te.threadExitHandlers.pop();N&&F()}function Um(N,F){Te.threadExitHandlers.push(function(){As.get(N)(F)})}function mp(N){if(k)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var F=Te.getNewWorker();if(F.pthread!==void 0)throw"Internal error!";if(!N.pthread_ptr)throw"Internal error, no pthread ptr!";Te.runningWorkers.push(F);for(var B=La(128*4),K=0;K<128;++K)i()[B+K*4>>2]=0;var Ae=N.stackBase+N.stackSize,me=Te.pthreads[N.pthread_ptr]={worker:F,stackBase:N.stackBase,stackSize:N.stackSize,allocatedOwnStack:N.allocatedOwnStack,threadInfoStruct:N.pthread_ptr},ge=me.threadInfoStruct>>2;Atomics.store(l(),ge+(64>>2),N.detached),Atomics.store(l(),ge+(100>>2),B),Atomics.store(l(),ge+(40>>2),me.threadInfoStruct),Atomics.store(l(),ge+(80>>2),N.stackSize),Atomics.store(l(),ge+(76>>2),Ae),Atomics.store(l(),ge+(104>>2),N.stackSize),Atomics.store(l(),ge+(104+8>>2),Ae),Atomics.store(l(),ge+(104+12>>2),N.detached);var Ie=Jx(),ct=Ie+40;Atomics.store(l(),ge+(172>>2),ct),F.pthread=me;var sn={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr,stackBase:N.stackBase,stackSize:N.stackSize};F.runPthread=function(){sn.time=performance.now(),F.postMessage(sn,N.transferList)},F.loaded&&(F.runPthread(),delete F.runPthread)}function Hm(N,F,B,K){if(typeof SharedArrayBuffer=="undefined")return q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!N)return q("pthread_create called with a null thread pointer!"),28;var Ae=[],me=0;if(k&&(Ae.length===0||me))return n5(687865856,N,F,B,K);if(me)return me;var ge=0,Ie=0,ct=0;F&&F!=-1?(ge=i()[F>>2],ge+=81920,Ie=i()[F+8>>2],ct=i()[F+12>>2]!==0):ge=2097152;var sn=Ie==0;sn?Ie=a5(16,ge):(Ie-=ge,xe(Ie>0));for(var Xt=La(228),ea=0;ea<228>>2;++ea)l()[(Xt>>2)+ea]=0;i()[N>>2]=Xt,i()[Xt+12>>2]=Xt;var Bi=Xt+152;i()[Bi>>2]=Bi;var Sn={stackBase:Ie,stackSize:ge,allocatedOwnStack:sn,detached:ct,startRoutine:B,pthread_ptr:Xt,arg:K,transferList:Ae};return k?(Sn.cmd="spawnThread",postMessage(Sn,Ae)):mp(Sn),0}function gp(N){if(k)return Yr(6,1,N);switch(N){case 30:return 16384;case 85:var F=2147483648;return F/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return pm(28),-1}k||Te.initMainThreadBlock();var Jr,Gm=[null,hm,dp,pp,hp,fp,gp],jm={e:cm,r:dm,x:fm,b:mm,y:gm,j:Am,c:ym,d:Xu,f:za,p:xm,z:bm,u:wm,q:Sm,v:_m,i:$m,t:Fm,w:Wm,m:pp,n:hp,g:fp,o:up,a:Q||c.wasmMemory,k:Vm,l:Um,h:Hm,s:gp},Zx=nm(),Ap=c.___wasm_call_ctors=function(){return(Ap=c.___wasm_call_ctors=c.asm.A).apply(null,arguments)},qm=c._init=function(){return(qm=c._init=c.asm.B).apply(null,arguments)},Xm=c._register_tensor=function(){return(Xm=c._register_tensor=c.asm.C).apply(null,arguments)},Km=c._dispose_data=function(){return(Km=c._dispose_data=c.asm.D).apply(null,arguments)},Zm=c._dispose=function(){return(Zm=c._dispose=c.asm.E).apply(null,arguments)},Ym=c._Abs=function(){return(Ym=c._Abs=c.asm.G).apply(null,arguments)},Jm=c._Add=function(){return(Jm=c._Add=c.asm.H).apply(null,arguments)},Qm=c._AddN=function(){return(Qm=c._AddN=c.asm.I).apply(null,arguments)},eg=c._All=function(){return(eg=c._All=c.asm.J).apply(null,arguments)},tg=c._Any=function(){return(tg=c._Any=c.asm.K).apply(null,arguments)},ng=c._ArgMax=function(){return(ng=c._ArgMax=c.asm.L).apply(null,arguments)},sg=c._AvgPool=function(){return(sg=c._AvgPool=c.asm.M).apply(null,arguments)},rg=c._BatchMatMul=function(){return(rg=c._BatchMatMul=c.asm.N).apply(null,arguments)},ag=c._Ceil=function(){return(ag=c._Ceil=c.asm.O).apply(null,arguments)},og=c._ClipByValue=function(){return(og=c._ClipByValue=c.asm.P).apply(null,arguments)},ig=c._Conv2D=function(){return(ig=c._Conv2D=c.asm.Q).apply(null,arguments)},lg=c._Conv2DBackpropInput=function(){return(lg=c._Conv2DBackpropInput=c.asm.R).apply(null,arguments)},ug=c._Cos=function(){return(ug=c._Cos=c.asm.S).apply(null,arguments)},cg=c._Cosh=function(){return(cg=c._Cosh=c.asm.T).apply(null,arguments)},dg=c._CropAndResize=function(){return(dg=c._CropAndResize=c.asm.U).apply(null,arguments)},pg=c._Cumsum=function(){return(pg=c._Cumsum=c.asm.V).apply(null,arguments)},hg=c._DepthToSpace=function(){return(hg=c._DepthToSpace=c.asm.W).apply(null,arguments)},fg=c._DepthwiseConv2dNative=function(){return(fg=c._DepthwiseConv2dNative=c.asm.X).apply(null,arguments)},mg=c._Elu=function(){return(mg=c._Elu=c.asm.Y).apply(null,arguments)},yp=c._Equal=function(){return(yp=c._Equal=c.asm.Z).apply(null,arguments)},xp=c._Exp=function(){return(xp=c._Exp=c.asm._).apply(null,arguments)},bp=c._FlipLeftRight=function(){return(bp=c._FlipLeftRight=c.asm.$).apply(null,arguments)},Ju=c._Floor=function(){return(Ju=c._Floor=c.asm.aa).apply(null,arguments)},Oi=c._FloorDiv=function(){return(Oi=c._FloorDiv=c.asm.ba).apply(null,arguments)},gg=c._FusedBatchNorm=function(){return(gg=c._FusedBatchNorm=c.asm.ca).apply(null,arguments)},Qu=c._FusedConv2D=function(){return(Qu=c._FusedConv2D=c.asm.da).apply(null,arguments)},J=c._FusedDepthwiseConv2D=function(){return(J=c._FusedDepthwiseConv2D=c.asm.ea).apply(null,arguments)},ie=c._Gather=function(){return(ie=c._Gather=c.asm.fa).apply(null,arguments)},ve=c._GatherNd=function(){return(ve=c._GatherNd=c.asm.ga).apply(null,arguments)},nt=c._Greater=function(){return(nt=c._Greater=c.asm.ha).apply(null,arguments)},Ft=c._GreaterEqual=function(){return(Ft=c._GreaterEqual=c.asm.ia).apply(null,arguments)},kt=c._LeakyRelu=function(){return(kt=c._LeakyRelu=c.asm.ja).apply(null,arguments)},Ke=c._Less=function(){return(Ke=c._Less=c.asm.ka).apply(null,arguments)},Je=c._LessEqual=function(){return(Je=c._LessEqual=c.asm.la).apply(null,arguments)},gn=c._Log=function(){return(gn=c._Log=c.asm.ma).apply(null,arguments)},Nr=c._LogicalAnd=function(){return(Nr=c._LogicalAnd=c.asm.na).apply(null,arguments)},Er=c._Max=function(){return(Er=c._Max=c.asm.oa).apply(null,arguments)},vp=c._MaxPool=function(){return(vp=c._MaxPool=c.asm.pa).apply(null,arguments)},ec=c._Maximum=function(){return(ec=c._Maximum=c.asm.qa).apply(null,arguments)},Jn=c._Mean=function(){return(Jn=c._Mean=c.asm.ra).apply(null,arguments)},Qr=c._Min=function(){return(Qr=c._Min=c.asm.sa).apply(null,arguments)},wp=c._Minimum=function(){return(wp=c._Minimum=c.asm.ta).apply(null,arguments)},tS=c._MirrorPad=function(){return(tS=c._MirrorPad=c.asm.ua).apply(null,arguments)},nS=c._Multiply=function(){return(nS=c._Multiply=c.asm.va).apply(null,arguments)},sS=c._Neg=function(){return(sS=c._Neg=c.asm.wa).apply(null,arguments)},rS=c._NonMaxSuppressionV3=function(){return(rS=c._NonMaxSuppressionV3=c.asm.xa).apply(null,arguments)},aS=c._NonMaxSuppressionV4=function(){return(aS=c._NonMaxSuppressionV4=c.asm.ya).apply(null,arguments)},oS=c._NonMaxSuppressionV5=function(){return(oS=c._NonMaxSuppressionV5=c.asm.za).apply(null,arguments)},iS=c._NotEqual=function(){return(iS=c._NotEqual=c.asm.Aa).apply(null,arguments)},lS=c._OneHot=function(){return(lS=c._OneHot=c.asm.Ba).apply(null,arguments)},uS=c._PadV2=function(){return(uS=c._PadV2=c.asm.Ca).apply(null,arguments)},cS=c._Pow=function(){return(cS=c._Pow=c.asm.Da).apply(null,arguments)},dS=c._Prelu=function(){return(dS=c._Prelu=c.asm.Ea).apply(null,arguments)},pS=c._Prod=function(){return(pS=c._Prod=c.asm.Fa).apply(null,arguments)},hS=c._RealDiv=function(){return(hS=c._RealDiv=c.asm.Ga).apply(null,arguments)},fS=c._Relu=function(){return(fS=c._Relu=c.asm.Ha).apply(null,arguments)},mS=c._Relu6=function(){return(mS=c._Relu6=c.asm.Ia).apply(null,arguments)},gS=c._ResizeBilinear=function(){return(gS=c._ResizeBilinear=c.asm.Ja).apply(null,arguments)},AS=c._Reverse=function(){return(AS=c._Reverse=c.asm.Ka).apply(null,arguments)},yS=c._RotateWithOffset=function(){return(yS=c._RotateWithOffset=c.asm.La).apply(null,arguments)},xS=c._Round=function(){return(xS=c._Round=c.asm.Ma).apply(null,arguments)},bS=c._Rsqrt=function(){return(bS=c._Rsqrt=c.asm.Na).apply(null,arguments)},vS=c._ScatterNd=function(){return(vS=c._ScatterNd=c.asm.Oa).apply(null,arguments)},wS=c._SelectV2=function(){return(wS=c._SelectV2=c.asm.Pa).apply(null,arguments)},kS=c._Sigmoid=function(){return(kS=c._Sigmoid=c.asm.Qa).apply(null,arguments)},IS=c._Sin=function(){return(IS=c._Sin=c.asm.Ra).apply(null,arguments)},SS=c._Softmax=function(){return(SS=c._Softmax=c.asm.Sa).apply(null,arguments)},CS=c._Sqrt=function(){return(CS=c._Sqrt=c.asm.Ta).apply(null,arguments)},TS=c._Square=function(){return(TS=c._Square=c.asm.Ua).apply(null,arguments)},NS=c._SquaredDifference=function(){return(NS=c._SquaredDifference=c.asm.Va).apply(null,arguments)},ES=c._Step=function(){return(ES=c._Step=c.asm.Wa).apply(null,arguments)},RS=c._StridedSlice=function(){return(RS=c._StridedSlice=c.asm.Xa).apply(null,arguments)},DS=c._Sub=function(){return(DS=c._Sub=c.asm.Ya).apply(null,arguments)},_S=c._Sum=function(){return(_S=c._Sum=c.asm.Za).apply(null,arguments)},$S=c._Tan=function(){return($S=c._Tan=c.asm._a).apply(null,arguments)},FS=c._Tanh=function(){return(FS=c._Tanh=c.asm.$a).apply(null,arguments)},OS=c._Tile=function(){return(OS=c._Tile=c.asm.ab).apply(null,arguments)},PS=c._TopK=function(){return(PS=c._TopK=c.asm.bb).apply(null,arguments)},MS=c._Transform=function(){return(MS=c._Transform=c.asm.cb).apply(null,arguments)},zS=c._Transpose=function(){return(zS=c._Transpose=c.asm.db).apply(null,arguments)},LS=c.__FusedMatMul=function(){return(LS=c.__FusedMatMul=c.asm.eb).apply(null,arguments)},La=c._malloc=function(){return(La=c._malloc=c.asm.fb).apply(null,arguments)},tc=c._free=function(){return(tc=c._free=c.asm.gb).apply(null,arguments)},Yx=c.___errno_location=function(){return(Yx=c.___errno_location=c.asm.hb).apply(null,arguments)},Jx=c._emscripten_get_global_libc=function(){return(Jx=c._emscripten_get_global_libc=c.asm.ib).apply(null,arguments)},Pi=c._pthread_self=function(){return(Pi=c._pthread_self=c.asm.jb).apply(null,arguments)},Qx=c.___pthread_tsd_run_dtors=function(){return(Qx=c.___pthread_tsd_run_dtors=c.asm.kb).apply(null,arguments)},Ag=c._emscripten_main_thread_process_queued_calls=function(){return(Ag=c._emscripten_main_thread_process_queued_calls=c.asm.lb).apply(null,arguments)},BS=c._emscripten_current_thread_process_queued_calls=function(){return(BS=c._emscripten_current_thread_process_queued_calls=c.asm.mb).apply(null,arguments)},e5=c._emscripten_register_main_browser_thread_id=function(){return(e5=c._emscripten_register_main_browser_thread_id=c.asm.nb).apply(null,arguments)},t5=c.__emscripten_do_dispatch_to_thread=function(){return(t5=c.__emscripten_do_dispatch_to_thread=c.asm.ob).apply(null,arguments)},n5=c._emscripten_sync_run_in_main_thread_4=function(){return(n5=c._emscripten_sync_run_in_main_thread_4=c.asm.pb).apply(null,arguments)},s5=c._emscripten_run_in_main_runtime_thread_js=function(){return(s5=c._emscripten_run_in_main_runtime_thread_js=c.asm.qb).apply(null,arguments)},yg=c.__emscripten_call_on_thread=function(){return(yg=c.__emscripten_call_on_thread=c.asm.rb).apply(null,arguments)},WS=c._emscripten_tls_init=function(){return(WS=c._emscripten_tls_init=c.asm.sb).apply(null,arguments)},xg=c.__emscripten_thread_init=function(){return(xg=c.__emscripten_thread_init=c.asm.tb).apply(null,arguments)},nc=c.stackSave=function(){return(nc=c.stackSave=c.asm.ub).apply(null,arguments)},Mi=c.stackRestore=function(){return(Mi=c.stackRestore=c.asm.vb).apply(null,arguments)},zi=c.stackAlloc=function(){return(zi=c.stackAlloc=c.asm.wb).apply(null,arguments)},r5=c._emscripten_stack_set_limits=function(){return(r5=c._emscripten_stack_set_limits=c.asm.xb).apply(null,arguments)},a5=c._memalign=function(){return(a5=c._memalign=c.asm.yb).apply(null,arguments)},o5=c.__emscripten_allow_main_runtime_queued_calls=10016,Li=c.__emscripten_main_thread_futex=11652;c.cwrap=Pe,c.PThread=Te,c.PThread=Te,c.wasmMemory=Q,c.ExitStatus=sc;var kp;function sc(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}Ma=function N(){kp||bg(),kp||(Ma=N)};function bg(N){if(N=N||f,Cr>0)return;if(k){d(c),qu(),postMessage({cmd:"loaded"});return}if(K0(),Cr>0)return;function F(){kp||(kp=!0,c.calledRun=!0,!de&&(qu(),Z0(),d(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),zn()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),F()},1)):F()}c.run=bg;function VS(N,F){if(!(F&&ae&&N===0)){if(!F&&k)throw postMessage({cmd:"exitProcess",returnCode:N}),new sc(N);ae||(Te.terminateAllThreads(),fe=N,sp(),c.onExit&&c.onExit(N),de=!0),A(N,new sc(N))}}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return k&&(ae=!1,Te.initWorker()),bg(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),gC=It({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.9.0_@tensorflow+tfjs-core@3.9.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(J,ie){o=J,i=ie});var l={},u;for(u in a)a.hasOwnProperty(u)&&(l[u]=a[u]);var c=[],d="./this.program",p=function(J,ie){throw ie},h=!1,m=!1,f=!1,g=!1;h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!f&&!m;var A="";function y(J){return a.locateFile?a.locateFile(J,A):A+J}var x,b,v,k,S,C;f?(m?A=ic().dirname(A)+"/":A=__dirname+"/",x=function(ie,ve){return S||(S=Vi("fs")),C||(C=ic()),ie=C.normalize(ie),S.readFileSync(ie,ve?null:"utf8")},v=function(ie){var ve=x(ie,!0);return ve.buffer||(ve=new Uint8Array(ve)),j(ve.buffer),ve},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(J){if(!(J instanceof gg))throw J}),process.on("unhandledRejection",or),p=function(J){process.exit(J)},a.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(ie){return read(ie)}),v=function(ie){var ve;return typeof readbuffer=="function"?new Uint8Array(readbuffer(ie)):(ve=read(ie,"binary"),j(typeof ve=="object"),ve)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(p=function(J){quit(J)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||m)&&(m?A=self.location.href:typeof document!="undefined"&&document.currentScript&&(A=document.currentScript.src),s&&(A=s),A.indexOf("blob:")!==0?A=A.substr(0,A.lastIndexOf("/")+1):A="",x=function(J){var ie=new XMLHttpRequest;return ie.open("GET",J,!1),ie.send(null),ie.responseText},m&&(v=function(J){var ie=new XMLHttpRequest;return ie.open("GET",J,!1),ie.responseType="arraybuffer",ie.send(null),new Uint8Array(ie.response)}),b=function(J,ie,ve){var nt=new XMLHttpRequest;nt.open("GET",J,!0),nt.responseType="arraybuffer",nt.onload=function(){if(nt.status==200||nt.status==0&&nt.response){ie(nt.response);return}ve()},nt.onerror=ve,nt.send(null)},k=function(J){document.title=J});var D=a.print||console.log.bind(console),O=a.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(a[u]=l[u]);l=null,a.arguments&&(c=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(p=a.quit);var E;a.wasmBinary&&(E=a.wasmBinary);var R=a.noExitRuntime||!0;typeof WebAssembly!="object"&&or("no native wasm support detected");var T,P=!1,U;function j(J,ie){J||or("Assertion failed: "+ie)}function q(J){var ie=a["_"+J];return j(ie,"Cannot call unknown function "+J+", make sure it is exported"),ie}function X(J,ie,ve,nt,Ft){var kt={string:function(Jn){var Qr=0;if(Jn!=null&&Jn!==0){var wp=(Jn.length<<2)+1;Qr=Ju(wp),ce(Jn,Qr,wp)}return Qr},array:function(Jn){var Qr=Ju(Jn.length);return de(Jn,Qr),Qr}};function Ke(Jn){return ie==="string"?ae(Jn):ie==="boolean"?Boolean(Jn):Jn}var Je=q(J),gn=[],Nr=0;if(nt)for(var Er=0;Er<nt.length;Er++){var vp=kt[ve[Er]];vp?(Nr===0&&(Nr=xp()),gn[Er]=vp(nt[Er])):gn[Er]=nt[Er]}var ec=Je.apply(null,gn);return ec=Ke(ec),Nr!==0&&bp(Nr),ec}function te(J,ie,ve,nt){ve=ve||[];var Ft=ve.every(function(Ke){return Ke==="number"}),kt=ie!=="string";return kt&&Ft&&!nt?q(J):function(){return X(J,ie,ve,arguments,nt)}}var ne=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function se(J,ie,ve){for(var nt=ie+ve,Ft=ie;J[Ft]&&!(Ft>=nt);)++Ft;if(Ft-ie>16&&J.subarray&&ne)return ne.decode(J.subarray(ie,Ft));for(var kt="";ie<Ft;){var Ke=J[ie++];if(!(Ke&128)){kt+=String.fromCharCode(Ke);continue}var Je=J[ie++]&63;if((Ke&224)==192){kt+=String.fromCharCode((Ke&31)<<6|Je);continue}var gn=J[ie++]&63;if((Ke&240)==224?Ke=(Ke&15)<<12|Je<<6|gn:Ke=(Ke&7)<<18|Je<<12|gn<<6|J[ie++]&63,Ke<65536)kt+=String.fromCharCode(Ke);else{var Nr=Ke-65536;kt+=String.fromCharCode(55296|Nr>>10,56320|Nr&1023)}}return kt}function ae(J,ie){return J?se(Re,J,ie):""}function Q(J,ie,ve,nt){if(!(nt>0))return 0;for(var Ft=ve,kt=ve+nt-1,Ke=0;Ke<J.length;++Ke){var Je=J.charCodeAt(Ke);if(Je>=55296&&Je<=57343){var gn=J.charCodeAt(++Ke);Je=65536+((Je&1023)<<10)|gn&1023}if(Je<=127){if(ve>=kt)break;ie[ve++]=Je}else if(Je<=2047){if(ve+1>=kt)break;ie[ve++]=192|Je>>6,ie[ve++]=128|Je&63}else if(Je<=65535){if(ve+2>=kt)break;ie[ve++]=224|Je>>12,ie[ve++]=128|Je>>6&63,ie[ve++]=128|Je&63}else{if(ve+3>=kt)break;ie[ve++]=240|Je>>18,ie[ve++]=128|Je>>12&63,ie[ve++]=128|Je>>6&63,ie[ve++]=128|Je&63}}return ie[ve]=0,ve-Ft}function ce(J,ie,ve){return Q(J,Re,ie,ve)}function de(J,ie){Ee.set(J,ie)}function fe(J,ie){return J%ie>0&&(J+=ie-J%ie),J}var xe,Ee,Re,Pe,Be,Me,mt,lt,ut;function ot(J){xe=J,a.HEAP8=Ee=new Int8Array(J),a.HEAP16=Pe=new Int16Array(J),a.HEAP32=Me=new Int32Array(J),a.HEAPU8=Re=new Uint8Array(J),a.HEAPU16=Be=new Uint16Array(J),a.HEAPU32=mt=new Uint32Array(J),a.HEAPF32=lt=new Float32Array(J),a.HEAPF64=ut=new Float64Array(J)}var ht=a.INITIAL_MEMORY||16777216,qe,Mn=[],Et=[],Zn=[],fn=[],Ns=!1;Et.push({func:function(){up()}});function In(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)gs(a.preRun.shift());Zr(Mn)}function fs(){Ns=!0,Zr(Et)}function ms(){Zr(Zn)}function mn(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)As(a.postRun.shift());Zr(fn)}function gs(J){Mn.unshift(J)}function As(J){fn.unshift(J)}var Yn=0,ar=null,Sr=null;function Kr(J){Yn++,a.monitorRunDependencies&&a.monitorRunDependencies(Yn)}function Di(J){if(Yn--,a.monitorRunDependencies&&a.monitorRunDependencies(Yn),Yn==0&&(ar!==null&&(clearInterval(ar),ar=null),Sr)){var ie=Sr;Sr=null,ie()}}a.preloadedImages={},a.preloadedAudios={};function or(J){a.onAbort&&a.onAbort(J),J+="",O(J),P=!0,U=1,J="abort("+J+"). Build with -s ASSERTIONS=1 for more info.";var ie=new WebAssembly.RuntimeError(J);throw i(ie),ie}function np(J,ie){return String.prototype.startsWith?J.startsWith(ie):J.indexOf(ie)===0}var K0="data:application/octet-stream;base64,";function qu(J){return np(J,K0)}var Z0="file://";function sp(J){return np(J,Z0)}var zn="tfjs-backend-wasm.wasm";qu(zn)||(zn=y(zn));function rp(J){try{if(J==zn&&E)return new Uint8Array(E);if(v)return v(J);throw"both async and sync fetching of the wasm failed"}catch(ie){or(ie)}}function Y0(){if(!E&&(h||m)){if(typeof fetch=="function"&&!sp(zn))return fetch(zn,{credentials:"same-origin"}).then(function(J){if(!J.ok)throw"failed to load wasm binary file at '"+zn+"'";return J.arrayBuffer()}).catch(function(){return rp(zn)});if(b)return new Promise(function(J,ie){b(zn,function(ve){J(new Uint8Array(ve))},ie)})}return Promise.resolve().then(function(){return rp(zn)})}function Cr(){var J={a:nm};function ie(Ke,Je){var gn=Ke.exports;a.asm=gn,T=a.asm.i,ot(T.buffer),qe=a.asm.o,Di("wasm-instantiate")}Kr("wasm-instantiate");function ve(Ke){ie(Ke.instance)}function nt(Ke){return Y0().then(function(Je){return WebAssembly.instantiate(Je,J)}).then(Ke,function(Je){O("failed to asynchronously prepare wasm: "+Je),or(Je)})}function Ft(){return!E&&typeof WebAssembly.instantiateStreaming=="function"&&!qu(zn)&&!sp(zn)&&typeof fetch=="function"?fetch(zn,{credentials:"same-origin"}).then(function(Ke){var Je=WebAssembly.instantiateStreaming(Ke,J);return Je.then(ve,function(gn){return O("wasm streaming compile failed: "+gn),O("falling back to ArrayBuffer instantiation"),nt(ve)})}):nt(ve)}if(a.instantiateWasm)try{var kt=a.instantiateWasm(J,ie);return kt}catch(Ke){return O("Module.instantiateWasm callback failed with error: "+Ke),!1}return Ft().catch(i),{}}function Zr(J){for(;J.length>0;){var ie=J.shift();if(typeof ie=="function"){ie(a);continue}var ve=ie.func;typeof ve=="number"?ie.arg===void 0?qe.get(ve)():qe.get(ve)(ie.arg):ve(ie.arg===void 0?null:ie.arg)}}function Ma(){or()}function J0(J,ie,ve){Re.copyWithin(J,ie,ie+ve)}function Q0(){return Re.length}function Tr(J){try{return T.grow(J-xe.byteLength+65535>>>16),ot(T.buffer),1}catch(ie){}}function ap(J){var ie=Q0(),ve=2147483648;if(J>ve)return!1;for(var nt=1;nt<=4;nt*=2){var Ft=ie*(1+.2/nt);Ft=Math.min(Ft,J+100663296);var kt=Math.min(ve,fe(Math.max(J,Ft),65536)),Ke=Tr(kt);if(Ke)return!0}return!1}var _i={mappings:{},buffers:[null,[],[]],printChar:function(J,ie){var ve=_i.buffers[J];ie===0||ie===10?((J===1?D:O)(se(ve,0)),ve.length=0):ve.push(ie)},varargs:void 0,get:function(){_i.varargs+=4;var J=Me[_i.varargs-4>>2];return J},getStr:function(J){var ie=ae(J);return ie},get64:function(J,ie){return J}};function op(J){return 0}function em(J,ie,ve,nt,Ft){}function ip(J,ie,ve,nt){for(var Ft=0,kt=0;kt<ve;kt++){for(var Ke=Me[ie+kt*8>>2],Je=Me[ie+(kt*8+4)>>2],gn=0;gn<Je;gn++)_i.printChar(J,Re[Ke+gn]);Ft+=Je}return Me[nt>>2]=Ft,0}function Ln(){return 6}function lp(J){return Me[yp()>>2]=J,J}function tm(J){switch(J){case 30:return 16384;case 85:var ie=2147483648;return ie/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return lp(28),-1}var nm={a:Ma,d:J0,e:ap,f:op,c:em,b:ip,g:Ln,h:tm},sm=Cr(),up=a.___wasm_call_ctors=function(){return(up=a.___wasm_call_ctors=a.asm.j).apply(null,arguments)},$i=a._init=function(){return($i=a._init=a.asm.k).apply(null,arguments)},Xu=a._register_tensor=function(){return(Xu=a._register_tensor=a.asm.l).apply(null,arguments)},rm=a._dispose_data=function(){return(rm=a._dispose_data=a.asm.m).apply(null,arguments)},am=a._dispose=function(){return(am=a._dispose=a.asm.n).apply(null,arguments)},om=a._Abs=function(){return(om=a._Abs=a.asm.p).apply(null,arguments)},Te=a._Add=function(){return(Te=a._Add=a.asm.q).apply(null,arguments)},im=a._AddN=function(){return(im=a._AddN=a.asm.r).apply(null,arguments)},lm=a._All=function(){return(lm=a._All=a.asm.s).apply(null,arguments)},um=a._Any=function(){return(um=a._Any=a.asm.t).apply(null,arguments)},cm=a._ArgMax=function(){return(cm=a._ArgMax=a.asm.u).apply(null,arguments)},dm=a._AvgPool=function(){return(dm=a._AvgPool=a.asm.v).apply(null,arguments)},za=a._BatchMatMul=function(){return(za=a._BatchMatMul=a.asm.w).apply(null,arguments)},pm=a._Ceil=function(){return(pm=a._Ceil=a.asm.x).apply(null,arguments)},hm=a._ClipByValue=function(){return(hm=a._ClipByValue=a.asm.y).apply(null,arguments)},fm=a._Conv2D=function(){return(fm=a._Conv2D=a.asm.z).apply(null,arguments)},mm=a._Conv2DBackpropInput=function(){return(mm=a._Conv2DBackpropInput=a.asm.A).apply(null,arguments)},gm=a._Cos=function(){return(gm=a._Cos=a.asm.B).apply(null,arguments)},Am=a._Cosh=function(){return(Am=a._Cosh=a.asm.C).apply(null,arguments)},ym=a._CropAndResize=function(){return(ym=a._CropAndResize=a.asm.D).apply(null,arguments)},xm=a._Cumsum=function(){return(xm=a._Cumsum=a.asm.E).apply(null,arguments)},bm=a._DepthToSpace=function(){return(bm=a._DepthToSpace=a.asm.F).apply(null,arguments)},Yr=a._DepthwiseConv2dNative=function(){return(Yr=a._DepthwiseConv2dNative=a.asm.G).apply(null,arguments)},Ku=a._Elu=function(){return(Ku=a._Elu=a.asm.H).apply(null,arguments)},Zu=a._Equal=function(){return(Zu=a._Equal=a.asm.I).apply(null,arguments)},vm=a._Exp=function(){return(vm=a._Exp=a.asm.J).apply(null,arguments)},wm=a._FlipLeftRight=function(){return(wm=a._FlipLeftRight=a.asm.K).apply(null,arguments)},km=a._Floor=function(){return(km=a._Floor=a.asm.L).apply(null,arguments)},Im=a._FloorDiv=function(){return(Im=a._FloorDiv=a.asm.M).apply(null,arguments)},Sm=a._FusedBatchNorm=function(){return(Sm=a._FusedBatchNorm=a.asm.N).apply(null,arguments)},Ve=a._FusedConv2D=function(){return(Ve=a._FusedConv2D=a.asm.O).apply(null,arguments)},Cm=a._FusedDepthwiseConv2D=function(){return(Cm=a._FusedDepthwiseConv2D=a.asm.P).apply(null,arguments)},Tm=a._Gather=function(){return(Tm=a._Gather=a.asm.Q).apply(null,arguments)},Nm=a._GatherNd=function(){return(Nm=a._GatherNd=a.asm.R).apply(null,arguments)},Em=a._Greater=function(){return(Em=a._Greater=a.asm.S).apply(null,arguments)},Rm=a._GreaterEqual=function(){return(Rm=a._GreaterEqual=a.asm.T).apply(null,arguments)},Dm=a._LeakyRelu=function(){return(Dm=a._LeakyRelu=a.asm.U).apply(null,arguments)},Yu=a._Less=function(){return(Yu=a._Less=a.asm.V).apply(null,arguments)},cp=a._LessEqual=function(){return(cp=a._LessEqual=a.asm.W).apply(null,arguments)},dp=a._Log=function(){return(dp=a._Log=a.asm.X).apply(null,arguments)},_m=a._LogicalAnd=function(){return(_m=a._LogicalAnd=a.asm.Y).apply(null,arguments)},$m=a._Max=function(){return($m=a._Max=a.asm.Z).apply(null,arguments)},Fm=a._MaxPool=function(){return(Fm=a._MaxPool=a.asm._).apply(null,arguments)},Om=a._Maximum=function(){return(Om=a._Maximum=a.asm.$).apply(null,arguments)},Pm=a._Mean=function(){return(Pm=a._Mean=a.asm.aa).apply(null,arguments)},Mm=a._Min=function(){return(Mm=a._Min=a.asm.ba).apply(null,arguments)},zm=a._Minimum=function(){return(zm=a._Minimum=a.asm.ca).apply(null,arguments)},it=a._MirrorPad=function(){return(it=a._MirrorPad=a.asm.da).apply(null,arguments)},Lm=a._Multiply=function(){return(Lm=a._Multiply=a.asm.ea).apply(null,arguments)},Bm=a._Neg=function(){return(Bm=a._Neg=a.asm.fa).apply(null,arguments)},Wm=a._NonMaxSuppressionV3=function(){return(Wm=a._NonMaxSuppressionV3=a.asm.ga).apply(null,arguments)},Fi=a._NonMaxSuppressionV4=function(){return(Fi=a._NonMaxSuppressionV4=a.asm.ha).apply(null,arguments)},pp=a._NonMaxSuppressionV5=function(){return(pp=a._NonMaxSuppressionV5=a.asm.ia).apply(null,arguments)},hp=a._NotEqual=function(){return(hp=a._NotEqual=a.asm.ja).apply(null,arguments)},fp=a._OneHot=function(){return(fp=a._OneHot=a.asm.ka).apply(null,arguments)},Vm=a._PadV2=function(){return(Vm=a._PadV2=a.asm.la).apply(null,arguments)},Um=a._Pow=function(){return(Um=a._Pow=a.asm.ma).apply(null,arguments)},mp=a._Prelu=function(){return(mp=a._Prelu=a.asm.na).apply(null,arguments)},Hm=a._Prod=function(){return(Hm=a._Prod=a.asm.oa).apply(null,arguments)},gp=a._RealDiv=function(){return(gp=a._RealDiv=a.asm.pa).apply(null,arguments)},Jr=a._Relu=function(){return(Jr=a._Relu=a.asm.qa).apply(null,arguments)},Gm=a._Relu6=function(){return(Gm=a._Relu6=a.asm.ra).apply(null,arguments)},jm=a._ResizeBilinear=function(){return(jm=a._ResizeBilinear=a.asm.sa).apply(null,arguments)},Zx=a._Reverse=function(){return(Zx=a._Reverse=a.asm.ta).apply(null,arguments)},Ap=a._RotateWithOffset=function(){return(Ap=a._RotateWithOffset=a.asm.ua).apply(null,arguments)},qm=a._Round=function(){return(qm=a._Round=a.asm.va).apply(null,arguments)},Xm=a._Rsqrt=function(){return(Xm=a._Rsqrt=a.asm.wa).apply(null,arguments)},Km=a._ScatterNd=function(){return(Km=a._ScatterNd=a.asm.xa).apply(null,arguments)},Zm=a._SelectV2=function(){return(Zm=a._SelectV2=a.asm.ya).apply(null,arguments)},Ym=a._Sigmoid=function(){return(Ym=a._Sigmoid=a.asm.za).apply(null,arguments)},Jm=a._Sin=function(){return(Jm=a._Sin=a.asm.Aa).apply(null,arguments)},Qm=a._Softmax=function(){return(Qm=a._Softmax=a.asm.Ba).apply(null,arguments)},eg=a._Sqrt=function(){return(eg=a._Sqrt=a.asm.Ca).apply(null,arguments)},tg=a._Square=function(){return(tg=a._Square=a.asm.Da).apply(null,arguments)},ng=a._SquaredDifference=function(){return(ng=a._SquaredDifference=a.asm.Ea).apply(null,arguments)},sg=a._Step=function(){return(sg=a._Step=a.asm.Fa).apply(null,arguments)},rg=a._StridedSlice=function(){return(rg=a._StridedSlice=a.asm.Ga).apply(null,arguments)},ag=a._Sub=function(){return(ag=a._Sub=a.asm.Ha).apply(null,arguments)},og=a._Sum=function(){return(og=a._Sum=a.asm.Ia).apply(null,arguments)},ig=a._Tan=function(){return(ig=a._Tan=a.asm.Ja).apply(null,arguments)},lg=a._Tanh=function(){return(lg=a._Tanh=a.asm.Ka).apply(null,arguments)},ug=a._Tile=function(){return(ug=a._Tile=a.asm.La).apply(null,arguments)},cg=a._TopK=function(){return(cg=a._TopK=a.asm.Ma).apply(null,arguments)},dg=a._Transform=function(){return(dg=a._Transform=a.asm.Na).apply(null,arguments)},pg=a._Transpose=function(){return(pg=a._Transpose=a.asm.Oa).apply(null,arguments)},hg=a.__FusedMatMul=function(){return(hg=a.__FusedMatMul=a.asm.Pa).apply(null,arguments)},fg=a._malloc=function(){return(fg=a._malloc=a.asm.Qa).apply(null,arguments)},mg=a._free=function(){return(mg=a._free=a.asm.Ra).apply(null,arguments)},yp=a.___errno_location=function(){return(yp=a.___errno_location=a.asm.Sa).apply(null,arguments)},xp=a.stackSave=function(){return(xp=a.stackSave=a.asm.Ta).apply(null,arguments)},bp=a.stackRestore=function(){return(bp=a.stackRestore=a.asm.Ua).apply(null,arguments)},Ju=a.stackAlloc=function(){return(Ju=a.stackAlloc=a.asm.Va).apply(null,arguments)};a.cwrap=te;var Oi;function gg(J){this.name="ExitStatus",this.message="Program terminated with exit("+J+")",this.status=J}Sr=function J(){Oi||Qu(),Oi||(Sr=J)};function Qu(J){if(J=J||c,Yn>0||(In(),Yn>0))return;function ie(){Oi||(Oi=!0,a.calledRun=!0,!P&&(fs(),ms(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),mn()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),ie()},1)):ie()}if(a.run=Qu,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return Qu(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),AC=1e-7,yC=1e-4,Sp=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},lc=class{refCount(e){return Es("refCount")}incRef(e){return Es("incRef")}timerAvailable(){return!0}time(e){return Es("time")}read(e){return Es("read")}readSync(e){return Es("readSync")}numDataIds(){return Es("numDataIds")}disposeData(e,t){return Es("disposeData")}write(e,t,n){return Es("write")}move(e,t,n,s,r){return Es("move")}memory(){return Es("memory")}floatPrecision(){return Es("floatPrecision")}epsilon(){return this.floatPrecision()===32?AC:yC}dispose(){return Es("dispose")}};function Es(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function m5(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Cp(e,t,n)}function xC(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,Cp(e,n,s),Cp(t,n,s)}function uc(e,t,n){return Math.max(e,Math.min(t,n))}function bC(e){return e%2==0?e:e+1}function Cp(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function vC(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function wC(e,t){let n=Math.random();return t*n+(1-n)*e}function kC(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function M(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Cn(e,t,n=""){M(Rr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Va(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Ua(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||wn(e)&&!n)for(let s=0;s<e.length;++s)Ua(e[s],t,n);else t.push(e);return t}function Mt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function IC(e){return e.length===0}function Rr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function an(e){return e%1==0}function SC(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function CC(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function TC(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return m5(t),t}function cc(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function NC(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function EC(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function Rs(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),M(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(s=>an(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function g5(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:Rs(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function A5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function y5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function x5(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function b5(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function RC(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function wn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function kg(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function v5(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function na(e){return typeof e=="string"||e instanceof String}function w5(e){return typeof e=="boolean"}function k5(e){return typeof e=="number"}function Tp(e){return Array.isArray(e)?Tp(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":k5(e)?"float32":na(e)?"string":w5(e)?"bool":"float32"}function sa(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Np(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function Ui(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function I5(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,u)=>l*u)*(s?2:1);for(let l=0;l<a;l++)r[l]=I5(e+l*i,o,n,s)}return r}function Hi(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return I5(0,e,t,n)}function Ig(e,t){let n=Ep(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function Ep(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function DC(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return Hi(e,new Float32Array(n));if(t==="int32")return Hi(e,new Int32Array(n));if(t==="bool")return Hi(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Sg(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function _C(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function $C(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function Cg(e){return e&&e.then&&typeof e.then=="function"}function ir(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(...e)}function FC(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.log(...e)}var S5="tfjsflags",C5=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=OC,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&ir(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];ir(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Cg(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);S5 in e&&e[S5].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=MC(s,r)})}};function OC(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(PC(t,s[0],s[1]),s.join("="))),t}function PC(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function MC(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Y(){return Ws}var Ws=null;function zC(e){Ws=e}var Tg;function T5(){if(Tg==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Tg=e}return Tg}function LC(){let e=T5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Ng(e,t){let n=LC();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var Gi="Abs",ji="Acos",qi="Acosh",ra="Add",Ha="AddN",Xi="All",Ki="Any",Ga="ArgMax",dc="ArgMin",Zi="Asin",Yi="Asinh",Ji="Atan",Qi="Atanh",el="Atan2",ja="AvgPool",Rp="AvgPoolGrad",pc="AvgPool3D",Dp="AvgPool3DGrad",qa="BatchMatMul",tl="BatchToSpaceND",_p="Bincount",N5="BroadcastTo",Eg="BroadcastArgs",Xa="Cast",Ka="Ceil",aa="ClipByValue",$p="Complex",hc="ComplexAbs",nl="Concat",Za="Conv2D",Fp="Conv2DBackpropFilter",Ya="Conv2DBackpropInput",fc="Conv3D",Op="Conv3DBackpropFilterV2",Pp="Conv3DBackpropInputV2",Ja="Cos",Qa="Cosh",eo="Cumsum",sl="CropAndResize",Mp="DenseBincount",rl="DepthToSpace",to="DepthwiseConv2dNative",zp="DepthwiseConv2dNativeBackpropFilter",Lp="DepthwiseConv2dNativeBackpropInput",Bp="Diag",mc="Dilation2D",Wp="Dilation2DBackpropInput",Vp="Dilation2DBackpropFilter",no="RealDiv",Up="Einsum",so="Elu",Hp="EluGrad",al="Erf",ol="Equal",ro="Exp",il="ExpandDims",ll="Expm1",Gp="FFT",gc="Fill",ul="FlipLeftRight",ao="Floor",oo="FloorDiv",io="FusedBatchNorm",cl="GatherV2",dl="GatherNd",pl="Greater",lo="GreaterEqual",uo="Identity",jp="IFFT",qp="Imag",hl="IsFinite",fl="IsInf",ml="IsNan",co="LeakyRelu",gl="Less",Al="LessEqual",Xp="LinSpace",po="Log",yl="Log1p",xl="LogicalAnd",Ac="LogicalNot",yc="LogicalOr",E5="LogSoftmax",xc="LRN",Kp="LRNGrad",ho="Max",fo="Maximum",mo="MaxPool",Zp="MaxPoolGrad",bc="MaxPool3D",Yp="MaxPool3DGrad",Jp="MaxPoolWithArgmax",go="Mean",Ao="Min",yo="Minimum",xo="MirrorPad",bl="Mod",Qp="Multinomial",bo="Multiply",vl="Neg",wl="NotEqual",kl="NonMaxSuppressionV3",Il="NonMaxSuppressionV4",Sl="NonMaxSuppressionV5",Cl="OnesLike",vo="OneHot",Tl="Pack",wo="PadV2",BC="Pool",ko="Pow",Io="Prelu",Nl="Prod",vc="Range",eh="Real",El="Reciprocal",So="Relu",Rl="Reshape",wc="ResizeNearestNeighbor",th="ResizeNearestNeighborGrad",Co="ResizeBilinear",nh="ResizeBilinearGrad",To="Relu6",No="Reverse",Eo="Round",Ro="Rsqrt",Dl="ScatterNd",_l="Select",$l="Selu",Fl="Slice",Do="Sin",Ol="Sinh",Pl="Sign",_o="Sigmoid",Ml="Softplus",$o="Sqrt",Fo="Sum",zl="SpaceToBatchND",Ll="SplitV",Oo="Softmax",sh="SparseFillEmptyRows",rh="SparseReshape",ah="SparseSegmentMean",oh="SparseSegmentSum",ih="SparseToDense",Po="SquaredDifference",kc="Square",Bl="StridedSlice",lh="StringNGrams",uh="StringSplit",ch="StringToHashBucketFast",Mo="Sub",zo="Tan",Lo="Tanh",oa="Tile",Wl="TopK",Vl="Transform",Bo="Transpose",dh="Unique",Ul="Unpack",Ic="UnsortedSegmentSum",Hl="ZerosLike",ia="Step",ph="FromPixels",Gl="RotateWithOffset",Wo="_FusedMatMul",Vo="FusedConv2D",Uo="FusedDepthwiseConv2D",jl=Ng("kernelRegistry",()=>new Map),Sc=Ng("gradRegistry",()=>new Map);function hh(e,t){let n=Dg(e,t);return jl.get(n)}function Rg(e){return Sc.get(e)}function Dr(e){let t=jl.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function la(e){let{kernelName:t,backendName:n}=e,s=Dg(t,n);jl.has(s)&&ir(`The kernel '${t}' for backend '${n}' is already registered`),jl.set(s,e)}function R5(e){let{kernelName:t}=e;Sc.has(t)&&Y().getBool("DEBUG")&&ir(`Overriding the gradient for '${t}'`),Sc.set(t,e)}function WC(e,t){let n=Dg(e,t);if(!jl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);jl.delete(n)}function VC(e){if(!Sc.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Sc.delete(e)}function UC(e,t){Dr(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});la(r)})}function Dg(e,t){return`${t}_${e}`}var w={};Le(w,{arraysEqual:()=>Rr,assert:()=>M,assertNonNegativeIntegerDimensions:()=>Sg,assertNonNull:()=>Va,assertShapesMatch:()=>Cn,bytesFromStringArray:()=>v5,bytesPerElement:()=>kg,checkConversionForErrors:()=>x5,clamp:()=>uc,computeStrides:()=>Ui,createScalarValue:()=>KC,createShuffledIndices:()=>TC,decodeString:()=>gh,distSquared:()=>kC,encodeString:()=>Nc,fetch:()=>YC,fingerPrint64:()=>XC,flatten:()=>Ua,getArrayFromDType:()=>y5,getTypedArrayFromDType:()=>A5,hasEncodingLoss:()=>RC,hexToLong:()=>Cc,indexToLoc:()=>$C,inferDtype:()=>Tp,inferFromImplicitShape:()=>EC,isBoolean:()=>w5,isFunction:()=>sa,isInt:()=>an,isNumber:()=>k5,isPromise:()=>Cg,isScalarShape:()=>IC,isString:()=>na,isTypedArray:()=>wn,isValidDtype:()=>b5,locToIndex:()=>_C,makeOnesTypedArray:()=>Ig,makeZerosNestedTypedArray:()=>DC,makeZerosTypedArray:()=>Ep,nearestDivisor:()=>Np,nearestLargerEven:()=>bC,now:()=>Tc,parseAxisParam:()=>Rs,randUniform:()=>wC,repeatedTry:()=>NC,rightPad:()=>cc,shuffle:()=>m5,shuffleCombo:()=>xC,sizeFromShape:()=>Mt,sizeToSquarishShape:()=>CC,squeezeShape:()=>g5,sum:()=>vC,swap:()=>Cp,tanh:()=>SC,toNestedArray:()=>Hi,toTypedArray:()=>mh});var D5=Wa(YS()),Ho=D5.default||D5;function Cc(e){return Ho.fromString(e,!0,16)}var _5=Cc("c3a5c85c97cb3127"),Go=Cc("b492b66fbe98f273"),Tn=Cc("9ae16a3b2f90404f");function _g(e){return e.xor(e.shru(47))}function $5(e,t,n){let s=e.slice(t,t+n);return Ho.fromBytes(Array.from(s),!0,!0)}function xt(e,t){return $5(e,t,8)}function F5(e,t){return $5(e,t,4)}function on(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function ua(e,t,n=Cc("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function HC(e,t,n,s,r,a){r=r.add(e),a=on(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(on(r,44)),[r.add(s),a.add(o)]}function fh(e,t,n,s){return HC(xt(e,t),xt(e,t+8),xt(e,t+16),xt(e,t+24),n,s)}function GC(e,t=e.length){if(t>=8){let n=Tn.add(t*2),s=xt(e,0).add(Tn),r=xt(e,t-8),a=on(r,37).mul(n).add(s),o=on(s,25).add(r).mul(n);return ua(a,o,n)}if(t>=4){let n=Tn.add(t*2),s=F5(e,0);return ua(s.shl(3).add(t),F5(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return _g(Tn.mul(a).xor(_5.mul(o))).mul(Tn)}return Tn}function jC(e,t=e.length){let n=Tn.add(t*2),s=xt(e,0).mul(Go),r=xt(e,8),a=xt(e,t-8).mul(n),o=xt(e,t-16).mul(Tn);return ua(on(s.add(r),43).add(on(a,30)).add(o),s.add(on(r.add(Tn),18)).add(a),n)}function qC(e,t=e.length){let n=Tn.add(t*2),s=xt(e,0).mul(Tn),r=xt(e,8),a=xt(e,t-8).mul(n),o=xt(e,t-16).mul(Tn),i=on(s.add(r),43).add(on(a,30)).add(o),l=ua(i,s.add(on(r.add(Tn),18)).add(a),n),u=xt(e,16).mul(n),c=xt(e,24),d=i.add(xt(e,t-32)).mul(n),p=l.add(xt(e,t-24)).mul(n);return ua(on(u.add(c),43).add(on(d,30)).add(p),u.add(on(c.add(s),18)).add(d),n)}function XC(e,t=e.length){let n=Ho.fromNumber(81,!0);if(t<=32)return t<=16?GC(e,t):jC(e,t);if(t<=64)return qC(e,t);let s=n,r=n.mul(Go).add(113),a=_g(r.mul(Tn).add(113)).mul(Tn),o=[Ho.UZERO,Ho.UZERO],i=[Ho.UZERO,Ho.UZERO];s=s.mul(Tn).add(xt(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do s=on(s.add(r).add(o[0]).add(xt(e,l+8)),37).mul(Go),r=on(r.add(o[1]).add(xt(e,l+48)),42).mul(Go),s=s.xor(i[1]),r=r.add(o[0]).add(xt(e,l+40)),a=on(a.add(i[0]),33).mul(Go),o=fh(e,l,o[1].mul(Go),s.add(i[0])),i=fh(e,l+32,a.add(i[1]),r.add(xt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==u);let d=Go.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=on(s.add(r).add(o[0]).add(xt(e,l+8)),37).mul(d),r=on(r.add(o[1]).add(xt(e,l+48)),42).mul(d),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(xt(e,l+40))),a=on(a.add(i[0]),33).mul(d),o=fh(e,l,o[1].mul(d),s.add(i[0])),i=fh(e,l+32,a.add(i[1]),r.add(xt(e,l+16))),[a,s]=[s,a],ua(ua(o[0],i[0],d).add(_g(r).mul(_5)).add(a),ua(o[1],i[1],d).add(s),d)}function KC(e,t){return t==="string"?Nc(e):mh([e],t)}function ZC(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function mh(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Ua(e)),Y().getBool("DEBUG")&&x5(e,t),ZC(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Tc(){return Y().platform.now()}function YC(e,t){return Y().platform.fetch(e,t)}function Nc(e,t="utf-8"){return t=t||"utf-8",Y().platform.encode(e,t)}function gh(e,t="utf-8"){return t=t||"utf-8",Y().platform.decode(e,t)}var JC=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new e9)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=Tc();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:Tc()-o})}if(Y().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let u=s[l];u.data().then(c=>{QC(c,u.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function QC(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var e9=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?cc(`${s}ms`,9):s.error,i=cc(e,25),l=t.rank,u=t.size,c=cc(t.shape.toString(),14),d="";for(let p in r){let h=r[p];if(h!=null){let m=h.shape||t.shape,f=m.length;d+=`${p}: ${f}D ${f>0?m:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function t9(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let d in c){let p=c[d],h=!1;for(let m=0;m<t.length;m++)if(s[p.id]){u.outputs.forEach(f=>s[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let d=0;d<u.outputs.length;d++)if(a[u.outputs[d].id]){for(let p in c)a[c[p].id]=!0,o[u.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&o[u.id]){let c={};for(let p in u.inputs){let h=u.inputs[p];s[h.id]&&(c[p]=h)}let d=Object.assign({},u);d.inputs=c,d.outputs=u.outputs,i.push(d)}}return i}function n9(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!Rr(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let d=e[c.id];e[c.id]=s(d,u),d.dispose()}}}}var O5=20,Ec=3,$g=7;function s9(e,t,n,s){let r=Ui(t),a=r9(e,t,n,r),o=t.length,i=Ah(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
`)),l.join(`
`)}function r9(e,t,n,s){let r=Mt(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?Dc(e):e;if(i>1)for(let u=0;u<r/a;u++){let c=u*a;for(let d=0;d<a;d++)o[d]=Math.max(o[d],Rc(l[c+d],0,n).length)}return o}function Rc(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed($g))} + ${parseFloat(e[1].toFixed($g))}j`:na(e)?s=`'${e}'`:n==="bool"?s=P5(e):s=parseFloat(e.toFixed($g)).toString(),cc(s,t)}function P5(e){return e===0?"false":"true"}function Ah(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=Dc(e);return[Rc(f[0],0,n)]}return n==="bool"?[P5(e[0])]:[e[0].toString()]}if(l===1){if(i>O5){let g=Ec*o,A=Array.from(e.slice(0,g)),y=Array.from(e.slice((i-Ec)*o,i*o));return n==="complex64"&&(A=Dc(A),y=Dc(y)),["["+A.map((x,b)=>Rc(x,r[b],n)).join(", ")+", ..., "+y.map((x,b)=>Rc(x,r[i-Ec+b],n)).join(", ")+"]"]}let f=n==="complex64"?Dc(e):Array.from(e);return["["+f.map((g,A)=>Rc(g,r[A],n)).join(", ")+"]"]}let u=t.slice(1),c=s.slice(1),d=s[0]*o,p=[];if(i>O5){for(let f=0;f<Ec;f++){let g=f*d,A=g+d;p.push(...Ah(e.slice(g,A),u,n,c,r,!1))}p.push("...");for(let f=i-Ec;f<i;f++){let g=f*d,A=g+d;p.push(...Ah(e.slice(g,A),u,n,c,r,f===i-1))}}else for(let f=0;f<i;f++){let g=f*d,A=g+d;p.push(...Ah(e.slice(g,A),u,n,c,r,f===i-1))}let h=l===2?",":"";p[0]="["+p[0]+h;for(let f=1;f<p.length-1;f++)p[f]=" "+p[f]+h;let m=`,
`;for(let f=2;f<l;f++)m+=`
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(a?"":m),p}function Dc(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Kt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Mt(e),n!=null){let s=n.length;M(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||y5(t,this.size),this.strides=Ui(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return lr().makeTensor(this.values,this.shape,this.dtype)}},lr=null,ql=null,a9=null;function o9(e){lr=e}function i9(e){ql=e}function l9(e){a9=e}var He=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Mt(e),this.strides=Ui(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return ql.buffer(this.shape,this.dtype,e)}bufferSync(){return ql.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Hi(this.shape,e,this.dtype==="complex64")}arraySync(){return Hi(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=lr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>gh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=lr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>gh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await lr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(lr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return ql.print(this,e)}clone(){return this.throwIfDisposed(),ql.clone(this)}toString(e=!1){let t=this.dataSync();return s9(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),ql.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),lr().makeVariable(this,e,t,n)}};Object.defineProperty(He,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function ee(){return Ng("Tensor",()=>He)}ee();var _c=class extends He{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Rr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);lr().disposeTensor(this),this.dataId=e.dataId,lr().incRef(this,null)}dispose(){lr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(_c,Symbol.hasInstance,{value:e=>e instanceof He&&e.assign!=null&&e.assign instanceof Function});var Vs={};Le(Vs,{assertTypesMatch:()=>M5,getTensorsInContainer:()=>Lg,isTensorInList:()=>c9,makeTypesMatch:()=>Rt});var Fg;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Fg||(Fg={}));var Og;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Og||(Og={}));var Pg;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Pg||(Pg={}));var Mg;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Mg||(Mg={}));var zg;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(zg||(zg={}));var u9={float32:Mg,int32:Og,bool:Pg,complex64:zg};function Ds(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return u9[e][t]}function yh(e){return Ds(e,"int32")}function Rt(e,t){if(e.dtype===t.dtype)return[e,t];let n=Ds(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function M5(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function c9(e,t){return t.some(n=>n.id===e.id)}function Lg(e){let t=[],n=new Set;return z5(e,t,n),t}function z5(e,t,n){if(e==null)return;if(e instanceof He){t.push(e);return}if(!d9(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),z5(a,t,n))}}function d9(e){return Array.isArray(e)||typeof e=="object"}function Bg(e){return e.kernelName!=null}var L5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},$c=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new L5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(ir(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new JC(this.backendInstance),!0}setupRegisteredKernels(){Dr(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Dr(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof lc)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,ir(`Initialization of backend ${e} failed`),ir(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return ir(`Initialization of backend ${e} failed`),ir(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return $c.nextTensorId++}nextVariableId(){return $c.nextVariableId++}clone(e){let t=L.runKernel(uo,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return L.runKernel(Xa,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(hh(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=Bg(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Bg(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=hh(h,this.backendName);M(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let A=this.backend.numDataIds();i=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let y=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,A,y);let x=y.map(b=>{if(b.rank!=null)return b;let{dataId:v,shape:k,dtype:S}=b;return this.makeTensorFromDataId(v,k,S)});if(s){let b=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:h}=e,m=f=>{!s||(n=f.map(g=>this.keep(this.clone(g))))};o=()=>{let f=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,m));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:c}=e,d=Bg(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(p=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),s&&this.addTapeNode(l,u,t,d,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=Rg(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&na(e[0])&&(r=e.map(i=>Nc(i)));let a=s.write(r,t,n),o=new He(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=v5(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new He(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new _c(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*kg(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof _c||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*kg(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=Rg(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let d=n[c],p=Ep(d.size,d.dtype);return this.makeTensor(p,d.shape,d.dtype)}return u}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Lg(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(r instanceof He,()=>"The result y returned by f() must be a tensor.");let a=t9(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?p9(r.shape):n,n9(o,a,l=>this.tidy(l),h9);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return M(sa(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(o=>o instanceof He),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),M(n.value instanceof He,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(sa(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];M(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(u.every(d=>d instanceof He),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((d,p)=>{c[p]=()=>d}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Tc(),n=await this.backend.time(e);return n.wallMs=Tc()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new L5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};$c.nextTensorId=0;$c.nextVariableId=0;function p9(e){let t=Ig(Mt(e),"float32");return L.makeTensor(t,e,"float32")}function B5(){let e=T5();if(e._tfengine==null){let t=new C5(e);e._tfengine=new $c(t)}return zC(e._tfengine.ENV),o9(()=>e._tfengine),e._tfengine}var L=B5();function h9(e,t){let n={a:e,b:t};return L.runKernel(ra,n)}var Fc={};Le(Fc,{isBrowser:()=>W5,isMobile:()=>m9});function f9(){return typeof navigator!="undefined"&&navigator!=null}function m9(e){if(e||f9()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function W5(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Us=Y();Us.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Us.registerFlag("IS_BROWSER",()=>W5());Us.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Us.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Us.registerFlag("PROD",()=>!1);Us.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Us.getBool("DEBUG"));Us.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Us.registerFlag("IS_TEST",()=>!1);Us.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Us.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function ur(e,t){let n=e;if(wn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||wn(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&Y().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&V5(e,s,[]),s}function V5(e,t,n){if(n=n||[],!Array.isArray(e)&&!wn(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)V5(e[r],s,n.concat(r))}function U5(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function $(e,t,n,s="numeric"){if(e instanceof He)return U5(s,e.dtype,t,n),e;let r=Tp(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),U5(s,r,t,n),e==null||!wn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=ur(e,r);!wn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?mh(e,r):Ua(e,[],!0);return L.makeTensor(i,a,r)}function Oc(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>$(a,`${t}[${o}]`,n,s))}var H5="__op";function W(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+H5;let r=(...a)=>{L.startScope(n);try{let o=s(...a);return Cg(o)&&console.error("Cannot return a Promise inside of tidy."),L.endScope(o),o}catch(o){throw L.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function g9(e,t){let n=$(e,"real","complex"),s=$(t,"imag","complex");Cn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return L.runKernel($p,r)}var ca=W({complex_:g9});function da(e,t,n,s){if(s==null&&(s=Tp(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!wn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Sg(t);let r=Mt(t),a=Mt(n);M(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==Mt(t.slice(o)):!0;M(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!wn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?mh(e,s):Ua(e,[],!0),L.makeTensor(e,t,s)}function ln(e,t,n){let s=ur(e,n);return da(e,t,s,n)}var Wg={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},xh=4;async function A9(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async d=>{let p=await l.bytes(),h=p.reduce((g,A)=>g+A.length,0)+xh*p.length,m=new Uint8Array(h),f=0;for(let g=0;g<p.length;g++){let A=p[g],y=new Uint8Array(new Uint32Array([A.length]).buffer);m.set(y,f),f+=xh,m.set(A,f),f+=A.length}d(m)});s.push(c)}else s.push(l.data());t!=null&&(u.group=t),n.push(u)}let a=await Promise.all(s);return{data:y9(a),specs:n}}function G5(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,u=Mt(l),c;if("quantization"in a){let d=a.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${a.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=Wg[d.dtype],h=e.slice(r,r+u*p),m=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){c=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];c[f]=g*d.scale+d.min}}else if(d.dtype==="float16")s===void 0&&(s=I9()),c=s(m);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(i==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);c=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];c[f]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*p}else if(i==="string"){let d=Mt(a.shape);c=[];for(let p=0;p<d;p++){let h=new Uint32Array(e.slice(r,r+xh))[0];r+=xh;let m=new Uint8Array(e.slice(r,r+h));c.push(m),r+=h}}else{let d=Wg[i],p=e.slice(r,r+u*d);if(i==="float32")c=new Float32Array(p);else if(i==="int32")c=new Int32Array(p);else if(i==="bool")c=new Uint8Array(p);else if(i==="complex64"){c=new Float32Array(p);let h=new Float32Array(c.length/2),m=new Float32Array(c.length/2);for(let A=0;A<h.length;A++)h[A]=c[A*2],m[A]=c[A*2+1];let f=ln(h,l,"float32"),g=ln(m,l,"float32");n[o]=ca(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*d}i!=="complex64"&&(n[o]=ln(c,l,i))}return n}function y9(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var Vg=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function j5(e){return Vg?Buffer.byteLength(e):new Blob([e]).size}function x9(e){if(Vg)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function b9(e){if(Vg){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function Ug(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function q5(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function X5(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Hg(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Pc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:j5(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:j5(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function v9(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)==0;)r-=8388608,s<<=1;return s&=~8388608,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function w9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function k9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function I9(){let e=v9(),t=w9(),n=k9();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Ot=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Ot.instance==null&&(Ot.instance=new Ot),Ot.instance}static registerSaveRouter(e){Ot.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Ot.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Ot.getHandlers(e,"save")}static getLoadHandlers(e,t){return Ot.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Ot.getInstance().loadRouters:Ot.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},S9=e=>Ot.registerSaveRouter(e),C9=e=>Ot.registerLoadRouter(e),T9=e=>Ot.getSaveHandlers(e),N9=(e,t)=>Ot.getLoadHandlers(e,t),Gg="tensorflowjs",jg=1,jo="models_store",pa="model_info_store";function K5(){if(!Y().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function qg(e){let t=e.result;t.createObjectStore(jo,{keyPath:"modelPath"}),t.createObjectStore(pa,{keyPath:"modelPath"})}var qo=class{constructor(e){if(this.indexedDB=K5(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(Gg,jg);r.onupgradeneeded=()=>qg(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(jo,"readonly"),l=o.objectStore(jo).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=Pc(t),i=a.transaction(pa,"readwrite"),l=i.objectStore(pa),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction(jo,"readwrite");let p=c.objectStore(jo).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});p.onsuccess=()=>n({modelArtifactsInfo:o}),p.onerror=h=>{l=i.objectStore(pa);let m=l.delete(this.modelPath);m.onsuccess=()=>(a.close(),s(p.error)),m.onerror=f=>(a.close(),s(p.error))}},u.onerror=d=>(a.close(),s(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};qo.URL_SCHEME="indexeddb://";var Z5=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(qo.URL_SCHEME)?E9(e.slice(qo.URL_SCHEME.length)):null;Ot.registerSaveRouter(Z5);Ot.registerLoadRouter(Z5);function E9(e){return new qo(e)}function R9(e){return e.startsWith(qo.URL_SCHEME)?e.slice(qo.URL_SCHEME.length):e}var D9=class{constructor(){this.indexedDB=K5()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Gg,jg);n.onupgradeneeded=()=>qg(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(pa,"readonly"),o=r.objectStore(pa).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=R9(e),new Promise((t,n)=>{let s=this.indexedDB.open(Gg,jg);s.onupgradeneeded=()=>qg(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(pa,"readwrite"),o=a.objectStore(pa),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=r.transaction(jo,"readwrite");let p=l.objectStore(jo).delete(e);p.onsuccess=()=>t(i.result.modelArtifactsInfo),p.onerror=h=>n(i.error)};u.onsuccess=c,u.onerror=d=>(c(),r.close(),n(i.error))}},i.onerror=u=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},_r="/",Xl="tensorflowjs_models",Y5="info",_9="model_topology",$9="weight_specs",F9="weight_data",O9="model_metadata";function J5(e){return{info:[Xl,e,Y5].join(_r),topology:[Xl,e,_9].join(_r),weightSpecs:[Xl,e,$9].join(_r),weightData:[Xl,e,F9].join(_r),modelMetadata:[Xl,e,O9].join(_r)}}function Q5(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function P9(e){let t=e.split(_r);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(_r)}function M9(e){return e.startsWith(Xo.URL_SCHEME)?e.slice(Xo.URL_SCHEME.length):e}var Xo=class{constructor(e){if(!Y().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=J5(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=Pc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,x9(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw Q5(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=b9(a),t}};Xo.URL_SCHEME="localstorage://";var eb=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Xo.URL_SCHEME)?z9(e.slice(Xo.URL_SCHEME.length)):null;Ot.registerSaveRouter(eb);Ot.registerLoadRouter(eb);function z9(e){return new Xo(e)}var L9=class{constructor(){M(Y().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Xl+_r,n=_r+Y5;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=P9(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=M9(e);let t=J5(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return Q5(t),n}},Kl="://",ys=class{constructor(){this.managers={}}static getInstance(){return ys.instance==null&&(ys.instance=new ys),ys.instance}static registerManager(e,t){M(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Kl)&&(e=e.slice(0,e.indexOf(Kl))),M(e.length>0,()=>"scheme must not be an empty string.");let n=ys.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function bh(e){if(e.indexOf(Kl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ys.getSchemes().join(",")}`);return{scheme:e.split(Kl)[0],path:e.split(Kl)[1]}}async function tb(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Ot.getLoadHandlers(e);M(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Ot.getSaveHandlers(t);M(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=bh(e).scheme,l=bh(e).path,u=i===bh(e).scheme,c=await r.load();n&&u&&await ys.getManager(i).removeModel(l);let d=await o.save(c);return n&&!u&&await ys.getManager(i).removeModel(l),d.modelArtifactsInfo}async function B9(){let e=ys.getSchemes(),t={};for(let n of e){let s=await ys.getManager(n).listModels();for(let r in s){let a=n+Kl+r;t[a]=s[r]}}return t}async function W9(e){let t=bh(e);return ys.getManager(t.scheme).removeModel(t.path)}async function V9(e,t){return tb(e,t,!1)}async function U9(e,t){return tb(e,t,!0)}var H9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Y().get("IS_BROWSER")){Y().setPlatform("browser",new H9);try{ys.registerManager(Xo.URL_SCHEME,new L9)}catch(e){}try{ys.registerManager(qo.URL_SCHEME,new D9)}catch(e){}}var G9={importFetch:()=>JS()},Xg,j9=class{constructor(){this.util=Vi("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Y().global.fetch!=null?Y().global.fetch(e,t):(Xg==null&&(Xg=G9.importFetch()),Xg(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Y().get("IS_NODE")&&Y().setPlatform("node",new j9);function Ge(e,t="float32",n){return t=t||"float32",Sg(e),new Kt(e,t,n)}function q9(e,t){let n=$(e,"x","cast");if(!b5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return L.runKernel(Xa,s,r)}var pe=W({cast_:q9});function X9(e){let n={x:$(e,"x","clone","string_or_numeric")};return L.runKernel(uo,n)}var Hs=W({clone_:X9});function nb(e,t=!1){console.log(e.toString(t))}B5();var K9={buffer:Ge,cast:pe,clone:Hs,print:nb};i9(K9);var Bn={};Le(Bn,{browserFiles:()=>nT,browserHTTPRequest:()=>iT,concatenateArrayBuffers:()=>Ug,copyModel:()=>V9,decodeWeights:()=>G5,encodeWeights:()=>A9,fromMemory:()=>uT,getLoadHandlers:()=>N9,getModelArtifactsForJSON:()=>Hg,getModelArtifactsInfoForJSON:()=>Pc,getSaveHandlers:()=>T9,http:()=>Yg,isHTTPScheme:()=>Zg,listModels:()=>B9,loadWeights:()=>sT,moveModel:()=>U9,registerLoadRouter:()=>C9,registerSaveRouter:()=>S9,removeModel:()=>W9,weightsLoaderFactory:()=>ob,withSaveHandler:()=>cT});var Z9="model",Y9=".json",J9=".weights.bin";function sb(e){return new Promise(t=>setTimeout(t)).then(e)}var Zl=class{constructor(e){if(!Y().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Zl.URL_SCHEME)&&(e=e.slice(Zl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=Z9),this.modelJsonFileName=e+Y9,this.weightDataFileName=e+J9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=X5(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await sb(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await sb(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Pc(e)}}}};Zl.URL_SCHEME="downloads://";var Q9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=Hg(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,Ug(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>q5(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=q5(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},eT=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Zl.URL_SCHEME)?tT(e.slice(Zl.URL_SCHEME.length)):null;Ot.registerSaveRouter(eT);function tT(e="model"){return new Zl(e)}function nT(e){return new Q9(e)}function rb(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(u=>{let c=n+ ++r/e.length*(s-n);return t(c),u}),l);function o(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),M(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function ab(e,t){t==null&&(t={});let n=t.fetchFunc==null?Y().platform.fetch:t.fetchFunc,s=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await rb(s,t.onProgress,r,a)).map(d=>d.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await rb(i,t.onProgress,l,u)}async function sT(e,t="",n,s){return ob(o=>ab(o,{requestInit:s}))(e,t,n)}function ob(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let A="quantization"in g?g.quantization.dtype:g.dtype,y=Wg[A]*Mt(g.shape),x=()=>{r[m]=!0,a[m]==null&&(a[m]=[]),a[m].push({manifestEntry:g,groupOffset:f,sizeBytes:y})};s!=null?s.forEach((b,v)=>{b===g.name&&(x(),o[v]=!0)}):x(),i.push(g.name),f+=y})}),!o.every(h=>h)){let h=s.filter((m,f)=>!o[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let c=await e(u),d={},p=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let b=0;b<m;b++)f+=c[p+b].byteLength;let g=new ArrayBuffer(f),A=new Uint8Array(g),y=0;for(let b=0;b<m;b++){let v=new Uint8Array(c[p+b]);A.set(v,y),y+=v.byteLength}a[h].forEach(b=>{let v=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),k=G5(v,[b.manifestEntry]);for(let S in k)d[S]=k[S]}),p+=m}),d}}var rT="application/octet-stream",aT="application/json",Kg=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Y().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=X5(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:aT}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:rT}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Pc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Hg(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=oT(t),r=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(r+c+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await ab(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Ug(l)]}};Kg.URL_SCHEME_REGEX=/^https?:\/\//;function oT(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function Zg(e){return e.match(Kg.URL_SCHEME_REGEX)!=null}var ib=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>Zg(s)):n=Zg(e),n)return Yg(e,t)}return null};Ot.registerSaveRouter(ib);Ot.registerLoadRouter(ib);function Yg(e,t){return new Kg(e,t)}function iT(e,t){return Yg(e,t)}var Jg=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},lT=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function uT(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Jg(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Jg({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Jg({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function cT(e){return new lT(e)}var lb={};Le(lb,{confusionMatrix:()=>mT});function dT(e,t,n=!1,s=!1){let r=$(e,"a","matMul"),a=$(t,"b","matMul");[r,a]=Rt(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return L.runKernel(qa,o,i)}var Ue=W({matMul_:dT});function pT(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:$(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return L.runKernel(vo,a,o)}var Yl=W({oneHot_:pT});function hT(e,t){let n=$(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{M(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return L.runKernel(Bo,s,r)}var Ze=W({transpose_:hT});function fT(e,t,n){let s=$(e,"labels","confusionMatrix"),r=$(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),M(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),M(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=Yl(pe(s,"int32"),n),o=Yl(pe(r,"int32"),n),i=Ze(a),l=Ue(i,o);return pe(l,"int32")}var mT=W({confusionMatrix_:fT}),_s={};Le(_s,{fromPixels:()=>wT,fromPixelsAsync:()=>bT,toPixels:()=>vT});function vh(e,t,n){if(Va(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=ur(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return da(e,t,s,n)}var Jl;function ub(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let m=2;if(r&&e.readyState<m)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(hh(ph,L.backendName)!=null){let m={pixels:e},f={numChannels:t};return L.runKernel(ph,m,f)}let[u,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;o?d=e.getContext("2d").getImageData(0,0,u,c).data:s||n?d=e.data:(a||r||i)&&(Jl==null&&(Jl=document.createElement("canvas").getContext("2d")),Jl.canvas.width=u,Jl.canvas.height=c,Jl.drawImage(e,0,0,u,c),d=Jl.getImageData(0,0,u,c).data);let p;if(t===4)p=new Int32Array(d);else{let m=u*c;p=new Int32Array(m*t);for(let f=0;f<m;f++)for(let g=0;g<t;++g)p[f*t+g]=d[f*4+g]}return vh(p,[c,u,t],"int32")}function gT(e){return e!=null&&e.data instanceof Uint8Array}function AT(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function yT(e){return e!=null&&e.width!==0&&e.height!==0}function xT(e){return AT()&&!(e instanceof ImageBitmap)&&yT(e)&&!gT(e)}async function bT(e,t=3){let n=null;if(Y().getBool("WRAP_TO_IMAGEBITMAP")&&xT(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return ub(n,t)}async function vT(e,t){let n=$(e,"img","toPixels");if(!(e instanceof He)){let u=n;n=pe(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let u=0;u<s*r;++u){let c=[0,0,0,255];for(let p=0;p<a;p++){let h=o[u*a+p];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(c[0]=h*i,c[1]=h*i,c[2]=h*i):c[p]=h*i}let d=u*4;l[d+0]=Math.round(c[0]),l[d+1]=Math.round(c[1]),l[d+2]=Math.round(c[2]),l[d+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=s;let u=t.getContext("2d"),c=new ImageData(l,r,s);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var wT=W({fromPixels_:ub}),Qg={};Le(Qg,{prepareAndValidate:()=>cb});function cb(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Mt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let d=0;d<r.length-1;++d)o*=r[d];let i=e.shape,l=r.slice();l.pop();let u=1;for(let d=a;d<n;++d)u*=i[d],l.push(i[d]);let c=[...Ui(e.shape).map(d=>d/u),1].slice(0,a);return[l,o,u,c]}var eA={};Le(eA,{calculateShapes:()=>db,validateInput:()=>nA,validateUpdateShape:()=>tA});function tA(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function nA(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}tA(n,t,e)}function db(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let d=r;d<a;++d)o*=n[d];let i=r<1?1:r,l=Mt(t.shape)/i,u=[...Ui(n.slice(0,r)),1],c=Mt(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:u,outputSize:c}}var Nn={};Le(Nn,{assertParamsValid:()=>kT,computeFlatOffset:()=>ST,computeOutShape:()=>pb,getNormalizedAxes:()=>gb,isSliceContinous:()=>IT,maskToAxes:()=>wh,parseSliceParams:()=>wb,sliceInfo:()=>CT,startForAxis:()=>bb,startIndicesWithElidedDims:()=>Ab,stopForAxis:()=>vb,stopIndicesWithElidedDims:()=>yb,stridesForAxis:()=>xb,stridesWithElidedDims:()=>hb});function kT(e,t,n){let s=e.shape.length;M(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),M(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)M(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function wh(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function pb(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function hb(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function fb(e,t,n){return n<=e?n:n-(t-1)}function mb(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function gb(e,t,n,s,r,a,o,i,l){let u=e.length,c=new Array(u),d=new Array(u),p=new Array(u);if(t.length&&n>0){let h=t[0],m=n+1;c=Ab(o,h,m,s,e),d=yb(i,h,m,r,e),p=hb(a,h,m,e)}else for(let h=0;h<u;h++)c[h]=bb(o,s,a,e,h,l),d[h]=vb(i,r,a,e,h,l),p[h]=xb(a,h,l);return{begin:c,end:d,strides:p}}function Ab(e,t,n,s,r){let a=[...r],o=mb(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=fb(t,n,i),u=s[l];e&1<<l&&(u=0),a[i]=u}return a}function yb(e,t,n,s,r){let a=[...r],o=mb(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=fb(t,n,i),u=s[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),a[i]=u}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=uc(0,a[i],r[i])}return a}function xb(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function bb(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=uc(0,o,l-1),o}function vb(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=uc(0,o,l):o=uc(-1,o,l-1),o}function IT(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function ST(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function wb(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{M(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(M(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function CT(e,t,n,s,r,a,o,i,l){let u=t.slice(),c=n.slice(),d=s;s==null&&(d=new Array(u.length));let p=wh(o);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-u.length,m=wh(i),f=e.slice();m.forEach(S=>{u[S]=0,c[S]=1,f.splice(S,0,1)});let{begin:g,end:A,strides:y}=gb(f,p,h,u,c,d,r,a,o);u=g,c=A,d=y;let x=wh(l);x.forEach(S=>{c[S]=u[S]+1,d[S]=1});let b=pb(u,c,d),v=b.filter((S,C)=>x.indexOf(C)===-1);return{nonStrided:d.every(S=>S===1),$begin:u,$end:c,$strides:d,size:b,newShape:f,outShape:v}}var ue={};Le(ue,{Serializable:()=>kb,SerializationMap:()=>Ko,registerClass:()=>ha});var kb=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Ko=class{constructor(){this.classNameMap={}}static getMap(){return Ko.instance==null&&(Ko.instance=new Ko),Ko.instance}static register(e){Ko.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ha(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Ko.register(e)}var Ib={};Le(Ib,{TEST_EPSILON_FLOAT16:()=>Sb,encodeStrings:()=>Cb,expectArrayBuffersEqual:()=>$T,expectArraysClose:()=>NT,expectArraysEqual:()=>RT,expectNumbersClose:()=>DT,expectPromiseToFail:()=>ET,expectValuesInRange:()=>_T,testEpsilon:()=>sA});var TT=.001,Sb=.1;function NT(e,t,n){return n==null&&(n=sA()),rA(e,t,(s,r)=>aA(s,r,n))}function sA(){return L.backend.floatPrecision()===32?TT:Sb}function rA(e,t,n){let s=!0;if((wn(e)||wn(t))&&(s=!1),wn(e)&&wn(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=ur(e),i=ur(t);if(!Rr(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=wn(e)?e:Ua(e),a=wn(t)?t:Ua(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
Actual: ${r}.
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
Actual: ${r}.
Expected: ${a}.`)}}function ET(e,t){e().then(()=>t.fail(),()=>t())}function RT(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return na(e)||na(e[0])||na(t)||na(t[0])?rA(e,n,(s,r)=>s==r):rA(e,t,(s,r)=>aA(s,r,0))}function DT(e,t,n){if(n==null&&(n=sA()),!aA(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function aA(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function _T(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function $T(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function Cb(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?Cb(n):e[t]=Nc(n)}return e}var kh="3.9.0";function Tb(){Y().set("PROD",!0)}function FT(){Y().set("DEBUG",!0)}function OT(){Y().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function oA(e){Y().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}l9(oA);function PT(){L.disposeVariables()}function Qn(){return L}function Ih(){return L.memory()}function MT(e){return L.profile(e)}function H(e,t){return L.tidy(e,t)}function Z(e){Lg(e).forEach(n=>n.dispose())}function un(e){return L.keep(e)}function zT(e){return L.time(e)}function Nb(e){return L.setBackend(e)}function Sh(){return L.ready()}function cr(){return L.backendName}function LT(e){L.removeBackend(e)}function iA(e){return L.findBackend(e)}function BT(e){return L.findBackendFactory(e)}function Ql(e,t,n=1){return L.registerBackend(e,t,n)}function $r(){return L.backend}function WT(e,t){Y().setPlatform(e,t)}function VT(e,t){let n=$(e,"a","add"),s=$(t,"b","add");[n,s]=Rt(n,s);let r={a:n,b:s};return L.runKernel(ra,r)}var le=W({add_:VT});function UT(e,t){let n=$(e,"a","floorDiv"),s=$(t,"b","floorDiv");[n,s]=Rt(n,s);let r={a:n,b:s};return L.runKernel(oo,r)}var Ch=W({floorDiv_:UT});function HT(e,t){let n=$(e,"a","div"),s=$(t,"b","div");if([n,s]=Rt(n,s),n.dtype==="int32"&&s.dtype==="int32")return Ch(n,s);let r={a:n,b:s},a={};return L.runKernel(no,r,a)}var he=W({div_:HT});function GT(e,t){let n=$(e,"a","mul"),s=$(t,"b","mul");[n,s]=Rt(n,s);let r={a:n,b:s};return L.runKernel(bo,r)}var z=W({mul_:GT});function jT(e){let t=$(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return L.runKernel(hc,n)}else{let n={x:t};return L.runKernel(Gi,n)}}var Wt=W({abs_:jT});function qT(e){let n={x:$(e,"x","acos")};return L.runKernel(ji,n)}var lA=W({acos_:qT});function XT(e){let n={x:$(e,"x","acosh")};return L.runKernel(qi,n)}var uA=W({acosh_:XT});function KT(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>$(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!Rr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return L.runKernel(Ha,s)}var Th=W({addN_:KT});function ZT(e,t=null,n=!1){let r={x:$(e,"x","all","bool")},a={axis:t,keepDims:n};return L.runKernel(Xi,r,a)}var Nh=W({all_:ZT});function YT(e,t=null,n=!1){let r={x:$(e,"x","any","bool")},a={axis:t,keepDims:n};return L.runKernel(Ki,r,a)}var Mc=W({any_:YT});function JT(e,t=0){let s={x:$(e,"x","argMax")},r={axis:t};return L.runKernel(Ga,s,r)}var Gs=W({argMax_:JT});function QT(e,t=0){let s={x:$(e,"x","argMin")},r={axis:t};return L.runKernel(dc,s,r)}var cA=W({argMin_:QT});function eN(e){let n={x:$(e,"x","asin")};return L.runKernel(Zi,n)}var dA=W({asin_:eN});function tN(e){let n={x:$(e,"x","asinh")};return L.runKernel(Yi,n)}var pA=W({asinh_:tN});function nN(e){let n={x:$(e,"x","atan")};return L.runKernel(Ji,n)}var hA=W({atan_:nN});function sN(e,t){let n=$(e,"a","atan2"),s=$(t,"b","atan2");[n,s]=Rt(n,s);let r={a:n,b:s};return L.runKernel(el,r)}var fA=W({atan2_:sN});function rN(e){let n={x:$(e,"x","atanh")};return L.runKernel(Qi,n)}var mA=W({atanh_:rN});function aN(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=Db(r);return zc(e,i,n,a,s,null,null,l)}function Eb(e,t,n,s,r,a,o="channelsLast"){let[i,l]=Eh(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return zc(e,u,n,s,r,a,!1,o)}function oN(e,t,n,s,r,a,o="NDHWC"){let[i,l,u]=AA(t),c,d;if(o==="NDHWC")d="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Rb(e,c,n,s,r,!1,d,a)}function zc(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,u,c,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,d]=e;else if(i==="channelsFirst")[l,d,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,h,,m]=t,[f,g]=Eh(n),[A,y]=Eh(s),x=eu(p,A),b=eu(h,y),{padInfo:v,outHeight:k,outWidth:S}=uN(r,u,c,f,g,x,b,a,i),C=o?m*d:m,D;return i==="channelsFirst"?D=[l,C,k,S]:i==="channelsLast"&&(D=[l,k,S,C]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:d,outHeight:k,outWidth:S,outChannels:C,padInfo:v,strideHeight:f,strideWidth:g,filterHeight:p,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:A,dilationWidth:y,inShape:e,outShape:D,filterShape:t}}function Rb(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,u,c,d,p]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,d,p]=e;else if(o==="channelsFirst")[l,p,u,c,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,m,f,,g]=t,[A,y,x]=AA(n),[b,v,k]=AA(s),S=eu(h,b),C=eu(m,v),D=eu(f,k),{padInfo:O,outDepth:E,outHeight:R,outWidth:T}=cN(r,u,c,d,A,y,x,S,C,D,i),P=a?g*p:g,U;return o==="channelsFirst"?U=[l,P,E,R,T]:o==="channelsLast"&&(U=[l,E,R,T,P]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:d,inChannels:p,outDepth:E,outHeight:R,outWidth:T,outChannels:P,padInfo:O,strideDepth:A,strideHeight:y,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:S,effectiveFilterHeight:C,effectiveFilterWidth:D,dilationDepth:b,dilationHeight:v,dilationWidth:k,inShape:e,outShape:U,filterShape:t}}function iN(e,t,n,s,r){s==null&&(s=gA(e,t,n));let a=e[0],o=e[1],i=Zo((a-t+2*s)/n+1,r),l=Zo((o-t+2*s)/n+1,r);return[i,l]}function lN(e,t,n,s,r,a){r==null&&(r=gA(e,t,s));let o=e[0],i=e[1],l=e[2],u=Zo((o-t+2*r)/s+1,a),c=Zo((i-t+2*r)/s+1,a),d=Zo((l-t+2*r)/s+1,a);return[u,c,d,n]}function gA(e,t,n,s=1){let r=eu(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function Eh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function AA(e){return typeof e=="number"?[e,e,e]:e}function eu(e,t){return t<=1?e:e+(e-1)*(t-1)}function uN(e,t,n,s,r,a,o,i,l){let u,c,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=iN([t,n],a,s,e,i);c=h[0],d=h[1]}else if(e==="same"){c=Math.ceil(t/s),d=Math.ceil(n/r);let p=Math.max(0,(c-1)*s+a-t),h=Math.max(0,(d-1)*r+o-n),m=Math.floor(p/2),f=p-m,g=Math.floor(h/2),A=h-g;u={top:m,bottom:f,left:g,right:A,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/s),d=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:p,bottom:h,left:m,right:f,type:p===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},c=Zo((t-a+p+h)/s+1,i),d=Zo((n-o+m+f)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:d}}function cN(e,t,n,s,r,a,o,i,l,u,c){let d,p,h,m;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=lN([t,n,s,1],i,1,r,e,c);p=g[0],h=g[1],m=g[2]}else if(e==="same"){p=Math.ceil(t/r),h=Math.ceil(n/a),m=Math.ceil(s/o);let f=(p-1)*r+i-t,g=(h-1)*a+l-n,A=(m-1)*o+u-s,y=Math.floor(f/2),x=f-y,b=Math.floor(g/2),v=g-b,k=Math.floor(A/2),S=A-k;d={top:b,bottom:v,left:k,right:S,front:y,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),m=Math.ceil((s-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:p,outHeight:h,outWidth:m}}function Zo(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function fa(e){let[t,n,s]=Eh(e);return t===1&&n===1&&s===1}function dr(e,t){return fa(e)||fa(t)}function Db(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function dN(e,t){let s={x:$(e,"x","reshape","string_or_numeric")},r={shape:t};return L.runKernel(Rl,s,r)}var V=W({reshape_:dN});function pN(e,t,n,s,r){let a=$(e,"x","avgPool","float32"),o=1;M(dr(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),r!=null&&M(an(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=L.runKernel(ja,u,c);return d=pe(d,a.dtype),l?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Lc=W({avgPool_:pN});function hN(e,t,n,s,r,a="NDHWC"){let o=$(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(an(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=L.runKernel(pc,u,c);return d=pe(d,i.dtype),l?V(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var yA=W({avgPool3d_:hN});function fN(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=Oc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${a.dtype}. `)}),n.length===1)return Hs(n[0]);let s=n,r={axis:t};return L.runKernel(nl,s,r)}var gt=W({concat_:fN});function mN(e){let n={x:$(e,"x","sigmoid")};return L.runKernel(_o,n)}var Wn=W({sigmoid_:mN});function gN(e,t,n){let s=$(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return L.runKernel(Fl,r,a)}var _e=W({slice_:gN});function AN(e){let n={x:$(e,"x","tanh")};return L.runKernel(Lo,n)}var Yo=W({tanh_:AN});function yN(e,t,n,s,r,a){let o=$(e,"forgetBias","basicLSTMCell"),i=$(t,"lstmKernel","basicLSTMCell"),l=$(n,"lstmBias","basicLSTMCell"),u=$(s,"data","basicLSTMCell"),c=$(r,"c","basicLSTMCell"),d=$(a,"h","basicLSTMCell"),p=gt([u,d],1),h=Ue(p,i),m=le(h,l),f=m.shape[0],g=m.shape[1]/4,A=[f,g],y=_e(m,[0,0],A),x=_e(m,[0,g],A),b=_e(m,[0,g*2],A),v=_e(m,[0,g*3],A),k=le(z(Wn(y),Yo(x)),z(c,Wn(le(o,b)))),S=z(Yo(k),Wn(v));return[k,S]}var xN=W({basicLSTMCell_:yN});function bN(e,t,n){let s=$(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);M(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(s.shape[0]%r==0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return L.runKernel(tl,a,o)}var Bc=W({batchToSpaceND_:bN});function vN(e){let t;return e.rank===0||e.rank===1?t=V(e,[1,1,1,e.size]):e.rank===2?t=V(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function wN(e,t,n,s,r,a){a==null&&(a=.001);let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;s!=null&&(c=$(s,"offset","batchNorm")),M(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:vN(o),scale:u,offset:c,mean:i,variance:l},h={varianceEpsilon:a},m=L.runKernel(io,p,h);return V(m,o.shape)}var Jo=W({batchNorm_:wN});function kN(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),M(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),M(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Jo(o,i,l,c,u,a)}var _b=W({batchNorm2d_:kN});function IN(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),M(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),M(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Jo(o,i,l,c,u,a)}var $b=W({batchNorm3d_:IN});function SN(e,t,n,s,r,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),l=$(n,"variance","batchNorm"),u;r!=null&&(u=$(r,"scale","batchNorm"));let c;return s!=null&&(c=$(s,"offset","batchNorm")),M(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),M(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Jo(o,i,l,c,u,a)}var Fb=W({batchNorm4d_:SN});function CN(e,t,n){let s=$(e,"x","bincount"),r=$(t,"weights","bincount");M(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return L.runKernel(_p,a,o)}var xA=W({bincount_:CN});function TN(e,t){let n=$(e,"s0","broadcastArgs","int32"),s=$(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return L.runKernel(Eg,r)}var Ob=W({broadcastArgs_:TN});function NN(e,t){let n=$(e,"broadcastTo","x"),s=n.shape;if(t.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let u=n.shape.slice();for(;u.length<t.length;)u.unshift(1);n=V(n,u)}let r=n.shape,a=Array.from(t);for(let u=t.length-1;u>=0;u--)if(r[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Hs(n);let i={x:n},l={reps:a};return L.runKernel(oa,i,l)}var tu=W({broadcastTo_:NN});function EN(e){let n={x:$(e,"x","ceil")};return L.runKernel(Ka,n)}var bA=W({ceil_:EN});function RN(e,t,n){let s=$(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return L.runKernel(aa,r,a)}var Vn=W({clipByValue_:RN});function DN(e){return gt(e,0)}var Pb=W({concat1d_:DN});function _N(e,t){return gt(e,t)}var nu=W({concat2d_:_N});function $N(e,t){return gt(e,t)}var Mb=W({concat3d_:$N});function FN(e,t){return gt(e,t)}var zb=W({concat4d_:FN});function ON(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","conv2d"),l=$(t,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&M(an(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d=r==="NHWC"?u.shape[3]:u.shape[1];M(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),M(dr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let p={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},m=L.runKernel(Za,p,h);return c?V(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Fr=W({conv2d_:ON});function PN(e,t,n,s,r="NWC",a=1,o){let i=$(e,"x","conv1d"),l=$(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1]])),M(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&M(an(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(dr(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),M(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=V(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=V(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=Fr(p,d,[1,n],s,"NHWC",[1,a],o);return c?V(g,[g.shape[2],g.shape[3]]):V(g,[g.shape[0],g.shape[2],g.shape[3]])}var Rh=W({conv1d_:PN});function MN(e,t,n,s,r,a="NHWC",o){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),M(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];M(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),M(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&M(an(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let p={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},m=L.runKernel(Ya,p,h);return u?V(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var vA=W({conv2DBackpropInput_:MN});function zN(e,t,n,s,r,a){let o=$(e,"x","conv2dTranspose"),i=$(t,"filter","conv2dTranspose");return vA(n,o,i,s,r,"NHWC",a)}var Dh=W({conv2dTranspose_:zN});function LN(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=$(e,"x","conv3d"),i=$(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),M(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),M(dr(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:l,filter:i},d={strides:n,pad:s,dataFormat:r,dilations:a},p=L.runKernel(fc,c,d);return u?V(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var wA=W({conv3d_:LN});function BN(e,t,n,s,r){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=V(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];M(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),M(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},d={pad:r,strides:s,inputShape:a},p=L.runKernel(Pp,c,d);return i?V(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Lb=W({conv3DBackpropInput_:BN});function WN(e,t,n,s,r){let a=$(e,"x","conv3dTranspose"),o=$(t,"filter","conv3dTranspose");return Lb(n,a,o,s,r)}var Bb=W({conv3dTranspose_:WN});function VN(e){let n={x:$(e,"x","cos")};return L.runKernel(Ja,n)}var Wc=W({cos_:VN});function UN(e){let n={x:$(e,"x","cosh")};return L.runKernel(Qa,n)}var _h=W({cosh_:UN});function HN(e,t=0,n=!1,s=!1){let a={x:$(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return L.runKernel(eo,a,o)}var $h=W({cumsum_:HN});function GN(e,t,n,s=!1){let r=$(e,"x","denseBincount"),a=$(t,"weights","denseBincount");M(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),M(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return L.runKernel(Mp,o,i)}var Wb=W({denseBincount_:GN});function jN(e,t,n="NHWC"){let s=$(e,"x","depthToSpace"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];M(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${s.shape}`),M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${a} and ${t} for depthToSpace with input shape
${s.shape}`),M(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return L.runKernel(rl,i,l)}var kA=W({depthToSpace_:jN});function qN(e,t,n,s,r="NHWC",a=[1,1],o){let i=$(e,"x","depthwiseConv2d"),l=$(t,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&M(an(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:u,filter:l},p={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},h=L.runKernel(to,d,p);return c?V(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var su=W({depthwiseConv2d_:qN});function XN(e){let n={x:$(e,"x","diag")};return L.runKernel(Bp,n)}var KN=W({diag_:XN});function ZN(e,t,n,s,r=[1,1],a="NHWC"){let o=$(e,"x","dilation2d"),i=$(t,"filter","dilation2d");M(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),M(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),M(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=V(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},d={strides:n,pad:s,dilations:r},p=L.runKernel(mc,c,d);return u?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var IA=W({dilation2d_:ZN});function YN(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function Zt(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function bt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}function JN(e,t){let n=$(e,"a","equal","string_or_numeric"),s=$(t,"b","equal","string_or_numeric");[n,s]=Rt(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(ol,r)}var es=W({equal_:JN});function QN(e,t,n){let s=$(t,"a","where"),r=$(n,"b","where"),a=$(e,"condition","where","bool"),o=bt(bt(a.shape,s.shape),r.shape),i=tu(a,o),l=tu(s,o),u=tu(r,o),c={condition:i,t:l,e:u};return L.runKernel(_l,c)}var kn=W({where_:QN});function eE(e){let n={x:$(e,"x","zerosLike")};return L.runKernel(Hl,n)}var Ye=W({zerosLike_:eE});function tE(e,t){let n=$(e,"a","div"),s=$(t,"b","div");[n,s]=Rt(n,s);let r=he(n,s),a=Ye(r),o=es(s,a);return kn(o,a,r)}var SA=W({divNoNan_:tE});function nE(e,t){let n=$(e,"t1","dot"),s=$(t,"t2","dot");M((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(M(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=V(n,[1,-1]),i=V(s,[-1,1]),l=Ue(o,i);return V(l,[])}else if(n.rank===1&&s.rank===2){let o=V(n,[1,-1]),i=V(s,[s.shape[0],s.shape[1]]),l=Ue(o,i);return V(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=V(s,[-1,1]),i=Ue(n,o);return V(i,[i.size])}else{let o=V(s,[s.shape[0],s.shape[1]]);return Ue(n,o)}}var Vb=W({dot_:nE});function sE(e,...t){let n=t.map((r,a)=>$(r,`tensors${a}`,"einsum")),s={equation:e};return L.runKernel(Up,n,s)}var Ub=W({einsum_:sE});function rE(e){let n={x:$(e,"x","elu")};return L.runKernel(so,n)}var ru=W({elu_:rE});function aE(e){let t=$(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=pe(t,"float32"));let n={x:t};return L.runKernel(al,n)}var CA=W({erf_:aE});function oE(e){let n={x:$(e,"x","exp")};return L.runKernel(ro,n)}var ts=W({exp_:oE});function iE(e,t=0){let n=$(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return L.runKernel(il,s,r)}var zt=W({expandDims_:iE});function lE(e){let n={x:$(e,"x","expm1")};return L.runKernel(ll,n)}var TA=W({expm1_:lE});function uE(e,t){let n=$(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return L.runKernel(oa,s,r)}var xs=W({tile_:uE});function cE(e,t,n,s="float32"){t==null&&(t=e);let r=Ge([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=V(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return xs(zt(o,0),[n[0],1,1]);if(n.length===2)return xs(zt(zt(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return xs(zt(zt(zt(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var NA=W({eye_:cE});function au(e,t,n){let s={shape:e,value:t,dtype:n};return L.runKernel(gc,{},s)}function dE(e){let n={x:$(e,"x","floor")};return L.runKernel(ao,n)}var ou=W({floor_:dE});function pE(e,t,n=0,s=0){let r=$(e,"x","gather"),a=$(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return L.runKernel(cl,o,i)}var Qo=W({gather_:pE});function hE(e,t){let n=$(e,"a","greater","string_or_numeric"),s=$(t,"b","greater","string_or_numeric");[n,s]=Rt(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(pl,r)}var Un=W({greater_:hE});function fE(e,t){let n=$(e,"a","greaterEqual","string_or_numeric"),s=$(t,"b","greaterEqual","string_or_numeric");[n,s]=Rt(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(lo,r)}var ma=W({greaterEqual_:fE});function mE(e){let n={input:$(e,"input","imag")};return L.runKernel(qp,n)}var Fh=W({imag_:mE});function gE(e){let n={x:$(e,"x","isFinite")};return L.runKernel(hl,n)}var Hb=W({isFinite_:gE});function AE(e){let n={x:$(e,"x","isInf")};return L.runKernel(fl,n)}var Gb=W({isInf_:AE});function yE(e){let n={x:$(e,"x","isNaN")};return L.runKernel(ml,n)}var EA=W({isNaN_:yE});function xE(e,t=.2){let s={x:$(e,"x","leakyRelu")},r={alpha:t};return L.runKernel(co,s,r)}var Vc=W({leakyRelu_:xE});function bE(e,t){let n=$(e,"a","less","string_or_numeric"),s=$(t,"b","less","string_or_numeric");[n,s]=Rt(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(gl,r)}var Oh=W({less_:bE});function vE(e,t){let n=$(e,"a","lessEqual","string_or_numeric"),s=$(t,"b","lessEqual","string_or_numeric");[n,s]=Rt(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Al,r)}var ga=W({lessEqual_:vE});function jb(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return L.runKernel(Xp,{},s)}function wE(e,t=5,n=1,s=1,r=.5){let a=$(e,"x","localResponseNormalization");M(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${a.rank}.`),M(an(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=V(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:s,beta:r},c=L.runKernel(xc,l,u);return i?V(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var RA=W({localResponseNormalization_:wE});function kE(e){let n={x:$(e,"x","log")};return L.runKernel(po,n)}var ns=W({log_:kE});function IE(e){let n={x:$(e,"x","log1p")};return L.runKernel(yl,n)}var Uc=W({log1p_:IE});function SE(e){return M(sa(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=$(t,"x","tf.grad","string_or_numeric"),r=n!=null?$(n,"dy","tf.grad"):null;return L.tidy(()=>{let{value:a,grads:o}=L.gradients(()=>e(s),[s],r);return r!=null&&Cn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Ph(o),o[0]})}}function CE(e){return M(sa(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=Oc(t,"args","tf.grads","string_or_numeric"),r=n!=null?$(n,"dy","tf.grads"):null;return L.tidy(()=>{let{value:a,grads:o}=L.gradients(()=>e(...s),s,r);return r!=null&&Cn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Ph(o),o})}}function TE(e){return M(sa(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof He,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof He,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=L.gradients(()=>e(t),[t],n);return Ph(s),{grad:s[0],value:r}}}function NE(e){return M(sa(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(r=>r instanceof He),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof He,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=L.gradients(()=>e(...t),t,n);return n!=null&&Cn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Ph(s.grads),s}}function qb(e,t){M(sa(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(u=>u instanceof _c),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in L.registeredVariables)t.push(L.registeredVariables[u])}let s=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=L.gradients(e,t,null,a);M(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),s!=null&&s.forEach(u=>l[u.name]=null),{value:o,grads:l}}function pr(e){return L.customGrad(e)}function Ph(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function EE(e){let n={x:$(e,"x","neg")};return L.runKernel(vl,n)}var St=W({neg_:EE});function RE(e){let n={x:$(e,"x","softplus")};return L.runKernel(Ml,n)}var ei=W({softplus_:RE});function DE(e){let t=$(e,"x","logSigmoid");return pr(s=>({value:St(ei(St(s))),gradFunc:o=>z(o,Wn(St(s)))}))(t)}var Xb=W({logSigmoid_:DE});function _E(e,t=null,n=!1){let r={x:$(e,"x","max")},a={reductionIndices:t,keepDims:n};return L.runKernel(ho,r,a)}var ss=W({max_:_E});function $E(e,t){let n=$(e,"a","sub"),s=$(t,"b","sub");[n,s]=Rt(n,s);let r={a:n,b:s};return L.runKernel(Mo,r)}var ye=W({sub_:$E});function FE(e,t=null,n=!1){let s=$(e,"x","sum");s.dtype==="bool"&&(s=pe(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return L.runKernel(Fo,r,a)}var we=W({sum_:FE});function OE(e,t=-1){let n=$(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return pr((r,a)=>{let o=!0,i=ss(r,t,!0),l=ye(r,i),u=ye(pe(l,"float32"),ns(we(ts(l),t,o)));return a([u]),{value:u,gradFunc:(d,p)=>{let[h]=p,m=!0,f=ts(h);return ye(d,z(we(d,t,m),f))}}})(n)}var Mh=W({logSoftmax_:OE});function DA(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function Kb(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function Zb(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function ti(e,t){let n=t.map(s=>1);return Kb(e,n,t)}function PE(e,t,n){M(DA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Yb(e,t){if(DA(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function _A(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function ME(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function zE(e,t=null,n=!1){let s=$(e,"x","logSumExp"),r=Rs(t,s.shape),a=ss(s,r,!0),o=ye(s,a),i=ts(o),l=we(i,r),u=ns(l),c=le(V(a,u.shape),u);if(n){let d=ti(c.shape,r);return V(c,d)}return c}var $A=W({logSumExp_:zE});function LE(e,t){let n=$(e,"a","logicalAnd","bool"),s=$(t,"b","logicalAnd","bool");bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(xl,r)}var $s=W({logicalAnd_:LE});function BE(e){let n={x:$(e,"x","logicalNot","bool")};return L.runKernel(Ac,n)}var Hc=W({logicalNot_:BE});function WE(e,t){let n=$(e,"a","logicalOr","bool"),s=$(t,"b","logicalOr","bool");bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(yc,r)}var zh=W({logicalOr_:WE});function VE(e,t){let n=$(e,"a","logicalXor","bool"),s=$(t,"b","logicalXor","bool");return bt(n.shape,s.shape),$s(zh(e,t),Hc($s(e,t)))}var Jb=W({logicalXor_:VE});function UE(e,t,n,s,r){let a=$(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),M(dr(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),r!=null&&M(an(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=L.runKernel(mo,u,c);return l?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Gc=W({maxPool_:UE});function HE(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=$(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(an(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=L.runKernel(bc,u,c);return l?V(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var FA=W({maxPool3d_:HE});function GE(e,t,n,s,r=!1){let o={x:$(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=L.runKernel(Jp,o,i);return{result:l[0],indexes:l[1]}}var Qb=W({maxPoolWithArgmax_:GE});function jE(e,t){let n=$(e,"a","maximum"),s=$(t,"b","maximum");[n,s]=Rt(n,s),n.dtype==="bool"&&(n=pe(n,"int32"),s=pe(s,"int32")),bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(fo,r)}var hr=W({maximum_:jE});function qE(e,t=null,n=!1){let r={x:$(e,"x","mean")},a={axis:t,keepDims:n};return L.runKernel(go,r,a)}var Dt=W({mean_:qE});function Pt(e,t="float32"){if(t==="complex64"){let s=Pt(e,"float32"),r=Pt(e,"float32");return ca(s,r)}let n=Ep(Mt(e),t);return L.makeTensor(n,e,t)}function rs(e,t="float32"){if(t==="complex64"){let s=rs(e,"float32"),r=Pt(e,"float32");return ca(s,r)}let n=Ig(Mt(e),t);return L.makeTensor(n,e,t)}function XE(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=$(e,"x","meshgrid",e instanceof He?e.dtype:"float32");if(t===void 0)return[s];let r=$(t,"y","meshgrid",t instanceof He?t.dtype:"float32"),a=Mt(s.shape),o=Mt(r.shape);return n==="xy"?(s=V(s,[1,-1]),r=V(r,[-1,1]),[Ue(rs([o,1],s.dtype),s),Ue(r,rs([1,a],r.dtype))]):(s=V(s,[-1,1]),r=V(r,[1,-1]),[Ue(s,rs([1,o],s.dtype)),Ue(rs([a,1],r.dtype),r)])}function KE(e,t=null,n=!1){let r={x:$(e,"x","min")},a={axis:t,keepDims:n};return L.runKernel(Ao,r,a)}var jc=W({min_:KE});function ZE(e,t){let n=$(e,"a","minimum"),s=$(t,"b","minimum");[n,s]=Rt(n,s),n.dtype==="bool"&&(n=pe(n,"int32"),s=pe(s,"int32")),bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(yo,r)}var iu=W({minimum_:ZE});function YE(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=$(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)M(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),M(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return L.runKernel(xo,o,a)}var OA=W({mirrorPad_:YE});function JE(e,t){let n=$(e,"a","mod"),s=$(t,"b","mod");[n,s]=Rt(n,s);let r={a:n,b:s};return L.runKernel(bl,r)}var PA=W({mod_:JE});function QE(e){let t=$(e,"x","square"),n={};return L.runKernel("Square",{x:t},n)}var ft=W({square_:QE});function eR(e,t=null,n=!1){e=$(e,"x","moments");let s=Rs(t,e.shape),r=Dt(e,s,n),a=r.shape;n||(a=ti(r.shape,s));let o=ft(ye(pe(e,"float32"),V(r,a))),i=Dt(o,s,n);return{mean:r,variance:i}}var Lh=W({moments_:eR});function tR(e,t,n,s){let r=$(t,"data","multiRNNCell"),a=Oc(n,"c","multiRNNCell"),o=Oc(s,"h","multiRNNCell"),i=r,l=[];for(let d=0;d<e.length;d++){let p=e[d](i,a[d],o[d]);l.push(p[0]),l.push(p[1]),i=p[1]}let u=[],c=[];for(let d=0;d<l.length;d+=2)u.push(l[d]),c.push(l[d+1]);return[u,c]}var nR=W({multiRNNCell_:tR});function sR(e,t,n,s=!1){let r=$(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?V(r,[1,-1]):r},u={numSamples:t,seed:n,normalized:s},c=L.runKernel(Qp,l,u);return o===1?V(c,[c.size]):c}var e3=W({multinomial_:sR});function rR(e,t){let n=$(e,"a","notEqual","string_or_numeric"),s=$(t,"b","notEqual","string_or_numeric");[n,s]=Rt(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(wl,r)}var ni=W({notEqual_:rR});function aR(e){let n={x:$(e,"x","onesLike")};return L.runKernel(Cl,n)}var as=W({onesLike_:aR});function oR(e,t){let n=$(e,"v1","outerProduct"),s=$(t,"v2","outerProduct");M(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=V(n,[-1,1]),a=V(s,[1,-1]);return Ue(r,a)}var iR=W({outerProduct_:oR});function lR(e,t,n=0){let s=$(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return L.runKernel(wo,a,r)}var Or=W({pad_:lR});function uR(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Or(e,[t],n)}var cR=W({pad1d_:uR});function dR(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Or(e,t,n)}var pR=W({pad2d_:dR});function hR(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Or(e,t,n)}var fR=W({pad3d_:hR});function mR(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Or(e,t,n)}var gR=W({pad4d_:mR});function AR(e,t,n){let s=$(e,"x","spaceToBatchND");M(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return L.runKernel(zl,r,a)}var qc=W({spaceToBatchND_:AR});function yR(e,t,n,s,r,a){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=$(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(dr(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let u=Eb(i.shape,t,a,r,s),c=[u.dilationHeight,u.dilationWidth],d;s==="same"?d=bR([u.filterHeight,u.filterWidth],c):d=[[0,0],[0,0]];let p=c[0]===1&&c[1]===1,[h,m]=xR([u.inHeight,u.inWidth],c,d),f=p?s:"valid",g=p?i:qc(i,c,h),y=(n==="avg"?()=>Lc(g,t,a,f):()=>Gc(g,t,a,f))(),x=p?y:Bc(y,c,m);return l?V(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function xR(e,t,n){let s=n.map(c=>c[0]),r=n.map(c=>c[1]),a=e.concat(s,r),o=t.map((c,d)=>(c-a[d]%c)%c),i=r.map((c,d)=>c+o[d]),l=t.map((c,d)=>[s[d],i[d]]),u=t.map((c,d)=>[0,o[d]]);return[l,u]}function bR(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var t3=W({pool_:yR});function vR(e,t){let n=$(e,"base","pow"),s=$(t,"exp","pow");[n,s]=Rt(n,s);let r={a:n,b:s};return L.runKernel(ko,r)}var Pr=W({pow_:vR});function wR(e,t){let n=$(e,"x","prelu"),s=$(t,"alpha","prelu"),r={x:n,alpha:s};return L.runKernel(Io,r)}var Xc=W({prelu_:wR});function kR(e,t=null,n=!1){let s=$(e,"x","prod");s.dtype==="bool"&&(s=pe(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return L.runKernel(Nl,r,a)}var Bh=W({prod_:kR});function IR(e,t,n){let s=Mt(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return L.makeTensor(r,e,n)}var SR=W({rand_:IR}),MA=Wa(p5()),zA=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=MA.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},CR=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=MA.alea(r.toString()),this.randn=new zA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},TR=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=MA.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function NR(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new CR(t,n,s,r),o=Ge(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var ER=W({randomGamma_:NR});function RR(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new zA(t,n,s,!1,r),o=Ge(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var n3=W({randomNormal_:RR});function DR(e,t=0,n=1,s="float32",r){let a=Ge(e,s),o=new TR(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var lu=W({randomUniform_:DR});function uu(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return L.runKernel(vc,{},r)}function _R(e){let n={input:$(e,"input","real")};return L.runKernel(eh,n)}var Kc=W({real_:_R});function $R(e){let n={x:$(e,"x","reciprocal")};return L.runKernel(El,n)}var LA=W({reciprocal_:$R});function FR(e){let n={x:$(e,"x","relu")};return L.runKernel(So,n)}var js=W({relu_:FR});function OR(e){let n={x:$(e,"x","relu6")};return L.runKernel(To,n)}var Wh=W({relu6_:OR});function PR(e,t){let s={x:$(e,"x","reverse")},r={dims:t};return L.runKernel(No,s,r)}var os=W({reverse_:PR});function MR(e){let t=$(e,"x","reverse");return M(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),os(t,0)}var zR=W({reverse1d_:MR});function LR(e,t){let n=$(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),os(n,t)}var BR=W({reverse2d_:LR});function WR(e,t){let n=$(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),os(n,t)}var VR=W({reverse3d_:WR});function UR(e,t){let n=$(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),os(n,t)}var HR=W({reverse4d_:UR});function GR(e){let n={x:$(e,"x","round")};return L.runKernel(Eo,n)}var Vh=W({round_:GR});function jR(e){let n={x:$(e,"x","rsqrt")};return L.runKernel(Ro,n)}var Uh=W({rsqrt_:jR});function Ce(e,t){if((wn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&wn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return da(e,[],[],t)}function qR(e){let n={x:$(e,"x","selu")};return L.runKernel($l,n)}var Hh=W({selu_:qR});function XR(e,t,n,s,r,a=[1,1],o="NHWC"){let i=$(e,"x","separableConv2d"),l=$(t,"depthwiseFilter","separableConv2d"),u=$(n,"pointwiseFilter","separableConv2d"),c=i,d=!1;if(i.rank===3&&(d=!0,c=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),M(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let p=l.shape[2],h=l.shape[3];M(u.shape[2]===p*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*h}, but got ${u.shape[2]}.`);let m=su(c,l,s,r,o,a),g=Fr(m,u,1,"valid",o);return d?V(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var BA=W({separableConv2d_:XR});async function KR(e,t){let n=$(e,"x","setdiff1d"),s=$(t,"y","setdiff1d");M(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let c=0;c<r.length;c++)o.has(r[c])||i++;let l=new Kt([i],n.dtype),u=new Kt([i],"int32");for(let c=0,d=0;c<r.length;c++)o.has(r[c])||(l.values[d]=r[c],u.values[d]=c,d++);return[l.toTensor(),u.toTensor()]}var s3=KR;function ZR(e){let n={x:$(e,"x","sign")};return L.runKernel(Pl,n)}var WA=W({sign_:ZR});function YR(e){let n={x:$(e,"x","sin")};return L.runKernel(Do,n)}var Gh=W({sin_:YR});function JR(e){let n={x:$(e,"x","sinh")};return L.runKernel(Ol,n)}var jh=W({sinh_:JR});function QR(e,t,n){let s=$(e,"x","slice1d");return M(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),_e(s,[t],[n])}var qh=W({slice1d_:QR});function eD(e,t,n){let s=$(e,"x","slice2d");return M(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var VA=W({slice2d_:eD});function tD(e,t,n){let s=$(e,"x","slice3d");return M(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var Xh=W({slice3d_:tD});function nD(e,t,n){let s=$(e,"x","slice4d");return M(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var Zc=W({slice4d_:nD});function sD(e,t=-1){let n=$(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return L.runKernel(Oo,s,r)}var si=W({softmax_:sD});function rD(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(Gp,t)}var Yc=W({fft_:rD});function aD(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(jp,t)}var cu=W({ifft_:aD});function oD(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=V(e,[n,t]);s=cu(r)}else{let r=[n,2*(t-1)],a=V(Kc(e),[n,t]),o=V(Fh(e),[n,t]),i=os(_e(a,[0,1],[n,t-2]),1),l=z(os(_e(o,[0,1],[n,t-2]),1),Ce(-1)),u=gt([a,i],1),c=gt([o,l],1),d=V(ca(u,c),[r[0],r[1]]);s=cu(d)}if(s=Kc(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=V(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var Kh=W({irfft_:oD});function iD(e,t,n=0){let r={x:$(e,"x","split")},a={numOrSizeSplits:t,axis:n};return L.runKernel(Ll,r,a)}var Vt=W({split_:iD});function lD(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=_e(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=gt([e,Pt(m)],e.shape.length-1),n=t}else r=e;let a=Ye(r),o=V(ca(r,a),[s,n]),i=Yc(o),l=Math.floor(n/2)+1,u=Kc(i),c=Fh(i),d=Vt(u,[l,n-l],u.shape.length-1),p=Vt(c,[l,n-l],c.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,V(ca(d[0],p[0]),h)}var Jc=W({rfft_:lD});function uD(e){let n={x:$(e,"x","sqrt")};return L.runKernel($o,n)}var An=W({sqrt_:uD});function cD(e,t){let n=$(e,"a","squaredDifference"),s=$(t,"b","squaredDifference");[n,s]=Rt(n,s),bt(n.shape,s.shape);let r={a:n,b:s},a={};return L.runKernel(Po,r,a)}var Zh=W({squaredDifference_:cD});function dD(e,t){let n=$(e,"x","squeeze");return V(n,g5(n.shape,t).newShape)}var at=W({squeeze_:dD});function pD(e,t=0){let n=Oc(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return L.runKernel(Tl,s,r)}var yn=W({stack_:pD});function hD(e,t=0){let s={x:$(e,"x","step")},r={alpha:t};return L.runKernel(ia,s,r)}var du=W({step_:hD});function fD(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let c={x:$(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return L.runKernel(Bl,c,d)}var UA=W({stridedSlice_:fD});function mD(e){let n={x:$(e,"x","tan")};return L.runKernel(zo,n)}var HA=W({tan_:mD});function Ut(e,t){Va(e);let n=ur(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return da(e,null,n,t)}function qs(e,t,n){if(Va(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=ur(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return da(e,t,s,n)}function gD(e,t,n){if(Va(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=ur(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return da(e,t,s,n)}function AD(e,t,n){if(Va(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=ur(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return da(e,t,s,n)}function yD(e,t,n){if(Va(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=ur(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,da(e,t,s,n)}function xD(e,t=1,n=!0){let s=$(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=L.runKernel(Wl,a,o);return{values:i,indices:l}}var GA=W({topk_:xD});function bD(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new zA(t,n,s,!0,r),o=Ge(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var Yh=W({truncatedNormal_:bD});function vD(e,t=0){let n=$(e,"x","unique","string_or_numeric");M(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=L.runKernel(dh,s,r);return{values:a,indices:o}}var Jh=W({unique_:vD});function wD(e,t,n){let s=$(e,"x","unsortedSegmentSum"),r=$(t,"segmentIds","unsortedSegmentSum","int32");M(an(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return L.runKernel(Ic,a,o)}var jA=W({unsortedSegmentSum_:wD});function kD(e,t=0){let n=$(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return L.runKernel(Ul,s,r)}var En=W({unstack_:kD});function r3(e,t=!0,n,s){return L.makeVariable(e,t,n,s)}function a3(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=Ge(e,"int32"),r=Ge([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function ID(e){let t=$(e,"condition","whereAsync","bool"),n=await t.data(),s=a3(t.shape,n);return e!==t&&t.dispose(),s}var qA=ID;async function SD(e,t,n){let s=$(e,"tensor","boolMask"),r=$(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;M(o>0,()=>"mask cannot be scalar"),Cn(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=a;f<a+o;f++)l*=i[f];let u=i.slice(0,a).concat([l],i.slice(a+o)),c=V(s,u),d=V(r,[-1]),p=await qA(d),h=at(p,[1]),m=Qo(c,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),c.dispose(),d.dispose(),p.dispose(),m}var CD=SD;function TD(e,t="euclidean",n=null,s=!1){e=$(e,"x","norm");let r=o3(e,t,n),a=r.shape;if(s){let o=Rs(n,e.shape);a=ti(r.shape,o)}return V(r,a)}function o3(e,t,n=null){if(e.rank===0)return Wt(e);if(e.rank!==1&&n===null)return o3(V(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return we(Wt(e),n);if(t===1/0)return ss(Wt(e),n);if(t===-1/0)return jc(Wt(e),n);if(t==="euclidean"||t===2)return An(we(Pr(Wt(e),Ce(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return ss(we(Wt(e),n[0]),n[1]-1);if(t===1/0)return ss(we(Wt(e),n[1]),n[0]);if(t===-1/0)return jc(we(Wt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return An(we(ft(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Qh=W({norm_:TD});function ND(e,t,n,s,r=!0){let a=$(e,"v","movingAverage"),o=$(t,"x","movingAverage"),i=$(n,"decay","movingAverage");M5(a,o),M(Rr(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Ce(1),u=ye(l,i),c=z(ye(o,a),u);if(r){M(s!=null,()=>"When using zeroDebias: true, step is required.");let d=$(s,"step","movingAverage");c=he(c,ye(l,Pr(i,d)))}return le(a,c)}var ED=W({movingAverage_:ND});function RD(e,t,n){let s=$(e,"indices","scatterND","int32"),r=$(t,"updates","scatterND");nA(r,s,n);let a={indices:s,updates:r},o={shape:n};return L.runKernel(Dl,a,o)}var i3=W({scatterND_:RD});function DD(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function _D(e,t,n,s=0){let r=$(e,"sparseIndices","sparseToDense","int32"),a=$(t,"sparseValues","sparseToDense"),o=$(s,"defaultValue","sparseToDense",a.dtype);DD(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return L.runKernel(ih,i,l)}var XA=W({sparseToDense_:_D});function $D(e,t){let n=$(t,"indices","gatherND","int32"),r={params:$(e,"x","gatherND","string_or_numeric"),indices:n};return L.runKernel(dl,r)}var l3=W({gatherND_:$D});function FD(e,t){if(t==null)return e.shape.slice();if(Rr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function OD(e,t,n,s){let r=$(e,"x","dropout");if(M(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof He?r.clone():r;let a=FD(r,n),o=1-t,i=he(ou(le(lu(a,0,1,"float32",s),o)),o);return z(r,i)}var u3=W({dropout_:OD});function c3(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function KA(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return Ut(r,"float32")}async function PD(e,t,n=1){let s=$(e,"predictions","inTopK"),r=$(t,"targets","inTopK");M(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),M(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),Cn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];M(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,u]=[o.length/a,a],c=A5("bool",l);for(let d=0;d<l;d++){let p=d*u,h=o.subarray(p,p+u),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),c[d]=0;for(let f=0;f<n;f++)if(m[f].index===i[d]){c[d]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),ln(c,r.shape,"bool")}var MD=PD,Aa={};Le(Aa,{conv2d:()=>BD,depthwiseConv2d:()=>HD,matMul:()=>jD});function zD(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];M(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),M(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),o!=null&&M(an(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:i,dy:l},p={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return L.runKernel(Fp,d,p)}var ZA=W({conv2DBackpropFilter_:zD});function ef(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,du(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function tf(e,t){let n=t,s=Zt(e.shape,t.shape);return s.length>0&&(n=we(n,s)),V(n,e.shape)}function nf(e,t,n,s){if(t==="linear")return e;if(t==="relu")return js(e);if(t==="elu")return ru(e);if(t==="relu6")return Wh(e);if(t==="prelu")return Xc(e,n);if(t==="leakyrelu")return Vc(e,s);if(t==="sigmoid")return Wn(e);throw new Error(`Unknown fused activation ${t}.`)}var sf=(e,t)=>!(e>0)||t==="linear";function LD({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",sf(L.state.gradientDepth,l)===!1){let v=Fr(e,t,n,s,r,a,o);return i!=null&&(v=le(v,i)),nf(v,l,u,c)}let d=$(e,"x","conv2d"),p=$(t,"filter","conv2d"),h=d,m=!1;d.rank===3&&(m=!0,h=V(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),M(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),o!=null&&M(an(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(h.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${p.shape[2]}.`),M(dr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=zc(h.shape,p.shape,n,a,s,o),g;i!=null&&(g=$(i,"bias","fused conv2d"),[g]=Rt(g,d),bt(f.outShape,g.shape));let A;u!=null&&(A=$(u,"prelu weights","fused conv2d"));let y=(v,k)=>{let[S,C,D,O]=k,E=ef(v,D,l);M(fa(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let R=vA(C.shape,E,S,n,s),T=ZA(C,E,S.shape,n,s),P=[R,T];if(O!=null){let U=tf(O,E);P.push(U)}return P},x={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?pr((k,S,C)=>{let D=L.runKernel(Vo,x,b);return C([S,k,D]),m&&(D=V(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:y}})(h,p):pr((k,S,C,D)=>{let O=L.runKernel(Vo,x,b);return D([S,k,O,C]),m&&(O=V(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:y}})(h,p,g)}var BD=W({fusedConv2d_:LD});function WD(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return L.runKernel(zp,u,c)}var d3=W({depthwiseConv2dNativeBackpropFilter_:WD});function VD(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},d=L.runKernel(Lp,u,c);return l?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var p3=W({depthwiseConv2dNativeBackpropInput_:VD});function UD({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(sf(L.state.gradientDepth,l)===!1){let v=su(e,t,n,s,r,a,o);return i!=null&&(v=le(v,i)),nf(v,l,u,c)}let d=$(e,"x","depthwiseConv2d"),p=$(t,"filter","depthwiseConv2d"),h=d,m=!1;d.rank===3&&(m=!0,h=V(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),M(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),M(h.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),a==null&&(a=[1,1]),M(dr(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&M(an(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${s}.`);let f=zc(h.shape,p.shape,n,a,s,o,!0),g;i!=null&&(g=$(i,"bias","fused conv2d"),[g]=Rt(g,d),bt(f.outShape,g.shape));let A;u!=null&&(A=$(u,"prelu weights","fused depthwiseConv2d"));let y=(v,k)=>{M(fa(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[S,C,D,O]=k,E=ef(v,D,l),R=p3(C.shape,E,S,n,s,a,o),T=d3(C,E,S.shape,n,s,a,o);if(O!=null){let P=tf(g,E);return[R,T,P]}return[R,T]},x={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?pr((k,S,C)=>{let D=L.runKernel(Uo,x,b);return C([S,k,D]),m&&(D=V(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:y}})(h,p):pr((k,S,C,D)=>{let O=L.runKernel(Uo,x,b);return D([S,k,O,C]),m&&(O=V(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:y}})(h,p,g)}var HD=W({fusedDepthwiseConv2d_:UD});function GD({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(sf(L.state.gradientDepth,a)===!1){let O=Ue(e,t,n,s);return r!=null&&(O=le(O,r)),nf(O,a,o,i)}let l=$(e,"a","fused matMul"),u=$(t,"b","fused matMul");[l,u]=Rt(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=s?u.shape[u.rank-1]:u.shape[u.rank-2],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=Mt(m),A=Mt(f);M(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),M(Rr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),M(c===d,()=>`Error in fused matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${s} must match.`);let y=l.shape.slice(0,-2).concat([p,h]),x=n?V(l,[g,c,p]):V(l,[g,p,c]),b=s?V(u,[A,h,d]):V(u,[A,d,h]),v;r!=null&&(v=$(r,"bias","fused matMul"),[v]=Rt(v,l),bt(y,v.shape));let k;o!=null&&(k=$(o,"prelu weights","fused matMul"));let S=(O,E)=>{let[R,T,P,U]=E,j=ef(V(O,P.shape),P,a),q,X;if(!n&&!s?(q=Ue(j,T,!1,!0),X=Ue(R,j,!0,!1)):!n&&s?(q=Ue(j,T,!1,!1),X=Ue(j,R,!0,!1)):n&&!s?(q=Ue(T,j,!1,!0),X=Ue(R,j,!1,!1)):(q=Ue(T,j,!0,!0),X=Ue(j,R,!0,!0)),r!=null){let te=tf(U,j);return[q,X,te]}else return[q,X]},C={a:x,b,bias:v,preluActivationWeights:k},D={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?pr((E,R,T)=>{let P=L.runKernel(Wo,C,D);return T([E,R,P]),{value:V(P,y),gradFunc:S}})(x,b):pr((E,R,T,P)=>{let U=L.runKernel(Wo,C,D);return P([E,R,U,T]),{value:V(U,y),gradFunc:S}})(x,b,v)}var jD=W({fusedMatMul_:GD});function qD(e){return KA(e,.54,.46)}var XD=W({hammingWindow_:qD});function KD(e){return KA(e,.5,.5)}var h3=W({hannWindow_:KD});function ZD(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(_e(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=gt([_e(e,a,t-i),au([i],r)]);o.push(l),a+=n}return o.length===0?qs([],[0,t]):V(gt(o),[o.length,t])}var f3=W({frame_:ZD});function YD(e,t,n,s,r=h3){s==null&&(s=c3(t));let a=f3(e,t,n),o=z(a,r(t));return Jc(o,s)}var JD=W({stft_:YD});function QD(e,t,n,s,r="bilinear",a=0){let o=$(e,"image","cropAndResize"),i=$(t,"boxes","cropAndResize","float32"),l=$(n,"boxInd","cropAndResize","int32"),u=i.shape[0];M(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),M(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),M(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),M(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),M(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:o,boxes:i,boxInd:l},d={method:r,extrapolationValue:a,cropSize:s};return L.runKernel(sl,c,d)}var e_=W({cropAndResize_:QD});function t_(e){let t=$(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return L.runKernel(ul,n,{})}var n_=W({flipLeftRight_:t_});function s_(e){let t=$(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];M(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),M(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,xs(t,r)}var r_=W({grayscaleToRGB_:s_});function a_(e,t,n=0,s=.5){let r=$(e,"image","rotateWithOffset","float32");M(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return L.runKernel(Gl,a,o)}var o_=W({rotateWithOffset_:a_});function pu(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),M(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),M(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function i_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppression"),o=$(t,"scores","nonMaxSuppression"),i=pu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return L.runKernel(kl,{boxes:a,scores:o},l)}var l_=W({nonMaxSuppression_:i_});function u_(e,t,n){let s=c_(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function c_(e,t,n){return p_(e,t,n||d_)}function d_(e,t){return e>t?1:e<t?-1:0}function p_(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function m3(e,t,n,s,r){return YA(e,t,n,s,r,0)}function g3(e,t,n,s,r,a){return YA(e,t,n,s,r,0,!1,a,!0)}function A3(e,t,n,s,r,a){return YA(e,t,n,s,r,a,!0)}function YA(e,t,n,s,r,a,o=!1,i=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(y3);let c=a>0?-.5/a:0,d=[],p=[];for(;d.length<n&&u.length>0;){let g=u.pop(),{score:A,boxIndex:y,suppressBeginIndex:x}=g;if(A<r)break;let b=!1;for(let v=d.length-1;v>=x;--v){let k=h_(e,y,d[v]);if(k>=s){b=!0;break}if(g.score=g.score*f_(s,c,k),g.score<=r)break}g.suppressBeginIndex=d.length,b||(g.score===A?(d.push(y),p.push(g.score)):g.score>r&&u_(u,g,y3))}let h=d.length,m=n-h;i&&m>0&&(d.push(...new Array(m).fill(0)),p.push(...new Array(m).fill(0)));let f={selectedIndices:d};return o&&(f.selectedScores=p),l&&(f.validOutputs=h),f}function h_(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),u=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),p=Math.max(r[1],r[3]),h=(i-a)*(l-o),m=(d-u)*(p-c);if(h<=0||m<=0)return 0;let f=Math.max(a,u),g=Math.max(o,c),A=Math.min(i,d),y=Math.min(l,p),x=Math.max(A-f,0)*Math.max(y-g,0);return x/(h+m-x)}function f_(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function y3(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function m_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppressionAsync"),o=$(t,"scores","nonMaxSuppressionAsync"),i=pu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:d}=m3(u,c,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Ut(d,"int32")}var g_=m_;function A_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=pu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},d=L.runKernel(Sl,u,c);return{selectedIndices:d[0],selectedScores:d[1]}}var y_=W({nonMaxSuppressionWithScore_:A_});async function x_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=pu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],d=u[1],{selectedIndices:p,selectedScores:h}=A3(c,d,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Ut(p,"int32"),selectedScores:Ut(h)}}var b_=x_;function v_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),l=pu(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,p={boxes:o,scores:i},h={maxOutputSize:u,iouThreshold:c,scoreThreshold:d,padToMaxOutputSize:a},m=L.runKernel(Il,p,h);return{selectedIndices:m[0],validOutputs:m[1]}}var w_=W({nonMaxSuppressionPadded_:v_});async function k_(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),l=pu(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,[p,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:m,validOutputs:f}=g3(p,h,u,c,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Ut(m,"int32"),validOutputs:Ce(f,"int32")}}var I_=k_;function S_(e,t,n=!1,s=!1){let r=$(e,"images","resizeBilinear");M(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=V(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=L.runKernel(Co,i,l);return o?V(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var x3=W({resizeBilinear_:S_});function C_(e,t,n=!1,s=!1){let r=$(e,"images","resizeNearestNeighbor");M(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=V(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=L.runKernel(wc,i,l);return o?V(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var b3=W({resizeNearestNeighbor_:C_});function T_(e,t="binary",n=!1,s=.5){let r=$(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],u=z(Ut([s]),255),c,d,p,h;if(M(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),M(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),M(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),M(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[c,d,p]=Vt(r,[1,1,1],-1);let g=z(c,a),A=z(d,o),y=z(p,i);h=le(le(g,A),y)}else h=e;if(t==="otsu"){let g=xA(pe(Vh(h),"int32"),ln([]),256);u=N_(g,l)}let m=n?ga(h,u):Un(h,u);return pe(z(m,255),"int32")}function N_(e,t){let n=Ut([-1]),s=Ut([0]),r=Ut([0]),a,o,i,l,u,c;for(let d=0;d<e.size-1;d++){a=_e(e,0,d+1),o=_e(e,d+1),u=he(we(a),t),c=he(we(o),t);let p=we(z(a,uu(0,a.size)));i=he(p,we(a));let h=au(o.shape,a.size),m=le(uu(0,o.size),h),f=z(o,m);l=he(we(f),we(o));let g=ye(i,l),A=ye(i,l),y=z(u,c);r=z(z(y,g),A);let x=Un(r,s);s=kn(x,r,s),n=kn(x,Ut([d]),n)}return n}var E_=W({threshold_:T_});function R_(e,t,n="nearest",s="constant",r=0,a){let o=$(e,"image","transform","float32"),i=$(t,"transforms","transform","float32");M(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return L.runKernel(Vl,l,u)}var D_=W({transform_:R_});function __(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=$(e,"a","bandPart");M(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=V(uu(0,a,1,"int32"),[-1,1]),l=uu(0,o,1,"int32"),u=ye(i,l),c=$s(ga(u,Ce(+t,"int32")),ma(u,Ce(-n,"int32"))),d=Pt([a,o],s.dtype);return V(yn(En(V(s,[-1,a,o])).map(p=>kn(c,p,d))),r)}var $_=W({bandPart_:__});function F_(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)M(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=Vt(e,e.shape[0],0).map(r=>at(r,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(L.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=z(we(z(n[o],a)),n[o]);a=ye(a,i)}return he(a,Qh(a,"euclidean"))}));return t?yn(n,0):n}var O_=W({gramSchmidt_:F_});function P_(e,t=!1){if(M(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return v3(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),s=En(V(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[u,c]=v3(l,t);r.push(u),a.push(c)});let o=V(yn(r,0),e.shape),i=V(yn(a,0),e.shape);return[o,i]}}function v3(e,t=!1){return L.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=NA(n),a=Hs(e),o=qs([[1]],[1,1]),i=Hs(o),l=n>=s?s:n;for(let u=0;u<l;++u){let c=a,d=i,p=r;[i,a,r]=L.tidy(()=>{let h=_e(a,[u,u],[n-u,1]),m=Qh(h),f=_e(a,[u,u],[1,1]),g=kn(Un(f,0),qs([[-1]]),qs([[1]])),A=ye(f,z(g,m)),y=he(h,A);y.shape[0]===1?i=Hs(o):i=gt([o,_e(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let x=St(he(Ue(g,A),m)),b=_e(a,[u,0],[n-u,s]),v=z(x,i),k=Ze(i);if(u===0)a=ye(b,Ue(v,Ue(k,b)));else{let D=ye(b,Ue(v,Ue(k,b)));a=gt([_e(a,[0,0],[u,s]),D],0)}let S=Ze(v),C=_e(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=ye(C,Ue(Ue(C,i),S));else{let D=ye(C,Ue(Ue(C,i),S));r=gt([_e(r,[0,0],[n,u]),D],1)}return[i,a,r]}),Z([c,d,p])}return!t&&n>s&&(r=_e(r,[0,0],[n,s]),a=_e(a,[0,0],[s,s])),[r,a]})}var M_=W({qr_:P_}),Rn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Rn||(Rn={}));function z_(e,t,n=Rn.SUM_BY_NONZERO_WEIGHTS){let s=$(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=$(t,"weights","computeWeightedLoss"));let a=r==null?s:z(s,r);if(n===Rn.NONE)return a;if(n===Rn.SUM)return we(a);if(n===Rn.MEAN){if(r==null)return Dt(a);{let o=s.size/r.size,i=he(we(a),we(r));return o>1?he(i,Ce(o)):i}}if(n===Rn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return he(we(a),Ce(s.size));{let o=z(r,rs(s.shape)),i=pe(we(ni(o,Ce(0))),"float32");return he(we(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Mr=W({computeWeightedLoss_:z_});function L_(e,t,n,s=Rn.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","absoluteDifference"),a=$(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=$(n,"weights","absoluteDifference")),Cn(r.shape,a.shape,"Error in absoluteDifference: ");let i=Wt(ye(r,a));return Mr(i,o,s)}var B_=W({absoluteDifference_:L_});function W_(e,t,n,s,r=Rn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","cosineDistance"),o=$(t,"predictions","cosineDistance"),i=null;s!=null&&(i=$(s,"weights","cosineDistance")),Cn(a.shape,o.shape,"Error in cosineDistance: ");let l=Ce(1),u=ye(l,we(z(a,o),n,!0));return Mr(u,i,r)}var V_=W({cosineDistance_:W_});function U_(e,t,n,s=Rn.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","hingeLoss"),a=$(t,"predictions","hingeLoss"),o=null;n!=null&&(o=$(n,"weights","hingeLoss")),Cn(r.shape,a.shape,"Error in hingeLoss: ");let i=Ce(1);r=ye(z(Ce(2),r),i);let l=js(ye(i,z(r,a)));return Mr(l,o,s)}var H_=W({hingeLoss_:U_});function G_(e,t,n,s=1,r=Rn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","huberLoss"),o=$(t,"predictions","huberLoss"),i=null;n!=null&&(i=$(n,"weights","huberLoss")),Cn(a.shape,o.shape,"Error in huberLoss: ");let l=Ce(s),u=Wt(ye(o,a)),c=iu(u,l),d=ye(u,c),p=le(z(Ce(.5),ft(c)),z(l,d));return Mr(p,i,r)}var j_=W({huberLoss_:G_});function q_(e,t,n,s=1e-7,r=Rn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","logLoss"),o=$(t,"predictions","logLoss"),i=null;n!=null&&(i=$(n,"weights","logLoss")),Cn(a.shape,o.shape,"Error in logLoss: ");let l=Ce(1),u=Ce(s),c=St(z(a,ns(le(o,u)))),d=z(ye(l,a),ns(le(ye(l,o),u))),p=ye(c,d);return Mr(p,i,r)}var X_=W({logLoss_:q_});function K_(e,t,n,s=Rn.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"labels","meanSquaredError"),a=$(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=$(n,"weights","meanSquaredError")),Cn(r.shape,a.shape,"Error in meanSquaredError: ");let i=Zh(r,a);return Mr(i,o,s)}var Z_=W({meanSquaredError_:K_});function Y_(e,t){let n=$(e,"labels","sigmoidCrossEntropyWithLogits"),s=$(t,"logits","sigmoidCrossEntropyWithLogits");Cn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=js(s),a=z(s,n),o=Uc(ts(St(Wt(s))));return le(ye(r,a),o)}function J_(e,t,n,s=0,r=Rn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"multiClassLabels","sigmoidCrossEntropy"),o=$(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","sigmoidCrossEntropy")),Cn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let u=Ce(s),c=Ce(1),d=Ce(.5);a=le(z(a,ye(c,u)),z(d,u))}let l=Y_(a,o);return Mr(l,i,r)}var Q_=W({sigmoidCrossEntropy_:J_});function e$(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return pr((r,a,o)=>{let l=$A(a,[n],!0),u=ye(pe(a,"float32"),l);o([r,u]);let c=St(z(u,r));return{value:we(c,[n]),gradFunc:(h,m)=>{let[f,g]=m,A=ti(h.shape,[n]);return[z(V(h,A),ye(pe(f,"float32"),ts(g))),z(V(h,A),ye(ts(g),pe(f,"float32")))]}}})(e,t)}function t$(e,t,n,s=0,r=Rn.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"onehotLabels","softmaxCrossEntropy"),o=$(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","softmaxCrossEntropy")),Cn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let u=Ce(s),c=Ce(1),d=Ce(a.shape[1]);a=le(z(a,ye(c,u)),he(u,d))}let l=e$(a,o);return Mr(l,i,r)}var n$=W({softmaxCrossEntropy_:t$});function s$(e,t,n,s){let r=$(e,"indices","sparseFillEmptyRows"),a=$(t,"values","sparseFillEmptyRows"),o=$(n,"denseShape","sparseFillEmptyRows"),i=$(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},u=L.runKernel(sh,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var r$=W({sparseFillEmptyRows_:s$});function a$(e,t,n){let s=$(e,"inputIndices","sparseReshape"),r=$(t,"inputShape","sparseReshape"),a=$(n,"newShape","sparseReshape");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=L.runKernel(rh,o);return{outputIndices:i[0],outputShape:i[1]}}var o$=W({sparseReshape_:a$});function i$(e,t,n){let s=$(e,"data","sparseSegmentMean"),r=$(t,"indices","sparseSegmentMean"),a=$(n,"segmentIds","sparseSegmentMean");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return L.runKernel(ah,o)}var l$=W({sparseSegmentMean_:i$});function u$(e,t,n){let s=$(e,"data","sparseSegmentSum"),r=$(t,"indices","sparseSegmentSum"),a=$(n,"segmentIds","sparseSegmentSum");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return L.runKernel(oh,o)}var c$=W({sparseSegmentSum_:u$});function d$(e,t,n,s,r,a,o,i){let l=$(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=$(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:u},p=L.runKernel(lh,d,c);return{nGrams:p[0],nGramsSplits:p[1]}}var p$=W({stringNGrams_:d$});function h$(e,t,n=!0){let s=$(e,"input","stringSplit","string"),r=$(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=L.runKernel(uh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var f$=W({stringSplit_:h$});function m$(e,t){let n=$(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return L.runKernel(ch,r,s)}var g$=W({stringToHashBucketFast_:m$}),A$={fft:Yc,ifft:cu,rfft:Jc,irfft:Kh},y$={hammingWindow:XD,hannWindow:h3,frame:f3,stft:JD},De={flipLeftRight:n_,grayscaleToRGB:r_,resizeNearestNeighbor:b3,resizeBilinear:x3,rotateWithOffset:o_,cropAndResize:e_,nonMaxSuppression:l_,nonMaxSuppressionAsync:g_,nonMaxSuppressionWithScore:y_,nonMaxSuppressionWithScoreAsync:b_,nonMaxSuppressionPadded:w_,nonMaxSuppressionPaddedAsync:I_,threshold:E_,transform:D_},w3={bandPart:$_,gramSchmidt:O_,qr:M_},x$={absoluteDifference:B_,computeWeightedLoss:Mr,cosineDistance:V_,hingeLoss:H_,huberLoss:j_,logLoss:X_,meanSquaredError:Z_,sigmoidCrossEntropy:Q_,softmaxCrossEntropy:n$},Qc={sparseFillEmptyRows:r$,sparseReshape:o$,sparseSegmentMean:l$,sparseSegmentSum:c$},rf={stringNGrams:p$,stringSplit:f$,stringToHashBucketFast:g$},zr=class extends kb{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return Z(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return qb(e,t)}dispose(){this.iterations_!=null&&Z(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ce(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(zr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var af=class extends zr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:H(()=>Ye(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:H(()=>Ye(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;H(()=>{let u=le(z(i,this.rho),z(ft(o),1-this.rho)),c=z(he(An(le(l,this.epsilon)),An(le(i,this.epsilon))),o),d=le(z(l,this.rho),z(ft(c),1-this.rho));i.assign(u),l.assign(d);let p=le(z(c,-this.learningRate),r);r.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Z(this.accumulatedGrads.map(e=>e.variable)),Z(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};af.className="Adadelta";ha(af);var of=class extends zr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n];if(this.accumulatedGrads[s]==null){let i=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:H(()=>au(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;H(()=>{let i=le(o,ft(a));o.assign(i);let l=le(z(he(a,An(le(i,L.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Z(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};of.className="Adagrad";ha(of);var lf=class extends zr{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],H(()=>{this.accBeta1=Ce(t).variable(),this.accBeta2=Ce(n).variable()}),s==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=ye(1,this.accBeta1),s=ye(1,this.accBeta2);t.forEach((r,a)=>{let o=L.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:H(()=>Ye(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:H(()=>Ye(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,d=le(z(u,this.beta1),z(l,1-this.beta1)),p=le(z(c,this.beta2),z(ft(l),1-this.beta2)),h=he(d,n),m=he(p,s);u.assign(d),c.assign(p);let f=le(z(he(h,le(An(m),this.epsilon)),-this.learningRate),o);o.assign(f)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Z(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Z(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),H(()=>{this.accBeta1.assign(Pr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Pr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};lf.className="Adam";ha(lf);var uf=class extends zr{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],H(()=>{this.iteration=Ce(0).variable(),this.accBeta1=Ce(t).variable()}),s==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=ye(1,this.accBeta1),s=he(-this.learningRate,le(z(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=L.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:Ye(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:Ye(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,d=le(z(u,this.beta1),z(l,1-this.beta1)),p=z(c,this.beta2),h=Wt(l),m=hr(p,h);u.assign(d),c.assign(m);let f=le(z(he(s,n),he(d,le(m,this.epsilon))),o);o.assign(f)}),this.iteration.assign(le(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Z(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Z(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};uf.className="Adamax";ha(uf);var ed=class extends zr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=L.registeredVariables[n];H(()=>{let o=le(z(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=un(Ce(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};ed.className="SGD";ha(ed);var cf=class extends ed{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ce(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n];if(this.accumulations[s]==null){let i=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:H(()=>Ye(r).variable(i))}}let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&H(()=>{let i,l=le(z(this.m,a),o);this.useNesterov?i=le(z(this.c,le(o,z(l,this.m))),r):i=le(z(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Z(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};cf.className="Momentum";ha(cf);var df=class extends zr{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=L.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:H(()=>Ye(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:H(()=>Ye(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:H(()=>Ye(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;H(()=>{let u=le(z(i,this.decay),z(ft(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[s].variable,d=le(z(c,this.decay),z(o,1-this.decay)),p=he(z(o,this.learningRate),An(ye(u,le(ft(d),this.epsilon)))),h=le(z(l,this.momentum),p);i.assign(u),c.assign(d),l.assign(h);let m=ye(r,h);r.assign(m)}else{let c=le(z(i,this.decay),z(ft(o),1-this.decay)),d=le(z(l,this.momentum),he(z(o,this.learningRate),An(le(c,this.epsilon))));i.assign(c),l.assign(d);let p=ye(r,d);r.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Z(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Z(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Z(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};df.className="RMSProp";ha(df);var ri=class{static sgd(e){return new ed(e)}static momentum(e,t,n=!1){return new cf(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new df(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new lf(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new af(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new uf(e,t,n,s,r)}static adagrad(e,t=.1){return new of(e,t)}},ai={sgd:ri.sgd,momentum:ri.momentum,adadelta:ri.adadelta,adagrad:ri.adagrad,rmsprop:ri.rmsprop,adamax:ri.adamax,adam:ri.adam},b$=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function pf(){return new Promise(e=>b$(()=>e()))}var _={};Le(_,{ERF_A1:()=>D$,ERF_A2:()=>_$,ERF_A3:()=>$$,ERF_A4:()=>F$,ERF_A5:()=>O$,ERF_P:()=>R$,PARALLELIZE_THRESHOLD:()=>JA,SELU_SCALE:()=>I3,SELU_SCALEALPHA:()=>k3,applyActivation:()=>nf,assertAndGetBroadcastShape:()=>bt,assertAxesAreInnerMostDims:()=>PE,assertParamsConsistent:()=>v$,assignToTypedArray:()=>W$,axesAreInnerMostDims:()=>DA,calculateShapes:()=>db,checkEinsumDimSizes:()=>q$,combineLocations:()=>Kb,complexWithEvenIndex:()=>z$,complexWithOddIndex:()=>L$,computeConv2DInfo:()=>zc,computeConv3DInfo:()=>Rb,computeDefaultPad:()=>gA,computeDilation2DInfo:()=>aN,computeOptimalWindowSize:()=>k$,computeOutAndReduceShapes:()=>Zb,computeOutShape:()=>w$,computePool2DInfo:()=>Eb,computePool3DInfo:()=>oN,convertConv2DDataFormat:()=>Db,decodeEinsumEquation:()=>G$,eitherStridesOrDilationsAreOne:()=>dr,expandShapeToKeepDim:()=>ti,exponent:()=>U$,exponents:()=>V$,fromStringArrayToUint8:()=>nF,fromUint8ToStringArray:()=>tF,getAxesPermutation:()=>Yb,getBroadcastDims:()=>YN,getComplexWithIndex:()=>B$,getEinsumComputePath:()=>X$,getEinsumPermutation:()=>j$,getFusedBiasGradient:()=>tf,getFusedDyActivation:()=>ef,getImageCenter:()=>I$,getInnerMostAxes:()=>ME,getPermuted:()=>C$,getReductionAxes:()=>Zt,getReshaped:()=>S$,getReshapedPermuted:()=>T$,getSliceBeginCoords:()=>N$,getSliceSize:()=>E$,getUndoAxesPermutation:()=>_A,isIdentityPermutation:()=>K$,log:()=>FC,mergeRealAndImagArrays:()=>P$,prepareAndValidate:()=>cb,prepareSplitSize:()=>Y$,segment_util:()=>T3,shouldFuse:()=>sf,slice_util:()=>Nn,splitRealAndImagArrays:()=>M$,tupleValuesAreOne:()=>fa,upcastType:()=>Ds,validateInput:()=>nA,validateUpdateShape:()=>tA,warn:()=>ir});function v$(e,t){let n=e[0].length;e.forEach((r,a)=>{M(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)M(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function w$(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var JA=30;function k$(e){return e<=JA?e:Np(e,Math.floor(Math.sqrt(e)))}function I$(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function S$(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function C$(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2==1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function T$(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function N$(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function E$(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var k3=1.7580993408473768,I3=1.0507009873554805,R$=.3275911,D$=.254829592,_$=-.284496736,$$=1.421413741,F$=-1.453152027,O$=1.061405429;function P$(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function M$(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function z$(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function L$(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function B$(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function W$(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function V$(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function U$(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var QA="->",H$=/->/g,S3=",",C3="...";function G$(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(H$,"").length)/QA.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${QA}").`);let[s,r]=e.split(QA);M(s.indexOf(C3)===-1,()=>`The ellipsis notation ("${C3}") is not supported yet.`);let a=s.split(S3),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let p=0;p<r.length;++p){let h=r[p];if(!a.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let p=0;p<s.length;++p){let h=s[p];i.indexOf(h)===-1&&h!==S3&&i.push(h)}let l=new Array(a.length);for(let p=0;p<o;++p){if(new Set(a[p].split("")).size!==a[p].length)throw new Error(`Found duplicate axes in input component ${a[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let h=0;h<a[p].length;++h)l[p].push(i.indexOf(a[p][h]))}let u=i.length,c=r.length,d=[];for(let p=c;p<u;++p)d.push(p);return{allDims:i,summedDims:d,idDims:l}}function j$(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function q$(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:M(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function X$(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=Z$(t,i);for(let u of l)a.indexOf(u)===-1&&(s[o].push(u),a.push(u))}return{path:n,steps:s}}function K$(e){return e.every((t,n)=>t===n)}function Z$(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function Y$(e,t,n=0){let s=[];if(typeof t=="number")M(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);M(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}M(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}var T3={};Le(T3,{collectGatherOpShapeInfo:()=>eF,computeOutShape:()=>Q$,segOpComputeOptimalWindowSize:()=>J$});function J$(e,t){let n=!1,s;for(e<=JA?(s=e,n=!0):s=Np(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=Np(e,s+1);return s}function Q$(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function eF(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let d=0;d<s;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let o=e.shape[n],i=[],l=1,u=1,c=1;for(let d=0;d<s;++d)i.push(e.shape[d]),l*=e.shape[d];for(let d=s;d<n;d++)i.push(e.shape[d]),u*=e.shape[d];for(let d=s;d<r;d++)i.push(t.shape[d]);for(let d=n+1;d<a;d++)i.push(e.shape[d]),c*=e.shape[d];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:o,outputShape:i}}function tF(e){try{return e.map(t=>gh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function nF(e){return e.map(t=>Nc(t))}var fr={};Le(fr,{nonMaxSuppressionV3Impl:()=>m3,nonMaxSuppressionV4Impl:()=>g3,nonMaxSuppressionV5Impl:()=>A3,whereImpl:()=>a3});var N3={kernelName:Gi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,du(pe(n,"float32"),-1))}}},sF={kernelName:ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ft(pe(n,"float32")),r=An(ye(Ce(1),s));return St(he(e,r))}}}},rF={kernelName:qi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=An(ye(ft(pe(n,"float32")),1));return he(e,s)}}}},aF={kernelName:ra,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=e,l=Zt(n.shape,r);return l.length>0&&(i=we(i,l)),V(i,n.shape)},b:()=>{let i=e,l=Zt(s.shape,r);return l.length>0&&(i=we(i,l)),V(i,s.shape)}}}},oF={kernelName:Ha,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},iF={kernelName:Ga,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ye(n)}}},lF={kernelName:dc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ye(n)}}},uF={kernelName:Zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,An(ye(Ce(1),ft(pe(n,"float32")))))}}},cF={kernelName:Yi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=An(le(Ce(1),ft(pe(n,"float32"))));return he(e,s)}}}},dF={kernelName:el,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=le(ft(n),ft(s)),l=z(e,he(s,i)),u=Zt(n.shape,r);return u.length>0&&(l=we(l,u)),V(l,n.shape)},b:()=>{let i=le(ft(n),ft(s)),l=St(z(e,he(n,i))),u=Zt(s.shape,r);return u.length>0&&(l=we(l,u)),V(l,s.shape)}}}},pF={kernelName:Ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,le(ft(pe(n,"float32")),1))}}},hF={kernelName:Qi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,ye(Ce(1),ft(pe(n,"float32"))))}}};function fF(e,t,n,s,r,a){let o=$(e,"dy","avgPool3dGrad"),i=$(t,"input","avgPool3dGrad"),l=o,u=i,c=!1;i.rank===4&&(c=!0,l=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=V(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),a!=null&&M(an(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let d={dy:l,input:u},p={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=L.runKernel(Dp,d,p);return c?V(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var mF=W({avgPool3dGrad_:fF}),gF={kernelName:pc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>mF(e,s,r,a,o,i)}}};function AF(e,t,n,s,r){let a=$(e,"dy","avgPoolGrad"),o=$(t,"input","avgPoolGrad");M(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,u=!1;o.rank===3&&(u=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},d={filterSize:n,strides:s,pad:r},p=L.runKernel(Rp,c,d);return u?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var yF=W({avgPoolGrad_:AF}),xF={kernelName:ja,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>yF(e,s,r,a,o)}}},bF={kernelName:qa,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Ue(e,r,!1,!0),b:()=>Ue(s,e,!0,!1)}:!a&&o?{a:()=>Ue(e,r,!1,!1),b:()=>Ue(e,s,!0,!1)}:a&&!o?{a:()=>Ue(r,e,!1,!0),b:()=>Ue(s,e,!1,!1)}:{a:()=>Ue(r,e,!0,!0),b:()=>Ue(e,s,!0,!0)}}},vF={kernelName:tl,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>qc(e,s,r)}}},wF={kernelName:N5,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>we(e,i,!0)}}},kF={kernelName:Xa,gradFunc:e=>({x:()=>e.clone()})},IF={kernelName:Ka,gradFunc:e=>({x:()=>Ye(e)})},SF={kernelName:aa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>kn($s(ma(s,r),ga(s,a)),e,Ye(e))}}},CF={kernelName:hc,inputsToSave:["x"],gradFunc:N3.gradFunc},TF={kernelName:nl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=Rs(r,t[0].shape)[0],o=s.map(l=>l[a]);return Vt(e,o,a).map(l=>()=>l)}},NF={kernelName:Za,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return M(fa(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>vA(s.shape,e,r,o,i,l),filter:()=>ZA(s,e,r.shape,o,i,l)}}},EF={kernelName:Ya,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Fr(e,r,a,o,i,1,l),filter:()=>ZA(e,s,r.shape,a,o,i,l)}}};function RF(e,t,n,s,r){let a=e;e.rank===4&&(a=V(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=V(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),M(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),M(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return L.runKernel(Op,i,l)}var DF=W({conv3DBackpropFilter_:RF}),_F={kernelName:fc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;M(fa(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>Lb(o.shape,e,i,r,a),filter:()=>DF(o,e,i.shape,r,a)}}},$F={kernelName:Ja,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(St(Gh(pe(n,"float32"))),e)}}},FF={kernelName:Qa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(jh(pe(n,"float32")),e)}}},OF={kernelName:eo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=Yb([r],s.rank),l=$h(e,r,a,!o);return i!=null&&(l=Ze(l,i)),l}}}},PF={kernelName:to,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;M(fa(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),M(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),M(dr(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),o!=null&&M(an(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>p3(l.shape,e,u,r,a,i,o),filter:()=>d3(l,e,u.shape,r,a,i,o)}}},MF={kernelName:mc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>L.runKernel(Wp,a,n),filter:()=>L.runKernel(Vp,o,n)}}},zF={kernelName:so,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>L.runKernel(Hp,s)}}},LF={kernelName:al,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(ts(St(ft(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,s)}}},BF={kernelName:ro,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},WF={kernelName:il,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>V(e,n.shape)}}},VF={kernelName:ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ts(n))}}},UF={kernelName:ao,gradFunc:e=>({x:()=>Ye(e)})},HF={kernelName:oo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=he(e,pe(s,"float32")),l=Zt(n.shape,r);return l.length>0?V(we(i,l),n.shape):i},b:()=>{let i=z(e,pe(n,"float32")),l=Zt(s.shape,r);l.length>0&&(i=V(we(i,l),s.shape));let u=ft(s);return St(he(i,pe(u,"float32")))}}}},GF={kernelName:io,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Ce(1):i,u=Zt(a.shape,r.shape),c=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)c.push(r.shape[b]);c.push(1)}let d=ye(r,a),p=z(e,l),h=Uh(le(o,Ce(s))),m=z(z(z(h,h),h),Ce(-.5));return{x:()=>a.rank===1?V(z(z(e,xs(V(h,[1,1,1,a.shape[0]]),c)),l),r.shape):V(z(z(e,h),l),r.shape),mean:()=>{let b=z(z(h,Ce(-1)),p);return a.rank===1&&(b=we(b,u)),V(b,a.shape)},variance:()=>{let b=z(z(m,d),p);return a.rank===1&&(b=we(b,u)),V(b,a.shape)},scale:()=>{let b=z(d,h),v=z(e,b);return a.rank===1&&(v=we(v,u)),V(v,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=we(b,u)),V(b,a.shape)}}}},jF={kernelName:cl,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=Rs(a,s.shape)[0];return{x:()=>{let l=s.shape,u=r.size,c=l.slice(0,o),d=c.length,p=l.slice(a,l.length).slice(1),h=p.length,m=E3(0,d),f=E3(d+1,d+1+h),g=R3([c,[u],p]),A=V(e,g),y=V(r,[u]),x=R3([[d],m,f]),b=Ze(A,x),v=jA(b,y,s.shape[o]),k=_A(x);return v=Ze(v,k),v},indices:()=>r}}};function E3(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function R3(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var qF={kernelName:lo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>Ye(n),b:()=>Ye(s)}}},XF={kernelName:uo,gradFunc:e=>({x:()=>pe(e,"float32")})},KF={kernelName:hl,gradFunc:e=>({x:()=>Ye(e)})},ZF={kernelName:fl,gradFunc:e=>({x:()=>Ye(e)})},YF={kernelName:ml,gradFunc:e=>({x:()=>Ye(e)})},JF={kernelName:co,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=Un(s,0);return{x:()=>kn(a,e,z(e,r))}}},QF={kernelName:yl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,le(n,1))}}},eO={kernelName:po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,pe(n,"float32"))}}},tO={kernelName:E5,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let a=!0,o=ts(s);return ye(e,z(we(e,r,a),o))}}}};function nO(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return L.runKernel(Kp,i,l)}var sO=W({localResponseNormalizationBackprop_:nO}),rO={kernelName:xc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>sO(s,r,e,a,o,i,l)}}};function D3(e,t,n,s){return t.rank<n.rank&&(t=V(t,ti(t.shape,s))),e.rank<n.rank&&(e=V(e,ti(e.shape,s))),{x:()=>z(e,pe(es(n,t),e.dtype))}}var _3={kernelName:ho,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=Rs(r,a.shape),l=D3(e,o,a,i);return{x:()=>l.x()}}},aO={kernelName:fo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,pe(ma(n,s),"float32")),b:()=>z(e,pe(Oh(n,s),"float32"))}}};function oO(e,t,n,s,r,a,o){let i=$(e,"dy","maxPool3dGrad"),l=$(t,"input","maxPool3dGrad"),u=$(n,"output","maxPool3dGrad"),c=i,d=l,p=u,h=!1;l.rank===4&&(h=!0,c=V(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=V(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=V(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),M(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),M(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),o!=null&&M(an(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let m={dy:c,input:d,output:p},f={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=L.runKernel(Yp,m,f);return h?V(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var iO=W({maxPool3dGrad_:oO}),lO={kernelName:bc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>iO(e,s,r,a,o,i,l)}}};function uO(e,t,n,s,r,a,o){let i=$(e,"dy","maxPoolGrad"),l=$(t,"input","maxPoolGrad"),u=$(n,"output","maxPoolGrad");M(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),M(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&M(an(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let c={dy:i,input:l,output:u},d={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return L.runKernel(Zp,c,d)}var cO=W({maxPoolGrad_:uO}),dO={kernelName:mo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>cO(e,s,r,a,o,i)}}},pO={kernelName:go,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=Rs(r,s.shape),i=Zb(s.shape,a)[1],l=Mt(i);return{x:()=>{let c=s.shape.slice();a.forEach(h=>{c[h]=1});let d=V(e,c);return he(z(d,rs(s.shape,"float32")),l)}}}},hO={kernelName:Ao,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=Rs(r,a.shape),l=D3(e,o,a,i);return{x:()=>l.x()}}},fO={kernelName:yo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,pe(ga(n,s),"float32")),b:()=>z(e,pe(Un(n,s),"float32"))}}},mO={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>_e(e,a,s.shape)}}},gO={kernelName:bl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=Zt(n.shape,r);return i.length>0?V(we(e,i),n.shape):e},b:()=>{let i=z(e,St(ou(he(n,s)))),l=Zt(s.shape,r);return l.length>0?V(we(i,l),s.shape):i}}}},AO={kernelName:bo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=z(e,pe(s,"float32")),l=Zt(n.shape,r);return l.length>0?V(we(i,l),n.shape):i},b:()=>{let i=z(e,pe(n,"float32")),l=Zt(s.shape,r);return l.length>0?V(we(i,l),s.shape):i}}}},yO={kernelName:vl,gradFunc:e=>({x:()=>St(e)})},xO={kernelName:vo,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Pt(n.shape,"float32")}}},bO={kernelName:Cl,gradFunc:e=>({x:()=>Ye(e)})},vO={kernelName:Tl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return En(e,s).map(a=>()=>a)}},$3={kernelName:wo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>_e(e,a,s.shape)}}},wO={kernelName:ko,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=bt(a.shape,o.shape);return{a:()=>{let c=pe(o,"float32"),d=z(e,z(c,Pr(a,ye(c,Ce(1))))),p=Zt(a.shape,i);return p.length>0&&(d=we(d,p)),V(d,a.shape)},b:()=>{let c=Un(a,0),d=kn(c,ns(a),Ye(a)),p=z(e,z(r,d)),h=Zt(o.shape,i);return h.length>0&&(p=we(p,h)),V(p,o.shape)}}}},kO={kernelName:Io,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=Un(n,0);return{x:()=>kn(r,e,z(e,s)),alpha:()=>{let a=kn(r,Ye(e),z(e,n)),o=Zt(s.shape,e.shape);return o.length>0&&(a=we(a,o)),V(a,s.shape)}}}},IO={kernelName:no,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=he(e,pe(s,"float32")),l=Zt(n.shape,r);return l.length>0?V(we(i,l),n.shape):i},b:()=>{let i=z(e,pe(n,"float32")),l=Zt(s.shape,r);l.length>0&&(i=V(we(i,l),s.shape));let u=ft(s);return St(he(i,pe(u,"float32")))}}}},SO={kernelName:El,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,St(ft(n)))}}},CO={kernelName:To,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(ga(n,6),du(n));return{x:()=>z(e,pe(s,"float32"))}}},TO={kernelName:So,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,pe(du(n),"float32"))}}},NO={kernelName:Rl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,n.shape)}}},EO={kernelName:Co,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>L.runKernel(nh,r,n)}}},RO={kernelName:wc,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>L.runKernel(th,r,n)}}},DO={kernelName:No,gradFunc:(e,t,n)=>{let{dims:s}=n,r=Rs(s,e.shape);return{x:()=>os(e,r)}}},_O={kernelName:Eo,gradFunc:e=>({x:()=>Ye(e)})},$O={kernelName:Ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>St(he(e,z(Pr(n,1.5),2)))}}},FO={kernelName:_l,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>pe(Ye(n),"float32"),t:()=>z(e,pe(n,e.dtype)),e:()=>z(e,pe(Hc(n),e.dtype))}}},OO={kernelName:$l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Un(n,Ce(0)),r=Ce(k3),a=Ce(I3),o=z(e,a),i=z(z(e,r),ts(pe(n,"float32")));return kn(s,o,i)}}}},PO={kernelName:_o,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,ye(Ce(1),n)))}}},MO={kernelName:Pl,gradFunc:e=>({x:()=>Ye(e)})},zO={kernelName:Do,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Wc(pe(n,"float32")),e)}}},LO={kernelName:Ol,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(_h(pe(n,"float32")),e)}}},BO={kernelName:Fl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=wb(s,r,a),u=[];for(let c=0;c<e.rank;c++)u.push([i[c],o[c]-i[c]-l[c]]);return{x:()=>Or(e,u)}}},WO={kernelName:Oo,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=z(e,s);return{logits:()=>ye(o,z(we(o,[r],a),s))}}},VO={kernelName:Ml,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Wn(n))}}},F3={kernelName:zl,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>Bc(e,s,r)}}},O3={kernelName:Ll,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>gt(e,s)}}},UO={kernelName:$o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,z(An(pe(n,"float32")),2))}}},HO={kernelName:kc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(pe(n,"float32"),2))}}},GO={kernelName:Po,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ce(2);return{a:()=>z(e,z(r,ye(n,s))),b:()=>z(e,z(r,ye(s,n)))}}},jO={kernelName:ia,gradFunc:e=>({x:()=>Ye(e)})},qO={kernelName:Mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=e,l=Zt(n.shape,r);return l.length>0&&(i=we(i,l)),V(i,n.shape)},b:()=>{let i=e,l=Zt(s.shape,r);return l.length>0&&(i=we(i,l)),V(St(i),s.shape)}}}},XO={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;Rs(a,s.shape).forEach(u=>{r[u]=1});let i=V(e,r),l=z(i,rs(s.shape,"float32"));return{x:()=>l}}},KO={kernelName:zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,ft(Wc(n)))}}},ZO={kernelName:Lo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(ye(Ce(1),ft(n)),e)}}},YO={kernelName:oa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=Ye(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=le(o,_e(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=le(o,_e(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)o=le(o,_e(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)for(let c=0;c<r[3];++c)o=le(o,_e(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2],c*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},JO={kernelName:Bo,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=_A(r);return{x:()=>Ze(e,a)}}},QO={kernelName:Ul,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>yn(e,r)}}},eP={kernelName:Ic,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>tP(e,n)}}};function tP(e,t){let n=hr(t,Ye(t)),s=Qo(e,n),r=ma(t,Ce(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=zt(r,i+1);r=$s(r,rs(s.shape,"bool"));let o=Ye(s);return kn(r,s,o)}var nP={kernelName:Hl,gradFunc:e=>({x:()=>Ye(e)})},sP=[N3,sF,rF,aF,oF,iF,lF,uF,cF,dF,pF,hF,gF,xF,bF,vF,wF,kF,IF,SF,CF,TF,EF,NF,_F,$F,FF,OF,PF,MF,IO,zF,LF,BF,WF,VF,HF,UF,GF,jF,qF,XF,KF,ZF,YF,JF,QF,eO,tO,rO,_3,_3,aO,lO,dO,pO,hO,fO,mO,gO,AO,yO,xO,bO,vO,$3,$3,wO,kO,SO,CO,TO,NO,EO,RO,DO,_O,$O,FO,OO,PO,MO,zO,LO,BO,WO,VO,F3,F3,O3,O3,UO,GO,HO,jO,qO,XO,KO,ZO,YO,JO,QO,eP,nP];for(let e of sP)R5(e);ee().prototype.abs=function(){return this.throwIfDisposed(),Wt(this)};ee().prototype.acos=function(){return this.throwIfDisposed(),lA(this)};ee().prototype.acosh=function(){return this.throwIfDisposed(),uA(this)};ee().prototype.add=function(e){return this.throwIfDisposed(),le(this,e)};ee().prototype.all=function(e,t){return this.throwIfDisposed(),Nh(this,e,t)};ee().prototype.any=function(e,t){return this.throwIfDisposed(),Mc(this,e,t)};ee().prototype.argMax=function(e){return this.throwIfDisposed(),Gs(this,e)};ee().prototype.argMin=function(e){return this.throwIfDisposed(),cA(this,e)};ee().prototype.asScalar=function(){return this.throwIfDisposed(),M(this.size===1,()=>"The array must have only 1 element."),V(this,[])};ee().prototype.asType=function(e){return this.throwIfDisposed(),pe(this,e)};ee().prototype.as1D=function(){return this.throwIfDisposed(),V(this,[this.size])};ee().prototype.as2D=function(e,t){return this.throwIfDisposed(),V(this,[e,t])};ee().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),V(this,[e,t,n])};ee().prototype.as4D=function(e,t,n,s){return this.throwIfDisposed(),V(this,[e,t,n,s])};ee().prototype.as5D=function(e,t,n,s,r){return this.throwIfDisposed(),V(this,[e,t,n,s,r])};ee().prototype.asin=function(){return this.throwIfDisposed(),dA(this)};ee().prototype.asinh=function(){return this.throwIfDisposed(),pA(this)};ee().prototype.atan=function(){return this.throwIfDisposed(),hA(this)};ee().prototype.atan2=function(e){return this.throwIfDisposed(),fA(this,e)};ee().prototype.atanh=function(){return this.throwIfDisposed(),mA(this)};ee().prototype.avgPool=function(e,t,n,s){return this.throwIfDisposed(),Lc(this,e,t,n,s)};ee().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Bc(this,e,t)};ee().prototype.batchNorm=function(e,t,n,s,r){return this.throwIfDisposed(),Jo(this,e,t,n,s,r)};ee().prototype.broadcastTo=function(e){return this.throwIfDisposed(),tu(this,e)};ee().prototype.cast=function(e){return this.throwIfDisposed(),pe(this,e)};ee().prototype.ceil=function(){return this.throwIfDisposed(),bA(this)};ee().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),Vn(this,e,t)};ee().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof He&&(e=[e]),gt([this,...e],t)};ee().prototype.conv1d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Rh(this,e,t,n,s,r,a)};ee().prototype.conv2dTranspose=function(e,t,n,s,r){return this.throwIfDisposed(),Dh(this,e,t,n,s,r)};ee().prototype.conv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Fr(this,e,t,n,s,r,a)};ee().prototype.cos=function(){return this.throwIfDisposed(),Wc(this)};ee().prototype.cosh=function(){return this.throwIfDisposed(),_h(this)};ee().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),$h(this,e,t,n)};ee().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),kA(this,e,t)};ee().prototype.depthwiseConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),su(this,e,t,n,s,r,a)};ee().prototype.dilation2d=function(e,t,n,s,r){return this.throwIfDisposed(),IA(this,e,t,n,s,r)};ee().prototype.divNoNan=function(e){return this.throwIfDisposed(),SA(this,e)};ee().prototype.div=function(e){return this.throwIfDisposed(),he(this,e)};ee().prototype.dot=function(e){return this.throwIfDisposed(),Vb(this,e)};ee().prototype.elu=function(){return this.throwIfDisposed(),ru(this)};ee().prototype.equal=function(e){return this.throwIfDisposed(),es(this,e)};ee().prototype.erf=function(){return this.throwIfDisposed(),CA(this)};ee().prototype.exp=function(){return this.throwIfDisposed(),ts(this)};ee().prototype.expandDims=function(e){return this.throwIfDisposed(),zt(this,e)};ee().prototype.expm1=function(){return this.throwIfDisposed(),TA(this)};ee().prototype.fft=function(){return this.throwIfDisposed(),Yc(this)};ee().prototype.flatten=function(){return this.throwIfDisposed(),V(this,[this.size])};ee().prototype.floor=function(){return this.throwIfDisposed(),ou(this)};ee().prototype.floorDiv=function(e){return this.throwIfDisposed(),Ch(this,e)};ee().prototype.gather=function(e,t){return this.throwIfDisposed(),Qo(this,e,t)};ee().prototype.greaterEqual=function(e){return this.throwIfDisposed(),ma(this,e)};ee().prototype.greater=function(e){return this.throwIfDisposed(),Un(this,e)};ee().prototype.ifft=function(){return this.throwIfDisposed(),cu(this)};ee().prototype.irfft=function(){return this.throwIfDisposed(),Kh(this)};ee().prototype.isFinite=function(){return this.throwIfDisposed(),Hb(this)};ee().prototype.isInf=function(){return this.throwIfDisposed(),Gb(this)};ee().prototype.isNaN=function(){return this.throwIfDisposed(),EA(this)};ee().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Vc(this,e)};ee().prototype.lessEqual=function(e){return this.throwIfDisposed(),ga(this,e)};ee().prototype.less=function(e){return this.throwIfDisposed(),Oh(this,e)};ee().prototype.localResponseNormalization=function(e,t,n,s){return this.throwIfDisposed(),RA(this,e,t,n,s)};ee().prototype.logSigmoid=function(){return this.throwIfDisposed(),Xb(this)};ee().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Mh(this,e)};ee().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),$A(this,e,t)};ee().prototype.log=function(){return this.throwIfDisposed(),ns(this)};ee().prototype.log1p=function(){return this.throwIfDisposed(),Uc(this)};ee().prototype.logicalAnd=function(e){return this.throwIfDisposed(),$s(this,e)};ee().prototype.logicalNot=function(){return this.throwIfDisposed(),Hc(this)};ee().prototype.logicalOr=function(e){return this.throwIfDisposed(),zh(this,e)};ee().prototype.logicalXor=function(e){return this.throwIfDisposed(),Jb(this,e)};ee().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ue(this,e,t,n)};ee().prototype.maxPool=function(e,t,n,s){return this.throwIfDisposed(),Gc(this,e,t,n,s)};ee().prototype.max=function(e,t){return this.throwIfDisposed(),ss(this,e,t)};ee().prototype.maximum=function(e){return this.throwIfDisposed(),hr(this,e)};ee().prototype.mean=function(e,t){return this.throwIfDisposed(),Dt(this,e,t)};ee().prototype.min=function(e,t){return this.throwIfDisposed(),jc(this,e,t)};ee().prototype.minimum=function(e){return this.throwIfDisposed(),iu(this,e)};ee().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),OA(this,e,t)};ee().prototype.mod=function(e){return this.throwIfDisposed(),PA(this,e)};ee().prototype.mul=function(e){return this.throwIfDisposed(),z(this,e)};ee().prototype.neg=function(){return this.throwIfDisposed(),St(this)};ee().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Qh(this,e,t,n)};ee().prototype.notEqual=function(e){return this.throwIfDisposed(),ni(this,e)};ee().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Yl(this,e,t,n)};ee().prototype.onesLike=function(){return this.throwIfDisposed(),as(this)};ee().prototype.pad=function(e,t){return this.throwIfDisposed(),Or(this,e,t)};ee().prototype.pool=function(e,t,n,s,r){return this.throwIfDisposed(),t3(this,e,t,n,s,r)};ee().prototype.pow=function(e){return this.throwIfDisposed(),Pr(this,e)};ee().prototype.prelu=function(e){return this.throwIfDisposed(),Xc(this,e)};ee().prototype.prod=function(e,t){return this.throwIfDisposed(),Bh(this,e,t)};ee().prototype.reciprocal=function(){return this.throwIfDisposed(),LA(this)};ee().prototype.relu=function(){return this.throwIfDisposed(),js(this)};ee().prototype.relu6=function(){return this.throwIfDisposed(),Wh(this)};ee().prototype.reshapeAs=function(e){return this.throwIfDisposed(),V(this,e.shape)};ee().prototype.reshape=function(e){return this.throwIfDisposed(),V(this,e)};ee().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),x3(this,e,t,n)};ee().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),b3(this,e,t,n)};ee().prototype.reverse=function(e){return this.throwIfDisposed(),os(this,e)};ee().prototype.rfft=function(){return this.throwIfDisposed(),Jc(this)};ee().prototype.round=function(){return this.throwIfDisposed(),Vh(this)};ee().prototype.rsqrt=function(){return this.throwIfDisposed(),Uh(this)};ee().prototype.selu=function(){return this.throwIfDisposed(),Hh(this)};ee().prototype.separableConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),BA(this,e,t,n,s,r,a)};ee().prototype.sigmoid=function(){return this.throwIfDisposed(),Wn(this)};ee().prototype.sign=function(){return this.throwIfDisposed(),WA(this)};ee().prototype.sin=function(){return this.throwIfDisposed(),Gh(this)};ee().prototype.sinh=function(){return this.throwIfDisposed(),jh(this)};ee().prototype.slice=function(e,t){return this.throwIfDisposed(),_e(this,e,t)};ee().prototype.softmax=function(e){return this.throwIfDisposed(),si(this,e)};ee().prototype.softplus=function(){return this.throwIfDisposed(),ei(this)};ee().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),qc(this,e,t)};ee().prototype.split=function(e,t){return this.throwIfDisposed(),Vt(this,e,t)};ee().prototype.sqrt=function(){return this.throwIfDisposed(),An(this)};ee().prototype.square=function(){return this.throwIfDisposed(),ft(this)};ee().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Zh(this,e)};ee().prototype.squeeze=function(e){return this.throwIfDisposed(),at(this,e)};ee().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof He?[this,e]:[this,...e];return yn(n,t)};ee().prototype.step=function(e){return this.throwIfDisposed(),du(this,e)};ee().prototype.stridedSlice=function(e,t,n,s,r,a,o,i){return this.throwIfDisposed(),UA(this,e,t,n,s,r,a,o,i)};ee().prototype.sub=function(e){return this.throwIfDisposed(),ye(this,e)};ee().prototype.sum=function(e,t){return this.throwIfDisposed(),we(this,e,t)};ee().prototype.tan=function(){return this.throwIfDisposed(),HA(this)};ee().prototype.tanh=function(){return this.throwIfDisposed(),Yo(this)};ee().prototype.tile=function(e){return this.throwIfDisposed(),xs(this,e)};ee().prototype.toBool=function(){return this.throwIfDisposed(),pe(this,"bool")};ee().prototype.toFloat=function(){return this.throwIfDisposed(),pe(this,"float32")};ee().prototype.toInt=function(){return this.throwIfDisposed(),pe(this,"int32")};ee().prototype.topk=function(e,t){return this.throwIfDisposed(),GA(this,e,t)};ee().prototype.transpose=function(e){return this.throwIfDisposed(),Ze(this,e)};ee().prototype.unique=function(e){return this.throwIfDisposed(),Jh(this,e)};ee().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),jA(this,e,t)};ee().prototype.unstack=function(e){return this.throwIfDisposed(),En(this,e)};ee().prototype.where=function(e,t){return this.throwIfDisposed(),kn(e,this,t)};ee().prototype.zerosLike=function(){return this.throwIfDisposed(),Ye(this)};var P3={};Le(P3,{maxNorm:()=>iP,minMaxNorm:()=>cP,nonNeg:()=>uP,unitNorm:()=>lP});var e1;function Yt(){return e1==null&&(e1=$r().epsilon()),e1}function Xs(){return"channelsLast"}var Lr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Lr.prototype)}},Ks=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ks.prototype)}},G=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,G.prototype)}},ze=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ze.prototype)}},M3=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,M3.prototype)}};function oi(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function mr(e,t){if(!e)throw new M3(t)}function z3(e,t){let n=0;for(let s of e)s===t&&n++;return n}function Hn(e){return e.length===1?e[0]:e}function vt(e){return Array.isArray(e)?e:[e]}function Br(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function ii(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Fs={};function t1(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function n1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>n1(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:n1(s))}}}function td(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Fs)o=Fs[a];else if(o=t[a],o==null)throw new G(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new G(`${s}: Improper config format: ${JSON.stringify(a)}.
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in Fs?[i,l]=Fs.className:o in t&&([i,l]=t[o]),i==null)throw new G(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(Fs))u[h]=Fs[h];for(let h of Object.keys(n))u[h]=n[h];let c=a.config;c.customObjects=u;let d=Object.assign({},Fs);for(let h of Object.keys(n))Fs[h]=n[h];n1(a.config);let p=l(i,a.config,n,r);return Fs=Object.assign({},d),p}else{let u=Object.assign({},Fs);for(let d of Object.keys(n))Fs[d]=n[d];let c=new i(a.config);return Fs=Object.assign({},u),c}}}function rP(e,t){return e<t?-1:e>t?1:0}function hf(e,t){return-1*rP(e,t)}function ya(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function aP(e){if(e==null)throw new G(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function li(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new G(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function s1(e,t,n=0,s=1/0){return mr(n>=0),mr(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function cn(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>cn(n,`element ${s+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${L3(e)}.`)}function L3(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>L3(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function oP(e,t){let n=w.now(),s;return(...a)=>{let o=w.now();return o-n<t||(n=o,s=e(...a)),s}}function B3(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function r1(e,t){return H(()=>An(we(z(e,e),t,!0)))}var nd=class extends ue.Serializable{getConfig(){return{}}},a1=class extends nd{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=r1(e,this.axis),n=Vn(t,0,this.maxValue);return z(e,he(n,le(Yt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};a1.className="MaxNorm";ue.registerClass(a1);var o1=class extends nd{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>he(e,le(Yt(),r1(e,this.axis))))}getConfig(){return{axis:this.axis}}};o1.className="UnitNorm";ue.registerClass(o1);var i1=class extends nd{apply(e){return js(e)}};i1.className="NonNeg";ue.registerClass(i1);var l1=class extends nd{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=r1(e,this.axis),n=le(z(this.rate,Vn(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,he(n,le(Yt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};l1.className="MinMaxNorm";ue.registerClass(l1);var W3={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Jt(e){return t1(e)}function V3(e,t={}){return td(e,ue.SerializationMap.getMap().classNameMap,t,"constraint")}function Qt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in W3?W3[e]:e,config:{}};return V3(n)}else return e instanceof nd?e:V3(e)}function iP(e){return new a1(e)}function lP(e){return new o1(e)}function uP(){return new i1}function cP(e){return new l1(e)}var U3={};Le(U3,{constant:()=>$P,glorotNormal:()=>BP,glorotUniform:()=>LP,heNormal:()=>WP,heUniform:()=>VP,identity:()=>MP,leCunNormal:()=>UP,leCunUniform:()=>HP,ones:()=>_P,orthogonal:()=>GP,randomNormal:()=>OP,randomUniform:()=>FP,truncatedNormal:()=>PP,varianceScaling:()=>zP,zeros:()=>DP});var dP=["channelsFirst","channelsLast"],pP=["nearest","bilinear"],hP=["valid","same","causal"],fP=["max","avg"],mP=["sum","mul","concat","ave"],hu=new Map;function Lt(e){li(dP,"DataFormat",e)}function gP(e){li(pP,"InterpolationFormat",e)}function bs(e){li(hP,"PaddingMode",e)}function H3(e){li(fP,"PoolMode",e)}var sd=[],G3="/";function ui(e,t){sd.push(e);try{let n=t();return sd.pop(),n}catch(n){throw sd.pop(),n}}function AP(){return sd.length===0?"":sd.join(G3)+G3}function j3(e){if(!X3(e))throw new Error("Not a valid tensor name: '"+e+"'");return AP()+e}function q3(e){if(!X3(e))throw new Error("Not a valid tensor name: '"+e+"'");hu.has(e)||hu.set(e,0);let t=hu.get(e);if(hu.set(e,hu.get(e)+1),t>0){let n=`${e}_${t}`;return hu.set(n,1),n}else return e}var yP=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function X3(e){return!!e.match(yP)}function xP(e){return e===parseInt(e.toString(),10)}function xa(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function fu(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function ba(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function Zs(e,t){if(t<e)throw new G(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}function ff(e,t){return pe(e,t)}function rd(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),V(e,n)}function bP(e,t){return H(()=>{if(e.shape.length!==2)throw new G(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=rd(e,1);return d1(n,[1,t,1])})}function vP(e){let t=[xa(e.shape)];return V(e,t)}function wP(e){if(e.rank<=1)throw new G(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],xa(e.shape,1)];return V(e,t)}function ci(e,t,n){return H(()=>{switch(e.rank){case 1:return qh(e,t,n);case 2:return VA(e,[t,0],[n,e.shape[1]]);case 3:return Xh(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Zc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return _e(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return _e(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new G(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function u1(e,t,n){return H(()=>{switch(e.rank){case 1:return qh(e,t,n);case 2:return VA(e,[0,t],[e.shape[0],n]);case 3:return Xh(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Zc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function mf(e,t,n,s){return H(()=>{switch(e.rank){case 1:return qh(e,t,n);case 2:switch(s){case 1:return ci(e,t,n);case 2:return u1(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return ci(e,t,n);case 2:return Xh(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return u1(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return ci(e,t,n);case 2:return Zc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Zc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return u1(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function c1(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),gt(e,t)}function K3(e,t){switch(e.rank){case 1:return Pb([e,t]);case 2:return nu([e,t],0);case 3:return Mb([e,t],0);case 4:return zb([e,t],0);default:throw new G(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function d1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new G(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return xs(e,t)}function gf(e,t=0,n=1,s,r){return n3(e,t,n,s,r)}function gr(e,t,n,s){if(e.rank<2||t.rank<2)throw new ze(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new ze(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,a=!1;return Aa.matMul({a:e,b:t,transposeA:r,transposeB:a,bias:s?p1(e.rank,s,Xs()):null,activation:n})}else{let r=e.shape.slice(),a=r.pop();e=V(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),u=[...o,i],c=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=V(Ze(t,c),[l,-1]);let d=[...r,...u],p=!1,h=!1;return V(Aa.matMul({a:e,b:t,transposeA:p,transposeB:h,bias:s?p1(e.rank,s,Xs()):null,activation:n}),d)}}function Z3(e,t,n){return H(()=>(Array.isArray(t)?t=Ut(t,"int32"):t=pe(t,"int32"),Qo(e,t,n)))}function ad(e){return z(e,e)}function p1(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new G(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1,1,1]):V(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,1,1,s[0]]):V(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1,1]):V(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,1,s[0]]):V(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1]):V(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,s[0]]):V(t,[1].concat(s))}else if(e<3)return t;throw new G(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ys(e,t,n){return H(()=>(n==null&&(n=Xs()),Lt(n),le(e,p1(e.rank,t,n))))}function kP(e,t=1){if(t!==1)throw new ze(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return ru(e)}function IP(e){return H(()=>he(e,le(Wt(e),1)))}function Y3(e,t,n,s){return H(()=>u3(e,t,n,s))}function SP(e){return H(()=>{let t=le(.5,z(.2,e));return Vn(t,0,1)})}function od(e,t,n=!1){return n?e():t()}var CP=["fanIn","fanOut","fanAvg"],TP=["normal","uniform","truncatedNormal"];function NP(e){li(CP,"FanMode",e)}function EP(e){li(TP,"Distribution",e)}var Os=class extends ue.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},h1=class extends Os{apply(e,t){return Pt(e,t)}};h1.className="Zeros";ue.registerClass(h1);var Af=class extends Os{apply(e,t){return rs(e,t)}};Af.className="Ones";ue.registerClass(Af);var f1=class extends Os{constructor(e){super();if(typeof e!="object")throw new G(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new G(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return H(()=>z(Ce(this.value),rs(e,t)))}getConfig(){return{value:this.value}}};f1.className="Constant";ue.registerClass(f1);var m1=class extends Os{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return lu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};m1.className="RandomUniform";ue.registerClass(m1);var g1=class extends Os{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`randomNormal does not support dType ${t}.`);return gf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};g1.className="RandomNormal";ue.registerClass(g1);var A1=class extends Os{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`truncatedNormal does not support dType ${t}.`);return Yh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};A1.className="TruncatedNormal";ue.registerClass(A1);var y1=class extends Os{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return H(()=>{if(e.length!==2||e[0]!==e[1])throw new G("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,NA(e[0]))})}getConfig(){return{gain:this.gain}}};y1.className="Identity";ue.registerClass(y1);function RP(e,t="channelsLast"){let n,s;if(Lt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=xa(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=xa(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=xa(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var Gn=class extends Os{constructor(e){super();if(e.scale<0)throw new G(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,NP(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,EP(this.distribution),this.seed=e.seed}apply(e,t){let n=RP(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`${this.getClassName()} does not support dType ${t}.`);return Yh(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return lu(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Gn.className="VarianceScaling";ue.registerClass(Gn);var yf=class extends Gn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Gn.className}};yf.className="GlorotUniform";ue.registerClass(yf);var xf=class extends Gn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Gn.className}};xf.className="GlorotNormal";ue.registerClass(xf);var bf=class extends Gn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Gn.className}};bf.className="HeNormal";ue.registerClass(bf);var vf=class extends Gn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Gn.className}};vf.className="HeUniform";ue.registerClass(vf);var wf=class extends Gn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Gn.className}};wf.className="LeCunNormal";ue.registerClass(wf);var kf=class extends Gn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Gn.className}};kf.className="LeCunNormal";ue.registerClass(kf);var x1=class extends Os{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new ze("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return H(()=>{if(e.length<2)throw new ze("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=gf(n,0,1,"float32"),r=w3.gramSchmidt(s);return e[0]>e[1]&&(r=Ze(r)),z(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};x1.className="Orthogonal";ue.registerClass(x1);var J3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Q3(e,t={}){return td(e,ue.SerializationMap.getMap().classNameMap,t,"initializer")}function _t(e){return t1(e)}function Ct(e){if(typeof e=="string"){let t=e in J3?J3[e]:e;if(t==="GlorotNormal")return new xf;if(t==="GlorotUniform")return new yf;if(t==="HeNormal")return new bf;if(t==="HeUniform")return new vf;if(t==="LeCunNormal")return new wf;if(t==="LeCunUniform")return new kf;{let n={};return n.className=t,n.config={},Q3(n)}}else return e instanceof Os?e:Q3(e)}function DP(){return new h1}function _P(){return new Af}function $P(e){return new f1(e)}function FP(e){return new m1(e)}function OP(e){return new g1(e)}function PP(e){return new A1(e)}function MP(e){return new y1(e)}function zP(e){return new Gn(e)}function LP(e){return new yf(e)}function BP(e){return new xf(e)}function WP(e){return new bf(e)}function VP(e){return new vf(e)}function UP(e){return new wf(e)}function HP(e){return new kf(e)}function GP(e){return new x1(e)}var ev={};Le(ev,{Layer:()=>Qe,RNN:()=>xr,RNNCell:()=>md,activation:()=>Tz,add:()=>Pz,alphaDropout:()=>xL,average:()=>Mz,averagePooling1d:()=>My,averagePooling2d:()=>zy,averagePooling3d:()=>Ly,avgPool1d:()=>jz,avgPool2d:()=>Xz,avgPool3d:()=>Zz,avgPooling1d:()=>qz,avgPooling2d:()=>Kz,avgPooling3d:()=>Yz,batchNormalization:()=>Uz,bidirectional:()=>dL,concatenate:()=>zz,conv1d:()=>yz,conv2d:()=>xz,conv2dTranspose:()=>bz,conv3d:()=>vz,conv3dTranspose:()=>wz,convLstm2d:()=>iL,convLstm2dCell:()=>lL,cropping2D:()=>Iz,dense:()=>Nz,depthwiseConv2d:()=>Cz,dot:()=>Vz,dropout:()=>Ez,elu:()=>pz,embedding:()=>Oz,flatten:()=>Dz,gaussianDropout:()=>yL,gaussianNoise:()=>AL,globalAveragePooling1d:()=>Jz,globalAveragePooling2d:()=>Qz,globalMaxPool1d:()=>hL,globalMaxPool2d:()=>fL,globalMaxPooling1d:()=>uw,globalMaxPooling2d:()=>cw,gru:()=>tL,gruCell:()=>nL,input:()=>$v,inputLayer:()=>dz,layerNormalization:()=>Hz,leakyReLU:()=>fz,lstm:()=>sL,lstmCell:()=>rL,masking:()=>bL,maxPool1d:()=>mL,maxPool2d:()=>gL,maxPooling1d:()=>dw,maxPooling2d:()=>pw,maxPooling3d:()=>eL,maximum:()=>Lz,minimum:()=>Bz,multiply:()=>Wz,permute:()=>Fz,prelu:()=>mz,reLU:()=>hz,repeatVector:()=>_z,reshape:()=>$z,rnn:()=>uL,separableConv2d:()=>kz,simpleRNN:()=>aL,simpleRNNCell:()=>oL,softmax:()=>gz,spatialDropout1d:()=>Rz,stackedRNNCells:()=>cL,thresholdedReLU:()=>Az,timeDistributed:()=>pL,upSampling2d:()=>Sz,zeroPadding2d:()=>Gz});var jP=0;function tv(){return jP++}var If={};function Sf(e=""){return e in If||(If[e]=0),If[e]+=1,e+If[e].toString()}function b1(e){return Array.isArray(e)&&Array.isArray(e[0])}function Cf(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function We(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new G(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function dt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new G(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Tf(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var nv="Variable",sv=class{constructor(e,t="float32",n=nv,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=tv(),n=n==null?nv:n,this.originalName=j3(n),this.name=q3(this.originalName),this.trainable_=s,this.constraint=r,this.val=r3(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),qP(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function qP(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function v1(e){return e.map(t=>t.read())}function w1(e){e.forEach(t=>{t[0].write(t[1])})}var Ht=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Js=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=tv(),a!=null&&(this.originalName=j3(a),this.name=q3(this.originalName)),this.rank=t.length}},XP=0,Nf=class{constructor(e,t){this.callArgs=t,this.id=XP++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},KP=0,Qe=class extends ue.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=KP++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Br(n)+"_"+Sf(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Ks(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new G(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Hn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Hn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Lr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Lr(`Layer ${this.name} is not connected, no input to return.`);return Hn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Lr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Lr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Hn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=vt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=vt(this.inputSpec);if(e.length!==t.length)throw new G(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new G(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),u=r.axes[i],c=l>=0?o[l]:o[o.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=vt(e),s=!0;for(let a of n)if(!(a instanceof Js)){s=!1;break}let r=!0;for(let a of n)if(a instanceof Js){r=!1;break}if(s===r)throw new G("Arguments to apply() must be all SymbolicTensors or all Tensors");return ui(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of vt(e))a.push(o.shape);this.build(Hn(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=vt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=Hn(i),this.activityRegularizer!=null)throw new ze("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=ZP(e),o=this.computeOutputShape(a),i,l=YP(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((u,c)=>new Js(l,u,this,vt(e),t,this.name,c)):i=new Js(l,o,this,vt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new ze("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Lr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Lr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Ks(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Tf(this.weights)}build(e){this.built=!0}getWeights(e=!1){return v1(e?this.trainableWeights:this.weights)}setWeights(e){H(()=>{let t=this.weights;if(t.length!==e.length)throw new G(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=v1(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!w.arraysEqual(a.shape,i.shape))throw new G(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}w1(n)})}addWeight(e,t,n,s,r,a,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new G(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=Ct("zeros"));let i=s.apply(t,n),l=new sv(i,n,e,a,o);return i.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),a==null&&(a=!0),a?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=vt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=vt(e);t=vt(t),n=vt(n),s=vt(s),r=Cf(r),a=Cf(a);let l=[],u=[],c=[];for(let d of i)l.push(d.sourceLayer),u.push(d.nodeIndex),c.push(d.tensorIndex);new Nf({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function ZP(e){e=vt(e);let t=[];for(let n of e)t.push(n.shape);return Hn(t)}function YP(e){return"float32"}function rv(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],u=rv(o,i,l);for(let c of u)r.indexOf(c)===-1&&r.push(c)}return r}}}var mu=class extends Qe{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Sf("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new G("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new G("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new G("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new Js(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new Nf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new G(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};mu.className="InputLayer";ue.registerClass(mu);function av(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new G("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new mu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function va(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];Z(s)}}function ov(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var iv;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(iv||(iv={}));var JP=125,gu=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},lv=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},QP=class extends gu{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=H(()=>le(this.totals[s],z(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:H(()=>{let s=z(he(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),un(t[n])}))}},uv=class extends gu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},cv=class extends gu{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=JP),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=oP(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await va(n),s.push(this.yield(e,t,n))),s.push(pf()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await va(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await va(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(pf()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await va(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await va(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(pf()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await va(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await va(e),await this.trainEnd(e))}};function dv(e,t){return e==null&&(e={}),e instanceof gu?[e]:Array.isArray(e)&&e[0]instanceof gu?e:vt(e).map(s=>new cv(s,t))}var Ps=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ps.checkForDuplicate(t),Ps.constructors[e]==null&&(Ps.constructors[e]=[]),Ps.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Ps.constructors)Ps.constructors[+t].forEach(s=>{if(s===e)throw new G("Duplicate callback constructor.")})}static clear(){Ps.constructors={}}static createCallbacks(e){let t=[];for(let n in Ps.constructors){let s=+n;e>=s&&t.push(...Ps.constructors[s])}return t.map(n=>new n)}};Ps.constructors={};function pv(e,t,n,s,r,a,o,i,l){let u=new uv,c=[new QP,...Ps.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let d=new lv(c);return d.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:u}}function Qs(e,t={},n=!1){return td(e,ue.SerializationMap.getMap().classNameMap,t,"layer",n)}function Ef(e,t){return H(()=>{e.dtype!=="float32"&&(e=pe(e,"float32"));let n=we(ad(e),t,!0),s=au(n.shape,Yt()),r=An(hr(n,s));return he(e,r)})}function di(e,t){return H(()=>Dt(ad(ye(t,e)),-1))}function Rf(e,t){return H(()=>Dt(Wt(ye(t,e)),-1))}function Au(e,t){return H(()=>{let n=ye(e,t),s=Vn(Wt(e),Yt(),Number.MAX_VALUE),r=Wt(he(n,s));return z(100,Dt(r,-1))})}function eM(e,t){return H(()=>{let n=Vn(t,Yt(),Number.MAX_VALUE),s=ns(le(1,n)),r=Vn(e,Yt(),Number.MAX_VALUE),a=ns(le(1,r));return Dt(ad(ye(s,a)),-1)})}function tM(e,t){return H(()=>{let n=hr(0,ye(1,z(e,t)));return Dt(ad(n),-1)})}function nM(e,t){return H(()=>{let n=hr(0,ye(1,z(e,t)));return Dt(n,-1)})}function sM(e,t){return H(()=>{let n=we(z(e,t),-1),s=ss(z(ye(1,e),t),-1);return hr(0,le(1,ye(s,n)))})}function rM(e,t){return H(()=>{let n=Math.log(2),s=ye(t,e),r=ye(le(s,ei(z(-2,s))),n);return Dt(r,-1)})}function id(e,t,n=!1){return H(()=>{if(n)t=si(t);else{let s=we(t,t.shape.length-1,!0);t=he(t,s)}return t=Vn(t,Yt(),1-Yt()),St(we(z(pe(e,"float32"),ns(t)),t.shape.length-1))})}function Df(e,t,n=!1){return H(()=>{let s=pe(ou(vP(e)),"int32");t=Vn(t,Yt(),1-Yt());let r=t.shape,a=V(Yl(s,r[r.length-1]),r);return id(a,t,n)})}function aM(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new G(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return H(()=>{let n=js(t),s=St(Wt(t));return le(ye(n,z(t,e)),Uc(ts(s)))})}function _f(e,t){return H(()=>{let n;return n=Vn(t,Yt(),1-Yt()),n=ns(he(n,ye(1,n))),Dt(aM(e,n),-1)})}function oM(e,t){return H(()=>{let n=Vn(e,Yt(),1),s=Vn(t,Yt(),1);return we(z(e,ns(he(n,s))),-1)})}function iM(e,t){return H(()=>{let n=ns(le(Yt(),t));return Dt(ye(t,z(e,n)),-1)})}function k1(e,t){return H(()=>{let n=Ef(e,-1),s=Ef(t,-1),r=z(n,s);return St(we(r,-1))})}var $f={meanSquaredError:di,meanAbsoluteError:Rf,meanAbsolutePercentageError:Au,meanSquaredLogarithmicError:eM,squaredHinge:tM,hinge:nM,categoricalHinge:sM,logcosh:rM,categoricalCrossentropy:id,sparseCategoricalCrossentropy:Df,binaryCrossentropy:_f,kullbackLeiblerDivergence:oM,poisson:iM,cosineProximity:k1};function I1(e){if(typeof e=="string"){if(e in $f)return $f[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new G(t)}else return e}function S1(e,t){return H(()=>{let n=z(.5,as(t)),s=ff(Un(t,n),e.dtype);return Dt(es(e,s),-1)})}function C1(e,t){return H(()=>ff(es(Gs(e,-1),Gs(t,-1)),"float32"))}function hv(e,t){return H(()=>pe(we($s(es(e,1),es(t,1))),"float32"))}function lM(e,t){return H(()=>pe(we($s(es(e,1),es(t,0))),"float32"))}function uM(e,t){return H(()=>pe(we($s(es(e,0),es(t,1))),"float32"))}function fv(e,t){return H(()=>{let n=hv(e,t),s=uM(e,t),r=le(n,s);return pe(kn(Un(r,0),he(n,r),0),"float32")})}function cM(e,t){return H(()=>{let n=hv(e,t),s=lM(e,t),r=le(n,s);return pe(kn(Un(r,0),he(n,r),0),"float32")})}function mv(e,t){return _f(e,t)}function gv(e,t){return e.rank===t.rank&&(e=at(e,[e.rank-1])),t=Gs(t,-1),t.dtype!==e.dtype&&(t=pe(t,e.dtype)),pe(es(e,t),"float32")}var dM=di,pM=di,hM=Rf,fM=Rf,mM=Au,gM=Au,T1=id,AM=k1,Av=Df,Ff={binaryAccuracy:S1,categoricalAccuracy:C1,precision:fv,categoricalCrossentropy:T1,sparseCategoricalCrossentropy:Av,mse:dM,MSE:pM,mae:hM,MAE:fM,mape:mM,MAPE:gM,cosine:AM};function yM(e){if(typeof e=="string"&&e in Ff)return Ff[e];if(typeof e!="string"&&e!=null)return e;throw new G(`Unknown metric ${e}`)}function Of(e){if(mr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys($f))if($f[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Ff))if(Ff[n]===e){t=n;break}return t!==void 0?t:e.name}}function xM(e){let t={Adagrad:()=>ai.adagrad(.01),Adadelta:()=>ai.adadelta(1,.95,Yt()),Adam:()=>ai.adam(.001,.9,.999,Yt()),Adamax:()=>ai.adamax(.002,.9,.999,Yt(),0),RMSProp:()=>ai.rmsprop(.001,.9,0,Yt()),SGD:()=>ai.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new G(`Unknown Optimizer ${e}`)}var yv=1*1024*1024;function xv(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!N1(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>yv&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${yv}.`)}}function N1(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!N1(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!N1(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function bM(e,t,n,s=console.log){let r=wM(e),a=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let o;if(!r){a.push("Receives inputs"),o=[];for(let c in e.nodesByDepth)o.push(...e.nodesByDepth[c])}s("_".repeat(t)),Pf(a,n,s),s("=".repeat(t));let i=e.layers;for(let c=0;c<i.length;++c)r?kM(i[c],n,s):IM(i[c],n,o,s),s((c===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=vM(e),u=Tf(e.nonTrainableWeights);s(`Total params: ${l+u}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${u}`),s("_".repeat(t))}function vM(e){let t;return e.collectedTrainableWeights!=null?t=Tf(e.collectedTrainableWeights):t=Tf(e.trainableWeights),t}function wM(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Pf(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function kM(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch(i){s="multiple"}let r=e.name,a=e.getClassName(),o=[`${r} (${a})`,s,e.countParams().toString()];Pf(o,t,n)}function IM(e,t,n,s){let r;try{r=JSON.stringify(e.outputShape)}catch(c){r="multiple"}let a=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let d=0;d<c.inboundLayers.length;++d){let p=c.inboundLayers[d].name,h=c.nodeIndices[d],m=c.tensorIndices[d];a.push(`${p}[${h}][${m}]`)}let o=e.name,i=e.getClassName(),l=a.length===0?"":a[0],u=[`${o} (${i})`,r,e.countParams().toString(),l];Pf(u,t,s);for(let c=1;c<a.length;++c)Pf(["","","",a[c]],t,s)}function bv(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function ld(e,t){if(e===null)return null;if(typeof e=="string")return ii(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];bv(t,r,a)?n.push(a):n.push(ld(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=ii(s);n[a]=ld(r,a)}}return n}}function E1(e,t){if(e==null)return null;if(typeof e=="string")return Br(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];bv(t,r,a)?n.push(a):n.push(E1(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=Br(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=E1(r,s)}return n}}var R1="3.9.0";function SM(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return pe(t,e.dtype)}catch(n){throw new G(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var pi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof pi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=SM(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new G(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Js){if(this.id2Value[e.id]==null)throw new G(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new G(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Js){if(this.id2Value[e.id]==null)throw new G(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new G(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Z(this.id2Mask)}},D1={},vv={};function ud(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(m=>m.name),l=[],u=t.names();for(let m of i)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let c=i.join(",")+"|"+t.names().join(","),d,p;if(D1[c]==null){let m=CM(o,t);d=m.sorted,p=m.recipientCounts,D1[c]=d,vv[c]=p}d=D1[c],p={},r||Object.assign(p,vv[c]);let h=new pi(t);for(let m=0;m<d.length;++m){if(s!=null){let D=Ih().numTensors;D>s.maxNumTensors&&(s.maxNumTensors=D),D<s.minNumTensors&&(s.minNumTensors=D)}let f=d[m],g=f.sourceLayer;if(g instanceof mu)continue;let A=[],y=[],x=[],b=!1;for(let D of f.inputs){let O=h.getValue(D),E=h.getMask(D);A.push(O),y.push(E),E!=null&&(b=!0),r||(p[D.name]--,p[D.name]===0&&!t.hasKey(D)&&i.indexOf(D.name)===-1&&!O.isDisposed&&D.sourceLayer.stateful!==!0&&x.push(O))}b&&(n=n||{},n.mask=y[0]);let v=vt(g.apply(A,n)),k=null;g.supportsMasking&&(k=g.computeMask(A,y));let S=NM(f),C=Array.isArray(S)?S:[S];for(let D=0;D<C.length;++D){h.hasKey(C[D])||h.add(C[D],v[D],Array.isArray(k)?k[0]:k);let O=i.indexOf(C[D].name);O!==-1&&(l[O]=v[D])}r||Z(x)}return h.disposeMasks(),a?l:l[0]}function CM(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=wv(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=wv(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(u=>s[l].add(u))}}return{sorted:n,recipientCounts:TM(s)}}function TM(e){let t={};for(let n in e)t[n]=e[n].size;return t}function wv(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let u of i.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(i.name),!n.has(u.name)&&a.push(u)}}return{sorted:s,recipientMap:r}}function NM(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var Ar=class extends Qe{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let A=this.getClassName().toLowerCase();this.name=Sf(A)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],ya(this.inputs).length!==this.inputs.length)throw new G(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(A=>A.name)}`);ya(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(A=>A.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let A of this.outputs){let y=A.sourceLayer,x=A.nodeIndex,b=A.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let A of this.inputs){let y=A.sourceLayer,x=A.nodeIndex,b=A.tensorIndex;mr(x===0,"input layer has >1 nodes"),mr(b===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let A=0;A<this.inputLayers.length;A++){let y=this.inputLayers[A];if(!(y instanceof mu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${A} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let A of this.outputLayers)this.outputNames.push(A.name);this.internalInputShapes=this.inputs.map(A=>A.shape),this.internalOutputShapes=this.outputs.map(A=>A.shape);let t={},n={},s={},r={},a={},o=[],i=(A,y,x,b,v,k)=>{(b==null||v==null||k==null)&&(b=A.sourceLayer,v=A.nodeIndex,k=A.tensorIndex);let S=b.inboundNodes[v];if(x.indexOf(S)!==-1)throw new Ks(`The tensor ${A.name} at layer "${b.name}" is part of a cycle.`);if(y.indexOf(S)!==-1)return;this.containerNodes.add(Ar.nodeKey(b,v)),b.id in a||(a[b.id]=Object.keys(a).length),x.indexOf(S)===-1&&x.push(S);let C=S.inboundLayers.length;for(let D=0;D<C;D++){let O=S.inputTensors[D],E=S.inboundLayers[D],R=S.nodeIndices[D],T=S.tensorIndices[D];i(O,y,x,E,R,T)}for(y.push(S);x.indexOf(S)>=0;)x.splice(x.indexOf(S),1);o.push(S)},l=[],u=[];for(let A of this.outputs)i(A,l,u);let c=o.slice().reverse();for(let A of c){n[A.id]=A,A.id in t||(t[A.id]=0);let y=t[A.id],x=s[A.outboundLayer.id]==null?0:s[A.outboundLayer.id];y=Math.max(y,x),s[A.outboundLayer.id]=y,r[A.outboundLayer.id]=A.outboundLayer,t[A.id]=y;for(let b=0;b<A.inboundLayers.length;b++){let v=A.inboundLayers[b],k=A.nodeIndices[b],S=v.inboundNodes[k],C=t[S.id]==null?0:t[S.id];t[S.id]=Math.max(y+1,C),n[S.id]=S}}let d={};for(let A in t){let y=t[A];y in d||(d[y]=[]),d[y].push(n[A])}let p={};for(let A in s){let y=s[A];y in p||(p[y]=[]),p[y].push(r[A])}let h=Object.keys(p).map(A=>parseInt(A,10)).sort(hf);this.layers=[];for(let A of h){let y=p[A];y.sort((x,b)=>{let v=a[x.id],k=a[b.id];return v<k?-1:v>k?1:0});for(let x of y)x instanceof Ar&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=p,h=Object.keys(d).map(A=>parseInt(A,10)).sort(hf);let m=this.inputs.slice(),f=[];for(let A of h)for(let y of d[A]){let x=y.outboundLayer;if(x!=null){for(let b of y.inputTensors)if(m.indexOf(b)===-1)throw new Ks(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let b of y.outputTensors)m.push(b);f.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(A=>A.name);for(let A of g){let y=g.filter(x=>x===A).length;if(y!==1)throw new Ks(`The name "${A}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Nf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(A=>null),outputMasks:this.outputs.map(A=>null),inputShapes:this.inputs.map(A=>A.shape),outputShapes:this.outputs.map(A=>A.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new G("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new G(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new G(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new G(`${a.length} of ${s} weights are not set: ${a}`)}w1(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${R1}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=E1(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return H(()=>{e=vt(e);let n=new pi;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return ud(this.outputs,n,t)})}computeMask(e,t){return H(()=>{e=vt(e);let n;return t==null?n=oi(null,e.length):n=vt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Cf(e);if(t.length!==this.inputLayers.length)throw new G(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],u=i.name+"_0_0";n[u]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(hf);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let c=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],A=l.tensorIndices[m],y=`${f.name}_${g}_${A}`,x=n[y];c.push(x)}let d=u.computeOutputShape(Hn(c)),p=Cf(d),h=u.inboundNodes.indexOf(l);for(let m=0;m<p.length;m++){let f=`${u.name}_${h}_${m}`;n[f]=p[m]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],u=this.outputLayersTensorIndices[o],c=`${i.name}_${l}_${u}`;a.push(c)}for(let o=0;o<a.length;o++){let i=a[o];mr(i in n),r.push(n[i])}return Hn(r)}runInternalGraph(e,t){t==null&&(t=oi(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],u=e[i],c=t[i];n[l.id]=[u,c]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(hf);for(let i of s){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer,d=u.inputTensors,p=u.outputTensors,h=new Array;for(let m of d)m.id in n&&h.push(n[m.id]);if(h.length===d.length){let m={},f,g,A,y;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,b]=h[0];m.mask==null&&(m.mask=b),A=vt(c.call(x,m)),y=vt(c.computeMask(x,b)),f=[x],g=[b]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),A=vt(c.call(f,m)),y=vt(c.computeMask(f,g));if(c.activityRegularizer)throw new ze("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<p.length;++x){let b=p[x],v=A[x],k=y[x];n[b.id]=[v,k]}}}}let r=[],a=[],o=[];for(let i of this.outputs){mr(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,u]=n[i.id];o.push(l.shape),r.push(l),a.push(u)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof Ar?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=Ar.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new G(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new G("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new G(`No such layer: ${e}`)}calculateLosses(){return H(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=Ar.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let c=0;c<a.inboundNodes.length;c++){let d=a.inboundNodes[c],p=Ar.nodeKey(a,c),h={};if(this.containerNodes.has(p)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(m){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let m=[];for(let f=0;f<d.inboundLayers.length;f++){let g=d.inboundLayers[f],A=d.nodeIndices[f],y=d.tensorIndices[f],x=Ar.nodeKey(g,A),b=t[x];b==null&&(b=0),m.push([g.name,b,y,h])}l.push(m)}}}let u={};u.name=a.name,u.className=o,u.config=i,u.inboundNodes=l,n.push(u)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=Ar.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[a];s.push([o.name,u,c])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=Ar.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[a];r.push([o.name,u,c])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(f,g){f.name in a?a[f.name].push(g):a[f.name]=[g]}function i(f,g){let A=[],y;for(let x of g){let b=x[0],v=x[1],k=x[2];if(y=x[3]==null?{}:x[3],!(b in r)){o(f,g);return}let S=r[b];if(S.inboundNodes.length<=v){o(f,g);return}let C=S.inboundNodes[v];A.push(C.outputTensors[k])}A.length>0&&f.apply(Hn(A),y)}function l(f){let g=f.name,A=Qs(f,t.customObjects!=null?t.customObjects:{});A.setFastWeightInitDuringBuild(s),r[g]=A,f.inboundNodes.forEach(x=>{if(!(x instanceof Array))throw new G(`Corrupted configuration, expected array for nodeData: ${x}`);o(A,x)})}let u=t.name,c=t.layers;for(let f of c)l(f);for(;!aP(a);)for(let f of c){let g=r[f.name];if(g.name in a){let A=a[g.name];delete a[g.name];for(let y of A)i(g,y)}}let d=[],p=[],h=t.inputLayers;for(let f of h){let g=f[0],A=f[1],y=f[2];mr(g in r);let b=r[g].inboundNodes[A].outputTensors;d.push(b[y])}let m=t.outputLayers;for(let f of m){let g=f[0],A=f[1],y=f[2];mr(g in r);let b=r[g].inboundNodes[A].outputTensors;p.push(b[y])}return new e({inputs:d,outputs:p,name:u})}get stateful(){if(this._stateful)throw new G("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){H(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function EM(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function kv(e,t){return EM(e,t,"classWeight")}async function Iv(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=H(()=>{if(e.shape.length===1)return Hs(e);if(e.shape.length===2){if(e.shape[1]>1)return Gs(e,1);if(e.shape[1]===1)return V(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());Z(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Ut(o,"float32")}else return null}function RM(e,t){return z(e,t)}var DM=32;function Sv(e,t){let n,s,r=t;n=r.xs,s=r.ys,w.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=Cv("input",e.inputNames,n),o=Cv("output",e.outputNames,s),i=a[0].shape[0];w.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)w.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)w.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function Cv(e,t,n){if(n instanceof He)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new G(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function _M(e){if(e.length===3)throw new ze("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function $M(e,t,n){let s=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(Tv(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=_M(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=dv(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:p,history:h}=pv(c,d,n.epochs,null,null,FM(t,n),null,r,u);p.setModel(e),e.history=h,await p.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await p.onEpochBegin(m);let A=0,y=0;for(s||(f=await t.iterator());s?A<n.batchesPerEpoch:!0;){let x=await f.next();if(s&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${A} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:b,ys:v}=Sv(e,x.value),k={};k.batch=y,k.size=b[0].shape[0],await p.onBatchBegin(y,k);let S=[];if(n.classWeight!=null){let O=kv(n.classWeight,e.outputNames);for(let E=0;E<O.length;++E)S.push(await Iv(v[E],null,O[E]))}let C=b.concat(v).concat(S),D=i(C);Z(C);for(let O=0;O<l.length;++O){let E=l[O],R=D[O];k[E]=R,un(R)}await p.onBatchEnd(y,k),ov(k),y++,A++}if(s?A>=n.batchesPerEpoch:x.done){if(r){let b;Tv(n.validationData)?b=vt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=vt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?DM:n.validationBatchSize,verbose:0}));for(let v=0;v<e.metricsNames.length;++v)g[`val_${e.metricsNames[v]}`]=b[v]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(m,g),m++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function FM(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function Tv(e){return typeof e.iterator=="function"}function OM(e){return typeof e.next=="function"}async function PM(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new ze("Verbose mode is not implemented yet.");w.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=OM(t)?t:await t.iterator(),i=0,l=0;for(;s?l<n.batches:!0;){let u=await o.next();if(a=H(()=>{if(u.value){let{xs:c,ys:d}=Sv(e,u.value),p=c.concat(d),h=H(()=>r(p));if(Z(p),l===0)for(let f=0;f<h.length;++f)a.push(Ce(0));let m=p[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],A=a[f];a[f]=H(()=>le(a[f],z(m,g))),l>0&&Z(A)}Z(h),i+=m,++l}return a}),u.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<a.length;++u){let c=a[u];a[u]=he(a[u],i),Z(c)}return Hn(a)}function _1(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function cd(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>ci(s,t,n-t)):ci(e,t,n-t)}function $1(e,t){return H(()=>e==null?null:Array.isArray(e)?e.map(n=>$1(n,t)):Z3(e,t.dtype==="int32"?t:pe(t,"int32")))}function F1(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function MM(e,t,n,s,r,a,o,i,l,u,c,d,p,h,m){r==null&&(r=32),a==null&&(a=1),c==null&&(c=!0),p==null&&(p=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new G("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),A;g!=null&&(A=Zs(0,g)),o==null&&(o=1);let{callbackList:y,history:x}=pv(i,o,a,p,g,h,r,f,d);y.setModel(e),e.history=x,await y.onTrainBegin(),e.stopTraining_=!1;for(let b=p;b<a;++b){await y.onEpochBegin(b);let v={};if(h!=null)throw new ze("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new ze("batch shuffling is not implemneted yet");c&&w.shuffle(A);let k=Ut(A),S=F1(g,r);for(let C=0;C<S.length;++C){let D={};if(await y.onBatchBegin(C,D),H(()=>{let O=S[C][0],E=S[C][1],R=ci(k,O,E-O);D.batch=C,D.size=E-O;let T=$1(n,R),P=t(T);for(let U=0;U<s.length;++U){let j=s[U],q=P[U];D[j]=q,un(q)}if(C===S.length-1&&f){let U=e.testLoop(l,u,r);for(let j=0;j<s.length;++j){let q=s[j],X=U[j];un(X),v["val_"+q]=X}}}),await y.onBatchEnd(C,D),ov(D),e.stopTraining_)break}k.dispose()}if(await y.onEpochEnd(b,v),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function zM(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,u,c;try{let d=s.batchSize==null?32:s.batchSize;_1(d);let p=!1,h=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,p,d);r=h[0],a=h[1],c=h[2];let m=!1,f;if(s.validationData!=null&&s.validationData.length>0){if(m=!0,s.validationData.length===2)o=s.validationData[0],i=s.validationData[1];else throw s.validationData.length===3?new ze("validationData including sample weights is not supported yet."):new G(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let S=!0,C=await e.standardizeUserData(o,i,null,null,S,d);l=C[0],u=C[1],f=l.concat(u)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){m=!0;let S=Math.floor(r[0].shape[0]*(1-s.validationSplit)),C=r[0].shape[0];l=cd(r,S,C),r=cd(r,0,S),u=cd(a,S,C),a=cd(a,0,S),f=l.concat(u)}else s.validationSteps!=null&&(m=!0);let g=r.concat(a).concat(c);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),y=e.getDedupedMetricsNames(),x,b;m?(e.makeTestFunction(),x=e.testFunction,b=y.slice().concat(y.map(S=>"val_"+S))):(x=null,f=[],b=y.slice());let v=dv(s.callbacks,s.yieldEvery);return await MM(e,A,g,y,d,s.epochs,s.verbose,v,x,f,s.shuffle,b,s.initialEpoch,null,null)}finally{e.isTraining=!1,hi(r,t),hi(a,n),hi(l,o),hi(u,i),c!=null&&Z(c)}}function Nv(e){let t=[];e instanceof He&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(rd(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function hi(e,t){if(e==null)return;let n=[];if(t instanceof He)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof He)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function LM(e){return e instanceof He}function O1(e){return Array.isArray(e)}function Ev(e){return!LM(e)&&!O1(e)}function Rv(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(O1(e)&&e.length>0)o=!0;else if(Ev(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new G(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(Ev(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new G(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(O1(e)){if(e=e,e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new G(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=Nv(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new G(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c>=0&&u!==c)throw new G(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function BM(e,t,n){let s=ya(e.map(a=>a.shape[0]));s.sort();let r=ya(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new G(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new G(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!w.arraysEqual(s,r))throw new G(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function WM(e,t,n){let s=[di,_f,id];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===id&&a.shape[a.shape.length-1]===1)throw new G(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let d=l[c],p=u[c];if(p!=null&&d!==p)throw new G(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function Dv(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new G(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new G(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c!==u)throw new G(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function VM(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var UM="layers-model",Wr=class extends Ar{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new G("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");bM(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=xM(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof zr))throw new G("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new G(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(I1(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new G(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>I1(o))}else{let a=I1(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],ui("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=VM(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};ui("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let u="",c,d,p;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let f=this.internalOutputShapes[a];f[f.length-1]===1||this.lossFunctions[a]===_f?["accuracy","acc"].indexOf(h)!==-1?d=S1:["crossentropy","ce"].indexOf(h)!==-1&&(d=mv):this.lossFunctions[a]===Df?["accuracy","acc"].indexOf(h)!==-1?d=gv:["crossentropy","ce"].indexOf(h)!==-1&&(d=Av):["accuracy","acc"].indexOf(h)!==-1?d=C1:["crossentropy","ce"].indexOf(h)!==-1&&(d=T1);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),p=d,c=u+g}else p=yM(h),c=u+Of(h);let m;ui(c,()=>{m=p}),r(a,c,m)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;_1(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return Hn(l)}finally{hi(a[0],e),hi(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),PM(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new G(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new G(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new G("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new pi;if(e instanceof He&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new G(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new G(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=ud(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=oi(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new G(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return H(()=>{let s=this.checkNumSamples(e);if(n)throw new ze("Verbose predictLoop() is not implemented yet.");let r=F1(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)H(()=>{let l=r[o][0],u=r[o][1],c=cd(e,l,u),d=[];if(Array.isArray(c))for(let h=0;h<c.length;++h)d.push({key:this.inputs[h],value:c[h]});else d.push({key:this.inputs[0],value:c});let p=new pi(d);return ud(this.outputs,p)}).forEach((l,u)=>a[u].push(l));return Hn(a.map(o=>gt(o,0)))})}predict(e,t={}){let n=Nv(e);Dv(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return _1(s),this.predictLoop(n,s)}finally{hi(n,e)}}predictOnBatch(e){Dv(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new Ks("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===Df?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=Rv(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=Rv(t,this.feedOutputNames,r,!1,"target"),BM(e,t,null),WM(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!=0)throw new G(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let u=kv(s,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await Iv(i[c],null,u[c]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return H(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new ze("Verbose mode is not implemented yet.");if(r!=null)throw new ze("steps mode in testLoop() is not implemented yet");{let i=F1(a,n),l=Ut(Zs(0,a));for(let u=0;u<i.length;++u){let c=i[u][0],d=i[u][1],p=ci(l,c,d-c),h=$1(t,p),m=e(h);if(u===0)for(let f=0;f<m.length;++f)o.push(Ce(0));for(let f=0;f<m.length;++f){let g=m[f];o[f]=le(o[f],z(d-c,g))}}for(let u=0;u<o.length;++u)o[u]=he(o[u],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;z3(e,s)>1&&(r+=`_${z3(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let c=[];for(let m=0;m<this.inputs.length;++m)c.push({key:this.inputs[m],value:n[m]});let d=new pi(c),p=ud(this.outputs,d,{training:!0}),h;for(let m=0;m<this.lossFunctions.length;++m){let g=this.lossFunctions[m](s[m],p[m]);r[m]!=null&&(g=RM(g,r[m]));let A=Dt(g);t.push(A),m===0?h=g:h=le(h,g)}for(let m=0;m<this.metricsTensors.length;++m){let f;if(this.outputs.length>1&&m<this.outputs.length)f=t[m];else{let g=this.metricsTensors[m][0],A=this.metricsTensors[m][1];f=Dt(g(s[A],p[A]))}un(f),a.push(f)}return h=Dt(h),this.calculateLosses().forEach(m=>{h=le(h,m)}),h},i=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>H(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new pi(a),i=ud(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=Dt(u(r[l],i[l]));l===0?n=c:n=le(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],d=Dt(u(r[c],i[c]));t.push(d)}return t})}async fit(e,t,n={}){return zM(this,e,t,n)}async fitDataset(e,t){return $M(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let u=await l.data();i.push(u[0])}return Z(o),Hn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Ih().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Ih().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Br(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Br(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=Br(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Br(Of(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Br(Of(e)));{let e={};for(let t in this.metrics)e[t]=Br(Of(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=ld(e.optimizer_config),n=Qs(t),s;if(typeof e.loss=="string")s=ii(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>ii(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=ii(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>ii(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=ii(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=Bn.getSaveHandlers(e);if(l.length===0)throw new G(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new G(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new G("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Bn.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:UM,generatedBy:`TensorFlow.js tfjs-layers v${R1}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:u,specs:c}=await Bn.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...c),n.data=Bn.concatenateArrayBuffers([n.data,u])}if(this.userDefinedMetadata!=null){let l=!0;xv(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){xv(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Wr.className="Model";ue.registerClass(Wr);var _v=class extends Wr{};_v.className="Functional";ue.registerClass(_v);async function HM(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=ld(n),r=Qs(s,t);if(e.weightsManifest!=null){let a=await Bn.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),Z(a)}return r}async function GM(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Bn.getLoadHandlers(e,t);if(n.length===0)n.push(Bn.browserHTTPRequest(e,t));else if(n.length>1)throw new G(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return jM(e,void 0,t)}async function jM(e,t,n){if(n==null&&(n={}),e.load==null)throw new G("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=Qs(ld(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new G("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=qM(s.weightData,s.weightSpecs);i.loadWeights(u,a),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),Z(u),Z(c.map(d=>d.tensor))}return i}function qM(e,t){let n=Bn.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var yu=class extends Wr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Sf("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new G(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof yu||e instanceof Wr,n;if(t){if(n=e,n.outputs.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new G("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new G("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=av({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new G(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=rv(this.outputs[0])}this.inboundNodes=[],new Nf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:oi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(dt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Wr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Ks("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Ks("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Ks("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Ks("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new G("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof yu))throw new ze(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let u=Qs(i,void 0,s);s&&u.setFastWeightInitDuringBuild(!0),o.add(u)}return o}set stopTraining(e){if(this.model==null)throw new G("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new G("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};yu.className="Sequential";ue.registerClass(yu);function XM(e){return new Wr(e)}function KM(e){return new yu(e)}function ZM(e,t){return t==null&&(t={}),GM(e,t)}function $v(e){return av(e)}function YM(e,t){Ps.registerCallbackConstructor(e,t)}var jn=class extends ue.Serializable{getConfig(){return{}}},Fv=class extends jn{apply(e,t=1){return kP(e,t)}};Fv.className="elu";ue.registerClass(Fv);var Ov=class extends jn{apply(e){return Hh(e)}};Ov.className="selu";ue.registerClass(Ov);var Pv=class extends jn{apply(e){return js(e)}};Pv.className="relu";ue.registerClass(Pv);var Mv=class extends jn{apply(e){return H(()=>iu(6,js(e)))}};Mv.className="relu6";ue.registerClass(Mv);var zv=class extends jn{apply(e){return e}};zv.className="linear";ue.registerClass(zv);var Lv=class extends jn{apply(e){return Wn(e)}};Lv.className="sigmoid";ue.registerClass(Lv);var Bv=class extends jn{apply(e){return SP(e)}};Bv.className="hardSigmoid";ue.registerClass(Bv);var Wv=class extends jn{apply(e){return ei(e)}};Wv.className="softplus";ue.registerClass(Wv);var Vv=class extends jn{apply(e){return IP(e)}};Vv.className="softsign";ue.registerClass(Vv);var Uv=class extends jn{apply(e){return Yo(e)}};Uv.className="tanh";ue.registerClass(Uv);var P1=class extends jn{apply(e,t=-1){return si(e,t)}};P1.className="softmax";ue.registerClass(P1);var Hv=class extends jn{apply(e,t=-1){return Mh(e,t)}};Hv.className="logSoftmax";ue.registerClass(Hv);var Gv=class extends jn{apply(e,t=1){return H(()=>z(Wn(z(e,t)),e))}};Gv.className="swish";ue.registerClass(Gv);var jv=class extends jn{apply(e){return H(()=>z(e,Yo(ei(e))))}};jv.className="mish";ue.registerClass(jv);function wa(e){return e.getClassName()}function M1(e,t={}){return td(e,ue.SerializationMap.getMap().classNameMap,t,"activation")}function ka(e){if(e==null){let t={};return t.className="linear",t.config={},M1(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},M1(t)}else return e instanceof jn?e:M1(e)}function z1(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var qv=class extends ue.Serializable{},dd=class extends qv{constructor(e){super();z1(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return H(()=>{let t=Pt([1]);return this.hasL1&&(t=le(t,we(z(this.l1,Wt(e))))),this.hasL2&&(t=le(t,we(z(this.l2,ad(e))))),V(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};dd.className="L1L2";ue.registerClass(dd);function JM(e){return z1(e),new dd({l1:e!=null?e.l1:null,l2:0})}function QM(e){return z1(e),new dd({l2:e!=null?e.l2:null,l1:0})}var Xv={l1l2:"L1L2"};function At(e){return t1(e)}function Kv(e,t={}){return td(e,ue.SerializationMap.getMap().classNameMap,t,"regularizer")}function Tt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Xv?Xv[e]:e,config:{}};return Kv(n)}else return e instanceof qv?e:Kv(e)}var L1=class extends Qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=We(e);let n=js(e);return this.maxValue!=null&&(n=Vn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};L1.className="ReLU";ue.registerClass(L1);var B1=class extends Qe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=We(e);return Vc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};B1.className="LeakyReLU";ue.registerClass(B1);var W1=class extends Qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Ct(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Tt(e.alphaRegularizer),this.alphaConstraint=Qt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new G(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=dt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new Ht({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=We(e),Xc(e,this.alpha.read())}getConfig(){let e={alphaInitializer:_t(this.alphaInitializer),alphaRegularizer:At(this.alphaRegularizer),alphaConstraint:Jt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};W1.className="PReLU";ue.registerClass(W1);var V1=class extends Qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new ze(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=We(e);return ru(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};V1.className="ELU";ue.registerClass(V1);var U1=class extends Qe{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=We(e);return z(n,pe(Un(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};U1.className="ThresholdedReLU";ue.registerClass(U1);var H1=class extends Qe{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new P1().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=We(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};H1.className="Softmax";ue.registerClass(H1);function xu(e,t,n){if(typeof e=="number")return oi(e,t);if(e.length!==t)throw new G(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!xP(r))throw new G(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function er(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function yr(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+ba([n-t,0]);else if(s==="same")e=e*t;else throw new G(`Unsupport padding mode: ${s}.`);return e}function G1(e,t){return H(()=>(Lt(t),t==="channelsFirst"?Ze(e,[0,2,3,1]):e))}function Zv(e,t){return H(()=>(Lt(t),t==="channelsFirst"?Ze(e,[0,2,3,4,1]):e))}function ez(e,t,n,s=1,r="valid",a,o=1){return H(()=>{if(a==null&&(a=Xs()),Lt(a),e.shape.length!==3)throw new G(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new G(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new G(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=Ze(e,[0,2,1])),r==="causal")throw new ze("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=Rh(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=Ys(i,n)),i})}function Yv(e,t,n,s=[1,1],r="valid",a,o,i=null){return H(()=>{if(a==null&&(a=Xs()),Lt(a),e.rank!==3&&e.rank!==4)throw new G(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new G(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=G1(e,a);if(r==="causal")throw new ze("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Aa.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=Ze(l,[0,3,1,2])),l})}function tz(e,t,n,s=[1,1,1],r="valid",a,o){return H(()=>{if(a==null&&(a=Xs()),Lt(a),e.rank!==4&&e.rank!==5)throw new G(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new G(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=Zv(e,a);if(r==="causal")throw new ze("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=wA(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=Ys(i,n)),a==="channelsFirst"&&(i=Ze(i,[0,4,1,2,3])),i})}var j1=class extends Qe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",j1.verifyArgs(t),this.rank=e,cn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new ze(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=xu(t.kernelSize,e,"kernelSize"),this.strides=xu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,bs(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Lt(this.dataFormat),this.activation=ka(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Ct(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Qt(t.biasConstraint),this.biasRegularizer=Tt(t.biasRegularizer),this.activityRegularizer=Tt(t.activityRegularizer),this.dilationRate=xu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new G(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new G(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new G(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(mr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!s1(e.kernelSize,"number",1,3))throw new G(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:wa(this.activation),useBias:this.useBias,biasInitializer:_t(this.biasInitializer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),biasConstraint:Jt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},pd=class extends j1{constructor(e,t){super(e,t);this.kernel=null,pd.verifyArgs(t),this.filters=t.filters,cn(this.filters,"filters"),this.kernelInitializer=Ct(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Qt(t.kernelConstraint),this.kernelRegularizer=Tt(t.kernelRegularizer)}build(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return H(()=>{e=We(e);let n,s=this.bias==null?null:this.bias.read(),r=B3(this.activation.getClassName());if(r!=null&&this.rank===2)n=Yv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=ez(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=Yv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=tz(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new ze("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=dt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=er(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:_t(this.kernelInitializer),kernelRegularizer:At(this.kernelRegularizer),kernelConstraint:Jt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new G(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},hd=class extends pd{constructor(e){super(2,e);hd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!s1(e.kernelSize,"number",1,2))throw new G(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};hd.className="Conv2D";ue.registerClass(hd);var fd=class extends pd{constructor(e){super(3,e);fd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new G(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};fd.className="Conv3D";ue.registerClass(fd);var q1=class extends hd{constructor(e){super(e);if(this.inputSpec=[new Ht({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=dt(e),e.length!==4)throw new G("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ht({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=We(e);if(n.shape.length!==4)throw new G(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],u=this.kernelSize[0],c=this.kernelSize[1],d=this.strides[0],p=this.strides[1],h=yr(i,d,u,this.padding),m=yr(l,p,c,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ze(n,[0,2,3,1]));let g=Dh(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ze(g,[0,3,1,2])),this.bias!=null&&(g=Ys(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=dt(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=yr(t[s],i,a,this.padding),t[r]=yr(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};q1.className="Conv2DTranspose";ue.registerClass(q1);var X1=class extends fd{constructor(e){super(e);if(this.inputSpec=[new Ht({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=dt(e),e.length!==5)throw new G("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ht({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=We(e);if(n.shape.length!==5)throw new G(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],u=s[a],c=s[o],d=this.kernelSize[0],p=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],g=this.strides[2],A=yr(l,m,d,this.padding),y=yr(u,f,p,this.padding),x=yr(c,g,h,this.padding),b=[r,A,y,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Ze(n,[0,2,3,4,1]));let v=Bb(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(v=Ze(v,[0,4,1,2,3])),this.bias!==null&&(v=Ys(v,this.bias.read(),this.dataFormat)),this.activation!==null&&(v=this.activation.apply(v)),v})}computeOutputShape(e){e=dt(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],c=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[s]=yr(t[s],u,o,this.padding),t[r]=yr(t[r],c,i,this.padding),t[a]=yr(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};X1.className="Conv3DTranspose";ue.registerClass(X1);var Jv=class extends pd{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new G("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new G("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new G(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Ct(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Tt(t.depthwiseRegularizer),this.depthwiseConstraint=Qt(t.depthwiseConstraint),this.pointwiseInitializer=Ct(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Tt(t.pointwiseRegularizer),this.pointwiseConstraint=Qt(t.pointwiseConstraint)}build(e){if(e=dt(e),e.length<this.rank+2)throw new G(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Ht({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{e=We(e);let n;if(this.rank===1)throw new ze("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ze(e,[0,2,3,1])),n=BA(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ys(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ze(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=_t(this.depthwiseInitializer),e.pointwiseInitializer=_t(this.pointwiseInitializer),e.depthwiseRegularizer=At(this.depthwiseRegularizer),e.pointwiseRegularizer=At(this.pointwiseRegularizer),e.depthwiseConstraint=Jt(this.depthwiseConstraint),e.pointwiseConstraint=Jt(this.pointwiseConstraint),e}};Jv.className="SeparableConv";var K1=class extends Jv{constructor(e){super(2,e)}};K1.className="SeparableConv2D";ue.registerClass(K1);var Mf=class extends pd{constructor(e){super(1,e);Mf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!s1(e.kernelSize,"number",1,1))throw new G(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Mf.className="Conv1D";ue.registerClass(Mf);var Z1=class extends Qe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return H(()=>{if(e=We(e),this.dataFormat==="channelsLast"){let n=mf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return mf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=mf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return mf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Z1.className="Cropping2D";ue.registerClass(Z1);var Y1=class extends Qe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Lt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,gP(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return H(()=>{let n=We(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=Ze(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?De.resizeNearestNeighbor(n,[r,a]):De.resizeBilinear(n,[r,a]);return Ze(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?De.resizeNearestNeighbor(n,[r,a]):De.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Y1.className="UpSampling2D";ue.registerClass(Y1);function nz(e,t,n=[1,1],s="valid",r,a){return H(()=>{r==null&&(r=Xs()),Lt(r);let o=G1(e,r);if(e.rank!==4)throw new G(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new G(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=su(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=Ze(o,[0,3,1,2])),o})}var J1=class extends j1{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Ct(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Qt(e.depthwiseConstraint),this.depthwiseRegularizer=Tt(e.depthwiseRegularizer)}build(e){if(e=dt(e),e.length<4)throw new G(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{e=We(e);let n=nz(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ys(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=er(t,this.kernelSize[0],this.padding,this.strides[0]),a=er(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=_t(this.depthwiseInitializer),e.depthwiseRegularizer=At(this.depthwiseRegularizer),e.depthwiseConstraint=Jt(this.depthwiseRegularizer),e}};J1.className="DepthwiseConv2D";ue.registerClass(J1);function Qv(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new G("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function ew(e,t,n,s=!1,r,a,o=!1,i=!1){return H(()=>{let l=t.shape.length;if(l<3)throw new G(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Zs(2,l));if(t=Ze(t,u),a!=null)throw new ze("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=pe(pe(r,"bool"),"float32"),r.rank===l-1&&(r=zt(r,-1)),r=Ze(r,u)),s&&(t=os(t,0),r!=null&&(r=os(r,0)));let c=[],d,p=n,h=t.shape[0],m=En(t),f;r!=null&&(f=En(r));for(let A=0;A<h;++A){let y=m[A],x=H(()=>e(y,p));if(r==null)d=x[0],p=x[1];else{let b=H(()=>{let v=f[A],k=ye(as(v),v),S=le(z(x[0],v),z(p[0],k)),C=p.map((D,O)=>le(z(x[1][O],v),z(D,k)));return{output:S,newStates:C}});d=b.output,p=b.newStates}i&&c.push(d)}let g;return i&&(g=yn(c,1)),[d,g,p]})}var xr=class extends Qe{constructor(e){super(e);let t;if(e.cell==null)throw new G("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Bf({cells:e.cell}):t=e.cell,t.stateSize==null)throw new G("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ht({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Zs(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){b1(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return H(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new ze("Constants support is not implemented in RNN yet.");b1(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new Ht({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new ze("Constants support is not implemented in RNN yet.");this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new G(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Ht({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new Lr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Pt([n,s])):this.states_=[Pt([n,this.cell.stateSize])];else if(e==null)Z(this.states_),this.keptStates!=null&&(Z(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Pt([n,s])):this.states_[0]=Pt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Z(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!w.arraysEqual(r.shape,o))throw new G(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>un(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=Qv(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Ht({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof Js){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=We(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new G(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=ew((h,m)=>{let f=this.cell.call([h].concat(m),o);return[f[0],f.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),u=l[0],c=l[1],d=l[2];this.stateful&&this.resetStates(d,s);let p=this.returnSequences?c:u;return this.returnState?[p].concat(d):p})}getInitialState(e){return H(()=>{let t=Pt(e.shape);return t=we(t,[1,2]),t=rd(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?d1(t,[1,n]):t):this.cell.stateSize>1?[d1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===xr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=Qs(s,n);return new e(Object.assign(t,{cell:r}))}};xr.className="RNN";ue.registerClass(xr);var md=class extends Qe{},zf=class extends md{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,cn(this.units,"units"),this.activation=ka(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ct(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ct(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ct(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Qt(e.kernelConstraint),this.recurrentConstraint=Qt(e.recurrentConstraint),this.biasConstraint=Qt(e.biasConstraint),this.dropout=fu([1,ba([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=fu([1,ba([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=dt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new G(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ia({ones:()=>as(e),rate:this.dropout,training:s})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ia({ones:()=>as(n),rate:this.recurrentDropout,training:s}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=gr(z(e,a),this.kernel.read()):r=gr(e,this.kernel.read()),this.bias!=null&&(r=Ys(r,this.bias.read())),o!=null&&(n=z(n,o));let i=le(r,gr(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:wa(this.activation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),recurrentRegularizer:At(this.recurrentRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:Jt(this.kernelConstraint),recurrentConstraint:Jt(this.recurrentConstraint),biasConstraint:Jt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};zf.className="SimpleRNNCell";ue.registerClass(zf);var Q1=class extends xr{constructor(e){e.cell=new zf(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};Q1.className="SimpleRNN";ue.registerClass(Q1);var Lf=class extends md{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new G("GRUCell does not support reset_after parameter set to true.");this.units=e.units,cn(this.units,"units"),this.activation=ka(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ka(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ct(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ct(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ct(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Qt(e.kernelConstraint),this.recurrentConstraint=Qt(e.recurrentConstraint),this.biasConstraint=Qt(e.biasConstraint),this.dropout=fu([1,ba([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=fu([1,ba([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=dt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new G(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ia({ones:()=>as(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ia({ones:()=>as(s),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=z(e,r[0]));let u=gr(e,this.kernel.read());this.useBias&&(u=Ys(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=z(s,a[0]));let c=this.recurrentKernel.read(),[d,p]=Vt(c,[2*this.units,this.units],c.rank-1),h=gr(s,d),[m,f,g]=Vt(u,3,u.rank-1),[A,y]=Vt(h,2,h.rank-1);o=this.recurrentActivation.apply(le(m,A)),i=this.recurrentActivation.apply(le(f,y));let x=gr(z(i,s),p);l=this.activation.apply(le(g,x));let b=le(z(o,s),z(le(1,St(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:wa(this.activation),recurrentActivation:wa(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),recurrentRegularizer:At(this.recurrentRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:Jt(this.kernelConstraint),recurrentConstraint:Jt(this.recurrentConstraint),biasConstraint:Jt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Lf.className="GRUCell";ue.registerClass(Lf);var ey=class extends xr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Lf(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};ey.className="GRU";ue.registerClass(ey);var gd=class extends md{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,cn(this.units,"units"),this.activation=ka(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ka(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ct(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ct(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ct(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Qt(e.kernelConstraint),this.recurrentConstraint=Qt(e.recurrentConstraint),this.biasConstraint=Qt(e.biasConstraint),this.dropout=fu([1,ba([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=fu([1,ba([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=dt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends Os{apply(i,l){let u=r.apply([a]),c=new Af().apply([a]),d=r.apply([a*2]);return K3(K3(u,c),d)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new G(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ia({ones:()=>as(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ia({ones:()=>as(s),rate:this.recurrentDropout,training:n,count:4}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,u,c;0<this.dropout&&this.dropout<1&&(e=z(e,a[0]));let d=gr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=z(s,o[0])),d=le(d,gr(s,this.recurrentKernel.read())),this.useBias&&(d=Ys(d,this.bias.read()));let[p,h,m,f]=Vt(d,4,d.rank-1);i=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(h),u=le(z(l,r),z(i,this.activation.apply(m))),c=this.recurrentActivation.apply(f);let g=z(c,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:wa(this.activation),recurrentActivation:wa(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:At(this.kernelRegularizer),recurrentRegularizer:At(this.recurrentRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:Jt(this.kernelConstraint),recurrentConstraint:Jt(this.recurrentConstraint),biasConstraint:Jt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};gd.className="LSTMCell";ue.registerClass(gd);var ty=class extends xr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new gd(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};ty.className="LSTM";ue.registerClass(ty);var Bf=class extends md{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return H(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){b1(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{ui(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(Qs(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return v1(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}w1(t)}};Bf.className="StackedRNNCells";ue.registerClass(Bf);function Ia(e){let{ones:t,rate:n,training:s=!1,count:r=1}=e,a=()=>Y3(t(),n),o=()=>od(a,t,s);return!r||r<=1?un(o().clone()):Array(r).fill(void 0).map(o).map(l=>un(l.clone()))}var sz=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r<s.length;r++)t.indexOf(s[r])<0&&Object.prototype.propertyIsEnumerable.call(e,s[r])&&(n[s[r]]=e[s[r]]);return n},tw=class extends xr{constructor(e){if(e.unroll)throw new ze("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new ze("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Ht({ndim:5})]}call(e,t){return H(()=>{if(this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new G("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return H(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Pt(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new Lr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Pt(r)):this.states_=[Pt(r)];else if(e==null)Z(this.states_),this.keptStates!=null&&(Z(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Pt(r)):this.states_[0]=Pt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Z(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!w.arraysEqual(i.shape,l))throw new G(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>un(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],u=e[i?4:3],c=er(l,s[0],r,a[0],o[0]),d=er(u,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,c,d]:[c,d,n]]}};tw.className="ConvRNN2D";var Wf=class extends gd{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t}));this.filters=t,cn(this.filters,"filters"),this.kernelSize=xu(n,2,"kernelSize"),this.kernelSize.forEach(i=>cn(i,"kernelSize")),this.strides=xu(s||1,2,"strides"),this.strides.forEach(i=>cn(i,"strides")),this.padding=r||"valid",bs(this.padding),this.dataFormat=a||"channelsLast",Lt(this.dataFormat),this.dilationRate=xu(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>cn(i,"dilationRate"))}build(e){var t;e=dt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;i=new(t=class extends Os{apply(d,p){let h=l.apply([u]),m=rs([u]),f=l.apply([u*2]);return c1([h,m,f])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return H(()=>{if(e.length!==3)throw new G(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ia({ones:()=>as(s),rate:this.dropout,training:n,count:o}));let i=this.dropoutMask,l=(te,ne,se)=>!ne||!ne[se]?te:z(ne[se],te),u=l(s,i,0),c=l(s,i,1),d=l(s,i,2),p=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ia({ones:()=>as(r),rate:this.recurrentDropout,training:n,count:o}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),A=l(r,h,3),y=3,[x,b,v,k]=Vt(this.kernel.read(),o,y),[S,C,D,O]=this.useBias?Vt(this.bias.read(),o):[null,null,null,null];u=this.inputConv(u,x,S,this.padding),c=this.inputConv(c,b,C,this.padding),d=this.inputConv(d,v,D,this.padding),p=this.inputConv(p,k,O,this.padding);let[E,R,T,P]=Vt(this.recurrentKernel.read(),o,y);m=this.recurrentConv(m,E),f=this.recurrentConv(f,R),g=this.recurrentConv(g,T),A=this.recurrentConv(A,P);let U=this.recurrentActivation.apply(le(u,m)),j=this.recurrentActivation.apply(le(c,f)),q=le(z(j,a),z(U,this.activation.apply(le(d,g)))),X=z(this.recurrentActivation.apply(le(p,A)),this.activation.apply(q));return[X,X,q]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=sz(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=Fr(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ys(r,n,this.dataFormat):r}recurrentConv(e,t){return Fr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Wf.className="ConvLSTM2DCell";ue.registerClass(Wf);var ny=class extends tw{constructor(e){let t=new Wf(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};ny.className="ConvLSTM2D";ue.registerClass(ny);var Vf=class extends Qe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=We(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return od(()=>Y3(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Vf.className="Dropout";ue.registerClass(Vf);var sy=class extends Vf{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};sy.className="SpatialDropout1D";ue.registerClass(sy);var ry=class extends Qe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,cn(this.units,"units"),this.activation=ka(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Ct(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Ct(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Qt(e.kernelConstraint),this.biasConstraint=Qt(e.biasConstraint),this.kernelRegularizer=Tt(e.kernelRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.activityRegularizer=Tt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=dt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=dt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=We(e),s=B3(this.activation.getClassName()),r;return s!=null?r=gr(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=gr(n,this.kernel.read()),this.bias!=null&&(r=Ys(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:wa(this.activation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:At(this.kernelRegularizer),biasRegularizer:At(this.biasRegularizer),activityRegularizer:At(this.activityRegularizer),kernelConstraint:Jt(this.kernelConstraint),biasConstraint:Jt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};ry.className="Dense";ue.registerClass(ry);var ay=class extends Qe{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=dt(e);for(let t of e.slice(1))if(t==null)throw new G(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],xa(e,1)]}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=We(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=Ze(n,s)}return wP(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};ay.className="Flatten";ue.registerClass(ay);var oy=class extends Qe{constructor(e){super(e);this.supportsMasking=!0,this.activation=ka(e.activation)}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=We(e);return this.activation.apply(n)})}getConfig(){let e={activation:wa(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};oy.className="Activation";ue.registerClass(oy);var iy=class extends Qe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return H(()=>(e=We(e),bP(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};iy.className="RepeatVector";ue.registerClass(iy);var ly=class extends Qe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new G("Can only specifiy one unknown dimension.");else r*=l}let o=xa(e);if(a!==null){if(r===0||o%r!=0)throw new G(n);s[a]=o/r}else if(o!==r)throw new G(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=We(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return V(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};ly.className="Reshape";ue.registerClass(ly);var uy=class extends Qe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Zs(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ht({ndim:this.dims.length+1})]}computeOutputShape(e){e=dt(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return Ze(We(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};uy.className="Permute";ue.registerClass(uy);var cy=class extends Qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=We(e),s=-1;return Mc(ni(n,this.maskValue),s)}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=We(e),s=-1,r=!0,a=Mc(ni(n,this.maskValue),s,r);return z(n,pe(a,n.dtype))})}};cy.className="Masking";ue.registerClass(cy);var dy=class extends Qe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(vt(e.inputLength))}this.inputDim=e.inputDim,cn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,cn(this.outputDim,"outputDim"),this.embeddingsInitializer=Ct(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Tt(e.embeddingsRegularizer),this.activityRegularizer=Tt(e.activityRegularizer),this.embeddingsConstraint=Qt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return H(()=>this.maskZero?(e=We(e),ni(e,Ye(e))):null)}computeOutputShape(e){if(e=dt(e),this.inputLength==null)return[...e,this.outputDim];let t=vt(this.inputLength);if(t.length!==e.length-1)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=We(e);n.dtype!=="int32"&&(n=ff(n,"int32"));let s=Z3(this.embeddings.read(),V(n,[n.size]));return V(s,dt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:_t(this.embeddingsInitializer),embeddingsRegularizer:At(this.embeddingsRegularizer),activityRegularizer:At(this.activityRegularizer),embeddingsConstraint:Jt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};dy.className="Embedding";ue.registerClass(dy);var fi=class extends Qe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new ze}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new G("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[dt(e)]),e=e,e.length<2)throw new G(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=ya(t),t.length>1)throw new G(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&ya(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return H(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=ba(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=rd(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let u=i.shape,c=u[0],d=u.slice(1).concat([c]),p=V(i,[c].concat(xa(u.slice(1))));p=Ze(p,[1,0]),p=V(p,d),n.push(p),r=!0}else if(l>1){let u=Zs(1,l).concat([0]);n.push(Ze(i,u)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,u=i[l-1],c=[u].concat(i.slice(0,i.length-1));a=V(Ze(V(a,[-1,u]),[1,0]),c)}else if(o>1){let i=[o-1].concat(Zs(0,o-1));a=Ze(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=ya(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return H(()=>{if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an Array");if(!Array.isArray(e))throw new G("`inputs` should be an Array");if(t.length!==e.length)throw new G(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:zt(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=$s(n,t[s]);return n})}},py=class extends fi{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=le(t,e[n]);return t})}};py.className="Add";ue.registerClass(py);var hy=class extends fi{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=z(t,e[n]);return t})}};hy.className="Multiply";ue.registerClass(hy);var fy=class extends fi{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=le(t,e[n]);return z(1/e.length,t)})}};fy.className="Average";ue.registerClass(fy);var my=class extends fi{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=hr(t,e[n]);return t})}};my.className="Maximum";ue.registerClass(my);var gy=class extends fi{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=iu(t,e[n]);return t})}};gy.className="Minimum";ue.registerClass(gy);var Ay=class extends fi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new G("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(w.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new G("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return H(()=>c1(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new G("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new G("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new G(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return H(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(pe(as(e[a]),"bool")):t[a].rank<e[a].rank?s.push(zt(t[a],-1)):s.push(t[a]);let r=gt(s,this.axis);return Nh(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Ay.className="Concatenate";ue.registerClass(Ay);function Ad(e,t){for(;e<0;)e+=t;return e}function rz(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new ze("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new ze("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return H(()=>{let o;if(s>r){o=s-r;let l=[];for(let u=0;u<o;++u)l.push(1);t=V(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let u=0;u<o;++u)l.push(1);e=V(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=we(z(e,t),a[0]):i=we(z(Ze(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,u=a[1]===t.shape.length-1;i=Ue(e,t,l,u)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let u=[];for(let c=l;c<l+o;++c)u.push(c);i=at(i,u)}return i.shape.length===1&&(i=zt(i,1)),i})}var yy=class extends fi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new ze("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new G(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new G(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>Ad(r,e[a].shape.length)):s=[Ad(this.axes,t.shape.length),Ad(this.axes,n.shape.length)],this.normalize&&(t=Ef(t,s[0]),n=Ef(n,s[1])),rz(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Ad(this.axes,e.length),Ad(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new ze("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};yy.className="Dot";ue.registerClass(yy);var xy=class extends Qe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=We(e);return od(()=>le(gf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};xy.className="GaussianNoise";ue.registerClass(xy);var by=class extends Qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=We(e);return this.rate>0&&this.rate<1?od(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return z(n,gf(n.shape,1,r))},()=>n,t.training||!1):n})}};by.className="GaussianDropout";ue.registerClass(by);var vy=class extends Qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||We(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return od(()=>{let r=We(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=ma(lu(n),this.rate);l=ff(l,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-u*i*this.rate,d=le(z(r,l),z(le(l,-1),i));return le(z(d,u),c)},()=>We(e),t.training||!1)}return e})}};vy.className="AlphaDropout";ue.registerClass(vy);function yd(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=_b(e,t,n,s,r,a);else if(e.rank===3)o=$b(e,t,n,s,r,a);else if(e.rank===4)o=Fb(e,t,n,s,r,a);else throw new ze(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function az(e,t,n,s,r=.001){return H(()=>{let a=Lh(e,s),o=a.mean,i=a.variance;return[yd(e,o,i,n,t,r),o,i]})}function oz(e,t,n,s,r=.001){return H(()=>{let a=Lh(e,s),o=a.mean,i=a.variance,l=[];for(let m of Zs(0,e.rank))s.indexOf(m)!==-1?l.push(1):l.push(e.shape[m]);let u=V(o,l),c=V(i,l),d=t==null?null:V(t,l),p=n==null?null:V(n,l);return[yd(e,u,c,p,d,r),o,i]})}function iz(e,t,n,s,r=.001){return w.arraysEqual(s.slice().sort(),Zs(0,e.rank-1))?az(e,t,n,s,r):oz(e,t,n,s,r)}var wy=class extends Qe{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ct(e.betaInitializer||"zeros"),this.gammaInitializer=Ct(e.gammaInitializer||"ones"),this.movingMeanInitializer=Ct(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Ct(e.movingVarianceInitializer||"ones"),this.betaConstraint=Qt(e.betaConstraint),this.gammaConstraint=Qt(e.gammaConstraint),this.betaRegularizer=Tt(e.betaRegularizer),this.gammaRegularizer=Tt(e.gammaRegularizer)}build(e){e=dt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new G(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ht({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training,s=We(e),r=s.shape,a=r.length,o=Zs(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=oi(1,a);l[i]=r[i];let u=o.slice();u.sort();let c=!w.arraysEqual(u,Zs(0,a).slice(0,a-1)),d=()=>{if(c){let A=V(this.movingMean.read(),l),y=V(this.movingVariance.read(),l),x=this.center?V(this.beta.read(),l):null,b=this.scale?V(this.gamma.read(),l):null;return yd(s,A,y,x,b,this.epsilon)}else return yd(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[p,h,m]=iz(s,this.gamma.read(),this.beta.read(),o,this.epsilon),f=(A,y,x)=>{H(()=>{let b=1-x,v=A.read(),k=z(ye(v,y),b);A.write(ye(v,k))})};return(()=>{f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_t(this.betaInitializer),gammaInitializer:_t(this.gammaInitializer),movingMeanInitializer:_t(this.movingMeanInitializer),movingVarianceInitializer:_t(this.movingVarianceInitializer),betaRegularizer:At(this.betaRegularizer),gammaRegularizer:At(this.gammaRegularizer),betaConstraint:Jt(this.betaConstraint),gammaConstraint:Jt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};wy.className="BatchNormalization";ue.registerClass(wy);var ky=class extends Qe{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ct(e.betaInitializer||"zeros"),this.gammaInitializer=Ct(e.gammaInitializer||"ones"),this.betaRegularizer=Tt(e.betaRegularizer),this.gammaRegularizer=Tt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=dt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==ya(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=We(e),s=n.shape,r=s.length;return H(()=>{let a=!0,{mean:o,variance:i}=Lh(n,this.axis,a),l=oi(1,r);for(let m of this.axis)l[m]=s[m];let u=m=>m!=null&&m.shape.length!==r&&this.axis!==[r-1]?V(m,l):m,c=u(this.gamma.read()),d=u(this.beta.read()),p=[],h=[];for(let m=0;m<r;++m)this.axis.indexOf(m)!==-1?(p.push(s[m]),h.push(1)):(p.push(1),h.push(s[m]));return o=xs(o,p),i=xs(i,p),c=xs(c,h),d=xs(d,h),yd(n,o,i,d,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_t(this.betaInitializer),gammaInitializer:_t(this.gammaInitializer),betaRegularizer:At(this.betaRegularizer),gammaRegularizer:At(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};ky.className="LayerNormalization";ue.registerClass(ky);function lz(e,t,n){return H(()=>{if(e.rank!==4)throw new G(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new G("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Xs()),n!=="channelsLast"&&n!=="channelsFirst")throw new G(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],Or(e,s)})}var Iy=class extends Qe{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?Xs():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new G(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new G(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new G(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ht({ndim:4})]}computeOutputShape(e){e=dt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return H(()=>lz(We(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Iy.className="ZeroPadding2D";ue.registerClass(Iy);function Uf(e,t,n,s,r,a){return H(()=>{Lt(r),H3(a),bs(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=Xs()),a==null&&(a="max"),e=G1(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=Gc(e,t,n,i):o=Lc(e,t,n,i),r==="channelsFirst"&&(o=Ze(o,[0,3,1,2])),o})}function nw(e,t,n,s,r,a){return H(()=>{Lt(r),H3(a),bs(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=Xs()),a==null&&(a="max"),e=Zv(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=FA(e,t,n,i):o=yA(e,t,n,i),r==="channelsFirst"&&(o=Ze(o,[0,4,1,2,3])),o})}var sw=class extends Qe{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new G(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(cn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new G(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);cn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,bs(this.padding),this.inputSpec=[new Ht({ndim:3})]}computeOutputShape(e){e=dt(e);let t=er(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return H(()=>{this.invokeCallHook(e,t),e=rd(We(e),2);let n=this.poolingFunction(We(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return at(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Sy=class extends sw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Lt(r),bs(s),Uf(e,t,n,s,r,"max")}};Sy.className="MaxPooling1D";ue.registerClass(Sy);var Cy=class extends sw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Lt(r),bs(s),Uf(e,t,n,s,r,"avg")}};Cy.className="AveragePooling1D";ue.registerClass(Cy);var rw=class extends Qe{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new G(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];cn(this.poolSize,"poolSize"),cn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Lt(this.dataFormat),bs(this.padding),this.inputSpec=[new Ht({ndim:4})]}computeOutputShape(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=er(t,this.poolSize[0],this.padding,this.strides[0]),n=er(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(We(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ty=class extends rw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Lt(r),bs(s),Uf(e,t,n,s,r,"max")}};Ty.className="MaxPooling2D";ue.registerClass(Ty);var Ny=class extends rw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Lt(r),bs(s),Uf(e,t,n,s,r,"avg")}};Ny.className="AveragePooling2D";ue.registerClass(Ny);var aw=class extends Qe{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new G(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];cn(this.poolSize,"poolSize"),cn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Lt(this.dataFormat),bs(this.padding),this.inputSpec=[new Ht({ndim:5})]}computeOutputShape(e){e=dt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=er(t,this.poolSize[0],this.padding,this.strides[0]),n=er(n,this.poolSize[1],this.padding,this.strides[1]),s=er(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(We(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ey=class extends aw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Lt(r),bs(s),nw(e,t,n,s,r,"max")}};Ey.className="MaxPooling3D";ue.registerClass(Ey);var Ry=class extends aw{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Lt(r),bs(s),nw(e,t,n,s,r,"avg")}};Ry.className="AveragePooling3D";ue.registerClass(Ry);var ow=class extends Qe{constructor(e){super(e);this.inputSpec=[new Ht({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new ze}},Dy=class extends ow{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=We(e);return Dt(n,1)})}};Dy.className="GlobalAveragePooling1D";ue.registerClass(Dy);var _y=class extends ow{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=We(e);return ss(n,1)})}};_y.className="GlobalMaxPooling1D";ue.registerClass(_y);var iw=class extends Qe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Lt(this.dataFormat),this.inputSpec=[new Ht({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new ze}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},$y=class extends iw{call(e,t){return H(()=>{let n=We(e);return this.dataFormat==="channelsLast"?Dt(n,[1,2]):Dt(n,[2,3])})}};$y.className="GlobalAveragePooling2D";ue.registerClass($y);var Fy=class extends iw{call(e,t){return H(()=>{let n=We(e);return this.dataFormat==="channelsLast"?ss(n,[1,2]):ss(n,[2,3])})}};Fy.className="GlobalMaxPooling2D";ue.registerClass(Fy);var lw=class extends Qe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=Qs(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},Oy=class extends lw{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=dt(e),e.length<3)throw new G(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=dt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return H(()=>(e=We(e),ew((a,o)=>[We(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Oy.className="TimeDistributed";ue.registerClass(Oy);function uz(e){li(mP,"BidirectionalMergeMode",e)}var cz="concat",Py=class extends lw{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Qs(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=Qs(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?cz:e.mergeMode,uz(this.mergeMode),e.weights)throw new ze("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Hn(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=Qv(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new G("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let u=n.map(c=>new Ht({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),o.push(...u)}if(s!=null)throw new ze("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof Js;for(let l of a)if(l instanceof Js!==i)throw new G("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=os(r,1));let o;return this.mergeMode==="concat"?o=c1([s,r]):this.mergeMode==="sum"?o=le(s,r):this.mergeMode==="ave"?o=z(.5,le(s,r)):this.mergeMode==="mul"?o=z(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){ui(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),ui(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Qs(t.layer);if(delete t.layer,t.numConstants!=null)throw new ze("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};Py.className="Bidirectional";ue.registerClass(Py);function dz(e){return new mu(e)}function pz(e){return new V1(e)}function hz(e){return new L1(e)}function fz(e){return new B1(e)}function mz(e){return new W1(e)}function gz(e){return new H1(e)}function Az(e){return new U1(e)}function yz(e){return new Mf(e)}function xz(e){return new hd(e)}function bz(e){return new q1(e)}function vz(e){return new fd(e)}function wz(e){return new X1(e)}function kz(e){return new K1(e)}function Iz(e){return new Z1(e)}function Sz(e){return new Y1(e)}function Cz(e){return new J1(e)}function Tz(e){return new oy(e)}function Nz(e){return new ry(e)}function Ez(e){return new Vf(e)}function Rz(e){return new sy(e)}function Dz(e){return new ay(e)}function _z(e){return new iy(e)}function $z(e){return new ly(e)}function Fz(e){return new uy(e)}function Oz(e){return new dy(e)}function Pz(e){return new py(e)}function Mz(e){return new fy(e)}function zz(e){return new Ay(e)}function Lz(e){return new my(e)}function Bz(e){return new gy(e)}function Wz(e){return new hy(e)}function Vz(e){return new yy(e)}function Uz(e){return new wy(e)}function Hz(e){return new ky(e)}function Gz(e){return new Iy(e)}function My(e){return new Cy(e)}function jz(e){return My(e)}function qz(e){return My(e)}function zy(e){return new Ny(e)}function Xz(e){return zy(e)}function Kz(e){return zy(e)}function Ly(e){return new Ry(e)}function Zz(e){return Ly(e)}function Yz(e){return Ly(e)}function Jz(e){return new Dy(e)}function Qz(e){return new $y(e)}function uw(e){return new _y(e)}function cw(e){return new Fy(e)}function dw(e){return new Sy(e)}function pw(e){return new Ty(e)}function eL(e){return new Ey(e)}function tL(e){return new ey(e)}function nL(e){return new Lf(e)}function sL(e){return new ty(e)}function rL(e){return new gd(e)}function aL(e){return new Q1(e)}function oL(e){return new zf(e)}function iL(e){return new ny(e)}function lL(e){return new Wf(e)}function uL(e){return new xr(e)}function cL(e){return new Bf(e)}function dL(e){return new Py(e)}function pL(e){return new Oy(e)}var hL=uw,fL=cw,mL=dw,gL=pw;function AL(e){return new xy(e)}function yL(e){return new by(e)}function xL(e){return new vy(e)}function bL(e){return new cy(e)}var hw={};Le(hw,{MAPE:()=>DL,MSE:()=>FL,binaryAccuracy:()=>vL,binaryCrossentropy:()=>wL,categoricalAccuracy:()=>IL,categoricalCrossentropy:()=>SL,cosineProximity:()=>NL,mape:()=>_L,meanAbsoluteError:()=>EL,meanAbsolutePercentageError:()=>RL,meanSquaredError:()=>$L,mse:()=>OL,precision:()=>CL,recall:()=>TL,sparseCategoricalAccuracy:()=>kL});function vL(e,t){return S1(e,t)}function wL(e,t){return mv(e,t)}function kL(e,t){return gv(e,t)}function IL(e,t){return C1(e,t)}function SL(e,t){return T1(e,t)}function CL(e,t){return fv(e,t)}function TL(e,t){return cM(e,t)}function NL(e,t){return k1(e,t)}function EL(e,t){return Rf(e,t)}function RL(e,t){return Au(e,t)}function DL(e,t){return Au(e,t)}function _L(e,t){return Au(e,t)}function $L(e,t){return di(e,t)}function FL(e,t){return di(e,t)}function OL(e,t){return di(e,t)}var fw={};Le(fw,{modelFromJSON:()=>HM});var mw={};Le(mw,{l1:()=>ML,l1l2:()=>PL,l2:()=>zL});function PL(e){return new dd(e)}function ML(e){return JM(e)}function zL(e){return QM(e)}var gw=class extends gu{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Wr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Hf(e,t){return e<t}function Aw(e,t){return e>t}var yw=class extends gw{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new ze("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Hf:this.mode==="max"?this.monitorFunc=Aw:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Aw:this.monitorFunc=Hf,this.monitorFunc===Hf&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Hf?1/0:-1/0}async onEpochEnd(e,t){await va(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function LL(e){return new yw(e)}var BL={earlyStopping:LL},tr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(tr||(tr={}));var xw;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(xw||(xw={}));var By={};function WL(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};By[e]=n}function bw(e){return By[e]}function VL(e){delete By[e]}function I(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return Dn(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(p=>Dn(p,n,s,r));let u=Dn(t.inputNames.slice(i)[0],n,s,r),c=u.dataSync();return a.type==="number"?c[0]:w.toNestedArray(u.shape,c)}let o=t.attrParams[e];return o&&o.value}function Dn(e,t,n,s){let[r,a]=is(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[Gf(r,i)]);return o!==void 0?t[Gf(r,o)][a]:void 0}function UL(e,t,n){return t[Gf(e,n.currentContextId)]}function Vr(e,t){let[n,s,r]=is(e);return[Gf(n,t&&t.currentContextId),s,r]}function Gf(e,t){return t?`${e}-${t}`:e}function is(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function jf(e,t,n){let s=I("pad",e,t,n);if(s==="explicit"){s=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function Ur(e){return e.kept?e:Hs(e)}var vw={};Le(vw,{json:()=>HL});var HL=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],ww={};Le(ww,{json:()=>GL});var GL=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],kw={};Le(kw,{json:()=>jL});var jL=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],Iw={};Le(Iw,{json:()=>qL});var qL=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],Sw={};Le(Sw,{json:()=>XL});var XL=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],Cw={};Le(Cw,{json:()=>KL});var KL=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Tw={};Le(Tw,{json:()=>ZL});var ZL=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],Nw={};Le(Nw,{json:()=>YL});var YL=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Ew={};Le(Ew,{json:()=>JL});var JL=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],Rw={};Le(Rw,{json:()=>QL});var QL=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],Dw={};Le(Dw,{json:()=>eB});var eB=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],_w={};Le(_w,{json:()=>tB});var tB=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],$w={};Le($w,{json:()=>nB});var nB=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],Fw={};Le(Fw,{json:()=>sB});var sB=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],Ow={};Le(Ow,{json:()=>rB});var rB=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],Pw={};Le(Pw,{json:()=>aB});var aB=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],Mw={};Le(Mw,{json:()=>oB});var oB=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],zw={};Le(zw,{json:()=>iB});var iB=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],Lw={};Le(Lw,{json:()=>lB});var lB=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],Bw=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[vw,ww,kw,Iw,Sw,Cw,Tw,Nw,Ew,Rw,Dw,_w,$w,Fw,Ow,Pw,Mw,zw,Lw],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?s.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&a.push(m[f.name]),m),{}),i=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(m=>{let f=o[m];f.inputNames.forEach((g,A)=>{let[y,,x]=Vr(g),b=o[y];if(b.outputs!=null){let v=b.outputs.indexOf(x);if(v!==-1){let k=`${y}:${v}`;f.inputNames[A]=k}}f.inputs.push(b),b.children.push(f)})}),Object.keys(c).length===0?d.forEach(m=>{let f=o[m];f.children.length===0&&l.push(f)}):Object.keys(c).forEach(m=>{let[f]=Vr(m),g=o[f];g!=null&&(g.signatureKey=c[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=Vr(m),g=o[f];g&&(g.signatureKey=u[m],i.push(g))}):i=s;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:p};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=bw(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=Wy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Wy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=Ky(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Ky(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=Uy(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=Uy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=Xy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Xy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=Vy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Vy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=Yy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Yy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=qy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=qy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=Zy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Zy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=Gy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Gy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=jy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=jy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=Vw(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Vw(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((c,d)=>(c[d.name]=this.mapNode(d),d.op==="Const"&&s.push(c[d.name]),c),{}));let a=[],o=[];e.signature.inputArg.forEach(c=>{let[d]=Vr(c.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Hy(c.type),type:"dtype"}},children:[]};p.signatureKey=c.name,a.push(p),r[d]=p}),Object.keys(r).forEach(c=>{let d=r[c];d.inputNames.forEach((p,h)=>{let[m,,f]=Vr(p),g=r[m];if(g.outputs!=null){let A=g.outputs.indexOf(f);if(A!==-1){let y=`${m}:${A}`;d.inputNames[h]=y}}d.inputs.push(g),g.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(c=>{let[d,p]=Vr(l[c.name]),h=r[d];h!=null&&(h.defaultOutput=p,o.push(h))});let u=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function uB(e){let t=Y().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function Ww(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):uB(e);return t?n:n.toLowerCase()}function Wy(e,t,n,s=!1){let r=e[t];return r!=null?Ww(r.s,s):n}function Vy(e,t,n){let s=e[t];return s?s.b:n}function Uy(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function Hy(e){switch(typeof e=="string"&&(e=tr[e]),e){case tr.DT_FLOAT:return"float32";case tr.DT_INT32:case tr.DT_INT64:case tr.DT_INT8:case tr.DT_UINT8:return"int32";case tr.DT_BOOL:return"bool";case tr.DT_DOUBLE:return"float32";case tr.DT_STRING:return"string";default:return null}}function Vw(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function Gy(e,t,n){let s=e[t];return s&&s.type?Hy(s.type):n}function jy(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>Hy(r)):n}function Uw(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function qy(e,t,n){let s=e[t];return s&&s.shape?Uw(s.shape):n}function Xy(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function Ky(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>Ww(a,s)):n}function Zy(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>Uw(r)):n}function Yy(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var cB=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return Dn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Dn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Uy(this.node.rawAttrs,e,t);if(n.s!=null)return Wy(this.node.rawAttrs,e,t);if(n.b!=null)return Vy(this.node.rawAttrs,e,t);if(n.shape!=null)return qy(this.node.rawAttrs,e,t);if(n.type!=null)return Gy(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Xy(this.node.rawAttrs,e,t);if(n.list.s!=null)return Ky(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Zy(this.node.rawAttrs,e,t);if(n.list.b!=null)return Yy(this.node.rawAttrs,e,t);if(n.list.type!=null)return jy(this.node.rawAttrs,e,t)}return t}},dB=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[le(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[Th(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[PA(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[z(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[he(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[SA(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Ch(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ye(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[iu(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[hr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[Pr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[Zh(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},pB=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Wt(I("x",e,t,n))];case"Acos":return[lA(I("x",e,t,n))];case"Acosh":return[uA(I("x",e,t,n))];case"Asin":return[dA(I("x",e,t,n))];case"Asinh":return[pA(I("x",e,t,n))];case"Atan":return[hA(I("x",e,t,n))];case"Atan2":return[fA(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[mA(I("x",e,t,n))];case"Ceil":return[bA(I("x",e,t,n))];case"Complex":return[ca(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Wc(I("x",e,t,n))];case"Cosh":return[_h(I("x",e,t,n))];case"Elu":return[ru(I("x",e,t,n))];case"Erf":return[CA(I("x",e,t,n))];case"Exp":return[ts(I("x",e,t,n))];case"Expm1":return[TA(I("x",e,t,n))];case"Floor":return[ou(I("x",e,t,n))];case"Log":return[ns(I("x",e,t,n))];case"Log1p":return[Uc(I("x",e,t,n))];case"Imag":return[Fh(I("x",e,t,n))];case"Neg":return[St(I("x",e,t,n))];case"Reciprocal":return[LA(I("x",e,t,n))];case"Real":return[Kc(I("x",e,t,n))];case"Relu":return[js(I("x",e,t,n))];case"Round":return[Vh(I("x",e,t,n))];case"Selu":return[Hh(I("x",e,t,n))];case"Sigmoid":return[Wn(I("x",e,t,n))];case"Sin":return[Gh(I("x",e,t,n))];case"Sign":return[WA(I("x",e,t,n))];case"Sinh":return[jh(I("x",e,t,n))];case"Softplus":return[ei(I("x",e,t,n))];case"Sqrt":return[An(I("x",e,t,n))];case"Square":return[ft(I("x",e,t,n))];case"Tanh":return[Yo(I("x",e,t,n))];case"Tan":return[HA(I("x",e,t,n))];case"ClipByValue":return[Vn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Wh(I("x",e,t,n))];case"Rsqrt":return[Uh(Dn(e.inputNames[0],t,n))];case"Prod":return[Bh(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Vc(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[Xc(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[EA(Dn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ms(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];w.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function Hw(e){return!(typeof e=="number"||e.some(t=>t<0))}function xd(e,t,n){let s=Jy(e,n),r=!Hw(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=Jy(a.shape,s)}),!Hw(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function Jy(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var hB=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ce(0),un(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Ms(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,un(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return ln([],[0].concat(this.elementShape));let n=this.readMany(e);return Ms(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),yn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ln([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return Ms(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),gt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,En(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];H(()=>{t=V(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],u=[0,l,0],c=[1,e[i],r];a[i]=V(_e(t,u,c),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},bd=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Ms(t,r.shape,"TensorList shape mismatch: "),un(r)}),this.idTensor=Ce(0),this.maxNumElements=s,un(this.idTensor)}get id(){return this.idTensor.id}copy(){return new bd([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Ms(e,this.elementShape,"TensorList shape mismatch: ");let s=xd(this.elementShape,this.tensors,e);return H(()=>{let r=this.tensors.map(a=>V(a,s));return yn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=xd(this.elementShape,this.tensors,e),s=this.tensors.pop();return Ms(s.shape,e,"TensorList shape mismatch: "),V(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Ms(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");un(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Ms(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=xd(this.elementShape,this.tensors,t);return V(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Ms(this.elementShape,t.shape,"TensorList shape mismatch: "),un(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Ms(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=xd(this.elementShape,this.tensors,n);return e.length===0?ln([],[0].concat(s)):H(()=>{let r=e.map(a=>V(this.tensors[a],s));return yn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Ms(this.elementShape,t,"TensorList shape mismatch: ");let n=xd(this.elementShape,this.tensors,t);return this.size()===0?ln([],[0].concat(n)):H(()=>{let s=this.tensors.map(r=>V(r,n));return gt(s,0)})}};function fB(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Ms(r,t,"TensorList shape mismatch: ");let a=En(e);return new bd(a,t,s)}function mB(e,t,n){return new bd([],e,t,n)}function gB(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new bd([],n,e.dtype,s),o=En(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function AB(e,t,n){let s=0,r=t.map(c=>(s+=c,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=Jy(a,n),i=s===0?0:e.size/s,l=H(()=>{let c=[];e=V(e,[1,s,i]);for(let d=0;d<t.length;++d){let p=d===0?0:r[d-1],h=[0,p,0],m=[1,t[d],i];c[d]=V(_e(e,h,m),o)}return e.dispose(),c}),u=new bd([],n,e.dtype,t.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var yB=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),a=I("cond",e,t,n),o=I("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=I("body",e,t,n),r=I("cond",e,t,n),a=I("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(c=>c.id),l=await o[0].data();o.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=a;for(;l[0];){let c=u;u=await n.functionMap[s].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(h=>h.id);c.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let p=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await p[0].data(),p.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let s=I("pred",e,t,n);return[Ur(s)]}case"Switch":{let s=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=Ur(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>Dn(r,t,n)!==void 0);if(s){let r=Dn(s,t,n);return[Ur(r)]}return}case"Enter":{let s=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(s),[Ur(r)]}case"Exit":{let s=I("tensor",e,t,n);return n.exitFrame(),[Ur(s)]}case"NextIteration":{let s=I("tensor",e,t,n);return n.nextIteration(),[Ur(s)]}case"TensorArrayV3":{let s=I("size",e,t,n),r=I("dtype",e,t,n),a=I("elementShape",e,t,n),o=I("dynamicSize",e,t,n),i=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),u=I("name",e,t,n),c=new hB(u,r,s,a,l,o,i);return n.addTensorArray(c),[c.idTensor,Ce(1)]}case"TensorArrayWriteV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=I("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),a=I("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ce(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=I("indices",e,t,n),r=I("tensor",e,t,n),a=I("elementShape",e,t,n),o=I("numElements",e,t,n),i=gB(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=I("elementShape",e,t,n),r=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=I(a,e,t,n),i=mB(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=I("tensorListId",e,t,n),r=I("indices",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=I("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=fB(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id),a=I("dtype",e,t,n),o=I("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=I("tensorListId",e,t,n),r=I("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("lengths",e,t,n),o=AB(s,a,r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Gw(e,t,n){let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",u=I("numArgs",e,t,n);if(a){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),d=jf(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[m,f]=I("args",e,t,n);o&&(f=m,m=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:c,pad:d,dataFormat:p,dilations:h,biasArg:m,preluArg:f,activationFunc:r,leakyreluAlpha:g}}var xB=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=I("stride",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilation",e,t,n);return[Rh(I("x",e,t,n),I("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=I("strides",e,t,n),r=jf(e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[Fr(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=Gw(e,t,n);return[Aa.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=Gw(e,t,n);return[Aa.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=I("outputShape",e,t,n),r=I("strides",e,t,n),a=jf(e,t,n);return[Dh(I("x",e,t,n),I("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=I("strides",e,t,n),r=jf(e,t,n),a=I("dilations",e,t,n),o=I("dataFormat",e,t,n).toUpperCase();return[su(I("input",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[wA(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Lc(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Gc(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n),o=I("includeBatchInIndex",e,t,n),{result:i,indexes:l}=Qb(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[yA(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[FA(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dilations",e,t,n),o=s[1],i=s[2],l=a[1],u=a[2];return[IA(I("x",e,t,n),I("filter",e,t,n),[o,i],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},bB=(e,t,n)=>{switch(e.op){case"Fill":{let s=I("shape",e,t,n),r=I("dtype",e,t,n),a=I("value",e,t,n);return[au(s,a,r)]}case"LinSpace":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("num",e,t,n);return[jb(s,r,a)]}case"Multinomial":{let s=I("logits",e,t,n),r=I("numSamples",e,t,n),a=I("seed",e,t,n);return[e3(s,r,a)]}case"OneHot":{let s=I("indices",e,t,n),r=I("depth",e,t,n),a=I("onValue",e,t,n),o=I("offValue",e,t,n);return[Yl(s,r,a,o)]}case"Ones":return[rs(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[as(I("x",e,t,n))];case"RandomUniform":return[lu(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("step",e,t,n);return[uu(s,r,a,I("dtype",e,t,n))]}case"TruncatedNormal":{let s=I("shape",e,t,n),r=I("mean",e,t,n),a=I("stdDev",e,t,n),o=I("seed",e,t,n);return[Yh(s,r,a,I("dtype",e,t,n),o)]}case"Zeros":return[Pt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ye(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Qy(e,t,n){let s=I("boxes",e,t,n),r=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),o=I("iouThreshold",e,t,n),i=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var vB=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=Qy(e,t,n),u=await De.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=Qy(e,t,n),l=I("padToMaxOutputSize",e,t,n),u=await De.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=Qy(e,t,n);return[await De.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=pe(I("condition",e,t,n),"bool"),r=[await qA(s)];return s.dispose(),r}case"ListDiff":return s3(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},wB=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=I("x",e,t,n),r=I("k",e,t,n),a=I("sorted",e,t,n),o=GA(s,r,a);return[o.values,o.indices]}case"Unique":{let s=I("x",e,t,n),r=Jh(s);return[r.values,r.indices]}case"UniqueV2":{let s=I("x",e,t,n),r=I("axis",e,t,n),a=Jh(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},kB=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=I("default",e,t,n);return[Dn(e.name,t,n)||s];case"Placeholder":return[Dn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=I("x",e,t,n);return[Ur(u)]}case"IdentityN":return I("x",e,t,n).map(u=>Ur(u));case"Snapshot":let r=I("x",e,t,n);return[Ur(r)];case"Shape":return[Ut(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(u=>Ut(u.shape));case"Size":return[Ce(I("x",e,t,n).size,"int32")];case"Rank":return[Ce(I("x",e,t,n).rank,"int32")];case"NoOp":return[Ce(1)];case"Print":let a=I("x",e,t,n),o=I("data",e,t,n),i=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;u<o.length;u++)console.log(Array.prototype.slice.call(o[u].dataSync()).slice(0,l));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},IB=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ce(0),this.tensorMap=new Map,un(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ce(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),H(()=>{let s=En(t),r=n.length,a=s.length;w.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];un(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return H(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return yn(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},SB=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),a=I("valueDType",e,t,n),o=new IB(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},CB=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[De.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[De.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=I("image",e,t,n),r=I("boxes",e,t,n),a=I("boxInd",e,t,n),o=I("cropSize",e,t,n),i=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[De.cropAndResize(s,r,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},TB=(e,t,n)=>{switch(e.op){case"Equal":return[es(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[ni(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[Un(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[ma(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Oh(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[ga(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[$s(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Hc(I("a",e,t,n))];case"LogicalOr":return[zh(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[kn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},NB=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ue(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[Ub(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Ze(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=I("args",e,t,n);return[Aa.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},EB=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Jo(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[Jo(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[RA(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[si(I("x",e,t,n))];case"LogSoftmax":return[Mh(I("x",e,t,n))];case"SparseToDense":return[XA(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},RB=(e,t,n)=>{switch(e.op){case"Max":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[ss(I("x",e,t,n),o,i)]}case"Mean":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Dt(I("x",e,t,n),o,i)]}case"Min":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[jc(I("x",e,t,n),o,i)]}case"Sum":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[we(I("x",e,t,n),o,i)]}case"All":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Nh(I("x",e,t,n),o,i)]}case"Any":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Mc(I("x",e,t,n),o,i)]}case"ArgMax":{let o=I("axis",e,t,n);return[Gs(I("x",e,t,n),o)]}case"ArgMin":{let o=I("axis",e,t,n);return[cA(I("x",e,t,n),o)]}case"Prod":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Bh(I("x",e,t,n),o,i)]}case"Cumsum":{let o=I("axis",e,t,n),i=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[$h(I("x",e,t,n),o,i,l)]}case"Bincount":let s=I("x",e,t,n),r=I("weights",e,t,n),a=I("size",e,t,n);return[xA(s,r,a)];case"DenseBincount":{let o=I("x",e,t,n),i=I("weights",e,t,n),l=I("size",e,t,n),u=I("binaryOutput",e,t,n);return[Wb(o,i,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},DB=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=I("n",e,t,n),r=I("axis",e,t,n),a=I("tensors",e,t,n);return a=a.slice(0,s),[gt(a,r)]}case"Gather":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[Qo(s,pe(r,"int32"),0)]}case"GatherV2":{let s=I("axis",e,t,n),r=I("batchDims",e,t,n),a=I("x",e,t,n),o=I("indices",e,t,n);return[Qo(a,pe(o,"int32"),s,r)]}case"Reverse":{let s=I("dims",e,t,n),r=[];for(let o=0;o<s.length;o++)s[o]&&r.push(o);let a=I("x",e,t,n);return[os(a,r)]}case"ReverseV2":{let s=I("axis",e,t,n),r=I("x",e,t,n);return[os(r,s)]}case"Slice":{let s=I("begin",e,t,n),r=I("size",e,t,n);return[_e(I("x",e,t,n),s,r)]}case"StridedSlice":{let s=I("begin",e,t,n),r=I("end",e,t,n),a=I("strides",e,t,n),o=I("beginMask",e,t,n),i=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),u=I("newAxisMask",e,t,n),c=I("shrinkAxisMask",e,t,n),d=I("x",e,t,n);return[UA(d,s,r,a,o,i,l,u,c)]}case"Pack":return H(()=>{let s=I("axis",e,t,n),r=I("tensors",e,t,n),a=r[0].shape,o=at(r[0]).shape,i=r.map(l=>{let u=w.arraysEqual(l.shape,a);if(!u&&!w.arraysEqual(at(l).shape,o))throw new Error("the input tensors shape does not match");return u?l:V(l,a)});return[yn(i,s)]});case"Unpack":{let s=I("axis",e,t,n),r=I("tensor",e,t,n);return En(r,s)}case"Tile":{let s=I("reps",e,t,n);return[xs(I("x",e,t,n),s)]}case"Split":case"SplitV":{let s=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),a=I("x",e,t,n);return Vt(a,r,s)}case"ScatterNd":{let s=I("indices",e,t,n),r=I("values",e,t,n),a=I("shape",e,t,n);return[i3(s,r,a)]}case"GatherNd":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[l3(s,r)]}case"SparseToDense":{let s=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),a=I("sparseValues",e,t,n),o=I("defaultValue",e,t,n);return[XA(s,a,r,a.dtype===o.dtype?o:pe(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},_B=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=Qc.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=Qc.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[Qc.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[Qc.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},$B=(e,t,n)=>{switch(e.op){case"FFT":return[Yc(I("x",e,t,n))];case"IFFT":return[cu(I("x",e,t,n))];case"RFFT":return[Jc(I("x",e,t,n))];case"IRFFT":return[Kh(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},FB=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=rf.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=rf.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[rf.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},OB=(e,t,n)=>{switch(e.op){case"Cast":return[pe(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let s=I("axis",e,t,n);return[zt(I("x",e,t,n),s)]}case"Squeeze":{let s=I("axis",e,t,n);return[at(I("x",e,t,n),s)]}case"Reshape":return[V(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[OA(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[Or(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let s=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[qc(I("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=I("blockShape",e,t,n),r=I("crops",e,t,n);return[Bc(I("x",e,t,n),s,r)]}case"DepthToSpace":{let s=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[kA(I("x",e,t,n),s,r)]}case"BroadcastTo":return[tu(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[Ob(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function jw(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return H(()=>dB(a,o,i));case"basic_math":return H(()=>pB(a,o,i));case"control":return yB(a,o,i);case"convolution":return H(()=>xB(a,o,i));case"creation":return H(()=>bB(a,o,i));case"dynamic":return vB(a,o,i);case"evaluation":return H(()=>wB(a,o,i));case"image":return H(()=>CB(a,o,i));case"graph":return H(()=>kB(a,o,i));case"logical":return H(()=>TB(a,o,i));case"matrices":return H(()=>NB(a,o,i));case"normalization":return H(()=>EB(a,o,i));case"reduction":return H(()=>RB(a,o,i));case"slice_join":return H(()=>DB(a,o,i));case"sparse":return H(()=>_B(a,o,i));case"spectral":return H(()=>$B(a,o,i));case"string":return H(()=>FB(a,o,i));case"transformation":return H(()=>OB(a,o,i));case"hash_table":return SB(a,o,i,s);case"custom":let l=bw(a.op);if(l&&l.customExecutor)return l.customExecutor(new cB(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var qw=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Xw(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,u=Object.keys(e).map(p=>is(p)[0]),c=[];s!=null&&(c=s.map(p=>is(p.name)[0]));let d=[...t];for(;d.length>0;){let p=d.pop();if((Kw(p)||BB(p)||WB(p))&&o==null&&(o=p,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(p.name),n[p.name]==null&&u.indexOf(p.name)===-1&&c.indexOf(p.name)===-1){if(p.inputs.length===0){a.push(p.name);continue}p.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function PB(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(c=>is(c)[0]).map(c=>e.nodes[c]),i=e.initNodes;o.forEach(c=>{s.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{s.has(c.name)&&a.push(c)}),i!=null&&i.forEach(c=>{s.has(c.name)&&a.push(c)});let l=new Set,u=[];for(;a.length>0;){let c=a.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(d=>{!l.has(d.name)&&s.has(d.name)&&d.inputs.every(p=>l.has(p.name))&&a.push(d)})}return u}var MB=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],zB=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],LB=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function Kw(e){return MB.indexOf(e.op)>=0}function BB(e){return zB.indexOf(e.op)>=0}function WB(e){return LB.indexOf(e.op)>=0}var e2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new e2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=Xw(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return PB(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(c=>this.graph.nodes[is(c)[0]]),r=t.map(c=>is(c)[0]),a=r.map(c=>this.graph.nodes[c]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},u={};return H(()=>{let c=new qw(this.weightMap,l,u,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,g]=is(m),A=[];A[g]=e[m],d[f]=A});let p=this.getFrozenTensorIds(d),h={};for(let m=0;m<i.length;m++){let f=i[m];if(!d[f.name]){let g=jw(f,d,c,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);d[f.name]=g,this.checkTensorForDisposal(f.name,f,d,c,p,r,h)}}return this.parent==null&&c.dispose(p),t.map(m=>Dn(m,d,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=UL(i.name,n,s);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let c=o[u.id];c===1?(u.dispose(),delete o[u.id]):c!=null&&o[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new qw(this.weightMap,s,r,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>Dn(d,o,a)),l=i.map(d=>d.id),u=Object.keys(e).map(d=>e[d].id),c=new Set([...l,...u,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(h=>{h&&!h.kept&&!h.isDisposed&&!c.has(h.id)&&h.dispose()})}),this.parent==null&&a.dispose(c),i}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(y=>this.graph.nodes[is(y)[0]]),o=n.map(y=>is(y)[0]),i=o.map(y=>this.graph.nodes[y]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:d}=Xw(e,i,this.weightMap,this._initNodes),p=[...a,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[x,b]=is(y),v=[];v[b]=e[y],h[x]=v});let m={},f=this.getFrozenTensorIds(h),g={};for(;p.length>0;){let y=this.processStack(a,p,t,h,g,f,o,m,l);await Promise.all(y)}c==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let A=i.filter(y=>!Kw(y)&&!Dn(y.name,h,t)).map(y=>y.name);if(A.length>0){let y="";throw c!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${A}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${y}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let d="";if(c.node.op==="Enter"&&I("isConstant",c.node,s,n)&&([d]=Vr(c.node.name,n)),s[c.node.name]==null){let p=jw(c.node,s,n,this._resourceManager);d||([d]=Vr(c.node.name,n));let h=n.currentContext;w.isPromise(p)?u.push(p.then(m=>(s[d]=m,n.currentContext=h,this.checkTensorForDisposal(d,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l),m))):(s[d]=p,this.checkTensorForDisposal(d,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l))}else this.processChildNodes(c.node,t,n,s,r,l)}return u}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=Vr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!Dn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!Dn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=is(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);w.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=is(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=is(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},VB=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},UB="?tfjs-format=file",HB="model.json",Zw=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new VB}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Bn.browserHTTPRequest(e,this.loadOptions);else{let t=Bn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Bn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=Bn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new e2(Bw.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=Bw.Instance.transformGraph(e.modelInitializer);this.initializer=new e2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Bn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof He)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function st(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${HB}${UB}`);let n=new Zw(e,t);return await n.load(),n}var GB="3.9.0",Yw={};Le(Yw,{CSVDataset:()=>u7,Dataset:()=>vu,FileDataSource:()=>g7,TextLineDataset:()=>o7,URLDataSource:()=>A7,array:()=>fW,csv:()=>SW,func:()=>CW,generator:()=>TW,microphone:()=>EW,version_data:()=>RW,webcam:()=>NW,zip:()=>mW});var jB=Wa(h5()),qB=Wa(h5());function XB(e,t){return qf(e,t)}function qf(e,t,n=new Map,s=new Set){if(e==null)return null;if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(bu(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=qf(i,t,n,s);a[o]=l}return s.delete(e),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function KB(e,t=Qw){return Jw(e,t)}function Jw(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(bu(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(u=>u[o]),l=Jw(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function Qw(e){return e===null?null:bu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function e7(e,t){let n=new Map;qf(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(w.isPromise(a)){let o=await a;n.set(r,o)}}return qf(e,t,n)}function bu(e){let t=!1;if(Y().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=f5();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof He)&&!(e instanceof Promise)&&!t)}function ZB(e){return e==null||YB(e)||Array.isArray(e)||typeof e=="object"&&e instanceof He||w.isTypedArray(e)}function YB(e){return e===null||typeof e!="object"&&typeof e!="function"}function JB(e){return XB(e,QB)}function QB(e){return e instanceof He?{value:e.clone(),recurse:!1}:bu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var t7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},t2=class extends t7{constructor(){super(t2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};t2.INITIAL_CAPACITY=32;function n7(e){return new nW(e)}function n2(e){return new sW(e)}function eW(e,t){return new r7(e,t)}function tW(e,t=Sa.FAIL){return new pW(e,t)}var dn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new cW(this,e)}filter(e){return new lW(this,e)}map(e){return new uW(this,e)}mapAsync(e){return new s7(this,e)}serialMapAsync(e){return new s7(this,e).serial()}flatmap(e){return new dW(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new iW(this,e,t)}columnMajorBatch(e,t=!0,n=Qw){return this.rowMajorBatch(e,t).map(r=>KB(r,n))}concatenate(e,t){return new r7(n7([this,e]),t)}take(e){return e<0||e==null?this:new oW(this,e)}skip(e){return e<0||e==null?this:new aW(this,e)}prefetch(e){return new a7(this,e)}shuffle(e,t){return new hW(this,e,t)}serial(){return new rW(this)}},nW=class extends dn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:JB(e),done:!1}}},sW=class extends dn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},rW=class extends dn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},aW=class extends dn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Z(e.value)}return this.upstream.next()}},oW=class extends dn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},iW=class extends dn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},lW=class extends dn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Z(e.value)}}},uW=class extends dn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Vs.getTensorsInContainer(e.value),n=this.transform(e.value),s=Vs.getTensorsInContainer(n);for(let r of t)Vs.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},cW=class extends dn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},s7=class extends dn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Vs.getTensorsInContainer(e.value),n=await this.transform(e.value),s=Vs.getTensorsInContainer(n);for(let r of t)Vs.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},s2=class extends dn{constructor(){super();this.outputQueue=new t2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},dW=class extends s2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Vs.getTensorsInContainer(e.value),n=this.transform(e.value),s=Vs.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Vs.isTensorInList(r,s)||r.dispose();return!0}},r7=class extends dn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Sa;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Sa||(Sa={}));var pW=class extends dn{constructor(e,t=Sa.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof dn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await e7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Sa.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Sa.SHORTEST:return{value:null,done:!0};case Sa.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},a7=class extends dn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new t7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},hW=class extends a7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=qB.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},vu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),ls(async()=>(await n.iterator()).columnMajorBatch(e,t,gW),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,ls(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,ls(async()=>(await t.iterator()).filter(s=>H(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return ls(async()=>(await t.iterator()).map(n=>H(()=>e(n))),this.size)}mapAsync(e){let t=this;return ls(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return ls(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,ls(async()=>{let s=n2(async()=>({value:await t.iterator(),done:!1}));return eW(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,ls(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=jB.alea(t||w.now().toString());return ls(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,ls(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};vu.MAX_BUFFER_SIZE=1e4;function ls(e,t=null){return new class extends vu{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function fW(e){return ls(async()=>n7(e),e.length)}function mW(e){if(!bu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return ls(async()=>{let n=await e7(e,s=>{if(s instanceof vu)return{value:s.iterator(),recurse:!1};if(bu(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return tW(n,Sa.SHORTEST)},t)}function gW(e){if(e===null)return null;let t=e[0];return ZB(t)?{value:AW(e),recurse:!1}:{value:null,recurse:!0}}function AW(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof He?yn(e):ln(e)}var o7=class extends vu{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},Xf='"',vd=Symbol("out"),i7=Symbol("field"),Kf=Symbol("quote"),r2=Symbol("quoteafterquote"),l7=Symbol("quoteinquote"),u7=class extends vu{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new o7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let u=Number(i);if(isNaN(u))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=u;else switch(o.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(i);break;default:l=u}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=vd;for(let o=0;o<r;o++)switch(a){case vd:switch(e.charAt(o)){case Xf:s=o+1,a=Kf;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=vd;break;default:a=i7,s=o;break}break;case i7:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=vd,s=o+1;break;default:}break;case Kf:switch(e.charAt(o)){case Xf:a=r2;break;default:}break;case r2:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=vd,s=o+1;break;case Xf:a=Kf;break;default:a=l7;break}break;case l7:switch(e.charAt(o)){case Xf:a=Kf;break;default:}break;default:}if(a===r2?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},c7=class extends dn{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Y().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new c7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),ln(n,t)}},d7=class extends dn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ut([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=qs([a,r,i,o],[1,4])}else this.cropBox=qs([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Y().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new d7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=_s.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return H(()=>{let t=zt(pe(e,"float32"),0),n;n=De.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return V(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},p7=class{},h7=class extends dn{split(e){return new yW(this,e)}},yW=class extends h7{constructor(e,t){super();this.upstream=e,this.impl=new xW(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},xW=class extends s2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},bW=class extends dn{decodeUTF8(){return new vW(this)}},vW=class extends h7{constructor(e){super();this.upstream=e,this.impl=new wW(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},wW=class extends s2{constructor(e){super();if(this.upstream=e,Y().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=f5();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Y().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},f7=class extends bW{constructor(e,t={}){super();this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(Y().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function kW(e,t={}){let n,s;typeof e=="string"?n=e:(n=e.url,s=IW(e));let r=await w.fetch(n,s);if(r.ok){let a=new Uint8Array(await r.arrayBuffer());return new f7(a,t)}else throw new Error(r.statusText)}var IW=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function m7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var g7=class extends p7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(m7(this.input)&&Y().get("IS_NODE")){let e=Vi("fs");this.input=e.readFileSync(this.input.substr(7))}return new f7(this.input,this.options)}},A7=class extends p7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return m7(this.url)?new g7(this.url,this.fileOptions).iterator():kW(this.url,this.fileOptions)}};function SW(e,t={}){return new u7(new A7(e),t)}function CW(e){let t=n2(e);return ls(async()=>t)}function TW(e){return ls(async()=>{let t=await e();return n2(()=>t.next())})}async function NW(e,t){return d7.create(e,t)}async function EW(e){return c7.create(e)}var RW="3.9.0";function Se(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var DW=fr.whereImpl,a2=class extends lc{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Sp(this,Qn())}nextDataId(){return a2.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,Y().get("IS_NODE")&&_.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return _.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>w.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ge(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return Qn().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Se([e],"where");let t=this.readSync(e.dataId);return DW(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};a2.nextDataId=0;var y7={};Le(y7,{addImpl:()=>b7,bincountImpl:()=>i2,bincountReduceImpl:()=>v7,ceilImpl:()=>w7,concatImpl:()=>l2,equalImpl:()=>k7,expImpl:()=>S7,expm1Impl:()=>T7,floorImpl:()=>N7,gatherNdImpl:()=>E7,gatherV2Impl:()=>R7,greaterEqualImpl:()=>_7,greaterImpl:()=>D7,lessEqualImpl:()=>F7,lessImpl:()=>$7,linSpaceImpl:()=>O7,logImpl:()=>P7,maxImpl:()=>M7,maximumImpl:()=>z7,minimumImpl:()=>L7,multiplyImpl:()=>u2,negImpl:()=>B7,notEqualImpl:()=>W7,prodImpl:()=>V7,rangeImpl:()=>d2,rsqrtImpl:()=>U7,sigmoidImpl:()=>xV,simpleAbsImpl:()=>x7,sliceImpl:()=>Jf,sparseFillEmptyRowsImpl:()=>G7,sparseReshapeImpl:()=>j7,sparseSegmentReductionImpl:()=>p2,sqrtImpl:()=>wV,squaredDifferenceImpl:()=>q7,stridedSliceImpl:()=>X7,stringNGramsImpl:()=>K7,stringSplitImpl:()=>Z7,stringToHashBucketFastImpl:()=>Y7,subImpl:()=>J7,tileImpl:()=>Q7,topKImpl:()=>t6,transposeImpl:()=>c2,uniqueImpl:()=>n6});function x7(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var _W=e=>{let{x:t}=e.inputs,n=e.backend;Se(t,"abs");let s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=x7(r),n.makeOutput(s,t.shape,"float32")},$W={kernelName:Gi,backendName:"cpu",kernelFunc:_W};function Gt(e){return(t,n,s,r,a)=>{let o=_.assertAndGetBroadcastShape(t,n),i=o.length,l=w.computeStrides(o),u=w.sizeFromShape(o),c=w.getTypedArrayFromDType(a,u),d=t.length,p=n.length,h=w.computeStrides(t),m=w.computeStrides(n),f=_.getBroadcastDims(t,o),g=_.getBroadcastDims(n,o);if(f.length+g.length===0)for(let A=0;A<c.length;++A)c[A]=e(s[A%s.length],r[A%r.length]);else for(let A=0;A<c.length;++A){let y=w.indexToLoc(A,i,l),x=y.slice(-d);f.forEach(S=>x[S]=0);let b=w.locToIndex(x,d,h),v=y.slice(-p);g.forEach(S=>v[S]=0);let k=w.locToIndex(v,p,m);c[A]=e(s[b],r[k])}return[c,o]}}function us(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var FW={kernelName:$p,backendName:"cpu",kernelFunc:us};function Zf(e,t,n="float32"){if(n==="complex64"){let r=Zf(e,t,"float32"),a=Zf(e,t,"float32");return us({inputs:{real:r,imag:a},backend:e})}let s=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function br(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var OW={kernelName:uo,backendName:"cpu",kernelFunc:br};function mi(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var PW={kernelName:eh,backendName:"cpu",kernelFunc:mi};function Ca(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return br({inputs:{x:r},backend:n});let o=Zf(n,r.shape,r.dtype),i=Ca({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=us({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=mi({inputs:{input:r},backend:n}),i=Ca({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(r.dtype,a)){let o=br({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=w.toTypedArray([0],r.dtype),[l,u]=Gt((c,d)=>c!==d?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var MW={kernelName:Xa,backendName:"cpu",kernelFunc:Ca};function pn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Se([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=o.dtype==="string"?_.fromUint8ToStringArray(u):u,p=o.dtype==="string"?_.fromUint8ToStringArray(c):c,h=s||o.dtype,[m,f]=t(o.shape,i.shape,d,p,h);return l.makeTensorInfo(f,h,m)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=Ca({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),d=c.complexTensorInfos.real,p=c.complexTensorInfos.imag,h=l.data.get(d.dataId).values,m=l.data.get(p.dataId).values,f=Ca({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),A=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,x=l.data.get(A.dataId).values,b=l.data.get(y.dataId).values,[v,k,S]=n(o.shape,i.shape,h,m,x,b),C=l.makeTensorInfo(S,"float32",v),D=l.makeTensorInfo(S,"float32",k),O=us({inputs:{real:C,imag:D},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(C),l.disposeIntermediateTensorInfo(D),O}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=s||o.dtype,[p,h]=t(o.shape,i.shape,u,c,d);return l.makeTensorInfo(h,d,p)}}}function o2(e){return(t,n,s,r,a,o)=>{let i=_.assertAndGetBroadcastShape(t,n),l=w.sizeFromShape(i),u=i.length,c=w.computeStrides(i),d=w.getTypedArrayFromDType("float32",l),p=w.getTypedArrayFromDType("float32",l),h=_.getBroadcastDims(t,i),m=_.getBroadcastDims(n,i),f=_.mergeRealAndImagArrays(s,r),g=_.mergeRealAndImagArrays(a,o),A=t.length,y=w.computeStrides(t),x=n.length,b=w.computeStrides(n);if(h.length+m.length===0)for(let v=0;v<d.length;v++){let k=v%f.length,S=v%g.length,C=e(f[k*2],f[k*2+1],g[S*2],g[S*2+1]);d[v]=C.real,p[v]=C.imag}else for(let v=0;v<d.length;v++){let k=w.indexToLoc(v,u,c),S=k.slice(-A);h.forEach(R=>S[R]=0);let C=w.locToIndex(S,A,y),D=k.slice(-x);m.forEach(R=>D[R]=0);let O=w.locToIndex(D,x,b),E=e(f[C*2],f[C*2+1],g[O*2],g[O*2+1]);d[v]=E.real,p[v]=E.imag}return[d,p,i]}}var b7=Gt((e,t)=>e+t),zW=o2((e,t,n,s)=>({real:e+n,imag:t+s})),wd=pn(ra,b7,zW),LW={kernelName:ra,backendName:"cpu",kernelFunc:wd};function i2(e,t,n,s,r){let a=w.sizeFromShape(s),o=w.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function v7(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=Ge([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let u=e.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(s?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function Ta(e){return(t,n,s)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function pt(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Se(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=w.sizeFromShape(o.shape),c=n||o.dtype,d=w.getArrayFromDType(c,u);for(let p=0;p<u;++p)d[p]=t(l[p],r);return i.makeTensorInfo(o.shape,c,d)}}function wu(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Se(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,r);return i.makeTensorInfo(o.shape,u,c)}}var w7=Ta(e=>Math.ceil(e)),BW=wu(Ka,w7),WW={kernelName:Ka,backendName:"cpu",kernelFunc:BW};function l2(e,t,n,s){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=w.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?_.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;u<o.shape[0];++u){let c=u*t[1]+a;for(let d=0;d<o.shape[1];++d)r[c+d]=i[l++]}a+=o.shape[1]})}return r}var k7=Gt((e,t)=>e===t?1:0),I7=pn(ol,k7,null,"bool"),VW={kernelName:ol,backendName:"cpu",kernelFunc:I7},S7=Ta(e=>Math.exp(e)),C7=wu(ro,S7),UW={kernelName:ro,backendName:"cpu",kernelFunc:C7},T7=Ta(e=>Math.expm1(e)),HW=wu(ll,T7),GW={kernelName:ll,backendName:"cpu",kernelFunc:HW},N7=Ta(e=>Math.floor(e)),jW=wu(ao,N7),qW={kernelName:ao,backendName:"cpu",kernelFunc:jW};function E7(e,t,n,s,r,a,o,i,l){let u=Ge([s,a],n);for(let c=0;c<s;c++){let d=[],p=0;for(let h=0;h<r;h++){let m=e[c*r+h];p+=m*o[h],d.push(m)}if(p<0||p>=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let h=0;h<a;h++)u.values[c*a+h]=t.get(...t.indexToLoc(p*a+h))}return u}function R7(e,t,n){let s=Ge(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],u=t.locToIndex([i,l]);o[2]=t.values[u];let c=e.locToIndex(o);s.values[r]=e.values[c]}return s}var D7=Gt((e,t)=>e>t?1:0),XW=pn(pl,D7,null,"bool"),KW={kernelName:pl,backendName:"cpu",kernelFunc:XW},_7=Gt((e,t)=>e>=t?1:0),ZW=pn(lo,_7,null,"bool"),YW={kernelName:lo,backendName:"cpu",kernelFunc:ZW},$7=Gt((e,t)=>e<t?1:0),JW=pn(gl,$7,null,"bool"),QW={kernelName:gl,backendName:"cpu",kernelFunc:JW},F7=Gt((e,t)=>e<=t?1:0),eV=pn(Al,F7,null,"bool"),tV={kernelName:Al,backendName:"cpu",kernelFunc:eV};function O7(e,t,n){let s=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var P7=Ta(e=>Math.log(e)),nV=wu(po,P7),sV={kernelName:po,backendName:"cpu",kernelFunc:nV};function M7(e,t,n,s){let r=w.getTypedArrayFromDType(s,w.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let u=e[o+l];(Number.isNaN(u)||u>i)&&(i=u)}r[a]=i}return r}var z7=Gt((e,t)=>Math.max(e,t)),rV=pn(fo,z7),aV={kernelName:fo,backendName:"cpu",kernelFunc:rV},L7=Gt((e,t)=>Math.min(e,t)),oV=pn(yo,L7),iV={kernelName:yo,backendName:"cpu",kernelFunc:oV},u2=Gt((e,t)=>e*t),lV=o2((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),Yf=pn(bo,u2,lV),uV={kernelName:bo,backendName:"cpu",kernelFunc:Yf};function B7(e,t,n){let s=w.createScalarValue(-1,n);return u2([],t,s,e,n)}function cV(e){let{inputs:t,backend:n}=e,{x:s}=t;Se(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=B7(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var dV={kernelName:vl,backendName:"cpu",kernelFunc:cV},W7=Gt((e,t)=>e!==t?1:0),pV=pn(wl,W7,null,"bool"),hV={kernelName:wl,backendName:"cpu",kernelFunc:pV};function c2(e,t,n,s,r){let a=t.length,o=w.sizeFromShape(t),i=w.computeStrides(t),l=w.computeStrides(r),u=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let c=0;c<o;++c){let d=w.indexToLoc(c,a,i),p=new Array(d.length);for(let m=0;m<p.length;m++)p[m]=d[s[m]];let h=w.locToIndex(p,a,l);u[h]=e[c]}return u}function vs(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;Se(r,"transpose");let o=r.shape.length,i=new Array(o);for(let d=0;d<i.length;d++)i[d]=r.shape[a[d]];let l=s.data.get(r.dataId).values,u=c2(l,r.shape,r.dtype,a,i);return{dataId:s.write(u,i,r.dtype),shape:i,dtype:r.dtype}}var fV={kernelName:Bo,backendName:"cpu",kernelFunc:vs};function V7(e,t,n,s){let[r,a]=_.computeOutAndReduceShapes(e,s),o=Ds(t,"int32"),i=w.makeZerosTypedArray(w.sizeFromShape(r),o),l=w.sizeFromShape(a);for(let u=0;u<i.length;++u){let c=u*l,d=1;for(let p=0;p<l;++p)d*=n[c+p];i[u]=d}return{outVals:i,outShape:r,outDtype:o}}function mV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Se(r,"prod");let i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=_.getAxesPermutation(l,i),c=l,d=r,p=[];u!=null&&(d=vs({inputs:{x:r},backend:n,attrs:{perm:u}}),p.push(d),c=_.getInnerMostAxes(c.length,i));let h=n.data.get(d.dataId).values,{outVals:m,outShape:f,outDtype:g}=V7(d.shape,d.dtype,h,c),A=f;return o&&(A=_.expandShapeToKeepDim(f,l)),p.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(A,g,m)}var gV={kernelName:Nl,backendName:"cpu",kernelFunc:mV};function d2(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return w.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var U7=Ta(e=>1/Math.sqrt(e)),AV=wu(Ro,U7),yV={kernelName:Ro,backendName:"cpu",kernelFunc:AV},xV=Ta(e=>1/(1+Math.exp(-e))),H7=pt(_o,e=>1/(1+Math.exp(-e))),bV={kernelName:_o,backendName:"cpu",kernelFunc:H7};function Jf(e,t,n,s,r){let a=Nn.isSliceContinous(s,t,n),o=w.sizeFromShape(n),i=w.computeStrides(s);if(a){let d=Nn.computeFlatOffset(t,i);return r==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=r==="string"?_.fromUint8ToStringArray(e):e,u=Ge(s,r,l),c=Ge(n,r);for(let d=0;d<c.size;++d){let p=c.indexToLoc(d),h=p.map((m,f)=>m+t[f]);c.set(u.get(...h),...p)}return r==="string"?_.fromStringArrayToUint8(c.values):c.values}function gi(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Se(r,"slice");let[i,l]=Nn.parseSliceParams(r,a,o);Nn.assertParamsValid(r,i,l);let u=n.data.get(r.dataId).values,c=Jf(u,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}var vV={kernelName:Fl,backendName:"cpu",kernelFunc:gi};function G7(e,t,n,s,r,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${i}`);let g=w.getArrayFromDType(n,0),A=w.getArrayFromDType(r,0);return[g,[0,d],A,u,c]}let p=!0,h=0,m=new Array(l).fill(0);for(let g=0;g<i;++g){let A=e[g*d];if(A<0)throw new Error(`indices(${g}, 0) is invalid: ${A} < 0`);if(A>=l)throw new Error(`indices(${g}, 0) is invalid: ${A} >= ${l}`);++m[A],p=p&&A>=h,h=A}let f=!0;for(let g=0;g<l;++g){let A=m[g]===0;u[g]=A,f=f&&!A,m[g]=Math.max(m[g],1),g>0&&(m[g]+=m[g-1])}if(f&&p){let g=e,A=s;for(let y=0;y<i;++y)c[y]=y;return[g,[i,d],A,u,c]}else{let g=m[l-1],A=w.getArrayFromDType(n,g*d),y=w.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let b=0;b<i;++b){let v=e[b*d],k=x[v],S=(v===0?0:m[v-1])+k;x[v]++;for(let C=0;C<d;++C)A[S*d+C]=e[b*d+C];y[S]=s[b],c[b]=S}for(let b=0;b<l;++b)if(x[b]===0){let k=b===0?0:m[b-1];A[k*d+0]=b;for(let S=1;S<d;++S)A[k*d+S]=0;y[k]=o}return[A,[g,d],y,u,c]}}function j7(e,t,n,s,r){let a=w.sizeFromShape(s),o=t[0],i=r.length,l=[],u=1,c=-1;for(let g=0;g<i;++g){let A=r[g];if(A===-1){if(c!==-1)throw new Error(`only one output dimension may be -1, not both ${c} and ${g}`);c=g,l.push(1)}else{if(A<0)throw new Error(`size ${g} must be non-negative, not ${A}`);u*=A,l.push(A)}}if(c!==-1){if(u<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(a/u);if(u*g!==a)throw new Error(`Input to reshape is a SparseTensor with ${a}
dense values, but the requested shape requires a multiple of ${u}. inputShape=${s} outputShape= ${l}`);l[c]=g}let d=w.sizeFromShape(l);if(d!==a)throw new Error(`Input to reshape is a tensor with ${a} dense values, but the requested shape has ${d}. inputShape=${s} outputShape=${l}`);let p=s.length,h=[];if(p>0){h[p-1]=1;for(let g=p-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let m=[];if(i>0){m[i-1]=1;for(let g=i-2;g>=0;--g)m[g]=m[g+1]*l[g+1]}let f=w.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let A=0;for(let y=0;y<p;++y)A+=e[g*p+y]*h[y];for(let y=0;y<i;++y)f[g*i+y]=Math.trunc(A/m[y]),A%=m[y]}return[f,[o,i],l]}function p2(e,t,n,s,r,a=!1,o=0){let i=s.length;if(i!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],u=l[1],d=i>0?r[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let p=t.slice();p[0]=d;let h=p.reduce((x,b)=>x*b,1),m=w.getArrayFromDType(n,h);if(i===0)return d>0&&m.fill(o),[m,p];if(d<=0)throw new Error("segment ids must be >= 0");let f=0,g=1,A=0,y=r[f];for(;;){let x=0;if(g<i){if(x=r[g],y===x){++g;continue}if(y>=x)throw new Error("segment ids are not increasing")}if(y<0||y>=d)throw new Error(`Segment id ${y} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);y>A&&m.fill(o,A*u,y*u);for(let b=f;b<g;++b){let v=s[b];if(v<0||v>=l[0])throw new Error(`Bad: indices[${b}] == ${s[b]} out of range [0, ${l[0]})`);for(let k=0;k<u;k++)m[y*u+k]+=e[v*u+k]}if(a)for(let b=0;b<u;b++)m[y*u+b]/=g-f;if(f=g,++g,A=y+1,y=x,g>i)break}return A<d&&m.fill(o,A*u,d*u),[m,p]}var wV=Ta(e=>Math.sqrt(e)),kV=pt($o,e=>Math.sqrt(e)),IV={kernelName:$o,backendName:"cpu",kernelFunc:kV},q7=Gt((e,t)=>{let n=e-t;return n*n}),SV=pn(Po,q7),CV={kernelName:Po,backendName:"cpu",kernelFunc:SV};function X7(e,t,n,s){let r=Ge(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var TV=class{constructor(e,t,n,s,r,a){this.separator=w.encodeString(e),this.nGramWidths=t,this.leftPad=w.encodeString(n),this.rightPad=w.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),u=Math.max(0,i-(r-(o+1))),c=a-(l+u),d=t+(l>0?0:o-i),p=0;p+=l*this.leftPad.length;for(let A=0;A<c;++A)p+=e[d+A].length;p+=u*this.rightPad.length,p+=(l+u+c-1)*this.separator.length,n[s+o]=new Uint8Array(p);let m=n[s+o],f=0,g=A=>A.forEach(y=>m[f++]=y);for(let A=0;A<l;++A)g(this.leftPad),g(this.separator);for(let A=0;A<c-1;++A)g(e[d+A]),g(this.separator);if(c>0){g(e[d+c-1]);for(let A=0;A<u;++A)g(this.separator),g(this.rightPad)}else{for(let A=0;A<u-1;++A)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let u=t[l]>=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=w.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],u=a[i];if(this.nGramWidths.forEach(c=>{let d=t[i+1]-t[i],p=this.getNumNGrams(d,c);this.createNGrams(e,l,o,u,p,c),u+=p}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let d=c+2*this.padWidth,p=1;this.createNGrams(e,l,o,u,p,d)}}return[o,a]}};function K7(e,t,n,s,r,a,o,i){return new TV(n,s,r,a,o,i).compute(e,t)}function NV(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function Z7(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let p=0;p<s;++p){let h=r.length;NV(e[p],t,n,r);let m=r.length-h;i[p]=m,a+=m,o=Math.max(o,m)}let l=w.getArrayFromDType("int32",a*2),u=new Array(a),c=[s,o],d=0;for(let p=0;p<s;++p)for(let h=0;h<i[p];++h)l[d*2]=p,l[d*2+1]=h,u[d]=r[d],++d;return[l,u,c]}function Y7(e,t){let n=w.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=w.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var J7=Gt((e,t)=>e-t),EV=o2((e,t,n,s)=>({real:e-n,imag:t-s})),h2=pn(Mo,J7,EV),RV={kernelName:Mo,backendName:"cpu",kernelFunc:h2};function Q7(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=Ge(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var kd=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function e6(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),p=Math.max(n,Math.floor(t-l*c/i+d)),h=Math.min(s,Math.floor(t+(i-l)*c/i+d));e6(e,t,p,h)}let r=e[t],a=n,o=s;for(w.swap(e,n,t),kd(e[s],r)>0&&w.swap(e,n,s);a<o;){for(w.swap(e,a,o),a++,o--;kd(e[a],r)<0;)a=a+1;for(;kd(e[o],r)>0;)o=o-1}kd(e[n],r)===0?w.swap(e,n,o):(o=o+1,w.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function t6(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=w.getTypedArrayFromDType(n,o*s),u=w.getTypedArrayFromDType("int32",o*s);for(let d=0;d<o;d++){let p=d*i,h=e.subarray(p,p+i),m=new Array(h.length);h.forEach((y,x)=>m[x]={value:y,index:x}),s<m.length&&(e6(m,s),m=m.slice(0,s)),r&&m.sort(kd);let f=d*s,g=l.subarray(f,f+s),A=u.subarray(f,f+s);for(let y=0;y<s;y++)g[y]=m[y].value,A[y]=m[y].index}let c=t.slice();return c[c.length-1]=s,[Ge(c,n,l),Ge(c,"int32",u)]}function n6(e,t,n,s){let r=w.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let m=0;m<r;m++)a[0]*=n[m];a[1]=n[r];for(let m=r+1;m<n.length;m++)a[2]*=n[m];let o={},i=new Int32Array(n[r]),l=new Kt(a,s,e),u=[],c=a[0]===1&&a[2]===1;for(let m=0;m<n[r];m++){let f;if(c)f=e[m].toString();else{let g=[];for(let A=0;A<a[0];A++)for(let y=0;y<a[2];y++)g.push(l.get(A,m,y));f=g.join(",")}if(o[f]!==void 0)i[m]=o[f];else{let g=Object.keys(o).length;o[f]=g,i[m]=g,u.push(m)}}let d=a.slice();d[1]=Object.keys(o).length;let p=new Kt(d,s);u.forEach((m,f)=>{for(let g=0;g<a[0];g++)for(let A=0;A<a[2];A++)p.set(l.get(g,m,A),g,f,A)});let h=n.slice();return h[r]=d[1],{outputValues:p.values,outputShape:h,indices:i}}Ql("cpu",()=>new a2,1);var s6=pt(so,e=>e>=0?e:Math.exp(e)-1),DV={kernelName:so,backendName:"cpu",kernelFunc:s6};function r6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Se([r],"leakyRelu");let o=w.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=w.getTypedArrayFromDType("float32",o);for(let u=0;u<i.length;u++)l[u]=i[u]<0?a*i[u]:i[u];return n.makeTensorInfo(r.shape,"float32",l)}var _V={kernelName:co,backendName:"cpu",kernelFunc:r6},$V=Gt((e,t)=>e<0?t*e:e);function a6(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Se([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=$V(s.shape,r.shape,a,o,s.dtype);return n.makeTensorInfo(l,s.dtype,i)}var FV={kernelName:Io,backendName:"cpu",kernelFunc:a6},o6=pt(So,e=>Math.max(0,e)),OV={kernelName:So,backendName:"cpu",kernelFunc:o6},i6=pt(To,e=>Math.min(Math.max(0,e),6)),PV={kernelName:To,backendName:"cpu",kernelFunc:i6};function f2(e,t,n,s,r){if(n==="linear")return br({inputs:{x:t},backend:e});if(n==="relu")return o6({inputs:{x:t},backend:e});if(n==="elu")return s6({inputs:{x:t},backend:e});if(n==="relu6")return i6({inputs:{x:t},backend:e});if(n==="prelu")return a6({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return r6({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return H7({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function wt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=w.sizeFromShape(r.shape),i=w.inferFromImplicitShape(a,o),l=w.sizeFromShape(i);w.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;c.shape=i,d.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var MV={kernelName:Rl,backendName:"cpu",kernelFunc:wt};function l6(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Se([r,a],"matMul");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],m=r.shape.slice(0,-2),f=a.shape.slice(0,-2),g=w.sizeFromShape(m),A=w.sizeFromShape(f),y=g===A||g===1||A===1;w.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);w.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,c,p]:[g,p,c],k=i?[A,h,d]:[A,d,h],S=wt({inputs:{x:r},backend:n,attrs:{shape:v}}),C=wt({inputs:{x:a},backend:n,attrs:{shape:k}}),D=o?S.shape[1]:S.shape[2],O=o?S.shape[2]:S.shape[1],E=i?C.shape[1]:C.shape[2],R=Math.max(g,A),T=n.data.get(S.dataId).values,P=n.data.get(C.dataId).values,U=w.computeStrides(S.shape),j=w.computeStrides(C.shape),[q,X,te]=o?[U[0],1,U[1]]:[U[0],U[1],1],[ne,se,ae]=i?[1,j[1],j[0]]:[j[1],1,j[0]],Q=O*E,ce=Ge([R,O,E],S.dtype),de=ce.values,fe=n.blockSize;for(let xe=0;xe<R;xe++)for(let Ee=0;Ee<O;Ee+=fe)for(let Re=0;Re<E;Re+=fe)for(let Pe=0;Pe<D;Pe+=fe){let Be=Math.min(Ee+fe,O),Me=Math.min(Re+fe,E),mt=Math.min(Pe+fe,D);for(let lt=Ee;lt<Be;lt++)for(let ut=Re;ut<Me;ut++){let ot=0;for(let ht=Pe;ht<mt;ht++){let qe=Math.min(xe,g-1)*q,Mn=Math.min(xe,A-1)*ae,Et=T[qe+lt*X+ht*te],Zn=P[ht*ne+ut*se+Mn];ot+=Et*Zn}de[xe*Q+(lt*E+ut)]+=ot}}return n.disposeIntermediateTensorInfo(S),n.disposeIntermediateTensorInfo(C),n.makeTensorInfo(b,ce.dtype,ce.values)}var zV={kernelName:qa,backendName:"cpu",kernelFunc:l6};function LV(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s,p,h,m,f=[];p=l6({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:u},backend:n}),o&&(h=wd({inputs:{a:p,b:o},backend:n}),f.push(p),p=h),c&&(m=f2(n,p,c,i,d),f.push(p),p=m);for(let A of f)n.disposeIntermediateTensorInfo(A);return p}var BV={kernelName:Wo,backendName:"cpu",kernelFunc:LV},WV=pt(ji,e=>Math.acos(e)),VV={kernelName:ji,backendName:"cpu",kernelFunc:WV},UV=pt(qi,e=>Math.acosh(e)),HV={kernelName:qi,backendName:"cpu",kernelFunc:UV};function GV(e){let{inputs:t,backend:n}=e,s=t;Se(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=Ge(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let u=0;u<o.length;u++)o[u]+=l[u]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var jV={kernelName:Ha,backendName:"cpu",kernelFunc:GV};function qV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Se(r,"all");let i=w.parseAxisParam(a,r.shape),l=i,u=_.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=vs({inputs:{x:r},backend:n,attrs:{perm:u}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("all",l,c.shape.length);let[d,p]=_.computeOutAndReduceShapes(c.shape,l),h=w.sizeFromShape(p),m=w.makeZerosTypedArray(w.sizeFromShape(d),c.dtype),f=n.data.get(c.dataId).values;for(let A=0;A<m.length;++A){let y=A*h,x=f[y];for(let b=0;b<h;++b){let v=f[y+b];x=x&&v}m[A]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(d,c.dtype,m);if(o){let A=_.expandShapeToKeepDim(d,i),y=wt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var XV={kernelName:Xi,backendName:"cpu",kernelFunc:qV};function KV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Se(r,"any");let i=w.parseAxisParam(a,r.shape),l=i,u=_.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=vs({inputs:{x:r},backend:n,attrs:{perm:u}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("any",l,c.shape.length);let[d,p]=_.computeOutAndReduceShapes(c.shape,l),h=w.sizeFromShape(p),m=w.makeZerosTypedArray(w.sizeFromShape(d),c.dtype),f=n.data.get(c.dataId).values;for(let A=0;A<m.length;++A){let y=A*h,x=f[y];for(let b=0;b<h;++b){let v=f[y+b];x=x||v}m[A]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(d,c.dtype,m);if(o){let A=_.expandShapeToKeepDim(d,i),y=wt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var ZV={kernelName:Ki,backendName:"cpu",kernelFunc:KV};function YV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Se(r,"argMax");let o=w.parseAxisParam(a,r.shape),i=_.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=vs({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=_.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],_.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[c,d]=_.computeOutAndReduceShapes(l.shape,o),p=w.sizeFromShape(c),h=w.makeZerosTypedArray(p,"int32"),m=w.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*m,y=f[A],x=0;for(let b=0;b<m;++b){let v=f[A+b];v>y&&(y=v,x=b)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var JV={kernelName:Ga,backendName:"cpu",kernelFunc:YV};function QV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Se(r,"argMin");let o=w.parseAxisParam(a,r.shape),i=_.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=vs({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=_.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],_.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[c,d]=_.computeOutAndReduceShapes(l.shape,o),p=w.sizeFromShape(c),h=w.makeZerosTypedArray(p,"int32"),m=w.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*m,y=f[A],x=0;for(let b=0;b<m;++b){let v=f[A+b];v<y&&(y=v,x=b)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var eU={kernelName:dc,backendName:"cpu",kernelFunc:QV},tU=pt(Zi,e=>Math.asin(e)),nU={kernelName:Zi,backendName:"cpu",kernelFunc:tU},sU=pt(Yi,e=>Math.asinh(e)),rU={kernelName:Yi,backendName:"cpu",kernelFunc:sU},aU=pt(Ji,e=>Math.atan(e)),oU={kernelName:Ji,backendName:"cpu",kernelFunc:aU},iU=Gt((e,t)=>Math.atan2(e,t)),lU=pn(el,iU),uU={kernelName:el,backendName:"cpu",kernelFunc:lU},cU=pt(Qi,e=>Math.atanh(e)),dU={kernelName:Qi,backendName:"cpu",kernelFunc:cU};function m2(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,c=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,h=r.padInfo.left,m=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Ge(r.outShape,n),g=f.values,A=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let b=0;b<r.batchSize;++b){let v=b*A,k=b*s[0];for(let S=0;S<r.inChannels;++S)for(let C=0;C<r.outHeight;++C){let D=C*o-p,O=Math.max(0,D),E=Math.min(r.inHeight,c+D),R=v+C*y;for(let T=0;T<r.outWidth;++T){let P=T*i-h,U=Math.max(0,P),j=Math.min(r.inWidth,d+P),q=m,X=0,te=0;for(let se=O;se<E;se+=l){let ae=k+se*s[1];for(let Q=U;Q<j;Q+=u){let ce=ae+Q*s[2],de=e[ce+S];a==="max"&&de>q?q=de:a==="avg"&&(X+=de,te++)}if(isNaN(q))break}let ne=R+T*x+S;g[ne]=a==="avg"?X/te:q}}}return f}function u6(e,t,n,s,r=!1,a=!1){let o=Ge(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,u=s.dilationHeight,c=s.dilationWidth,d=s.effectiveFilterHeight,p=s.effectiveFilterWidth,h=s.padInfo.top,m=s.padInfo.left,f=Ge(t,n,e);for(let g=0;g<s.batchSize;++g)for(let A=0;A<s.inChannels;++A)for(let y=0;y<s.outHeight;++y){let x=y*i-h,b=x;for(;b<0;)b+=u;let v=Math.min(s.inHeight,d+x);for(let k=0;k<s.outWidth;++k){let S=k*l-m,C=S;for(;C<0;)C+=c;let D=Math.min(s.inWidth,p+S),O=Number.NEGATIVE_INFINITY,E=-1;for(let R=b;R<v;R+=u){let T=R-x;for(let P=C;P<D;P+=c){let U=P-S,j=f.get(g,R,P,A);j>O&&(O=j,r?E=a?((g*s.inHeight+R)*s.inWidth+P)*s.inChannels+A:(R*s.inWidth+P)*s.inChannels+A:E=T*p+U)}}o.set(E,g,y,k,A)}}return o}function c6(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,c=r.dilationHeight,d=r.dilationWidth,p=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,A=r.padInfo.left,y=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Ge(r.outShape,n),b=x.values,v=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[3]*r.outShape[4],C=r.outShape[4];for(let D=0;D<r.batchSize;++D){let O=D*v,E=D*s[0];for(let R=0;R<r.inChannels;++R)for(let T=0;T<r.outDepth;++T){let P=T*o-f,U=P;for(;U<0;)U+=u;let j=Math.min(r.inDepth,p+P),q=O+T*k;for(let X=0;X<r.outHeight;++X){let te=X*i-g,ne=te;for(;ne<0;)ne+=c;let se=Math.min(r.inHeight,h+te),ae=q+X*S;for(let Q=0;Q<r.outWidth;++Q){let ce=Q*l-A,de=ce;for(;de<0;)de+=d;let fe=Math.min(r.inWidth,m+ce),xe=ae+Q*C,Ee=y,Re=0,Pe=0;for(let Me=U;Me<j;Me+=u){let mt=E+Me*s[1];for(let lt=ne;lt<se;lt+=c){let ut=mt+lt*s[2];for(let ot=de;ot<fe;ot+=d){let ht=ut+ot*s[3],qe=e[ht+R];if(a==="max"&&qe>Ee?Ee=qe:a==="avg"&&(Re+=qe,Pe++),isNaN(Ee))break}if(isNaN(Ee))break}if(isNaN(Ee))break}let Be=xe+R;b[Be]=a==="avg"?Re/Pe:Ee}}}}return x}function pU(e,t){let n=Ge(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,d=t.effectiveFilterWidth,p=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let A=0;A<t.outDepth;++A){let y=A*s-p,x=y;for(;x<0;)x+=o;let b=Math.min(t.inDepth,u+y);for(let v=0;v<t.outHeight;++v){let k=v*r-h,S=k;for(;S<0;)S+=i;let C=Math.min(t.inHeight,c+k);for(let D=0;D<t.outWidth;++D){let O=D*a-m,E=O;for(;E<0;)E+=l;let R=Math.min(t.inWidth,d+O),T=Number.NEGATIVE_INFINITY,P=-1;for(let U=x;U<b;U+=o){let j=U-y;for(let q=S;q<C;q+=i){let X=q-k;for(let te=E;te<R;te+=l){let ne=te-O,se=e.get(f,U,q,te,g);se>=T&&(T=se,P=j*c*d+X*c+ne)}}}n.set(P,f,A,v,D,g)}}}return n}function hU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Se(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;w.assert(_.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=_.computePool2DInfo(r.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))d=br({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=m2(p,r.shape,r.dtype,h,c,"avg");d=n.makeTensorInfo(c.outShape,r.dtype,m.values)}return d}var fU={kernelName:ja,backendName:"cpu",kernelFunc:hU};function mU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Se(r,"avgPool3d");let c=_.computePool3DInfo(r.shape,a,o,1,i,l,u),d=n.data.get(r.dataId).values,p=c6(d,r.shape,r.dtype,w.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var gU={kernelName:pc,backendName:"cpu",kernelFunc:mU};function AU(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Se([r,a],"avgPool3DGrad");let c=_.computePool3DInfo(a.shape,o,i,1,l,u),d=c.strideDepth,p=c.strideHeight,h=c.strideWidth,m=c.filterDepth,f=c.filterHeight,g=c.filterWidth,A=c.dilationDepth,y=c.dilationHeight,x=c.dilationWidth,b=c.effectiveFilterDepth,v=c.effectiveFilterHeight,k=c.effectiveFilterWidth,S=b-1-c.padInfo.front,C=k-1-c.padInfo.left,D=v-1-c.padInfo.top,O=Ge(a.shape,"float32"),E=1/(m*f*g),R=n.bufferSync(r);for(let T=0;T<c.batchSize;++T)for(let P=0;P<c.inChannels;++P)for(let U=0;U<c.inDepth;++U)for(let j=0;j<c.inHeight;++j)for(let q=0;q<c.inWidth;++q){let X=U-S,te=j-D,ne=q-C,se=0;for(let ae=0;ae<b;ae+=A){let Q=(X+ae)/d;if(!(Q<0||Q>=c.outDepth||Math.floor(Q)!==Q))for(let ce=0;ce<v;ce+=y){let de=(te+ce)/p;if(!(de<0||de>=c.outHeight||Math.floor(de)!==de))for(let fe=0;fe<k;fe+=x){let xe=(ne+fe)/h;if(xe<0||xe>=c.outWidth||Math.floor(xe)!==xe)continue;se+=R.get(T,Q,de,xe,P)}}}O.set(se*E,T,U,j,q,P)}return n.makeTensorInfo(O.shape,O.dtype,O.values)}var yU={kernelName:Dp,backendName:"cpu",kernelFunc:AU};function xU(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Se([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=_.computePool2DInfo(o.shape,i,l,1,u),d=c.strideHeight,p=c.strideWidth,h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,g=c.dilationWidth,A=c.effectiveFilterHeight,y=c.effectiveFilterWidth,x=y-1-c.padInfo.left,b=A-1-c.padInfo.top,v=Ge(o.shape,"float32"),k=1/(h*m),S=n.data.get(r.dataId).values,C=Ge(r.shape,"float32",S);for(let D=0;D<c.batchSize;++D)for(let O=0;O<c.inChannels;++O)for(let E=0;E<c.inHeight;++E)for(let R=0;R<c.inWidth;++R){let T=E-b,P=R-x,U=0;for(let j=0;j<A;j+=f){let q=(T+j)/d;if(!(q<0||q>=c.outHeight||Math.floor(q)!==q))for(let X=0;X<y;X+=g){let te=(P+X)/p;if(te<0||te>=c.outWidth||Math.floor(te)!==te)continue;U+=C.get(D,q,te,O)}}v.set(U*k,D,E,R,O)}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var bU={kernelName:Rp,backendName:"cpu",kernelFunc:xU};function vU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;w.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Se([r,i,l,a,o],"batchNorm");let{varianceEpsilon:u}=s;u==null&&(u=.001);let c=n.data.get(r.dataId).values,d=n.data.get(i.dataId).values,p=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),m=o?n.data.get(o.dataId).values:new Float32Array([0]),f=new Float32Array(c.length),g=m.length,A=h.length,y=p.length,x=d.length,b=0,v=0,k=0,S=0;for(let C=0;C<c.length;++C)f[C]=m[b++]+(c[C]-d[v++])*h[k++]/Math.sqrt(p[S++]+u),b>=g&&(b=0),v>=x&&(v=0),k>=A&&(k=0),S>=y&&(S=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var wU={kernelName:io,backendName:"cpu",kernelFunc:vU};function kU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Se([r],"batchToSpaceND");let i=a.reduce((A,y)=>A*y),l=_.getReshaped(r.shape,a,i),u=_.getPermuted(l.length,a.length),c=_.getReshapedPermuted(r.shape,a,i),d=_.getSliceBeginCoords(o,a.length),p=_.getSliceSize(c,o,a.length),h=wt({inputs:{x:r},backend:n,attrs:{shape:l}}),m=vs({inputs:{x:h},backend:n,attrs:{perm:u}}),f=wt({inputs:{x:m},backend:n,attrs:{shape:c}}),g=gi({inputs:{x:f},backend:n,attrs:{begin:d,size:p}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var IU={kernelName:tl,backendName:"cpu",kernelFunc:kU};function SU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=i2(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var CU={kernelName:_p,backendName:"cpu",kernelFunc:SU};function TU(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=_.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var NU={kernelName:Eg,backendName:"cpu",kernelFunc:TU},EU=pt(aa,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),RU={kernelName:aa,backendName:"cpu",kernelFunc:EU},DU=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],d=l[u];s[u]=Math.hypot(c,d)}return n.makeOutput(s,t.shape,"float32")},_U={kernelName:hc,backendName:"cpu",kernelFunc:DU};function ku(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var $U={kernelName:qp,backendName:"cpu",kernelFunc:ku};function Iu(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],o=_.computeOutShape(t.map(f=>f.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(f=>w.sizeFromShape(f.shape)>0);if(i.length===1)return br({inputs:{x:i[0]},backend:n});let l=i.map(f=>f.shape);if(_.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let f=i.map(b=>mi({inputs:{input:b},backend:n})),g=i.map(b=>ku({inputs:{input:b},backend:n})),A=Iu({inputs:f,backend:n,attrs:{axis:a}}),y=Iu({inputs:g,backend:n,attrs:{axis:a}}),x=us({inputs:{real:A,imag:y},backend:n});return f.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(y),x}let u=i.map(f=>{let g=w.sizeFromShape(f.shape.slice(a));return wt({inputs:{x:f},backend:n,attrs:{shape:[-1,g]}})}),c=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));o=_.computeOutShape(u.map(f=>f.shape),1);let d=u[0].shape[0]===1,p=l2(c,o,t[0].dtype,d),h=_.computeOutShape(i.map(f=>f.shape),a),m=n.makeTensorInfo(h,t[0].dtype,p);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var FU={kernelName:nl,backendName:"cpu",kernelFunc:Iu};function d6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s;Se([r,a],"conv2d");let d=_.convertConv2DDataFormat(l),p=_.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,d),h=p.filterHeight,m=p.filterWidth,f=p.dilationHeight,g=p.dilationWidth,A=p.padInfo.left,y=p.padInfo.top,x=p.dataFormat==="channelsLast",b=new Kt(p.outShape,r.dtype),v=w.computeStrides(r.shape),k=w.computeStrides(a.shape),S=v[0],C=x?v[1]:v[2],D=x?v[2]:1,O=x?1:v[1],E=b.strides[0],R=x?b.strides[1]:b.strides[2],T=x?b.strides[2]:1,P=x?1:b.strides[1],U=n.data.get(r.dataId).values,j=n.data.get(a.dataId).values,q=b.values;for(let X=0;X<p.batchSize;++X){let te=X*S,ne=X*E;for(let se=0;se<p.outHeight;++se){let ae=ne+se*R,Q=se*p.strideHeight-y;for(let ce=0;ce<h;++ce){let de=Q+ce*f;if(de<0||de>=p.inHeight)continue;let fe=ce*k[0],xe=te+de*C;for(let Ee=0;Ee<p.outWidth;++Ee){let Re=ae+Ee*T,Pe=Ee*p.strideWidth-A;for(let Be=0;Be<m;++Be){let Me=Pe+Be*g;if(Me<0||Me>=p.inWidth)continue;let mt=fe+Be*k[1],lt=xe+Me*D,ut=mt;for(let ot=0;ot<p.inChannels;++ot){let ht=U[lt+ot*O];for(let qe=0;qe<p.outChannels;++qe)q[Re+qe*P]+=ht*j[ut+qe];ut+=p.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,q)}var OU={kernelName:Za,backendName:"cpu",kernelFunc:d6};function PU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s;Se([r,a],"conv2dBackpropFilter");let d=_.convertConv2DDataFormat(l),p=_.computeConv2DInfo(r.shape,c,o,1,i,u,!1,d),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=p,A=p.dataFormat==="channelsLast",y=new Kt(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,v=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,S=new Kt(r.shape,r.dtype,v),C=new Kt(a.shape,a.dtype,k);for(let D=0;D<f;++D){let O=Math.max(0,Math.ceil((b-D)/h)),E=Math.min(p.outHeight,(p.inHeight+b-D)/h);for(let R=0;R<g;++R){let T=Math.max(0,Math.ceil((x-R)/m)),P=Math.min(p.outWidth,(p.inWidth+x-R)/m);for(let U=0;U<p.inChannels;++U)for(let j=0;j<p.outChannels;++j){let q=0;for(let X=0;X<p.batchSize;++X)for(let te=O;te<E;++te){let ne=D+te*h-b;for(let se=T;se<P;++se){let ae=R+se*m-x;A?q+=S.get(X,ne,ae,U)*C.get(X,te,se,j):q+=S.get(X,U,ne,ae)*C.get(X,j,te,se)}}y.set(q,D,R,U,j)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var MU={kernelName:Fp,backendName:"cpu",kernelFunc:PU};function zU(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s;Se([r,a],"conv2dBackpropInput");let d=w.computeStrides(a.shape),p=w.computeStrides(r.shape),h=_.convertConv2DDataFormat(u),m=_.computeConv2DInfo(o,a.shape,i,1,l,c,!1,h),f=new Kt(m.inShape,"float32"),g=f.values,A=n.data.get(r.dataId).values,y=n.data.get(a.dataId).values,[x,b,v]=d,{batchSize:k,filterHeight:S,filterWidth:C,inChannels:D,inHeight:O,inWidth:E,outChannels:R,outHeight:T,outWidth:P,strideHeight:U,strideWidth:j}=m;h=m.dataFormat;let q=S-1-m.padInfo.top,X=C-1-m.padInfo.left,te=h==="channelsLast",ne=f.strides[0],se=te?f.strides[1]:f.strides[2],ae=te?f.strides[2]:1,Q=te?1:f.strides[1],ce=p[0],de=te?p[1]:p[2],fe=te?p[2]:1,xe=te?1:p[1];for(let Ee=0;Ee<k;++Ee)for(let Re=0;Re<D;++Re)for(let Pe=0;Pe<O;++Pe){let Be=Pe-q,Me=Math.max(0,Math.ceil(Be/U)),mt=Math.min(T,(S+Be)/U);for(let lt=0;lt<E;++lt){let ut=lt-X,ot=Math.max(0,Math.ceil(ut/j)),ht=Math.min(P,(C+ut)/j),qe=0;for(let Et=Me;Et<mt;++Et){let Zn=Et*U-Be;for(let fn=ot;fn<ht;++fn){let Ns=fn*j-ut,In=ce*Ee+de*Et+fe*fn,fs=x*(S-1-Zn)+b*(C-1-Ns)+v*Re;for(let ms=0;ms<R;++ms){let mn=A[In+xe*ms],gs=y[fs+ms];qe+=mn*gs}}}let Mn=ne*Ee+se*Pe+ae*lt+Q*Re;g[Mn]=qe}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var LU={kernelName:Ya,backendName:"cpu",kernelFunc:zU};function BU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;Se([r,a],"conv3d");let u=_.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:c,filterHeight:d,filterWidth:p,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=u,A=g.front,y=g.left,x=g.top,b=new Kt(u.outShape,r.dtype),v=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,S=b.values,C=w.computeStrides(r.shape),D=w.computeStrides(a.shape);for(let O=0;O<u.batchSize;++O){let E=O*C[0],R=O*b.strides[0];for(let T=0;T<u.outDepth;++T){let P=R+T*b.strides[1],U=T*u.strideDepth-A;for(let j=0;j<c;++j){let q=U+j*h;if(q<0||q>=u.inDepth)continue;let X=j*D[0],te=E+q*C[1];for(let ne=0;ne<u.outHeight;++ne){let se=P+ne*b.strides[2],ae=ne*u.strideHeight-x;for(let Q=0;Q<d;++Q){let ce=ae+Q*m;if(ce<0||ce>=u.inHeight)continue;let de=X+Q*D[1],fe=te+ce*C[2];for(let xe=0;xe<u.outWidth;++xe){let Ee=se+xe*u.outChannels,Re=xe*u.strideWidth-y;for(let Pe=0;Pe<p;++Pe){let Be=Re+Pe*f;if(Be<0||Be>=u.inWidth)continue;let Me=de+Pe*D[2],mt=fe+Be*u.inChannels,lt=Me;for(let ut=0;ut<u.inChannels;++ut){let ot=v[mt+ut];for(let ht=0;ht<u.outChannels;++ht)S[Ee+ht]+=ot*k[lt+ht];lt+=u.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var WU={kernelName:fc,backendName:"cpu",kernelFunc:BU};function VU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;Se([r,a],"conv3dBackpropFilterV2");let u=w.computeStrides(r.shape),c=w.computeStrides(a.shape),d=_.computeConv3DInfo(r.shape,l,o,1,i),p=d.strideDepth,h=d.strideHeight,m=d.strideWidth,f=d.filterDepth,g=d.filterHeight,A=d.filterWidth,y=new Kt(d.filterShape,"float32"),x=y.values,[b,v,k,S]=y.strides,C=n.data.get(a.dataId).values,[D,O,E,R]=c,T=n.data.get(r.dataId).values,[P,U,j,q]=u,X=d.padInfo.front,te=d.padInfo.left,ne=d.padInfo.top;for(let se=0;se<f;++se){let ae=Math.max(0,Math.ceil((X-se)/p)),Q=Math.min(d.outDepth,(d.inDepth+X-se)/p),ce=se*b;for(let de=0;de<g;++de){let fe=Math.max(0,Math.ceil((ne-de)/h)),xe=Math.min(d.outHeight,(d.inHeight+ne-de)/h),Ee=de*v+ce;for(let Re=0;Re<A;++Re){let Pe=Math.max(0,Math.ceil((te-Re)/m)),Be=Math.min(d.outWidth,(d.inWidth+te-Re)/m),Me=Re*k+Ee;for(let mt=0;mt<d.inChannels;++mt){let lt=mt*S+Me;for(let ut=0;ut<d.outChannels;++ut){let ot=0;for(let ht=0;ht<d.batchSize;++ht){let qe=ht*P,Mn=ht*D;for(let Et=ae;Et<Q;++Et){let fn=(se+Et*p-X)*U+qe,Ns=Et*O+Mn;for(let In=fe;In<xe;++In){let ms=(de+In*h-ne)*j+fn,mn=In*E+Ns;for(let gs=Pe;gs<Be;++gs){let Yn=(Re+gs*m-te)*q+ms,ar=gs*R+mn;ot+=T[Yn+mt]*C[ar+ut]}}}}x[lt+ut]=ot}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var UU={kernelName:Op,backendName:"cpu",kernelFunc:VU};function HU(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;Se([r],"conv3dBackpropInputV2");let u=w.computeStrides(r.shape),c=w.computeStrides(a.shape),d=_.computeConv3DInfo(l,a.shape,i,1,o),p=new Kt(d.inShape,"float32"),h=p.values,[m,f,g,A]=p.strides,y=n.data.get(r.dataId).values,[x,b,v,k]=u,S=n.data.get(a.dataId).values,[C,D,O,E]=c,{batchSize:R,filterDepth:T,filterHeight:P,filterWidth:U,inChannels:j,inDepth:q,inHeight:X,inWidth:te,outChannels:ne,outDepth:se,outHeight:ae,outWidth:Q,strideDepth:ce,strideHeight:de,strideWidth:fe}=d,xe=T-1-d.padInfo.front,Ee=P-1-d.padInfo.top,Re=U-1-d.padInfo.left;for(let Pe=0;Pe<R;++Pe)for(let Be=0;Be<j;++Be)for(let Me=0;Me<q;++Me){let mt=Me-xe,lt=Math.max(0,Math.ceil(mt/ce)),ut=Math.min(se,(T+mt)/ce);for(let ot=0;ot<X;++ot){let ht=ot-Ee,qe=Math.max(0,Math.ceil(ht/de)),Mn=Math.min(ae,(P+ht)/de);for(let Et=0;Et<te;++Et){let Zn=Et-Re,fn=Math.max(0,Math.ceil(Zn/fe)),Ns=Math.min(Q,(U+Zn)/fe),In=0;for(let fs=lt;fs<ut;++fs){let ms=fs*ce-mt;for(let mn=qe;mn<Mn;++mn){let gs=mn*de-ht;for(let As=fn;As<Ns;++As){let Yn=As*fe-Zn,ar=x*Pe+b*fs+v*mn+k*As,Sr=C*(T-1-ms)+D*(P-1-gs)+O*(U-1-Yn)+E*Be;for(let Kr=0;Kr<ne;++Kr){let Di=y[ar+Kr],or=S[Sr+Kr];In+=Di*or}}}}h[m*Pe+f*Me+g*ot+A*Et+Be]=In}}}return n.makeTensorInfo(p.shape,p.dtype,p.values)}var GU={kernelName:Pp,backendName:"cpu",kernelFunc:HU},jU=pt(Ja,e=>Math.cos(e)),qU={kernelName:Ja,backendName:"cpu",kernelFunc:jU},XU=pt(Qa,e=>Math.cosh(e)),KU={kernelName:Qa,backendName:"cpu",kernelFunc:XU};function ZU(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,[c,d,p,h]=r.shape,m=a.shape[0],[f,g]=i,A=Ge([m,f,g,h],"float32"),y=n.data.get(a.dataId).values,x=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,v=w.computeStrides(r.shape),k=w.computeStrides(A.shape);for(let S=0;S<m;S++){let C=S*4,D=y[C],O=y[C+1],E=y[C+2],R=y[C+3],T=x[S];if(T>=c)continue;let P=f>1?(E-D)*(d-1)/(f-1):0,U=g>1?(R-O)*(p-1)/(g-1):0;for(let j=0;j<f;j++){let q=f>1?D*(d-1)+j*P:.5*(D+E)*(d-1);if(q<0||q>d-1){for(let X=0;X<g;X++)for(let te=0;te<h;te++){let ne=te+X*k[2]+j*k[1]+S*k[0];A.values[ne]=u}continue}if(l==="bilinear"){let X=Math.floor(q),te=Math.ceil(q),ne=q-X;for(let se=0;se<g;se++){let ae=g>1?O*(p-1)+se*U:.5*(O+R)*(p-1);if(ae<0||ae>p-1){for(let fe=0;fe<h;fe++){let xe=fe+se*k[2]+j*k[1]+S*k[0];A.values[xe]=u}continue}let Q=Math.floor(ae),ce=Math.ceil(ae),de=ae-Q;for(let fe=0;fe<h;fe++){let xe=fe+Q*v[2]+X*v[1]+T*v[0],Ee=b[xe];xe=fe+ce*v[2]+X*v[1]+T*v[0];let Re=b[xe];xe=fe+Q*v[2]+te*v[1]+T*v[0];let Pe=b[xe];xe=fe+ce*v[2]+te*v[1]+T*v[0];let Be=b[xe],Me=Ee+(Re-Ee)*de,mt=Pe+(Be-Pe)*de;xe=fe+se*k[2]+j*k[1]+S*k[0],A.values[xe]=Me+(mt-Me)*ne}}}else for(let X=0;X<g;++X){let te=g>1?O*(p-1)+X*U:.5*(O+R)*(p-1);if(te<0||te>p-1){for(let ae=0;ae<h;ae++){let Q=ae+X*k[2]+j*k[1]+S*k[0];A.values[Q]=u}continue}let ne=Math.round(te),se=Math.round(q);for(let ae=0;ae<h;ae++){let Q=ae+ne*v[2]+se*v[1]+T*v[0],ce=ae+X*k[2]+j*k[1]+S*k[0];A.values[ce]=b[Q]}}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var YU={kernelName:sl,backendName:"cpu",kernelFunc:ZU};function JU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Se(r,"cumsum");let l=_.getAxesPermutation([a],r.shape.length),u=r;l!=null&&(u=vs({inputs:{x:r},backend:n,attrs:{perm:l}}));let c=_.getInnerMostAxes(1,r.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let d=Ds(u.dtype,"int32"),p=w.makeZerosTypedArray(w.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=i?(A,y)=>A+m-y-1:(A,y)=>A+y;for(let A=0;A<h.length;A+=m)for(let y=0;y<m;y++){let x=f(A,y);if(y===0)p[x]=o?0:h[x];else{let b=f(A,y-1);p[x]=o?h[b]+p[b]:h[x]+p[b]}}let g=n.makeTensorInfo(u.shape,d,p);if(l!=null){let A=_.getUndoAxesPermutation(l),y=vs({inputs:{x:g},backend:n,attrs:{perm:A}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),y}return g}var QU={kernelName:eo,backendName:"cpu",kernelFunc:JU};function eH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=i2(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=v7(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var tH={kernelName:Mp,backendName:"cpu",kernelFunc:eH};function nH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;w.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`),w.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=r.shape[1],u=r.shape[2],c=r.shape[3],d=l*a,p=u*a,h=c/(a*a),m=n.data.get(r.dataId).values,f=new Float32Array(i*d*p*h),g=0;for(let A=0;A<i;++A)for(let y=0;y<d;++y){let x=Math.floor(y/a),b=y%a;for(let v=0;v<p;++v){let k=Math.floor(v/a),S=v%a,C=(b*a+S)*h;for(let D=0;D<h;++D){let E=D+C+c*(k+u*(x+l*A));f[g++]=m[E]}}}return n.makeTensorInfo([i,d,p,h],r.dtype,f)}var sH={kernelName:rl,backendName:"cpu",kernelFunc:nH};function p6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s;Se([r,a],"depthwiseConv2DNative");let c=w.computeStrides(r.shape),d=w.computeStrides(a.shape),p=l;p==null&&(p=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(o,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${p}'`);let h=_.computeConv2DInfo(r.shape,a.shape,o,p,i,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:A,padInfo:y}=h,x=y.left,b=y.top,v=h.outChannels/h.inChannels,k=new Kt(h.outShape,r.dtype),S=n.data.get(r.dataId).values,C=n.data.get(a.dataId).values,D=k.values;for(let O=0;O<h.batchSize;++O){let E=O*c[0],R=O*k.strides[0];for(let T=0;T<h.outHeight;++T){let P=R+T*k.strides[1],U=T*h.strideHeight-b;for(let j=0;j<m;++j){let q=U+j*g;if(q<0||q>=h.inHeight)continue;let X=j*d[0],te=E+q*c[1];for(let ne=0;ne<h.outWidth;++ne){let se=P+ne*k.strides[2],ae=ne*h.strideWidth-x;for(let Q=0;Q<f;++Q){let ce=ae+Q*A;if(ce<0||ce>=h.inWidth)continue;let de=X+Q*d[1],fe=te+ce*h.inChannels,xe=se,Ee=de;for(let Re=0;Re<h.inChannels;++Re){let Pe=S[fe+Re];for(let Be=0;Be<v;++Be)D[xe+Be]+=Pe*C[Ee+Be];xe+=v,Ee+=v}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var rH={kernelName:to,backendName:"cpu",kernelFunc:p6};function aH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s;Se([r,a],"depthwiseConv2dNativeBackpropFilter");let d=_.computeConv2DInfo(r.shape,c,o,i,l,u,!0),{strideHeight:p,strideWidth:h,filterHeight:m,filterWidth:f}=d,g=new Kt(d.filterShape,"float32"),A=d.padInfo.left,y=d.padInfo.top,x=d.outChannels/d.inChannels,b=n.data.get(r.dataId).values,v=new Kt(r.shape,r.dtype,b),k=n.data.get(a.dataId).values,S=new Kt(a.shape,a.dtype,k);for(let C=0;C<m;++C){let D=Math.max(0,Math.ceil((y-C)/p)),O=Math.min(d.outHeight,(d.inHeight+y-C)/p);for(let E=0;E<f;++E){let R=Math.max(0,Math.ceil((A-E)/h)),T=Math.min(d.outWidth,(d.inWidth+A-E)/h);for(let P=0;P<d.outChannels;++P){let U=Math.trunc(P/x),j=P%x,q=0;for(let X=0;X<d.batchSize;++X)for(let te=D;te<O;++te){let ne=C+te*p-y;for(let se=R;se<T;++se){let ae=E+se*h-A;q+=v.get(X,ne,ae,U)*S.get(X,te,se,P)}}g.set(q,C,E,U,j)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var oH={kernelName:zp,backendName:"cpu",kernelFunc:aH};function iH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s;Se([r,a],"depthwiseConv2DNativeBackpropInput");let d=w.computeStrides(r.shape),p=w.computeStrides(a.shape),h=_.computeConv2DInfo(c,a.shape,o,i,l,u,!0),m=new Kt(h.inShape,"float32"),f=m.values,[g,A,y]=m.strides,x=n.data.get(r.dataId).values,[b,v,k]=d,S=n.data.get(a.dataId).values,[C,D,O]=p,{batchSize:E,filterHeight:R,filterWidth:T,inChannels:P,inHeight:U,inWidth:j,outChannels:q,outHeight:X,outWidth:te,strideHeight:ne,strideWidth:se}=h,ae=R-1-h.padInfo.top,Q=T-1-h.padInfo.left,ce=q/P;for(let de=0;de<E;++de)for(let fe=0;fe<P;++fe)for(let xe=0;xe<U;++xe){let Ee=xe-ae,Re=Math.max(0,Math.ceil(Ee/ne)),Pe=Math.min(X,(R+Ee)/ne);for(let Be=0;Be<j;++Be){let Me=Be-Q,mt=Math.max(0,Math.ceil(Me/se)),lt=Math.min(te,(T+Me)/se),ut=0;for(let ot=Re;ot<Pe;++ot){let ht=ot*ne-Ee;for(let qe=mt;qe<lt;++qe){let Mn=qe*se-Me,Et=b*de+v*ot+k*qe,Zn=C*(R-1-ht)+D*(T-1-Mn)+O*fe;for(let fn=0;fn<ce;++fn){let Ns=fe*ce+fn,In=x[Et+Ns],fs=S[Zn+fn];ut+=In*fs}}}f[g*de+A*xe+y*Be+fe]=ut}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var lH={kernelName:Lp,backendName:"cpu",kernelFunc:iH};function uH(e){let{inputs:t,backend:n}=e,{x:s}=t,r=w.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=Ge([r,r],s.dtype),i=o.values;for(let u=0;u<a.length;u++)i[u*r+u]=a[u];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var cH={kernelName:Bp,backendName:"cpu",kernelFunc:uH},dH={kernelName:mc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,u=l.data.get(s.dataId).values,c=s.shape.length,d=l.data.get(r.dataId).values,p=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:A,outWidth:y,padInfo:x,strideHeight:b,strideWidth:v,filterHeight:k,filterWidth:S,dilationHeight:C,dilationWidth:D,outShape:O}=_.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),E=w.sizeFromShape(O),R=O.length,T=w.getArrayFromDType(s.dtype,E);for(let U=0;U<h;++U)for(let j=0;j<A;++j){let q=j*b-x.top;for(let X=0;X<y;++X){let te=X*v-x.left;for(let ne=0;ne<g;++ne){let se=Number.MIN_SAFE_INTEGER;for(let Q=0;Q<k;++Q){let ce=q+Q*C;if(ce>=0&&ce<m)for(let de=0;de<S;++de){let fe=te+de*D;if(fe>=0&&fe<f){let xe=w.locToIndex([U,ce,fe,ne],c,w.computeStrides(s.shape)),Ee=w.locToIndex([Q,de,ne],p,w.computeStrides(r.shape)),Re=u[xe]+d[Ee];Re>se&&(se=Re)}}}let ae=w.locToIndex([U,j,X,ne],R,w.computeStrides(O));T[ae]=se}}}return{dataId:l.write(w.toTypedArray(T,s.dtype),O,s.dtype),shape:O,dtype:s.dtype}}},pH={kernelName:Vp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=w.toNestedArray(s.shape,u.data.get(s.dataId).values),d=w.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:S,dilationWidth:C,outShape:D}=_.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);w.assert(a.rank===D.length,()=>`Error in ${Vp}, dy must have the same rank as output ${D.length}, but got ${a.rank}`);let O=w.toNestedArray(D,u.data.get(a.dataId).values),E=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<p;++T)for(let P=0;P<g;++P){let U=P*x-y.top;for(let j=0;j<A;++j){let q=j*b-y.left;for(let X=0;X<f;++X){let te=Number.MIN_SAFE_INTEGER,ne=0,se=0;for(let ae=0;ae<v;++ae){let Q=U+ae*S;if(Q>=0&&Q<h)for(let ce=0;ce<k;++ce){let de=q+ce*C;if(de>=0&&de<m){let fe=c[T][Q][de][X]+d[ae][ce][X];fe>te&&(te=fe,ne=ae,se=ce)}}}E[ne][se][X]+=O[T][P][j][X]}}}return{dataId:u.write(w.toTypedArray(E,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},hH={kernelName:Wp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=w.toNestedArray(s.shape,u.data.get(s.dataId).values),d=w.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:S,dilationWidth:C,outShape:D}=_.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);w.assert(a.rank===D.length,()=>`Error in ${Wp}, dy must have the same rank as output ${D.length}, but got ${a.rank}`);let O=w.toNestedArray(D,u.data.get(a.dataId).values),E=w.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<p;++T)for(let P=0;P<g;++P){let U=P*x-y.top;for(let j=0;j<A;++j){let q=j*b-y.left;for(let X=0;X<f;++X){let te=Number.MIN_SAFE_INTEGER,ne=U<0?0:U,se=q<0?0:q;for(let ae=0;ae<v;++ae){let Q=U+ae*S;if(Q>=0&&Q<h)for(let ce=0;ce<k;++ce){let de=q+ce*C;if(de>=0&&de<m){let fe=c[T][Q][de][X]+d[ae][ce][X];fe>te&&(te=fe,ne=Q,se=de)}}}E[T][ne][se][X]+=O[T][P][j][X]}}}return{dataId:u.write(w.toTypedArray(E,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Id(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Se(r,"sum");let i;r.dtype==="bool"?i=Ca({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=br({inputs:{x:r},backend:n});let l=i.shape.length,u=w.parseAxisParam(a,i.shape),c=_.getAxesPermutation(u,l),d=u,p=i;c!=null&&(p=vs({inputs:{x:i},backend:n,attrs:{perm:c}}),d=_.getInnerMostAxes(d.length,l)),_.assertAxesAreInnerMostDims("sum",d,p.shape.length);let[h,m]=_.computeOutAndReduceShapes(p.shape,d),f=_.upcastType(p.dtype,"int32"),g=Zf(n,h,f),A=w.sizeFromShape(m),y=n.data.get(g.dataId).values,x=n.data.get(p.dataId).values;for(let b=0;b<y.length;++b){let v=b*A,k=0;for(let S=0;S<A;++S)k+=x[v+S];y[b]=k}if(o){let b=_.expandShapeToKeepDim(g.shape,u),v=g;g=wt({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(v)}return n.disposeIntermediateTensorInfo(i),c!=null&&n.disposeIntermediateTensorInfo(p),g}var fH={kernelName:Fo,backendName:"cpu",kernelFunc:Id};function mH(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=_.decodeEinsumEquation(r,a.length);_.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=_.getEinsumComputePath(i,l),d=c.length,p=null,h=o.length,m=[];for(let f=0;f<d;++f){for(let g of c[f]){let{permutationIndices:A,expandDims:y}=_.getEinsumPermutation(h,l[g]),x;_.isIdentityPermutation(A)?x=a[g]:(x=vs({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),m.push(x));let b=x.shape.slice();for(let v=0;v<y.length;++v)b.splice(y[v],0,1);w.arraysEqual(x.shape,b)||(x=wt({inputs:{x},backend:n,attrs:{shape:b}}),m.push(x)),p===null?p=x:(p=Yf({inputs:{a:x,b:p},backend:n}),m.push(p))}f<d-1&&(u[f]>=0&&(p=Id({inputs:{x:p},backend:n,attrs:{axis:u[f]-(o.length-h),keepDims:!1}}),m.push(p)),h--)}for(let f of m)f!==p&&n.disposeIntermediateTensorInfo(f);return p}var gH={kernelName:Up,backendName:"cpu",kernelFunc:mH};function AH(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Se([s,r],"eluGrad");let a=new Float32Array(w.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let u=o[l];u>=1?a[l]=i[l]:a[l]=i[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",a)}var yH={kernelName:Hp,backendName:"cpu",kernelFunc:AH},xH=_.ERF_P,bH=_.ERF_A1,vH=_.ERF_A2,wH=_.ERF_A3,kH=_.ERF_A4,IH=_.ERF_A5,SH=pt(al,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+xH*n);return t*(1-((((IH*s+kH)*s+wH)*s+vH)*s+bH)*s*Math.exp(-n*n))}),CH={kernelName:al,backendName:"cpu",kernelFunc:SH};function Qf(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),wt({inputs:{x:r},backend:n,attrs:{shape:i}})}var TH={kernelName:il,backendName:"cpu",kernelFunc:Qf},NH=Gt((e,t)=>e/t),g2=pn(no,NH),A2={kernelName:no,backendName:"cpu",kernelFunc:g2};function h6(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,u=[r,a],c=w.sizeFromShape(u),d=w.getTypedArrayFromDType("float32",c),p=w.getTypedArrayFromDType("float32",c);for(let g=0;g<r;g++){let A=gi({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),y=gi({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=us({inputs:{real:A,imag:y},backend:n}),{real:b,imag:v}=EH(x,t,n),k=_.mergeRealAndImagArrays(b,v);for(let S=0;S<a;S++){let C=_.getComplexWithIndex(k,S);d[g*a+S]=C.real,p[g*a+S]=C.imag}n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",d),m=n.makeTensorInfo(u,"float32",p),f=us({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function EH(e,t,n){let s=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(RH(s)){let i=y2(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",i.real),c=n.makeTensorInfo(l,"float32",i.imag),d=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),p=br({inputs:{x:d},backend:n}),h=A2.kernelFunc({inputs:{a:u,b:d},backend:n}),m=A2.kernelFunc({inputs:{a:c,b:p},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return i}else{let i=_.mergeRealAndImagArrays(a,o),l=DH(i,s,t);return _.splitRealAndImagArrays(l)}}function RH(e){return(e&e-1)==0}function y2(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=_.mergeRealAndImagArrays(e,t),o=n/2,i=_.complexWithEvenIndex(a),l=i.real,u=i.imag,c=[l.length],d=r.makeTensorInfo(c,"float32",l),p=r.makeTensorInfo(c,"float32",u),h=us({inputs:{real:d,imag:p},backend:r}),m=_.complexWithOddIndex(a),f=m.real,g=m.imag,A=[f.length],y=r.makeTensorInfo(A,"float32",f),x=r.makeTensorInfo(A,"float32",g),b=us({inputs:{real:y,imag:x},backend:r}),v=y2(l,u,o,s,r),k=v.real,S=v.imag,C=[k.length],D=r.makeTensorInfo(C,"float32",k),O=r.makeTensorInfo(C,"float32",S),E=us({inputs:{real:D,imag:O},backend:r}),R=y2(f,g,o,s,r),T=R.real,P=R.imag,U=[T.length],j=r.makeTensorInfo(U,"float32",T),q=r.makeTensorInfo(U,"float32",P),X=us({inputs:{real:j,imag:q},backend:r}),te=_.exponents(n,s),ne=[te.real.length],se=r.makeTensorInfo(ne,"float32",te.real),ae=r.makeTensorInfo(ne,"float32",te.imag),Q=us({inputs:{real:se,imag:ae},backend:r}),ce=Yf({inputs:{a:Q,b:X},backend:r}),de=wd({inputs:{a:E,b:ce},backend:r}),fe=h2({inputs:{a:E,b:ce},backend:r}),xe=mi({inputs:{input:de},backend:r}),Ee=mi({inputs:{input:fe},backend:r}),Re=ku({inputs:{input:de},backend:r}),Pe=ku({inputs:{input:fe},backend:r}),Be=Iu({inputs:[xe,Ee],backend:r,attrs:{axis:0}}),Me=Iu({inputs:[Re,Pe],backend:r,attrs:{axis:0}}),mt=r.data.get(Be.dataId).values,lt=r.data.get(Me.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(D),r.disposeIntermediateTensorInfo(O),r.disposeIntermediateTensorInfo(E),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(se),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(ce),r.disposeIntermediateTensorInfo(de),r.disposeIntermediateTensorInfo(fe),r.disposeIntermediateTensorInfo(xe),r.disposeIntermediateTensorInfo(Re),r.disposeIntermediateTensorInfo(Ee),r.disposeIntermediateTensorInfo(Pe),r.disposeIntermediateTensorInfo(Be),r.disposeIntermediateTensorInfo(Me),{real:mt,imag:lt}}function DH(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=_.exponent(r*i,t,n),u=_.getComplexWithIndex(e,i);a+=u.real*l.real-u.imag*l.imag,o+=u.real*l.imag+u.imag*l.real}n&&(a/=t,o/=t),_.assignToTypedArray(s,a,o,r)}return s}function _H(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=wt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=h6(i,!1,n),u=wt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var $H={kernelName:Gp,backendName:"cpu",kernelFunc:_H};function x2(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||w.inferDtype(r),i=w.getArrayFromDType(o,w.sizeFromShape(s));return OH(i,r,o),t.makeTensorInfo(s,o,i)}var FH={kernelName:gc,backendName:"cpu",kernelFunc:x2};function OH(e,t,n){e.fill(t)}var PH={kernelName:ul,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[o,i,l,u]=s.shape,c=r.data.get(s.dataId).values;for(let p=0;p<o;p++){let h=p*l*i*u;for(let m=0;m<i;m++){let f=m*(l*u);for(let g=0;g<l;g++){let A=g*u;for(let y=0;y<u;y++){let x=Math.round(l-g-1),b=h+f+A+y,v=c[b];if(x>=0&&x<l){let k=x*u,S=h+f+k+y;v=c[S]}a[b]=v}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},MH=Gt((e,t)=>Math.floor(e/t)),zH=pn(oo,MH,null,"int32"),LH={kernelName:oo,backendName:"cpu",kernelFunc:zH};function BH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:m}=s,f=d6({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:p}});if(o){let g=f;f=wd({inputs:{a:f,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=f2(n,f,h,i,m),n.disposeIntermediateTensorInfo(g)}return f}var WH={kernelName:Vo,backendName:"cpu",kernelFunc:BH};function VH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:m}=s,f=p6({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:p}});if(o){let g=f;f=wd({inputs:{a:f,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=f2(n,f,h,i,m),n.disposeIntermediateTensorInfo(g)}return f}var UH={kernelName:Uo,backendName:"cpu",kernelFunc:VH};function HH(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=w.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,u,c,d]=_.prepareAndValidate(s,r);if(u===0)return n.makeTensorInfo(l,s.dtype,[]);let p=n.data.get(r.dataId).values,h=n.bufferSync(s),m=E7(p,h,s.dtype,u,i,c,d,s.shape,a);return n.makeTensorInfo(l,s.dtype,m.values)}var GH={kernelName:dl,backendName:"cpu",kernelFunc:HH};function jH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Se([r,a],"gatherV2");let l=i;i==null&&(l=0);let u=w.sizeFromShape(a.shape),c=w.parseAxisParam(o,r.shape)[0],d=_.segment_util.collectGatherOpShapeInfo(r,a,c,l),p=wt({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),h=wt({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,u/d.batchSize]}}),m=[d.batchSize,d.outerSize,u/d.batchSize,d.sliceSize],f=n.bufferSync(h),g=n.bufferSync(p),A=R7(g,f,m);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(d.outputShape,A.dtype,A.values)}var qH={kernelName:cl,backendName:"cpu",kernelFunc:jH};function XH(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=wt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=h6(i,!0,n),u=wt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var KH={kernelName:jp,backendName:"cpu",kernelFunc:XH},ZH=pt(hl,e=>Number.isFinite(e)?1:0,"bool"),YH={kernelName:hl,backendName:"cpu",kernelFunc:ZH},JH=pt(fl,e=>Math.abs(e)===1/0?1:0,"bool"),QH={kernelName:fl,backendName:"cpu",kernelFunc:JH},eG=pt(ml,e=>Number.isNaN(e)?1:0,"bool"),tG={kernelName:ml,backendName:"cpu",kernelFunc:eG};function nG(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=O7(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var sG={kernelName:Xp,backendName:"cpu",kernelFunc:nG},rG=pt(yl,e=>Math.log1p(e)),aG={kernelName:yl,backendName:"cpu",kernelFunc:rG},oG=Gt((e,t)=>e&&t),iG=pn(xl,oG,null,"bool"),lG={kernelName:xl,backendName:"cpu",kernelFunc:iG},uG=pt(Ac,e=>e?0:1,"bool"),cG={kernelName:Ac,backendName:"cpu",kernelFunc:uG},dG=Gt((e,t)=>e||t),pG=pn(yc,dG,null,"bool"),hG={kernelName:yc,backendName:"cpu",kernelFunc:pG};function fG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Se(r,"LRN");let u=r.shape[3],c=u-1,d=n.data.get(r.dataId).values,p=w.sizeFromShape(r.shape),h=new Float32Array(p);function m(f){let g=f%u,A=f-g+Math.max(0,g-a),y=f-g+Math.min(g+a,c),x=0;for(;A<=y;A++){let b=d[A];x+=b*b}return x}for(let f=0;f<p;f++){let g=m(f),A=d[f]*Math.pow(o+i*g,-l);h[f]=A}return n.makeTensorInfo(r.shape,r.dtype,h)}var mG={kernelName:xc,backendName:"cpu",kernelFunc:fG};function gG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s;Se(o,"LRNGrad");let d=w.sizeFromShape(o.shape),p=o.shape[3],h=n.data.get(o.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(a.dataId).values,g=new Float32Array(d),A=d;for(let y=0;y<A;y++){let x=y%p,b=y-x+Math.max(0,x-i),v=y-x+Math.min(p,x+i+1),k=0;for(let S=b;S<v;S++)k+=Math.pow(m[S],2);k=u*k+l;for(let S=b;S<v;S++){let C=-2*u*c*m[S]*f[y]/k;y===S&&(C+=Math.pow(k,-c)),C*=h[y],g[S]+=C}}return n.makeTensorInfo(o.shape,r.dtype,g)}var AG={kernelName:Kp,backendName:"cpu",kernelFunc:gG};function f6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,u=l.length,c=w.parseAxisParam(a,l),d=c,p=_.getAxesPermutation(d,u),h=i.data.get(r.dataId).values;if(p!=null){let b=new Array(u);for(let v=0;v<b.length;v++)b[v]=l[p[v]];h=c2(h,l,r.dtype,p,b),d=_.getInnerMostAxes(d.length,u),l=b}Se(r,"max"),_.assertAxesAreInnerMostDims("max",d,u);let[m,f]=_.computeOutAndReduceShapes(l,d),g=w.sizeFromShape(f),A=M7(h,g,m,r.dtype),y=i.write(A,m,r.dtype),x=m;return o&&(x=_.expandShapeToKeepDim(m,c)),{dataId:y,shape:x,dtype:r.dtype}}var yG={kernelName:ho,backendName:"cpu",kernelFunc:f6};function xG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Se(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;w.assert(_.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=_.computePool2DInfo(r.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))d=br({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=m2(p,r.shape,r.dtype,h,c,"max");d=n.makeTensorInfo(c.outShape,r.dtype,m.values)}return d}var bG={kernelName:mo,backendName:"cpu",kernelFunc:xG};function vG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Se(r,"maxPool3d");let c=_.computePool3DInfo(r.shape,a,o,1,i,l,u),d=n.data.get(r.dataId).values,p=c6(d,r.shape,r.dtype,w.computeStrides(r.shape),c,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var wG={kernelName:bc,backendName:"cpu",kernelFunc:vG};function kG(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Se([r,a],"maxPool3DGrad");let c=_.computePool3DInfo(a.shape,o,i,1,l,u),d=n.bufferSync(a),p=pU(d,c),h=c.strideDepth,m=c.strideHeight,f=c.strideWidth,g=c.dilationDepth,A=c.dilationHeight,y=c.dilationWidth,x=c.effectiveFilterDepth,b=c.effectiveFilterHeight,v=c.effectiveFilterWidth,k=x-1-c.padInfo.front,S=v-1-c.padInfo.left,C=b-1-c.padInfo.top,D=Ge(a.shape,"float32"),O=n.bufferSync(r);for(let E=0;E<c.batchSize;++E)for(let R=0;R<c.inChannels;++R)for(let T=0;T<c.inDepth;++T)for(let P=0;P<c.inHeight;++P)for(let U=0;U<c.inWidth;++U){let j=T-k,q=P-C,X=U-S,te=0;for(let ne=0;ne<x;ne+=g){let se=(j+ne)/h;if(!(se<0||se>=c.outDepth||Math.floor(se)!==se))for(let ae=0;ae<b;ae+=A){let Q=(q+ae)/m;if(!(Q<0||Q>=c.outHeight||Math.floor(Q)!==Q))for(let ce=0;ce<v;ce+=y){let de=(X+ce)/f;if(de<0||de>=c.outWidth||Math.floor(de)!==de)continue;let fe=x*b*v-1-p.get(E,se,Q,de,R),xe=ne*b*v+ae*v+ce,Ee=fe===xe?1:0;if(Ee===0)continue;te+=O.get(E,se,Q,de,R)*Ee}}}D.set(te,E,T,P,U,R)}return n.makeTensorInfo(D.shape,D.dtype,D.values)}var IG={kernelName:Yp,backendName:"cpu",kernelFunc:kG};function SG(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Se([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:d}=s,p=_.computePool2DInfo(i.shape,l,u,1,c,d),h=n.data.get(i.dataId).values,m=Ge(p.outShape,i.dtype,u6(h,i.shape,i.dtype,p).values),f=p.strideHeight,g=p.strideWidth,A=p.dilationHeight,y=p.dilationWidth,x=p.effectiveFilterHeight,b=p.effectiveFilterWidth,v=b-1-p.padInfo.left,k=x-1-p.padInfo.top,S=Ge(i.shape,"float32"),C=n.data.get(r.dataId).values,D=Ge(r.shape,"float32",C);for(let O=0;O<p.batchSize;++O)for(let E=0;E<p.inChannels;++E)for(let R=0;R<p.inHeight;++R)for(let T=0;T<p.inWidth;++T){let P=R-k,U=T-v,j=0;for(let q=0;q<x;q+=A){let X=(P+q)/f;if(!(X<0||X>=p.outHeight||Math.floor(X)!==X))for(let te=0;te<b;te+=y){let ne=(U+te)/g;if(ne<0||ne>=p.outWidth||Math.floor(ne)!==ne)continue;let se=x*b-1-m.get(O,X,ne,E),ae=q*b+te,Q=se===ae?1:0;if(Q===0)continue;j+=D.get(O,X,ne,E)*Q}}S.set(j,O,R,T,E)}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var CG={kernelName:Zp,backendName:"cpu",kernelFunc:SG};function TG(e,t,n,s,r){let a=w.computeStrides(t),o=m2(e,t,n,a,r,"max"),i=u6(e,t,n,r,!0,s);return[o.values,i.values]}var NG={kernelName:Jp,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Se(s,"MaxPoolWithArgmax");let u=l.data.get(s.dataId).values,c=_.computePool2DInfo(s.shape,r,a,[1,1],o),[d,p]=TG(u,s.shape,s.dtype,i,c),h=l.write(d,c.outShape,s.dtype),m=l.write(p,c.outShape,s.dtype);return[{dataId:h,shape:c.outShape,dtype:s.dtype},{dataId:m,shape:c.outShape,dtype:"int32"}]}};function EG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=w.parseAxisParam(a,r.shape),u=_.computeOutAndReduceShapes(r.shape,i)[1],c=w.sizeFromShape(u),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([c]));d.push(p);let h=Ca({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(h);let m=g2({inputs:{a:h,b:p},backend:n});d.push(m);let f=Id({inputs:{x:m},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),f}var RG={kernelName:go,backendName:"cpu",kernelFunc:EG};function DG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Se(r,"min");let i=w.parseAxisParam(a,r.shape),l=i,u=_.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=vs({inputs:{x:r},backend:n,attrs:{perm:u}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("min",l,c.shape.length);let[d,p]=_.computeOutAndReduceShapes(c.shape,l),h=w.sizeFromShape(p),m=w.makeZerosTypedArray(w.sizeFromShape(d),c.dtype),f=n.data.get(c.dataId).values;for(let A=0;A<m.length;++A){let y=A*h,x=f[y];for(let b=0;b<h;++b){let v=f[y+b];(Number.isNaN(v)||v<x)&&(x=v)}m[A]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(d,c.dtype,m);if(o){let A=_.expandShapeToKeepDim(d,i),y=wt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var _G={kernelName:Ao,backendName:"cpu",kernelFunc:DG};function $G(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;Se(r,"mirrorPad");let i=a.map((x,b)=>x[0]+r.shape[b]+x[1]),l=a.map(x=>x[0]),u=a.map((x,b)=>x[0]+r.shape[b]),c=o==="reflect"?0:1,d=n.data.get(r.dataId).values,p=r.shape.length,h=w.computeStrides(r.shape),m=w.sizeFromShape(i),f=i.length,g=w.computeStrides(i),A=w.getTypedArrayFromDType(r.dtype,m);for(let x=0;x<m;x++){let b=w.indexToLoc(x,f,g);for(let k=0;k<f;k++)b[k]<l[k]?b[k]=l[k]*2-b[k]-c:b[k]>=u[k]&&(b[k]=(u[k]-1)*2-b[k]+c);b=b.map((k,S)=>k-l[S]);let v=w.locToIndex(b,p,h);A[x]=d[v]}return{dataId:n.write(A,i,r.dtype),shape:i,dtype:r.dtype}}var FG={kernelName:xo,backendName:"cpu",kernelFunc:$G},OG=Gt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),PG=pn(bl,OG),MG={kernelName:bl,backendName:"cpu",kernelFunc:PG},zG=Wa(p5());function m6(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=w.parseAxisParam([i],r.shape),u=f6({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=_.expandShapeToKeepDim(u.shape,l),d=wt({inputs:{x:u},backend:n,attrs:{shape:c}}),p=h2({inputs:{a:r,b:d},backend:n}),h=C7({inputs:{x:p},backend:n}),m=Id({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=wt({inputs:{x:m},backend:n,attrs:{shape:c}}),g=g2({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var LG={kernelName:Oo,backendName:"cpu",kernelFunc:m6};function BG(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Se(r,"multinomial");let l=i?r:m6({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],d=n.data.get(l.dataId).values,p=[u,a],h=w.makeZerosTypedArray(w.sizeFromShape(p),"int32");for(let m=0;m<u;++m){let f=m*c,g=new Float32Array(c-1);g[0]=d[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[f+x];let A=zG.alea(o.toString()),y=m*a;for(let x=0;x<a;++x){let b=A();h[y+x]=g.length;for(let v=0;v<g.length;v++)if(b<g[v]){h[y+x]=v;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(p,"int32",h)}var WG={kernelName:Qp,backendName:"cpu",kernelFunc:BG},VG=fr.nonMaxSuppressionV3Impl;function UG(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;Se(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,{selectedIndices:d}=VG(u,c,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var HG={kernelName:kl,backendName:"cpu",kernelFunc:UG},GG=fr.nonMaxSuppressionV4Impl;function jG(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s;Se(r,"NonMaxSuppressionPadded");let c=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,{selectedIndices:p,validOutputs:h}=GG(c,d,o,i,l,u);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var qG={kernelName:Il,backendName:"cpu",kernelFunc:jG},XG=fr.nonMaxSuppressionV5Impl;function KG(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s;Se(r,"NonMaxSuppressionWithScore");let c=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,p=o,h=i,m=l,f=u,{selectedIndices:g,selectedScores:A}=XG(c,d,p,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var ZG={kernelName:Sl,backendName:"cpu",kernelFunc:KG};function YG(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s;Se(r,"oneHot");let l=w.sizeFromShape(r.shape),u=new Float32Array(l*a);u.fill(i);let c=n.data.get(r.dataId).values;for(let d=0;d<l;++d)c[d]>=0&&c[d]<a&&(u[d*a+c[d]]=o);return n.makeTensorInfo([...r.shape,a],"int32",u)}var JG={kernelName:vo,backendName:"cpu",kernelFunc:YG};function e0(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=mi({inputs:{input:s},backend:n}),a=e0({inputs:{x:r},backend:n}),o=ku({inputs:{input:s},backend:n}),i=e0({inputs:{x:o},backend:n}),l=us({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return x2({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var QG={kernelName:Hl,backendName:"cpu",kernelFunc:e0};function g6(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=mi({inputs:{input:s},backend:n}),a=g6({inputs:{x:r},backend:n}),o=ku({inputs:{input:s},backend:n}),i=e0({inputs:{x:o},backend:n}),l=us({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return x2({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var ej={kernelName:Cl,backendName:"cpu",kernelFunc:g6};function A6(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Qf({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=Qf({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=Iu({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var tj={kernelName:Tl,backendName:"cpu",kernelFunc:A6};function nj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Se(r,"pad");let i=a.map((y,x)=>y[0]+r.shape[x]+y[1]),l=a.map(y=>y[0]),u=n.data.get(r.dataId).values,c=w.sizeFromShape(r.shape),d=r.shape.length,p=w.computeStrides(r.shape),h=w.sizeFromShape(i),m=i.length,f=w.computeStrides(i),g=w.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let y=0;y<c;y++){let b=w.indexToLoc(y,d,p).map((k,S)=>k+l[S]),v=w.locToIndex(b,m,f);g[v]=u[y]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var y6={kernelName:wo,backendName:"cpu",kernelFunc:nj},sj=Gt((e,t)=>Math.pow(e,t)),rj=pn(ko,sj),aj={kernelName:ko,backendName:"cpu",kernelFunc:rj};function oj(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=d2(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var ij={kernelName:vc,backendName:"cpu",kernelFunc:oj},lj=pt(El,e=>1/e),uj={kernelName:El,backendName:"cpu",kernelFunc:lj};function cj(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Se(r,"resizeBilinear");let l=w.computeStrides(r.shape),[u,c]=i,[d,p,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(w.sizeFromShape([d,u,c,m])),A=[a&&u>1?p-1:p,a&&c>1?h-1:h],y=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=0,b=A[0]/y[0],v=A[1]/y[1];for(let k=0;k<d;k++)for(let S=0;S<u;S++){let C;o?C=b*(S+.5)-.5:C=b*S;let D=Math.max(0,Math.floor(C)),O=C-D,E=Math.min(p-1,Math.ceil(C)),R=k*l[0]+D*l[1],T=k*l[0]+E*l[1];for(let P=0;P<c;P++){let U;o?U=v*(P+.5)-.5:U=v*P;let j=Math.max(0,Math.floor(U)),q=U-j,X=Math.min(h-1,Math.ceil(U)),te=R+j*l[2],ne=T+j*l[2],se=R+X*l[2],ae=T+X*l[2];for(let Q=0;Q<m;Q++){let ce=f[te+Q],de=f[ne+Q],fe=f[se+Q],xe=f[ae+Q],Ee=ce+(fe-ce)*q,Re=de+(xe-de)*q,Pe=Ee+(Re-Ee)*O;g[x++]=Pe}}}return n.makeTensorInfo([d,u,c,m],"float32",g)}var dj={kernelName:Co,backendName:"cpu",kernelFunc:cj};function pj(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Se([a,r],"resizeBilinearGrad");let i=w.computeStrides(r.shape),[l,u,c,d]=r.shape,[,p,h]=a.shape,m=new Float32Array(l*u*c*d),f=[o&&p>1?u-1:u,o&&h>1?c-1:c],g=[o&&p>1?p-1:p,o&&h>1?h-1:h],A=f[0]/g[0],y=f[1]/g[1],x=n.data.get(a.dataId).values,b=0;for(let v=0;v<l;v++){let k=v*i[0];for(let S=0;S<p;S++){let C=S*A,D=Math.floor(C),O=Math.min(Math.ceil(C),u-1),E=k+D*i[1],R=k+O*i[1],T=C-D,P=1-T;for(let U=0;U<h;U++){let j=U*y,q=Math.floor(j),X=Math.min(Math.ceil(j),c-1),te=j-q,ne=1-te,se=E+q*i[2],ae=E+X*i[2],Q=R+q*i[2],ce=R+X*i[2],de=P*ne,fe=P*te,xe=T*ne,Ee=T*te;for(let Re=0;Re<d;Re++){let Pe=x[b++];m[se+Re]+=Pe*de,m[ae+Re]+=Pe*fe,m[Q+Re]+=Pe*xe,m[ce+Re]+=Pe*Ee}}}}return n.makeTensorInfo([l,c,u,d],"float32",m)}var hj={kernelName:nh,backendName:"cpu",kernelFunc:pj};function fj(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Se(r,"resizeNearestNeighbor");let l=w.computeStrides(r.shape),[u,c]=i,[d,p,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(d*u*c*m),A=[a&&u>1?p-1:p,a&&c>1?h-1:h],y=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=A[0]/y[0],b=A[1]/y[1],v=0;for(let k=0;k<d;k++){let S=k*l[0];for(let C=0;C<u;C++){let D=o?x*(C+.5):x*C,O=Math.min(p-1,a?Math.round(D):Math.floor(D));o&&(O=Math.max(0,O));let E=S+O*l[1];for(let R=0;R<c;R++){let T=o?b*(R+.5):b*R,P=Math.min(h-1,a?Math.round(T):Math.floor(T));o&&(P=Math.max(0,P));let U=E+P*l[2];for(let j=0;j<m;j++){let q=f[U+j];g[v++]=q}}}}return n.makeTensorInfo([d,u,c,m],r.dtype,g)}var mj={kernelName:wc,backendName:"cpu",kernelFunc:fj};function gj(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Se([a,r],"resizeNearestNeighborGrad");let i=w.computeStrides(r.shape),l=w.computeStrides(a.shape),[u,c,d,p]=r.shape,[,h,m]=a.shape,f=new Float32Array(u*c*d*p),g=n.data.get(a.dataId).values,A=[o&&h>1?c-1:c,o&&m>1?d-1:d],y=[o&&h>1?h-1:h,o&&m>1?m-1:m],x=A[0]/y[0],b=A[1]/y[1],v=1/x,k=1/b,S=Math.ceil(v)*2+2,C=Math.ceil(k)*2+2;for(let D=0;D<u;D++){let O=D*i[0];for(let E=0;E<c;E++){let R=O+E*i[1],T=Math.floor(E*v),P=Math.floor(T-S/2);for(let U=0;U<d;U++){let j=R+U*i[2],q=Math.floor(U*k),X=Math.floor(q-C/2);for(let te=0;te<p;te++){let ne=0;for(let se=0;se<S;se++){let ae=se+P;if(ae<0||ae>=h)continue;let Q=O+ae*l[1],ce=ae*x,de=Math.min(c-1,o?Math.round(ce):Math.floor(ce));if(E===de)for(let fe=0;fe<C;fe++){let xe=fe+X;if(xe<0||xe>=m)continue;let Ee=Q+xe*l[2],Re=xe*b,Pe=Math.min(d-1,o?Math.round(Re):Math.floor(Re));U===Pe&&(ne+=g[Ee+te])}}f[j+te]=ne}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var Aj={kernelName:th,backendName:"cpu",kernelFunc:gj};function yj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Se(r,"reverse");let o=r.shape.length,i=w.parseAxisParam(a,r.shape);if(o===0)return br({inputs:{x:r},backend:n});let l=new Kt(r.shape,r.dtype),u=n.bufferSync(r);for(let c=0;c<l.size;c++){let d=l.indexToLoc(c),p=d.slice();i.forEach(h=>p[h]=r.shape[h]-1-p[h]),l.set(u.get(...p),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var xj={kernelName:No,backendName:"cpu",kernelFunc:yj},bj={kernelName:Gl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[u,c,d,p]=s.shape,[h,m]=_.getImageCenter(o,c,d),f=255,g=Math.sin(r),A=Math.cos(r),y=i.data.get(s.dataId).values;for(let b=0;b<u;b++){let v=b*d*c*p;for(let k=0;k<c;k++){let S=k*(d*p);for(let C=0;C<d;C++){let D=C*p;for(let O=0;O<p;O++){let E=[u,k,C,O],R=E[2],T=E[1],P=(R-h)*A-(T-m)*g,U=(R-h)*g+(T-m)*A;P=Math.round(P+h),U=Math.round(U+m);let j=a;if(typeof a!="number"&&(O===3?j=f:j=a[O]),P>=0&&P<d&&U>=0&&U<c){let X=U*(d*p),te=P*p,ne=v+X+te+O;j=y[ne]}let q=v+S+D+O;l[q]=j}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},vj=pt(Eo,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),wj={kernelName:Eo,backendName:"cpu",kernelFunc:vj};function x6(e,t,n,s,r,a,o,i,l,u){let c=[s/r,r],d=e.values,p=t.values;if(s===0)return Ge(n,t.dtype);let h=Ge(c,t.dtype);h.values.fill(l);for(let m=0;m<a;m++){let f=[],g=0;for(let A=0;A<o;A++){let y=d[m*o+A];f.push(y),g+=y*i[A]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let A=0;A<r;A++)u?h.values[g*r+A]+=p[m*r+A]:h.values[g*r+A]=t.rank===0?p[0]:p[m*r+A]}return h}function kj(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:d}=_.calculateShapes(a,r,o),p=!0,h=n.bufferSync(r),m=n.bufferSync(a),f=x6(h,m,o,d,u,l,i,c,0,p);return n.makeTensorInfo(o,f.dtype,f.values)}var Ij={kernelName:Dl,backendName:"cpu",kernelFunc:kj};function Sj(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;Se([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=Ds(r.dtype,a.dtype),d=w.makeZerosTypedArray(w.sizeFromShape(r.shape),c),p=0,h=o===0||o>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let m=0;m<i.length;m++)for(let f=0;f<h;f++)i[m]===1?d[p++]=l[m]:d[p++]=u[m];return n.makeTensorInfo(r.shape,c,d)}var Cj={kernelName:_l,backendName:"cpu",kernelFunc:Sj},Tj=_.SELU_SCALEALPHA,Nj=_.SELU_SCALE,Ej=pt($l,e=>e>=0?Nj*e:Tj*(Math.exp(e)-1)),Rj={kernelName:$l,backendName:"cpu",kernelFunc:Ej},Dj=pt(Pl,e=>e<0?-1:e>0?1:0),_j={kernelName:Pl,backendName:"cpu",kernelFunc:Dj},$j=pt(Do,e=>Math.sin(e)),Fj={kernelName:Do,backendName:"cpu",kernelFunc:$j},Oj=pt(Ol,e=>Math.sinh(e)),Pj={kernelName:Ol,backendName:"cpu",kernelFunc:Oj},Mj=11920928955078125e-23,b6=Math.log(Mj)+2,zj=pt(Ml,e=>{let t=e>-b6,n=e<b6,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),Lj={kernelName:Ml,backendName:"cpu",kernelFunc:zj};function Bj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Se([r],"spaceToBatchND");let i=w.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let u=y6.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=_.getReshaped(u.shape,a,i,!1),d=_.getPermuted(c.length,a.length,!1),p=_.getReshapedPermuted(u.shape,a,i,!1),f=wt({inputs:{x:u},backend:n,attrs:{shape:c}}),y=vs({inputs:{x:f},backend:n,attrs:{perm:d}}),v=wt({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),v}var Wj={kernelName:zl,backendName:"cpu",kernelFunc:Bj};function Vj(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values[0],[d,p,h,m,f]=G7(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],s.dtype,new Int32Array(f))]}var Uj={kernelName:sh,backendName:"cpu",kernelFunc:Vj};function Hj(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[u,c,d]=j7(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var Gj={kernelName:rh,backendName:"cpu",kernelFunc:Hj};function jj(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=p2(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var qj={kernelName:ah,backendName:"cpu",kernelFunc:jj};function Xj(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=p2(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var Kj={kernelName:oh,backendName:"cpu",kernelFunc:Xj};function Zj(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:p}=_.calculateShapes(a,r,i),h=!1,m=n.bufferSync(r),f=n.bufferSync(a),g=n.data.get(o.dataId).values[0],A=x6(m,f,i,p,c,u,l,d,g,h);return n.makeTensorInfo(i,A.dtype,A.values)}var Yj={kernelName:ih,backendName:"cpu",kernelFunc:Zj};function Jj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=w.parseAxisParam(o,r.shape)[0],l=_.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(d=>{let p=[...c];p[i]=d;let h=gi({inputs:{x:r},backend:n,attrs:{begin:u,size:p}});return u[i]+=d,h})}var Qj={kernelName:Ll,backendName:"cpu",kernelFunc:Jj},eq={kernelName:kc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Se(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},tq=pt(ia,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),nq={kernelName:ia,backendName:"cpu",kernelFunc:tq};function sq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:p}=s;Se(r,"stridedSlice");let{nonStrided:h,$begin:m,$strides:f,size:g,newShape:A,outShape:y}=Nn.sliceInfo(r.shape,a,o,i,l,u,c,d,p),x=wt({inputs:{x:r},backend:n,attrs:{shape:A}}),b;if(h){let k=gi({inputs:{x},backend:n,attrs:{begin:m,size:g}});b=wt({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else{let k=n.bufferSync(x),S=X7(y,k,f,m);b=n.makeTensorInfo(S.shape,S.dtype,S.values)}let v=wt({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var rq={kernelName:Bl,backendName:"cpu",kernelFunc:sq};function aq(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:d}=t,p=n.data.get(c.dataId).values,h=n.data.get(d.dataId).values,[m,f]=K7(p,h,r,a,o,i,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var oq={kernelName:lh,backendName:"cpu",kernelFunc:aq};function iq(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[u,c,d]=Z7(i,l,r),p=c.length;return[n.makeTensorInfo([p,2],"int32",u),n.makeTensorInfo([p],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var lq={kernelName:uh,backendName:"cpu",kernelFunc:iq};function uq(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=Y7(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var cq={kernelName:ch,backendName:"cpu",kernelFunc:uq},dq=pt(zo,e=>Math.tan(e)),pq={kernelName:zo,backendName:"cpu",kernelFunc:dq},hq=pt(Lo,e=>Math.tanh(e)),fq={kernelName:Lo,backendName:"cpu",kernelFunc:hq};function mq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Se(r,"tile");let o=Q7(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var gq={kernelName:oa,backendName:"cpu",kernelFunc:mq};function Aq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Se(r,"topk");let i=n.data.get(r.dataId).values,[l,u]=t6(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var yq={kernelName:Wl,backendName:"cpu",kernelFunc:Aq};function xq(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=n,[c,d,p,h]=r.shape,[m,f]=u!=null?u:[d,p],g=[c,m,f,h],A=w.computeStrides(r.shape),y=A[0],x=A[1],b=A[2],v=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(g));v.fill(l);let k=s.data.get(r.dataId).values,S=s.data.get(a.dataId).values;for(let D=0;D<c;++D){let O=a.shape[0]===1?S:S.subarray(D*8,D*8+8);for(let E=0;E<m;++E)for(let R=0;R<f;++R)for(let T=0;T<h;++T){let P,U=O[6]*R+O[7]*E+1;if(U===0)continue;let j=(O[0]*R+O[1]*E+O[2])/U,q=(O[3]*R+O[4]*E+O[5])/U,X=v6(j,p,i),te=v6(q,d,i);switch(o){case"nearest":P=Sq(k,d,p,y,x,b,D,te,X,T,l);break;case"bilinear":P=Cq(k,d,p,y,x,b,D,te,X,T,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let ne=D*y+E*x+R*b+T;v[ne]=P}return s.makeTensorInfo(g,r.dtype,v)}return{dataId:s.write(v,g,r.dtype),shape:r.shape,dtype:r.dtype}}var bq={kernelName:Vl,backendName:"cpu",kernelFunc:xq};function v6(e,t,n){switch(n){case"reflect":return vq(e,t);case"wrap":return wq(e,t);case"nearest":return Iq(e,t);case"constant":default:return kq(e,t)}}function vq(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return w.clamp(0,n,t-1)}function wq(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return w.clamp(0,n,t-1)}function kq(e,t){return e}function Iq(e,t){return w.clamp(0,e,t-1)}function Sd(e,t,n,s,r,a,o,i,l,u,c){let d=o*s+i*r+l*a+u;return 0<=i&&i<t&&0<=l&&l<n?e[d]:c}function Sq(e,t,n,s,r,a,o,i,l,u,c){let d=Math.round(i),p=Math.round(l);return Sd(e,t,n,s,r,a,o,d,p,u,c)}function Cq(e,t,n,s,r,a,o,i,l,u,c){let d=Math.floor(i),p=Math.floor(l),h=d+1,m=p+1,f=(m-l)*Sd(e,t,n,s,r,a,o,d,p,u,c)+(l-p)*Sd(e,t,n,s,r,a,o,d,m,u,c),g=(m-l)*Sd(e,t,n,s,r,a,o,h,p,u,c)+(l-p)*Sd(e,t,n,s,r,a,o,h,m,u,c);return(h-i)*f+(i-d)*g}function Tq(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Se(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:u}=n6(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var Nq={kernelName:dh,backendName:"cpu",kernelFunc:Tq};function Eq(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==a&&(l[u++]=r.shape[h]);let c=new Array(o).fill(0),d=r.shape.slice();d[a]=1;let p=new Array(i);for(let h=0;h<p.length;h++){c[a]=h;let m=gi({inputs:{x:r},backend:n,attrs:{begin:c,size:d}});p[h]=wt({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return p}var Rq={kernelName:Ul,backendName:"cpu",kernelFunc:Eq};function Dq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;Se(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,u=[],c=[],d=i-l,p=a;for(let m=0;m<d;++m){let f=Qf({inputs:{input:p},backend:n,attrs:{dim:m+1}});p=f,c.push(f)}for(let m=0;m<o;++m){let f=w.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),A=I7({inputs:{a:g,b:p},backend:n}),y=Ca({inputs:{x:A},backend:n,attrs:{dtype:"float32"}}),x=Yf({inputs:{a:y,b:r},backend:n}),b=Id({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(b),c.push(g),c.push(A),c.push(y),c.push(x),c.push(b)}let h=A6({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var _q={kernelName:Ic,backendName:"cpu",kernelFunc:Dq},$q=[BV,$W,VV,HV,LW,jV,XV,ZV,JV,eU,nU,rU,oU,uU,dU,fU,gU,yU,bU,zV,wU,IU,CU,NU,MW,WW,RU,FW,_U,FU,MU,LU,OU,UU,GU,WU,qU,KU,YU,QU,tH,sH,rH,oH,lH,cH,dH,hH,pH,A2,gH,DV,yH,VW,CH,UW,TH,GW,$H,FH,PH,qW,LH,WH,UH,GH,qH,KW,YW,OW,KH,$U,YH,QH,tG,_V,QW,tV,sG,sV,aG,lG,cG,hG,mG,AG,aV,bG,wG,IG,CG,NG,yG,RG,_G,iV,FG,MG,WG,uV,dV,HG,qG,ZG,hV,JG,ej,tj,y6,aj,FV,gV,ij,PW,uj,OV,PV,MV,dj,hj,mj,Aj,xj,bj,wj,yV,Ij,Cj,Rj,bV,_j,Fj,Pj,vV,LG,Lj,Wj,Uj,Gj,qj,Kj,Yj,Qj,IV,eq,CV,nq,rq,oq,lq,cq,RV,fH,pq,fq,gq,yq,fV,bq,Nq,Rq,_q,QG];for(let e of $q)la(e);var w6={};Le(w6,{assertNotComplex:()=>Cu,bindCanvasToFramebuffer:()=>Gq,bindColorTextureToFramebuffer:()=>r0,bindTextureToProgramUniformSampler:()=>M6,bindTextureUnit:()=>F6,bindVertexBufferToProgramAttribute:()=>w2,callAndCheck:()=>ke,canBeRepresented:()=>k6,createFragmentShader:()=>C6,createFramebuffer:()=>$6,createProgram:()=>T6,createStaticIndexBuffer:()=>R6,createStaticVertexBuffer:()=>E6,createTexture:()=>D6,createVertexShader:()=>S6,getBatchDim:()=>yi,getExtensionOrThrow:()=>Nd,getFramebufferErrorMessage:()=>z6,getMaxTexturesInShader:()=>V6,getNumChannels:()=>Uq,getProgramUniformLocation:()=>P6,getProgramUniformLocationOrThrow:()=>O6,getRowsCols:()=>xi,getShapeAs3D:()=>a0,getTextureShapeFromLogicalShape:()=>B6,getWebGLDisjointQueryTimerVersion:()=>U6,getWebGLErrorMessage:()=>I6,getWebGLMaxTextureSize:()=>W6,hasExtension:()=>ks,isCapableOfRenderingToFloatTexture:()=>H6,isDownloadFloatTextureEnabled:()=>G6,isReshapeFree:()=>Rd,isWebGLFenceEnabled:()=>j6,isWebGLVersionEnabled:()=>I2,linkProgram:()=>N6,resetMaxTextureSize:()=>jq,resetMaxTexturesInShader:()=>qq,unbindColorTextureFromFramebuffer:()=>k2,unbindTextureUnit:()=>Hq,validateFramebuffer:()=>Ed,validateProgram:()=>s0,validateTextureSize:()=>_6});var Ai={},b2={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function t0(e,t){Ai[e]=t}function vr(e){if(!(e in Ai)){let n=Oq(e);if(n!==null)Ai[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Ai[e];return t.isContextLost()?(delete Ai[e],vr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Ai[e])}function Fq(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function Oq(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=Fq(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Ai[e]},!1),e===1?t.getContext("webgl",b2)||t.getContext("experimental-webgl",b2):t.getContext("webgl2",b2)}var Cd;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Cd||(Cd={}));var ws;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(ws||(ws={}));var xn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(xn||(xn={}));function Td(e,t){return[t,e]}function Pq(e,t){return e*t}function n0(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function Su(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function Mq(e,t){let[n,s]=Su(e,t);return n*s*4}function v2(e,t){let n=e,s,r,a,o,i,l,u,c,d,p;return Y().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,u=4,c=1,d=n.HALF_FLOAT,p=n.FLOAT):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,u=4,c=4,d=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT),l=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:d,textureTypeFloat:p}}function ke(e,t){let n=t();return Y().getBool("DEBUG")&&zq(e),n}function zq(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+I6(e,t))}var Lq=596e-10,Bq=65504;function k6(e){return!!(Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||Lq<Math.abs(e)&&Math.abs(e)<Bq)}function I6(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Nd(e,t){return Hr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function S6(e,t){let n=Hr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ke(e,()=>e.shaderSource(n,t)),ke(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function C6(e,t){let n=Hr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ke(e,()=>e.shaderSource(n,t)),ke(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw Vq(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var Wq=/ERROR: [0-9]+:([0-9]+):/g;function Vq(e,t){let n=Wq.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
`),a=r.length.toString().length+2,o=r.map((d,p)=>w.rightPad((p+1).toString(),a)+d),i=0;for(let d=0;d<o.length;d++)i=Math.max(o[d].length,i);let l=o.slice(0,s-1),u=o.slice(s-1,s),c=o.slice(s);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${w.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
`))}function T6(e){return Hr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function N6(e,t){if(ke(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function s0(e,t){if(ke(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function E6(e,t){let n=Hr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ke(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ke(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function R6(e,t){let n=Hr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ke(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ke(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Uq(){return Y().getNumber("WEBGL_VERSION")===2?1:4}function D6(e){return Hr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function _6(e,t){let n=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function $6(e){return Hr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function w2(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(ke(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),ke(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),ke(e,()=>e.enableVertexAttribArray(i)),!0)}function F6(e,t,n){L6(e,n),ke(e,()=>e.activeTexture(e.TEXTURE0+n)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function Hq(e,t){L6(e,t),ke(e,()=>e.activeTexture(e.TEXTURE0+t)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function O6(e,t,n){return Hr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function P6(e,t,n){return e.getUniformLocation(t,n)}function M6(e,t,n,s){ke(e,()=>F6(e,t,s)),ke(e,()=>e.uniform1i(n,s))}function Gq(e){ke(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ke(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ke(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function r0(e,t,n){ke(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ke(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function k2(e,t){ke(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ke(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Ed(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+z6(e,t))}function z6(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Hr(e,t,n){let s=ke(e,()=>t());if(s==null)throw new Error(n);return s}function L6(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function yi(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function xi(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function a0(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[yi(e),...xi(e)]),t}function B6(e,t=!1){let n=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?w.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let s=w.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=yi(e),a=2,o=2;return e.length&&([a,o]=xi(e)),s=r*(a/2)*(o/2),w.sizeToSquarishShape(s).map(i=>i*2)}return w.sizeToSquarishShape(s)}function o0(e){return e%2==0}function Rd(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||o0(n)&&o0(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&o0(e[0])&&o0(t[0])}var i0,l0;function W6(e){if(i0==null){let t=vr(e);i0=t.getParameter(t.MAX_TEXTURE_SIZE)}return i0}function jq(){i0=null}function qq(){l0=null}function V6(e){if(l0==null){let t=vr(e);l0=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,l0)}function U6(e){if(e===0)return 0;let t,n=vr(e);return ks(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ks(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ks(e,t){return e.getExtension(t)!=null}function I2(e){try{if(vr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function H6(e){if(e===0)return!1;let t=vr(e);if(e===1){if(!ks(t,"OES_texture_float"))return!1}else if(!ks(t,"EXT_color_buffer_float"))return!1;return S2(t)}function G6(e){if(e===0)return!1;let t=vr(e);if(e===1){if(!ks(t,"OES_texture_float")||!ks(t,"WEBGL_color_buffer_float"))return!1}else{if(ks(t,"EXT_color_buffer_float"))return S2(t);let s="EXT_color_buffer_half_float";if(ks(t,s)){let r=t.getExtension(s);return Xq(t,r)}return!1}return S2(t)}function S2(e){let t=v2(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function Xq(e,t){let n=v2(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function j6(e){return e!==2?!1:vr(e).fenceSync!=null}function Cu(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var $e=Y();$e.registerFlag("HAS_WEBGL",()=>$e.getNumber("WEBGL_VERSION")>0);$e.registerFlag("WEBGL_VERSION",()=>I2(2)?2:I2(1)?1:0);$e.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);$e.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>$e.get("WEBGL_VERSION")===2);$e.registerFlag("WEBGL_CPU_FORWARD",()=>!0);$e.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);$e.registerFlag("WEBGL_PACK",()=>$e.getBool("HAS_WEBGL"));$e.registerFlag("WEBGL_PACK_NORMALIZATION",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_CLIP",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_REDUCE",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_LAZILY_UNPACK",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_CONV_IM2COL",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>W6($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>V6($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=$e.getNumber("WEBGL_VERSION");return e===0?0:U6(e)});$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>$e.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Fc.isMobile());$e.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>H6($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>$e.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:$e.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));$e.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>G6($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_FENCE_API_ENABLED",()=>j6($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>$e.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);$e.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});$e.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Fc.isMobile()&&$e.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});$e.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);$e.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);$e.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);$e.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function _n(){let e,t,n,s,r,a,o,i,l,u;return Y().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function bi(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function u0(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function Kq(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function Zq(e,t,n="index"){let s=e.map((a,o)=>o),r=Kq(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function C2(e){let t=w.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function T2(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var q6=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,{getBroadcastDims:X6}=_;function Yq(e,t,n){let s=[];if(e.forEach(h=>{let m=w.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${m>1?`[${m}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:f}=N2(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(f.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
`),a=e.map(h=>Jq(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
`),o=t.texShape,i=_n(),l=tX(i),u,c,d=rX(i);return t.isPacked?(u=Qq(t.logicalShape,o,n.enableShapeUniforms),c=sX(i)):(u=eX(t.logicalShape,o,n.enableShapeUniforms),c=nX(i)),n.packedInputs&&(d+=lX),[d,l,c,r,u,a,n.userCode].join(`
`)}function Tu(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return bX(e,t);case 1:return wX(e,t);case 2:return IX(e,t);case 3:return CX(e,t);case 4:return NX(e,t);case 5:return EX(e);case 6:return RX(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function K6(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return xX(e);case 1:return vX(e,t);case 2:return kX(e,t);case 3:return SX(e,t);default:return TX(e,t)}}function Jq(e,t,n=!1,s){let r="";n?r+=K6(e,s):r+=Tu(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=DX(e,t):r+=_X(e,t)),r}function Qq(e,t,n){switch(e.length){case 0:return Z6();case 1:return uX(e,t,n);case 2:return AX(e,t,n);case 3:return dX(e,t,n);default:return hX(e,t,n)}}function eX(e,t,n){switch(e.length){case 0:return Z6();case 1:return cX(e,t,n);case 2:return yX(e,t,n);case 3:return pX(e,t,n);case 4:return fX(e,t,n);case 5:return mX(e,t);case 6:return gX(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function tX(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function nX(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function sX(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function rX(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${aX}
${oX}
${iX}
`}var aX=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,oX=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,iX=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,lX=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function Z6(){return`
int getOutputCoords() {
return 0;
}
`}function uX(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${s[1]}.0);
}
`:s[1]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${s[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
}
`}function cX(e,t,n){return t[0]===1?n?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?n?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function dX(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function pX(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${u0(["r","c","d"],e)}
return ivec3(r, c, d);
}
`;let s=bi(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${s}
return ivec3(r, c, d);
}
`}function hX(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let u=2;u<e.length-1;u++)o*=e[e.length-u-1],i=`
int b${u} = index / ${o};
index -= b${u} * ${o};
`+i,l=`b${u}, `+l;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
${i}
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${l});
}
`}function fX(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${u0(["r","c","d","d2"],e)}
return ivec4(r, c, d, d2);
}
`;let s=bi(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${s}
return ivec4(r, c, d, d2);
}
`}function mX(e,t){let n=bi(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function gX(e,t){let n=bi(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function AX(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
}
`;let r=Math.ceil(e[1]/2);return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function yX(e,t,n){return w.arraysEqual(e,t)?n?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function vi(e){return`offset${e}`}function xX(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=_n();return`
vec4 ${n}() {
return ${s.texture2D}(${t}, halfCR);
}
`}function bX(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
float ${s}() {
return sampleTexture(${n}, halfCR);
}
`;let o=vi(n);if(t)return`
float ${s}() {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
return sampleTexture(${n}, uv);
}
`;let[i,l]=e.shapeInfo.texShape;return`
float ${s}() {
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
return sampleTexture(${n}, uv);
}
`}function vX(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=_n();if(t)return`
vec4 ${s}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${a.texture2D}(${n}, uv);
}
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
vec4 ${s}(int index) {
vec2 uv = packedUVfrom1D(
${o[0]}, ${o[1]}, index);
return ${a.texture2D}(${n}, uv);
}
`}function wX(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
float ${s}(int index) {
${Nu(e)}
}
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
float ${s}(int index) {
return sampleTexture(${n}, halfCR);
}
`;let i=vi(n);return o===1?t?`
float ${s}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
return sampleTexture(${n}, uv);
}
`:a===1?t?`
float ${s}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${s}(int index) {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
return sampleTexture(${n}, uv);
}
`}function kX(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=_n();if(a!=null&&w.arraysEqual(n,a))return t?`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return ${l.texture2D}(${s}, uv);
}
`:`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
return ${l.texture2D}(${s}, uv);
}
`;if(t)return`
vec4 ${r}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${l.texture2D}(${s}, uv);
}
`;let u=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(n[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${c}, ${u[0]}, ${u[1]}, row, col);
return ${l.texture2D}(${s}, uv);
}
`}function IX(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&w.arraysEqual(n,a)){if(t)return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`;let p=a[0],h=a[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`}let{newShape:o,keptDims:i}=w.squeezeShape(n),l=o;if(l.length<n.length){let p=Eu(e,l),h=["row","col"];return`
${Tu(p,t)}
float ${r}(int row, int col) {
return ${r}(${Ru(h,i)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
${Nu(e)}
}
`;let u=a[0],c=a[1],d=vi(s);return c===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
return sampleTexture(${s}, uv);
}
`:u===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
return sampleTexture(${s}, uv);
}
`:t?`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s}Shape[1] + col + ${d};
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n[1]} + col + ${d};
vec2 uv = uvFromFlat(${u}, ${c}, index);
return sampleTexture(${s}, uv);
}
`}function SX(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let p=n.slice(1),h=[1,2],m=Eu(e,p),f=["b","row","col"];return`
${K6(m,t)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${Ru(f,h)});
}
`}let i=_n();if(t)return`
vec4 ${r}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${i.texture2D}(${s}, uv);
}
`;let l=o[0],u=o[1],c=Math.ceil(n[2]/2),d=c*Math.ceil(n[1]/2);return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${l}, ${u}, ${d}, ${c}, b, row, col);
return ${i.texture2D}(${s}, uv);
}
`}function CX(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=w.squeezeShape(n),u=i;if(u.length<n.length){let f=Eu(e,u),g=["row","col","depth"];return`
${Tu(f,t)}
float ${r}(int row, int col, int depth) {
return ${r}(${Ru(g,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${a}, ${o}, 1)));
${Nu(e)}
}
`;let c=e.shapeInfo.texShape,d=c[0],p=c[1],h=e.shapeInfo.flatOffset;if(p===a&&h==null)return t?`
float ${r}(int row, int col, int depth) {
int stride1 = ${s}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${o}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${d}.0);
return sampleTexture(${s}, uv);
}
`;if(p===o&&h==null)return t?`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
return sampleTexture(${s}, uv);
}
`;let m=vi(s);return t?`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${s}Shape[1] * ${s}Shape[2];
int stride1 = ${s}Shape[2];
int index = row * ${a} + col * ${o} + depth + ${m};
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${o} + depth + ${m};
vec2 uv = uvFromFlat(${d}, ${p}, index);
return sampleTexture(${s}, uv);
}
`}function TX(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=_n();if(t)return`
vec4 ${s}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${n}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
}
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],u=l[0],c=l[1],d=Math.ceil(a[o-1]/2),p=d*Math.ceil(a[o-2]/2),h="int b, int row, int col",m=`b * ${p} + (row / 2) * ${d} + (col / 2)`;for(let f=2;f<o-1;f++)h=`int b${f}, `+h,p*=a[o-f-1],m=`b${f} * ${p} + `+m;return`
vec4 ${s}(${h}) {
int index = ${m};
int texR = index / ${c};
int texC = index - texR * ${c};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${u});
return ${r.texture2D}(${n}, uv);
}
`}function NX(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:u}=w.squeezeShape(n);if(l.length<n.length){let y=Eu(e,l),x=["row","col","depth","depth2"];return`
${Tu(y,t)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${Ru(x,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${o}, ${a}, 1)));
${Nu(e)}
}
`;let c=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1],m=`int stride2 = ${s}Shape[3];`,f=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===i&&c==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
${m}
${f}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${o}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`;if(h===a&&c==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n[1]*n[2]}, ${n[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`;let A=vi(s);return t?`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${m}
${f}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${A});
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${o} +
depth * ${a} + depth2;
vec2 uv = uvFromFlat(${p}, ${h}, index + ${A});
return sampleTexture(${s}, uv);
}
`}function EX(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:u}=w.squeezeShape(t);if(l.length<t.length){let f=Eu(e,l),g=["row","col","depth","depth2","depth3"];return`
${Tu(f)}
float ${s}(int row, int col, int depth, int depth2, int depth3) {
return ${s}(${Ru(g,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${i}, ${o}, ${a}, ${r})) +
depth3;
${Nu(e)}
}
`;let c=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1];if(h===i&&c==null)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${o}, ${a}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(h===r&&c==null)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let m=vi(n);return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${o} + depth * ${a} +
depth2 * ${r} + depth3 + ${m};
vec2 uv = uvFromFlat(${p}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function RX(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=w.squeezeShape(t);if(r.length<t.length){let g=Eu(e,r),A=["row","col","depth","depth2","depth3","depth4"];return`
${Tu(g)}
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${s}(${Ru(A,a)});
}
`}let o=t[5],i=t[4]*o,l=t[3]*i,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${c}, ${u}, ${l}, ${i})) +
dot(
vec2(depth3, depth4),
vec2(${o}, 1)));
${Nu(e)}
}
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,h=p[0],m=p[1];if(m===c&&d==null)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${i}, ${o})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(m===o&&d==null)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let f=vi(n);return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${c} + col * ${u} + depth * ${l} +
depth2 * ${i} + depth3 * ${o} + depth4 + ${f};
vec2 uv = uvFromFlat(${h}, ${m}, index);
return sampleTexture(${n}, uv);
}
`}function Nu(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function DX(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=X6(e.shapeInfo.logicalShape,t.logicalShape),l=yt(o),u=o-a,c,d=["x","y","z","w","u","v"];a===0?c="":o<2&&i.length>=1?c="coords = 0;":c=i.map(y=>`coords.${d[y+u]} = 0;`).join(`
`);let p="";o<2&&a>0?p="coords":p=e.shapeInfo.logicalShape.map((y,x)=>`coords.${d[x+u]}`).join(", ");let h="return outputValue;",f=w.sizeFromShape(e.shapeInfo.logicalShape)===1,A=w.sizeFromShape(t.logicalShape)===1;if(a===1&&!f&&!A)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(f&&!A)o===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(i.length){let y=a-2,x=a-1;i.indexOf(y)>-1&&i.indexOf(x)>-1?h="return vec4(outputValue.x);":i.indexOf(y)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(x)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${c}
vec4 outputValue = get${s}(${p});
${h}
}
`}function _X(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&w.arraysEqual(o,a))return`
float ${r}() {
return sampleTexture(${n}, resultUV);
}
`;let u=yt(l),c=X6(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,p,h=["x","y","z","w","u","v"];i===0?p="":l<2&&c.length>=1?p="coords = 0;":p=c.map(f=>`coords.${h[f+d]} = 0;`).join(`
`);let m="";return l<2&&i>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+d]}`).join(", "),`
float ${r}() {
${u} coords = getOutputCoords();
${p}
return get${s}(${m});
}
`}function yt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function N2(e,t,n){let{newShape:s,keptDims:r}=w.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!w.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function Eu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Ru(e,t){return t.map(n=>e[n]).join(", ")}function $X(e,t,n,s){let r=n.map((x,b)=>{let v={logicalShape:x.shape,texShape:x.isUniform?null:x.texData.texShape,isUniform:x.isUniform,isPacked:x.isUniform?!1:x.texData.isPacked,flatOffset:null};return x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0&&(v.flatOffset=x.texData.slice.flatOffset),{name:t.variableNames[b],shapeInfo:v}}),a=r.map(x=>x.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=Yq(r,o,t),l=e.createProgram(i),u=null,c=e.getUniformLocation(l,"NAN",!1);Y().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(l,"INFINITY",!1));let d=!1,p={},h={},m={};for(let x=0;x<t.variableNames.length;x++){let b=t.variableNames[x];p[b]=e.getUniformLocation(l,b,d),p[`offset${b}`]=e.getUniformLocation(l,`offset${b}`,d),t.enableShapeUniforms&&(h[`${b}Shape`]=e.getUniformLocation(l,`${b}Shape`,d),m[`${b}TexShape`]=e.getUniformLocation(l,`${b}TexShape`,d))}let f,g,A;t.enableShapeUniforms&&(f=e.getUniformLocation(l,"outShape",d),A=e.getUniformLocation(l,"outShapeStrides",d),g=e.getUniformLocation(l,"outTexShape",d));let y=[];return t.customUniforms&&t.customUniforms.forEach((x,b)=>{y[b]=e.getUniformLocation(l,x.name,d)}),{program:t,source:i,webGLProgram:l,uniformLocations:p,customUniformLocations:y,inShapeInfos:a,outShapeInfo:o,infLoc:u,nanLoc:c,inShapesLocations:h,inTexShapesLocations:m,outShapeLocation:f,outShapeStridesLocation:A,outTexShapeLocation:g}}function Y6(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!w.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!w.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function FX(e,t,n,s,r){t.program.enableShapeUniforms||(Y6(t.inShapeInfos,n),Y6([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),Y().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let c=t.program.variableNames[u],d=t.uniformLocations[c],p=t.uniformLocations[`offset${c}`],h=t.inShapesLocations[`${c}Shape`],m=t.inTexShapesLocations[`${c}TexShape`];if(h){let{uniformShape:f}=N2(t.program.packedInputs,l.shape,l.texData.texShape);switch(f.length){case 1:e.gl.uniform1iv(h,new Int32Array(f));break;case 2:e.gl.uniform2iv(h,new Int32Array(f));break;case 3:e.gl.uniform3iv(h,new Int32Array(f));break;case 4:e.gl.uniform4iv(h,new Int32Array(f));break;default:break}}if(m&&e.gl.uniform2i(m,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(w.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let f=l.uniformValues;f instanceof Float32Array||(f=new Float32Array(f)),e.gl.uniform1fv(d,f)}return}l.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,u)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=w.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let c=t.customUniformLocations[u],d=r[u];if(l.type==="float")e.gl.uniform1fv(c,d);else if(l.type==="vec2")e.gl.uniform2fv(c,d);else if(l.type==="vec3")e.gl.uniform3fv(c,d);else if(l.type==="vec4")e.gl.uniform4fv(c,d);else if(l.type==="int")e.gl.uniform1iv(c,d);else if(l.type==="ivec2")e.gl.uniform2iv(c,d);else if(l.type==="ivec3")e.gl.uniform3iv(c,d);else if(l.type==="ivec4")e.gl.uniform4iv(c,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function OX(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:u,uniformShape:c,keptDims:d}=N2(e.packedInputs,o.shape,l),p="",h="",m="";if(c.length===1&&e.packedInputs){let v=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];p=`${v[0]>1}_${v[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let v=w.computeStrides(c);m=`${v[0]===l[1]}_${v[v.length-1]===l[1]}`}let f=o.shape.length,g=c.length===2&&w.arraysEqual(o.shape,l),A=w.sizeFromShape(o.shape)===1,y=_.getBroadcastDims(o.shape,n.shape),x=!e.packedInputs&&f===n.shape.length&&w.arraysEqual(l,n.texData.texShape),b=e.packedInputs||c.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${f}_${x}_${u?d:""}_${c.length}_${A}_${y}_${g}_${p}_${h}_${m}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${Y().getNumber("WEBGL_VERSION")}`,a}function Is(e){return Y().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var PX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Cd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=_n();this.outputShape=e,this.enableShapeUniforms=Is(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?u0(["r","c","d"],e):bi(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}},MX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Cd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=_n();this.outputShape=e,this.enableShapeUniforms=Is(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?u0(["r","c","d"],e):bi(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}},zX=class{constructor(e){this.variableNames=["A"],this.outTexUsage=ws.DOWNLOAD;let t=_n();this.outputShape=e,this.userCode=`
${q6}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},LX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=ws.DOWNLOAD;let t=_n();this.outputShape=e,this.userCode=`
${q6}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},BX=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=_n();this.outputShape=e,this.enableShapeUniforms=Is(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
${this.enableShapeUniforms?T2():C2(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${n.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${n.output} = vec4(${s}, 0., 0., 0.);
}
`}},WX=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=_n();this.outputShape=e,this.enableShapeUniforms=Is(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
localCoords = coords;
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${o};
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${a};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${n.texture2D}(A, uv);
if (offset == 0) {
result[${i}] = values[0];
} else if (offset == 1) {
result[${i}] = values[1];
} else if (offset == 2) {
result[${i}] = values[2];
} else {
result[${i}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?T2():C2(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${s}
${n.output} = ${r};
}
`}},J6={};Le(J6,{bindVertexProgramAttributeStreams:()=>i4,createBufferFromOutputTexture:()=>c4,createFloat16MatrixTexture:()=>s4,createFloat16PackedMatrixTexture:()=>o4,createFloat32MatrixTexture:()=>n4,createIndexBuffer:()=>t4,createPackedMatrixTexture:()=>a4,createUnsignedBytesMatrixTexture:()=>r4,createVertexBuffer:()=>e4,createVertexShader:()=>Q6,downloadByteEncodedFloatMatrixFromOutputTexture:()=>p4,downloadFloat32MatrixFromBuffer:()=>d4,downloadMatrixFromPackedOutputTexture:()=>f4,downloadPackedMatrixFromBuffer:()=>h4,getInternalFormatForFloat16MatrixTexture:()=>R2,getInternalFormatForFloat16PackedMatrixTexture:()=>$2,getInternalFormatForFloat32MatrixTexture:()=>E2,getInternalFormatForPackedMatrixTexture:()=>_2,getInternalFormatForUnsignedBytesMatrixTexture:()=>D2,uploadDenseMatrixToTexture:()=>l4,uploadPixelDataToTexture:()=>u4});function Q6(e){let t=_n(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return S6(e,n)}function e4(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return E6(e,t)}function t4(e){let t=new Uint16Array([0,1,2,2,1,3]);return R6(e,t)}function Dd(e,t,n,s,r,a){_6(t,n);let o=D6(e),i=e.TEXTURE_2D;return ke(e,()=>e.bindTexture(i,o)),ke(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ke(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ke(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),ke(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),ke(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function E2(e){return e.internalFormatFloat}function n4(e,t,n,s){let[r,a]=Td(t,n);return Dd(e,r,a,E2(s),s.textureFormatFloat,e.FLOAT)}function R2(e){return e.internalFormatHalfFloat}function s4(e,t,n,s){let[r,a]=Td(t,n);return Dd(e,r,a,R2(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function D2(e){return e.downloadTextureFormat}function r4(e,t,n,s){let[r,a]=Td(t,n);return Dd(e,r,a,D2(s),e.RGBA,e.UNSIGNED_BYTE)}function _2(e){return e.internalFormatPackedFloat}function a4(e,t,n,s){let[r,a]=Su(t,n);return Dd(e,r,a,_2(s),e.RGBA,e.FLOAT)}function $2(e){return e.internalFormatPackedHalfFloat}function o4(e,t,n,s){let[r,a]=Su(t,n);return Dd(e,r,a,$2(s),e.RGBA,s.textureTypeHalfFloat)}function i4(e,t,n){let s=0,r=3*4,a=3*4+2*4;return ke(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),w2(e,t,"clipSpacePos",n,3,a,s)&&w2(e,t,"uv",n,2,a,r)}function l4(e,t,n,s,r,a){ke(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),ke(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function u4(e,t,n){ke(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?ke(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):ke(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function c4(e,t,n,s){let r=e.createBuffer();ke(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return ke(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),ke(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),ke(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function d4(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function p4(e,t,n,s){let[r,a]=Td(t,n),o=4,i=new Uint8Array(Pq(t*n,o));return ke(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function h4(e,t,n,s,r,a,o,i){let l=e,u=new Float32Array(Mq(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function f4(e,t,n){let s=new Float32Array(t*n*4);return ke(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var c0=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Y().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,t0(t,e)):this.gl=vr(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(Y().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=Nd(this.gl,r),ks(this.gl,a))this.textureHalfFloatExtension=Nd(this.gl,a);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ks(this.gl,s))this.colorBufferHalfFloatExtension=Nd(this.gl,s);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ks(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ks(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=e4(this.gl),this.indexBuffer=t4(this.gl),this.framebuffer=$6(this.gl),this.textureConfig=v2(this.gl,this.textureHalfFloatExtension)}get debug(){return Y().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ke(e,()=>e.finish()),ke(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ke(e,()=>e.deleteFramebuffer(this.framebuffer)),ke(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ke(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ke(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),n4(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),s4(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),r4(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),u4(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),l4(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),o4(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),a4(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(k2(this.gl,this.framebuffer),this.outputTexture=null),ke(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>p4(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return h4(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return d4(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=c4(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Y().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>f4(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=C6(t,e);this.vertexShader==null&&(this.vertexShader=Q6(t));let s=T6(t);return ke(t,()=>t.attachShader(s,this.vertexShader)),ke(t,()=>t.attachShader(s,n)),N6(t,s),this.debug&&s0(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=i4(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&ke(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&s0(this.gl,this.program),ke(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?O6(this.gl,e,t):P6(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ke(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),M6(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=Su(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&s0(this.gl,this.program),Ed(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),ke(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ke(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Nd(this.gl,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=VX(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),r0(this.gl,e,this.framebuffer),this.debug&&Ed(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(r0(this.gl,this.outputTexture,this.framebuffer),this.debug&&Ed(this.gl)):k2(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;r0(s,e,this.framebuffer),this.debug&&Ed(s),this.outputTexture=e,ke(s,()=>s.viewport(0,0,t,n)),ke(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),ke(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function VX(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:UX,bincountImpl:m4,bincountReduceImpl:HX,ceilImpl:GX,concatImpl:jX,equalImpl:qX,expImpl:XX,expm1Impl:KX,floorImpl:ZX,gatherNdImpl:YX,gatherV2Impl:JX,greaterImpl:QX,greaterEqualImpl:eK,lessImpl:tK,lessEqualImpl:nK,linSpaceImpl:sK,logImpl:rK,maxImpl:aK,maximumImpl:oK,minimumImpl:iK,multiplyImpl:lK,negImpl:uK,notEqualImpl:cK,prodImpl:dK,rangeImpl:pK,rsqrtImpl:hK,sigmoidImpl:fK,simpleAbsImpl:g4,sliceImpl:mK,sparseFillEmptyRowsImpl:gK,sparseReshapeImpl:AK,sparseSegmentReductionImpl:A4,sqrtImpl:yK,stridedSliceImpl:xK,stringNGramsImpl:bK,stringSplitImpl:vK,stringToHashBucketFastImpl:wK,subImpl:kK,tileImpl:IK,topKImpl:SK,transposeImpl:F2,uniqueImpl:CK}=y7;function y4(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function $n(e,t){return t===1?[e]:y4(e,t)}function TK(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var NK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let n=$n("rc",t),s=yt(t),r=RK(t,e,n),a=DK(t,e[e.length-1],e[e.length-2],n),o=_K(e,n);this.userCode=`
void main() {
${s} rc = getOutputCoords();
if(${r}) {
setOutput(vec4(0));
} else {
${a}
setOutput(vec4(${o}));
}
}
`}}};function EK(e,t){let n=[];for(let s=0;s<=1;s++)for(let r=0;r<=1;r++){let a=`${s===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let o=2;o<e;o++)a=`${t[t.length-1-o]},`+a;n.push(a)}return n}function RK(e,t,n){if(e===1)return`rc > ${t[0]}`;let s="";for(let r=e-2;r<e;r++)s+=`${n[r]} >= ${t[r]}`,r<e-1&&(s+="||");return s}function DK(e,t,n,s){if(e===1)return"";let r=s.slice(-2);return`
int r = ${r[0]};
int c = ${r[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${t};
bool rEdge = rp1 >= ${n};
`}function _K(e,t){let n=e.length,s=EK(n,t);return n===1?`getA(rc),
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${s[0]}),
cEdge ? 0. : getA(${s[1]}),
rEdge ? 0. : getA(${s[2]}),
rEdge || cEdge ? 0. : getA(${s[3]})`}var x4=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Is(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2==1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
${r}
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${s}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${s>0?"}":""}
`}this.userCode=`
${$K(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?T2():C2(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${n}
setOutput(result);
}
`}};function $K(e,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?Zq(["r","c","d"],"inputShape"):bi(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var FK=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=v4(t,n),r=w4(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=b4(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===xn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===xn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===xn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===xn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===xn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=v4(n,s),a=w4(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=b4(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=Y().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function OK(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function b4(e,t,n,s,r){let a=PK(t,s),o;if(r){let[l,u]=Su(e[0],e[1]);o=l*u}else{let[l,u]=Td(e[0],e[1]);o=l*u}let i=OK(n,a);return o*i}function PK(e,t){switch(e){case xn.PACKED_2X2_FLOAT32:return _2(t);case xn.PACKED_2X2_FLOAT16:return $2(t);case xn.UNPACKED_FLOAT32:return E2(t);case xn.UNPACKED_FLOAT16:return R2(t);case xn.PACKED_4X1_UNSIGNED_BYTE:return D2(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function MK(e){return Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?xn.PACKED_2X2_FLOAT32:xn.UNPACKED_FLOAT32:e?xn.PACKED_2X2_FLOAT16:xn.UNPACKED_FLOAT16}function v4(e,t){if(e===ws.UPLOAD)return xn.PACKED_2X2_FLOAT32;if(e===ws.RENDER||e==null)return MK(t);if(e===ws.DOWNLOAD||e===ws.PIXELS)return xn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function w4(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Na=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Is(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},nr="if (isnan(x)) return x;",zK="return x;",k4="return abs(x);",LK="return (x >= 0.0) ? x : (exp(x) - 1.0);",BK=nr+`
return (x < 0.0) ? 0.0 : x;
`,WK=nr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,d0="return x;",VK="return 1.0 / (1.0 + exp(-1.0 * x));",UK="return x;",HK=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,GK=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,jK=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,qK="return 1.0 / (1.0 + exp(-1.0 * x));",Du=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Is(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},XK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=$n("rc",t),s=yt(t),r=TK(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
void main() {
${s} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${o}));
}
`}},KK=fr.whereImpl,ZK=1e-7,YK=1e-4,p0={};function JK(e){return e in p0||(p0[e]={}),p0[e]}var QK=Y().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),eZ=600;function tZ(){return Y().global.screen==null?1024:Y().global.screen.height*Y().global.screen.width*window.devicePixelRatio*eZ/1024/1024}var _u=class extends lc{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!Y().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=vr(Y().getNumber("WEBGL_VERSION"));this.binaryCache=JK(Y().getNumber("WEBGL_VERSION")),this.gpgpu=new c0(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new FK(this.gpgpu),this.numMBBeforeWarning=tZ(),this.texData=new Sp(this,Qn())}nextDataId(){return _u.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((Y().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Y().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:ws.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(Y().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:ws.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new Du(o,d0):d=new Na(o,d0);let p=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,u;l&&(u=w.now());let c;if(s==="complex64"){let d=this.readSync(r.real.dataId),p=this.readSync(r.imag.dataId);c=_.mergeRealAndImagArrays(d,p)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=w.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new Du(s,d0):h=new Na(s,d0);let m=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Y().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(a!=="complex64"&&Y().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...n0(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),m=h[0],f=h[1];c=_.mergeRealAndImagArrays(m,f)}else if(l==null)c=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(s);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;ke(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,c),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Qn().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>w.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ge(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!k6(n))throw Y().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=w.sizeFromShape(t);if(Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),p=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(p.texture,...n0(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let a=Y().getBool("WEBGL_PACK")&&s===!0,o=a?a0(t):t,i=a?new LX(o):new zX(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),c}timerAvailable(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=w.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=w.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=QK){return Y().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&w.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){_.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return KK(e.shape,t)}packedUnaryOp(e,t,n){let s=new Du(e.shape,t),r=this.compileAndRun(s,[e],n);return Qn().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=g4(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(Y().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,k4,e.dtype);let t=new Na(e.shape,k4),n=this.compileAndRun(t,[e]);return Qn().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return Qn().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new XK(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new NK(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[yi(e.shape),...xi(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[yi(t),...xi(t)],a=new x4(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:s,dtype:r}=t,a=a0(s),o,i=n0(a);n?o=new MX(a):o=new PX(a);let l=!0,u=[i],c=this.runWebGLProgram(o,[{shape:a,dtype:r,dataId:e}],r,u,l);return{dtype:r,shape:s,dataId:c.dataId}}runWebGLProgram(e,t,n,s,r=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===Cd.DENSE){let f=n0(e.outputShape);o.texShape=f.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),w.sizeFromShape(a.shape)===0)return o.values=w.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(f.dataId);if(g.texture==null){if(!e.packedInputs&&w.sizeFromShape(f.shape)<=Y().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=f.shape)}else if(!!g.isPacked!=!!e.packedInputs)f=g.isPacked?this.unpackTensor(f):this.packTensor(f),i.push(f),g=this.texData.get(f.dataId);else if(g.isPacked&&!Rd(g.shape,f.shape)){let A=f,y=f.shape;f.shape=g.shape,f=this.packedReshape(f,y),i.push(f),g=this.texData.get(f.dataId),A.shape=y}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let u={shape:a.shape,texData:o,isUniform:!1},c=OX(e,l,u),d=this.getAndSaveBinary(c,()=>$X(this.gpgpu,e,l,u)),p=this.activeTimers!=null,h;p&&(h=this.startTimer()),FX(this.gpgpu,d,l,u,s),i.forEach(f=>this.disposeIntermediateTensorInfo(f)),p&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let m=Y().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=w.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!Y().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let f=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),f}return a}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Y().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=H(()=>{if(!Y().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Y().getBool("DEBUG");Y().set("DEBUG",!1);let t=this.abs(Ce(1e-8)).dataSync()[0];if(Y().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?ZK:YK}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,u;l&&(u=w.now());let c=t.texShape;if(c==null&&(c=B6(n,i),t.texShape=c),r!=null){let d=a0(n),p,h=c[1],m=c[0],f=r instanceof Uint8Array;i?([h,m]=Su(c[0],c[1]),p=new WX(d,f)):p=new BX(d,f);let g=this.makeTensorInfo([m,h],s);f?this.texData.get(g.dataId).usage=ws.PIXELS:this.texData.get(g.dataId).usage=ws.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,m,r);let A=[[m,h]],y=!0,x=this.runWebGLProgram(p,[g],s,A,y),b=this.texData.get(x.dataId);t.texture=b.texture,t.texShape=b.texShape,t.isPacked=b.isPacked,t.usage=b.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(x.dataId),t.values=null,l&&(this.uploadWaitMs+=w.now()-u)}else{let d=this.acquireTexture(c,o,s,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=nZ(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}};_u.nextDataId=0;function nZ(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var sZ="3.9.0";function I4(){Y().set("WEBGL_FORCE_F16_TEXTURES",!0)}Fc.isBrowser()&&Ql("webgl",()=>new _u,2);var rZ={forceHalfFloat:I4},S4=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,$u=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Is(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},h0=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,_d=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=_.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=Is(r);let a="";if(s)if(r===0||w.sizeFromShape(this.outputShape)===1)a=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(a=`
${yt(r)} coords = getOutputCoords();
`,r===1)this.enableShapeUniforms?a+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:a+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=$n("coords",r);this.enableShapeUniforms?a+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= outShape[${r} - 2];
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= outShape[${r} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:a+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${a}
setOutput(result);
}
`}};function cs(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var aZ={kernelName:uo,backendName:"webgl",kernelFunc:cs};function Ea(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=cs({inputs:{x:s},backend:n}),l=cs({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var oZ={kernelName:$p,backendName:"webgl",kernelFunc:Ea},C4="return (a < 0.) ? b * a : a;",T4=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function iZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),i=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new _d(T4,r.shape,o.shape):new $u(C4,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],r.dtype);return n.disposeIntermediateTensorInfo(o),l}var lZ={kernelName:co,backendName:"webgl",kernelFunc:iZ},N4="return (a < 0.) ? b * a : a;",E4=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function uZ(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new _d(E4,s.shape,r.shape):new $u(N4,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)}var cZ={kernelName:Io,backendName:"webgl",kernelFunc:uZ},R4="if (isnan(x)) return x;",dZ=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,pZ=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function tt({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),p=n(d.values,l);return i.makeTensorInfo(o.shape,l,p)}let u=Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new Du(o.shape,t):c=new Na(o.shape,e),i.runWebGLProgram(c,[o],l)}}function bn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:u}=o,c=i;if(s&&l.dtype==="complex64"){let m=c.texData.get(l.dataId),f=c.texData.get(u.dataId),[g,A]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[b,v]=x,k={dataId:b.dataId,dtype:b.dtype,shape:l.shape},S={dataId:v.dataId,dtype:v.dtype,shape:u.shape},C=new $u(e,l.shape,u.shape);return c.runWebGLProgram(C,[k,S],Ds(b.dtype,v.dtype))}),y=Ea({inputs:{real:g,imag:A},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(A),y}let d=a||Ds(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||c.shouldExecuteOnCPU([l,u]))&&r!=null){let m=c.texData.get(l.dataId).values,f=c.texData.get(u.dataId).values,g=l.dtype==="string"?_.fromUint8ToStringArray(m):m,A=l.dtype==="string"?_.fromUint8ToStringArray(f):f,[y,x]=r(l.shape,u.shape,g,A,d),b=c.makeTensorInfo(x,d),v=c.texData.get(b.dataId);return v.values=y,b}let p=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return p?h=new _d(t,l.shape,u.shape,n):h=new $u(e,l.shape,u.shape),c.runWebGLProgram(h,[l,u],d)}}function f0(e,t=!1){if(e==="linear")return t?UK:zK;if(e==="relu")return t?GK:BK;if(e==="elu")return t?HK:LK;if(e==="relu6")return t?jK:WK;if(e==="prelu")return t?E4:N4;if(e==="leakyrelu")return t?T4:C4;if(e==="sigmoid")return t?qK:VK;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var D4=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=Is(this.outputShape.length);let u=s?e[1]:e[2],c=Math.ceil(u/2),d=s?"i * 2, rc.y":"rc.y, i * 2",p=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";o&&(i?f=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${o}
}`:l?f=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${o}
}`:f=`vec4 activation(vec4 x) {
${o}
}`,g="result = activation(result);");let A=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",x="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${f}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${c}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${c}; i++) {
int batchA = ${y};
int batchB = ${x};
vec4 a = getMatrixA(batchA, ${d});
vec4 b = getMatrixB(batchB, ${p});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${m[0]});
result += (${h[1]} * ${m[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${A}
${g}
setOutput(result);
}
`}},_4={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},$4=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},F4="return a * b;";function O2(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=_.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),u=new $4(_4.REAL,s.shape,r.shape),c=new $4(_4.IMAG,s.shape,r.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],p=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(c,d,"float32"),m=Ea({inputs:{real:p,imag:h},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[u,c]=lK(s.shape,r.shape,i.values,l.values,a),d=n.makeTensorInfo(c,a),p=n.texData.get(d.dataId);return p.values=u,d}let o;return Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new _d(F4,s.shape,r.shape):o=new $u(F4,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var hZ={kernelName:bo,backendName:"webgl",kernelFunc:O2};function fZ(e,t,n){let s=[yi(e.shape),...xi(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[yi(t),...xi(t)],o=new x4(a,s),i=!0,l=[s],u=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function be(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=w.sizeFromShape(r.shape),l=w.inferFromImplicitShape(a,i),u=w.sizeFromShape(l);w.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=o.texData.get(r.dataId);return c.isPacked&&!Rd(r.shape,l)&&!(c.texture!==null&&Rd(c.shape,l))?fZ(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var mZ={kernelName:Rl,backendName:"webgl",kernelFunc:be},O4=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${w.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";r%n>0&&(u=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${u}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${o}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${o};
if (${i===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${i===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${i===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},gZ=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,d=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${i}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${i}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,p="vec4";t==="all"?(o="1.0",d=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,p="bvec4"):t==="any"&&(o="0.0",d=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,p="bvec4");let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${o};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${o});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${d}
}
int inIdx = inOffset + ${u};
if (${c===1}) {
${p} values = ${p}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${d}
} else if (${c===2}) {
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${d}
} else if (${c===3}) {
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${d}
}
setOutput(${l});
}
`}};function AZ(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=_.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function wi(e,t,n,s){let r=AZ(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:u}=r[o],c,d;n==="mean"?c=o===0?new O4({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},i):new O4({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u}):c=new gZ({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},n),d=a,a=s.runWebGLProgram(c,[a],t),d.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(d)}return a}var yZ=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=yt(this.rank),r=xZ(t);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function xZ(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var bZ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=yt(this.rank),r=y4("rc",this.rank),a=new Array(this.rank);for(let u=0;u<t.length;u++)a[t[u]]=r[u];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
void main() {
${s} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${i}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${i}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function m0(e,t,n){let s=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new bZ(e.shape,t):new yZ(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function vZ(e,t,n,s){let r=t,a=e.shape.length,o=w.parseAxisParam(r,e.shape),i=o,l=_.getAxesPermutation(i,a),u=l!=null,c=e;u&&(c=m0(e,l,s),i=_.getInnerMostAxes(i.length,a)),_.assertAxesAreInnerMostDims("sum",i,a);let[d,p]=_.computeOutAndReduceShapes(c.shape,i),h=d;n&&(h=_.expandShapeToKeepDim(d,o));let m=w.sizeFromShape(p),g=w.sizeFromShape(e.shape)/m,A=be({inputs:{x:c},attrs:{shape:[g,m]},backend:s}),y=yh(e.dtype),x=wi(A,y,"sum",s),b=be({inputs:{x},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(A),s.disposeIntermediateTensorInfo(x),u&&s.disposeIntermediateTensorInfo(c),b}function g0(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return vZ(r,a,o,n)}var wZ={kernelName:Fo,backendName:"webgl",kernelFunc:g0};function Fn(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=r.shape[a[c]];let u;if(o.shouldExecuteOnCPU([r])){let d=o.texData.get(r.dataId).values,p=F2(d,r.shape,r.dtype,a,l);u=o.makeTensorInfo(l,r.dtype);let h=o.texData.get(u.dataId);h.values=p}else u=m0(r,a,o);return u}var kZ={kernelName:Bo,backendName:"webgl",kernelFunc:Fn},P4=1e3;function A0({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,d=n?e.shape[u-2]:e.shape[u-1],p=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[u-1]:e.shape[u-2],m=s?t.shape[c-2]:t.shape[c-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),A=w.sizeFromShape(f),y=w.sizeFromShape(g),x=A===y||A===1||y===1;w.assert(u>=2&&c>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${g}).`);let v=(A>y?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,m]);w.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[A,d,h]:[A,h,d],S=s?[y,m,p]:[y,p,m],C=be({inputs:{x:e},backend:r,attrs:{shape:k}}),D=be({inputs:{x:t},backend:r,attrs:{shape:S}}),O=[C,D],E=Math.max(A,y),R=n?C.shape[1]:C.shape[2],T=a!=null,P=o!=null,U=l==="leakyrelu",j=l!=null?f0(l,!0):null,q=T||P||U||j!=null,X;if((h===1||m===1)&&R>P4&&q===!1){let ne=C,se=D;n&&(ne=Fn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),O.push(ne)),s&&(se=Fn({inputs:{x:D},backend:r,attrs:{perm:[0,2,1]}}),O.push(se));let ae=m!==1,Q=m===1,ce=ne;ae&&(ce=be({inputs:{x:ne},backend:r,attrs:{shape:[E,R,1]}}),O.push(ce));let de=m===1?2:1,fe=se;Q&&(fe=be({inputs:{x:se},backend:r,attrs:{shape:[E,1,R]}}),O.push(fe));let xe=O2({inputs:{a:ce,b:fe},backend:r});X=g0({inputs:{x:xe},backend:r,attrs:{axis:de,keepDims:!0}}),O.push(xe)}else{let ne=Ds(e.dtype,t.dtype),se=new D4(k,S,[E,h,m],n,s,T,j,P,U),ae=[C,D];if(a!=null&&ae.push(a),P&&ae.push(o),U){let Q=r.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));ae.push(Q),O.push(Q)}X=r.runWebGLProgram(se,ae,ne)}let te=be({inputs:{x:X},backend:r,attrs:{shape:v}});O.push(X);for(let ne of O)r.disposeIntermediateTensorInfo(ne);return te}function IZ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s;return A0({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:c})}var SZ={kernelName:Wo,backendName:"webgl",kernelFunc:IZ},M4="return abs(x);";function CZ(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=g4(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Du(s.shape,M4):r=new Na(s.shape,M4),n.runWebGLProgram(r,[s],s.dtype)}var TZ={kernelName:Gi,backendName:"webgl",kernelFunc:CZ},NZ=nr+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,EZ=tt({opSnippet:NZ}),RZ={kernelName:ji,backendName:"webgl",kernelFunc:EZ},DZ=nr+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,_Z=tt({opSnippet:DZ}),$Z={kernelName:qi,backendName:"webgl",kernelFunc:_Z},z4="return a + b;",FZ=bn({opSnippet:z4,packedOpSnippet:z4,supportsComplex:!0,cpuKernelImpl:UX}),OZ={kernelName:ra,backendName:"webgl",kernelFunc:FZ},PZ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${s};
setOutput(result);
}
`}},MZ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${s};
setOutput(result);
}
`}};function y0(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return cs({inputs:{x:s[0]},backend:n});if(s.length>Y().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),u=y0({inputs:s.slice(0,l),backend:n}),c=y0({inputs:s.slice(l),backend:n});return y0({inputs:[u,c],backend:n})}let r=s.map(l=>l.dtype).reduce((l,u)=>Ds(l,u)),a=s.map(l=>l.shape),i=Y().getBool("WEBGL_PACK")?new MZ(s[0].shape,a):new PZ(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var zZ={kernelName:Ha,backendName:"webgl",kernelFunc:y0};function LZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=l,c=_.getAxesPermutation(u,i),d=r;c!=null&&(d=Fn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=_.getInnerMostAxes(u.length,i)),_.assertAxesAreInnerMostDims("all",u,i);let[p,h]=_.computeOutAndReduceShapes(d.shape,u),m=w.sizeFromShape(h),f=be({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=wi(f,f.dtype,"all",n),A;if(o){let y=_.expandShapeToKeepDim(p,l);A=be({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=be({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),A}var BZ={kernelName:Xi,backendName:"webgl",kernelFunc:LZ};function WZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=l,c=_.getAxesPermutation(u,i),d=r;c!=null&&(d=Fn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=_.getInnerMostAxes(u.length,i)),_.assertAxesAreInnerMostDims("any",u,i);let[p,h]=_.computeOutAndReduceShapes(d.shape,u),m=w.sizeFromShape(h),f=be({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=wi(f,f.dtype,"any",n),A;if(o){let y=_.expandShapeToKeepDim(p,l);A=be({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=be({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),A}var VZ={kernelName:Ki,backendName:"webgl",kernelFunc:WZ},UZ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${s};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${s}; i++) {
int inIdx = ${i};
float candidate = getA(batch, inIdx);
if (candidate ${o} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},HZ=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=yt(i),u=$n("coords",i),c,d;if(a===1){d=i+1;let S=yt(d);c=`
${S} sourceLocR = ${S}(${u.join()}, 0);
++${u[i-1]};
${S} sourceLocG = ${S}(${u.join()}, 0);
++${u[i-2]};
${S} sourceLocA = ${S}(${u.join()}, 0);
--${u[i-1]};
${S} sourceLocB = ${S}(${u.join()}, 0);
--${u[i-2]};`}else d=i,c=`
${l} sourceLocR = coords;
++${u[i-1]};
${l} sourceLocG = coords;
++${u[i-2]};
${l} sourceLocA = coords;
--${u[i-1]};
${l} sourceLocB = coords;
--${u[i-2]};`;let p=["x","y","z","w","u","v"].slice(0,d),h="."+p[d-1],m=p.map(S=>"int "+S),f=$n("sourceLocR",d-1).concat("inIdx.r"),g=$n("sourceLocG",d-1).concat("inIdx.g"),A=$n("sourceLocB",d-1).concat("inIdx.b"),y=$n("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",b=s?"":`
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${A.join()}),
getBestIndicesAChannel(${y.join()})));`,v=`vec4(
getAChannel(${f.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${A.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,k=s?"":`
float getBestIndicesAChannel(${m.join()}) {
return getChannel(getBestIndicesA(${p.join()}),
vec2(${p.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${m.join()}) {
return getChannel(getA(${p.join()}),
vec2(${p.slice(-2).join()}));
}
${k}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${u[i-1]} < ${o[i-1]-1};
bool hasNextRow = ${u[i-2]} < ${o[i-2]-1};
${c}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${v};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${b}
vec4 candidate = ${v};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function L4(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=_.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new UZ(i,n,s==null),u=[t];s!=null&&u.push(s);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let d=L4(e,t,n,c);return e.disposeIntermediateTensorInfo(c),d}function B4(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=_.computeOptimalWindowSize(a),i=new HZ(r,o,n,s==null),l=s==null?[t]:[t,s],u=e.runWebGLProgram(i,l,"int32");if(u.shape.length===t.shape.length){let c=B4(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function W4(e,t,n,s){let r=[n];if(_.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!Y().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[u,c]=_.computeOutAndReduceShapes(l.shape,r),d=w.sizeFromShape(c),p=be({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});a.push(p);let h=L4(e,p,s);a.push(h);let m=be({inputs:{x:h},backend:e,attrs:{shape:u}});return a.forEach(f=>e.disposeIntermediateTensorInfo(f)),m}return B4(e,t,s)}function GZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=w.parseAxisParam(a,r.shape),i=_.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Fn({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=_.getInnerMostAxes(o.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=W4(n,l,o[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var jZ={kernelName:Ga,backendName:"webgl",kernelFunc:GZ};function qZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=w.parseAxisParam(a,r.shape),i=_.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Fn({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=_.getInnerMostAxes(o.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=W4(n,l,o[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var XZ={kernelName:dc,backendName:"webgl",kernelFunc:qZ},KZ=nr+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,ZZ=tt({opSnippet:KZ}),YZ={kernelName:Zi,backendName:"webgl",kernelFunc:ZZ},JZ=nr+"return log(x + sqrt(x * x + 1.0));",QZ=tt({opSnippet:JZ}),eY={kernelName:Yi,backendName:"webgl",kernelFunc:QZ},tY=nr+`
return atan(x);
`,nY=tt({opSnippet:tY}),sY={kernelName:Ji,backendName:"webgl",kernelFunc:nY},rY=dZ+`
return atan(a, b);
`,aY=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+pZ+`
return result;
`,oY=bn({opSnippet:rY,packedOpSnippet:aY}),iY={kernelName:el,backendName:"webgl",kernelFunc:oY},lY=nr+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,uY=tt({opSnippet:lY}),cY={kernelName:Qi,backendName:"webgl",kernelFunc:uY},$d=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,A="0.0";if(m||(A="-1.0 / 1e-20"),n){let S=">=";this.userCode=`
const ivec2 strides = ivec2(${o}, ${i});
const ivec2 pads = ivec2(${p}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${c};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d};
wC += ${u}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${S} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${s?r?f:g:`wR * ${d} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let y="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(a/4)*4,v=a%4,k=`
if (${m}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${y}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${o}, ${i});
const ivec2 pads = ivec2(${p}, ${h});
const float initializationValue = ${A};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${A});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${c};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${b}; wC += 4) {
int xC = xCCorner + wC * ${u};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
getValue(batch, xR, xC + 3 * ${u}, d)
);
${k}
}
int xC = xCCorner + ${b};
if (${v===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${k}
} else if (${v===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
initializationValue,
initializationValue
);
${k}
} else if (${v===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
initializationValue
);
${k}
}
}
setOutput(${x});
}
`}},P2=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,d=e.dilationWidth,p=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,A=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",x="0.0";if(y||(x="-1.0 / 1e-20"),n){let D=">=";this.userCode=`
const ivec3 strides =
ivec3(${o}, ${i}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${A});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${p};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${c}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${d}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${D} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
wR * ${m} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let b="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let k=Math.floor(a/4)*4,S=a%4,C=`
if (${y}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${b}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${o}, ${i}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${A});
const float initializationValue = ${x};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${x});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${p};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${c}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${k}; wC += 4) {
int xC = xCCorner + wC * ${d};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
);
${C}
}
int xC = xCCorner + ${k};
if (${S===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${C}
} else if (${S===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
initializationValue,
initializationValue
);
${C}
} else if (${S===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
initializationValue
);
${C}
}
}
setOutput(${v});
}
}
`}};function dY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Cu(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;w.assert(_.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=_.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return cs({inputs:{x:r},backend:n});let d=new $d(c,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var pY={kernelName:ja,backendName:"webgl",kernelFunc:dY};function hY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s,c=[1,1,1],d=_.computePool3DInfo(r.shape,a,o,c,i,l,u),p=new P2(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var fY={kernelName:pc,backendName:"webgl",kernelFunc:hY},mY=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.top,c=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${u}, ${c});
const float avgMultiplier = float(${d});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${i};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${o}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},gY=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,h=c-1-e.padInfo.front,m=d-1-e.padInfo.top,f=p-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
const ivec3 pads = ivec3(${h}, ${m}, ${f});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${c};
wD += ${i}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${d};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${p};
wC += ${u}) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function AY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,d=[1,1,1],p=_.computePool3DInfo(o.shape,i,l,d,u,c),h=new gY(p);return n.runWebGLProgram(h,[r],o.dtype)}var yY={kernelName:Dp,backendName:"webgl",kernelFunc:AY};function xY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Cu([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=_.computePool2DInfo(o.shape,i,l,1,u),d=new mY(c);return n.runWebGLProgram(d,[r],o.dtype)}var bY={kernelName:Rp,backendName:"webgl",kernelFunc:xY};function vY(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return A0({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var wY={kernelName:qa,backendName:"webgl",kernelFunc:vY},kY=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(_.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${o};
float scale = ${i};
float inv = scale * inversesqrt(variance + float(${a}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},IY=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(_.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${o};
vec4 scale = ${i};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
setOutput((x - mean) * inv + offset);
}
`}},SY=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;w.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[s,r,a],c=null;o!=null&&(c=o.shape,u.push(o));let d=null;i!=null&&(d=i.shape,u.push(i));let p=Y().getBool("WEBGL_PACK_NORMALIZATION")?new IY(s.shape,r.shape,a.shape,c,d,l):new kY(s.shape,r.shape,a.shape,c,d,l);return t.runWebGLProgram(p,u,u[0].dtype)},CY={kernelName:io,backendName:"webgl",kernelFunc:SY},TY=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=yt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=NY(this.rank),s,r=e.map((a,o)=>`sourceLoc.${M2[o]} = start[${o}] + coords.${M2[o]};`);s=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${r.join(`
`)}
`,this.userCode=`
void main() {
${s}
setOutput(getSource(${n}));
}
`}},M2=["x","y","z","w","u","v"];function NY(e){if(e===1)return"sourceLoc";if(e<=6)return M2.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var EY=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=yt(this.rank),n=$n("coords",this.rank),s=$n("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
result.x = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${s[this.rank-1]};
result.y = ${a};
--${s[this.rank-1]};
}
`,i=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${s[this.rank-2]};
result.z = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${s[this.rank-1]};
result.w = ${a};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${s[c]} = ${n[c]} + start[${c}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${o}
${i}
setOutput(result);
}
`}};function RY(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Nn.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function Fu(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Nn.parseSliceParams(r,a,o);if(Nn.assertParamsValid(r,i,l),w.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),p=mK(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}let{isPacked:u}=n.texData.get(r.dataId),c=Nn.isSliceContinous(r.shape,i,l);if(u||!c){let d=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new EY(l):new TY(l),p=[i];return n.runWebGLProgram(d,[r],r.dtype,p)}return n.uploadToGPU(r.dataId),RY(r,i,l,n)}var DY={kernelName:Fl,backendName:"webgl",kernelFunc:Fu},_Y=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=_.getReshaped(r.shape,a,i),u=_.getPermuted(l.length,a.length),c=_.getReshapedPermuted(r.shape,a,i),d=_.getSliceBeginCoords(o,a.length),p=_.getSliceSize(c,o,a.length),h=[],m=be({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Fn({inputs:{x:m},backend:n,attrs:{perm:u}}),g=be({inputs:{x:f},backend:n,attrs:{shape:c}}),A=Fu({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(m),h.push(f),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},$Y={kernelName:tl,backendName:"webgl",kernelFunc:_Y};function FY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),u=m4(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var OY={kernelName:_p,backendName:"webgl",kernelFunc:FY},PY="return float(a != b);",V4=bn({opSnippet:PY,cpuKernelImpl:cK,dtype:"bool"}),MY={kernelName:wl,backendName:"webgl",kernelFunc:V4};function Fd(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return cs({inputs:{x:r.complexTensorInfos.real},backend:n})}var zY={kernelName:eh,backendName:"webgl",kernelFunc:Fd},LY="return float(int(x));";function BY(e,t){let n=new Na(e.shape,LY),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function z2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return cs({inputs:{x:r},backend:n});let o=Pt(r.shape),i=z2({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Ea({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Fd({inputs:{input:r},backend:n}),i=z2({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(r.dtype,a)){let o=cs({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return BY(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),l=V4({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var WY={kernelName:Xa,backendName:"webgl",kernelFunc:z2},U4="return ceil(x);",VY=tt({opSnippet:U4,packedOpSnippet:U4,cpuKernelImpl:GX}),UY={kernelName:Ka,backendName:"webgl",kernelFunc:VY},HY=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}},GY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function jY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;Y().getBool("WEBGL_PACK_CLIP")?i=new GY(r.shape):i=new HY(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var qY={kernelName:aa,backendName:"webgl",kernelFunc:jY},XY=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function H4(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function KY(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new XY(s.shape),o=[H4(s,r.complexTensorInfos.real),H4(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var ZY={kernelName:hc,backendName:"webgl",kernelFunc:KY},YY=class{constructor(e){this.outputShape=[],this.outputShape=_.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},JY=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=_.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=yt(s),a=$n("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((m,f)=>`T${f}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let m=1;m<i.length;m++)i[m]=i[m-1]+e[m][t];let l=o[t],u=o.slice(-2),c=o.join(),d=`if (${l} < ${i[0]}) {
return getChannel(
getT0(${c}), vec2(${u.join()}));
}`;for(let m=1;m<i.length;m++){let f=i[m-1];d+=`
if (${l} < ${i[m]} && ${l} >= ${i[m-1]}) {
return getChannel(
getT${m}(${x0(o,l,f)}),
vec2(${x0(u,l,f)}));
}`}let p=i.length,h=i[i.length-1];d+=`
return getChannel(
getT${p}(${x0(o,l,h)}),
vec2(${x0(u,l,h)}));`,this.userCode=`
float getValue(${o.map(m=>"int "+m)}) {
${d}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
${a[s-1]} = ${a[s-1]} + 1;
if (${a[s-1]} < ${n[s-1]}) {
result.g = getValue(${a});
}
${a[s-2]} = ${a[s-2]} + 1;
if (${a[s-2]} < ${n[s-2]}) {
result.a = getValue(${a});
}
${a[s-1]} = ${a[s-1]} - 1;
if (${a[s-2]} < ${n[s-2]} &&
${a[s-1]} < ${n[s-1]}) {
result.b = getValue(${a});
}
setOutput(result);
}
`}};function x0(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function b0(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return cs({inputs:{x:r.complexTensorInfos.imag},backend:n})}var QY={kernelName:qp,backendName:"webgl",kernelFunc:b0};function Ou(e,t,n){let s=e[0].dtype;if(s==="complex64"){let c=e.map(f=>Fd({inputs:{input:f},backend:n})),d=e.map(f=>b0({inputs:{input:f},backend:n})),p=Ou(c,t,n),h=Ou(d,t,n),m=Ea({inputs:{real:p,imag:h},backend:n});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),d.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),m}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let c=e.map(A=>{let y=w.sizeFromShape(A.shape.slice(t));return be({inputs:{x:A},backend:n,attrs:{shape:[-1,y]}})}),d=c.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),p=_.computeOutShape(c.map(A=>A.shape),1),h=c[0].shape[0]===1,m=jX(d,p,s,h),f=_.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(f,s,m);return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),g}if(e.length>Y().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),d=Ou(e.slice(0,c),t,n),p=Ou(e.slice(c),t,n),h=Ou([d,p],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),h}if(Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new JY(e.map(d=>d.shape),t);return n.runWebGLProgram(c,e,s)}let{tensors2D:a,outShape:o}=eJ(e,t,n),i=new YY(a.map(c=>c.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let u=be({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),u}function eJ(e,t,n){let s=_.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>be({inputs:{x:a},attrs:{shape:[-1,w.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function G4(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],o=_.computeOutShape(t.map(u=>u.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>w.sizeFromShape(u.shape)>0);if(i.length===1)return cs({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return _.assertParamsConsistent(l,a),Ou(i,a,n)}var tJ={kernelName:nl,backendName:"webgl",kernelFunc:G4},j4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,A=f?2:3,y=f?3:1,x="",b="";n&&(s?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:x=`
float activation(float x) {
${n}
}
`,b="result = activation(result);");let v=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${i}, ${l});
const ivec2 pads = ivec2(${a}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${y}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${A}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${f}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${m===1}) {
if (${f}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${m===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${f}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${m===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${f}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${v}
${b}
setOutput(result);
}
`}},nJ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${a}, ${o});
const ivec3 pads = ivec3(${t}, ${n}, ${s});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${c}; wF++) {
int xF = xFCorner + wF * ${i};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${m===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${m===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${m===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},sJ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Is(this.outputShape.length);let{dataFormat:n}=t,s=_n(),r=n==="channelsLast",a=r?0:1,o=r?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let u=0;u<=1;u++)for(let c=0;c<=1;c++)l+=`
blockIndex = rc.y + ${c};
pos = rc.x + ${u};
${i}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${a}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${o}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${r}) {
innerDims = vec2(d1, ch);
result[${u*2+c}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${u*2+c}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${s.output} = result;
}
`}};function q4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,u=s.texData.get(e.dataId),c=n.inChannels,d=l[0]*l[1]*l[2],p=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,A=[];if(!((d===1||p===1)&&c>P4)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!=0&&w.arraysEqual(u.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),v={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},k=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,w.assert(Rd(u.shape,v.shape),()=>`packed reshape ${u.shape} to ${v.shape} isn't free`);let S=be({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});A.push(S);let C=A0({a:v,b:S,backend:s,transposeA:m,transposeB:f,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),D=s.texData.get(C.dataId);w.assert(D.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=k,D.shape=n.outShape,g=cs({inputs:{x:C},backend:s}),g.shape=n.outShape,A.push(C)}else{let b=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],v=be({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),k=be({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),S=A0({a:v,b:k,transposeA:m,transposeB:f,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=be({inputs:{x:S},backend:s,attrs:{shape:n.outShape}}),A.push(v),A.push(k),A.push(S)}for(let b of A)s.disposeIntermediateTensorInfo(b);return g}function X4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:d,outHeight:p,dataFormat:h}=n,m=h==="channelsLast",f=l*u*c,g=p*d,A=[f,g],y=!0,x=!1,b=[],v=be({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),k=be({inputs:{x:t},backend:s,attrs:{shape:[1,f,w.sizeFromShape(t.shape)/f]}});b.push(v),b.push(k);let S=new sJ(A,n),C=[v.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],D=s.runWebGLProgram(S,[v],"float32",C),O=be({inputs:{x:D},backend:s,attrs:{shape:[1,A[0],A[1]]}});b.push(D),b.push(O);let E=r!=null,R=a!=null,T=i==="leakyrelu",P=i?f0(i,!0):null,U=new D4(O.shape,k.shape,[1,g,n.outChannels],y,x,E,P,R,T),j=[O,k];if(r&&j.push(r),R&&j.push(a),T){let ne=s.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));j.push(ne),b.push(ne)}let q=s.runWebGLProgram(U,j,"float32"),X=m?[1,p,d,n.outChannels]:[1,n.outChannels,p,d],te=be({inputs:{x:q},backend:s,attrs:{shape:X}});b.push(q);for(let ne of b)s.disposeIntermediateTensorInfo(ne);return te}function rJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,d=_.convertConv2DDataFormat(l),p=_.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,d),h;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))h=q4({x:r,filter:a,convInfo:p,backend:n});else if(Y().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=X4({x:r,filter:a,convInfo:p,backend:n});else{let f=new j4(p);h=n.runWebGLProgram(f,[r,a],"float32")}let m=be({inputs:{x:h},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(h),m}var aJ={kernelName:Za,backendName:"webgl",kernelFunc:rJ},oJ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${a}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},iJ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,u=a?2:3,c=a?3:1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${c}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${a}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},lJ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${s} - ${o};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},uJ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=s-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${i}, ${l}, ${u});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${s} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function cJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s,d=_.convertConv2DDataFormat(l),p=_.computeConv2DInfo(r.shape,c,o,1,i,u,!1,d),h=new oJ(p);return n.runWebGLProgram(h,[r,a],"float32")}var dJ={kernelName:Fp,backendName:"webgl",kernelFunc:cJ};function pJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,d=_.convertConv2DDataFormat(u),p=_.computeConv2DInfo(o,a.shape,i,1,l,c,!1,d),h=new iJ(p);return n.runWebGLProgram(h,[r,a],"float32")}var hJ={kernelName:Ya,backendName:"webgl",kernelFunc:pJ};function fJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=_.computeConv3DInfo(r.shape,a.shape,o,l,i),c=new nJ(u);return n.runWebGLProgram(c,[r,a],"float32")}var mJ={kernelName:fc,backendName:"webgl",kernelFunc:fJ};function gJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,u=_.computeConv3DInfo(r.shape,l,o,1,i),c=new lJ(u);return n.runWebGLProgram(c,[r,a],"float32")}var AJ={kernelName:Op,backendName:"webgl",kernelFunc:gJ};function yJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,u=_.computeConv3DInfo(l,a.shape,i,1,o),c=new uJ(u);return n.runWebGLProgram(c,[r,a],"float32")}var xJ={kernelName:Pp,backendName:"webgl",kernelFunc:yJ},bJ=R4+`
return cos(x);
`,vJ=tt({opSnippet:bJ}),wJ={kernelName:Ja,backendName:"webgl",kernelFunc:vJ},kJ=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,IJ=tt({opSnippet:kJ}),SJ={kernelName:Qa,backendName:"webgl",kernelFunc:IJ},CJ=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[u]=t,[c,d]=n;this.outputShape=[u,c,d,l];let p=s==="bilinear"?1:0,[h,m]=[`${o-1}.0`,`${i-1}.0`],[f,g,A]=c>1?[`${(o-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,x,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
const float height_ratio = float(${f});
const float width_ratio = float(${y});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${a}) {
return;
}
float height_scale = ${g};
float width_scale = ${x};
float in_y = ${A};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${b};
if( in_x < 0.0 || in_x > ${m} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${p} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},TJ=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new CJ(r.shape,a.shape,i,l,u);return n.runWebGLProgram(c,[r,a,o],"float32")},NJ={kernelName:sl,backendName:"webgl",kernelFunc:TJ},K4=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${Z4(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${yt(s)} coords = getOutputCoords();
int end = ${Y4(s,"coords")};
float val = ${r};
int pow2 = int(pow(2.0, index));
if (${o}) {
int idx = ${i};
${Y4(s,"coords")} = idx;
val += getX(${Z4(s,"coords")});
}
setOutput(val);
}
`}};function Z4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Y4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function EJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,u=_.getAxesPermutation([a],l),c=r;u!=null&&(c=Fn({inputs:{x:r},backend:n,attrs:{perm:u}}));let d=_.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let p=c.shape[d],h=cs({inputs:{x:c},backend:n});for(let m=0;m<=Math.ceil(Math.log2(p))-1;m++){let f=new K4(c.shape,!1,i),g=[[m]],A=h;h=n.runWebGLProgram(f,[h],h.dtype,g),n.disposeIntermediateTensorInfo(A)}if(o){let m=new K4(c.shape,o,i),f=h;h=n.runWebGLProgram(m,[h],h.dtype),n.disposeIntermediateTensorInfo(f)}if(u!=null){let m=_.getUndoAxesPermutation(u),f=Fn({inputs:{x:h},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(c),f}return h}var RJ={kernelName:eo,backendName:"webgl",kernelFunc:EJ};function DJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=m4(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=HX(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var _J={kernelName:Mp,backendName:"webgl",kernelFunc:DJ},$J=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function FJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;w.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=u*a,h=c/(a*a),m=o==="NHWC"?[i,d,p,h]:[i,h,d,p],f=new $J(m,a,o);return n.runWebGLProgram(f,[r],r.dtype)}var OJ={kernelName:rl,backendName:"webgl",kernelFunc:FJ},J4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Is(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",u="";n&&(s?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:l=`
float activation(float x) {
${n}
}
`,u="result = activation(result);");let c=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${i};
int q = d2 - d1 * ${i};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${a}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${o}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${c}
${u}
setOutput(result);
}
`}},Q4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Is(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,c=e.filterWidth,d=c,p=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<c;g++)p+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;for(let g=0;g<u;g++){for(let A=0;A<c;A++)p+=`
xTexelC${A*2} = vec4(0.0);
xTexelC${A*2}Ready = 0;
xTexelC${A*2+1} = vec4(0.0);
xTexelC${A*2+1}Ready = 0;
xC${A} = vec4(0.0);`;p+=`
xR = xRCorner + ${g} * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let A=0;A<(d+1)/2;A++){let y=A*2;if(p+=`
xC = xCCorner + ${y*l};
`,i===1){if(y<c&&(o%2==1?(p+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
`,l===1&&y>0?p+=`
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
`:p+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
} else {
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
}
`):p+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xC${y} = xTexelC${y};
`,y+1<c)){let x=o%2==0?w.nearestLargerEven(l):l;l%2==0&&o%2==1||l%2!=0&&o%2!=1?(p+=`
xCOffset = xC + imod(pads[1], 2) + ${x};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
`,l>1&&(p+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
xTexelC${y}Ready = 1;
}
`),p+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
`):x===1?p+=`
xC${y+1} = xTexelC${y};
`:p+=`
xCOffset = xC + ${x};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y+1} = xTexelC${y+1};
`}}else y<c&&(o%2==1?(p+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`,y+1<c&&(p+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
`)):(p+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(
xTexelC${y}.xy, xTexelC${y+1}.xy);
`,y+1<c&&(p+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`)));y<c&&(p+=`
wTexel = getW(${g}, ${y}, d1, q);
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
`,y+1<c&&(p+=`
wTexel = getW(${g}, ${y+1}, d1, q);
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
`))}p+=`
}
`}let h="",m="";n&&(s?h=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?h=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:h=`vec4 activation(vec4 x) {
${n}
}`,m="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${h}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${a};
int q = d2 - d1 * ${a};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${p}
vec4 result = dotProd - vec4(0.000000000000001);
${f}
${m}
setOutput(result);
}
`}};function PJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s,c=l;c==null&&(c=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(o,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let d=_.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!0),p;Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?p=new Q4(d):p=new J4(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(p,[r,a],"float32",h)}var MJ={kernelName:to,backendName:"webgl",kernelFunc:PJ},zJ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${a} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},LJ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${a}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${i}; dm++) {
int d2 = d1 * ${i} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function BJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s,d=_.computeConv2DInfo(r.shape,c,o,i,l,u,!0),p=new zJ(d);return n.runWebGLProgram(p,[r,a],"float32")}var WJ={kernelName:zp,backendName:"webgl",kernelFunc:BJ};function VJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s,d=_.computeConv2DInfo(c,a.shape,o,i,l,u,!0),p=new LJ(d);return n.runWebGLProgram(p,[r,a],"float32")}var UJ={kernelName:Lp,backendName:"webgl",kernelFunc:VJ},HJ=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function GJ(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=w.sizeFromShape(s.shape),o=be({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new HJ(a),l=n.runWebGLProgram(i,[o],o.dtype),u=be({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var jJ={kernelName:Bp,backendName:"webgl",kernelFunc:GJ},qJ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:u}=e,{top:c,left:d}=s;this.userCode=`
const ivec2 strides = ivec2(${r}, ${a});
const ivec2 pads = ivec2(${c}, ${d});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${o}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${i}; w++) {
int wIn = wBeg + w * ${u};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function XJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=_.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),c,d=new qJ(u);c=n.runWebGLProgram(d,[r,a],"float32");let p=be({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),p}var KJ={kernelName:mc,backendName:"webgl",kernelFunc:XJ};function ZJ(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=_.decodeEinsumEquation(r,a.length);_.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=_.getEinsumComputePath(i,l),d=c.length,p=null,h=o.length,m=[];for(let f=0;f<d;++f){for(let g of c[f]){let{permutationIndices:A,expandDims:y}=_.getEinsumPermutation(h,l[g]),x;_.isIdentityPermutation(A)?x=a[g]:(x=Fn({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),m.push(x));let b=x.shape.slice();for(let v=0;v<y.length;++v)b.splice(y[v],0,1);w.arraysEqual(x.shape,b)||(x=be({inputs:{x},backend:n,attrs:{shape:b}}),m.push(x)),p===null?p=x:(p=O2({inputs:{a:x,b:p},backend:n}),m.push(p))}f<d-1&&(u[f]>=0&&(p=g0({inputs:{x:p},backend:n,attrs:{axis:u[f]-(o.length-h),keepDims:!1}}),m.push(p)),h--)}for(let f of m)f!==p&&n.disposeIntermediateTensorInfo(f);return p}var YJ={kernelName:Up,backendName:"webgl",kernelFunc:ZJ},JJ="return (x >= 0.0) ? x : (exp(x) - 1.0);",QJ=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,eQ=tt({opSnippet:JJ,packedOpSnippet:QJ}),tQ={kernelName:so,backendName:"webgl",kernelFunc:eQ},nQ="return (b >= 1.0) ? a : a * (b + 1.0);",sQ=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,rQ=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new _d(sQ,s.shape,r.shape):new $u(nQ,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},aQ={kernelName:Hp,backendName:"webgl",kernelFunc:rQ},oQ=`
return vec4(equal(a, b));
`,iQ="return float(a == b);",lQ=bn({opSnippet:iQ,packedOpSnippet:oQ,dtype:"bool",cpuKernelImpl:qX}),uQ={kernelName:ol,backendName:"webgl",kernelFunc:lQ},cQ=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${_.ERF_P};
float a1 = ${_.ERF_A1};
float a2 = ${_.ERF_A2};
float a3 = ${_.ERF_A3};
float a4 = ${_.ERF_A4};
float a5 = ${_.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,dQ=tt({opSnippet:cQ}),pQ={kernelName:al,backendName:"webgl",kernelFunc:dQ},ek="return exp(x);",tk=tt({opSnippet:ek,packedOpSnippet:ek,cpuKernelImpl:XX}),hQ={kernelName:ro,backendName:"webgl",kernelFunc:tk};function L2(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(w.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),be({inputs:{x:a},backend:s,attrs:{shape:i}})}var fQ={kernelName:il,backendName:"webgl",kernelFunc:L2},nk="return exp(x) - 1.0;",mQ=tt({opSnippet:nk,packedOpSnippet:nk,cpuKernelImpl:KX}),gQ={kernelName:ll,backendName:"webgl",kernelFunc:mQ},sk=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${o}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${s});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${s}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${a};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function rk(e,t,n){let s=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=be({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,u=new sk("real",l,t),c=new sk("imag",l,t),d=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],p=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(c,d,"float32"),m=Ea({inputs:{real:p,imag:h},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h);let f=be({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(m),f}function AQ(e){let{inputs:t,backend:n}=e,{input:s}=t;return rk(s,!1,n)}var yQ={kernelName:Gp,backendName:"webgl",kernelFunc:AQ},xQ=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function Od(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||w.inferDtype(r),a==="string"){let o=w.getArrayFromDType(a,w.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new xQ(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var bQ={kernelName:gc,backendName:"webgl",kernelFunc:Od},vQ=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},wQ={kernelName:ul,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new vQ(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},ak="return floor(x);",kQ=tt({opSnippet:ak,packedOpSnippet:ak,cpuKernelImpl:ZX}),IQ={kernelName:ao,backendName:"webgl",kernelFunc:kQ},SQ=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,CQ=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,TQ=bn({opSnippet:SQ,packedOpSnippet:CQ,dtype:"int32"}),NQ={kernelName:oo,backendName:"webgl",kernelFunc:TQ},EQ=class{constructor(e){this.variableNames=["A"];let t=_n(),[n,s]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},RQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=_n(),[n,s]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},DQ={kernelName:ph,backendName:"webgl",kernelFunc:_Q},Pu;function _Q(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[u,l],d=[u,l,a];(i||o)&&(Pu==null&&(Pu=document.createElement("canvas").getContext("2d")),Pu.canvas.width=l,Pu.canvas.height=u,Pu.drawImage(r,0,0,l,u),r=Pu.canvas);let p=n.makeTensorInfo(c,"int32");n.texData.get(p.dataId).usage=ws.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),r);let h=Y().getBool("WEBGL_PACK")?new RQ(d):new EQ(d),m=n.runWebGLProgram(h,[p],"int32");return n.disposeData(p.dataId),m}function $Q(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:m}=s,f=_.convertConv2DDataFormat(c),g=_.computeConv2DInfo(r.shape,a.shape,l,d,u,p,!1,f),A,y=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))A=q4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:m});else if(Y().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)A=X4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:m});else{let b=o!=null,v=i!=null,k=h==="leakyrelu",S=h?f0(h,!1):null,C=new j4(g,b,S,v,k),D=[r,a];if(o&&D.push(o),i&&D.push(i),k){let O=n.makeTensorInfo([],"float32",w.createScalarValue(m,"float32"));D.push(O),y.push(O)}A=n.runWebGLProgram(C,D,"float32")}let x=be({inputs:{x:A},backend:n,attrs:{shape:g.outShape}});return y.push(A),y.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var FQ={kernelName:Vo,backendName:"webgl",kernelFunc:$Q};function OQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:d,activation:p,leakyreluAlpha:h}=s,m=[],f=c;f==null&&(f=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=_.computeConv2DInfo(r.shape,a.shape,l,f,u,d,!0),A=Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,y=p?f0(p,A):null,x=[r,a],b=o!=null,v=i!=null,k=p==="leakyrelu";if(b&&x.push(o),v&&x.push(i),k){let O=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));x.push(O),m.push(O)}let S;A?S=new Q4(g,b,y,v,k):S=new J4(g,b,y,v,k);let C=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],D=n.runWebGLProgram(S,x,"float32",C);return m.forEach(O=>n.disposeIntermediateTensorInfo(O)),D}var PQ={kernelName:Uo,backendName:"webgl",kernelFunc:OQ},MQ=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=yt(t.length),r=yt(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${s} strides = ${s}(${this.strides});
void main() {
${r} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${a};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function zQ(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=w.sizeFromShape(s.shape),[l,u,c,d]=_.prepareAndValidate(s,r),p=be({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),h=be({inputs:{x:s},backend:n,attrs:{shape:[w.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let A=n.readSync(r.dataId),y=n.bufferSync(s),x=YX(A,y,s.dtype,u,o,c,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,x.values)}let m=new MQ(o,d,[u,c]),f=n.runWebGLProgram(m,[h,p],h.dtype),g=be({inputs:{x:f},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),g}var LQ={kernelName:dl,backendName:"webgl",kernelFunc:zQ},BQ=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=yt(this.rank),s=WQ(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function WQ(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("int(getIndices(resRC.x, resRC.z))"):s.push(`${n[r]}`);return s.join()}function ok(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=w.parseAxisParam(o,r.shape)[0],u=_.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=w.sizeFromShape(a.shape),d=[],p=be({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=be({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});d.push(p),d.push(h);let m=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let y=n.bufferSync(h),x=n.bufferSync(p),b=JX(x,y,m);return d.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let f=new BQ(p.shape,m),g=n.runWebGLProgram(f,[p,h],p.dtype);d.push(g);let A=be({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),A}var VQ={kernelName:cl,backendName:"webgl",kernelFunc:ok},UQ="return float(a > b);",HQ=`
return vec4(greaterThan(a, b));
`,GQ=bn({opSnippet:UQ,packedOpSnippet:HQ,cpuKernelImpl:QX,dtype:"bool"}),jQ={kernelName:pl,backendName:"webgl",kernelFunc:GQ},qQ="return float(a >= b);",XQ=`
return vec4(greaterThanEqual(a, b));
`,KQ=bn({opSnippet:qQ,packedOpSnippet:XQ,dtype:"bool",cpuKernelImpl:eK}),ZQ={kernelName:lo,backendName:"webgl",kernelFunc:KQ};function YQ(e){let{inputs:t,backend:n}=e,{input:s}=t;return rk(s,!0,n)}var JQ={kernelName:jp,backendName:"webgl",kernelFunc:YQ},QQ="return float(!isnan(x) && !isinf(x));",eee=tt({opSnippet:QQ,dtype:"bool"}),tee={kernelName:hl,backendName:"webgl",kernelFunc:eee},nee="return float(isinf(x));",see=tt({opSnippet:nee,dtype:"bool"}),ree={kernelName:fl,backendName:"webgl",kernelFunc:see},aee="return float(isnan(x));",oee=tt({opSnippet:aee,dtype:"bool"}),iee={kernelName:ml,backendName:"webgl",kernelFunc:oee},lee="return float(a < b);",uee=`
return vec4(lessThan(a, b));
`,cee=bn({opSnippet:lee,packedOpSnippet:uee,cpuKernelImpl:tK,dtype:"bool"}),dee={kernelName:gl,backendName:"webgl",kernelFunc:cee},pee="return float(a <= b);",hee=`
return vec4(lessThanEqual(a, b));
`,fee=bn({opSnippet:pee,packedOpSnippet:hee,cpuKernelImpl:nK,dtype:"bool"}),mee={kernelName:Al,backendName:"webgl",kernelFunc:fee};function gee(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=sK(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var Aee={kernelName:Xp,backendName:"webgl",kernelFunc:gee},yee=`if (x < 0.0) return NAN;
return log(x);`,xee=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,bee=tt({opSnippet:yee,packedOpSnippet:xee,cpuKernelImpl:rK}),vee={kernelName:po,backendName:"webgl",kernelFunc:bee},wee="return log(1.0 + x);",kee=tt({opSnippet:wee}),Iee={kernelName:yl,backendName:"webgl",kernelFunc:kee},See="return float(a >= 1.0 && b >= 1.0);",Cee=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,Tee=bn({opSnippet:See,packedOpSnippet:Cee,dtype:"bool"}),Nee={kernelName:xl,backendName:"webgl",kernelFunc:Tee},Eee="return float(!(x >= 1.0));",Ree=tt({opSnippet:Eee}),Dee={kernelName:Ac,backendName:"webgl",kernelFunc:Ree},_ee="return float(a >= 1.0 || b >= 1.0);",$ee=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,Fee=bn({opSnippet:_ee,packedOpSnippet:$ee,dtype:"bool"}),Oee={kernelName:yc,backendName:"webgl",kernelFunc:Fee},Pee=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${a}; j <= ${a}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${o}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${i};
setOutput(val);
}
`}},Mee=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${a};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${a}; j <= ${a}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${i};
setOutput(result);
}
`}},zee=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,u=Y().getBool("WEBGL_PACK_NORMALIZATION")?new Mee(r.shape,a,o,i,l):new Pee(r.shape,a,o,i,l);return n.runWebGLProgram(u,[r],r.dtype)},Lee={kernelName:xc,backendName:"webgl",kernelFunc:zee},Bee=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${s}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${s})
* float(${r})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},Wee=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s,d=new Bee(r.shape,i,l,u,c);return n.runWebGLProgram(d,[r,a,o],r.dtype)},Vee={kernelName:Kp,backendName:"webgl",kernelFunc:Wee};function Uee(e,t,n,s){let r=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/r,i=be({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=wi(i,e.dtype,"max",s),u=be({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}function ik(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=l,c=_.getAxesPermutation(u,i),d=c!=null,p=n.shouldExecuteOnCPU([r]),h=r;if(d){if(p){let x=n.texData.get(h.dataId).values,b=new Array(i);for(let S=0;S<b.length;S++)b[S]=r.shape[c[S]];let v=F2(x,r.shape,r.dtype,c,b);h=n.makeTensorInfo(b,r.dtype);let k=n.texData.get(h.dataId);k.values=v}else h=m0(r,c,n);u=_.getInnerMostAxes(u.length,i)}_.assertAxesAreInnerMostDims("max",u,i);let[m,f]=_.computeOutAndReduceShapes(h.shape,u),g=m;o&&(g=_.expandShapeToKeepDim(m,l));let A;if(p){let x=n.texData.get(h.dataId).values,b=aK(x,w.sizeFromShape(f),g,r.dtype);A=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(A.dataId);v.values=b}else A=Uee(h,f,g,n);return d&&n.disposeIntermediateTensorInfo(h),A}var Hee={kernelName:ho,backendName:"webgl",kernelFunc:ik},Gee=S4+`
return max(a, b);
`,jee=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+h0+`
return result;
`,qee=bn({opSnippet:Gee,packedOpSnippet:jee,cpuKernelImpl:oK}),Xee={kernelName:fo,backendName:"webgl",kernelFunc:qee};function Kee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Cu(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;w.assert(_.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=_.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return cs({inputs:{x:r},backend:n});let d=new $d(c,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var Zee={kernelName:mo,backendName:"webgl",kernelFunc:Kee};function Yee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:u}=s,c=[1,1,1],d=_.computePool3DInfo(r.shape,a,o,c,i,u,l),p=new P2(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var Jee={kernelName:bc,backendName:"webgl",kernelFunc:Yee},Qee=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${a} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},ete=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=i-1-e.padInfo.front,d=l-1-e.padInfo.top,p=u-1-e.padInfo.left,h=i*l*u-1;this.userCode=`
const ivec3 pads = ivec3(${c}, ${d}, ${p});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${i};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC += ${o}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${u} +
wR * ${u} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function tte(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,d=[1,1,1],p=_.computePool3DInfo(o.shape,i,l,d,u,c),h=new P2(p,"max",!0),m=n.runWebGLProgram(h,[o],o.dtype),f=new ete(p),g=n.runWebGLProgram(f,[r,m],o.dtype);return n.disposeIntermediateTensorInfo(m),g}var nte={kernelName:Yp,backendName:"webgl",kernelFunc:tte};function ste(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Cu([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:d}=s,p=_.computePool2DInfo(i.shape,l,u,1,c,d),h=!0,m=new $d(p,"max",h),f=n.runWebGLProgram(m,[i],i.dtype),g=new Qee(p),A=n.runWebGLProgram(g,[r,f],i.dtype);return n.disposeIntermediateTensorInfo(f),A}var rte={kernelName:Zp,backendName:"webgl",kernelFunc:ste};function ate(e,t,n,s){let r=new $d(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new $d(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var ote={kernelName:Jp,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;w.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let u=[1,1];w.assert(_.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=_.computePool2DInfo(s.shape,r,a,u,o),[d,p]=ate(s,i,c,l);return[d,p]}};function ite(e,t,n,s){let r=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/r,i=be({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=wi(i,"float32","mean",s),u=be({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}var lte={kernelName:go,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=w.parseAxisParam(a,s.shape),u=l,c=_.getAxesPermutation(u,i),d=c!=null,p=o.shouldExecuteOnCPU([s]),h=[],m=s;if(d){if(p){let b=o.texData.get(m.dataId).values,v=new Array(i);for(let C=0;C<v.length;C++)v[C]=s.shape[c[C]];let k=F2(b,s.shape,s.dtype,c,v);m=o.makeTensorInfo(v,s.dtype);let S=o.texData.get(m.dataId);S.values=k}else m=m0(s,c,o);h.push(m),u=_.getInnerMostAxes(u.length,i)}_.assertAxesAreInnerMostDims("sum",u,i);let[f,g]=_.computeOutAndReduceShapes(m.shape,u),A=f;r&&(A=_.expandShapeToKeepDim(f,l));let y=ite(m,g,A,o);for(let x of h)o.disposeIntermediateTensorInfo(x);return y}};function ute(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=l,c=_.getAxesPermutation(u,i),d=r;c!=null&&(d=Fn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=_.getInnerMostAxes(u.length,r.shape.length)),_.assertAxesAreInnerMostDims("min",u,i);let[p,h]=_.computeOutAndReduceShapes(d.shape,u),m=w.sizeFromShape(h),f=be({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=wi(f,f.dtype,"min",n),A;if(o){let y=_.expandShapeToKeepDim(p,l);A=be({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=be({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),A}var cte={kernelName:Ao,backendName:"webgl",kernelFunc:ute},dte=S4+`
return min(a, b);
`,pte=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+h0+`
return result;
`,hte=bn({opSnippet:dte,packedOpSnippet:pte,cpuKernelImpl:iK}),fte={kernelName:yo,backendName:"webgl",kernelFunc:hte},mte=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let s=e.length,r=yt(s),a=t.map(u=>u[0]).join(","),o=t.map((u,c)=>u[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
int start = ${a};
int end = ${o};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${a});
${r} end = ${r}(${o});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${s}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${i}));
}
`}},gte=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let s=e.length,r=yt(s),a=t.map(h=>h[0]).join(","),o=t.map((h,m)=>h[0]+e[m]).join(","),i=$n("rc",s),l=$n("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,p="";if(s===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${d};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${d};
}
source -= start;
`;p=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${c});
${i[s-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${c});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${d}) +
gte * ((end - 1) * 2 - source + ${d});
source -= start;
`;p=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${c});
${i[s-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${c});
}
rc = outputLoc;
${i[s-2]} += 1;
if(${i[s-2]} < ${this.outputShape[s-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${c});
${i[s-1]} += 1;
if(${u}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${c});
}
}
`}this.userCode=`
const ${r} start = ${r}(${a});
const ${r} end = ${r}(${o});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${p}
setOutput(result);
}
`}},Ate=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new gte(s.shape,r,a):new mte(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},yte={kernelName:xo,backendName:"webgl",kernelFunc:Ate},xte=`if (b == 0.0) return NAN;
return mod(a, b);`,bte=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+h0+`
return result;
`,vte=bn({opSnippet:xte,packedOpSnippet:bte}),wte={kernelName:bl,backendName:"webgl",kernelFunc:vte},kte=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}},Ite=`
if (a == b) {
return 1.0;
};
return a / b;`,Ste=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,lk=bn({opSnippet:Ite,packedOpSnippet:Ste,checkOutOfBounds:!0}),Cte={kernelName:no,backendName:"webgl",kernelFunc:lk},uk="return a - b;",ck=bn({opSnippet:uk,packedOpSnippet:uk,supportsComplex:!0,cpuKernelImpl:kK}),Tte={kernelName:Mo,backendName:"webgl",kernelFunc:ck};function dk(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=w.parseAxisParam([a],r.shape),i=ik({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=_.expandShapeToKeepDim(i.shape,o),u=be({inputs:{x:i},backend:n,attrs:{shape:l}}),c=ck({inputs:{a:r,b:u},backend:n}),d=tk({inputs:{x:c},backend:n}),p=g0({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=be({inputs:{x:p},backend:n,attrs:{shape:l}}),m=lk({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),m}var Nte={kernelName:Oo,backendName:"webgl",kernelFunc:dk};function Ete(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:dk({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],c=l.shape[1],d=new kte(u,c,a),p=[[o]],h=n.runWebGLProgram(d,[l],"int32",p);return i||n.disposeIntermediateTensorInfo(l),h}var Rte={kernelName:Qp,backendName:"webgl",kernelFunc:Ete},pk="return -x;";function Dte(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=uK(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Du(s.shape,pk):r=new Na(s.shape,pk),n.runWebGLProgram(r,[s],s.dtype)}var _te={kernelName:vl,backendName:"webgl",kernelFunc:Dte},$te=fr.nonMaxSuppressionV3Impl;function Fte(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:d}=$te(u,c,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Ote={kernelName:kl,backendName:"webgl",kernelFunc:Fte},Pte=fr.nonMaxSuppressionV4Impl;function Mte(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s,c=n.readSync(r.dataId),d=n.readSync(a.dataId),{selectedIndices:p,validOutputs:h}=Pte(c,d,o,i,l,u);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var zte={kernelName:Il,backendName:"webgl",kernelFunc:Mte},Lte=fr.nonMaxSuppressionV5Impl;function Bte(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,m=l,f=u,{selectedIndices:g,selectedScores:A}=Lte(c,d,p,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var Wte={kernelName:Sl,backendName:"webgl",kernelFunc:Bte},Vte=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${s}), float(${n}),
float(index == coords.y)));
}
`}},Ute=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=w.sizeFromShape(r.shape),u=new Vte(l,a,o,i),c=be({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(u,[c],r.dtype);n.disposeIntermediateTensorInfo(c);let p=[...r.shape,a],h=be({inputs:{x:d},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(d),h},Hte={kernelName:vo,backendName:"webgl",kernelFunc:Ute};function v0(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Fd({inputs:{input:s},backend:n}),a=v0({inputs:{x:r},backend:n}),o=b0({inputs:{input:s},backend:n}),i=v0({inputs:{x:o},backend:n}),l=Ea({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Od({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Gte={kernelName:Hl,backendName:"webgl",kernelFunc:v0};function hk(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Fd({inputs:{input:s},backend:n}),a=hk({inputs:{x:r},backend:n}),o=b0({inputs:{input:s},backend:n}),i=v0({inputs:{x:o},backend:n}),l=Ea({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Od({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var jte={kernelName:Cl,backendName:"webgl",kernelFunc:hk};function qte(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return L2({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=L2({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=G4({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var Xte={kernelName:Tl,backendName:"webgl",kernelFunc:qte},Kte=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let s=e.length,r=yt(s),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
int start = ${a};
int end = ${o};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${a});
${r} end = ${r}(${o});
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${r} coords = outC - start;
setOutput(getX(${i}));
}
}
`}},Zte=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let s=e.length,r=yt(s),a=t.map(m=>m[0]).join(","),o=t.map((m,f)=>m[0]+e[f]).join(","),i=$n("rc",s),l=$n("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
if(${u}) {
`,s===1?"":`}
rc = outputLoc;
${i[s-2]} += 1;
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
if(${u}) {`],p=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=s===1?2:4;m<f;m++)h+=`
${d[m]}
if (${p}) {
result[${m}] = float(value);
} else {
${r} source = rc - start;
result[${m}] = getChannel(getX(${l.join()}), ${c});
}
`;h+=s===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${a});
const ${r} end = ${r}(${o});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}},fk=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(w.sizeFromShape(r.shape)===0){let u=a.map((c,d)=>c[0]+r.shape[d]+c[1]);return Od({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Zte(r.shape,a,o):new Kte(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},Yte={kernelName:wo,backendName:"webgl",kernelFunc:fk},Jte=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,Qte=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+h0+`
return result;
`,ene=bn({opSnippet:Jte,packedOpSnippet:Qte}),tne={kernelName:ko,backendName:"webgl",kernelFunc:ene};function nne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],u=w.parseAxisParam(a,r.shape),c=u,d=_.getAxesPermutation(c,i),p=r;d!=null&&(p=Fn({inputs:{x:r},backend:n,attrs:{perm:d}}),c=_.getInnerMostAxes(c.length,i),l.push(p)),_.assertAxesAreInnerMostDims("prod",c,i);let h;if(n.shouldExecuteOnCPU([p])){let m=n.texData.get(p.dataId).values,{outVals:f,outShape:g,outDtype:A}=dK(p.shape,p.dtype,m,c);h=n.makeTensorInfo(g,A,f)}else{let[m,f]=_.computeOutAndReduceShapes(p.shape,c),g=w.sizeFromShape(f),A=be({inputs:{x:p},backend:n,attrs:{shape:[-1,g]}}),y=yh(r.dtype),x=wi(A,y,"prod",n);h=be({inputs:{x},backend:n,attrs:{shape:m}}),l.push(A),l.push(x)}if(o){l.push(h);let m=_.expandShapeToKeepDim(h.shape,u);h=be({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var sne={kernelName:Nl,backendName:"webgl",kernelFunc:nne},mk=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=pK(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},rne={kernelName:vc,backendName:"webgl",kernelFunc:mk},ane="return 1.0 / x;",one=tt({opSnippet:ane}),ine={kernelName:El,backendName:"webgl",kernelFunc:one},lne=nr+`
return (x < 0.0) ? 0.0 : x;
`,une=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,cne=tt({opSnippet:lne,packedOpSnippet:une}),dne={kernelName:So,backendName:"webgl",kernelFunc:cne},pne=nr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,hne=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,fne=tt({opSnippet:pne,packedOpSnippet:hne}),mne={kernelName:To,backendName:"webgl",kernelFunc:fne},gne=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/c[0]},
${u[1]/c[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},Ane=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/c[0]},
${u[1]/c[1]},
${u[1]/c[1]});
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
${i}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function yne(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Ane(r.shape,l,u,a,o):new gne(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],"float32")}var xne={kernelName:Co,backendName:"webgl",kernelFunc:yne},bne=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,p=1/c,h=Math.ceil(d)*2+2,m=Math.ceil(p)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${c});
const float invHeightScale = float(${d});
const float invWidthScale = float(${p});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function vne(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new bne(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var wne={kernelName:nh,backendName:"webgl",kernelFunc:vne},kne=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/c[0]},
${u[1]/c[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${p};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},Ine=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/c[0]},
${u[1]/c[1]},
${u[1]/c[1]});
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
${i}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${p};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function Sne(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Ine(r.shape,l,u,a,o):new kne(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],r.dtype)}var Cne={kernelName:wc,backendName:"webgl",kernelFunc:Sne},Tne=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,p=1/c,h=Math.ceil(d)*2+2,m=Math.ceil(p)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${c});
const float invHeightScale = float(${d});
const float invWidthScale = float(${p});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float sourceFracRow =
float(${i[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${i[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${s}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Nne(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Tne(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Ene={kernelName:th,backendName:"webgl",kernelFunc:Nne},Rne=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=yt(n);this.userCode=`
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},Dne=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=$n("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=yt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${i(s.slice())};
if(${r}){
result.g = ${l(s.slice())};
}
if(${a}) {
result.b = ${u(s.slice())};
if(${r}) {
result.a = ${c(s.slice())};
}
}
setOutput(result);
}
`;function i(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function c(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let m=e.map((A,y)=>p(y,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function p(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function _ne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=w.parseAxisParam(a,r.shape);if(o===0)return cs({inputs:{x:r},backend:n});let l=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Dne(r.shape,i):new Rne(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var $ne={kernelName:No,backendName:"webgl",kernelFunc:_ne},Fne=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${r}
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},One={kernelName:Gl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Fne(s.shape,a),[u,c]=_.getImageCenter(o,s.shape[1],s.shape[2]),d=[[u,c,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,d)}},Pne=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,Mne=tt({opSnippet:Pne}),zne={kernelName:Eo,backendName:"webgl",kernelFunc:Mne},Lne="return inversesqrt(x);",Bne=tt({opSnippet:Lne,cpuKernelImpl:hK}),Wne={kernelName:Ro,backendName:"webgl",kernelFunc:Bne},gk=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=yt(r.length),l=yt(a.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,d="";s===1?d="i":s===2&&(d="i, coords[1]");let p=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
${i} strides = ${i}(${r});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${c});
flattenedIndex += index * ${h};
}
if (flattenedIndex == coords[0]) {
sum += ${p};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function Vne(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:d}=_.calculateShapes(a,r,o),p=[d/u,u];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=be({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),m=be({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new gk(l,i,h.shape.length,m.shape.length,c,p),A=n.runWebGLProgram(g,[m,h,f],m.dtype),y=be({inputs:{x:A},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(f),y}var Une={kernelName:Dl,backendName:"webgl",kernelFunc:Vne},Hne=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let u=0;u<t.length;u++)l.push(`${o[u]}`),u<e&&i.push(`${o[u]}`);s=i.join(),r=l.join()}let a=yt(n);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
float cVal = getC(${s});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function Gne(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new Hne(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],Ds(r.dtype,a.dtype))}var jne={kernelName:_l,backendName:"webgl",kernelFunc:Gne},qne=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${_.SELU_SCALEALPHA};
float scale = ${_.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,Xne=tt({opSnippet:qne}),Kne={kernelName:$l,backendName:"webgl",kernelFunc:Xne},Ak="return 1.0 / (1.0 + exp(-1.0 * x));",Zne=tt({opSnippet:Ak,packedOpSnippet:Ak,cpuKernelImpl:fK}),Yne={kernelName:_o,backendName:"webgl",kernelFunc:Zne},Jne=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,Qne=tt({opSnippet:Jne}),ese={kernelName:Pl,backendName:"webgl",kernelFunc:Qne},tse=R4+`
return sin(x);
`,nse=tt({opSnippet:tse}),sse={kernelName:Do,backendName:"webgl",kernelFunc:nse},rse=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,ase=tt({opSnippet:rse}),ose={kernelName:Ol,backendName:"webgl",kernelFunc:ase},ise=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,lse=tt({opSnippet:ise}),use={kernelName:Ml,backendName:"webgl",kernelFunc:lse},cse=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((A,y)=>A*y),l=[[0,0]];l.push(...o);for(let A=1+a.length;A<r.shape.length;++A)l.push([0,0]);let u=[],c=fk({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=_.getReshaped(c.shape,a,i,!1),p=_.getPermuted(d.length,a.length,!1),h=_.getReshapedPermuted(c.shape,a,i,!1),m=be({inputs:{x:c},backend:n,attrs:{shape:d}}),f=Fn({inputs:{x:m},backend:n,attrs:{perm:p}}),g=be({inputs:{x:f},backend:n,attrs:{shape:h}});return u.push(c),u.push(m),u.push(f),u.forEach(A=>n.disposeIntermediateTensorInfo(A)),g},dse={kernelName:zl,backendName:"webgl",kernelFunc:cse};function pse(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[d,p,h,m,f]=gK(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],s.dtype,new Int32Array(f))]}var hse={kernelName:sh,backendName:"webgl",kernelFunc:pse};function fse(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[u,c,d]=AK(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var mse={kernelName:rh,backendName:"webgl",kernelFunc:fse};function gse(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=A4(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var Ase={kernelName:ah,backendName:"webgl",kernelFunc:gse};function yse(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=A4(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var xse={kernelName:oh,backendName:"webgl",kernelFunc:yse};function bse(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,strides:c,outputSize:d}=_.calculateShapes(a,r,i),p=!1,h=new gk(u,l,r.shape.length,a.shape.length,c,[d,1],p),m=n.runWebGLProgram(h,[a,r,o],a.dtype),f=be({inputs:{x:m},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(m),f}var vse={kernelName:ih,backendName:"webgl",kernelFunc:bse};function wse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=w.parseAxisParam(o,r.shape)[0],l=_.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let m=Fu({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[i]+=p,m})}var kse={kernelName:Ll,backendName:"webgl",kernelFunc:wse},yk="return sqrt(x);",Ise=tt({opSnippet:yk,packedOpSnippet:yk,cpuKernelImpl:yK}),Sse={kernelName:$o,backendName:"webgl",kernelFunc:Ise},Cse="return x * x;",Tse=tt({opSnippet:Cse}),Nse={kernelName:kc,backendName:"webgl",kernelFunc:Tse},xk="return (a - b) * (a - b);",Ese=bn({opSnippet:xk,packedOpSnippet:xk}),Rse={kernelName:Po,backendName:"webgl",kernelFunc:Ese};function Dse({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=nr+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,a=new Na(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var _se={kernelName:ia,backendName:"webgl",kernelFunc:Dse},$se=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=yt(n.length),a=yt(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,u)=>(i++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${i-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${o}));
}
`}};function Fse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:p}=s,{nonStrided:h,$begin:m,$strides:f,size:g,newShape:A,outShape:y}=Nn.sliceInfo(r.shape,a,o,i,l,u,c,d,p),x=be({inputs:{x:r},backend:n,attrs:{shape:A}}),b;if(h){let k=Fu({inputs:{x},backend:n,attrs:{begin:m,size:g}});b=be({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let C=n.texData.get(x.dataId).values,D=Ge(x.shape,x.dtype,C),O=xK(y,D,f,m);b=n.makeTensorInfo(y,x.dtype,O.values)}else{let S=new $se(m,f,y);b=n.runWebGLProgram(S,[x],x.dtype)}let v=be({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var Ose={kernelName:Bl,backendName:"webgl",kernelFunc:Fse};function Pse(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:d}=t,p=n.readSync(c.dataId),h=n.readSync(d.dataId),[m,f]=bK(p,h,r,a,o,i,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var Mse={kernelName:lh,backendName:"webgl",kernelFunc:Pse};function zse(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[u,c,d]=vK(i,l,r),p=c.length;return[n.makeTensorInfo([p,2],"int32",u),n.makeTensorInfo([p],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Lse={kernelName:uh,backendName:"webgl",kernelFunc:zse};function Bse(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=wK(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Wse={kernelName:ch,backendName:"webgl",kernelFunc:Bse},Vse="return tan(x);",Use=tt({opSnippet:Vse}),Hse={kernelName:zo,backendName:"webgl",kernelFunc:Use},Gse=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,jse=tt({opSnippet:Gse}),qse={kernelName:Lo,backendName:"webgl",kernelFunc:jse},Xse=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=yt(this.rank),r=Kse(e);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function Kse(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function bk(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(p=>w.decodeString(p)):l,c=Ge(r.shape,r.dtype,u),d=IK(c,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new Xse(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var Zse={kernelName:oa,backendName:"webgl",kernelFunc:bk},Yse=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},Jse=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function ki(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function vk(e){let t=1;for(;t<e;)t*=2;return t}function Qse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=Y().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=Y().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,c=u[u.length-1];if(n.shouldExecuteOnCPU([r])||c<i||a>l){let O=n.readSync(r.dataId),[E,R]=SK(O,u,r.dtype,a,o);return[n.makeTensorInfo(E.shape,E.dtype,E.values),n.makeTensorInfo(R.shape,R.dtype,R.values)]}if(a===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(c===1)return[r,Od({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),p=d!==null&&d.isPacked,h=p?n.unpackTensor(r):r,f=w.sizeFromShape(u)/c,g=be({inputs:{x:h},attrs:{shape:[f,c]},backend:n});p&&ki(n,h);let A=vk(a),y=vk(c),x=null,b=()=>x===null?[g,g]:[g,x],v=(O,E,R)=>{let T=b(),P=new Yse(R),j=[[c],[x===null?1:0],[Number.NEGATIVE_INFINITY],[O],[E]],q=x;x=n.runWebGLProgram(P,T,"int32",j),ki(n,q)};for(let O=1;O<A;O*=2){let E=O*2;for(let R=O;R>=1;R/=2)v(E,R,[f,y])}for(let O=y;O>A;O/=2){let E=b(),R=new Jse([f,O/2]),P=[[c],[x===null?1:0],[A]],U=x;x=n.runWebGLProgram(R,E,"int32",P),ki(n,U);let j=A/2,q=j*2;for(let X=j;X>=1;X/=2)v(q,X,x.shape)}let k=x;x=Fu({inputs:{x},backend:n,attrs:{begin:0,size:[f,a]}}),ki(n,k);let S=ok({inputs:{x:g,indices:x},backend:n,attrs:{axis:1,batchDims:1}});ki(n,g);let C=u.slice(0,-1);C.push(a),k=x,x=be({inputs:{x},attrs:{shape:C},backend:n}),ki(n,k);let D=S;return S=be({inputs:{x:S},attrs:{shape:C},backend:n}),ki(n,D),[S,x]}var ere={kernelName:Wl,backendName:"webgl",kernelFunc:Qse},tre=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${i} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${i} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${i} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${r});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${r});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${o} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function nre(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,d,p,h]=r.shape,[m,f]=u!=null?u:[d,p],g=[c,m,f,h],A=new tre(d,p,o,i,l,g);return n.runWebGLProgram(A,[r,a],"float32")}var sre={kernelName:Vl,backendName:"webgl",kernelFunc:nre};function rre(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Cu(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:u}=CK(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var are={kernelName:dh,backendName:"webgl",kernelFunc:rre};function ore(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let f=0;f<i;f++)f!==a&&(u[c++]=o.shape[f]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let m=new Array(l);for(let f=0;f<m.length;f++){p[a]=f;let g=Fu({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),A=be({inputs:{x:g},backend:n,attrs:{shape:u}});m[f]=A,d.push(g)}return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var ire={kernelName:Ul,backendName:"webgl",kernelFunc:ore},lre=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,d=`
sumValue += dot(values, segFilter);
`,p="";r%n>0&&(p=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${i};
float getValue(int batch, int inIdx) {
${p}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${a})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${a})));
float sumValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${d}
}
int inIdx = inOffset + ${u};
if (${c===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${d}
} else if (${c===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${d}
} else if (${c===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${d}
}
setOutput(${l});
}
`}};function ure(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],u=0,c=_.getAxesPermutation([u],i),d=r;c!=null&&(d=Fn({inputs:{x:r},backend:n,attrs:{perm:c}}),l.push(d),u=_.getInnerMostAxes(1,i)[0]);let p=_.segment_util.computeOutShape(d.shape,u,o),h=w.sizeFromShape([d.shape[u]]),m=be({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=yh(r.dtype),g=(b,v,k,S,C)=>{let D=b.shape[0],O=b.shape[1],E=_.segment_util.segOpComputeOptimalWindowSize(O,C),R={windowSize:E,inSize:O,batchSize:D,numSegments:C},T=new lre(R,v),P=n.compileAndRun(T,[b,k],S);if(l.push(P),P.shape[1]===C)return P;let U=mk({backend:n,attrs:{start:0,stop:C,step:1,dtype:"float32"}}),j=bk({inputs:{x:U},backend:n,attrs:{reps:[O/E]}});return l.push(U),l.push(j),g(P,v,j,S,C)},A=g(m,"unsortedSegmentSum",a,f,o),y=be({inputs:{x:A},backend:n,attrs:{shape:p}}),x=y;if(c!=null){l.push(y);let b=_.getUndoAxesPermutation(c);x=Fn({inputs:{x},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var cre={kernelName:Ic,backendName:"webgl",kernelFunc:ure},dre=[Lee,Vee,SZ,TZ,RZ,$Z,OZ,zZ,BZ,VZ,jZ,XZ,YZ,eY,iY,sY,cY,fY,pY,yY,bY,wY,CY,$Y,OY,WY,UY,qY,ZY,oZ,tJ,dJ,hJ,aJ,AJ,xJ,mJ,wJ,SJ,NJ,RJ,_J,OJ,WJ,UJ,MJ,jJ,KJ,YJ,tQ,aQ,uQ,pQ,hQ,fQ,gQ,yQ,bQ,wQ,IQ,NQ,DQ,FQ,PQ,LQ,VQ,jQ,ZQ,aZ,JQ,QY,tee,ree,iee,lZ,dee,mee,Aee,Iee,vee,Nee,Dee,Oee,Hee,Jee,Zee,nte,rte,ote,Xee,lte,cte,fte,yte,wte,Rte,hZ,_te,Ote,zte,Wte,MY,Hte,jte,Xte,Yte,tne,cZ,sne,rne,zY,Cte,ine,mne,dne,mZ,xne,wne,Cne,Ene,$ne,One,zne,Wne,Une,jne,Kne,Yne,ese,sse,ose,DY,Nte,use,dse,hse,mse,Ase,xse,vse,kse,Sse,Nse,Rse,_se,Ose,Mse,Lse,Wse,Tte,wZ,Hse,qse,Zse,ere,sre,kZ,are,ire,cre,Gte];for(let e of dre)la(e);var qn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(qn||(qn={}));var Pd;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(Pd||(Pd={}));var wk;function pre(e){wk=e.wasm.cwrap(Wo,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function hre(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s,p=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,m=0;if(o!=null){let C=n.dataIdMap.get(o.dataId);if(C.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${C.shape.length}.`);m=C.id}let f=i==null?0:n.dataIdMap.get(i.dataId).id,g=Pd[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let A=l?r.shape[2]:r.shape[1],y=u?a.shape[1]:a.shape[2],x=r.shape[0],b=n.makeOutput([x,A,y],r.dtype),v=n.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),S=new Uint8Array(new Int32Array(a.shape).buffer);return wk(p,k,r.shape.length,h,S,a.shape.length,l,u,g,m,f,d||0,v),b}var fre={kernelName:Wo,backendName:"wasm",setupFunc:pre,kernelFunc:hre};function vn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function s(r){let{backend:a,inputs:{x:o}}=r,i=a.dataIdMap.get(o.dataId).id,l=a.makeOutput(o.shape,o.dtype),u=a.dataIdMap.get(l.dataId).id;return w.sizeFromShape(l.shape)===0||t(i,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:s}}var mre=vn(Gi);function On(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:u,b:c}=l,d=i.dataIdMap.get(u.dataId).id,p=i.dataIdMap.get(c.dataId).id,h=n!=null?n:u.dtype,m=_.assertAndGetBroadcastShape(u.shape,c.shape),f=i.makeOutput(m,h);if(w.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),A=new Uint8Array(new Int32Array(c.shape).buffer),y=i.dataIdMap.get(f.dataId).id,x=()=>s(d,g,u.shape.length,p,A,c.shape.length,qn[u.dtype],y);if(t&&u.dtype==="float32")return x(),f;let b=_.getBroadcastDims(u.shape,m),v=_.getBroadcastDims(c.shape,m),k=b.every((C,D)=>C===D),S=v.every((C,D)=>C===D);if(k&&S)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var gre=!0,Are=On(ra,gre),kk;function yre(e){kk=e.wasm.cwrap(Ha,null,["array","number","number","number"])}function xre(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return kk(a,r.length,qn[s.dtype],o),s}var bre={kernelName:Ha,backendName:"wasm",setupFunc:yre,kernelFunc:xre};function w0(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var vre={kernelName:uo,backendName:"wasm",kernelFunc:w0},Ik;function wre(e){Ik=e.wasm.cwrap(Bo,null,["number","array","number","number","number","array","number"])}function Mu(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=Ire(t.x.shape,s.perm),o=!0;for(let m=0;m<a.length;m++)a[m]!==m&&(o=!1);let i=kre(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let m=w0({inputs:t,backend:n});return m.shape=i,m}let u=n.makeOutput(i,l.dtype),c=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(u.dataId).id,p=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return Ik(c,h,l.shape.length,qn[l.dtype],d,p,a.length),u}function kre(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function Ire(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var Sre={kernelName:Bo,backendName:"wasm",kernelFunc:Mu,setupFunc:wre};function Ra(e,t,n){let s=e.shape,r=e.shape.length,a=w.parseAxisParam(t,s),o=a,i=_.getAxesPermutation(o,r),l=null,u=!1;if(i!=null){let c=new Array(r);for(let h=0;h<c.length;h++)c[h]=s[i[h]];o=_.getInnerMostAxes(o.length,r),l=Mu({inputs:{x:e},attrs:{perm:i},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(u=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:u}}var Sk;function Cre(e){Sk=e.wasm.cwrap(Xi,null,["number, number, number"])}function Tre(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=Ra(o,r,t);if(h){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let m=u.shape.length;_.assertAxesAreInnerMostDims("all",d,m);let[f,g]=_.computeOutAndReduceShapes(u.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(f,o.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;Sk(l,A,x)}if(h&&t.disposeData(c.dataId),a){let x=_.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Nre={kernelName:Xi,backendName:"wasm",setupFunc:Cre,kernelFunc:Tre},Ck;function Ere(e){Ck=e.wasm.cwrap(Ki,null,["number, number, number"])}function Rre(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=Ra(o,r,t);if(h){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let m=u.shape.length;_.assertAxesAreInnerMostDims("any",d,m);let[f,g]=_.computeOutAndReduceShapes(u.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(f,o.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;Ck(l,A,x)}if(h&&t.disposeData(c.dataId),a){let x=_.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Dre={kernelName:Ki,backendName:"wasm",setupFunc:Ere,kernelFunc:Rre},Tk;function _re(e){Tk=e.wasm.cwrap(Ga,null,["number","number","number","number","number"])}function $re(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:u,axes:c,inputWasTransposed:d}=Ra(a,r,t);if(d){let A=t.dataIdMap.get(u.dataId).id;A!==o&&(l=u,i=A)}let p=l.shape.slice(0,-1),h=t.makeOutput(p,"int32"),m=t.dataIdMap.get(h.dataId).id,f=w.sizeFromShape(h.shape),g=l.shape[c[0]];return Tk(i,qn[l.dtype],f,g,m),d&&t.disposeData(u.dataId),h}var Fre={kernelName:Ga,backendName:"wasm",kernelFunc:$re,setupFunc:_re},Nk;function Ore(e){Nk=e.wasm.cwrap(ja,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Pre(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=_.computePool2DInfo(r.shape,o,i,1,l,u),d=c.filterHeight,p=c.filterWidth,h=c.padInfo.top,m=c.padInfo.right,f=c.padInfo.bottom,g=c.padInfo.left,A=c.strideHeight,y=c.strideWidth,x=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let b=s.makeOutput(c.outShape,"float32"),v=s.dataIdMap.get(b.dataId).id;return Nk(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,m,f,g,A,y,x,v),b}var Mre={kernelName:ja,backendName:"wasm",setupFunc:Ore,kernelFunc:Pre};function Xn(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=w.sizeFromShape(s.shape),o=w.inferFromImplicitShape(r,a);return w.assert(a===w.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var zre={kernelName:Rl,backendName:"wasm",kernelFunc:Xn},Ek;function Lre(e){Ek=e.wasm.cwrap(qa,null,["number","array","number","number","array","number","number","number","number"])}function Bre(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],m=r.shape.slice(0,-2),f=a.shape.slice(0,-2),g=w.sizeFromShape(m),A=w.sizeFromShape(f),y=g===A||g===1||A===1;w.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);w.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,c,p]:[g,p,c],k=i?[A,h,d]:[A,d,h],S=Xn({inputs:{x:r},backend:n,attrs:{shape:v}}),C=Xn({inputs:{x:a},backend:n,attrs:{shape:k}}),D=n.dataIdMap.get(S.dataId).id,O=n.dataIdMap.get(C.dataId).id,E=o?S.shape[2]:S.shape[1],R=i?C.shape[1]:C.shape[2],T=Math.max(g,A),P=n.makeOutput([T,E,R],S.dtype),U=n.dataIdMap.get(P.dataId).id,j=new Uint8Array(new Int32Array(S.shape).buffer),q=new Uint8Array(new Int32Array(C.shape).buffer);return Ek(D,j,S.shape.length,O,q,C.shape.length,o,i,U),n.disposeData(S.dataId),n.disposeData(C.dataId),P.shape=b,P}var Wre={kernelName:qa,backendName:"wasm",setupFunc:Lre,kernelFunc:Bre};function Md(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=Nn.parseSliceParams(t,n,s),i=Nn.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),u=r.makeOutput(o,t.dtype),c=w.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(i){let m=Nn.computeFlatOffset(a,c);return t.dtype==="string"?d.stringBytes=l.slice(m,m+w.sizeFromShape(o)):r.typedArrayFromHeap(u).set(l.subarray(m,m+w.sizeFromShape(o))),u}if(t.dtype==="string"){let m=Jf(l,a,o,t.shape,t.dtype);return d.stringBytes=m,u}let p=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)Vre(l,c[0],p,a,o);else if(h===3)Ure(l,c[0],c[1],p,a,o);else if(h===4)Hre(l,c[0],c[1],c[2],p,a,o);else{let m=Jf(l,a,o,t.shape,t.dtype);p.set(m)}return u}function Vre(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let u=o;u<l;u++){let c=u*t+i;n.set(e.subarray(c,c+r[1]),a),a+=r[1]}}function Ure(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],u=r[2],c=i+a[0],d=l+a[1];for(let p=i;p<c;p++)for(let h=l;h<d;h++){let m=p*t+h*n+u;s.set(e.subarray(m,m+a[2]),o),o+=a[2]}}function Hre(e,t,n,s,r,a,o){let i=0,l=a[0],u=a[1],c=a[2],d=l+o[0],p=u+o[1],h=c+o[2],m=a[3];for(let f=l;f<d;f++)for(let g=u;g<p;g++)for(let A=c;A<h;A++){let y=f*t+g*n+A*s+m;r.set(e.subarray(y,y+o[3]),i),i+=o[3]}}var Gre={kernelName:Fl,backendName:"wasm",kernelFunc:Md};function jre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((A,y)=>A*y),l=_.getReshaped(r.shape,a,i),u=_.getPermuted(l.length,a.length),c=_.getReshapedPermuted(r.shape,a,i),d=_.getSliceBeginCoords(o,a.length),p=_.getSliceSize(c,o,a.length),h=Xn({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Mu({inputs:{x:h},backend:n,attrs:{perm:u}}),f=Xn({inputs:{x:m},backend:n,attrs:{shape:c}}),g=Md({inputs:{x:f},backend:n,attrs:{begin:d,size:p}});return n.disposeData(h.dataId),n.disposeData(m.dataId),n.disposeData(h.dataId),g}var qre={kernelName:tl,backendName:"wasm",kernelFunc:jre};function k0(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var Xre={kernelName:Xa,backendName:"wasm",kernelFunc:k0},Kre=vn(Ka),Rk;function Zre(e){Rk=e.wasm.cwrap(aa,null,["number","number","number","number"])}function Yre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return Rk(i,a,o,u),l}var Jre={kernelName:aa,backendName:"wasm",setupFunc:Zre,kernelFunc:Yre};function Dk(e){let{inputs:t,backend:n}=e,s=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=_.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>w.sizeFromShape(h.shape)>0);if(a.length===1)return w0({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(_.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(x=>{let b=w.sizeFromShape(x.shape.slice(s));return Xn({inputs:{x},backend:n,attrs:{shape:[-1,b]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=_.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=l2(m,r,t[0].dtype,f),A=_.computeOutShape(a.map(x=>x.shape),s);o.shape=A;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=_.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),o}let l=w.sizeFromShape(a[0].shape.slice(0,s)),u=0,c=a.map(h=>{let m=w.sizeFromShape(h.shape.slice(s));return u+=m,m}),d=a.map(h=>n.typedArrayFromHeap(h)),p=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let m=h*u;for(let f=0;f<d.length;f++){let g=c[f],A=h*g,y=d[f].subarray(A,A+g);p.set(y,m),m+=g}}return o}var Qre={kernelName:nl,backendName:"wasm",kernelFunc:Dk},_k;function eae(e){_k=e.wasm.cwrap(Za,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function tae(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:d,dataFormat:p}=n,h=_.convertConv2DDataFormat(p),m=_.computeConv2DInfo(r.shape,a.shape,l,u,c,d,!1,h),f=m.filterHeight,g=m.filterWidth,A=m.padInfo.top,y=m.padInfo.right,x=m.padInfo.bottom,b=m.padInfo.left,v=m.dilationHeight,k=m.dilationWidth,S=m.strideHeight,C=m.strideWidth,D=m.inChannels,O=m.outChannels,E=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let R=s.makeOutput(m.outShape,"float32"),T=s.dataIdMap.get(R.dataId).id;return _k(o,r.shape[0],r.shape[1],r.shape[2],i,f,g,A,y,x,b,E,v,k,S,C,D,O,T),R}var nae={kernelName:Za,backendName:"wasm",setupFunc:eae,kernelFunc:tae},$k;function sae(e){$k=e.wasm.cwrap(Ya,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function rae(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=s,d=1,p=_.convertConv2DDataFormat(l),h=_.computeConv2DInfo(c,a.shape,o,d,i,u,!1,p),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:A,inHeight:y,inWidth:x,outChannels:b,outHeight:v,outWidth:k,strideHeight:S,strideWidth:C}=h,D=f-1-h.padInfo.top,O=g-1-h.padInfo.left,E=h.dataFormat==="channelsLast",R=w.computeStrides(h.inShape),T=w.computeStrides(r.shape),[P,U,j]=w.computeStrides(a.shape),q=R[0],X=E?R[1]:R[2],te=E?R[2]:1,ne=E?1:R[1],se=T[0],ae=E?T[1]:T[2],Q=E?T[2]:1,ce=E?1:T[1],de=t.makeOutput(h.inShape,"float32"),fe=t.dataIdMap.get(de.dataId).id,xe=t.dataIdMap.get(r.dataId).id,Ee=t.dataIdMap.get(a.dataId).id;return $k(xe,Ee,m,f,g,y,x,A,v,k,b,S,C,D,O,P,U,j,q,X,te,ne,se,ae,Q,ce,fe),de}var aae={kernelName:Ya,backendName:"wasm",setupFunc:sae,kernelFunc:rae},oae=vn(Ja),iae=vn(Qa),B2;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(B2||(B2={}));var Fk;function lae(e){Fk=e.wasm.cwrap(sl,null,["number","number","number","number","array","number","number","number","number","number"])}function uae(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:u}=n,c=l.shape[0],[d,p]=o,h=[c,d,p,i.shape[3]],m=t.dataIdMap.get(i.dataId),f;i.dtype!=="float32"&&(f=k0({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,A=t.dataIdMap.get(l.dataId).id,y=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),b=t.dataIdMap.get(x.dataId).id,v=new Uint8Array(new Int32Array(i.shape).buffer);return Fk(g,A,y,c,v,d,p,B2[r],a,b),f!=null&&t.disposeData(f.dataId),x}var cae={kernelName:sl,backendName:"wasm",setupFunc:lae,kernelFunc:uae},Ok;function dae(e){Ok=e.wasm.cwrap(eo,null,["number","number","number","number","number","number"])}function pae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=_.getAxesPermutation([a],l),c=r;u!==null&&(c=Mu({inputs:{x:r},attrs:{perm:u},backend:n}));let d=_.getInnerMostAxes(1,l)[0];_.assertAxesAreInnerMostDims("cumsum",[d],l);let p=n.makeOutput(c.shape,c.dtype),h=c.shape[d],m=n.dataIdMap.get(c.dataId).id,f=n.dataIdMap.get(p.dataId).id;Ok(m,o?1:0,i?1:0,h,f,qn[r.dtype]);let g=p;if(u!==null){let A=_.getUndoAxesPermutation(u);g=Mu({inputs:{x:p},attrs:{perm:A},backend:n}),n.disposeData(c.dataId),n.disposeData(p.dataId)}return g}var hae={kernelName:eo,backendName:"wasm",setupFunc:dae,kernelFunc:pae},Pk;function fae(e){Pk=e.wasm.cwrap(rl,null,["number","number","number","array","number","array","array","number","number"])}function mae(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s;w.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=u*a,h=c/(a*a),m=o==="NHWC"?[i,d,p,h]:[i,h,d,p],f=t.makeOutput(m,"float32"),A=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),x=new Uint8Array(new Int32Array(m).buffer),b=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return Pk(A,a,o==="NHWC"?1:0,y,r.shape.length-1,x,b,m.length,v),f}var gae={kernelName:rl,backendName:"wasm",setupFunc:fae,kernelFunc:mae},Mk;function Aae(e){Mk=e.wasm.cwrap(to,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function yae(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:d}=n,p=u==null?[1,1]:u,h=_.computeConv2DInfo(r.shape,a.shape,l,p,c,d,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,A=h.padInfo.right,y=h.padInfo.bottom,x=h.padInfo.left,b=h.dilationHeight,v=h.dilationWidth,k=h.strideHeight,S=h.strideWidth,C=h.inChannels,D=h.outChannels,O=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let E=s.makeOutput(h.outShape,"float32"),R=s.dataIdMap.get(E.dataId).id;return Mk(o,r.shape[0],r.shape[1],r.shape[2],i,m,f,g,A,y,x,O,b,v,k,S,C,D,R),E}var xae={kernelName:to,backendName:"wasm",setupFunc:Aae,kernelFunc:yae},bae=vn(so),vae=!1,wae=On(ol,vae,"bool"),kae=vn(ro);function W2(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Xn({inputs:{x:r},backend:s,attrs:{shape:i}})}var Iae={kernelName:il,backendName:"wasm",kernelFunc:W2};function zk(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var Sae={kernelName:gc,backendName:"wasm",kernelFunc:zk},Lk;function Cae(e){Lk=e.wasm.cwrap(ul,null,["number","number","number","number","number","number"])}function Tae(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,u,c]=s.shape;return Lk(a,i,l,u,c,o),r}var Nae={kernelName:ul,backendName:"wasm",kernelFunc:Tae,setupFunc:Cae},Eae=vn(ao),Rae=!1,Dae=On(oo,Rae),Bk;function _ae(e){Bk=e.wasm.cwrap(io,null,["number","number","number","number","number","number","number"])}function $ae(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:u}=n,c=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(a.shape,a.dtype);if(w.sizeFromShape(a.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return Bk(c,d,p,h,m,r,g),f}var Fae={kernelName:io,backendName:"wasm",setupFunc:_ae,kernelFunc:$ae},Wk;function Oae(e){Wk=e.wasm.cwrap(Vo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Pae(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,a.shape,l,c,u,p),g=Pd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=f.outChannels,b=0;if(o!=null){let Q=s.dataIdMap.get(o.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);b=Q.id}let v=f.filterHeight,k=f.filterWidth,S=f.padInfo.top,C=f.padInfo.right,D=f.padInfo.bottom,O=f.padInfo.left,E=f.dilationHeight,R=f.dilationWidth,T=f.strideHeight,P=f.strideWidth,U=f.inChannels,j=f.padInfo.type==="SAME"?1:0,q=f.batchSize,X=f.inHeight,te=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let ne=s.makeOutput(f.outShape,"float32"),se=s.dataIdMap.get(ne.dataId).id,ae=i==null?0:s.dataIdMap.get(i.dataId).id;return Wk(A,q,X,te,y,v,k,b,S,C,D,O,j,E,R,T,P,U,x,g,ae,m||0,se),ne}var Mae={kernelName:Vo,backendName:"wasm",setupFunc:Oae,kernelFunc:Pae},Vk;function zae(e){Vk=e.wasm.cwrap(Uo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Lae(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,a.shape,l,c,u,p,!0),g=Pd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=f.outChannels,b=0;if(o!=null){let Q=s.dataIdMap.get(o.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);b=Q.id}let v=f.filterHeight,k=f.filterWidth,S=f.padInfo.top,C=f.padInfo.right,D=f.padInfo.bottom,O=f.padInfo.left,E=f.dilationHeight,R=f.dilationWidth,T=f.strideHeight,P=f.strideWidth,U=f.inChannels,j=f.padInfo.type==="SAME"?1:0,q=f.batchSize,X=f.inHeight,te=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let ne=s.makeOutput(f.outShape,"float32"),se=s.dataIdMap.get(ne.dataId).id,ae=i==null?0:s.dataIdMap.get(i.dataId).id;return Vk(A,q,X,te,y,v,k,b,S,C,D,O,j,E,R,T,P,U,x,g,ae,m||0,se),ne}var Bae={kernelName:Uo,backendName:"wasm",setupFunc:zae,kernelFunc:Lae},Uk;function Wae(e){Uk=e.wasm.cwrap(dl,null,["number","number","number","number","number","number","array","number"])}function Vae(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=Qg.prepareAndValidate(s,r),u=t.makeOutput(a,s.dtype);if(o===0)return u;let c=r.shape,d=c[c.length-1],h=t.dataIdMap.get(s.dataId).id,f=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),A=t.dataIdMap.get(u.dataId).id;return Uk(h,qn[s.dtype],f,o,d,i,g,A),u}var Uae={kernelName:dl,backendName:"wasm",setupFunc:Wae,kernelFunc:Vae},Hk;function Hae(e){Hk=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Gae(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=w.parseAxisParam(o,r.shape)[0],u=_.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=Xn({inputs:{x:r},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),d=w.sizeFromShape(a.shape),p=Xn({inputs:{x:a},attrs:{shape:[u.batchSize,d/u.batchSize]},backend:t}),h=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize],m=t.makeOutput(h,r.dtype);if(w.sizeFromShape(r.shape)===0)return m;let f=c.shape.length-1,A=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(p.dataId).id,b=t.dataIdMap.get(m.dataId).id,v=new Uint8Array(new Int32Array(w.computeStrides(c.shape)).buffer),k=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer);return Hk(A,qn[r.dtype],v,f,x,u.batchSize,k,b),t.disposeData(c.dataId),t.disposeData(p.dataId),m.shape=u.outputShape,m}var jae={kernelName:cl,backendName:"wasm",setupFunc:Hae,kernelFunc:Gae},qae=!1,Xae=On(pl,qae,"bool"),Kae=!1,Zae=On(lo,Kae,"bool"),Gk;function Yae(e){Gk=e.wasm.cwrap(co,null,["number","number","number"])}function Jae(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,t.dtype);if(w.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;Gk(r,n,o)}return a}var Qae={kernelName:co,backendName:"wasm",setupFunc:Yae,kernelFunc:Jae},eoe=!1,toe=On(gl,eoe,"bool"),noe=!1,soe=On(Al,noe,"bool"),roe=vn(po),aoe=!1,ooe=On(xl,aoe,"bool"),jk;function ioe(e){jk=e.wasm.cwrap(ho,null,["number, number, number"])}function loe(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=Ra(o,r,t);if(h){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let m=u.shape.length;_.assertAxesAreInnerMostDims("max",d,m);let[f,g]=_.computeOutAndReduceShapes(u.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(f,o.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;jk(l,A,x)}if(h&&t.disposeData(c.dataId),a){let x=_.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var uoe={kernelName:ho,backendName:"wasm",setupFunc:ioe,kernelFunc:loe},coe=!1,doe=On(fo,coe),qk;function poe(e){qk=e.wasm.cwrap(mo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function hoe(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=_.computePool2DInfo(r.shape,o,i,1,l,u),d=c.filterHeight,p=c.filterWidth,h=c.padInfo.top,m=c.padInfo.right,f=c.padInfo.bottom,g=c.padInfo.left,A=c.dilationHeight,y=c.dilationWidth,x=c.strideHeight,b=c.strideWidth,v=c.inChannels,k=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let S=s.makeOutput(c.outShape,"float32"),C=s.dataIdMap.get(S.dataId).id;return qk(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,m,f,g,A,y,x,b,v,k,C),S}var foe={kernelName:mo,backendName:"wasm",setupFunc:poe,kernelFunc:hoe},Xk;function moe(e){Xk=e.wasm.cwrap(go,null,["number, number, number"])}function goe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=Ra(o,r,t),m=d;if(h){let b=t.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,m=_.getInnerMostAxes(m.length,u.shape.length))}_.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=_.computeOutAndReduceShapes(u.shape,m),A=w.sizeFromShape(g),y=u;u.dtype!=="float32"&&(y=k0({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(f,"float32");if(w.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;Xk(l,A,b)}if(h&&t.disposeData(c.dataId),a){let b=_.expandShapeToKeepDim(x.shape,p);x.shape=b}return u.dtype!=="float32"&&t.disposeData(y.dataId),x}var Aoe={kernelName:go,backendName:"wasm",setupFunc:moe,kernelFunc:goe},Kk;function yoe(e){Kk=e.wasm.cwrap(Ao,null,["number, number, number"])}function xoe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=Ra(o,r,t);if(h){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x)}let m=u.shape.length;_.assertAxesAreInnerMostDims("min",d,m);let[f,g]=_.computeOutAndReduceShapes(u.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;Kk(l,A,x)}if(h&&t.disposeData(c.dataId),a){let x=_.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var boe={kernelName:Ao,backendName:"wasm",setupFunc:yoe,kernelFunc:xoe},voe=!1,woe=On(yo,voe),V2;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(V2||(V2={}));var Zk;function koe(e){Zk=e.wasm.cwrap(xo,null,["number","array","number","number","array","array","number","number"])}function Ioe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((m,f)=>m[0]+t.shape[f]+m[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(m=>m[0]),d=s.map(m=>m[1]),p=new Uint8Array(new Int32Array(c).buffer),h=new Uint8Array(new Int32Array(d).buffer);return Zk(o,u,t.shape.length,qn[t.dtype],p,h,V2[r],l),i}var Soe={kernelName:xo,backendName:"wasm",kernelFunc:Ioe,setupFunc:koe},Coe=!0,Toe=On(bo,Coe),Noe=vn(vl);function U2(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var Yk;function Eoe(e){Yk=e.wasm.cwrap(kl,"number",["number","number","number","number","number"])}function Roe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,u=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(l.dataId).id,d=Yk(u,c,a,r,o),{pSelectedIndices:p,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=U2(t,d);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",p)}var Doe={kernelName:kl,backendName:"wasm",setupFunc:Eoe,kernelFunc:Roe},Jk;function _oe(e){Jk=e.wasm.cwrap(Il,"number",["number","number","number","number","number","bool"])}function $oe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,p=Jk(c,d,a,r,o,i),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=U2(t,p);t.wasm._free(f);let A=t.makeOutput([m],"int32",h),y=t.makeOutput([],"int32",g);return[A,y]}var Foe={kernelName:Il,backendName:"wasm",setupFunc:_oe,kernelFunc:$oe},Qk;function Ooe(e){Qk=e.wasm.cwrap(Sl,"number",["number","number","number","number","number","number"])}function Poe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,p=Qk(c,d,a,r,o,i),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=U2(t,p);t.wasm._free(g);let A=t.makeOutput([m],"int32",h),y=t.makeOutput([m],"float32",f);return[A,y]}var Moe={kernelName:Sl,backendName:"wasm",setupFunc:Ooe,kernelFunc:Poe},zoe=!1,Loe=On(wl,zoe,"bool"),e8;function Boe(e){e8=e.wasm.cwrap(vo,null,["number","number","number","number","number"])}function Woe(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return e8(d,a,o,i,u),l}var Voe={kernelName:vo,backendName:"wasm",setupFunc:Boe,kernelFunc:Woe};function Uoe(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var Hoe={kernelName:Cl,backendName:"wasm",kernelFunc:Uoe};function Goe(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return W2({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=W2({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=Dk({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var joe={kernelName:Tl,backendName:"wasm",kernelFunc:Goe},t8;function qoe(e){t8=e.wasm.cwrap(wo,null,["number","array","number","number","array","array","number","number"])}function Xoe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((f,g)=>f[0]+t.shape[g]+f[1]);if(w.sizeFromShape(t.shape)===0)return zk({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),d=s.map(f=>f[0]),p=s.map(f=>f[1]),h=new Uint8Array(new Int32Array(d).buffer),m=new Uint8Array(new Int32Array(p).buffer);return t8(o,c,t.shape.length,qn[t.dtype],h,m,r,u),i}var n8={kernelName:wo,backendName:"wasm",kernelFunc:Xoe,setupFunc:qoe},Koe=!1,Zoe=On(ko,Koe),s8;function Yoe(e){s8=e.wasm.cwrap(Io,null,["number","number","number"])}function Joe(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=n.makeOutput(s.shape,"float32"),l=n.dataIdMap.get(i.dataId).id;return s8(a,o,l),i}var Qoe={kernelName:Io,backendName:"wasm",setupFunc:Yoe,kernelFunc:Joe},r8;function eie(e){r8=e.wasm.cwrap(Nl,null,["number","number","number","number"])}function tie(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=Ra(o,r,t),m=d;if(h){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,m=_.getInnerMostAxes(m.length,u.shape.length))}_.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=_.computeOutAndReduceShapes(u.shape,m),A=w.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;r8(l,A,qn[y.dtype],x)}if(h&&t.disposeData(c.dataId),a){let x=_.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var nie={kernelName:Nl,backendName:"wasm",setupFunc:eie,kernelFunc:tie},sie=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=d2(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},rie={kernelName:vc,backendName:"wasm",kernelFunc:sie},aie=!0,oie=On(no,aie),iie=vn(So),lie=vn(To),a8;function uie(e){a8=e.wasm.cwrap(Co,null,["number","number","number","number","number","number","number","number","number","number"])}function cie(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,d,p,h]=r.shape,m=[c,l,u,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=k0({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let A=f.id,y=t.makeOutput(m,"float32");if(w.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return a8(A,c,d,p,h,l,u,a?1:0,o?1:0,x),g!=null&&t.disposeData(g.dataId),y}var die={kernelName:Co,backendName:"wasm",setupFunc:uie,kernelFunc:cie},o8;function pie(e){o8=e.wasm.cwrap(No,null,["number","array","number","array","number","number"])}function hie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=w.parseAxisParam(a,r.shape);if(r.shape.length===0)return w0({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);o8(l,c,o.length,d,r.shape.length,u);let p=Xn({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),p}var fie={kernelName:No,backendName:"wasm",kernelFunc:hie,setupFunc:pie},i8;function mie(e){i8=e.wasm.cwrap(Gl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function gie(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(l.dataId).id,[d,p,h,m]=r.shape,[f,g]=_.getImageCenter(i,p,h),A=o===0,y=255,x=typeof o=="number"?[o,o,o,A?0:y]:[...o,y],b=new Uint8Array(new Int32Array(x).buffer);return i8(u,d,p,h,m,a,f,g,b,x.length,c),l}var Aie={kernelName:Gl,backendName:"wasm",kernelFunc:gie,setupFunc:mie},yie=vn(Eo),xie=vn(Ro),l8;function bie(e){l8=e.wasm.cwrap(Dl,null,["number","number","number","number","number","number","array","number","number"])}function vie(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(w.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:p}=eA.calculateShapes(a,r,o),m=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,A=new Uint8Array(new Int32Array(d).buffer),y=t.dataIdMap.get(i.dataId).id;return l8(m,g,qn[a.dtype],l,u,c,A,p,y),i}var wie={kernelName:Dl,backendName:"wasm",setupFunc:bie,kernelFunc:vie},u8;function kie(e){u8=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Iie(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,u=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(u.dataId).id,d=s.shape.length,p=r.shape.length,h=d===0||d>1||p===1?1:w.sizeFromShape(r.shape.slice(1));return u8(o,i,l,h,c),u}var Sie={kernelName:_l,backendName:"wasm",kernelFunc:Iie,setupFunc:kie},c8;function Cie(e){c8=e.wasm.cwrap(_o,null,["number","number"])}function Tie(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||c8(s,a),r}var Nie={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Cie,kernelFunc:Tie},Eie=vn(Do),d8;function Rie(e){d8=e.wasm.cwrap(Oo,null,["number","number","number","number"])}function Die(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=w.sizeFromShape(n.shape)/i;return w.sizeFromShape(a.shape)===0||d8(r,o,i,l),a}var _ie={kernelName:Oo,backendName:"wasm",setupFunc:Rie,kernelFunc:Die};function $ie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=w.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let u=n8.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=_.getReshaped(u.shape,a,i,!1),d=_.getPermuted(c.length,a.length,!1),p=_.getReshapedPermuted(u.shape,a,i,!1),f=Xn({inputs:{x:u},backend:n,attrs:{shape:c}}),y=Mu({inputs:{x:f},backend:n,attrs:{perm:d}}),v=Xn({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeData(u.dataId),n.disposeData(f.dataId),n.disposeData(y.dataId),v}var Fie={kernelName:zl,backendName:"wasm",kernelFunc:$ie};function Oie(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=w.parseAxisParam(o,r.shape)[0],l=_.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(d=>{let p=[...c];p[i]=d;let h=Md({inputs:{x:r},attrs:{begin:u,size:p},backend:s});return u[i]+=d,h})}var Pie={kernelName:Ll,backendName:"wasm",kernelFunc:Oie},Mie=vn($o),zie=vn(kc),Lie=!0,Bie=On(Po,Lie),p8;function Wie(e){p8=e.wasm.cwrap(ia,null,["number","number","number"])}function Vie(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return p8(o,r,l),i}var Uie={kernelName:ia,backendName:"wasm",setupFunc:Wie,kernelFunc:Vie},h8;function Hie(e){h8=e.wasm.cwrap(Bl,null,["number","array","number","array","array","array","array","array","number","number"])}function Gie(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i}=s;i==null&&(i=new Array(a.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:p}=s,h=_.slice_util.maskToAxes(c);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&d!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&p!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-a.length,f=_.slice_util.maskToAxes(d),g=r.shape.slice();f.forEach(E=>{a[E]=0,o[E]=1,g.splice(E,0,1)});let A=Xn({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:y,end:x,strides:b}=_.slice_util.getNormalizedAxes(A.shape,h,m,a,o,i,l,u,c);a=y,o=x,i=b;let v=_.slice_util.maskToAxes(p);v.forEach(E=>{o[E]=a[E]+1,i[E]=1});let k=_.slice_util.computeOutShape(a,o,i),S=k.filter((E,R)=>v.indexOf(R)===-1);if(i.every(E=>E===1)){let E=Md({inputs:{x:A},attrs:{begin:a,size:k},backend:t});t.disposeData(A.dataId);let R=Xn({inputs:{x:E},attrs:{shape:S},backend:t});return t.disposeData(E.dataId),R}let D=t.makeOutput(S,"float32");if(!S.some(E=>E===0)){let E=t.dataIdMap.get(A.dataId).id,R=new Uint8Array(new Int32Array(w.computeStrides(A.shape)).buffer),T=new Uint8Array(new Int32Array(a).buffer),P=new Uint8Array(new Int32Array(o).buffer),U=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(S).buffer),q=new Uint8Array(new Int32Array(w.computeStrides(S)).buffer),X=t.dataIdMap.get(D.dataId).id;h8(E,R,A.shape.length,T,P,U,j,q,S.length,X)}t.disposeData(A.dataId);let O=Xn({inputs:{x:D},attrs:{shape:S},backend:t});return t.disposeData(D.dataId),O}var jie={kernelName:Bl,backendName:"wasm",setupFunc:Hie,kernelFunc:Gie},qie=!0,Xie=On(Mo,qie),f8;function Kie(e){f8=e.wasm.cwrap(Fo,null,["number, number, number"])}function Zie(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=Ra(o,r,t),m=d;if(h){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,m=_.getInnerMostAxes(m.length,u.shape.length))}_.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=_.computeOutAndReduceShapes(u.shape,m),A=w.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;f8(l,A,x)}if(h&&t.disposeData(c.dataId),a){let x=_.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Yie={kernelName:Fo,backendName:"wasm",setupFunc:Kie,kernelFunc:Zie},Jie=vn(zo),Qie=vn(Lo),m8;function ele(e){m8=e.wasm.cwrap(oa,null,["number","array","number","array","number","number"])}function tle(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let p=0;p<i.length;p++)i[p]=r.shape[p]*o[p];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=n.makeOutput(i,r.dtype),d=n.dataIdMap.get(c.dataId).id;return m8(a,l,r.shape.length,u,i.length,qn[c.dtype],d),c}var nle={kernelName:oa,backendName:"wasm",setupFunc:ele,kernelFunc:tle},g8;function sle(e){g8=e.wasm.cwrap(Wl,null,["number","array","number","number","number","bool","number","number"])}var rle=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,s.dtype),c=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),p=t.dataIdMap.get(d.dataId).id;return g8(o,i,s.shape.length,qn[s.dtype],r,a,c,p),[u,d]},ale={kernelName:Wl,backendName:"wasm",setupFunc:sle,kernelFunc:rle},A8;function ole(e){A8=e.wasm.cwrap(Vl,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function ile(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,d,p,h]=r.shape,[m,f]=u!=null?u:[d,p],g=[c,m,f,h],A=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),y=t.makeOutput(g,r.dtype),x=t.dataIdMap.get(y.dataId).id,v=t.dataIdMap.get(r.dataId).id,S=t.dataIdMap.get(a.dataId).id,C=o==="nearest"?1:2,D;switch(i){case"constant":D=1;break;case"reflect":D=2;break;case"wrap":D=3;break;case"nearest":D=4;break;default:D=1;break}return A8(v,S,a.shape[0]>1,c,m,f,h,p,d,A,r.shape.length-1,C,D,l,x),y}var lle={kernelName:Vl,backendName:"wasm",setupFunc:ole,kernelFunc:ile};function ule(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==a&&(l[u++]=r.shape[h]);let c=new Array(o),d=new Array(i).fill(0),p=r.shape.slice();p[a]=1;for(let h=0;h<c.length;h++)d[a]=h,c[h]=Md({inputs:{x:r},attrs:{begin:d,size:p},backend:n});return c.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var cle={kernelName:Ul,backendName:"wasm",kernelFunc:ule};function dle(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var ple={kernelName:Hl,backendName:"wasm",kernelFunc:dle},hle=[mre,Are,bre,Nre,Dre,Fre,Mre,Wre,qre,Xre,Kre,Jre,Qre,nae,aae,oae,iae,cae,hae,gae,xae,bae,wae,kae,Iae,Sae,Nae,Eae,Dae,fre,Fae,Mae,Bae,Uae,jae,Xae,Zae,vre,Qae,toe,soe,roe,ooe,uoe,doe,foe,Aoe,boe,woe,Soe,Toe,Noe,Doe,Foe,Moe,Loe,Voe,Hoe,joe,n8,Zoe,Qoe,nie,rie,oie,iie,lie,zre,die,fie,Aie,xie,yie,wie,Sie,Nie,Eie,Gre,_ie,Fie,Pie,Mie,zie,Bie,Uie,jie,Xie,Yie,Jie,Qie,nle,ale,lle,Sre,cle,ple];for(let e of hle)la(e);var H2=Y();H2.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));H2.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(H2.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var y8=Wa(mC()),fle='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',mle=Wa(gC()),x8=class extends lc{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Sp(this,Qn())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let u=t;this.dataIdMap.set(e,{id:a,stringBytes:u,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=w.sizeFromShape(n),i=o*w.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:s,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let a=this.wasm.HEAPU8.slice(t,t+w.sizeFromShape(s)*w.bytesPerElement(n));return yle(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function gle(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function b8(e,t,n){if(I0!=null)return I0;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),Ld!=null&&Ld[s]!=null?Ld[s]:n+s}async function Ale(){let[e,t]=await Promise.all([Y().getAsync("WASM_HAS_SIMD_SUPPORT"),Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=fle,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?b8(e,t,zd!=null?zd:l):l+i},G2&&(r.instantiateWasm=gle(b8(e,t,zd!=null?zd:"")));let a=!1;r.onAbort=()=>{if(a||Bd)return;Bd=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&I0==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+y8.default.toString()],{type:"text/javascript"}),o=(0,y8.default)(r)):o=(0,mle.default)(r),o.then(i=>{a=!0,Bd=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function yle(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var xle=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],I0=null,zd=null,Ld={},Bd=!1,G2=!1;function ble(e,t=!1){if(oA("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Bd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");I0=e,G2=t}function v8(e,t=!1){if(Bd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")zd=e;else{Ld=e;let n=xle.filter(s=>Ld[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}G2=t}var vle="3.9.0",wle=2;Ql("wasm",async()=>{let{wasm:e}=await Ale();return new x8(e)},wle);var kle="3.9.0",Ile="3.9.0",Sle="3.9.0",Cle="3.9.0",Tle="3.9.0",Nle="3.9.0",Ele="3.9.0",Rle="3.9.0",Dle={tfjs:kle,"tfjs-core":Ile,"tfjs-data":Sle,"tfjs-layers":Cle,"tfjs-converter":Tle,"tfjs-backend-cpu":Nle,"tfjs-backend-webgl":Ele,"tfjs-backend-wasm":Rle};var wr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},j2={count:468,mouth:13,symmetryLine:[13,wr.midwayBetweenEyes[0]]},Wd={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},q2=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Vd=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],Si=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var _le=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],$le=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Fle=[33,133,362,263,1,78,308],_ue=_le.map(e=>Vd[e]),$ue=$le.map(e=>Vd[e]),Fue=Fle.map(e=>Vd[e]);var w8=e=>({startPoint:_e(e,[0,0],[-1,2]),endPoint:_e(e,[0,2],[-1,2])});var Ud=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],S0=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2],X2=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],K2=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],k8=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s}},Z2=(e,t,n)=>{let s=t.shape[1],r=t.shape[2];return De.cropAndResize(t,[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]],[0],n)},Hd=(e,t=1.5)=>{let n=S0(e),s=Ud(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks}},Gd=e=>{let t=S0(e),n=Ud(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks}},C0=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},T0=[[1,0,0],[0,1,0],[0,0,1]],Ole=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),Ple=(e,t)=>Ole(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var I8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Ci=(e,t)=>{let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n},Mle=(e,t)=>{let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n},S8=(e,t)=>{let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(Ci(e[r],Mle(t,a)))}return n},C8=(e,t)=>{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=I8(t[0],t[1]),o=S8(a,r),i=I8(-t[0],-t[1]);return S8(o,i)},zle=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Ci(t[0],n),-Ci(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},Lle=(e,t)=>[Ci(e,t[0]),Ci(e,t[1])];function T8(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let u=r*(l+.5);for(let c=0;c<o;c++){let d=r*(c+.5);for(let p=0;p<i;p++)n.push([d,u])}}}return n}function N8(e,t,n,s,r){let a=Ud({startPoint:t.startPoint,endPoint:t.endPoint}),o=e.map(d=>[a[0]/r*(d[0]-r/2),a[1]/r*(d[1]-r/2),d[2]||0]),i=n!==0?C8(n,[0,0]):T0,l=n!==0?o.map(d=>[...Lle(d,i),d[2]]):o,u=n!==0?zle(s):T0,c=[...S0({startPoint:t.startPoint,endPoint:t.endPoint}),1];return l.map(d=>[Math.round(d[0]+Ci(c,u[0])),Math.round(d[1]+Ci(c,u[1])),Math.round(d[2]||0)])}function Y2(e,t,n){let[s,r]=e.landmarks.length>=j2.count?j2.symmetryLine:Wd.symmetryLine,a=Ple(e.landmarks[s],e.landmarks[r]),o=S0({startPoint:e.startPoint,endPoint:e.endPoint}),i=[o[0]/t.shape[2],o[1]/t.shape[1]],l=De.rotateWithOffset(t,a,0,i),u=C8(-a,o),c=Z2({startPoint:e.startPoint,endPoint:e.endPoint},l,[n,n]),d=he(c,255);return Z(c),Z(l),[a,u,d]}function Ble(e,t,n){let s=function(i,l,u){let c=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");i.replace(c,(d,p)=>(u[p]=0,d))},r=function(i,l){let u=e.createShader(l);if(e.shaderSource(u,i),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("filter: gl compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let a=r(t,e.VERTEX_SHADER),o=r(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,a),e.attachShader(this.id,o),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("filter: gl link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),s(t,"attribute",this.attribute);for(let i in this.attribute)this.attribute[i]=e.getAttribLocation(this.id,i);s(t,"uniform",this.uniform),s(n,"uniform",this.uniform);for(let i in this.uniform)this.uniform[i]=e.getUniformLocation(this.id,i)}function E8(e){e||(e={});let t=0,n=null,s=!1,r=-1,a=[null,null],o=[],i=-1,l=-1,u=null,c=null,d={},p=e.canvas||document.createElement("canvas"),h={},m={INTERMEDIATE:1},f=p.getContext("webgl");if(!f)throw new Error("filter: context failed");this.addFilter=function(v){let k=Array.prototype.slice.call(arguments,1),S=d[v];o.push({func:S,args:k})},this.reset=function(){o=[]};let g=function(v,k){if(!(v===i&&k===l)){if(p.width=v,i=v,p.height=k,l=k,!u){let S=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,u),f.bufferData(f.ARRAY_BUFFER,S,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,i,l),a=[null,null]}},A=function(v,k){let S=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,S);let C=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,C);let D=f.createTexture();return f.bindTexture(f.TEXTURE_2D,D),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,v,k,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,D,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:S,texture:D}},y=function(v){return a[v]=a[v]||A(i,l),a[v]},x=function(v=null){var D,O;let k=null,S=null,C=!1;t===0?k=n:k=(D=y(r))==null?void 0:D.texture,t++,s&&!(v&m.INTERMEDIATE)?(S=null,C=t%2==0):(r=(r+1)%2,S=(O=y(r))==null?void 0:O.fbo),f.bindTexture(f.TEXTURE_2D,k),f.bindFramebuffer(f.FRAMEBUFFER,S),f.uniform1f(c.uniform.flipY,C?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(v){if(g(v.width,v.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,v),o.length===0)return x(),p;for(let k=0;k<o.length;k++){s=k===o.length-1;let S=o[k];S.func.apply(this,S.args||[])}return p};let b=function(v){if(h[v])return c=h[v],f.useProgram(c.id),c;let k={};k.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
`),k.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
`),c=new Ble(f,k.VERTEX_IDENTITY,v);let S=Float32Array.BYTES_PER_ELEMENT,C=4*S;return f.enableVertexAttribArray(c.attribute.pos),f.vertexAttribPointer(c.attribute.pos,2,f.FLOAT,!1,C,0*S),f.enableVertexAttribArray(c.attribute.uv),f.vertexAttribPointer(c.attribute.uv,2,f.FLOAT,!1,C,2*S),h[v]=c,c};d.colorMatrix=function(v){let k=new Float32Array(v);k[4]/=255,k[9]/=255,k[14]/=255,k[19]/=255;let S=k[18]===1&&k[3]===0&&k[8]===0&&k[13]===0&&k[15]===0&&k[16]===0&&k[17]===0&&k[19]===0?d.colorMatrix.SHADER.WITHOUT_ALPHA:d.colorMatrix.SHADER.WITH_ALPHA,C=b(S);f.uniform1fv(C.uniform.m,k),x()},d.colorMatrix.SHADER={},d.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
`),d.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
`),d.brightness=function(v){let k=(v||0)+1;d.colorMatrix([k,0,0,0,0,0,k,0,0,0,0,0,k,0,0,0,0,0,1,0])},d.saturation=function(v){let k=(v||0)*2/3+1,S=(k-1)*-.5;d.colorMatrix([k,S,S,0,0,S,k,S,0,0,S,S,k,0,0,0,0,0,1,0])},d.desaturate=function(){d.saturation(-1)},d.contrast=function(v){let k=(v||0)+1,S=-128*(k-1);d.colorMatrix([k,0,0,0,S,0,k,0,0,S,0,0,k,0,S,0,0,0,1,0])},d.negative=function(){d.contrast(-2)},d.hue=function(v){v=(v||0)/180*Math.PI;let k=Math.cos(v),S=Math.sin(v),C=.213,D=.715,O=.072;d.colorMatrix([C+k*(1-C)+S*-C,D+k*-D+S*-D,O+k*-O+S*(1-O),0,0,C+k*-C+S*.143,D+k*(1-D)+S*.14,O+k*-O+S*-.283,0,0,C+k*-C+S*-(1-C),D+k*-D+S*D,O+k*(1-O)+S*O,0,0,0,0,0,1,0])},d.desaturateLuminance=function(){d.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},d.sepia=function(){d.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},d.brownie=function(){d.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},d.vintagePinhole=function(){d.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},d.kodachrome=function(){d.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},d.technicolor=function(){d.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},d.polaroid=function(){d.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},d.shiftToBGR=function(){d.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},d.convolution=function(v){let k=new Float32Array(v),S=1/i,C=1/l,D=b(d.convolution.SHADER);f.uniform1fv(D.uniform.m,k),f.uniform2f(D.uniform.px,S,C),x()},d.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
`),d.detectEdges=function(){d.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},d.sobelX=function(){d.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},d.sobelY=function(){d.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},d.sharpen=function(v){let k=v||1;d.convolution.call(this,[0,-1*k,0,-1*k,1+4*k,-1*k,0,-1*k,0])},d.emboss=function(v){let k=v||1;d.convolution.call(this,[-2*k,-1*k,0,-1*k,1,1*k,0,1*k,2*k])},d.blur=function(v){let k=v/7/i,S=v/7/l,C=b(d.blur.SHADER);f.uniform2f(C.uniform.px,0,S),x(m.INTERMEDIATE),f.uniform2f(C.uniform.px,k,0),x()},d.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
`),d.pixelate=function(v){let k=v/i,S=v/l,C=b(d.pixelate.SHADER);f.uniform2f(C.uniform.size,k,S),x()},d.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
`)}var N0=2048,Oe,Nt,jt;function ds(e,t){let n;return oe.browser?oe.offscreen?n=new OffscreenCanvas(e,t):(n=document.createElement("canvas"),n.width=e,n.height=t):typeof oe.Canvas!="undefined"?n=new oe.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t)),n}function zu(e,t){let n;if(!e)return t.debug&&re("input is missing"),{tensor:null,canvas:null};if(!(e instanceof He)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof oe.Canvas!="undefined"&&e instanceof oe.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input type is not recognized");if(e instanceof He){if(e.isDisposedInternal)throw new Error("input tensor is disposed");if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Hs(e);else throw new Error(`input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`)}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&re("input stream is not ready"),{tensor:null,canvas:Oe};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&re("cannot determine input dimensions"),{tensor:null,canvas:Oe};let a=s,o=r;if(a>N0&&(a=N0,o=Math.trunc(a*r/s)),o>N0&&(o=N0,a=Math.trunc(o*s/r)),(t.filter.width||0)>0?a=t.filter.width:(t.filter.height||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input cannot determine dimension");(!Oe||(Oe==null?void 0:Oe.width)!==a||(Oe==null?void 0:Oe.height)!==o)&&(Oe=ds(a,o));let i=Oe.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,Oe==null?void 0:Oe.width,Oe==null?void 0:Oe.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,Oe==null?void 0:Oe.width,Oe==null?void 0:Oe.height),t.filter.enabled&&oe.webgl.supported){if((!jt||!Nt||Oe.width!==Nt.width||(Oe==null?void 0:Oe.height)!==(Nt==null?void 0:Nt.height))&&(Nt=ds(Oe==null?void 0:Oe.width,Oe==null?void 0:Oe.height),(Nt==null?void 0:Nt.width)!==(Oe==null?void 0:Oe.width)&&(Nt.width=Oe==null?void 0:Oe.width),(Nt==null?void 0:Nt.height)!==(Oe==null?void 0:Oe.height)&&(Nt.height=Oe==null?void 0:Oe.height),jt=oe.browser?new E8({canvas:Nt}):null),!jt)return{tensor:null,canvas:Oe};jt.reset(),jt.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&jt.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&jt.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&jt.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&jt.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&jt.addFilter("hue",t.filter.hue),t.filter.negative&&jt.addFilter("negative"),t.filter.sepia&&jt.addFilter("sepia"),t.filter.vintage&&jt.addFilter("brownie"),t.filter.sepia&&jt.addFilter("sepia"),t.filter.kodachrome&&jt.addFilter("kodachrome"),t.filter.technicolor&&jt.addFilter("technicolor"),t.filter.polaroid&&jt.addFilter("polaroid"),t.filter.pixelate!==0&&jt.addFilter("pixelate",t.filter.pixelate),jt.apply(Oe)}else Nt=Oe,jt&&(jt=null);if(!n){let l;if(Nt.data){let u=[Nt.height,Nt.width,3];l=vh(Nt.data,u,"float32")}else if(typeof ImageData!="undefined"&&Nt instanceof ImageData)l=_s?_s.fromPixels(Nt):null;else if(t.backend==="webgl"||t.backend==="humangl"){let u=ds(a,o);u.width=a,u.height=o;let c=u.getContext("2d");c==null||c.drawImage(Nt,0,0);try{l=_s&&oe.browser?_s.fromPixels(u):null}catch(d){throw new Error("browser webgl error")}}else{let u=ds(a,o);if(!u)return{tensor:null,canvas:Oe};u.width=a,u.height=o;let c=u.getContext("2d");if(!c)return{tensor:null,canvas:Oe};c.drawImage(Nt,0,0);let d=c.getImageData(0,0,a,o);_s&&oe.browser?l=_s.fromPixels(d):l=H(()=>{let p=ln(Array.from(d.data),[a,o,4]),h=Vt(p,4,2),m=yn([h[0],h[1],h[2]],2);return V(m,[p.shape[0],p.shape[1],3])})}if(l){let u=pe(l,"float32");n=zt(u,0),Z(l),Z(u)}else throw n=Pt([1,a,o,3]),new Error("cannot create tensor from input")}}return{tensor:n,canvas:t.filter.return?Nt:null}}var J2=0,R8=1;async function D8(e,t){if(e.cacheSensitivity===0)return!1;let n=32;if(!t.shape[1]||!t.shape[2])return!1;let s=De.resizeBilinear(t,[Math.trunc(t.shape[1]/n),Math.trunc(t.shape[2]/n)]),r=await s.data();Z(s);let a=0;for(let l=0;l<r.length/3;l++)a+=r[3*l+2];let o=100*(Math.max(a,J2)/Math.min(a,J2)-1);J2=a;let i=o<Math.max(e.cacheSensitivity,R8);return R8=o>10*e.cacheSensitivity?0:o,i}var oe={browser:void 0,node:void 0,worker:void 0,platform:void 0,agent:void 0,initial:!0,backends:[],offscreen:void 0,tfjs:{version:void 0},wasm:{supported:void 0,backend:void 0,simd:void 0,multithread:void 0},webgl:{supported:void 0,backend:void 0,version:void 0,renderer:void 0},webgpu:{supported:void 0,backend:void 0,adapter:void 0},kernels:[],Canvas:void 0,Image:void 0,ImageData:void 0};async function Wle(){var n;oe.backends=Object.keys(Qn().registryFactory),oe.wasm.supported=typeof WebAssembly!="undefined",oe.wasm.backend=oe.backends.includes("wasm"),oe.wasm.supported&&oe.wasm.backend&&cr()==="wasm"&&(oe.wasm.simd=await Y().getAsync("WASM_HAS_SIMD_SUPPORT"),oe.wasm.multithread=await Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let e=ds(100,100),t=e?e.getContext("webgl2"):void 0;if(oe.webgl.supported=typeof t!="undefined",oe.webgl.backend=oe.backends.includes("webgl"),oe.webgl.supported&&oe.webgl.backend&&(cr()==="webgl"||cr()==="humangl")){let s=$r().gpgpu!=="undefined"?await $r().getGPGPUContext().gl:null;s&&(oe.webgl.version=s.getParameter(s.VERSION),oe.webgl.renderer=s.getParameter(s.RENDERER))}oe.webgpu.supported=oe.browser&&typeof navigator.gpu!="undefined",oe.webgpu.backend=oe.backends.includes("webgpu"),oe.webgpu.supported&&(oe.webgpu.adapter=(n=await navigator.gpu.requestAdapter())==null?void 0:n.name),oe.kernels=Dr(cr()).map(s=>s.kernelName.toLowerCase())}async function E0(){if(oe.browser=typeof navigator!="undefined",oe.node=typeof process!="undefined",oe.worker=oe.browser?typeof WorkerGlobalScope!="undefined":void 0,oe.tfjs.version=kh,oe.offscreen=typeof oe.offscreen=="undefined"?typeof OffscreenCanvas!="undefined":oe.offscreen,typeof navigator!="undefined"){let e=navigator.userAgent.match(/\(([^()]+)\)/g);if(e&&e[0]){let t=e[0].match(/\(([^()]+)\)/g);oe.platform=t&&t[0]?t[0].replace(/\(|\)/g,""):"",oe.agent=navigator.userAgent.replace(e[0],""),oe.platform[1]&&(oe.agent=oe.agent.replace(e[1],"")),oe.agent=oe.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(oe.platform=`${process.platform} ${process.arch}`,oe.agent=`NodeJS ${process.version}`);await Wle()}async function _8(e){oe=rn(oe,e)}var $8=6,Ss,Q2=[],F8=null,Cs=0,jd=()=>Cs;async function O8(e){var t;return oe.initial&&(Ss=null),Ss?e.debug&&re("cached model:",Ss.modelUrl):(Ss=await st(rt(e.modelBasePath,((t=e.face.detector)==null?void 0:t.modelPath)||"")),!Ss||!Ss.modelUrl?re("load model failed:",e.body.modelPath):e.debug&&re("load model:",Ss.modelUrl)),Cs=Ss.inputs[0].shape?Ss.inputs[0].shape[2]:0,Cs===-1&&(Cs=64),Q2=T8(Cs),F8=qs(Q2),Ss}function Vle(e){let t=_e(e,[0,1],[-1,2]),n=le(t,F8),s=_e(e,[0,3],[-1,2]),r=he(s,Cs),a=he(n,Cs),o=he(r,2),i=ye(a,o),l=le(a,o),u=z(i,Cs),c=z(l,Cs);return nu([u,c],1)}async function P8(e,t){var u,c,d,p;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return{boxes:[]};let[n,s,r]=H(()=>{let h=De.resizeBilinear(e,[Cs,Cs]),m=ye(he(h,127.5),.5),f=Ss==null?void 0:Ss.execute(m),g;if(Array.isArray(f)){let b=f.sort((C,D)=>C.size-D.size),v=gt([b[0],b[2]],2),k=gt([b[1],b[3]],2),S=gt([k,v],1);g=at(S,0)}else g=at(f);let A=Vle(g),y=_e(g,[0,0],[-1,1]),x=at(Wn(y));return[g,A,x]}),a=await De.nonMaxSuppressionAsync(s,r,((u=t.face.detector)==null?void 0:u.maxDetected)||0,((c=t.face.detector)==null?void 0:c.iouThreshold)||0,((d=t.face.detector)==null?void 0:d.minConfidence)||0),o=await a.array();Z(a);let i=[],l=await r.data();for(let h=0;h<o.length;h++){let m=l[o[h]];if(m>(((p=t.face.detector)==null?void 0:p.minConfidence)||0)){let f=_e(s,[o[h],0],[1,-1]),g=H(()=>V(at(_e(n,[o[h],$8-1],[1,-1])),[$8,-1]));i.push({box:w8(f),landmarks:g,anchor:Q2[o[h]],confidence:m}),Z(f)}}return Z(n),Z(s),Z(r),{boxes:i,scaleFactor:[e.shape[2]/Cs,e.shape[1]/Cs]}}var zs,Da=0,Ule=2.3,ex=wr.leftEyeLower0,tx=wr.rightEyeLower0,Lu={leftBounds:[ex[0],ex[ex.length-1]],rightBounds:[tx[0],tx[tx.length-1]]},Bu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function M8(e){var t;return oe.initial&&(zs=null),zs?e.debug&&re("cached model:",zs.modelUrl):(zs=await st(rt(e.modelBasePath,((t=e.face.iris)==null?void 0:t.modelPath)||"")),!zs||!zs.modelUrl?re("load model failed:",e.body.modelPath):e.debug&&re("load model:",zs.modelUrl)),Da=zs.inputs[0].shape?zs.inputs[0].shape[2]:0,Da===-1&&(Da=64),zs}function R0(e,t,n,s){for(let r=0;r<q2.length;r++){let{key:a,indices:o}=q2[r],i=wr[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let u=o[l];e[i[l]]=[t[u][0],t[u][1],(t[u][2]+e[i[l]][2])/2]}}}var Hle=e=>{let t=e[Lu.leftBounds[0]][2],n=e[Lu.rightBounds[0]][2];return t-n},z8=(e,t,n,s,r=!1,a)=>{let o=Gd(Hd(C0([e[n],e[s]]),Ule)),i=Ud(o),l=De.cropAndResize(t,[[o.startPoint[1]/a,o.startPoint[0]/a,o.endPoint[1]/a,o.endPoint[0]/a]],[0],[Da,Da]);if(r&&oe.kernels.includes("flipleftright")){let u=De.flipLeftRight(l);Z(l),l=u}return{box:o,boxSize:i,crop:l}},L8=(e,t,n,s=!1)=>{let r=[];for(let a=0;a<Bu.numCoordinates;a++){let o=e[a*3],i=e[a*3+1],l=e[a*3+2];r.push([(s?1-o/Da:o/Da)*n[0]+t.startPoint[0],i/Da*n[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice(Bu.index)}},B8=(e,t,n)=>{let s=e[wr[`${n}EyeUpper0`][Bu.upperCenter]][2],r=e[wr[`${n}EyeLower0`][Bu.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function W8(e,t,n,s){if(!zs)return n.debug&&re("face mesh iris detection requested, but model is not loaded"),e;let{box:r,boxSize:a,crop:o}=z8(e,t,Lu.leftBounds[0],Lu.leftBounds[1],!0,s),{box:i,boxSize:l,crop:u}=z8(e,t,Lu.rightBounds[0],Lu.rightBounds[1],!0,s),c=gt([o,u]);Z(o),Z(u);let d=zs.predict(c);Z(c);let p=await d.data();Z(d);let h=p.slice(0,Bu.numCoordinates*3),{rawCoords:m,iris:f}=L8(h,r,a,!0),g=p.slice(Bu.numCoordinates*3),{rawCoords:A,iris:y}=L8(g,i,l),x=Hle(e);Math.abs(x)<30?(R0(e,m,"left",null),R0(e,A,"right",null)):x<1?R0(e,m,"left",["EyeUpper0","EyeLower0"]):R0(e,A,"right",["EyeUpper0","EyeLower0"]);let b=B8(e,f,"left"),v=B8(e,y,"right");return e.concat(b).concat(v)}var kr=[],Ls=null,sr=0,nx=Number.MAX_SAFE_INTEGER,V8=0;async function U8(e,t){var a,o,i,l,u,c,d,p,h,m,f,g;if(!t.skipFrame||(V8!==((a=t.face.detector)==null?void 0:a.maxDetected)||!((o=t.face.mesh)==null?void 0:o.enabled))&&nx>(((i=t.face.detector)==null?void 0:i.skipFrames)||0)){let A=await P8(e,t);kr=[];for(let y of A.boxes){let x=await y.box.startPoint.data(),b=await y.box.endPoint.data(),v=await y.landmarks.array();kr.push({startPoint:x,endPoint:b,landmarks:v,confidence:y.confidence})}A.boxes.forEach(y=>Z([y.box.startPoint,y.box.endPoint,y.landmarks]));for(let y=0;y<kr.length;y++){let x=k8({startPoint:kr[y].startPoint,endPoint:kr[y].endPoint},A.scaleFactor),b=Hd(x),v=Gd(b);kr[y]={...v,confidence:kr[y].confidence,landmarks:kr[y].landmarks}}nx=0}else nx++;let n=[],s=[],r=0;for(let A of kr){let y=0,x,b={id:r++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if(((l=t.face.detector)==null?void 0:l.rotation)&&((u=t.face.mesh)==null?void 0:u.enabled)&&oe.kernels.includes("rotatewithoffset"))[y,x,b.tensor]=Y2(A,e,sr);else{x=T0;let v=Z2({startPoint:A.startPoint,endPoint:A.endPoint},e,((c=t.face.mesh)==null?void 0:c.enabled)?[sr,sr]:[jd(),jd()]);b.tensor=he(v,255),Z(v)}if(b.boxScore=Math.round(100*A.confidence)/100,(d=t.face.mesh)==null?void 0:d.enabled)if(!Ls)t.debug&&re("face mesh detection requested, but model is not loaded");else{let[v,k,S]=Ls.execute(b.tensor);Z(v);let C=(await k.data())[0];Z(k);let D=V(S,[-1,3]),O=await D.array();if(Z(S),Z(D),C<(((p=t.face.detector)==null?void 0:p.minConfidence)||1))A.confidence=C;else{((h=t.face.iris)==null?void 0:h.enabled)&&(O=await W8(O,b.tensor,t,sr)),b.mesh=N8(O,A,y,x,sr),b.meshRaw=b.mesh.map(E=>[E[0]/(e.shape[2]||0),E[1]/(e.shape[1]||0),(E[2]||0)/sr]),A={...Hd(C0(b.mesh),1.5),confidence:A.confidence};for(let E of Object.keys(wr))b.annotations[E]=wr[E].map(R=>b.mesh[R]);((m=t.face.detector)==null?void 0:m.rotation)&&t.face.mesh.enabled&&((f=t.face.description)==null?void 0:f.enabled)&&oe.kernels.includes("rotatewithoffset")&&(Z(b.tensor),[y,x,b.tensor]=Y2(A,e,sr)),b.box=X2(A,e),b.boxRaw=K2(A,e),b.score=Math.round(100*C||100*A.confidence||0)/100,b.faceScore=Math.round(100*C)/100,A={...Gd(A),confidence:A.confidence,faceConfidence:C}}}else{b.box=X2(A,e),b.boxRaw=K2(A,e),b.score=Math.round(100*A.confidence||0)/100,b.mesh=A.landmarks.map(v=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*v[0]/jd(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*v[1]/jd()]),b.meshRaw=b.mesh.map(v=>[v[0]/(e.shape[2]||0),v[1]/(e.shape[1]||0),(v[2]||0)/sr]);for(let v of Object.keys(Wd))b.annotations[v]=[b.mesh[Wd[v]]]}n.push(b),s.push(A)}return((g=t.face.mesh)==null?void 0:g.enabled)&&(kr=s.filter(A=>{var y;return A.confidence>(((y=t.face.detector)==null?void 0:y.minConfidence)||0)})),V8=n.length,n}async function H8(e){var t;return oe.initial&&(Ls=null),Ls?e.debug&&re("cached model:",Ls.modelUrl):(Ls=await st(rt(e.modelBasePath,((t=e.face.mesh)==null?void 0:t.modelPath)||"")),!Ls||!Ls.modelUrl?re("load model failed:",e.body.modelPath):e.debug&&re("load model:",Ls.modelUrl)),sr=Ls.inputs[0].shape?Ls.inputs[0].shape[2]:0,sr===-1&&(sr=64),Ls}var G8=Si,j8=Vd;var Pn,D0=[],q8=0,sx=Number.MAX_SAFE_INTEGER;async function X8(e){var n,s;let t=rt(e.modelBasePath,((n=e.face.description)==null?void 0:n.modelPath)||"");return oe.initial&&(Pn=null),Pn?e.debug&&re("cached model:",t):(Pn=await st(t),Pn?e.debug&&re("load model:",t):re("load model failed:",((s=e.face.description)==null?void 0:s.modelPath)||"")),Pn}function rx(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let s=5*e.map((a,o)=>Math.abs(e[o]-t[o])**n).reduce((a,o)=>a+o,0)**(1/n);return Math.max(0,100-s)/100}function K8(e,t,n=0){let s={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return s;for(let r of t)if(r.embedding&&r.name){let a=rx(e,r.embedding);a>n&&a>s.similarity&&(s={...r,similarity:a})}return s}function ax(e){return H(()=>{let n=e.image||e.tensor||e;if(!(n instanceof He))return null;let s=[[.05,.15,.85,.85]];if(!(Pn==null?void 0:Pn.inputs[0].shape))return null;let r=n.shape.length===3?De.cropAndResize(zt(n,0),s,[0],[Pn.inputs[0].shape[2],Pn.inputs[0].shape[1]]):De.cropAndResize(n,s,[0],[Pn.inputs[0].shape[2],Pn.inputs[0].shape[1]]);return z(r,255)})}async function ox(e,t,n,s){var r,a,o;return Pn?sx<(((r=t.face.description)==null?void 0:r.skipFrames)||0)&&t.skipFrame&&q8===s&&((a=D0[n])==null?void 0:a.age)&&((o=D0[n])==null?void 0:o.age)>0?(sx++,D0[n]):(sx=0,new Promise(async i=>{var d,p;let l=ax(e),u,c={age:0,gender:"unknown",genderScore:0,descriptor:[]};if(((d=t.face.description)==null?void 0:d.enabled)&&(u=await(Pn==null?void 0:Pn.predict(l))),Z(l),u){let h=await u.find(b=>b.shape[1]===1).data(),m=Math.trunc(200*Math.abs(h[0]-.5))/100;m>(((p=t.face.description)==null?void 0:p.minConfidence)||0)&&(c.gender=h[0]<=.5?"female":"male",c.genderScore=Math.min(.99,m));let f=Gs(u.find(b=>b.shape[1]===100),1),g=(await f.data())[0];Z(f);let A=await u.find(b=>b.shape[1]===100).data();c.age=Math.round(A[g-1]>A[g+1]?10*g-100*A[g-1]:10*g+100*A[g+1])/10;let x=await u.find(b=>b.shape[1]===1024).data();c.descriptor=[...x],u.forEach(b=>Z(b))}D0[n]=c,q8=s,i(c)})):null}var Gle=["angry","disgust","fear","happy","sad","surprise","neutral"],en,_0=[],Z8=0,ix=Number.MAX_SAFE_INTEGER,lx=[.2989,.587,.114];async function Y8(e){var t;return oe.initial&&(en=null),en?e.debug&&re("cached model:",en.modelUrl):(en=await st(rt(e.modelBasePath,((t=e.face.emotion)==null?void 0:t.modelPath)||"")),!en||!en.modelUrl?re("load model failed:",e.body.modelPath):e.debug&&re("load model:",en.modelUrl)),en}async function ux(e,t,n,s){var r;return en?ix<(((r=t.face.emotion)==null?void 0:r.skipFrames)||0)&&t.skipFrame&&Z8===s&&_0[n]&&_0[n].length>0?(ix++,_0[n]):(ix=0,new Promise(async a=>{var g,A;let o=De.resizeBilinear(e,[(en==null?void 0:en.inputs[0].shape)?en.inputs[0].shape[2]:0,(en==null?void 0:en.inputs[0].shape)?en.inputs[0].shape[1]:0],!1),[i,l,u]=Vt(o,3,3);Z(o);let c=z(i,lx[0]),d=z(l,lx[1]),p=z(u,lx[2]);Z(i),Z(l),Z(u);let h=Th([c,d,p]);Z(c),Z(d),Z(p);let m=H(()=>z(ye(h,.5),2));Z(h);let f=[];if((g=t.face.emotion)==null?void 0:g.enabled){let y=await(en==null?void 0:en.predict(m)),x=await y.data();Z(y);for(let b=0;b<x.length;b++)x[b]>(((A=t.face.emotion)==null?void 0:A.minConfidence)||0)&&f.push({score:Math.min(.99,Math.trunc(100*x[b])/100),emotion:Gle[b]});f.sort((b,v)=>v.score-b.score)}Z(m),_0[n]=f,Z8=s,a(f)})):null}var qd=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],jle=qd.length,Xd=qd.reduce((e,t,n)=>(e[t]=n,e),{}),qle=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],wce=qle.map(([e,t])=>[Xd[e],Xd[t]]),J8=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function Q8(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function eI(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(u,c)=>({id:c,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/s,u.box[2]/r,u.box[3]/s],box:[Math.trunc(u.box[0]*o),Math.trunc(u.box[1]*a),Math.trunc(u.box[2]*o),Math.trunc(u.box[3]*a)],keypoints:u.keypoints.map(({score:d,part:p,position:h})=>({score:d,part:p,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]}))});return e.map((u,c)=>i(u,c))}var cx=class{constructor(t,n){Ne(this,"priorityQueue");Ne(this,"numberOfElements");Ne(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function dx(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+jle)}}function px(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=dx(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function hx(e,t,n){return e<t?t:e>n?n:e}function tI(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function fx(e,t){return{x:e.x+t.x,y:e.y+t.y}}var ps,Xle=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],$0=1,Wu=16,Kle=50**2;function nI(e,t,n,s,r,a,o=2){let i=A=>({y:a.get(A.y,A.x,e),x:a.get(A.y,A.x,a.shape[2]/2+e)}),l=(A,y,x)=>({y:hx(Math.round(A.y/Wu),0,y-1),x:hx(Math.round(A.x/Wu),0,x-1)}),[u,c]=s.shape,d=l(t.position,u,c),p=i(d),m=fx(t.position,p);for(let A=0;A<o;A++){let y=l(m,u,c),x=dx(y.y,y.x,n,r);m=fx({x:y.x*Wu,y:y.y*Wu},{x:x.x,y:x.y})}let f=l(m,u,c),g=s.get(f.y,f.x,n);return{position:m,part:qd[n],score:g}}function Zle(e,t,n,s,r){let a=J8.map(([p,h])=>[Xd[p],Xd[h]]),o=a.map(([,p])=>p),i=a.map(([p])=>p),l=t.shape[2],u=o.length,c=new Array(l),d=px(e.part,Wu,n);c[e.part.id]={score:e.score,part:qd[e.part.id],position:d};for(let p=u-1;p>=0;--p){let h=o[p],m=i[p];c[h]&&!c[m]&&(c[m]=nI(p,c[h],m,t,n,r))}for(let p=0;p<u;++p){let h=i[p],m=o[p];c[h]&&!c[m]&&(c[m]=nI(p,c[h],m,t,n,s))}return c}function Yle(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-$0,0),u=Math.min(n+$0+1,a);for(let c=l;c<u;++c){let d=Math.max(s-$0,0),p=Math.min(s+$0+1,o);for(let h=d;h<p;++h)if(r.get(c,h,e)>t){i=!1;break}if(!i)break}return i}function Jle(e,t){let[n,s,r]=t.shape,a=new cx(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let u=t.get(o,i,l);u<e||Yle(l,u,o,i,t)&&a.enqueue({score:u,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function sI(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?tI(n,t,a.y,a.x)<=Kle:!1})}function Qle(e,t){return t.reduce((s,{position:r,score:a},o)=>(sI(e,r,o)||(s+=a),s),0)/t.length}function eue(e,t,n,s,r,a){let o=[],i=Jle(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),u=px(l.part,Wu,e);if(sI(o,u,l.part.id))continue;let c=Zle(l,t,e,n,s);c=c.filter(h=>h.score>a);let d=Qle(o,c),p=Q8(c);d>a&&o.push({keypoints:c,box:p,score:Math.round(100*d)/100})}return o}async function mx(e,t){let n=H(()=>{if(!ps.inputs[0].shape)return[];let o=De.resizeBilinear(e,[ps.inputs[0].shape[2],ps.inputs[0].shape[1]]),i=ye(he(pe(o,"float32"),127.5),1),u=ps.execute(i,Xle).map(c=>at(c,[0]));return u[1]=u[1].sigmoid(),u}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)Z(o);let r=await eue(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return ps.inputs[0].shape?eI(r,[e.shape[1],e.shape[2]],[ps.inputs[0].shape[2],ps.inputs[0].shape[1]]):[]}async function rI(e){return!ps||oe.initial?(ps=await st(rt(e.modelBasePath,e.body.modelPath||"")),!ps||!ps.modelUrl?re("load model failed:",e.body.modelPath):e.debug&&re("load model:",ps.modelUrl)):e.debug&&re("cached model:",ps.modelUrl),ps}function F0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Kd(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function aI(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return De.cropAndResize(t,a,[0],n)}function oI(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function O0(e,t=1.5){let n=Kd(e),s=F0(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function P0(e){let t=Kd(e),n=F0(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}var iI=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var gx=class{constructor(t){Ne(this,"model");Ne(this,"anchors");Ne(this,"anchorsTensor");Ne(this,"inputSize");Ne(this,"inputSizeTensor");Ne(this,"doubleInputSizeTensor");this.model=t,this.anchors=iI.map(n=>[n.x,n.y]),this.anchorsTensor=qs(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=Ut([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Ut([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return H(()=>{let n=_e(t,[0,0],[-1,2]),s=_e(t,[0,2],[-1,2]),r=le(he(n,this.inputSizeTensor),this.anchorsTensor),a=he(s,this.doubleInputSizeTensor),o=z(ye(r,a),this.inputSizeTensor),i=z(le(r,a),this.inputSizeTensor);return nu([o,i],1)})}normalizeLandmarks(t,n){return H(()=>{let s=le(he(V(t,[-1,7,2]),this.inputSizeTensor),this.anchors[n]);return z(s,this.inputSizeTensor)})}async getBoxes(t,n){let s={};s.batched=this.model.predict(t),s.predictions=at(s.batched),s.scores=H(()=>at(Wn(_e(s.predictions,[0,0],[-1,1]))));let r=await s.scores.data();s.boxes=_e(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await De.nonMaxSuppressionAsync(s.norm,s.scores,3*n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let i of a){let l=_e(s.norm,[i,0],[1,-1]),u=H(()=>V(this.normalizeLandmarks(_e(s.predictions,[i,5],[1,14]),i),[-1,2]));o.push({box:l,palmLandmarks:u,confidence:r[i]})}for(let i of Object.keys(s))Z(s[i]);return o}async estimateHandBounds(t,n){let s=t.shape[1],r=t.shape[2],a=H(()=>ye(he(De.resizeBilinear(t,[this.inputSize,this.inputSize]),127.5),1)),o=await this.getBoxes(a,n);Z(a);let i=[];if(!o||o.length===0)return i;for(let l of o){let u=await l.box.data(),c=u.slice(0,2),d=u.slice(2,4),p=await l.palmLandmarks.array();Z(l.box),Z(l.palmLandmarks),i.push(oI({startPoint:c,endPoint:d,palmLandmarks:p,confidence:l.confidence},[r/this.inputSize,s/this.inputSize]))}return i}};function tue(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function lI(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return tue(n)}var uI=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function _a(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function nue(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function cI(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(_a(e[r],nue(t,a)))}return n}function Ax(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=uI(t[0],t[1]),o=cI(a,r),i=uI(-t[0],-t[1]);return cI(o,i)}function dI(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-_a(t[0],n),-_a(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function yx(e,t){return[_a(e,t[0]),_a(e,t[1])]}var sue=5,pI=1.65,hI=[0,5,9,13,17,1,2],rue=0,aue=2,xx=class{constructor(t,n){Ne(this,"handDetector");Ne(this,"handPoseModel");Ne(this,"inputSize");Ne(this,"storedBoxes");Ne(this,"skipped");Ne(this,"detectedHands");this.handDetector=t,this.handPoseModel=n,this.inputSize=this.handPoseModel&&this.handPoseModel.inputs[0].shape?this.handPoseModel.inputs[0].shape[2]:0,this.storedBoxes=[],this.skipped=0,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>yx([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return O0(P0(r),sue)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=O0(P0(n),pI);s.palmLandmarks=[];for(let r=0;r<hI.length;r++)s.palmLandmarks.push(t[hI[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=F0(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(h=>[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=Ax(s,[0,0]),u=i.map(h=>[...yx(h,l),h[2]]),c=dI(r),d=[...Kd(n),1],p=[_a(d,c[0]),_a(d,c[1])];return u.map(h=>[Math.trunc(h[0]+p[0]),Math.trunc(h[1]+p[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let a=[];for(let o=0;o<this.storedBoxes.length;o++){let i=this.storedBoxes[o];if(!!i)if(n.hand.landmarks){let l=n.hand.rotation?lI(i.palmLandmarks[rue],i.palmLandmarks[aue]):0,u=Kd(i),c=[u[0]/t.shape[2],u[1]/t.shape[1]],d=n.hand.rotation&&oe.kernels.includes("rotatewithoffset")?De.rotateWithOffset(t,l,0,c):t.clone(),p=Ax(-l,u),h=s?this.getBoxForPalmLandmarks(i.palmLandmarks,p):i,m=aI(h,d,[this.inputSize,this.inputSize]),f=he(m,255);Z(m),Z(d);let[g,A]=await this.handPoseModel.predict(f);Z(f);let y=(await g.data())[0];if(Z(g),y>=n.hand.minConfidence/4){let x=V(A,[-1,3]),b=await x.array();Z(A),Z(x);let v=this.transformRawCoords(b,h,l,p),k=this.getBoxForHandLandmarks(v);this.storedBoxes[o]={...k,confidence:y};let S={landmarks:v,confidence:y,boxConfidence:i.confidence,fingerConfidence:y,box:{topLeft:k.startPoint,bottomRight:k.endPoint}};a.push(S)}else this.storedBoxes[o]=null;Z(A)}else{let l=O0(P0(i),pI),u={confidence:i.confidence,boxConfidence:i.confidence,fingerConfidence:0,box:{topLeft:l.startPoint,bottomRight:l.endPoint},landmarks:[]};a.push(u)}}return this.storedBoxes=this.storedBoxes.filter(o=>o!==null),this.detectedHands=a.length,a.length>n.hand.maxDetected&&(a.length=n.hand.maxDetected),a}};var Xe={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>Xe.nameMapping[e],getPoints:e=>Xe.pointsMapping[e]},Kn={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>Kn.nameMapping[e]},je={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>je.nameMapping[e]},M0=class{constructor(t){Ne(this,"name");Ne(this,"curls");Ne(this,"directions");Ne(this,"weights");Ne(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}addCurl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}addDirection(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}setWeight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var $a=new M0("thumbs up");$a.addCurl(Xe.thumb,Kn.none,1);$a.addDirection(Xe.thumb,je.verticalUp,1);$a.addDirection(Xe.thumb,je.diagonalUpLeft,.25);$a.addDirection(Xe.thumb,je.diagonalUpRight,.25);for(let e of[Xe.index,Xe.middle,Xe.ring,Xe.pinky])$a.addCurl(e,Kn.full,1),$a.addDirection(e,je.horizontalLeft,1),$a.addDirection(e,je.horizontalRight,1);var qt=new M0("victory");qt.addCurl(Xe.thumb,Kn.half,.5);qt.addCurl(Xe.thumb,Kn.none,.5);qt.addDirection(Xe.thumb,je.verticalUp,1);qt.addDirection(Xe.thumb,je.diagonalUpLeft,1);qt.addCurl(Xe.index,Kn.none,1);qt.addDirection(Xe.index,je.verticalUp,.75);qt.addDirection(Xe.index,je.diagonalUpLeft,1);qt.addCurl(Xe.middle,Kn.none,1);qt.addDirection(Xe.middle,je.verticalUp,1);qt.addDirection(Xe.middle,je.diagonalUpLeft,.75);qt.addCurl(Xe.ring,Kn.full,1);qt.addDirection(Xe.ring,je.verticalUp,.2);qt.addDirection(Xe.ring,je.diagonalUpLeft,1);qt.addDirection(Xe.ring,je.horizontalLeft,.2);qt.addCurl(Xe.pinky,Kn.full,1);qt.addDirection(Xe.pinky,je.verticalUp,.2);qt.addDirection(Xe.pinky,je.diagonalUpLeft,1);qt.addDirection(Xe.pinky,je.horizontalLeft,.2);qt.setWeight(Xe.index,2);qt.setWeight(Xe.middle,2);var fI=[$a,qt];var oue=.7,Ti={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function mI(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function gI(e,t){if(!e||!t)return[0,0];let n=mI(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=mI(e[1],e[2],t[1],t[2]);return[n,s]}function AI(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function iue(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],u=e[2]-t[2],c=e[2]-n[2],d=t[2]-n[2],p=Math.sqrt(s*s+o*o+u*u),h=Math.sqrt(r*r+i*i+c*c),m=Math.sqrt(a*a+l*l+d*d),f=(m*m+p*p-h*h)/(2*m*p);f>1?f=1:f<-1&&(f=-1);let g=Math.acos(f);g=57.2958*g%180;let A;return g>Ti.NO_CURL_START_LIMIT?A=Kn.none:g>Ti.HALF_CURL_START_LIMIT?A=Kn.half:A=Kn.full,A}function yI(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=je.horizontalLeft:r=je.horizontalRight:s===Math.abs(t)?t>0?r=je.horizontalLeft:r=je.horizontalRight:n>0?r=je.horizontalLeft:r=je.horizontalRight,r}function xI(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=je.verticalDown:r=je.verticalUp:s===Math.abs(t)?t<0?r=je.verticalDown:r=je.verticalUp:n<0?r=je.verticalDown:r=je.verticalUp,r}function lue(e,t,n,s,r,a,o,i){let l,u=xI(e,t,n,s),c=yI(r,a,o,i);return u===je.verticalUp?c===je.horizontalLeft?l=je.diagonalUpLeft:l=je.diagonalUpRight:c===je.horizontalLeft?l=je.diagonalDownLeft:l=je.diagonalDownRight,l}function uue(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],u=t[1]-n[1],c=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),d=Math.max(Math.abs(i),Math.abs(l),Math.abs(u)),p=0,h=0,m=0,f=d/(c+1e-5);f>1.5?p+=Ti.DISTANCE_VOTE_POWER:f>.66?h+=Ti.DISTANCE_VOTE_POWER:m+=Ti.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),A=Math.sqrt(a*a+l*l),y=Math.sqrt(o*o+u*u),x=Math.max(g,A,y),b=e[0],v=e[1],k=n[0],S=n[1];x===g?(k=n[0],S=n[1]):x===y&&(b=t[0],v=t[1]);let O=gI([b,v],[k,S]),E=AI(O,Ti.TOTAL_ANGLE_VOTE_POWER);p+=E[0],h+=E[1],m+=E[2];for(let T of s){let P=AI(T,Ti.SINGLE_ANGLE_VOTE_POWER);p+=P[0],h+=P[1],m+=P[2]}let R;return p===Math.max(p,h,m)?R=xI(l,i,u,d):m===Math.max(h,m)?R=yI(a,r,o,c):R=lue(l,i,u,d,a,r,o,c),R}function bI(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of Xe.all){let o=Xe.getPoints(a),i=[],l=[];for(let u of o){let c=e[u[0]],d=e[u[1]],p=gI(c,d),h=p[0],m=p[1];i.push(h),l.push(m)}t.push(i),n.push(l)}for(let a of Xe.all){let o=a===Xe.thumb?1:0,i=Xe.getPoints(a),l=e[i[o][0]],u=e[i[o+1][1]],c=e[i[3][1]],d=iue(l,u,c),p=uue(l,u,c,t[a].slice(o));s[a]=d,r[a]=p}return{curls:s,directions:r}}function z0(e){if(!e||e.length===0)return null;let t=bI(e),n={};for(let s of Xe.all)n[Xe.getName(s)]={curl:Kn.getName(t.curls[s]),direction:je.getName(t.directions[s])};return n}function vI(e){let t=[];if(!e||e.length===0)return t;let n=bI(e);for(let s of fI){let r=s.matchAgainst(n.curls,n.directions);r>=oue&&t.push({name:s.name,confidence:r})}return t}var wI={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},Gr,jr,kI;async function bx(e,t){let n=await kI.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let c of Object.keys(wI))a[c]=wI[c].map(d=>n[r].landmarks[d]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let c of o)c[0]<i[0]&&(i[0]=c[0]),c[1]<i[1]&&(i[1]=c[1]),c[0]>i[2]&&(i[2]=c[0]),c[1]>i[3]&&(i[3]=c[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let u=z0(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:u})}return s}async function vx(e){var n,s,r,a,o,i;oe.initial&&(Gr=null,jr=null),!Gr||!jr?([Gr,jr]=await Promise.all([e.hand.enabled?st(rt(e.modelBasePath,((n=e.hand.detector)==null?void 0:n.modelPath)||""),{fromTFHub:(((s=e.hand.detector)==null?void 0:s.modelPath)||"").includes("tfhub.dev")}):null,e.hand.landmarks?st(rt(e.modelBasePath,((r=e.hand.skeleton)==null?void 0:r.modelPath)||""),{fromTFHub:(((a=e.hand.skeleton)==null?void 0:a.modelPath)||"").includes("tfhub.dev")}):null]),e.hand.enabled&&(!Gr||!Gr.modelUrl?re("load model failed:",((o=e.hand.detector)==null?void 0:o.modelPath)||""):e.debug&&re("load model:",Gr.modelUrl),!jr||!jr.modelUrl?re("load model failed:",((i=e.hand.skeleton)==null?void 0:i.modelPath)||""):e.debug&&re("load model:",jr.modelUrl))):(e.debug&&re("cached model:",Gr.modelUrl),e.debug&&re("cached model:",jr.modelUrl));let t=new gx(Gr);return kI=new xx(t,jr),[Gr,jr]}function L0(e,t,n){let s=[e.map(c=>c[0]),e.map(c=>c[1])],r=[Math.max(...s[0]),Math.min(...s[0]),Math.max(...s[1]),Math.min(...s[1])],a=[(r[0]+r[1])/2,(r[2]+r[3])/2],o=Math.max(a[0]-r[1],a[1]-r[3],-a[0]+r[0],-a[1]+r[2])*t,i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/n[0],i[1]/n[1],i[2]/n[0],i[3]/n[1]],u=[l[1],l[0],l[3]+l[1],l[2]+l[0]];return{box:i,boxRaw:l,yxBox:u}}var $t={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function cue(){let e=$t.gl;!e||($t.extensions=e.getSupportedExtensions())}async function II(e){var t;if(e.config.backend==="humangl"&&($t.name in Qn().registry&&(!$t.gl||!$t.gl.getParameter($t.gl.VERSION))&&(re("error: humangl backend invalid context"),wx(e)),!iA($t.name))){try{$t.canvas=await ds(100,100)}catch(s){re("error: cannot create canvas:",s);return}try{$t.gl=(t=$t.canvas)==null?void 0:t.getContext("webgl2",$t.webGLattr),$t.canvas&&($t.canvas.addEventListener("webglcontextlost",async s=>{throw re("error: humangl:",s.type),re("possible browser memory leak using webgl"),e.emit("error"),new Error("browser webgl error")}),$t.canvas.addEventListener("webglcontextrestored",s=>{re("error: humangl context restored:",s)}),$t.canvas.addEventListener("webglcontextcreationerror",s=>{re("error: humangl context create:",s)}))}catch(s){re("error: cannot get WebGL context:",s);return}try{t0(2,$t.gl)}catch(s){re("error: cannot set WebGL context:",s);return}let n=$r().getGPGPUContext?$r().getGPGPUContext().gl:null;if(n)re(`humangl webgl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`);else{re("error: no current gl context:",n,$t.gl);return}try{let s=new c0($t.gl);Ql($t.name,()=>new _u(s),$t.priority)}catch(s){re("error: cannot register WebGL backend:",s);return}try{Dr("webgl").forEach(r=>{let a={...r,backendName:$t.name};la(a)})}catch(s){re("error: cannot update WebGL backend registration:",s);return}try{Ws.set("WEBGL_VERSION",2)}catch(s){re("error: cannot set WebGL backend flags:",s);return}cue(),re("backend registered:",$t.name)}}async function B0(e,t=!1){if(e.state="backend",t||oe.initial||e.config.backend&&e.config.backend.length>0&&cr()!==e.config.backend){let n=et();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&re("running inside web worker"),oe.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&re("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),oe.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&re(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),oe.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")re("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();e.config.debug&&re("enumerated webgpu adapter:",r)}e.config.backend==="humangl"&&await II(e);let s=Object.keys(Qn().registryFactory);if(e.config.debug&&re("available backends:",s),s.includes(e.config.backend)||(re(`error: backend ${e.config.backend} not found in registry`),e.config.backend=oe.node?"tensorflow":"humangl",e.config.debug&&re(`override: setting backend ${e.config.backend}`)),e.config.debug&&re("setting backend:",e.config.backend),e.config.backend==="wasm"){if(e.config.debug&&re("wasm path:",e.config.wasmPath),typeof(Ii==null?void 0:Ii.setWasmPaths)!="undefined")await v8(e.config.wasmPath);else throw new Error("wasm backend is not loaded");let r=await Y().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&re(`wasm execution: ${r?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),e.config.debug&&!r&&re("warning: wasm simd support is not enabled")}try{await Nb(e.config.backend),await Sh()}catch(r){return re("error: cannot set backend:",e.config.backend,r),!1}}if(cr()==="humangl"){Ws.set("CHECK_COMPUTATION_FOR_ERRORS",!1),Ws.set("WEBGL_CPU_FORWARD",!0),Ws.set("WEBGL_PACK_DEPTHWISECONV",!1),Ws.set("WEBGL_USE_SHAPES_UNIFORMS",!0),Ws.set("CPU_HANDOFF_SIZE_THRESHOLD",128),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(re("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),Ws.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let s=await $r().getGPGPUContext().gl;e.config.debug&&re(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}Tb(),await Sh(),e.performance.backend=Math.trunc(et()-n),e.config.backend=cr(),E0(),e.env=oe}return!0}function Vu(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&re("kernelFunc",n,t.backend)}};la(s)}oe.kernels=Dr(cr()).map(n=>n.kernelName.toLowerCase())}var Zd=1.5,Bt=[null,null],due=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],qr=[[0,0],[0,0]],pue=["hand","fist","pinch","point","face","tip","pinchtip"],kx=0,Uu=[0,0],rr={handBoxes:[],fingerBoxes:[],tmpBoxes:[]},SI={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]};async function CI(e){var t;if(oe.initial&&(Bt[0]=null),Bt[0])e.debug&&re("cached model:",Bt[0].modelUrl);else{Vu(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),Bt[0]=await st(rt(e.modelBasePath,((t=e.hand.detector)==null?void 0:t.modelPath)||""));let n=Object.values(Bt[0].modelSignature.inputs);qr[0][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,qr[0][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0,!Bt[0]||!Bt[0].modelUrl?re("load model failed:",e.object.modelPath):e.debug&&re("load model:",Bt[0].modelUrl)}return Bt[0]}async function TI(e){var t;if(oe.initial&&(Bt[1]=null),Bt[1])e.debug&&re("cached model:",Bt[1].modelUrl);else{Bt[1]=await st(rt(e.modelBasePath,((t=e.hand.skeleton)==null?void 0:t.modelPath)||""));let n=Object.values(Bt[1].modelSignature.inputs);qr[1][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,qr[1][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0,!Bt[1]||!Bt[1].modelUrl?re("load model failed:",e.object.modelPath):e.debug&&re("load model:",Bt[1].modelUrl)}return Bt[1]}async function hue(e,t){let n=[];if(!e||!Bt[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,512),o=Math.round(a*r/8)*8;s.resize=De.resizeBilinear(e,[a,o]),s.cast=pe(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await Bt[0].executeAsync(s.cast,due),s.boxes=at(s.rawBoxes,[0,2]),s.scores=at(s.rawScores,[0]);let i=En(s.scores,1),l=0;for(let u=0;u<i.length;u++){if(u===4)continue;s.nms=await De.nonMaxSuppressionAsync(s.boxes,i[u],t.hand.maxDetected,t.hand.iouThreshold,t.hand.minConfidence);let c=await s.nms.data();Z(s.nms);for(let d of Array.from(c)){let p=_e(s.boxes,d,1),h=[0,0,0,0];if(t.hand.landmarks){let x=await p.data(),b=[(x[0]+x[2])/2,(x[1]+x[3])/2],v=[+b[0]-x[0],+b[1]-x[1],-b[0]+x[2],-b[1]+x[3]];h=[b[0]-Zd*v[0],b[1]-Zd*v[1],b[0]+Zd*v[2],b[1]+Zd*v[3]]}else h=await p.data();let m=[h[1],h[0],h[3]-h[1],h[2]-h[0]],f=[Math.trunc(m[0]*Uu[0]),Math.trunc(m[1]*Uu[1]),Math.trunc(m[2]*Uu[0]),Math.trunc(m[3]*Uu[1])];Z(p);let g=_e(i[u],d,1),A=(await g.data())[0];Z(g);let y={id:l++,score:A,box:f,boxRaw:m,label:pue[u],yxBox:h};n.push(y)}}return i.forEach(u=>Z(u)),Object.keys(s).forEach(u=>Z(s[u])),n.sort((u,c)=>c.score-u.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function Ix(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&Bt[1]&&n.hand.landmarks){let r={};if(!t.yxBox)return s;r.crop=De.cropAndResize(e,[t.yxBox],[0],[qr[1][0],qr[1][1]],"bilinear"),r.cast=pe(r.crop,"float32"),r.div=he(r.cast,255),[r.score,r.keypoints]=Bt[1].execute(r.div);let a=(await r.score.data())[0],o=(100-Math.trunc(100/(1+Math.exp(a))))/100;if(o>=(n.hand.minConfidence||0)){s.fingerScore=o,r.reshaped=V(r.keypoints,[-1,3]);let i=await r.reshaped.array();s.keypoints=i.map(c=>[t.box[2]*c[0]/qr[1][0]+t.box[0],t.box[3]*c[1]/qr[1][1]+t.box[1],(t.box[2]+t.box[3])/2/qr[1][0]*(c[2]||0)]);let l=L0(s.keypoints,Zd,Uu);t.box=l.box,t.boxRaw=l.boxRaw,t.yxBox=l.yxBox,s.box=t.box,s.landmarks=z0(s.keypoints);for(let c of Object.keys(SI))s.annotations[c]=SI[c].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null);Math.min(t.box[2]/(e.shape[2]||1),t.box[3]/(e.shape[1]||1))>.05&&rr.tmpBoxes.push(t)}Object.keys(r).forEach(i=>Z(r[i]))}return s}async function Sx(e,t){Uu=[e.shape[2]||0,e.shape[1]||0];let n=[];return rr.tmpBoxes=[],t.hand.landmarks||(rr.fingerBoxes=rr.handBoxes),t.skipFrame||(rr.fingerBoxes=[]),kx<(t.hand.skipFrames||0)&&t.skipFrame?(kx++,n=await Promise.all(rr.fingerBoxes.map(s=>Ix(e,s,t)))):(kx=0,n=await Promise.all(rr.fingerBoxes.map(s=>Ix(e,s,t))),n.length!==t.hand.maxDetected&&(rr.handBoxes=await hue(e,t),n=await Promise.all(rr.handBoxes.map(s=>Ix(e,s,t))))),rr.fingerBoxes=[...rr.tmpBoxes],n}var NI=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],EI=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var hn=[null,null],fue=["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],Hu=[[0,0],[0,0]],Cx=[0,0];async function RI(e){var t;if(oe.initial&&(hn[0]=null),hn[0])e.debug&&re("cached model:",hn[0].modelUrl);else{hn[0]=await st(rt(e.modelBasePath,((t=e.body.detector)==null?void 0:t.modelPath)||""));let n=Object.values(hn[0].modelSignature.inputs);Hu[0][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Hu[0][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0,!hn[0]||!hn[0].modelUrl?re("load model failed:",e.object.modelPath):e.debug&&re("load model:",hn[0].modelUrl)}return hn[0]}async function DI(e){if(oe.initial&&(hn[1]=null),hn[1])e.debug&&re("cached model:",hn[1].modelUrl);else{hn[1]=await st(rt(e.modelBasePath,e.body.modelPath||""));let t=Object.values(hn[1].modelSignature.inputs);Hu[1][0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,Hu[1][1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,!hn[1]||!hn[1].modelUrl?re("load model failed:",e.object.modelPath):e.debug&&re("load model:",hn[1].modelUrl)}return hn[1]}async function mue(e,t){var p;let n={};n.resize=De.resizeBilinear(e,[Hu[1][0],Hu[1][1]]),[n.ld,n.segmentation,n.heatmap,n.world,n.poseflag]=await((p=hn[1])==null?void 0:p.execute(n.resize,fue));let s=await n.ld.data(),r=[],a=(s==null?void 0:s.length)===195?NI:EI,o=5;for(let h=0;h<s.length/o;h++){let m=(100-Math.trunc(100/(1+Math.exp(s[o*h+3]))))/100;m>(t.body.minConfidence||0)&&r.push({part:a[h],position:[Math.trunc(Cx[0]*s[o*h+0]/255),Math.trunc(Cx[1]*s[o*h+1]/255),Math.trunc(s[o*h+2])+0],positionRaw:[s[o*h+0]/255,s[o*h+1]/255,s[o*h+2]+0],score:m})}let i=r.map(h=>h.position[0]),l=r.map(h=>h.position[1]),u=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...i)],c=[0,0,0,0],d=r.reduce((h,m)=>m.score>h?m.score:h,0);return Object.keys(n).forEach(h=>Z(n[h])),{id:0,score:d,box:u,boxRaw:c,keypoints:r}}async function Tx(e,t){Cx=[e.shape[2]||0,e.shape[1]||0];let n=[],s=await mue(e,t);return n.push(s),n}var tn,Ir=[],Nx=[0,0,0,0],Ex=[0,0,0,0],W0=0,Rx=Number.MAX_SAFE_INTEGER,gue=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function Dx(e){return oe.initial&&(tn=null),tn?e.debug&&re("cached model:",tn.modelUrl):(tn=await st(rt(e.modelBasePath,e.body.modelPath||"")),!tn||!tn.modelUrl?re("load model failed:",e.body.modelPath):e.debug&&re("load model:",tn.modelUrl)),tn}function Aue(e,t){let[n,s]=e.shape;return H(()=>{let r=(i,l)=>ye(i,z(he(i,Ce(l,"int32")),Ce(l,"int32"))),a=V(e,[s*n]),o=ss(a,0).dataSync()[0];if(o>t){let i=Gs(a,0),l=r(i,n).dataSync()[0],u=he(i,Ce(n,"int32")).dataSync()[0];return[l,u,o]}return[0,0,o]})}async function _x(e,t){var n;return Rx<(((n=t.body)==null?void 0:n.skipFrames)||0)&&t.skipFrame&&Object.keys(Ir).length>0?(Rx++,[{id:0,score:W0,box:Nx,boxRaw:Ex,keypoints:Ir}]):(Rx=0,new Promise(async s=>{var c;let r=H(()=>{if(!(tn==null?void 0:tn.inputs[0].shape))return null;let d=De.resizeBilinear(e,[tn.inputs[0].shape[2],tn.inputs[0].shape[1]],!1);return z(d,2).sub(1)}),a;if(t.body.enabled&&(a=await(tn==null?void 0:tn.predict(r))),Z(r),a){Ir.length=0;let d=a.squeeze();Z(a);let p=d.unstack(2);Z(d);for(let h=0;h<p.length;h++){let[m,f,g]=Aue(p[h],t.body.minConfidence);W0>(((c=t.body)==null?void 0:c.minConfidence)||0)&&Ir.push({score:Math.round(100*g)/100,part:gue[h],positionRaw:[m/tn.inputs[0].shape[2],f/tn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*m/tn.inputs[0].shape[2]),Math.round(e.shape[1]*f/tn.inputs[0].shape[1])]})}p.forEach(h=>Z(h))}W0=Ir.reduce((d,p)=>p.score>d?p.score:d,0);let o=Ir.map(d=>d.position[0]),i=Ir.map(d=>d.position[1]);Nx=[Math.min(...o),Math.min(...i),Math.max(...o)-Math.min(...o),Math.max(...i)-Math.min(...i)];let l=Ir.map(d=>d.positionRaw[0]),u=Ir.map(d=>d.positionRaw[1]);Ex=[Math.min(...l),Math.min(...u),Math.max(...l)-Math.min(...l),Math.max(...u)-Math.min(...u)],s([{id:0,score:W0,box:Nx,boxRaw:Ex,keypoints:Ir}])}))}var nn,Ni=0,Fa=[],$x=Number.MAX_SAFE_INTEGER,Oa=[],_I=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];async function $I(e){return oe.initial&&(nn=null),nn?e.debug&&re("cached model:",nn.modelUrl):(Vu(["size"],e),nn=await st(rt(e.modelBasePath,e.body.modelPath||"")),!nn||!nn.modelUrl?re("load model failed:",e.body.modelPath):e.debug&&re("load model:",nn.modelUrl)),Ni=nn.inputs[0].shape?nn.inputs[0].shape[2]:0,Ni===-1&&(Ni=256),nn}function yue(e){let t=e.map(i=>i.position[0]),n=e.map(i=>i.position[1]),s=[Math.min(...t),Math.min(...n),Math.max(...t)-Math.min(...t),Math.max(...n)-Math.min(...n)],r=e.map(i=>i.positionRaw[0]),a=e.map(i=>i.positionRaw[1]),o=[Math.min(...r),Math.min(...a),Math.max(...r)-Math.min(...r),Math.max(...a)-Math.min(...a)];return[s,o]}async function FI(e,t,n,s){let r=e[0][0];Oa.length=0;let a=0;for(let u=0;u<r.length;u++)if(a=r[u][2],a>t.body.minConfidence){let c=[(s[3]-s[1])*r[u][1]+s[1],(s[2]-s[0])*r[u][0]+s[0]];Oa.push({score:Math.round(100*a)/100,part:_I[u],positionRaw:c,position:[Math.round((n.shape[2]||0)*c[0]),Math.round((n.shape[1]||0)*c[1])]})}a=Oa.reduce((u,c)=>c.score>u?c.score:u,0);let o=[],[i,l]=yue(Oa);return o.push({id:0,score:a,box:i,boxRaw:l,keypoints:Oa}),o}async function OI(e,t,n,s){let r=[];for(let a=0;a<e[0].length;a++){let o=e[0][a],i=Math.round(100*o[51+4])/100;if(i>t.body.minConfidence){Oa.length=0;for(let c=0;c<17;c++){let d=o[3*c+2];if(d>t.body.minConfidence){let p=[(s[3]-s[1])*o[3*c+1]+s[1],(s[2]-s[0])*o[3*c+0]+s[0]];Oa.push({part:_I[c],score:Math.round(100*d)/100,positionRaw:p,position:[Math.round((n.shape[2]||0)*p[0]),Math.round((n.shape[1]||0)*p[1])]})}}let l=[o[51+1],o[51+0],o[51+3]-o[51+1],o[51+2]-o[51+0]],u=[Math.trunc(l[0]*(n.shape[2]||0)),Math.trunc(l[1]*(n.shape[1]||0)),Math.trunc(l[2]*(n.shape[2]||0)),Math.trunc(l[3]*(n.shape[1]||0))];r.push({id:a,score:i,boxRaw:l,box:u,keypoints:[...Oa]})}}return r.sort((a,o)=>o.score-a.score),r.length>t.body.maxDetected&&(r.length=t.body.maxDetected),r}async function Fx(e,t){return!nn||!(nn==null?void 0:nn.inputs[0].shape)?[]:new Promise(async n=>{let s={},r=[];t.skipFrame||(Fa.length=0),$x++;for(let a=0;a<Fa.length;a++){s.crop=De.cropAndResize(e,[Fa[a]],[0],[Ni,Ni],"bilinear"),s.cast=pe(s.crop,"int32"),s.res=await(nn==null?void 0:nn.predict(s.cast));let o=await s.res.array(),i=s.res.shape[2]===17?await FI(o,t,e,Fa[a]):await OI(o,t,e,Fa[a]);r=r.concat(i),Object.keys(s).forEach(l=>Z(s[l]))}if(r.length!==t.body.maxDetected&&$x>(t.body.skipFrames||0)){s.resized=De.resizeBilinear(e,[Ni,Ni],!1),s.cast=pe(s.resized,"int32"),s.res=await(nn==null?void 0:nn.predict(s.cast));let a=await s.res.array();r=s.res.shape[2]===17?await FI(a,t,e,[0,0,1,1]):await OI(a,t,e,[0,0,1,1]),Object.keys(s).forEach(o=>Z(s[o])),Fa.length=0,$x=0}if(t.skipFrame){Fa.length=0;for(let a=0;a<r.length;a++)if(r[a].keypoints.length>10){let o=r[a].keypoints.map(l=>l.position),i=L0(o,1.5,[e.shape[2],e.shape[1]]);Fa.push([...i.yxBox])}}n(r)})}var Gu=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var hs,V0=[],Ox=Number.MAX_SAFE_INTEGER,U0=2.5;async function PI(e){if(!hs||oe.initial){hs=await st(rt(e.modelBasePath,e.object.modelPath||""));let t=Object.values(hs.modelSignature.inputs);if(hs.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!hs.inputSize)throw new Error(`cannot determine model inputSize: ${e.object.modelPath}`);!hs||!hs.modelUrl?re("load model failed:",e.object.modelPath):e.debug&&re("load model:",hs.modelUrl)}else e.debug&&re("cached model:",hs.modelUrl);return hs}async function xue(e,t,n,s){let r=0,a=[];for(let u of[1,2,4])H(async()=>{var g,A;let c=u*13,d=(g=e.find(y=>y.shape[1]===c**2&&y.shape[2]===Gu.length))==null?void 0:g.squeeze(),p=(A=e.find(y=>y.shape[1]===c**2&&y.shape[2]<Gu.length))==null?void 0:A.squeeze(),m=await p.reshape([-1,4,p.shape[1]/4]).argMax(2).array(),f=await d.array();for(let y=0;y<d.shape[0];y++)for(let x=0;x<d.shape[1];x++){let b=f[y][x];if(b>s.object.minConfidence&&x!==61){let v=(.5+Math.trunc(y%c))/c,k=(.5+Math.trunc(y/c))/c,S=m[y].map(U=>U*(c/u/t)),[C,D]=[v-U0/u*S[0],k-U0/u*S[1]],[O,E]=[v+U0/u*S[2]-C,k+U0/u*S[3]-D],R=[C,D,O,E];R=R.map(U=>Math.max(0,Math.min(U,1)));let T=[R[0]*n[0],R[1]*n[1],R[2]*n[0],R[3]*n[1]],P={id:r++,score:Math.round(100*b)/100,class:x+1,label:Gu[x].label,box:T.map(U=>Math.trunc(U)),boxRaw:R};a.push(P)}}});e.forEach(u=>Z(u));let o=a.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),i=a.map(u=>u.score),l=[];if(o&&o.length>0){let u=await De.nonMaxSuppressionAsync(o,i,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);l=await u.data(),Z(u)}return a=a.filter((u,c)=>l.includes(c)).sort((u,c)=>c.score-u.score),a}async function Px(e,t){return Ox<(t.object.skipFrames||0)&&t.skipFrame&&V0.length>0?(Ox++,V0):(Ox=0,!oe.kernels.includes("mod")||!oe.kernels.includes("sparsetodense")?V0:new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=De.resizeBilinear(e,[hs.inputSize,hs.inputSize],!1),a=he(r,255),o=a.transpose([0,3,1,2]);Z(a),Z(r);let i;t.object.enabled&&(i=await hs.predict(o)),Z(o);let l=await xue(i,hs.inputSize,s,t);V0=l,n(l)}))}var Bs,Ei=0,H0=[],Mx=Number.MAX_SAFE_INTEGER;async function MI(e){if(oe.initial&&(Bs=null),Bs)e.debug&&re("cached model:",Bs.modelUrl);else{Vu(["floormod"],e),Bs=await st(rt(e.modelBasePath,e.object.modelPath||""));let t=Object.values(Bs.modelSignature.inputs);Ei=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,!Bs||!Bs.modelUrl?re("load model failed:",e.object.modelPath):e.debug&&re("load model:",Bs.modelUrl)}return Bs}async function bue(e,t,n){if(!e)return[];let s=[],r=await e.array(),a=at(e);Z(e);let o=Vt(a,6,1);Z(a);let i=yn([o[1],o[0],o[3],o[2]],1),l=at(i);Z(i);let u=at(o[4]),c=at(o[5]);o.forEach(m=>Z(m));let d=await De.nonMaxSuppressionAsync(l,u,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);Z(l),Z(u),Z(c);let p=await d.data();Z(d);let h=0;for(let m of p){let f=Math.trunc(100*r[0][m][4])/100,g=r[0][m][5],A=Gu[g].label,[y,x]=[r[0][m][0]/Ei,r[0][m][1]/Ei],b=[y,x,r[0][m][2]/Ei-y,r[0][m][3]/Ei-x],v=[Math.trunc(b[0]*t[0]),Math.trunc(b[1]*t[1]),Math.trunc(b[2]*t[0]),Math.trunc(b[3]*t[1])];s.push({id:h++,score:f,class:g,label:A,box:v,boxRaw:b})}return s}async function zx(e,t){return Mx<(t.object.skipFrames||0)&&t.skipFrame&&H0.length>0?(Mx++,H0):(Mx=0,!oe.kernels.includes("mod")||!oe.kernels.includes("sparsetodense")?H0:new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=De.resizeBilinear(e,[Ei,Ei]),a=t.object.enabled?Bs==null?void 0:Bs.execute(r,["tower_0/detections"]):null;Z(r);let o=await bue(a,s,t);H0=o,n(o)}))}var Ts,Lx=!1;async function Bx(e){return!Ts||oe.initial?(Ts=await st(rt(e.modelBasePath,e.segmentation.modelPath||"")),!Ts||!Ts.modelUrl?re("load model failed:",e.segmentation.modelPath):e.debug&&re("load model:",Ts.modelUrl)):e.debug&&re("cached model:",Ts.modelUrl),Ts}async function zI(e,t,n){var f,g;if(Lx)return{data:[],canvas:null,alpha:null};Lx=!0,Ts||await Bx(n);let s=zu(e,n),r=((f=s.canvas)==null?void 0:f.width)||0,a=((g=s.canvas)==null?void 0:g.height)||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=De.resizeBilinear(s.tensor,[Ts.inputs[0].shape?Ts.inputs[0].shape[1]:0,Ts.inputs[0].shape?Ts.inputs[0].shape[2]:0],!1),Z(s.tensor),o.norm=he(o.resize,255),o.res=Ts.predict(o.norm),o.squeeze=at(o.res,0),o.squeeze.shape[2]===2?(o.softmax=si(o.squeeze),[o.bg,o.fg]=En(o.softmax,2),o.expand=zt(o.fg,2),o.pad=zt(o.expand,0),o.crop=De.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=at(o.crop,0)):o.data=De.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(oe.node&&!oe.Canvas&&typeof ImageData=="undefined")return n.debug&&re("canvas support missing"),Object.keys(o).forEach(A=>Z(o[A])),{data:i,canvas:null,alpha:null};let l=ds(r,a);await _s.toPixels(o.data,l);let u=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(u.filter=`blur(${n.segmentation.blur}px)`);let c=u.getImageData(0,0,r,a),d=ds(r,a),p=d.getContext("2d");s.canvas&&p.drawImage(s.canvas,0,0),p.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(p.filter=`blur(${n.segmentation.blur}px)`),p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none";let h=p.getImageData(0,0,r,a);for(let A=0;A<r*a;A++)h.data[4*A+3]=c.data[4*A+0];p.putImageData(h,0,0);let m=null;if(t&&d){m=ds(r,a);let A=zu(t,n);Z(A.tensor);let y=m.getContext("2d");y.drawImage(A.canvas,0,0,m.width,m.height),y.drawImage(d,0,0)}return Object.keys(o).forEach(A=>Z(o[A])),Lx=!1,{data:i,canvas:m||d,alpha:l}}var Pa;var epe=Number.MAX_SAFE_INTEGER;async function LI(e){return oe.initial&&(Pa=null),Pa?e.debug&&re("cached model:",Pa.modelUrl):(Pa=await st(rt(e.modelBasePath,e.face.agegenderrace.modelPath)),!Pa||!Pa.modelUrl?re("load model failed:",e.face.agegenderrace.modelPath):e.debug&&re("load model:",Pa.modelUrl)),Pa}var Yd=class{constructor(){Ne(this,"age",null);Ne(this,"agegenderrace",null);Ne(this,"blazeposedetect",null);Ne(this,"blazepose",null);Ne(this,"centernet",null);Ne(this,"efficientpose",null);Ne(this,"embedding",null);Ne(this,"emotion",null);Ne(this,"facedetect",null);Ne(this,"faceiris",null);Ne(this,"facemesh",null);Ne(this,"faceres",null);Ne(this,"gender",null);Ne(this,"handpose",null);Ne(this,"handskeleton",null);Ne(this,"handtrack",null);Ne(this,"movenet",null);Ne(this,"nanodet",null);Ne(this,"posenet",null);Ne(this,"segmentation",null)}};function wx(e){for(let t of Object.keys(e.models))e.models[t]=null}async function BI(e){var t,n,s,r,a,o,i,l,u,c,d,p,h,m,f,g,A,y,x,b,v,k,S,C,D,O,E,R,T,P;oe.initial&&wx(e),e.config.hand.enabled&&(!e.models.handpose&&((n=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:n.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await vx(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(s=e.config.hand.detector)==null?void 0:s.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await vx(e.config))),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=O8(e.config)),e.config.face.enabled&&((a=e.config.face.mesh)==null?void 0:a.enabled)&&!e.models.facemesh&&(e.models.facemesh=H8(e.config)),e.config.face.enabled&&((o=e.config.face.iris)==null?void 0:o.enabled)&&!e.models.faceiris&&(e.models.faceiris=M8(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((l=(i=e.config.hand.detector)==null?void 0:i.modelPath)==null?void 0:l.includes("handtrack"))&&(e.models.handtrack=CI(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((c=(u=e.config.hand.detector)==null?void 0:u.modelPath)==null?void 0:c.includes("handtrack"))&&(e.models.handskeleton=TI(e.config)),e.config.body.enabled&&!e.models.posenet&&((p=(d=e.config.body)==null?void 0:d.modelPath)==null?void 0:p.includes("posenet"))&&(e.models.posenet=rI(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((m=(h=e.config.body)==null?void 0:h.modelPath)==null?void 0:m.includes("efficientpose"))&&(e.models.efficientpose=Dx(e.config)),e.config.body.enabled&&!e.models.blazepose&&((g=(f=e.config.body)==null?void 0:f.modelPath)==null?void 0:g.includes("blazepose"))&&(e.models.blazepose=DI(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&((A=e.config.body.detector)==null?void 0:A.modelPath)&&((x=(y=e.config.body)==null?void 0:y.modelPath)==null?void 0:x.includes("blazepose"))&&(e.models.blazeposedetect=RI(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((v=(b=e.config.body)==null?void 0:b.modelPath)==null?void 0:v.includes("efficientpose"))&&(e.models.efficientpose=Dx(e.config)),e.config.body.enabled&&!e.models.movenet&&((S=(k=e.config.body)==null?void 0:k.modelPath)==null?void 0:S.includes("movenet"))&&(e.models.movenet=$I(e.config)),e.config.object.enabled&&!e.models.nanodet&&((D=(C=e.config.object)==null?void 0:C.modelPath)==null?void 0:D.includes("nanodet"))&&(e.models.nanodet=PI(e.config)),e.config.object.enabled&&!e.models.centernet&&((E=(O=e.config.object)==null?void 0:O.modelPath)==null?void 0:E.includes("centernet"))&&(e.models.centernet=MI(e.config)),e.config.face.enabled&&((R=e.config.face.emotion)==null?void 0:R.enabled)&&!e.models.emotion&&(e.models.emotion=Y8(e.config)),e.config.face.enabled&&((T=e.config.face.description)==null?void 0:T.enabled)&&!e.models.faceres&&(e.models.faceres=X8(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=Bx(e.config)),e.config.face.enabled&&((P=e.config.face.agegenderrace)==null?void 0:P.enabled)&&!e.models.agegenderrace&&(e.models.agegenderrace=LI(e.config));for await(let U of Object.keys(e.models))e.models[U]&&typeof e.models[U]!="undefined"&&(e.models[U]=await e.models[U])}async function WI(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let n of Object.keys(e.models))if(e.models[n]){let s=[];Array.isArray(e.models[n])?s=e.models[n].filter(r=>r!==null).map(r=>r&&r.executor?r:r.model):s=[e.models[n]];for(let r of s){if(!r){e.config.debug&&re("model marked as loaded but not defined:",n);continue}let a=[],o=r==null?void 0:r.executor;if(o&&o.graph.nodes)for(let l of Object.values(o.graph.nodes)){let u=l.op.toLowerCase();a.includes(u)||a.push(u)}else!o&&e.config.debug&&re("model signature not determined:",n);let i=[];for(let l of a)!t.includes(l)&&!e.env.kernels.includes(l)&&!e.env.kernels.includes(l.replace("_",""))&&!e.env.kernels.includes(l.replace("native",""))&&!e.env.kernels.includes(l.replace("v2",""))&&i.push(l);i.length>0&&e.config.debug&&re("model validation:",n,i)}}}var vue=e=>{let t=(d,p)=>Math.atan2(d[1]-p[1],d[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=e.mesh[33][2]>e.mesh[263][2],a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],u=Math.sqrt(l[0]**2+l[1]**2);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},VI=(e,t)=>{let n=g=>{let A=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=A,g[1]/=A,g[2]/=A,g},s=(g,A)=>{let y=g[0]-A[0],x=g[1]-A[1],b=g[2]-A[2];return[y,x,b]},r=(g,A)=>{let y=g[1]*A[2]-g[2]*A[1],x=g[2]*A[0]-g[0]*A[2],b=g[0]*A[1]-g[1]*A[0];return[y,x,b]},a=g=>{let[A,y,x,b,v,k,S,C,D]=g,O,E,R;return b<1?b>-1?(R=Math.asin(b),E=Math.atan2(-S,A),O=Math.atan2(-k,v)):(R=-Math.PI/2,E=-Math.atan2(C,D),O=0):(R=Math.PI/2,E=Math.atan2(C,D),O=0),isNaN(O)&&(O=0),isNaN(E)&&(E=0),isNaN(R)&&(R=0),{pitch:2*-O,yaw:2*-E,roll:2*-R}},o=g=>{let A=(x,b,v,k)=>Math.atan2(k-b,v-x);return{pitch:A(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:A(g[33][0],g[33][2],g[263][0],g[263][2]),roll:A(g[33][0],g[33][1],g[263][0],g[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[i[10],i[152],i[234],i[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),c=n(s(u[1],u[0])),d=n(s(u[3],u[2])),p=n(r(d,c));d=r(c,p);let h=[d[0],d[1],d[2],c[0],c[1],c[2],p[0],p[1],p[2]],m=a(h),f=i.length===478?vue(e):{bearing:0,strength:0};return{angle:m,matrix:h,gaze:f}};var Wx=async(e,t)=>{var d,p,h,m;let n,s,r,a,o,i,l,u=[];e.state="run:face",n=et();let c=await U8(t,e.config);if(e.performance.face=Math.trunc(et()-n),!t.shape||t.shape.length!==4)return[];if(!c)return[];for(let f=0;f<c.length;f++){if(e.analyze("Get Face"),!c[f].tensor||c[f].tensor.isDisposedInternal){re("Face object is disposed:",c[f].tensor);continue}let g=VI(c[f],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?o=e.config.face.emotion.enabled?ux(c[f].tensor||ln([]),e.config,f,c.length):{}:(e.state="run:emotion",n=et(),o=e.config.face.emotion.enabled?await ux(c[f].tensor||ln([]),e.config,f,c.length):{},e.performance.emotion=Math.trunc(et()-n)),e.analyze("End Emotion:"),e.analyze("Start Description:"),e.config.async?l=e.config.face.description.enabled?ox(c[f].tensor||ln([]),e.config,f,c.length):[]:(e.state="run:description",n=et(),l=e.config.face.description.enabled?await ox(c[f].tensor||ln([]),e.config,f,c.length):[],e.performance.embedding=Math.trunc(et()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,l,r]=await Promise.all([s,a,o,i,l,r])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((p=(d=c[f])==null?void 0:d.annotations)==null?void 0:p.leftEyeIris)&&((m=(h=c[f])==null?void 0:h.annotations)==null?void 0:m.rightEyeIris)&&(delete c[f].annotations.leftEyeIris,delete c[f].annotations.rightEyeIris);let A=c[f].annotations&&c[f].annotations.leftEyeIris&&c[f].annotations.leftEyeIris[0]&&c[f].annotations.rightEyeIris&&c[f].annotations.rightEyeIris[0]&&c[f].annotations.leftEyeIris.length>0&&c[f].annotations.rightEyeIris.length>0&&c[f].annotations.leftEyeIris[0]!==null&&c[f].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(c[f].annotations.leftEyeIris[3][0]-c[f].annotations.leftEyeIris[1][0]),Math.abs(c[f].annotations.rightEyeIris[4][1]-c[f].annotations.rightEyeIris[2][1]))/t.shape[2]:0,y=e.config.face.detector.return?at(c[f].tensor):null;Z(c[f].tensor),c[f].tensor&&delete c[f].tensor,u.push({...c[f],id:f,age:l.age,gender:l.gender,genderScore:l.genderScore,embedding:l.descriptor,emotion:o,iris:A!==0?Math.trunc(500/A/11.7)/100:0,rotation:g,tensor:y}),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),u};var UI=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position.y<a.position.y&&r.position.y<a.position.y?t.push({body:n,gesture:"i give up"}):a&&s&&s.position.y<a.position.y?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position.y<a.position.y&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&t.push({body:n,gesture:`leaning ${o.position.y>i.position.y?"left":"right"}`})}return t},HI=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>450){let s=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(s)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));o>10&&t.push({face:n,gesture:`mouth ${Math.trunc(o)}% open`});let i=e[n].mesh[152][2];Math.abs(i)>10&&t.push({face:n,gesture:`head ${i<0?"up":"down"}`})}return t},GI=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.leftEyeIris[0]||!e[n].annotations.rightEyeIris||!e[n].annotations.rightEyeIris[0])continue;let s=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],a=Math.abs(s*r),o=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],i=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(o*i),u=!1;Math.abs(a-l)/Math.max(a,l)<.25&&(u=!0,t.push({iris:n,gesture:"facing center"}));let d=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2],p=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2];(p>.06||d>.06)&&(u=!1),p>.06&&t.push({iris:n,gesture:"looking right"}),d>.06&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],m=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(m<.01||h<.01||m>.022||h>.022)&&(u=!1),(m<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(m>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),u&&t.push({iris:n,gesture:"looking center"})}return t},jI=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];if(e[n].annotations)for(let[r,a]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(a)&&a[0]&&s.push({name:r.toLowerCase(),position:a[0]});if(s&&s.length>0){let r=s.reduce((o,i)=>o.position[2]<i.position[2]?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]<i.position[1]?o:i);t.push({hand:n,gesture:`${a.name} up`})}if(e[n].keypoints){let r=vI(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}}return t};var Xr={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},Ri=e=>{if(e&&e.getContext)return e.getContext("2d");throw new Error("invalid canvas")},G0=e=>Math.round(e*180/Math.PI);function Vx(e,t,n,s=0,r){e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function Jd(e,t,n,s,r,a){if(e.beginPath(),a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function Ux(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function Qd(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){Ux(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}async function Hx(e,t,n){let s=rn(Xr,n);if(!t||!e)return;let r=Ri(e);r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let u=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${u}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(c,6,0+a*s.lineHeight),a+=1}}}async function Gx(e,t,n){var a,o,i,l;let s=rn(Xr,n);if(!t||!e)return;let r=Ri(e);for(let u of t){r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&Jd(r,u.box[0],u.box[1],u.box[2],u.box[3],s);let c=[];if(c.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&c.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&c.push(`age: ${u.age||""}`),u.iris&&c.push(`distance: ${u.iris}`),u.emotion&&u.emotion.length>0){let d=u.emotion.map(p=>`${Math.trunc(100*p.score)}% ${p.emotion}`);d.length>3&&(d.length=3),c.push(d.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&c.push(`roll: ${G0(u.rotation.angle.roll)}\xB0 yaw:${G0(u.rotation.angle.yaw)}\xB0 pitch:${G0(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&c.push(`gaze: ${G0(u.rotation.gaze.bearing)}\xB0`)),c.length===0&&c.push("face"),r.fillStyle=s.color;for(let d=c.length-1;d>=0;d--){let p=Math.max(u.box[0],0),h=d*s.lineHeight+u.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c[d],p+5,h+16)),r.fillStyle=s.labelColor,r.fillText(c[d],p+4,h+15)}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(s.drawPoints)for(let d of u.mesh)Vx(r,d[0],d[1],d[2],s);if(s.drawPolygons){if(r.lineWidth=1,u.mesh.length>450)for(let d=0;d<Si.length/3;d++){let p=[Si[d*3+0],Si[d*3+1],Si[d*3+2]].map(h=>u.mesh[h]);Ux(r,p,s)}if(u.annotations&&u.annotations.leftEyeIris&&u.annotations.leftEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,p=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris&&u.annotations.rightEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,p=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&((o=(a=u.rotation)==null?void 0:a.gaze)==null?void 0:o.strength)&&((l=(i=u.rotation)==null?void 0:i.gaze)==null?void 0:l.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.beginPath();let d=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]),r.lineTo(d[0],d[1]);let p=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]),r.lineTo(p[0],p[1]),r.stroke()}}}}}async function jx(e,t,n){var a;let s=rn(Xr,n);if(!t||!e)return;let r=Ri(e);r.lineJoin="round";for(let o=0;o<t.length;o++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[o].box&&((a=t[o].box)==null?void 0:a.length)===4&&(Jd(r,t[o].box[0],t[o].box[1],t[o].box[2],t[o].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+3,1+t[o].box[1]+s.lineHeight,t[o].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+2,0+t[o].box[1]+s.lineHeight,t[o].box[2]))),s.drawPoints)for(let i=0;i<t[o].keypoints.length;i++)r.fillStyle=s.useDepth&&t[o].keypoints[i].position[2]?`rgba(${127.5+2*(t[o].keypoints[i].position[2]||0)}, ${127.5-2*(t[o].keypoints[i].position[2]||0)}, 255, 0.5)`:s.color,Vx(r,t[o].keypoints[i].position[0],t[o].keypoints[i].position[1],0,s);if(s.drawLabels&&(r.font=s.font,t[o].keypoints))for(let i of t[o].keypoints)r.fillStyle=s.useDepth&&i.position[2]?`rgba(${127.5+2*i.position[2]}, ${127.5-2*i.position[2]}, 255, 0.5)`:s.color,r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position[0]+4,i.position[1]+4);if(s.drawPolygons&&t[o].keypoints){let i,l=[];l.length=0,i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),Qd(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),l.length===4&&Ux(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftFoot"),i&&l.push([i.position[0],i.position[1]]),Qd(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightFoot"),i&&l.push([i.position[0],i.position[1]]),Qd(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftPalm"),i&&l.push([i.position[0],i.position[1]]),Qd(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightPalm"),i&&l.push([i.position[0],i.position[1]]),Qd(r,l,s)}}}async function qx(e,t,n){let s=rn(Xr,n);if(!t||!e)return;let r=Ri(e);r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,Jd(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*(o[2]||0)}, ${127.5-2*(o[2]||0)}, 255, 0.5)`:s.color,Vx(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{!i||i.length===0||!i[0]||(r.fillStyle=s.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4))};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l<i.length;l++)r.beginPath(),r.strokeStyle=s.useDepth?`rgba(${127.5+2*i[l][2]}, ${127.5-2*i[l][2]}, 255, 0.5)`:s.color,r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}async function Xx(e,t,n){let s=rn(Xr,n);if(!t||!e)return;let r=Ri(e);r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,Jd(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}async function qI(e,t,n){let s=rn(Xr,n);if(!t||!e)return;let r=Ri(e);r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,Jd(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}async function XI(e,t){if(!e||!t)return;Ri(t).drawImage(e,0,0)}async function KI(e,t,n){if(!t||!t.performance||!t||!e)return null;let s=et(),r=rn(Xr,n),a=Promise.all([Gx(e,t.face,r),jx(e,t.body,r),qx(e,t.hand,r),Xx(e,t.object,r),Hx(e,t.gesture,r)]);return t.performance.draw=Math.trunc(et()-s),a}function ZI(e,t,n,s,r){var i,l,u,c,d,p,h,m,f,g,A,y,x,b,v,k;let a=0,o=[];for(let S of e){let C={id:a++,face:S,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let P of t)S.box[0]>P.box[0]&&S.box[0]<P.box[0]+P.box[2]&&S.box[1]+S.box[3]>P.box[1]&&S.box[1]+S.box[3]<P.box[1]+P.box[3]&&(C.body=P);if(C.body)for(let P of n)P.box[0]+P.box[2]>C.body.box[0]&&P.box[0]+P.box[2]<C.body.box[0]+C.body.box[2]&&P.box[1]+P.box[3]>C.body.box[1]&&P.box[1]+P.box[3]<C.body.box[1]+C.body.box[3]&&C.hands&&(C.hands.left=P),P.box[0]<C.body.box[0]+C.body.box[2]&&P.box[0]>C.body.box[0]&&P.box[1]+P.box[3]>C.body.box[1]&&P.box[1]+P.box[3]<C.body.box[1]+C.body.box[3]&&C.hands&&(C.hands.right=P);for(let P of s)P.face!==void 0&&P.face===S.id?(i=C.gestures)==null||i.push(P):P.iris!==void 0&&P.iris===S.id?(l=C.gestures)==null||l.push(P):P.body!==void 0&&P.body===((u=C.body)==null?void 0:u.id)?(c=C.gestures)==null||c.push(P):P.hand!==void 0&&P.hand===((p=(d=C.hands)==null?void 0:d.left)==null?void 0:p.id)?(h=C.gestures)==null||h.push(P):P.hand!==void 0&&P.hand===((f=(m=C.hands)==null?void 0:m.right)==null?void 0:f.id)&&((g=C.gestures)==null||g.push(P));let D=[],O=[],E=P=>{P&&P.length===4&&(D.push(P[0],P[0]+P[2]),O.push(P[1],P[1]+P[3]))};E((A=C.face)==null?void 0:A.box),E((y=C.body)==null?void 0:y.box),E((b=(x=C.hands)==null?void 0:x.left)==null?void 0:b.box),E((k=(v=C.hands)==null?void 0:v.right)==null?void 0:k.box);let R=Math.min(...D),T=Math.min(...O);C.box=[R,T,Math.max(...D)-R,Math.max(...O)-T],r&&r[1]&&r[2]&&(C.boxRaw=[C.box[0]/r[2],C.box[1]/r[1],C.box[2]/r[2],C.box[3]/r[1]]),o.push(C)}return o}var Fe={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function YI(e){var s,r,a,o,i,l,u,c,d,p,h,m,f,g,A,y,x,b,v,k,S;if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};let t=Date.now()-e.timestamp,n=t<1e3?8-Math.log(t+1):1;if(Fe.canvas=e.canvas,!Fe.body||e.body.length!==Fe.body.length)Fe.body=JSON.parse(JSON.stringify(e.body));else for(let C=0;C<e.body.length;C++){let D=e.body[C].box.map((R,T)=>((n-1)*Fe.body[C].box[T]+R)/n),O=e.body[C].boxRaw.map((R,T)=>((n-1)*Fe.body[C].boxRaw[T]+R)/n),E=e.body[C].keypoints.map((R,T)=>({score:R.score,part:R.part,position:[Fe.body[C].keypoints[T]?((n-1)*Fe.body[C].keypoints[T].position[0]+R.position[0])/n:R.position[0],Fe.body[C].keypoints[T]?((n-1)*Fe.body[C].keypoints[T].position[1]+R.position[1])/n:R.position[1]],positionRaw:[Fe.body[C].keypoints[T]?((n-1)*Fe.body[C].keypoints[T].positionRaw[0]+R.positionRaw[0])/n:R.position[0],Fe.body[C].keypoints[T]?((n-1)*Fe.body[C].keypoints[T].positionRaw[1]+R.positionRaw[1])/n:R.position[1]]}));Fe.body[C]={...e.body[C],box:D,boxRaw:O,keypoints:E}}if(!Fe.hand||e.hand.length!==Fe.hand.length)Fe.hand=JSON.parse(JSON.stringify(e.hand));else for(let C=0;C<e.hand.length;C++){let D=e.hand[C].box.map((T,P)=>((n-1)*Fe.hand[C].box[P]+T)/n),O=e.hand[C].boxRaw.map((T,P)=>((n-1)*Fe.hand[C].boxRaw[P]+T)/n);Fe.hand[C].keypoints.length!==e.hand[C].keypoints.length&&(Fe.hand[C].keypoints=e.hand[C].keypoints);let E=e.hand[C].keypoints&&e.hand[C].keypoints.length>0?e.hand[C].keypoints.map((T,P)=>T.map((U,j)=>((n-1)*(Fe.hand[C].keypoints[P][j]||1)+(U||0))/n)):[],R={};if(Object.keys(Fe.hand[C].annotations).length!==Object.keys(e.hand[C].annotations).length&&(Fe.hand[C].annotations=e.hand[C].annotations),e.hand[C].annotations)for(let T of Object.keys(e.hand[C].annotations))R[T]=e.hand[C].annotations[T]&&e.hand[C].annotations[T][0]?e.hand[C].annotations[T].map((P,U)=>P.map((j,q)=>((n-1)*Fe.hand[C].annotations[T][U][q]+j)/n)):null;Fe.hand[C]={...e.hand[C],box:D,boxRaw:O,keypoints:E,annotations:R}}if(!Fe.face||e.face.length!==Fe.face.length)Fe.face=JSON.parse(JSON.stringify(e.face));else for(let C=0;C<e.face.length;C++){let D=e.face[C].box.map((R,T)=>((n-1)*Fe.face[C].box[T]+R)/n),O=e.face[C].boxRaw.map((R,T)=>((n-1)*Fe.face[C].boxRaw[T]+R)/n),E={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};E.matrix=(s=e.face[C].rotation)==null?void 0:s.matrix,E.angle={roll:((n-1)*(((a=(r=Fe.face[C].rotation)==null?void 0:r.angle)==null?void 0:a.roll)||0)+(((i=(o=e.face[C].rotation)==null?void 0:o.angle)==null?void 0:i.roll)||0))/n,yaw:((n-1)*(((u=(l=Fe.face[C].rotation)==null?void 0:l.angle)==null?void 0:u.yaw)||0)+(((d=(c=e.face[C].rotation)==null?void 0:c.angle)==null?void 0:d.yaw)||0))/n,pitch:((n-1)*(((h=(p=Fe.face[C].rotation)==null?void 0:p.angle)==null?void 0:h.pitch)||0)+(((f=(m=e.face[C].rotation)==null?void 0:m.angle)==null?void 0:f.pitch)||0))/n},E.gaze={bearing:((n-1)*(((A=(g=Fe.face[C].rotation)==null?void 0:g.gaze)==null?void 0:A.bearing)||0)+(((x=(y=e.face[C].rotation)==null?void 0:y.gaze)==null?void 0:x.bearing)||0))/n,strength:((n-1)*(((v=(b=Fe.face[C].rotation)==null?void 0:b.gaze)==null?void 0:v.strength)||0)+(((S=(k=e.face[C].rotation)==null?void 0:k.gaze)==null?void 0:S.strength)||0))/n},Fe.face[C]={...e.face[C],rotation:E,box:D,boxRaw:O}}if(!Fe.object||e.object.length!==Fe.object.length)Fe.object=JSON.parse(JSON.stringify(e.object));else for(let C=0;C<e.object.length;C++){let D=e.object[C].box.map((E,R)=>((n-1)*Fe.object[C].box[R]+E)/n),O=e.object[C].boxRaw.map((E,R)=>((n-1)*Fe.object[C].boxRaw[R]+E)/n);Fe.object[C]={...e.object[C],box:D,boxRaw:O}}if(e.persons){let C=e.persons;if(!Fe.persons||C.length!==Fe.persons.length)Fe.persons=JSON.parse(JSON.stringify(C));else for(let D=0;D<C.length;D++)Fe.persons[D].box=C[D].box.map((O,E)=>((n-1)*Fe.persons[D].box[E]+O)/n)}return e.gesture&&(Fe.gesture=e.gesture),e.performance&&(Fe.performance=e.performance),Fe}var Kx="2.3.0";var j0=`
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,q0=`
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
2Q==`;async function kue(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(j0);break;case"body":case"full":n=await t(q0);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function Iue(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+j0;break;case"full":case"body":n="data:image/jpeg;base64,"+q0;break;default:n=null}let s;typeof Image!="undefined"?s=new Image:oe.Image&&(s=new oe.Image),s.onload=async()=>{let r=ds(s.naturalWidth,s.naturalHeight);if(!r)re("Warmup: Canvas not found"),t({});else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=await e.detect(o.tensor,e.config);t(i)}},n?s.src=n:t(null)})}async function Sue(e){let t=r=>Buffer.from(r,"base64"),n;if(e.config.warmup==="face"&&(n=t(j0)),(e.config.warmup==="body"||e.config.warmup==="full")&&(n=t(q0)),!n)return null;let s;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&re("Warmup tfjs-node not loaded");return s}async function JI(e,t){let n=et();if(e.state="warmup",t&&(e.config=rn(e.config,t)),!e.config.warmup||e.config.warmup==="none")return{error:"null"};let s;return new Promise(async r=>{typeof createImageBitmap=="function"?s=await kue(e):typeof Image!="undefined"||oe.Canvas!==void 0?s=await Iue(e):s=await Sue(e);let a=et();e.config.debug&&re("Warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),r(s)})}var ju,ep,tp,X0,eS=class{constructor(t){Ne(this,"version");Ne(this,"config");Ne(this,"result");Ne(this,"state");Ne(this,"process");Ne(this,"tf");Ne(this,"env");Ne(this,"draw");Ne(this,"models");Ne(this,"events");Ne(this,"faceTriangulation");Ne(this,"faceUVMap");Ne(this,"performance");ac(this,ju,void 0);ac(this,ep,void 0);ac(this,tp,void 0);Ne(this,"gl");Ne(this,"analyze",(...t)=>{if(!rc(this,ep))return;let n=this.tf.engine().state.numTensors,s=rc(this,ju);oc(this,ju,n);let r=n-s;r!==0&&re(...t,r)});ac(this,X0,t=>{if(!rc(this,tp))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof He))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});Ne(this,"emit",t=>{var n;return(n=this.events)==null?void 0:n.dispatchEvent(new Event(t))});E0(),this.env=oe,ta.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${kh}/dist/`,ta.modelBasePath=this.env.browser?"../models/":"file://models/",ta.backend=this.env.browser?"humangl":"tensorflow",this.version=Kx,Object.defineProperty(this,"version",{value:Kx}),this.config=JSON.parse(JSON.stringify(ta)),Object.seal(this.config),t&&(this.config=rn(this.config,t)),this.tf=Ii,this.state="idle",oc(this,ju,0),oc(this,ep,!1),oc(this,tp,!1),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.events=new EventTarget,this.models=new Yd,this.draw={options:Xr,canvas:(n,s)=>XI(n,s),face:(n,s,r)=>Gx(n,s,r),body:(n,s,r)=>jx(n,s,r),hand:(n,s,r)=>qx(n,s,r),gesture:(n,s,r)=>Hx(n,s,r),object:(n,s,r)=>Xx(n,s,r),person:(n,s,r)=>qI(n,s,r),all:(n,s,r)=>KI(n,s,r)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.process={tensor:null,canvas:null},this.faceTriangulation=G8,this.faceUVMap=j8,this.gl=$t,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(ta)),this.config.backend=t}validate(t){return wg(ta,t||this.config)}image(t){return zu(t,this.config)}similarity(t,n){return rx(t,n)}async segmentation(t,n){return zI(t,n,this.config)}enhance(t){return ax(t)}match(t,n,s=0){return K8(t,n,s)}async init(){await B0(this,!0),await this.tf.ready(),_8(this.env)}async load(t){this.state="load";let n=et(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=rn(this.config,t)),oe.initial&&(this.config.debug&&re(`version: ${this.version}`),this.config.debug&&re(`tfjs version: ${this.tf.version_core}`),await B0(this)||re("error: backend check failed"),await Sh(),this.env.browser&&(this.config.debug&&re("configuration:",this.config),this.config.debug&&re("tf flags:",this.tf.ENV.flags))),await BI(this),oe.initial&&this.config.debug&&re("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),oe.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(await WI(this),this.emit("load"));let a=Math.trunc(et()-n);a>(this.performance.load||0)&&(this.performance.load=a)}next(t=this.result){return YI(t)}async warmup(t){return JI(this,t)}async detect(t,n){return this.state="detect",new Promise(async s=>{var A,y,x,b,v,k,S,C,D,O,E,R,T,P,U,j,q,X,te,ne,se,ae;this.state="config";let r,a;this.config=rn(this.config,n),this.state="check";let o=rc(this,X0).call(this,t);o&&(re(o,t),s({error:o}));let i=et();await B0(this),await this.load(),r=et(),this.state="image";let l=zu(t,this.config);if(this.process=l,this.performance.image=Math.trunc(et()-r),this.analyze("Get Image:"),!l.tensor){this.config.debug&&re("could not convert input to tensor"),s({error:"could not convert input to tensor"});return}this.emit("image"),r=et(),this.config.skipFrame=await D8(this.config,l.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(et()-r),this.analyze("Check Changed:");let u=[],c=[],d=[],p=[];this.state="detect:face",this.config.async?(u=this.config.face.enabled?Wx(this,l.tensor):[],this.performance.face&&delete this.performance.face):(r=et(),u=this.config.face.enabled?await Wx(this,l.tensor):[],a=Math.trunc(et()-r),a>0&&(this.performance.face=a)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(u=await u),this.analyze("Start Body:"),this.state="detect:body";let h=this.config.body.maxDetected===-1?rn(this.config,{body:{maxDetected:this.config.face.enabled?1*u.length:1}}):this.config;this.config.async?(((A=this.config.body.modelPath)==null?void 0:A.includes("posenet"))?c=this.config.body.enabled?mx(l.tensor,h):[]:((y=this.config.body.modelPath)==null?void 0:y.includes("blazepose"))?c=this.config.body.enabled?Tx(l.tensor,h):[]:((x=this.config.body.modelPath)==null?void 0:x.includes("efficientpose"))?c=this.config.body.enabled?_x(l.tensor,h):[]:((b=this.config.body.modelPath)==null?void 0:b.includes("movenet"))&&(c=this.config.body.enabled?Fx(l.tensor,h):[]),this.performance.body&&delete this.performance.body):(r=et(),((v=this.config.body.modelPath)==null?void 0:v.includes("posenet"))?c=this.config.body.enabled?await mx(l.tensor,h):[]:((k=this.config.body.modelPath)==null?void 0:k.includes("blazepose"))?c=this.config.body.enabled?await Tx(l.tensor,h):[]:((S=this.config.body.modelPath)==null?void 0:S.includes("efficientpose"))?c=this.config.body.enabled?await _x(l.tensor,h):[]:((C=this.config.body.modelPath)==null?void 0:C.includes("movenet"))&&(c=this.config.body.enabled?await Fx(l.tensor,h):[]),a=Math.trunc(et()-r),a>0&&(this.performance.body=a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let m=this.config.hand.maxDetected===-1?rn(this.config,{hand:{maxDetected:this.config.face.enabled?2*u.length:1}}):this.config;this.config.async?(((O=(D=this.config.hand.detector)==null?void 0:D.modelPath)==null?void 0:O.includes("handdetect"))?d=this.config.hand.enabled?bx(l.tensor,m):[]:((R=(E=this.config.hand.detector)==null?void 0:E.modelPath)==null?void 0:R.includes("handtrack"))&&(d=this.config.hand.enabled?Sx(l.tensor,m):[]),this.performance.hand&&delete this.performance.hand):(r=et(),((P=(T=this.config.hand.detector)==null?void 0:T.modelPath)==null?void 0:P.includes("handdetect"))?d=this.config.hand.enabled?await bx(l.tensor,m):[]:((j=(U=this.config.hand.detector)==null?void 0:U.modelPath)==null?void 0:j.includes("handtrack"))&&(d=this.config.hand.enabled?await Sx(l.tensor,m):[]),a=Math.trunc(et()-r),a>0&&(this.performance.hand=a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?(((q=this.config.object.modelPath)==null?void 0:q.includes("nanodet"))?p=this.config.object.enabled?Px(l.tensor,this.config):[]:((X=this.config.object.modelPath)==null?void 0:X.includes("centernet"))&&(p=this.config.object.enabled?zx(l.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=et(),((te=this.config.object.modelPath)==null?void 0:te.includes("nanodet"))?p=this.config.object.enabled?await Px(l.tensor,this.config):[]:((ne=this.config.object.modelPath)==null?void 0:ne.includes("centernet"))&&(p=this.config.object.enabled?await zx(l.tensor,this.config):[]),a=Math.trunc(et()-r),a>0&&(this.performance.object=a)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([u,c,d,p]=await Promise.all([u,c,d,p])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=et(),f=[...HI(u),...UI(c),...jI(d),...GI(u)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(et()-r)),this.performance.total=Math.trunc(et()-i);let g=((ae=(se=this.process)==null?void 0:se.tensor)==null?void 0:ae.shape)||[];this.result={face:u,body:c,hand:d,gesture:f,object:p,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),get persons(){return ZI(u,c,d,f,g)}},Z(l.tensor),this.emit("detect"),this.state="idle",s(this.result)})}};ju=new WeakMap,ep=new WeakMap,tp=new WeakMap,X0=new WeakMap;return Cue;})();
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */